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Abstract

Litter pollution is a global environmental problem that occurs in virtually all ecosystems. Sci-

entific research on anthropogenic litter and its environmental impacts focusses predomi-

nantly on plastics and the marine environment. Little empirical knowledge exists about the

distribution and ecological impacts of litter in terrestrial environments, where most litter is

produced. To start closing that knowledge gap, we investigated the distribution of litter in a

cultural landscape in central Norway and in relation to land cover types. We registered and

collected litter in 110 survey plots that were randomly stratified across various land cover

types. Our results show that land cover type modulates the occurrence, abundance, frag-

ments size, and that litter is most present and abundant in or near land cover types associ-

ated with high human activities. Plastic was by far the most common litter material type,

although the litter community (in terms of materials type) was not independent from land

cover type. This knowledge can help to inform and optimize litter management and clean-up

activities in terrestrial landscapes. How and to what extent the spatial structure of the litter

community mediates ecological effects across various land cover types remains unknown

to a large extent and warrants further study.

Introduction

The distribution and dispersal of anthropogenic litter (hereafter litter) in the environment is a

global problem. Depending on the size and nature of litter, it can affect all levels of the ecologi-

cal hierarchy: from the subcellular level to entire ecosystems and biomes [1–5]. For example,

chemical leaching of plastics can induce DNA mutations in organisms [6], macroparticles can

injure or entangle wildlife [7], or suffocate, intoxicate, and starve organisms when ingested [8].

Furthermore, accumulation of litter in oceans can cover vast areas (e.g., the Great Atlantic

Garbage Patch, covering about 1.6 million km2) that may impair marine ecosystem function-

ing [9]. Litter also has economic impacts, as it can hamper commercial activities such as fishing

and tourism, and because litter management and clean-up actions can be expensive [10].
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The vast majority of studies that investigate litter and its environmental impacts have been

conducted in marine environments [3, 11]. The marine environment is known as a ‘sink’ habi-

tat where much litter eventually ends up, for example, about 96% of all microplastic studies

focus on oceans and coastal ecosystems [12]. Very little knowledge exists about the origin, dis-

tribution and dispersal, and ecological impacts of litter (especially plastics) on land, where vir-

tually all litter is produced [11–13]. However, identifying origins and transport pathways of

litter dispersal in terrestrial systems is crucial for managing and mitigation of this type of pol-

lution [3, 11, 13–15], but has been largely overlooked in the literature [11].

Litter implies solid waste made or used by humans (e.g., plastic bags, cans, etc.) and dis-

carded or lost in inappropriate locations [16, 17]. It is therefore reasonable to assume that litter

distribution and abundance in terrestrial environments are tied to human population densities

or activities [3, 14, 18].

One could expect that litter particles are more abundant in cities and villages compared to

more natural habitats like forests; or that the occurrence of litter shows a distant decay rela-

tionship with core areas of human activities or sink habitats. In addition, specific terrain fea-

tures such as edges between open terrain and vegetation, water and land, and roadside verges

may be more prone for littering or litter accumulation during dispersal [15, 16], and are thus

likely to increase the variation in the distribution of litter across the landscape. Due to the

inherent association between litter and human activity, one could also expect variation in the

composition of different litter types (the ‘litter community’) and particle sizes across land

cover types or along spatial gradients (e.g., distance to roads or urban areas) [19, 20]. This is

important, because it implies that ecological impacts induced by litter can vary across the land-

scape [2]. Furthermore, urbanization has reached unprecedented levels [21] and leads to

increased human inference into natural ecosystems [18], which most likely also promotes litter

distribution in such areas. Better understanding the link between land cover type and litter dis-

tribution may therefore be valuable to anticipate of environmental impacts of urbanization.

In this study, we assessed the distribution of terrestrial litter in relation to land cover types in

a cultural landscape in central Norway. We expected that (Hypothesis 1, H1) the distribution of

litter is not uniform across land cover types, with both the litter detection probability (H1a) and

abundance (H1b) being highest in land cover types associated with high levels of human activity

(e.g., urban areas, roadside verges) and sink habitat (e.g., beaches) and lowest in more natural

habitat types such as forests. Furthermore, we expected that (H1c) the litter detection probabil-

ity would decrease with distance to roads, i.e., linear features with concentrated human activity,

and that (H1d) litter fragment size would be largest in land cover types associated with litter

sources (e.g., urban areas, agricultural land) compared to sink habitats (e.g., beaches).

In addition, we expected that (Hypothesis 2, H2) the composition of the litter community

in terms material type would vary among land cover types, with, for example, metal scrap (e.g.,

discarded machinery) being more related to agricultural land and its edges, and plastics being

most common at sink habitat (e.g., beaches). Our research sheds light on the distribution and

composition of litter in terrestrial ecosystems, which has been largely overlooked in the litera-

ture [11, 22], and has important implications for litter accountability and management.

Methods

Study area

We evaluated our hypotheses in Steinkjer municipality in Trøndelag county, central Norway.

Steinkjer is located in the innermost part of the Trondheimsfjorden (64˚N, 11˚E) and lies in the

south boreal zone (Fig 1). Steinkjer has an oceanic climate with an annual average temperature

between 4–6˚C and annual precipitation between 800- and 1500-mm. Snow cover typically lasts
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for about 3–5 months [23]. The topography of the municipality is characterized by low hills and

wide valleys that run in a southwest-northeast direction. The municipality has a population of

about 24000 inhabitants (13 inhabitants/km2) [24] and covers approximately 2100 km2 [24].

Steinkjer has a cultural landscape with a matrix of agricultural and forest land surrounding

small settlements or villages. Forest lands comprise commercial and natural coniferous forest,

and are intersected by bogs, rivers, and lakes [24]. Roads and buildings cover 8 and 3.5 km2,

respectively [24]. We defined the operational study area as a square of 196 km2 with Nord Uni-

versity campus Steinkjer as the midpoint (N: 622235 E:7100896, WGS84 UTM Z32).

Land cover variables

We used the ‘SatVeg’ raster dataset (Johansen 2009), and the ‘NVE_Elvenett’ [25] and ‘Vbase’

[26] vector based datasets to produce a land cover classification map that contained the

Fig 1. A map of the study area. In the upper left corner is a map of Norway with the study area in Steinkjer is marked in black. Underneath is an

overview map of the different land cover types in our study area as categorized in this study.

https://doi.org/10.1371/journal.pone.0275463.g001
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following land cover classes: ‘forest’, ‘ocean’, ‘agriculture’, ‘urban’, ‘river’, ‘lake’, ‘road’, ‘forest/

agriculture edge’ (hereafter ‘edge’), ‘beach’, ‘lake shore’, and ‘unclassified’. The three datasets

were assigned the WGS84 UTM zone 32 coordinate system. The NVE_elvenet and Vbase data-

sets were rasterized and snapped into 30 x 30m rasters to match the SatVeg raster.

The SatVeg dataset is a nationwide land cover map based on image classification of Landsat

5 TM and Landsat 7 ETM+ satellite imagery and includes 25 vegetation types. The dataset was

produced in 2009 by the Northern Research Institute NORUT [27]. We reclassified the SatVeg

data to obtain the land cover classes ‘forest’, ‘water’, ‘agriculture’, ‘urban’ and ‘unclassified’.

We updated that raster with NVE_Elvenett to classify ‘water’ into ‘rivers’ and ‘lakes’. The

NVE_Elvenett data is a vector-based river network dataset and was produced in 2002 by the

Norwegian Water Resources and Energy Directorate [25]. The Vbase dataset is a continuously

updated vector-based and nationwide dataset that contains all drivable roads > 50m and dis-

tinguishes between different road types [26]. We merged all the road types into one category,

which we used for updating our land cover classification. Within the land cover classification,

we selected boundaries between forest and agriculture, ocean and land, and lakes and land and

reclassified those into ‘edge’, ‘beach’, and ‘lakeshore’, respectively. Furthermore, we used the

Vbase dataset to calculate the Euclidean distance to the nearest road (irrespective of road class)

for all 30 x 30 raster cells in the study area. Geoprocessing was conducted in R software [28],

using the ‘raster’ [29], ‘rgeos’ [30], ‘rgdal’ [31], ‘sp’ [32], ‘mapview’[33] and ‘maptools’ [34]

packages. Please refer to S1A in S1 Appendix for details about all geoprocessing.

Data collection

We used stratified random sampling to distribute 30 survey plot locations in all strata (except for

‘sea’, ‘lake’, and ‘unclassified’) in the operational study area and randomly assigned two cardinal

directions for each plot. We used handheld GPS units (Garmin GPSmap 66s) to navigate to the

exact plot location in continuous habitat (e.g., agriculture, forest) or as close as possible to the plot

location for more discrete habitat types (e.g., roadside verges, lakeshores, and edge habitat).

There, we laid out a 50 m rope in the first predefined cardinal direction (in continuous habitat),

or along linear features (e.g., riverbanks and roadsides) following the first predefined cardinal

direction as close as possible. In cases where sampling was not possible following the first or sec-

ond predefined cardinal direction (e.g., transects crossing habitat types), we selected a direction as

close as possible to the second predefined cardinal direction. We walked along the rope and regis-

tered all visible litter within one meter from each side of the rope. We collected all litter in plastic

bags for further registration, except for litter that was too large to collect (e.g., old machinery) or

unsanitary. These items were identified and measured at the site. All field work was carried out by

teams of minimum two field workers, using sanitary gloves when considered needed for litter col-

lection. Fieldworkers were calibrated during two test trials, of which one is included in the dataset.

We aimed to sample as many survey plots as possible, and in a balanced manner regarding the

number of plots in each strata. All fieldwork was conducted between 5th and 9th of October 2020.

The collected litter was labelled with a unique identifier in the lab, assigned a primary mate-

rial type (plastic, paper, metal, glass, clay, paint, wood, other composite) and, if possible, an

originally intended use (e.g., food wrapper, tobacco pouch; referred to as ‘origin’) S1B in S1

Appendix to the best of our knowledge and internet searches. Every item was measured in

length and width (and depth if possible) and archived.

Data analysis

Hypothesis 1—Distribution of litter in relation to land cover type. We used generalized

linear models (GLM) with a binomial distribution to evaluate the relationship between litter
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detection in a survey plot (yes = 1, no = 0) and land cover type (H1a). We formulated two can-

didate models for this, i.e., one that included land cover type as an explanatory variable (the

‘land cover model’), and a null model. We used the Akaike Information Criterion corrected

for small sample sizes (AICc) to contrast those two models. We considered the land cover

model as informative if the null model had an AIC difference value (ΔAICc) > 2 [35, 36]. We

repeated this procedure to evaluate the relationship between litter abundance in survey plots

and land cover type (H1b), using a negative binomial GLM. We opted for a negative binomial

GLM, because a preliminary GLM with a Poisson distribution showed considerable overdis-

persion (dispersion statistic: 49.06).

We assessed if litter detection probability decreased with proximity to roads (H1c) using a

binomial GLM. We subsetted the data to exclude land cover types ‘urban’ and ‘roadside verges’

because of inherent collinearity with proximity to roads. We used litter detection in a survey

plot (yes = 1, no = 0) as the response variables, and land cover type and distance to the nearest

road as explanatory variables. We constructed 5 candidate models: an interaction and additive

model based on both explanatory variables, two models with the explanatory variables as single

effects, and a null model. We considered the model with the simplest structure within a ΔAICc

range of 0–2 as the most parsimonious model and considered models with a ΔAICc value > 2

as inconclusive [35, 36]. For the binomial models, we evaluated model fit by calculating the

ratio between the residual deviance and the residual degrees of freedom and considered values

between 0.8 and 1.5 as acceptable [37].

Because of repeated observations per survey plot, we used linear mixed effects regression

models to assess the relationship between litter particle size (the largest dimension measured)

and land cover type (H1d). We log-transformed the response variable ‘particle size’ and

included survey plot ID as random effect on the intercept. We used the same model selection

procedure as described earlier. Following Zuur et al. (2009), we used maximum likelihood esti-

mation for model selection, and fitted the model using restricted maximum likelihood estima-

tion for interpretation. We visually assessed model fit using residual plots [37]. We used the

lme4 package [38] for fitting the mixed effects models, the AER package [39] for calculating

dispersion statistics for Poisson GLMs, and the MuMIn package [40] for model selection.

Hypothesis 2—The litter community. Wordcloud analysis entails a qualitative and visual

approach to analyze the relative frequency of occurrence of specific words or phrases in data-

sets or literature. The analysis results in a cloud visualization of words or phrases, in which

their font size indicates their relative abundance in the dataset [41]. Wordclouds facilitate con-

tent analysis and expand reader comprehension [41]. We used wordclouds to illustrate how

the composition of litter in terms of origin and material varied among land cover types using

the ggwordcloud package [42]. In addition, we used a chi-square test for potential differences

in the litter community according to material and land cover types. We merged relatively rare

material types such as wood, clay, paint, glass into material type ‘other’ to avoid cells with fre-

quencies lower than 5 in cross tables [43]. We did not perform such a test on the material ori-

gin because of many singularities in the data. All data and R code for the statistical analyses is

available as S1B and S1C in S1 Appendix, respectively.

Results

We surveyed 110 plots for litter (N agriculture = 16, N urban = 11, N forest = 14, N edge = 13,

N beach = 11, N lakeshore = 14, N river = 13, N road = 18). We detected litter in 63 plots (i.e.,

57% of all plots). In plots with litter, the number of litter items ranged between 1 and 158, and

totaled 932 (S1B in S1 Appendix).
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Hypothesis 1—Spatial distribution of litter in relation to land cover type

The model that contained land cover type (ΔAICc = 0.00) outperformed the null model

(ΔAICc = 16.04) for detecting litter in survey plots (H1a). The predicted litter detection proba-

bility was highest along roads (mean: 88.9%, 95% confidence interval CI: 64.8–97.2%) and in

urban areas (mean: 90.9%, CI: 56.2–98.7%), and lowest in edge land cover types (mean: 23.1%,

CI: 7.6–52.2%). The predicted 95% confidence interval was largest for riversides (mean: 38.5%,

CI: 17.0–65.6%, CI range: 48.6%) and lowest for roadside verges (CI range: 32.4%) (Fig 2,

upper panel). The selected model had a dispersion statistic of 1.16. For model selection diag-

nostics, parameter estimates, predicted values, refer to S1–S3 Tables.

The model that contained land cover type (ΔAICc = 0.00) outperformed the null model

(ΔAICc = 12.51) for predicting litter abundance in survey plots (H1b). Litter was most abun-

dant at beaches (mean: 20.5 items, CI: 7.2–57.9), lakeshores (mean: 16.7 items, CI: 6.6–42.1),

and roadside verges (mean: 12.1 items, CI: 5.3–27.4), whereas it was least abundant in agricul-

tural areas (mean: 0.8 items, CI: 0.3–2.1). Variation in litter abundance was particularly large

for beaches (CI range: 50.7), lakeshores (CI range: 35.5) and roads (CI range: 22.1) (Fig 2, mid

panel). For model selection diagnostics, parameter estimates, and predicted values, refer to S1,

S4 and S5 Tables.

The model that included distance to the nearest road and land cover type as additive terms

performed best to assess litter detection probability in the landscape (H1c). All other candidate

models were considered inconclusive (ΔAICc� 3.43). Litter detection probability rapidly

decreased with increasing distance to the nearest road. Estimated detection probabilities

approached 0 in all land cover types at distances of about 400–600 m to the nearest road, but

the uncertainty around the estimates varied largely among land cover types (Fig 3). Uncer-

tainty was largest for beaches (estimate β = 2.4, standard error se = 1.01), whereas it was rela-

tively low for edge habitat (β = -1.08, se = 0.88) (Fig 3). The ratio between the residual

deviance and the residual degrees of freedom of the selected model was 1.14. We refer to S1

and S6 Tables for model selection diagnostics and parameter estimates, respectively.

The model that contained land cover type (ΔAICc = 0.00) outperformed the null model

(ΔAICc = 9.78) for evaluating if litter fragment size differed across land cover types (H1d). The

largest litter fragments were found along edges (predicted mean: 27.0 cm, CI: 11.9–61.2) and on

agricultural fields (mean: 18.0 cm, CI: 8.7–37.5), whereas smallest fragments occurred in urban

Fig 2. Predicted litter detection probability (H1a, upper panel), abundance (H1b, mid panel), and fragment size (H1d, lower panel) in 100 m2 sampling transects (50 x 2

m) in relation to land cover classes in the cultural landscape of Steinkjer municipality, central Norway. Fieldwork was carried out during autumn 2020. Blue dots indicate

predicted means, and whiskers indicate 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0275463.g002
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land cover types (mean: 4.7 cm, CI: 3.0–7.3) and along roads (mean: 7.5 cm, CI: 5.4–10.6). Varia-

tion in litter size was also particularly large along edges (CI range: 49.3 cm) and was smallest in

urban areas (CI range: 4.3 cm) (Fig 2, lower panel). Refer to S1, S7 and S8 Tables for model selec-

tion diagnostics, parameter estimates, and predicted values, respectively. Plotting the model

residuals versus the fitted values suggested that no model assumptions were violated (S1 Fig).

Hypothesis 2 –The litter community

A chi-squared test revealed that some litter material types occurred substantially more fre-

quently or less frequently than expected in certain land cover types (χ2 = 210.83, p = <0.001,

21 degrees of freedom, N = 932). For example, plastics occurred more frequently (observed

O = 207) on beaches than expected (expected E = 180.8), and metal scrap was observed

(O = 36) more frequently than expected (E = 9.1) at river sides. Paper items occurred more fre-

quently than expected in urban areas (O = 19, E = 5.1) and along roads (O = 29, E = 13.6).

Overall, plastic was by far the most commonlitter material (O = 749) in all land cover types,

followed by metal (O84), paper (O = 58), and other (O = 41) (Fig 4 and S9 Table). The litter

community in terms of its original intended use appeared similarly diverse at beaches, lake-

shores, riversides, roadside verges, and urban areas (S2 Fig).

Fig 3. Predicted litter detection probability in 100 m2 sampling transects (50 x 2 m) in relation to distance to the nearest road (m) and according to

land cover classes in the cultural landscape of Steinkjer municipality, central Norway (H1c). Fieldwork was carried out during autumn 2020. The grey

polygons indicate the 95% confidence region around the predicted means (blue lines).

https://doi.org/10.1371/journal.pone.0275463.g003
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Discussion

Our results show that the distribution of litter in a terrestrial agricultural landscape was struc-

tured according to land cover type and human activity (i.e., roads). We found higher litter

detection probabilities (H1a) and abundances (H1b) in land cover types that were closely

Fig 4. Wordcloud the material type of all registered litter items distributed by land cover type and in total. Litter items were registered in 110 sampling

transects (50 x 2 m) distributed in a cultural landscape of central Norway during autumn 2020. Material types in the wordcloud are scaled in size relative to

their abundance per land cover type and in total. Note that relatively rare material types were condensed into class ‘other’ to perform the formal chi-square

test.

https://doi.org/10.1371/journal.pone.0275463.g004
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associated with human activity (i.e., urban, roads), as well as in sink habitats (i.e., beaches, lake-

shores), and that litter detection rates decreased with increased distance to roads (H1c). Fur-

thermore, litter fragment size varied among land cover types (H1d), with the largest fragments

being found in edge land cover types and the smallest items along roads and in urban areas.

We also found that material type of litter was not independent of land cover type (H2),

although plastic items were overall by far the most prevalent. Undoubtedly, we underestimated

litter occurrence and abundance, and overestimated fragment size in all land cover types. This

is because we visually assessed litter presence and abundance and could only measure frag-

ment size of detected items. Especially smaller items in vegetated land cover types are likely to

remain undetected.

Litter is inherently linked to humans and human activities, but also spreads into places

where human activity is low (e.g., wilderness areas or marine reserves) [13]. Not surprisingly,

we found that litter occurrence and abundance was highest in urban environments and near

roads, where the majority of litter is produced by both consumers and producers of goods

(manufacturers and industries) [4]. Furthermore, littering behavior also appears to be stimu-

lated in already littered environments compared to ‘clean’ environments [16]. This may make

urban areas and roadside verges particularly prone to tumbling into a positive feedback loop

of litter accumulation and littering. In line with our expectation, litter occurrence and abun-

dances were also high at land cover types considered as litter ‘sinks’: beaches and lake shores.

Surprisingly, litter detection probability was lowest at edges between land cover types. We

expected that such edges would function as mesh for ‘capturing’ or holding litter, but this was

not supported by our data.

The 95% confidence regions were particularly large and right skewed for predicting litter

abundance at beaches, lake shores, and riversides. This is probably and partly explained by the

overall low sample size of surveyed plots per land cover types, but also by the nature of the dis-

tribution of litter within the land cover types. For example, many survey plots at beaches, lake-

shores, and riversides were relatively ‘clean’ and held none or few litter items, whereas these

land cover types also contained litter ‘hotspots’, i.e., where litter has been traditionally dumped

or naturally accumulated. For example, we discovered a litter dump site at a riverbank. This

dump site extended way beyond the size of our survey plot and included metal containers, a

bike, a metal gate, glass bottles, plastic fragments, tires, discarded machinery, fencing material,

and spray cans. We discovered several additional dump sites during parallel fieldwork, and

they often contain large amounts of plastic sheets, metal scrap, and highly toxic items such as

car batteries (personal observations). Such dump sites can develop over several generations

and are common in cultural landscapes in Norway [44, 45]. Very little is known, however,

about how such dump sites impact their surrounding ecosystems.

Overall, litter item size was larger in land cover types with the lowest litter abundances, i.e.,

edges and agricultural land, whereas fragment size was relatively small in urban areas and road-

side verges. This result was only partially in line with our expectations, as we predicted that litter

fragment size would be largest in land cover types associated with the litter sources, like urban

areas, roadside verges, and agriculture lands, compared to sinks habitats such as beaches. We

indeed found that larger litter items occurred at agricultural fields (e.g., larger plastic frag-

ments), but the urban areas and roadside verges were dominated by small items (e.g., snus

pouches, cigarette filters, small plastic fragments). Edge habitat included edges between forest

and agricultural and harbored the largest litter items, including discarded agricultural machin-

ery and drainage pipes. We suggest that the dominance of smaller litter items in urban areas

and along roads can be explained by two complementary mechanisms. First, the urban area is

where humans consume and discard litter of relatively small size (e.g., cigarette butts, food

wrappers, etc.), which is supported by our data (S1B in S1 Appendix). Secondly, human activity
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concentrates around urban areas and roads, which implies that litter items can easily become

fragmented through physical abrasion by for example car tires or trampling [46].

As expected, the composition of litter in terms of material type varied among the different

land cover types. Given a spatially structured litter community, it is likely to assume that also

the ecological effects induced by litter can be spatially structured in the landscape. For example,

cigarette butts and snus pouches were most common in urban areas. Urban birds commonly

collect litter, including tobacco products, as nesting materials [47]. Even if used cigarette butts

may be beneficial for nesting birds as a repellent against ectoparasites [47, 48], nicotine and

heavy metals in tobacco products can also induce genotoxic damage in chicks and their parents

[48]. Such tobacco-induced effects are unlikely to arise in remote habitats, where the likelihood

of finding cigarette butts or snus pouches is much lower. Similarly, wildlife injuries and mortali-

ties induced by discarded fishing gear are more likely to occur at for example beaches, lake-

shores, and riversides [7, 49], whereas such effects should be rare in remote habitat. Since we

found a close relationship between litter detection probability and proximity to roads, one

could also expect that many ecological effects induced by litter (e.g., soil, ground, and surface

water pollution) are most pronounced or have their origin near roads. However, little research

has been conducted in relation to the distribution and differentiation of the litter community

across land cover types in terrestrial ecosystems. Hence, how such spatial differentiation propa-

gates into ecological effects across landscapes warrants further research [2].

Despite that the litter community was spatially structured across the landscape; plastic items

were by far the most dominant in all investigated land cover types. Research on plastic pollution

has long been focused on the largest sink: the oceans. However, there is a growing concern

about plastic pollution in terrestrial environments [3, 4, 11, 12]. Rivers are acknowledged to be

hotspots for the accumulation and transport of plastic pollution to the oceans [2, 4, 50]. Our

results indicate that roads may also function as an important pathway for capturing, fragment-

ing, and dispersing plastics (and other litter types) towards sink habitat, because roadside verges

had the highest litter detection probability of all surveyed land cover types, and plastics and

smaller fragments dominated roadside verges. In addition, litter detection probability showed a

strong distance decay relationship with proximity to roads, irrespective of land cover type.

Smaller litter particles easily enter road drainage and sewage systems, further disintegrate into

microparticles, and reach larger waterways and eventually the ocean [51].

Conclusion

Our study shows that litter is omnipresent in a terrestrial cultural Nordic landscape, with esti-

mated occurrences (per 100 m2) well above 80% in several land cover types. Forests, the most

natural land cover type included in our study, even had an estimated mean litter occurrence of

almost 36%. In the most contaminated land cover types, lakeshores, and beaches, roughly 1 lit-

ter item was predicted to occur per 4 square meters, with a maximum observed litter density of

about 1.6 items/m2. Provided their omnipresence, we echo the need to increase the focus on

litter pollution in terrestrial environments [3, 11, 12], both from a scientific, a governmental,

and a lay perspective. For example, estimating litter abundance across the landscape using sci-

entific methods can be beneficial to increase the efficiency of clean-up actions and to inform

and educate the public about this environmental problem. Currently, several excellent litter

cleanup initiatives exist (e.g., in Norway ‘Rydde’, ‘Plastjakten’, ‘Hold Norge Rent’), although

they primarily focus on the marine environment. We suggest that such initiatives but espe-

cially also funding schemes extend their efforts towards terrestrial environments. Furthermore,

the ecological impact of spatial differentiation of litter, including dump sites, remains largely

unknown, and warrants further research.
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