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A modelled global distribution of the kelp biome 

Abstract 
Kelp, seaweeds of the order Laminariales, are of ecological and conservation importance 
because they form undersea forest habitat for many varieties of fauna and flora including 
mammals, and commercial fish species. In the absence of a world map of the kelp biome, we 
predicted its potential distribution using geographic records and environment variables in a 
MaxEnt model. This estimated that the kelp biome occupied 1,469,900 km2 and was present 
on 22 % of the world’s coastline. While average sea surface temperature was the most 
important environmental variable for the biome across all species, wave height, distance from 
the coast and minimum temperature were of most importance for individual species. This map 
can be used in planning where marine reserves should be best located, modelling the effects of 
climate change, and in estimating the blue (ocean) carbon storage. Current field observations 
should confirm the presence of kelp within the modelled biome, and if absent consider if human 
impacts, including climate change, are to blame.  

Introduction 
The kelp biome is comprised of over one hundred species of habitat-forming seaweeds of the 
order Laminariales many of which form forests on shallow rocky seabed’s in temperate and 
subpolar seas, and a few deep cold tropical locations (Steneck et al. 2002; Graham et al. 2007; 
Krumhansl et al. 2016; Wernberg and Filbee-Dexter 2019; Jayathilake and Costello 2019). The 
complexity of the three-dimensional structure of the kelp biome provides habitat for a diversity 
of species, including commercial fish (Teagle et al. 2017; Vásquez et al. 2014) and mammals 
of conservation importance (e.g., Markel and Shurin 2015). Kelp forests are the dominant 
primary producers in cold-temperate rocky reef ecosystems (Krumhansl and Scheibling 2012; 
Krumhansl et al. 2016) and amongst the most productive vegetation in the world (Mann 1973). 
Not only does kelp have indirect benefits to society by virtue of its ecological importance, but 
some species provide food for people (Stévant et al. 2018; Peteiro and Freire 2012). Kelp 
forests, and thus their associated fauna and flora, are threatened by harvesting, diseases, 
herbivory, competition from non-native species, storms, climate change, pollution, and the 
combined effects of these factors (Steneck et al. 2002; Wernberg et al. 2011; Krumhansl et al. 
2016; Wernberg et al. 2019). Maps are thus useful to indicate the potential area that could be 
occupied by kelp species from local to global scales and facilitate conservation of kelp and its 
associate faunal and floral communities.  
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Even though kelp does not have a root system to store carbon in sediments like in the seagrass 
and mangrove biomes, or a calcareous skeleton as in the zooxanthellate coral biome, the “blue” 
(ocean) carbon in kelp can be transformed to other food webs through herbivory and detrital 
pathways (Krumhansl and Scheibling 2012; Alongi 2018). Algal carbon sequestration occurs 
primarily through the burial of dead algae in sediments, and 82% of kelp productivity is 
estimated to become detritus (Krause-Jensen and Duarte 2016, Krumhansl and Scheibling 
2012). However, the amount of carbon that is being stored by kelp alone and contributing to 
the carbon cycle of the ocean has not yet been quantified (Krause-Jensen and Duarte 2016; 
Duarte 2017). The global area of kelp occurrence is an important factor in this calculation.  

To date, there is no existing map that can be used to calculate the global distribution of the kelp 
biome. A few hand-drawn maps have shown the distribution of the kelp genera Macrocystis, 
Nereocystis, Laminaria, Lessonia and Ecklonia (Raffaelli & Hawkins 1999); and Laminaria, 
Saccharina, Macrocystis, Nereocystis, Lessonia, Ecklonia and Eularia (Wernberg et al. 2019). 
While useful to get an idea of the distribution of kelp, these maps cannot be used to calculate 
the biome area. Local-scale species distribution models have mapped the present distribution 
of kelp species and long term changes of kelp cover (Raybaud et al. 2013; Espriella et al. 2019), 
and locations of deep water tropical kelp refugia (Graham et al 2007). However, none of these 
studies have developed a polygon layer of the global distribution of kelp biome that can be 
used in geographical information systems (GIS). The availability of the kelp biome map has 
proved useful in the identification of the most suitable places for marine protected areas (Zhao 
et al. 2020), and could contribute to detection of change in kelp distribution due to ocean 
warming.   

This study fills this research gap by modelling the global distribution of kelp biome using field 
records and environmental variables to provide a world map of this ecologically important 
biome. The combination of observed locations of species and knowledge of their environmental 
preferences enables the use of species distribution models to more comprehensively map this 
biome. The availability of such a global map will illustrate the importance of the kelp biome in 
global biodiversity, and enable improved estimates of global primary production, blue carbon 
budget, and deforestation rates. Further, this map will be useful for mapping the distribution 
ranges of kelp associated fauna.  

Methods 
Species occurrence data 
The common term kelp typically refers to the order Laminariales. However, sometimes some 
large brown algae in the order Fucales, such as species of the genus Durvillaea, are included 
(Dayton 1985; Fraser et al.2009; Wernberg and Filbee-Dexter 2019). The present study was 
limited to the order Laminariales, which has 59 genera and 147 species (Guiry and Guiry 2018). 
Kelp distribution data were extracted from the Global Biodiversity Information Facility (GBIF 
2017) and the Ocean Biogeographic Information System (OBIS 2017). Initially, we 
downloaded 109,824 occurrence records for the order Laminariales in 145 datasets from GBIF, 
and 47,695 records in 99 datasets from OBIS (SM Appendix 3). Prior to analysis, taxonomic 
names were reconciled with AlgaeBase (Guiry and Guiry 2018; Guiry and Guiry 2020; Horton 
et al. 2020). Since our analysis, Chorda filum has been removed from the Laminariales into the 
new brown algae order, Chordales but is still included in our dataset (Starko et al. 2019; Guiry 
and Guiry 2020). Data were available for 70 species belonging to 5 families (Table 1). We 
limited the model training dataset to data collected from 1900 to 2017 because species 
identification and geo-referencing were likely to be more accurate since then. Of the data used, 
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86% were sampled between 1970 and 2017. Records of fossil specimens, ambiguous locations 
according to comments in the dataset (e.g., drift material), and records with coordinate 
uncertainty > 10 km and falling on land, were removed. Multiple records for a species at the 
same location (i.e., identical latitude and longitude), including duplicates from both databases, 
were reduced to one record for that location (Fig. 1). We excluded 112,890 (72%) data points 
from the analysis as being questionable. The dataset used in this study can be downloaded from 
Figshare (Jayathilake and Costello 2020a). In addition, we have downloaded and mapped more 
recently published data from the GBIF (temporal scale from 2018 to 2020; spatial scale 90 N 
to 90 S and 180 E to 180 W) to assess the accuracy of the predicted model. This was prepared 
following the same procedure to use as the accuracy assessment dataset and is also available 
on Figshare (Jayathilake and Costello 2020b).  
 
Environmental data 
We obtained the environmental data from Global Marine Environment Datasets (GMED) 
(Basher et al. 2014b; Basher and Costello 2019). These data layers represent annual averages 
calculated over decades and thus indicate long-term characteristics of the environment (Basher 
and Costello 2019) (Table S1). GMED environmental layers have a 5 arc-minute resolution 
which is approximately 9.2 km at the equator (Table S1). For this study, a finer spatial 
resolution was needed to get more accurate distributions. Therefore, we re-interpolated the 
GMED data to 30 arc-second resolution which is approximately 1 km at the equator. All the 
interpolated raster layers were cropped to a 0 to 1000 m depth layer to reduce the computational 
time. The deepest at which any species of kelp has been found to be living is 90 m for 
Laminaria rodriguezii in the Adriatic Sea (Žuljević et al. 2016). Deeper records may be due to 
the sinking of kelp from shallow depths following detachment due to storms. Graham et al. 
(2007) predicted that the maximum depth for any kelp species would be 236 m in tropical deep 
waters. Thus, the present study extended well beyond the deepest likely range of kelp. 
 
Previous studies focused on the influence of single abiotic variables such as temperature, wave 
exposure, water motion, salinity, light availability, dissolved oxygen, pH, nitrate and phosphate 
on the natural distribution of one or a few kelp species (Dayton 1985; Graham et al. 1997; 
Gerard 1997; Hurd 2000; Gaylord et al. 2002; Steneck et al. 2002; Wernberg and Thomsen 
2005; Smale et al. 2013; Žuljević et al. 2016; Wernberg et al. 2019). Here we selected almost 
all the abiotic variables from previous studies to study which variables most correlated with 
the distribution of kelp, noting that many variables are also correlated with each other (Table 
S2). A preliminary MaxEnt model was run with 19 environmental variables (mean sea bottom 
temperature, calcite concentration, depth, diffuse attenuation coefficient, dissolved oxygen 
concentration, distance from the land, nitrate concentration, pH, phosphate concentration, 
photosynthetically active radiation, average sea surface temperature, maximum sea surface 
temperature, minimum sea surface temperature, range of sea surface temperature, salinity, 
silicate concentration, slope, surface current, and wave height) for each species, genus, family 
and all kelp (Tables 2). However, the variables calcite, minimum and range of sea surface 
temperature, mean sea bottom temperature, surface current, and silicate had < 0.5 % 
contribution to the models and were thus excluded from the kelp biome model.  
 
Modelling  
The Maximum Entropy (MaxEnt) modelling software has been widely applied for marine 
species distribution modelling with presence-only data (e.g., Tittensor et al. 2009; Verbruggen 
et al. 2009; Yesson et al. 2012; Basher et al. 2014a; Saeedi et al. 2016; Jayathilake and Costello 
2018; Martinez et al. 2018). We used MaxEnt version 3.3.3k (Phillips et al. 2006; Phillips and 
Dudik 2008) to generate the kelp distribution model. In the current study, the model had 10 
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replicate runs with cross-validation, a maximum number of background points 10,000, and 
maximum iterations 1,000. The ‘remove duplicate presence records’ option was activated to 
keep one observation point per 30 arc sec grid cell. Separate MaxEnt models for species, 
genera, families and the order were created, and the environmental variables contributing most 
to the models tabulated. However, 25 species had insufficient occurrence records to develop 
individual MaxEnt models to predict their distributions.  
 
By applying the model to all species together we were able to include records of even rare 
species. We previously found that this approach provides a more accurate model of a marine 
biome distribution (Jayathilake and Costello 2018). While our model used 13 potentially 
related variables, we also generated results (see model evaluation below) to determine the 
contribution of each variable individually.  
 
Model evaluation 
The accuracy of the MaxEnt model was evaluated using the receiver operating characteristic 
(ROC) curve and AUC (area under the ROC) (Peterson et al. 2008; Peterson et al. 2011). The 
ROC curve and AUC evaluate how well a species distribution model fits true presence and 
absence data (Elith et al. 2006; Elith et al. 2011). It is a graphical interpretation of the omission 
and commission rates. The omission rate is defined as the proportion of known occurrence 
records which are not predicted as presence. The proportion of known presence records 
predicted as present in the model is known as its sensitivity (1 - omission rate) (Phillips et al. 
2004). Theoretically, the commission rate is the proportion of absences predicted as presence. 
The commission rate is defined as 1 – specificity, where specificity is the proportion of 
absences correctly predicted (Phillips et al. 2004). In a study where only presence data are 
available (i.e., no true absence data), MaxEnt selects random background points as pseudo-
absences instead of true absence records (Phillips and Dudik 2008). Here it assumes that, all 
the grid cells without occurrence localities could be pseudo absences even if they have suitable 
environmental conditions (Phillips et al. 2004; Phillips et al. 2006). The current study area was 
ten times deeper than the average depth of kelp. This greatly increased the likelihood that the 
location that would be selected as a pseudo-absence would be a true absence.  
 
MaxEnt has a high predictive performance with presence-only data (Elith et al. 2006). AUC is 
an indicator of the predictive power of a probabilistic model and ranges from 0 to 1, where the 
highest ranking is 1 (Phillips et al. 2004; Phillips and Dudik 2008; Peterson et al. 2008). The 
MaxEnt model indicates which variables best explained the distribution of the species using 
analyses of percent contribution, response curves, and a jack-knife test. While the MaxEnt 
model is being run the percentage contribution of each variable to the model is calculated. This 
gives a heuristic estimate of the relative contribution of the environmental variable to the 
MaxEnt model (Phillips 2017). The jack-knife test creates three plots to show how each 
variable has contributed to model training, model testing and the AUC. By evaluating the 
overall results of each jack-knife plot we can predict which of the variables mattered the most 
in determining an environmental or geographic distribution.   
 
The post image processing of the MaxEnt modelled map used ArcGIS version 10.5.1. The 
MaxEnt probability values above 0.45 gave the most visibly similar geographic coverage to 
the field observation records. Those areas were considered to define the global distribution of 
the kelp biome. The accuracy of the classified map was cross-checked with another separate 
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dataset of the order Laminariales downloaded from the GBIF (from 2018 to 2020) (Jayathilake 
and Costello 2020b). The MaxEnt probability values for occurrence records were extracted 
using the ArcGIS tool “raster value to point”. The percentage of the occurrence records plotted 
within the predicted area were calculated using the MaxEnt probability values of these new 
occurrence records. MaxEnt probability values of these records were given in the last column 
of the table available in Jayathilake and Costello (2020b). The original abiotic layers were on 
the WGS84 geographical coordinate system. Thus, the initial MaxEnt modelled map used 
WGS84 geographical coordinate system which has larger grid cells at lower latitudes. We 
converted the MaxEnt modelled map to cylindrical equal-area projection (all grid cells have 
the same area) using the ArcGIS projection tool to calculate the true area of distribution and 
the coastline length covered by the kelp biome.  
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Results 

 
At the order level, the laminarian kelp biome data contained 44,265 occurrence records 
distributed mainly in temperate and sub-Polar Regions. There were no occurrence records from 
the tropics and Antarctica (Fig. 1).    

The modelled kelp biome map closely matched the distribution of reported occurrence records 
(Fig. 1 and 2). The high AUC indicated that the model had a probability of 0.771 to discriminate 
predicted presence records over the pseudo-absence records. In the validation dataset 86% 
(2,626 out of 3,054 occurrence records from 2018 to 2020) were plotted within the area 
predicted by a MaxEnt probability value of ≥ 0.45 and the remaining area at a spatial resolution 
of 30 arcsec (Fig. 3).  
 
The biome covered 1,469,900 km2 and 22 % of the world’s coastline. The modelled map 
predicted the distribution of kelp mainly in the temperate, sub-Polar and the Arctic Ocean. The 
model predicted locations suitable for kelp which lacked georeferenced records in GBIF and 
OBIS, namely: the Atlantic coast of Argentina; Hokkaido Island, Japan; Shandong Peninsula, 
China; and Svalbard Island in the Arctic Ocean. However, the model did not predict laminarian 
kelp forests in the tropics and Antarctica.  
 
The annual average sea surface temperatures (SST), distance from land, the maximum sea 
surface temperature and wave height, were the topmost variables contributing to the MaxEnt 
model (Table 2). The environmental variable with the highest gain when used in isolation was 
the annual average SST. Thus, the average SST had the most useful information by itself. 
Distance from the land was the third, wave height was the fourth, and dissolved oxygen the 
fifth most important variable for predicting the distribution of kelp (Table 2).  
 
The probability of occurrence of kelp decreased with depth from 0 to 100 m, and no kelp 
occurred deeper than 250 m (Fig. 4). Most kelp occurred within 1 km of land. Kelp largely 
occurred with a maximum SST from 7 oC to 27 oC, and average from 5 oC to 25 oC. Kelp never 
occurred above an annual maximum of 30 oC and an annual average of 27 oC. The probability 
of kelp occurrence increased with wave height up to 7 m. Although no kelp was predicted 
above a salinity of 37.5, there were peaks of occurrence at 5 and 35 PSS (Fig. 4). The low 
salinity peak was due to the presence of Chorda filum in the Baltic Sea, parts of which have 
low salinity. Note that this species has recently been moved into a new order outside 
Laminariales (Stark et al. 2019).  
 
The results from the training gain, test gain, and AUC jack-knife test plots showed a similar 
pattern of the contribution of each variable for the model. The average and maximum SST gave 
higher regularized training, test gain, and AUC compared to other variables (Fig. 5). The next 
most important variables were dissolved oxygen, wave height and the distance from land. If 
MaxEnt used only slope, salinity and pH, there was almost no gain in all three plots (Fig. 5). 
Thus, these three variables were not meaningful for predicting the global distribution of kelp.  
 
Of the 70 species used in this study for which geographic coordinates were available, 46 species 
had insufficient georeferenced records to be successfully modelled. Wave height was the 
topmost for 23, and one of the top three most important environmental variables for 35 of these 
species in the MaxEnt models (Table 3). Distance from the land was the next most important 
variable, being amongst the top three variables for 21 species, followed by minimum SST (14 
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species). Wave height and land distance, followed by minimum and average SST, were also 
the most important variables at the genus level (Table 4). Wave height, average SST and 
minimum SST were the most important variables at the family level (Table 5).   
 

Discussion 
 
In this study, we provide the first global distribution map of laminarian kelp as a polygon layer 
that can be used in geographical information systems (GIS). This polygon layer has a more 
complete geographical distribution of the kelp biome than the published range maps of kelp 
species. However, the map had a very similar distribution to the observed field records (Fig. 
1), and as reported in the literature (Steneck et al. 2002; Wernberg et al. 2019; Wernberg and 
Filbee-Dexter 2019).  
 
Our model predicted that kelp was limited to latitudes 25o to 70o in the northern, and 25o to 55o 
in the southern, hemispheres. Of 3,000 newly recorded occurrences from 2018 to 2020 86% 
were plotted on the biome and 14% were plotted nearby (Figures 2 and 3). Such variability is 
to be expected considering both the spatial resolution of the coastline and environmental data, 
and variance in reporting latitude and longitude coordinates.  
 
Kelp occupied 1,469,900 km2 and 22 % of the world’s coastline. Previous studies estimated 
that 25% of the world’s coastline was covered by kelp forests (Filbee-Dexter and Wernberg 
2018; Wernberg et al. 2019). Thus, the kelp biome is the second most widely distributed marine 
biome, following seagrass with 1,646,788 km2 (Jayathilake and Costello 2018). Following the 
usage in terrestrial ecology, equivalent marine biomes are large areas characterised by plants 
of similar life-form that provide enduring three-dimensional habitat for other species (Costello 
et al. 2020). The other marine biomes have ten times less area than kelp, namely zooxanthellate 
coral with 151,390 km2 (UNEP-WCMC 2018), and mangroves with 136,850 km2 (Giri et al. 
2011).  
 
Some of the locations predicted to contain kelp in our map, but without occurrence records in 
GBIF and OBIS, were reported to have kelp forests in the literature. Macrocystis pyrifera and 
Undaria pinnatifida have been recorded in the Gulf of Nuevo, along the coast of Argentina 
from Puerto Deseado (Santa Cruz province) to Mar del Plata (Buenos Aires province) (Raffo 
et al. 2009; Pereyra et al. 2017; Paula et al. 2018). Laminaria japonica and Saccharina japonica 
occur along the coast of Shandong Peninsula, China (Wu et al. 2016; Shao et al. 2019).  
Laminaria japonica, L. religiosa and U. pinnatifida occur around Hokkaido Island, Japan 
(Matsunaga et al. 1999). Alaria esculenta, Laminaria digitata, and Saccharina latissimi occur 
in Hornsund, and L. digitata in Kongsfjorden, Svalbard (Włodarska-Kowalczuk et al. 2009; 
Bartsch et al. 2016). The current map did not predict any suitable locations in Antarctica and 
no laminarian kelp have been reported there (Moe and Silva 1977; Quartino and Boraso de 
Zaixso 2008; Wernberg et al. 2019). This suggests that the absence of laminarian kelp in these 
regions is primarily due to environmental unsuitability. Thus, our map appears to be an accurate 
representation of the kelp biome on a global scale. However, the tropical deep-water kelp 
distributions were not predicted in this model due to a lack of occurrence records from the 
tropics and because the mean sea bottom temperature variable was excluded from the analysis 
due to its poor contribution to the model. These communities should be modelled separately 
with deep water variables.   
 
As a photosynthetic plant, kelp is limited to the photic zone. In this study, the 
MaxEntprobability of the presence of kelp was high between 0 to 100 m depth, and it was 
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limited to 1 km from the land (Fig.4). However, it is likely that there may be offshore rocky 
reefs, such as the tops of seamounts, where kelp may occur but were not detected due to the 
spatial resolution of our data (Parker and Tunnicliffe 1994; Bo et al. 2011). Kelp forests always 
occur on hard substrata such as rocky seabeds (Teagle et al. 2017, Wernberg et al. 2019). The 
present study could not include seabed substrata because a global layer is not available. 
Nevertheless, the accuracy of the map suggests that sufficient rocky substrata exist for all 
regions where temperature and light are suitable. However, more detailed regional maps of 
kelp distribution would benefit from including seabed substratum within the present biome 
map.  
 
Kelp had an increased probability of presence with increasing wave height from 1 m to 7 m, 
with a low probability of occurrence in areas without wave action (Fig.4). Most kelp species 
prefer turbulent water (Hurd 2000, Wernberg et al. 2019). For the individual species, genera 
and families, wave height was generally the most important factor in influencing their 
distribution. Species such as Laminaria hyperborea and Alaria esculenta are more common on 
wave exposed coasts (Frid and Kitching 1988; Norton 1992; Kraan et al. 2000; Pedersen et al. 
2012).   
 
We confirmed that the annual average sea surface temperature is the most significant factor 
limiting the distribution of the kelp biome, as suggested by others (e.g., Lüning 1990; Muller 
et al. 2009). Kelp occurred in average sea surface temperatures from 5 oC to 25 oC and was rare 
above 27 oC (Table 2). Thus, if sea surface temperature increases beyond these temperatures, 
such as due to global warming, it will alter the kelp distribution (Martinez et al. 2018; Assis et 
al. 2016). Indeed, the range of Australian temperate kelp forests has contracted after ocean 
warming and extreme heat waves (Wernberg et al. 2012; Wernberg et al. 2016). Macrocystis 
pyrifera forests in Australia have been predicted to disappear if the predicted high sea surface 
temperatures in 2100 eventuate (Wernberg et al. 2011; Martínez et al. 2018). In contrast, Arctic 
kelp forests of Laminaria digitata have extended with ocean warming into areas that were 
previously too-cold (Bartsch et al. 2016). However, increases in UV radiation, sediment 
loading and freshwater inputs can also negatively impact the distribution of the Arctic kelp 
communities (Filbee-Dexter et al. 2019). Modelling of the future kelp biome distribution is 
necessary to predict its responses to climate change.  
 
The kelp biome map indicates where kelp forests could occur. If kelp is absent, it may be due 
to ocean warming, high turbidity, and/or over-grazing following ‘trophic cascades’ caused by 
hunting and fishing of animals that predate sea urchins, and consequent over-grazing of kelp 
by the sea urchins (e.g., Leleu et al. 2012; Filbee-Dexter and Scheibling 2014). Future studies 
may model the potential distribution of individual kelp species at local and regional scales, so 
as to provide finer spatial resolution for local scale conservation and fishery management. The 
availability of additional data for the species with insufficient data may allow their range to be 
mapped. The present map may also be a useful data layer for predicting the occurrence of kelp-
associated species and estimating ‘blue carbon’ budgets. Moreover, knowing the global extent 
of the kelp biome is important for the conservation of not only kelp but associated species, 
including species threatened with extinction or important to fisheries. Thus, the present kelp 
biome area was included as one of the biodiversity layers in designing a global network of 
Marine Protected Areas (Zhao et al. 2020).  
  



9 
 

References 
Alongi, D. (2018). Kelp forests. In: Blue Carbon. Springer Briefs in Climate Studies. Springer, 

Cham. DOI: /10.1007/978-3-319-91698-9_5 
Assis, J., Lucas, A.V., Barbara, I., Serrãoa E.A. (2016). Future climate change is predicted to 

shift long-term persistence zones in the cold-temperate kelp Laminaria hyperborea. Marine 
Environmental Research, 113, 174-182. https://doi.org/10.1016/j.marenvres.2015.11.005. 

Bartsch, I., Paar, M., Fredriksen, S., et al. (2016). Changes in kelp forest biomass and depth 
distribution in Kongsfjorden, Svalbard, between 1996–1998 and 2012–2014 reflect Arctic 
warming. Polar Biology, 39, 2021-2036. 

Basher, Z., Bowden, D.A., Costello, M.J. (2014a.). Diversity and distribution of deep-sea 
shrimps in the Ross Sea region of Antarctica. PLoS One, 9. 
https://doi.org/10.1371/journal.pone.0103195. 

Basher, Z., Bowden, D.A., Costello, M.J. (2014b). Global Marine Environment Datasets 
(GMED). World Wide Web electronic publication. Version 1.0 (Rev.01.2014), accessed at 
http://gmed.auckland.ac.nz. 

Basher Z, Costello M.J, 2019. World Maps of Ocean Environment Variables. In: Encyclopedia 
of the World's Biomes.  Reference Module in Earth Systems and Environmental Sciences, 
Elsevier. 11 pp. ISBN 9780124095489. https://doi.org/10.1016/B978-0-12-409548-
9.12076-7 

Bo, M., Bertolino, M., Borghini, M., et al. (2011). Characteristics of the mesophotic 
megabenthic assemblages of the Vercelli Seamount (North Tyrrhenian Sea). Plos One, 6, 1-
11.  

Costello MJ, Zhao Q, Jayathilake, DRM. 2020. Defining marine spatial units: realms, biomes, 
ecosystems, seascapes, habitats, biotopes, communities and guilds. In: Encyclopedia of the 
World's Biomes.  Reference Module in Earth Systems and Environmental Sciences, 
Elsevier. 9 pp. ISBN 9780124095489. https://doi.org/10.1016/B978-0-12-409548-9.12515-
1  

Duarte, C.M. (2017). Reviews and syntheses: Hidden forests, the role of vegetated coastal 
habitats in the ocean carbon budget. Biogeosciences, 14, 301-310. 
https://doi.org/10.5194/bg-14-301-2017  

Dayton, P. K. (1985). Ecology of kelp communities. Annual Review of Ecology and 
Systematics, 16, 215-245. https://doi.org/10.1146/annurev.es.16.110185.001243 

Espriella, M., Schaper, T., Atchia, A., Rose, K.,  Lecours, V. (2019). Habitat mapping of giant 
kelp (Macrocystis pyrifera) and devil weed (Sargassum horneri) off the coast of Santa 
Catalina Island, California. McGill Science Undergraduate Research Journal, 14(1) 

Elith, J. Graham, C.H., Anderson,R.P., Dudik, M., et al. (2006). Novel methods improve 
prediction of species' distributions from occurrence data. Ecography, 29, 129-151. 

Elith J., Phillips, S.J., Hastie, T., et al. (2011). A statistical explanation of MaxEnt for 
ecologists. Diversity and Distribution, 17, 43-57.  

Fraser, C.I., Spencer, H.G., Waters J.M. (2009). Glacial oceanographic contrasts explain 
phylogeography of Australian kelp. Molecular Ecology, 18, 2287–96. 

Filbee-Dexter, K., Wernberg, T. (2018). Rise of turfs: A new battlefront for globally declining 
kelp forests. BioScience, 68, 64-76.  

Filbee-Dexter, K., Wernberg, T., Fredriksen, S., Norderhaug, K. M., and Pedersen, M. F. 
(2019). Arctic kelp forests: Diversity, resilience and future. Global and Planetary Change, 
172, 1-14. 

Filbee-Dexter, K., and Scheibling, R. E. (2014). Sea urchin barrens as alternative stable states 
of collapsed kelp ecosystems. Marine ecology progress series, 495, 1-25. 

https://doi.org/10.1016/j.marenvres.2015.11.005
http://gmed.auckland.ac.nz/
https://doi.org/10.1016/B978-0-12-409548-9.12515-1
https://doi.org/10.1016/B978-0-12-409548-9.12515-1
https://doi.org/10.5194/bg-14-301-2017
https://doi.org/10.1146/annurev.es.16.110185.001243


10 
 

Frid, C. L. J., and Kitching, J. A. (1988). The Laminaria forest of Barloge Creek, Lough Hyne, 
Ireland, with special reference to the importance of wave action. The Irish Naturalists’ 
Journal, 22, 463–469.  

Gaylord, B., Reed, D.C., Raimondi, P.T. (2002). A physically based model of macroalgal spore 
dispersal in the wave and current-dominated nearshore. Ecology, 83, 1239-1251. doi: 
10.1890/00129658 

GBIF (2017). Global Biodiversity Information Facility Occurrence Download of Laminariales. 
https://doi.org/10.15468/dl.oanp7d, accessed on 24-10-2017. 

Gerard, V.A. (1997). The role of nitrogen nutrition in high-temperature tolerance of kelp, 
Laminaria saccharina (Chromophyta). Journal of Phycology, 33, 800–810. doi: 
/10.1111/j.0022-3646.1997.00800.x  

Giri, C., Ochieng, E., Tieszen, L.L., et al. (2011). Status and distribution of mangrove forests 
of the world using earth observation satellite data (version 1.3, updated by UNEP-WCMC). 
Global Ecology and Biogeography, 20, 154-159. doi: 10.1111/j.1466-8238.2010.00584.x . 
Data URL: http://data.unep-wcmc.org/datasets/4 accesses on 07-06-2016. 

Google Earth (2018). Google earth version 7.1.2., accessed on 12-11-2018. 
Graham, M.H., Kinlan, B.P., Druehl, L.D., et al. (2007). Deep-water kelp refugia as potential 

hotspots of tropical marine diversity and productivity. Proceedings of the National Academy 
of Sciences of the United State of America, 104, 16576-16580. 
https://doi.org/10.1073/pnas.0704778104 

Graham, M.H., Harrold, C., Lisin, S., et al. (1997). Population dynamics of giant kelp 
Macrocystis pyrifera along a wave exposure gradient. Marine Ecology Progress Series, 148, 
269 – 279. doi: 10.3354/meps148269  

Guiry, M.D. and Guiry, G.M. (2018). AlgaeBase. World-wide electronic publication, National 
University of Ireland, Galway. http://www.algaebase.org, accessed on 11-10- 2018. 

Horton, T.; Kroh, A.; Ahyong, S.; Bailly, N.; Boyko, C.B. et al. (2020). World Register of 
Marine Species. Available from https://www.marinespecies.org at VLIZ. Accessed 2020-
04-21. doi:10.14284/170 

Hurd, C.L. (2000). Water motion, marine macroalgal physiology, and production. Journal of 
Phycology, 36, 453-472. doi: 10.1046/j.1529-8817.2000.99139.x 

Jayathilake D.R.M., Costello M.J. (2018). A modelled global distribution of the seagrass 
biome. Biological Conservation, 226. 120-126. 
https://doi.org/10.1016/j.biocon.2018.07.009. 

Jayathilake D.R.M, Costello, M.J. (2020a): Model validation data from 2018 to 2020. The 
University of Auckland. Dataset. Figshare 
https://doi.org/10.17608/k6.auckland.12278786.v2 

Jayathilake D.R.M, Costello, M. J. (2020b): Training occurrence records of the MaxEnt model. 
The University of Auckland. Dataset. Figshare 
https://doi.org/10.17608/k6.auckland.12272033.v1 

Kraan, S., Tramullas, A.V., Guiry, M.D. (2000). The edible brown seaweed Alaria esculenta 
(Phaeophyceae, Laminariales): hybridization, growth and genetic comparisons of six Irish 
populations. Journal of Applied Phycology, 12, 577-583.  

Krause-Jensen, D., Duarte, C.M (2016). Substantial role of macroalgae in marine carbon 
sequestration. Nature Geoscience, 9, 737–742. 

Krumhansl, K.A., Okamoto, D.K., Rassweiler, A., et al. (2016). Global patterns of kelp forest 
change over the past half-century. Proceedings of the National Academy of Sciences of the 
United State of America, 113, 13785-13790. https://doi.org/10.1073/pnas.1606102113 

Krumhansl, K.A., Scheibling, R.E. (2012). Production and fate of kelp detritus. Marine 
Ecology Progress Series, 467, 281-302. 

https://doi.org/10.15468/dl.oanp7d
http://data.unep-wcmc.org/datasets/4
http://www.algaebase.org/
https://doi.org/10.1016/j.biocon.2018.07.009
https://doi.org/10.17608/k6.auckland.12278786.v2
https://doi.org/10.1073/pnas.1606102113


11 
 

Leleu, K, Remy-Zephir B., Grace R., Costello M.J. (2012). Mapping habitat change after 30 
years in a marine reserve shows how fishing can alter ecosystem structure. Biological 
Conservation, 155, 193–201. 

Lüning K. (1990). Seaweeds.Their environment, biogeography and ecophysiology. John Wiley 
& Sons, Inc. New York. 

Mann, K.H. (1973). Seaweeds: their productivity and strategy for growth. Science, 182, 975-
981. 

Marins, B.V., Amado‐Filho, G.M., Barreto, M.B. and Longo, L.L. (2012). Taxonomy of the 
southwestern Atlantic endemic kelp: Laminaria abyssalis and Laminaria brasiliensis 
(Phaeophyceae, Laminariales) are not different species. Phycological research, 60(1), 51-
60. 

Markel, R.W., Shurin, J.B. (2015). Indirect effects of sea otters on rockfish (Sebastes spp.) in 
giant kelp forests. Ecology, 96, 2877-90. 

Martínez, B., Wernberg, T., Radford, B., Thomsen, M.S., et al. (2018). Distribution models 
predict large contractions of habitat-forming seaweeds in response to ocean warming. 
Diversity and Distribution, 24, 1350-1366. 

Matsunaga, K., Kawaguchi, T., Suzuki, Y., Nigi, G. (1999). The role of terrestrial humic 
substances on the shift of kelp community to crustose coralline algae community of the 
southern Hokkaido Island in the Japan Sea. Journal of Experimental Marine Biology and 
Ecology, 241, 193-205.   

Moe, R.L, Silva, P.C. (1977). Antarctic marine flora: uniquely devoid of kelps. Science, 196, 
1206-1208. 

Muller, R., Laepple, T., Bartsch, I., Wiencke, C. (2009). Impact of oceanic warming on the 
distribution of seaweedsin polar and cold-temperate waters. Botanica Marina, 52, 617–638. 
doi: 10.1515/BOT.2009.080. 

Norton, T.A. (1992). Dispersal by macroalgae. British Phycological Journal, 27(3), 293-301, 
doi: 10.1080/00071619200650271  

OBIS. (2017). Ocean Biogeographic Information System. Occurrence download of order 
Laminariales. Retrieved from: http://www.iobis.org, accessed on 24-10-2017. 

Parker, T., Tunnicliffe, V. (1994). Dispersal strategies of the biota on an oceanic seamount: 
implications for ecology and biogeography. The Biological Bulletin, 187,336-345. 

Paula, B.M., Marcomini, S.C., Casas, G.N. (2018). Environmental Impacts of an Alien Kelp 
Species (Undaria pinnatifida, Laminariales) Along the Patagonian Coasts In: Makowski C., 
Finkl C. (eds) Impacts of invasive species on coastal environments. Coastal Research 
Library, vol 29. Springer, Cham. doi: 10.1007/978-3-319-91382-7_10. 

Pedersen, M.F., Nejrup, L.B., Fredriksen, S., et al. (2012). Effects of wave exposure on 
population structure,demography, biomass and productivity of the kelp Laminaria 
hyperborea. Marine Ecology Progress Series, 451, 45-60.    

Pereyra, P.J., de la Barra, P., Gastaldi, M., et al. (2017). When the tiny help the mighty: 
facilitation between two introduced species, a solitary ascidian and a macroalga in northern 
Patagonia, Argentina. Marine Biology, 164-185. doi: 10.1007/s00227-017-3202-1. 

Peteiro, C., Freire, Ó. (2012). Outplanting time and methodologies related to mariculture of the 
edible kelp Undaria pinnatifida in the Atlantic coast of Spain. Journal of Applied 
Phycology, 24 (6), 1361–1372.  

Peterson, A.T., Papes, M., Soberon, J. (2008). Rethinking receiver operating characteristic 
analysis application in ecological niche modelling. Ecological Modelling, 213, 63-72. 

Peterson, A.T., Soberón, J., Pearson, R.G., et al. (2011). Ecological niches and geographic 
distributions. Princeton University Press, United States of America.  

http://www.iobis.org/


12 
 

Phillips, S.J., Dudík, M., Schapire R.E. (2004). A maximum entropy approach to species 
distribution modeling. Proceedings of the 21st International Conference on Machine 
Learning, ACM Press, New York, 655-662. 

Phillips, S.J., Anderson, R.P., Schapire, R.E., (2006). Maximum entropy modeling of species 
geographic distributions. Ecological Modelling, 190, 231–259. 
https://doi.org/10.1016/j.ecolmodel.2005.03.026 

Phillips, S.J., Dudík, M., (2008). Modeling of species distributions with Maxent: new 
extensions and a comprehensive evaluation. Ecography, 31, 161–175. 
https://doi.org/10.1111/j.0906-7590.2008.5203.x  

Phillips, S. J. (2017). A Brief Tutorial on Maxent. AT&T Labs-Research, Available from url: 
http://biodiversityinformatics.amnh.org/open_source/maxent, accessed on 10/1/2019.  

Quartino, M. L., Boraso de Zaixso A.L. (2008). Summer macroalgal biomass in Potter Cove, 
South Shetland Islands, Antarctica: its production and flux to the ecosystem. Polar Biology, 
31, 281-294. 

Raffaelli, D., Hawkins, S. (1999). Intertidal Ecology, Kluwer Academic Publishers, The 
Netherlands.  

Raffo, M.P., Eyras, M.C., Iribarne O.O. (2009). The invasion of Undaria pinnatifida to a 
Macrocystis pyrifera kelp in Patagonia (Argentina, south-west Atlantic). Journal of the 
Marine Biological Association of the United Kingdom, 89, 1571-1580. doi: 
10.1017/S002531540900071X.  

Raybaud, V., Beaugrand, G., Goberville, E., et al. (2013). Decline in Kelp in West Europe and 
Climate. PLOS ONE, 8 (6), e66044.    

Saeedi, H., Dennis, T.E., Costello, M.J. (2016). Bimodal latitudinal species richness and high 
endemicity of razor clams (Mollusca). Journal of Biogeography, 44, 592604. https://doi . 
org/10.1111/jbi.12903 

Shao, Z., Wang, W., Zhang, P., Yao, J., Wang, F., et al. (2019). Genome-wide identification 
of genes involved in carbon fixation in Saccharina japonica and responses of putative C4-
related genes to bicarbonate concentration and light intensity. Plant Physiology and 
Biochemistry, 137, 75-83. 

Zhao, Q., Stephenson, F., Lundquist, C., Kaschner, K., Jayathilake, D., Costello, M. J. (2020). 
Where Marine Protected Areas would best represent 30% of ocean biodiversity. Biological 
Conservation, 244, 108536. 

Smale, D.A., Burrows, M.T., Moore, P., O’Connor, N., Hawkins, S.J. (2013). Threats and 
knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic 
perspective. Ecology and Evolution, 3, 4016-4038. doi:  10.1002/ece3.774  

Smale, D.A., Moore, P.J. (2017). Variability in kelp forest structure along a latitudinal gradient 
in ocean temperature. Journal of Experimental Marine Biology and Ecology, 486, 255-264. 
https://doi.org/10.1016/j.jembe.2016.10.023 

Steneck, R.S., Graham, M.H., Bourque, B.J., et al. (2002). Kelp forest ecosystems: 
biodiversity, stability, resilience and future. Environmental Conservation, 29, 436-459. doi: 
10.1017/S0376892902000322 

Stévant, P., Marfaing, H., Duinker, A. et al. (2018). Biomass soaking treatments to reduce 
potentially undesirable compounds in the edible seaweeds sugar kelp (Saccharina latissima) 
and winged kelp (Alaria esculenta) and health risk estimation for human consumption. 
Journal of Applied Phycology, 30(3), 2047- 2060. 

Teagle, H., Hawkins, S.J., Moore, P.J., Smale, D.A. (2017). The role of kelp species as biogenic 
habitat formers in coastal marine ecosystems. Journal of Experimental Marine Biology and 
Ecology, 492, 81-98. https://doi.org/10.1016/j.jembe.2017.01.017   

http://biodiversityinformatics.amnh.org/open_source/maxent


13 
 

Tegner, M.J., Dayton, P.K., Edwards, P.B., Riser, K.L. (1996). Is there evidence for long-term 
climatic change in southern California kelp forests? California Cooperative Oceanic 
Fisheries Investigations Reports, 37,111-126. 

Tittensor, D.P., Baco, A.R., Brewin, P.E., et al. (2009). Predicting global habitat suitability for 
stony corals on seamounts. Journal of Biogeography, 36, 1111–1128. 
https://doi.org/10.1111/j.1365-2699.2008.02062.x  

Troell, M., Robertson-Andersson, D., Anderson, R.J., et al. (2006). Abalone farming in South 
Africa: An overview with perspectives on kelp resources, abalone feed, potential for on-
farm seaweed production and socio-economic importance. Aquaculture, 257, 266-281.  

UNEP-WCMC, WorldFish Centre, WRI, TNC (2018). Global distribution of warm-water coral 
reefs, compiled from multiple sources including the Millennium Coral Reef Mapping 
Project. Version 4.0. Includes contributions from IMaRS-USF and IRD (2005), IMaRS-
USF (2005) and Spalding et al. (2001). Cambridge (UK): UN Environment World 
Conservation Monitoring Centre. URL: http://data.unep-wcmc.org/datasets/1 accessed on 
24-04-2019. 

Vásquez, J.A., Zuñiga, S., Tala, F., et al. (2014). Economic valuation of kelp forests in northern 
Chile: values of goods and services of the ecosystem. Journal of Applied Phycology, 26, 
1081-1088. /10.1007/s10811-013-0173-6.  

Verbruggen, H., Tyberghein, L., Pauly, K., et al. (2009). Macroecology meets macroevolution: 
Evolutionary niche dynamics in the seaweed Halimeda. Global Ecology and Biogeography, 
18, 393-405. https://doi.org/10.1111/j.1466-8238.2009.00463.x 

Wernberg T., Thomsen M.S. (2005). The effect of wave exposure on the morphology of 
Ecklonia radiata. Aquatic Botany. 83, 61-70 

Wernberg, T., Russell, B.D., Moore, P. J., et al. (2011). Impacts of climate change in a global 
hotspot for temperate marine biodiversity and ocean warming. Journal of Experimental 
Marine Biology and Ecology, 400, 7-16. doi: 10.1016/j.jembe.2011.02.021. 

Wernberg, T., Smale, D.A., Tuya, F., et al. (2012). An extreme climatic event alters marine 
ecosystem structure in a global biodiversity hotspot. Nature Climate Change, 3, 78-82. 

Wernberg, T., Bennett, S., Babcock, R.C., et al. (2016). Climate-driven regime shift of a 
temperate marine ecosystem. Science, 353, 169-172. doi: 10.1126/science.aad8745. 

Wernberg, T., Krumhansl, K.A., Filbee-Dexter, K., Pedersen, M.F. (2019). Status and trends 
for the world’s kelp forests. Sheppard, C. (Ed.), World Seas: An Environmental Evaluation 
(Second edition), Vol. III, Elsevier. https://doi.org/10.1016/B978-0-12-805052-1.00003-6.  

Wernberg, T., Filbee-Dexter, K. (2019). Missing the marine forest for the trees. Marine 
Ecology Progress Series, 612, 209-215. https://doi.org/10.3354/meps12867. 

Williams, S.L., Smith, J.E. (2007). A global review of the distribution, taxonomy, and impacts 
of introduce seaweeds. Annual Review of Ecology, Evolution, and Systematics, 38, 327-359.   

Włodarska-Kowalczuk, M., Kukliński, P., Ronowicz, M. et al. (2009). Assessing species 
richness of macrofauna associated with macroalgae in Arctic kelp forests (Hornsund, 
Svalbard). Polar Biology. 32, 897-905. DOI: 10.1007/s00300-009-0590-9. 

Woodward, F.I., Lomas, M.R., Kelly, C.K. (2004). Global climate and the distribution of plant 
biomes. Philosophical Transactions of the Royal Society of London. Series B: Biological 
Sciences, 359(1450), 1465-1476. DOI:10.1098/rstb.2004.1525. 

Wu, Z., Zhang, X., Lozano-Montes, H.M., Loneragan, N.R. (2016). Trophic flows, kelp culture 
and fisheries in the marine ecosystem of an artificial reef zone in the Yellow Sea. Estuarine, 
Coastal and Shelf Science, 182, 86-97. 

Yesson, C., Taylor, M.L., Tittensor, D.P., et al. (2012). Global habitat suitability of cold-water 
octocorals. Journal of Biogeography, 39, 1278-1292. doi: 10.1111/j.1365-
2699.2011.02681.x 

https://doi.org/10.1111/j.1365-2699.2008.02062.x
http://data.unep-wcmc.org/datasets/1
https://doi.org/10.3354/meps12867


14 
 

Zhao Q, Stephenson F, Lundquist C, Kaschner K, Jayathilake DRM, Costello MJ. 2020. Where 
Marine Protected Areas would best represent 30% of ocean biodiversity. Biological 
Conservation 244, 108536. https://doi.org/10.1016/j.biocon.2020.108536 

Žuljević, A., Peters, A.F., Nikolić, V., et al. (2016). The Mediterranean deep-water kelp 
Laminaria rodriguezii is an endangered species in the Adriatic Sea. Marine Biology, 163, 
69. doi: 10.1007/s00227-016-2821-2 

  

https://doi.org/10.1016/j.biocon.2020.108536


15 
 

Table 1. List of laminarian kelp species and species names used in this study to model the 
global distribution of the kelp biome.  
 
Agaraceae 1 
Agarum clathratum Dumortier, 1822 2 
Agarum turneri Postels & Ruprecht, 1840 3 
Neoagarum fimbriatum (Harvey) H.Kawai & 4 

T.Hanyuda, 2017 5 
Costaria costata (C. Agardh) De A. Saunders, 1895 6 
Dictyoneurum californicum Ruprecht, 1852 7 
Dictyoneurum reticulatum (De A.Saunders) P.C.Silva, 8 

2008 9 
Thalassiophyllum clathrus (S. G. Gmelin) Postels & 10 

Ruprecht, 184 11 
Alariaceae 12 
Alaria angusta Kjellman, 1889 13 
Alaria crassifolia Kjellman, 1885 14 
Alaria crispa Kjellman, 1889 15 
Alaria esculenta (Linnaeus) Greville, 1830 16 
Alaria marginata Postels & Ruprecht, 1840 17 
Alaria praelonga Kjellman, 1889 18 
Alaria pylaii (Bory de Saint-Vincent) Greville, 1830 19 
Eualaria fistulosa (Postels & Ruprecht) M. J. Wynne, 20 

2009 21 
Lessoniopsis littoralis (Farlow & Setchell ex Tilden) 22 

Reinke, 1903 23 
Pleurophycus gardneri Setchell & Saunders ex Tilden, 24 

1900 25 
Pterygophora californica Ruprecht, 1852 26 
Undaria pinnatifida (Harvey) Suringar, 1873 27 
Chordaceae 28 
Chorda filum (Linnaeus) Stackhouse, 1797** 29 
Laminariaceae 30 
Cymathaere triplicata (Postels & Ruprecht) J.Agardh, 31 

1868 32 
Hedophyllum bongardianum (Postels & Ruprecht) 33 

Yendo, 1914 34 
Hedophyllum dentigerum (Kjellman) Starko, 35 

S.C.Lindstrom & Martone, 2019 36 
Hedophyllum sessile (C.Agardh) Setchell, 1901 37 
Laminaria abyssalis A.B.Joly & E.C.Oliveira, 1967 38 
Laminaria brasiliensis A.B.Joly & E.C.Oliveira, 1967 39 
Laminaria digitata (Hudson) J.V.Lamouroux, 1813 40 
Laminaria ephemera Setchell, 1901 41 
Laminaria farlowii Setchell, 1893 42 
Laminaria hyperborea (Gunnerus) Foslie, 1884 43 
Laminaria longipes Bory de Saint-Vincent, 1826 44 
Laminaria ochroleuca Bachelot de la Pylaie, 1824 45 
Laminaria pallida Greville, 1848 46 
Laminaria rodriguezii Bornet, 1888 47 
Laminaria setchellii P.C.Silva, 1957 48 

Laminaria sinclairii (Harvey ex J.D.Hooker & Harvey) 49 
Farlow, Anderson & Eaton, 1878 50 

Laminaria solidungula J.Agardh, 1868 51 
Laminaria yezoensis Miyabe, 1902 52 
Macrocystis pyrifera (Linnaeus) C. Agardh, 1820 53 
Nereocystis luetkeana (K. Mertens) Postels & 54 

Ruprecht, 1840 55 
Pelagophycus porra (Léman) Setchell, 1908 56 
Postelsia palmaeformis Ruprecht, 1852 57 
Saccharina angustata (Kjellman) C.E.Lane, C.Mayes, 58 

Druehl & G.W.Saunders, 2006 59 
Saccharina cichorioides (Miyabe) C.E.Lane, C.Mayes, 60 

Druehl & G.W.Saunders, 2006 61 
Saccharina complanata (Setchell & N.L.Gardner) 62 

Gabrielson, Lindstrom & O'Kelly, 2012 63 
Saccharina japonica (J.E. Areschoug) C.E.Lane, 64 

C.Mayes, Druehl & G.W.Saunders, 2006 65 
Saccharina latissima (Linnaeus) C.E.Lane, C.Mayes, 66 

Druehl & G.W.Saunders, 2006 67 
Saccharina longicruris (Bachelot de la Pylaie) Kuntze, 68 

1891 69 
Saccharina nigripes (J.Agardh) Lontin & 70 

G.W.Saunders, 2015 71 
Streptophyllopsis kuroshioense (Segawa) Kajimura, 72 

1981 73 
Lessoniaceae 74 
Ecklonia biruncinata (Bory) Papenfuss, 1944 75 
Ecklonia brevipes J. Agardh, 1877 76 
Ecklonia cava Kjellman, 1885 77 
Ecklonia fastigiata (Endlicher & Diesing) Papenfuss, 78 

1940 79 
Ecklonia kurome Okamura, 1927 80 
Ecklonia maxima (Osbeck) Papenfuss, 1940 81 
Ecklonia muratii Feldmann 82 
Ecklonia radiata (C. Agardh) J. Agardh, 1848 83 
Ecklonia richardiana J. Agardh, 1848  84 
Ecklonia stolonifera Okamura, 1913 85 
Egregia menziesii (Turner) Areschoug, 1876 86 
Eisenia cokeri M. Howe, 1914 87 
Lessonia adamsiae C. H. Hay, 1987 88 
Lessonia brevifolia J. Agardh, 1894 89 
Lessonia corrugata Lucas, 1931 90 
Lessonia flavicans Bory de Saint-Vincent, 1825 91 
Lessonia nigrescens Bory de Saint-Vincent, 1826 92 
Lessonia tholiformis C. H. Hay, 1989 93 
Lessonia trabeculata Villouta & Santelices, 1986 94 
Lessonia variegata J. Agardh, 1878 95 
 96 

* Marins et al. (2012) considered L. brasiliensis a synonym of L. abyssalis. ** Chorda filum has since moved to 97 
another Order (ref Starko et al. 2019) 98 
  99 
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Table 2. The environmental variables used in the Maxent models to predict the geographic 100 
distribution of kelp species of the order Laminariales. Columns indicate the range of each 101 
variable in the data used, the range kelp occurred most frequently in, and statistics on the 102 
relative contribution of each variable used to predicted the distribution of kelp. SST = sea 103 
surface temperature.  PSS = practical salinity scale units.   104 
 105 
Abiotic variable Unit Variable 

range 
Most suitable 

range 
Percent 

contribution 
     
Average SST  oC 0-35 5-25 47.7 
Land Distance km  0-20 0-1 23.7 
Maximum SST  oC 0-35 7-27 15.9 
Wave height m 0-8 1-8 9.5 
Dissolved Oxygen ml l−1 1-10 5-7 1.2 
Depth m 0-1000 0-100 0.7 
Nitrate μmol -l 0-30 5-14 0.3 
pH  6.6-8.6 7.9-8.3 0.3 
Photosynthetically 
Active Radiation 

Einstein/m2/
day 

0-55 25-40 0.3 

Phosphate μmol -l 0-2.5 0.1-1.0 0.1 
Salinity PSS 0-45 0-5 and 30-37 0.1 
Slope degree 0-14 0-3 0.1 
Diffuse Attenuation 
Coefficient 

m−1 0-65 0-25 0 

 106 
  107 
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Table 3. Estimates of relative contributions of the environmental variables to the MaxEnt 108 
model of the laminarian kelp species. SST = Sea Surface Temperature, SBT = Sea Bottom 109 
Temperature, DAC= Diffuse Attenuation Coefficient, PAR= Photosynthetically Active 110 
Radiation.  111 
 112 
Species 1st  2nd  3rd  
Agarum clathratum  Land distance Wave height Maximum SST 
Agarum turneri  Depth Phosphate Wave height 
Costaria costata Wave height Land distance Salinity 
Dictyoneuropsis reticulata Wave height Land distance Minimum SST 
Alaria crispa Wave height Phosphate Land distance 
Alaria esculenta Wave height Mean SBT Nitrate 
Alaria marginata Wave height Land distance Minimum SST  
Alaria praelonga Wave height Land distance Phosphate 
Eualaria fistulosa Wave height Land distance Phosphate 
Lessoniopsis littoralis Wave height Land distance Salinity 
Pleurophycus gardneri Wave height Land distance Salinity 
Pterygophora californica Wave height Minimum SST Land distance 
Undaria pinnatifida Land distance Wave height Minimum SST 
Chorda filum Mean SBT Wave height Land distance 
Laminaria abyssalis Minimum SST Wave height Nitrate 
Laminaria brasiliensis Minimum SST Dissolved Oxygen Wave height 
Laminaria digitata Average SST Wave height Land distance 
Laminaria ephemera Wave height Land distance pH 
Laminaria hyperborea Wave height Average SST Minimum SST 
Laminaria ochroleuca Average SST Nitrate Phosphate 
Laminaria pallida PAR Wave height Maximum SST 
Laminaria rodriguezii Average SST Minimum SST Nitrate 
Laminaria setchellii Wave height Land distance Maximum SST 
Laminaria sinclairii Wave height  Maximum SST Land distance 
Laminaria solidungula Depth pH Maximum SST 
Laminaria yezoensis Wave height Phosphate Land distance 
Macrocystis pyrifera Wave height Land distance Minimum SST 
Nereocystis luetkeana Wave height Land distance Minimum SST 
Pelagophycus porra Nitrate Wave height Slope 
Postelsia palmaeformis  DAC Wave height Minimum SST 
Saccharina dentigera Wave height Land distance Nitrate 
Saccharina latissima Wave height Average SST Land distance 
Saccharina sessilis Wave height Land distance DAC 
Ecklonia cava Maximum SST Phosphate Wave height 
Ecklonia kurome Maximum SST Depth PAR 
Ecklonia maxima Wave height PAR Phosphate 
Ecklonia radiate Salinity Wave height  Land distance 
Egregia menziesii Wave height Land distance Minimum SST 
Lessonia corrugate Wave height Minimum SST Land distance 
Lessonia flavicans Land distance Phosphate Dissolved Oxygen 
Lessonia variegate Minimum SST Land distance Nitrate 
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Table 4. Estimates of relative contributions of the environmental variables to the MaxEnt 115 
model of the laminarian kelp genera. SST = Sea Surface Temperature.  116 
 117 
Genus 1st most contribution 2nd most contribution  3rd most contribution 
Agarum Wave height Land distance Salinity 
Alaria Average SST Wave height Land distance 
Chorda Average SST Wave height Land distance 
Costaria Wave height Land distance Salinity 
Dictyoneuropsis Wave height Land distance Minimum SST 
Ecklonia Minimum SST Land distance pH 
Egregia Wave height Land distance Diffuse Attenuation 

Coefficient 
Laminaria Average SST Wave height Land distance 
Lessonia Land distance Minimum SST Wave height 
Macrocystis Wave height Land distance  Minimum SST 
Nereocystis Wave height Land distance Nitrate 
Postelsia Diffuse Attenuation 

Coefficient 
Wave height Minimum SST 

Pterygophora Wave height Minimum SST Diffuse Attenuation 
Coefficient 

Saccharina Wave height Average SST Land distance 
Thalassiophyllum Average SST Phosphate Minimum SST 
Undaria Land distance Wave height Average SST 

 118 
 119 
 120 
Table 5. Estimates of the relative contributions of the environmental variables to the MaxEnt 121 
model of the laminarian kelp families. SST = Sea Surface Temperature. 122 
 123 
Family 1st most contribution 2nd most contribution  3rd most contribution 
Agaraceae Wave height Land distance Average SST 
Alariaceae Wave height Average SST Land distance 
Chordaceae Average SST Land distance Wave height 
Laminariaceae Average SST Wave height Land distance 
Lessoniaceae Minimum SST Land distance Wave height 
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 127 
 128 
Figure 1. The distribution of laminarian kelp observations used in this study. 129 
 130 
 131 
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Figure 2. The predicted environmental range for the order Laminariales.  The dark blue colour indicates the MaxEnt probability of distribution. 
(a) west coast of North America, (b) north-west Atlantic including Greenland and Iceland, (c) Europe, (d) north-west Pacific including parts of 
Japan, China, Russia, and Korea, (e) New Zealand and southern Australia, (f) southern Africa, (g) southern South America.  
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Figure 3. The comparison of the predicted laminarian kelp biome (yellow) to the occurrence of additional data published in since 2018 that were 
not used in modelling the biome; 86% of these new records occurred within the biome. The blue colour points indicate the occurrence records 
have >=0.45 maxent probability value (plotted within the predicted area) and the red colour points show the occurrence records have < 0.45 
MaxEnt probability values (plotted out of the predicted area).  
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Figure 4. The response of kelp to depth, distance from land, wave height, average sea surface temperature, maximum sea surface temperature, 
and salinity. 
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Figure 5. The results of the jack-knife tests of variable importance: (a) training gain; (b) test gain, (c) AUC. Jack-knife results were calculated 
without the variable (green), with only variable (blue) and with all variables (red). 


