
PhD in Business // No. 87 - 2021

Climate Change and Economic 
Growth: An Empirical Study of 
Economic Impacts of Climate 
Change 

Menghan Yuan  

ISBN: 978-82-92893-77-7 

ISSN 2464-4331

Trykk: Trykkeriet, Nord universitet

www.nord.no

M
en

g
h

an
 Y

u
an

 
C

lim
ate C

hange and Econom
ic G

row
th: A

n Em
pirical Study of Econom

ic Im
pacts of C

lim
ate C

hange
P

hD
 in B

usiness // N
o. 87 - 20

21

Global warming and the increasing incidence of extreme weather events are 
disrupting economies and affecting human lives over the world. This thesis 
intends to constrain the uncertainty of climate sensitivity and to investigate the 
economic impacts of climate change. This thesis consists of four papers.

The first two papers aim to address the uncertainty of the climate sensitivity. The 
authors applied an empirical estimation framework which relates temperature 
to solar radiation and CO₂ in a cointegrating equilibrium relationship. In order 
to facilitate the empirical estimation, the first paper constructs a global dataset 
of surface solar radiation with complete global land surface coverage during 
the period 1961-2019, which provides the input data for the climate sensitivity 
estimation conducted in the second paper. The second paper empirically 
estimates Transient Climate Sensitivity (TCS) for 22 global climate models and 
significantly narrows the confidence interval of TCS compared to previous 
estimates.

The last two papers use panel data analyses to examine how agriculture and 
aggregated economies are influenced by climate change, respectively. Based on 
an extensive dataset covering worldwide countries over more than five decades, 
the agricultural paper contributes to investigate the heterogeneity effects in 
various regions and in rich/poor countries. The last paper investigates the 
possibility of using a novel panel data approach—interactive fixed effects model, 
to allow for the heterogeneous effects of countries affected by the common 
global shocks.
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Abstract

Researchers have made significant advancements in answering whether and
how climatic conditions influence societies and the performance of economies
for decades. However, large uncertainties exist that prevent us from providing
consistent climate projections for a given future emission scenario, which has
obvious consequences for society’s ability to take necessary mitigation and
adaptation action. Climate sensitivity, which measures how much global
temperature will change after a doubling of greenhouse gases compared to
preindustrial times, has been widely used in climate-economic models that
translate climate change into economic damages, and therefore is of highly
concern to policy makers to inform climate policies. The goal of this thesis is to
constrain the uncertainty of climate sensitivity and to investigate the economic
impacts of climate change.

This thesis consists of four papers. The first two papers aim to address the
uncertainty of climate sensitivity. In our empirical estimation framework, we
relate temperature to solar radiation and CO2 in a cointegrating equilibrium
relationship. However, there is no readily available solar radiation dataset that
currently provides observations with global coverage. The first paper resolves
the dataset problem by implementing a spatial interpolation method to an
observation-based solar radiation dataset. Using a wide range of explanatory
variables, we apply a machine learning method, Random Forest, to predict solar
radiation at unsampled locations. The output from this paper is a global dataset
with complete global land surface coverage during the period 1961-2019, which
provides the input data for the climate sensitivity estimation conducted in the
second paper.
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Abstract

The second paper empirically estimates Transient Climate Sensitivity (TCS)
for 22 global climate models and significantly narrows the confidence interval
of TCS compared to previous estimates. Using the constrained distribution
of TCS, we further examine its implications to the social cost of carbon. In
alignment with the warming target of 1.5◦C under the Paris agreement goals,
the revised TCS leads to a remaining carbon budget of around nine years of
current CO2 emissions. Compared to the unconstrained reported TCS values
in the Coupled Model Intercomparison Project (CMIP6), our narrowed TCR
confidence interval suggests a median reduction in the remaining carbon budget
of approximately one year of allowable CO2 emission.

The third and fourth paper use panel data analyses to examine how
agriculture and aggregated economies are influenced by climate change. The
third paper investigates regional heterogeneity in the effects of climate change
on soybean yields. We find statistically significant difference in yield sensitivities
to climate change among various regions. A global homogeneous model suggests
predominantly negative effects of a warmer climate; however, a regional model
of Southeast Asia indicates that local soybean yields could be enhanced in
countries located on the northern, cooler fringes of this region. Moreover, we
find soybean yields in developed countries, such as the US, Canada, Australia,
and European countries, tend not to be significantly affected by climate change.

Following the empirical framework from the third paper, the fourth paper
further examines realized impacts of historical climate change on aggregate
economic outputs. We find that European and Central Asian countries have
benefited both from temperature rising and precipitation fluctuations; on the
other hand, a double whammy has been observed in Africa, the trends toward a
warmer and dryer climate have both impeded local economic growth.
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CHAPTER 1

Introduction

1.1 Theoretical Background

Climate Trends

A growing body of evidence indicates that Earth’s climate is changing in
general, and the temperature in particular. Weather patterns are changing,
disrupting national economies and affecting lives. The global surface temperature
has been progressively increased. During the past century (1900-2000), the
global average temperature has increased by 0.74◦C; moreover, more than a
half of the warming was observed in the last two decades of the period (a rise
of 0.38◦C happened in 1980-2000) (Scafetta and West, 2005). According to
Duan et al. (2021), the warming rate in the second half of the 20th century is
approximately twice as large as in the whole century. The Fifth Assessment
Report (IPCC AR5) reported that 2010-2019 was the warmest decade ever
recorded and the period of 1983-2012 was the warmest 30-year span over the
last 800 years for the Northern Hemisphere.

Hydrological responses to global warming are complicated and vary spatially.
It has been reported that global precipitation over land has increased by ∼3%
over the last century (Gerten et al., 2008), which could indicate less drought on
a global scale. However, regional precipitation trends vary considerably—dry
areas tend to get dryer and wet areas tend to get wetter. This in fact indicates
that areas that experienced droughts in the past, will most likely experience
them more often in the future, and areas that rarely experienced droughts in
the past will be increasingly less likely to experience droughts in the future.
Drying trends are observed over most of Africa, southeast Asia, eastern Australia
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1. Introduction

and southern Europe, and increased precipitation was found over the central
US, Argentina and northern high-latitude areas during 1950-2010 (Dai, 2013).
Summer drying has been reported in many parts of the northern subtropics
and midlatitudes (Burke and Brown, 2008). Moreover, additional areas of land
surface are predicted to be in drought by the end of the century (Burke et al.,
2006). Rind et al. (1990) and Jones et al. (1996) projected that, severe drought
conditions will increase dramatically, especially at low to midlatitudes, by the
middle of the twenty-first century.

Solar radiation is a fundamental determinant of the Global Energy Balance,
and a crucial driving force for temperature change and hydrological cycle
variation (Budyko, 1969; Obryk et al., 2018). Solar radiation has been a key
input for many climate studies that investigate climate sensitivity, its effect on
agriculture and other economic sectors. Storelvmo et al. (2016) decomposed
observed temperature development into components attributable to changes in
greenhouse gas concentrations (CO2) and surface radiation. The increase in
greenhouse gas pulls the temperature up, while the reduction of downward solar
radiation drags the temperature down. What we observe is the net effect—the
temperature. Phillips et al. (2020) estimated transient climate sensitivity, which
is the change in global mean surface temperature for a doubling of CO2, using
an econometric model that applies surface radiation as one of the inputs. Solar
radiation is also of high importance for agricultural management that will need
to control the amount of solar radiation in order to stimulate crop growth as
well as other applications that deploy solar power energy (Lewis, 2016).

Despite of the importance of solar radiation, there are few available global
datasets that provide reliable and representative data describing its evolution.
Taking an unbalanced panel dataset of solar radiation, the first paper in this
thesis constructs a global solar radiation dataset using a machine learning
method, and based on which, global solar radiation trends are summarized.
Using the constructed solar radiation dataset, the second paper estimates climate
sensitivity, defined as the global average temperature change due to a doubling
of atmospheric CO2. Our empirical framework relates temperature to solar
radiation and CO2 in a cointegrating equilibrium relationship. Therefore the

2



1.1. Theoretical Background

constructed dataset in the first paper provides the prerequisite input for the
second paper.

Climate change has wide-ranging impacts on the world’s economies, including
human health, energy use, global food security, etc. I will review here some of
the major findings of the social and economic impacts of climate.

Economic Impacts: Agricultural Yields

Agriculture is one of the most directly exposed sectors to the impacts
of climate change. Variations in climate processes such as temperature,
precipitation, and solar radiation directly affect crop growth and production
significantly through photosynthesis, transpiration, respiration, and so on. In
particular, variabilities in temperature and precipitation can explain a quarter
of the crop yield’s variability in non-irrigated plants (Kukal and Irmak, 2018).
The importance of temperature, often dominating rainfall, in the production of
staple crops (Schlenker et al., 2005; Lobell and Burke, 2008). Crops are sensitive
to temperatures during specific stages of the growing cycle. The relationship
between crop yields and growing season temperature and precipitation changes
is extensively studied. Some regional studies indicate that yield responses differ
largely from regions to regions, both in magnitude and signs of the impacts.
For example, Indian rice yields have been reduced by 5.7% during 1966-2002
under historical trends in temperature, monsoon characteristics, and rainfall
(Auffhammer et al., 2012). In the case of Sub-Saharan Africa, substantial losses
for aggregate production are predicted—a reduction of −22 and −17% are
estimated for maize and sorghum by 2050, respectively (Schlenker and Lobell,
2010). On the other hand, Kucharik and Serbin (2008) found that a trend
towards warmer and drier conditions could support higher corn and soybean
yields in northern Corn Belt locations that have a cooler climate in general.

In spite of the reported regional difference in crop yields responses to
climate change, few studies have explicitly considered parameter heterogeneity
in empirical models. Current studies primarily assume homogeneous sensitivities
for all regions, and the difference in realized responses is because of the
different initial temperatures for various regions (see e.g., Dell et al., 2012;
Burke et al., 2015; Diffenbaugh and Burke, 2019). In the third paper of this

3



1. Introduction

thesis, by including regional dummies in our global empirical framework, we
explicitly explore the regional heterogeneity in crop yield responses to changes
in temperature and precipitation, and thereby obtain region-specific response
functions for six regions comprising the world.

Economic Impacts: Aggregate Production

Rather than focusing on individual or sectoral responses to climate, an
alternative “top-down” approach examines how the macro-economy as a whole
responses to climate change. Studies in this category use gross domestic product
per capita (GDPPC) as the variable of interest. Recent studies have shown that
temperatures have a nonlinear effect on economic production, such that output
is maximized at 13◦C (see Figure 1.1, Burke et al., 2015). In other words, the
parabolic relationship between temperature and economic growth indicates that
countries with an annual average above 13◦C will see a reduction in GDPPC
with increased warming, whereas countries with an annual average below 13◦C,
such as Brazil and India, will experience an increase in economic production.
For countries with an annual average below the optimum, for example, Germany
and France, the economic output will increase until the optimum is reached.

There is of course a lot of heterogeneity between countries that have a hot
annual average temperature, but many of those countries are located in Africa,
close to the equator. These countries are already hot and poor, and many of
them have a poorly developed infrastructure to mitigate even harsher climatic
conditions. Australia, on the other hand, has also above the global optimum
temperature, but with a very high GDPPC, highly developed infrastructure, and
yet experiences a warming trend in temperature (Bureau of Meteorology, 2020).
The implication is that there is plenty of heterogeneity in how countries with
an annual average temperature above the global optimum are able to handle a
further increase in temperature. Moreover, Diffenbaugh and Burke (2019) found
that global warming has increased global economic inequality. Given that hot
countries tend to be poor, with national income falling 8.5% per degree ◦C in
the world cross section (Dell et al., 2009), it is very likely that poor countries
are worse-off while rich countries are better-off under continued global warming.
In particular, Diffenbaugh and Burke (2019) indicated that the ratio of GDP

4



1.1. Theoretical Background

per capita between the top and bottom decile countries are 25% larger than in
a world without global warming.

Fig. 1.1 Effects of annual average temperature on economic production. The figure is taken
from Burke et al. (2015). Vertical lines indicate average temperature for selected countries.
Histograms show global distribution of temperature exposure (red), population (grey), and
income (black).

The scientific interest in the effects of rainfall on economic growth has grown
significantly, however, only a limited number of studies deliver conclusive results.
Berlemann and Wenzel (2018) found statistically significant negative impacts
of rainfall shortages on economic growth, but the effects are only specific
to developing countries where economies are largely dependent on rainfed
agriculture. This indicates that the effects of precipitation on an economy are
mainly realized through agriculture. Berlemann and Wenzel (2018) also reported
that rainfall surpluses have no significant growth effects. Schlenker and Lobell
(2010) further corroborated the effects of low precipitation by indicating that
low precipitation has slowed GDP growth in Africa.

In the fourth paper, we examine realized impacts of observed temperature
and precipitation evolution for countries worldwide. Our results show dominant
effects of temperature as compared to precipitation, moreover, regions have
responded considerably differently. Specifically, Europe and Central Asia have
benefited from both historical temperature and precipitation trends, whereas

5



1. Introduction

a double whammy has been observed in Africa, resulting in economic growth
being slowed down by both factors.

Health Impacts

Climate change is also found to have severe implications for human health,
and even though I do not directly address this in my thesis, health and economic
productivity is closely related (see e.g., Ivinson, 2002; Bhargava et al., 2001).
Good health has a positive and statistically significant effect on aggregate
output (Bloom et al., 2004). Healthier workers are physically and mentally more
energetic and productive at work places, thereby boosting economic growth and
development.

As individuals, each of us is constantly exposed to temperature, and our
health could be compromised under extreme heat or cold, which could lead to
severe cardiovascular, respirator, and cerebrovascular effects that can result in
death (Deschenes, 2014a,b; Carleton and Hsiang, 2016). For example, in Delhi,
deaths increase by 3.2% per ◦C above 20◦C, and in the US, days above 32.2◦C
and below −6.7◦C increases male mortality rate by 2% and 1.4%, respectively
(Barreca et al., 2016). In addition to these mortality damages, many injuries from
temperature extremes are not lethal. During high and low daily temperatures,
hospital admissions increase for respiratory and cardiovascular diseases. In
particular, besides temperature, humidity was found to be an critical determinant
of human influenza, which is a notable cause of hospitalization in temperate
climates (Barreca and Shimshack, 2012).

Transmission and distribution of vector-borne disease are greatly influenced
by environmental and climatic factors (see e.g., Gething et al., 2011; Craig et al.,
1999). Accordingly, it has been suggested that the dynamics and distribution of a
range of vector-borne diseases, including malaria, dengue fever, viral encephalitis,
schistosomiasis, Lyme disease, could be impacted by climate change (see e.g.,
Paaijmans et al., 2012). Temperature regimes constrain the geographical extent
of the disease and contribute to determining its intensity. Generally, transmission
intensity is assumed to be higher under warmer conditions, where parasites
and pathogens within vectors increase fast. For example, transmission intensity
of malaria are largely influenced by mosquito and parasite life history traits

6



1.2. Fundamental Approaches and Data Availability

(e.g., adult mosquito longevity, biting rate), which are strongly temperature
sensitive (Carballar-Lejarazú et al., 2020; Scudellari, 2019). Shapiro et al. (2017)
suggested a temperature optimum for transmission of 29◦C, with minimum and
maximum temperatures of 12 and 38◦C, respectively. Anthropogenic climate
change is likely to shift disease ranges and increase exposure globally, more
research is need to quantify the link between changing temperatures, rainfall,
and public health (Bhatt et al., 2013; Gething et al., 2010).

Temperature extremes also impact performance of workers, especially for
factory or labor intensive manual work. Optimal temperature for worker
performance is between 21 to 25◦C, while beyond that range, too hot or too cold
temperatures are harmful for productivity (Seppanen et al., 2003). When the
temperature is above 25◦C, Seppanen et al. indicated an average 2% decrement
in work performance with an temperature increase of 1◦C.

1.2 Fundamental Approaches and Data Availability

In this section, I will present some fundamental tools for economic analyses
of climate change. These models constitute the prototypes of models applied in
my thesis. I will first talk about Spatial interpolation, which is applied in the
first paper to tackle the missing data problem in climatic datasets. Measuring
climate change is an essential component of climate economic studies and is
constantly discussed through out the thesis; therefore, I will then talk about
trend analysis techniques frequently applied in climate science.

Panel data analysis is one of the most frequently used approaches in empirical
studies of climate change. Paper 2 to 4 all applied panel approaches either to
obtain estimates of critical parameters in climate models or to make inference
of economic damages from climate change. Therefore, some elementary issues
of panel data analysis are discussed briefly.

At last, I will introduce data availability related in the thesis, including
weather datasets, climate model directories, and databases of economic
indicators.

7



1. Introduction

1.2.1 Spatial Interpolation

To study the trends and impacts of climate, it is of the utmost importance
to have reliable data, which can be used for analyzing a wide range of global,
and local, aspects of the environment. Global air temperature has become the
primary metric for measuring global climate change. The overall increase of
global temperature over the last century has been largely attributed to the
increase of greehouse gases (Flato and Marotzke, 2013). Besides the effects
of greenhouse gases, solar radiation has been a major driver of temperature
variability (Wang and Dickinson, 2013). Storelvmo et al. (2016) show that
observed temperature trends can be decomposed into components attributable
to changes in greenhouse gas concentrations and surface radiation. The effects of
solar radiation impacts on temperature are primarily explained through changes
in atmospheric aerosol loading, such as SO2, which has a cooling effect. In
particular, Storelvmo et al. (2016) find that the solar radiation trends have
caused a cooling that masked approximately one-third of global warming over
the past half-century.

In order to measure global temperature dynamics and climate change, it
is essential to have datasets that have complete spatial coverage and have
climatic observations for a relative long term. Such datasets are readily available
for temperature and CO2, however, there are few, if any, complete datasets
for solar radiation over a long time period for many locations. One such
dataset is the Global Energy Balance Archive (GEBA, Wild et al., 2017). The
GEBA dataset has a long time range, with the first observations from the early
1950’s, continuing to the present day. However, many values are missing due to
maintenance and operational failures of observation devices. Therefore, paper 1
addresses the missing value problem in the GEBA dataset, aiming to construct
a solar radiation dataset with complete spatial coverage and containing data for
a long period.

To fill missing values, many different techniques have been tested, with linear
interpolation as one of the simplest. This, however, does not perform very well
if there are several consecutive missing values, and in particular if the data
is seasonal, which is certainly true for solar radiation. Other, more advanced,
techniques used by researchers are, for example, Inverse Distance Weighting

8



1.2. Fundamental Approaches and Data Availability

(IDW), Kriging, splining, regression and etc. (see e.g., Collins, 1995; Scudiero
et al., 2016; Erxleben et al., 2002). We applied advanced statistical methods,
often called machine learning techniques, to fill any missing values in the solar
radiation dataset.

Fig. 1.2 A graphical illustration of the original and the output data, and how the machine
learning method is implemented to implement the spatial interpolation. Figure is taken from
Leirvik and Yuan (2021).

Figure 1.2 shows a diagram of how we implemented spatial interpolation in
paper 1. Panel A in the left column of Figure 1.2 illustrates our initial dataset,
where the y-axis is the station and the x-axis is time. Thus, each geographical
station measures solar radiation at time t. An observation is illustrated with a
red colored circle. However, some observations are missing, and are represented
by the green colored circles. Our objective is to apply various quantitative
methods to the values illustrated by the green circles. Estimates from machine
learning techniques are represented by the blue circles in Panel A, in the right
column of Figure 1.2. Panels B in the left and right column illustrate three
hypothetical stations with solar radiation values, points in time where the solar
radiation is missing (left column), and how the solar radiation time series would
be after inserting the estimates of solar radiation (right column) for any missing
values. Furthermore, Panel C in the left column takes a randomly selected
station with actual observations and missing values, and plots the solar radiation
of the time-period analyzed. Panel C in the right column illustrates a complete
solar radiation time series with both estimated and observed values of the solar
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radiation. The middle column in Figure 1.2 illustrates the machine learning
process applied in the paper and how it is used to achieve the results.

Frequently applied spatial interpolation methods are briefly explained at
what follows. IDW is a deterministic estimation method where the value at a
missing location is determined by weighted average of values at neighboring
points, where the weights are assigned as inversely proportional to the distance
from the target location. Although its simplicity makes it easy to implement,
a drawback is that it will have a discontinuous slope of the estimation surface
at each data point (Collins, 1995). The Kriging method is a method of
interpolation where the interpolated values are modeled by a more sophisticated
relationship between observed values with target missing values. The relationship
is depicted by a variogram function, which calculates the semi-variance differences
(spatial autocorrelation) between the neighboring values. The variogram can be
exponential, spherical, logarithmic or any other functions. Spline models, a class
of functions often called polynomial interpolation models, use mathematical
functions to connect the sampled data points in order to produce a continuous
elevation and grade surface while minimizing the curvature of the surface. These
models are useful when the surface varies smoothly without sharp fluctuations.
The models mentioned above are univariate, which means that they apply
only information about the variable of interest, i.e., the variable with missing
values that is desirable to estimate. Regression methods break the limit of
using only the target variable for estimating missing values by characterizing
the response’s relationship with other potential explanatory variables, such
as location (latitude, longitude) of measurement station, and other correlated
atmospheric variables. Recently, so-called machine learning methods have been
applied in spatial interpolation (see e.g., Jiang, 2008; Sun et al., 2016; Zhou
et al., 2017). Machine learning consists of many different statistical models that
computer systems use to effectively perform a specific task without using explicit
instructions and strong assumptions, it relies mostly on pattern recognition and
inference instead. One such method, the Artificial Neural Network (ANN), was
implemented for the estimation of monthly mean solar radiation and showed
superiority over polynomial fitting models (Jiang, 2008). Though with its high
accuracy, the ANN method has the limitation of computational complexity and
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therefore cannot incorporate a large number of explanatory variables. Another
alternative machine learning model, the Random Forest (RF) model, provides
a solution for accommodating a high dimension of covariates, and has been
applied in several recent studies. For example, Sun et al. (2016) presented a
RF model to estimate solar radiation based on three types of input variables:
sunshine hours, air temperature, and their derivative types. Surface albedo,
emissivity and vegetation indices data were used as predictors by Zhou et al.
(2017) in the RF model in order to generate an accurate prediction of solar
radiation. Most of the research on spatial interpolation is on a regional scale
and/or only considers a relatively short period of time for testing model quality,
such as a one-year period. The main contribution of this paper is to propose
an effective machine learning method in spatial interpolation of Surface Solar
Radiation (solar radiation), that is applicable for the global scale and could
make use of information from long term trends.

The first objective is to interpolate the solar radiation dataset in GEBA,
therefore obtaining a complete dataset of solar radiation with no missing values.
Two papers are constructed in this endeavour. Given a variety of interpolation
methods available, my supervisor and I started with a performance evaluation of
interpolation approaches, which developed into a published paper in Earth and
Space Science (Leirvik and Yuan, 2021). This paper applies Random Forest (RF)
and seven other conventional spatial interpolation models (Ordinary Kriging,
Linear Regression, several types of Regression Kriging) to the GEBA dataset.
Based on the trained models, we calculated error metrics of predicted values
against observations and found that the RF model significantly outperforms all
other models. In particular, we find that the mean absolute error (MAE) of
the RF is reduced by 50+% compared to the average MAE of the conventional
interpolation methods. This paper is not included in my PhD thesis because it
is not applied directly in my climate-economic research.

Given that Leirvik and Yuan (2021) demonstrated the superiority of the
Random Forest model, we then applied the model to unsampled areas or time
points with no existing observations. In other words, we generated simulations
that extend the original dataset both over space and time. The simulation
output is a gridded dataset at 0.5◦ resolution that covers all land surface except
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Antarctica and spans the period from 1961 to 2019. Its spatial completeness
and the large time span make the constructed dataset a valuable alternative
to existing solar radiation datasets. Based on the new dataset, we further
analyzed historical solar radiation trends in a regional and global level. The
results form this analysis is important and very useful in many areas regarding
the climate-human-economic relationship, the results was condensed into a
collaborative paper with Thomas Leirvik and Martin Wild, which is revise-
resubmit in Journal of Climate. I decide not to include Leirvik and Yuan (2021)
in this thesis because I deem it as a trial project for preparing the model selection
criteria for selecting a spatial interpolation method that is most appropriate for
the dataset construction conducted in the first paper of the thesis. The output
dataset of the first paper is further applied in the second paper of the thesis for
climate sensitivity estimation.

1.2.2 Trend Analysis

Linear Trend Estimation

Climate data is often a univariate time series, {yt}Tt=1, that is a sequence of
random variables indexed by t. It is critical to understand the rates of change
for climate variables, such as temperature, precipitation, and solar radiation.
A commonly reported metric is the decadal trend, which measures the average
change per decade. We use decadal trends to quantify the average evolution
of climate during a long term, and they can be used to inform, for example,
whether global warming is accelerating, decelerating, or no change; if there is a
persistent trend in rainfall. Trend analysis is applied throughout the thesis, and
the results are explicitly reported in the first two papers.

The various studies analyzing long-term trends of surface solar radiation
suggests a widespread decrease in surface solar radiation between the 1950s
and 1980s (“global dimming”), with a partial recovery more recently at many
locations (“brightening”) (see e.g., Wild, 2009; Sanchez-Lorenzo et al., 2015;
Stjern et al., 2009). Several of these studies discuss the brightening in Europe
in more detail. Norris and Wild (2007) determined a Pan European time series
based on 75 stations from GEBA, and estimated a linear decline of 3.1 Wm−2
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decade−1 for the “dimming” period 1971-1986, but an increase of 1.4 Wm−2

decade−1 for the “brightening” period 1987–2002. Chiacchio and Wild (2010)
pointed out that the brightening in Europe is particularly pronounced in the
spring and summer seasons, while there is no evidence for a brightening in
the other seasons. Paper 1 contributes to the existing literature by reporting
decadal trends of solar radiation for each 0.5◦ × 0.5◦ grid cell on the global land
surface to inform the global brightening/dimming process.

Trend analysis is also applied in other papers in the thesis. In particular,
the second paper calculates the warming trends of global surface temperature
using data from climate model output, which are later used as input parameters
for climate sensitivity estimation. The third and fourth paper are focused on
examining agricultural and economic impacts of climate change, respectively.
Climate trends of temperature and precipitation are summarized on a country
scale (crop growing season average trends in the third paper and annual average
trends in the fourth paper) and realized impacts of historical trends are reported
in the fourth paper.

A linear trend of yt is the estimate of the slope coefficient of a linear regression
of yt on time. The decadal trend can be obtained by multiplying the slope
coefficient by 10. Figure 1.3 shows an example of linear trend estimation.

Fig. 1.3 Trend estimation illustration. Black line stands for temperature observations, blue
line stands for linear trend approximation. The estimation of the regression equation is shown
on the top-left corner of the figure, with the intercept coefficient (β0) being 13.6 and the linear
trend coefficient (β1) being 0.022. Note that the x-axis (year) is rescaled to start from 0 in the
equation estimation.

A linear trend regression model is given by

yt = β0 + β1Tt + εt (1.1)
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where t = 1, . . . , T , and Tt is the time variable assigned to yt. β0 is the intercept
and β1 is the slope coefficient which can be interpreted as the linear trend of yt.

Eqn. (1.1) can be written in a matrix form

y = Xβ + ε (1.2)

where y is a T × 1 vector, and β = (β0, β1)′, and X is a T × 2 matrix, with the
first column being 1 indicating the intercept constant.

The ordinary least-squares (OLS) estimation minimizes the sum of squared
errors (SSE):

MinimizeβSSE(β) = ε′ε = (y −Xβ)′ (y −Xβ)

Expanding this gives

ε′ε = y′y − 2y′Xβ + β′X ′Xβ

The necessary condition for a minimum is

∂S(β)
∂β

= −2X ′y + 2X ′Xβ = 0

Then the explicit solution is

β = (X ′X)−1X ′y

= (E(X ′X))−1 E(X ′y)
(1.3)

The OLS moment estimator is therefore given by

β̂ =
 1
T

T∑
t=1
xtx

′
t

−1  1
T

T∑
t=1
xtyt


=
 T∑
t=1
xtx

′
t

−1  T∑
t=1
xtyt


(1.4)

1.2.3 Panel Data Analysis

Economists traditionally use the term Panel data, also called longitudinal
data, to refer to data structures consisting of observations on many individuals
for multiple time periods. The observed “individuals” can be, for example, people,
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households, workers, firms, schools, production plants, industries, regions, states,
or countries. The distinguishing feature relative to cross-sectional datasets is the
presence of multiple observations for each individual. More broadly, panel data
methods can be applied to any context with cluster-type dependence (Hansen,
2019).

Paper 2 uses a panel data structure with stations being individuals, where
parameters can be estimated by fully-modified least squares estimators (FM-
OLS, refer to paper 3 for details). Paper 3 and 4 apply a panel data structure
with countries being individuals. Here I introduce the individual fixed effects
model, which consists of the baseline of the empirical frameworks applied in
paper 3 and 4. We consider the linear individual effects model given by

yit = x′itβ + ui + εi (1.5)

or in a matrix form

yi = X ′iβ + 1iui + εi (1.6)

where yit is indexed by an individual i and time t, i = 1, . . . , N and t = 1, . . . , T ,
ui is the individual-specific effect that represents a time-invariant unobserved
missing variable. For example, if yi represents economic outputs of country i,Xi

represents climate variables, then the individual-specific effects, ui, will absorb
effects of omitted factors that influence the country’s historical average economic
development, such as history, culture, topography, demography, institutional
qualities, etc.

When ui is interpreted as a missing variable it is natural to expect it to be
correlated with the regressors xit. Correlation between ui and xit will cause both
pooled and random effect estimators to be biased due to the classic problems of
omitted variables bias and endogeneity. If we leave the relationship between
ui and xit fully unstructured, then the only way to consistently estimate the
coefficient β is by an estimator which is invariant to ui. This can be achieved
by transformations which eliminate ui.

On such transformation is the within transformation. I will present here this
transformation in detail.
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Define the mean of a variable for a given individual as

ȳi = 1
Ti

∑
t∈Si

yit

We call this the individual-specific mean. Subtracting the individual-specific
mean from the variable we obtain the deviations

ẏit = yit − ȳi

Similarly for the regressors we define the individual-specific means and the
demeaned values

x̄i = 1
Ti

∑
t∈Si

xit

ẋit = xit − x̄i

Taking individual-specific averages to Eqn. (1.6) we obtain

ȳi = x̄′iβ + ui + ε̄i

where ε̄i = 1
Ti

∑
t∈Si

εit. Subtracting from Eqn. (1.6) we obtain

ẏit = ẋ′itβ + ε̇it (1.7)

where ε̇it = εit − ε̄i. By doing so, the individual effect ui has been eliminated.
It can be written in matrix notation

ẏit = Ẋ ′itβ + ε̇it (1.8)

The OLS estimator to Eqn. (1.8) is

β̄fe =
 N∑
i=1

∑
t∈Si

ẋitẋ
′
it

−1  N∑
i=1

∑
t∈Si

ẋitẏit

 (1.9)

=
 N∑
i=1
Ẋ ′iẊi

−1  N∑
i=1
Ẋ ′iẏi

 (1.10)

This is known as the within estimator of β. It is called the within estimator
because it is based on the variation of the data within each individual.
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1.2.4 Data Availability

Climate Data

Climate scientists have been using climate/weather data to examine long-
term trends of climate evaluation and occurrences of extreme weather events (see
e.g., Jones et al., 1996; Burke et al., 2006; Auffhammer et al., 2013; Carleton and
Hsiang, 2016). To clarify the difference between climate and weather, climate is
a long average of weather at a given location, while weather refers to short term
atmospheric conditions. Climate change refers primarily to long-term changes.

There are several main sources of climate data: observations from weather
stations, observation-derived products (e.g., satellite data), and climate model
simulations. Observations collected from weather stations are regarded as the
most reliable, however, they are afflicted with problems about spatial and
temporal coverage. This is because it is difficult to main observation stations at
mountainous and marine regions; moreover, maintenance and operational failures
cause interruptions and discontinuity of observations. Missing value problem
is especially typical in solar radiation datasets, because there is no extensive
coverage of such observation stations, and existing stations tend to cluster
in developed regions, such as Western Europe and North America. However
observations for a range of other variables are complete, such as temperature,
precipitation, cloud coverage, due to their widespread coverage of weather
stations and their well-developed interpolation techniques. Given the disparity
in data availability between solar radiation and other climate factors, paper 1
explores the possibility to predict solar radiation using other climate factors as
explanatory variables. And it turns out that our selected climate variables can
explain more than 90% of the total variation of global solar radiation.

In paper 1, we obtain data of climatic predictors from the Climate Research
Unit Time-series data version 4.04 (CRU-TS v.4.04, Harris et al., 2020). The
CRU dataset provides high resolution (0.5◦ × 0.5◦) gridded data of monthly
observations for a wide range of meteorological variables over the period 1901-
2019. It is derived by the interpolation of monthly climate anomalies from
extensive networks of weather station observations. It covers all land domains
of the world except Antarctica, and there are no missing values in the defined
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domain. CRU dataset is applied in all four papers contained in the thesis.
Paper 2 uses the temperature data to estimate climate sensitivity; paper 3 and
4 aggregate gridded temperature and precipitaion data to country-level data
and, based on which, estimate economic impacts of climate change.

Global Climate Models (GCMs) provide simulations of historical climate
and predictions of climate. GCMs are physics-based models are based on well-
documented physical processes to simulate the transfer of energy and materials
through the climate system. They use mathematical equations to characterize
how energy and matter interact in different parts of the ocean, atmosphere,
land; therefore, they are sometimes also called Atmosphere-Ocean GCMs, Earth
System Models (ESMs), or simply, and most commonly, climate models. Paper
2 uses GCM data to estimate climate sensitivity and compares the results with
the reported values in order to verify the robustness of our proposed empirical
estimation framework. GCM data can be obtained from the Coupled Model
Intercomparison Project - Phase 6 archive (CMIP6, Eyring et al., 2016).

Economic Data

Using country-year panel data, Paper 3 and paper 4 examine the effects of
climate change on crop yields and economic growth, respectively. Crop yields
data can be obtained from the Food and Agriculture Organization of the United
Nations (FAOSTAT, http://www.fao.org/faostat/en/#data/QC). Economic
indicators are available from the World Bank’s World Development Indicators
dataset (WDI, 2020),

1.3 Philosophy of Science

This thesis uses quantitative models to describe natural processes, assess
impacts of climate change. The issue of double-counting has long been the
subject of debate in the philosophical as well as statistical literature. Double
counting is defined as if data have been used to construct a hypothesis, then the
data should not be used again as evidence in support of the hypothesis (Deborah,
2008). That is to say, an accordance between evidence and hypothesis provides
a genuine test of hypothesis only if evidence is not used in the hypothesis’
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construction. It is believed that double counting has the potential of posing
unreliable inferences. For example, if the model is constructed in a certain way
that presumes some beliefs, it is highly doubtful an inference that the belief is
actually true. Although the inferences were originated from fitting the data, they
were constrained to reflect what is real, or at least trying to do so. We shall not
reject the existence meaning of hypothesis testing, indiscriminately disparages
all procedures that involve double counting will result in negating certain reliable
model validation and conclusion, thereby we are not able to generate useful
conclusions from data dependent inferences. Therefore, meticulous cautiousness
is required when dealing with double counting, it is the condition, property,
probativeness of the hypothesis test that determine whether a double use of
data in hypothesis testing is acceptable.

Popper and Notturno (1994) provides a solution for accepting a hypothesis.
According to their theory, observations and experiments can be accepted as
supporting a theory (or a hypothesis, or a scientific assertion) only if these
observations or experiments are severe tests of the theory—or in other words,
only if they result from serious attempts to refute the theory, especially from
trying to find faults where these might be expected in the light of all our
knowledge. Severity here is the probability that the test rejects a hypothesis
h when h is false. Requiring severity is similar to requiring a high power of a
statistical test to detect the falsity of h. When severity is satisfied we argue
that the test is genuinely probative, otherwise a good fit between the data and
hypothesis would be very difficult to generate were hypothesis incorrect. When
the severity is seriously violated we may conclude that the hypothesis is not
determinant in the way that helps to generate a good fit of data, i.e., such a fit
could result from a fit even if the hypothesis were false. In conclusion, if the
occurrence of a good fit between the data and hypothesis is impossible unless
the hypothesis is true, then we could be sure that inference from the hypothesis
is correct.

According to Akaike (1998), an unbiased estimate of the predictive accuracy
of a model can be obtained by considering both its fit to data and its simplicity,
as measured by the number of adjustable parameters it contains. A model
should be simple, reduce the redundancy to the maximum degree. In practice,
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we give a regulation term to punish the model with more number of parameters.
For the complex model to have the higher predictive ability, not only should it
fit the data better, but also it fits the data sufficiently better to compensate for
the loss in simplicity that it represents (Hitchcock and Sober, 2004).

At last, a caveat that should be kept in mind is that no model is perfect,
models can not reflect the reality perfectly, nonetheless we could still at least
learn some valuable insights about the world from the models. “All models are
wrong, some are useful.” said the famous statistician George Box. We can not
pursue perfection in our models, no model can simulate observations with one
hundred percentage confidence. There are always randomness in the reality that
can not be captured perfectly in the model, probably there are important factors
that we neglected, maybe we over simplified reality with unrealistic assumptions.
In all, each model is wrong in a different way. Although there is weakness in
our model, they are not useless at all. All together they might provide useful
perspectives to our problem to solve.

1.4 Overview of Four Papers

Fig. 1.4 Thesis outline.
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Figure 1.4 shows a diagram of the structure of this thesis. The central topic of
the thesis is climate change, revolving around which, four papers are developed.
In particular, the first two papers altogether constrain the uncertainty of climate
sensitivity. The first paper conducts a spatial interpolation to construct a
solar radiation dataset that is used in the empirical estimation of climate
sensitivity in the second paper. The last two papers are focused on assessing the
agricultural and aggregated economic impacts of climate change, respectively.
The constructed solar radiation dataset was also applied in the last two papers
but the results show that solar radiation is not a significant factor. In what
follows, I will provide a summary for each of the four papers consisting of the
thesis.

1.4.1 Paper 1: Global Trends in Downward Surface Solar Radiation
from Spatial Interpolated Ground Observations during
1961-2019

Paper 1 constructs a high resolution (0.5◦×0.5◦) global solar radiation dataset
that spans nearly 60 years with monthly frequency and has complete global
land surface coverage. The constructed dataset provides the prerequisite input,
solar radiation data, for paper 2 that empirically estimates climate sensitivity.

In particular, this paper applies a machine learning method, Random Forest,
to interpolate an observational solar radiation dataset. We use a wide range
of explanatory variables to predict solar radiation, including climatic variables
(e.g., temperature indices, precipitation, cloud coverage, vapour pressure, etc.),
time point indicators (year and month), and coordinates of locations (latitude
and longitude). The trained Random Forest model has remarkable performance;
it is able to capture more than 90% of the total variation of global surface
solar radiation. Among the predictors, we find that maximum temperature
and month indicator provide the most explanatory power in predicting solar
radiation. The trained model is then applied to interpolate solar radiation values
for unsampled locations and thereby generating a global dataset with complete
land coverage.
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Based on the output dataset, we further analyze solar radiation trends on a
global and a continental level. We also report seasonal patterns of historical
radiation evolution.

1.4.2 Paper 2: High-sensitivity Earth System Models most Consistent
with Observations

Paper 2 estimates Earth’s Transient Climate Response (TCR), defined as the
global mean surface air temperature change due to a doubling of atmospheric
CO2, at the time of doubling. TCR is a critical parameter for inetegrated
assessment models that are extensively applied by policy makers to evaluate
consequences of alternative emission scenarios and inform climate change policy.

Using the solar radiation dataset built from the first paper and other
additional climate datasets, we estimated TCRs of 22 global climate models by
employing an empirical framework that relates temperature to solar radiation
and CO2 in a cointegrating equilibrium relationship. The empirical TCRs
provides a much narrower confidence interval (2.3 ± 0.4◦C) as compared to
reported TCR by CMIP6 (Coupled Model Intercomparison Project). Using the
narrowed distribution of TCR, we calculated the remaining carbon budgets. We
find that constrained by a 1.5◦C warming target that aligned with the Paris
agreement goals, we have around nine years of current CO2 emissions.

1.4.3 Paper 3: Heterogeneity in Climate Change Effects on Soybean
Yields

Paper 3 investigates the effects of climate change on soybean yield growth.
Based on a panel data analysis approach, we examine how soybean yields
response to climate change from both a global and regional level. Under a global
homogeneous assumption, we find a non-linear relationship between growing
season average temperature and yield growth. In particular, global yield growth
minimizes at 24.9◦C, meaning that warming damages are exacerbating until the
optimum and, above that, a continual warming is less detrimental probably due
to adaption of local crop variety to heat for countries that have been persistently
hot. However, our further analyses show evidence that the global response
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function is not representative for all individual regions. By including regional
dummies to our empirical model, we find significant heterogeneity among regions.
For example, for mid- and high-latitude developed countries, temperature is not
a significant factor to crop yields growth. Moreover, Southeast Asia shows a
strikingly different response curve from the global one. The region indicates
a parabola that maximizes at 24.34◦C, suggesting northern, cooler countries
within the region, such as China, South Korea, and Japan may be beneficiaries
of a warmer climate, whereas hot countries situated at the southern fringes will
be affected adversely.

Compared to the large regional heterogeneity of temperature responses, the
effects of precipitation are more consistent across regions. Despite of the fact
that there exist various optimal precipitation levels for various regions, in general,
regions will benefit from more precipitation before respective optimums and be
harmed by extra precipitation above optimums. We also show the dominant
effects of temperature on soybean yields as compared to precipitation.

1.4.4 Paper 4: The Relative Role of Temperature and Precipitation in
Global Economic Growth

Paper 4 follows the similar logic of paper 3 but is focused on examining
historical impacts of climate change on aggregate economic growth. Based on a
panel of 169 countries over the period 1961-2019, we summarized climate changes
that have occurred and estimated realized economic impacts of theses changes.
We find pervasive warming trends for countries worldwide and a majority of
them shows a rise of temperature at accelerating rates. We also find that cooler
countries exhibit larger magnitude of a rise of temperature as well as larger
variability than warmer countries. On the other hand, precipitation shows no
evident long-term trends and precipitation varies largely across the years for
countries with a large amount of rainfall.

In addition to the conventional country-year fixed effects model (FE), we
applied an innovative approach—interactive fixed effects model (IE), which
allows heterogeneity to enter the model in a multiplicative way. We find that the
two models show highly consistent response surfaces, both indicating concave
surfaces to changes in temperature and precipitation; nonetheless, the FE model
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has more drastic responses to extreme climate conditions. For instance, for
Sub-Saharan Africa, where climate has been extremely hot and dry, the effects of
historical climate change are reported as reductions of GDP growth by 0.73 and
0.58 percentage points for the FE and IE model, respectively. On a global level,
the average historical impacts of climate change on GDP growth are reported
as −0.30 and −0.19 percentage points by the FE and IE model, respectively.

Summary of Author Contributions in Papers

The first paper is a collaborative work with Thomas Leirvik and Martin
Wild. T.L. and I initiated and conceived the research. T.L. and M.W. provided
invaluable comments and guidance as I implemented the empirical calculation.
All of us contributed in writing the paper. I am the first and corresponding
author of this paper.

In the second paper, I collaborated with Thomas Leirvik, Trude Storelvmo,
Kari Alterskjær, Peter C.B. Phillips, and Christopher J. Smith. My contribution
to the paper is that I performed data integration and technical analysis relevant
to TCR estimation. I am the first and corresponding author of this paper.

The third paper is a single-author paper initiated, implemented, and
written by me. In the last paper, I collaborated with Thomas Leirvik and
Hande Karabiyik. T.L. and H.K. conceived and initiated the research. H.K.
implemented the statistical tests and empirical estimation of the response
function. I calculated historical impacts of climate change based on the estimated
response function. T.L. provided significant insights in improving the model.
H.K. and I wrote the paper with input from T.L. Since this project is still in
progress, we have not decided yet the order of contribution.
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Abstract

Downward surface solar radiation (SSR) is a crucial component of the Global
Energy Balance, affecting temperature and the hydrological cycle profoundly, and
it provides crucial information about climate change. Many studies have examined
SSR trends, however they are often concentrated on specific regions due to the
limited spatial coverage of ground based observation stations. To overcome the
spatial limitation, this study performs a spatial interpolation based on a machine
learning method, Random Forest, to interpolate monthly SSR using a number of
climatic variables (e.g., various temperature indices, cloud coverage), time point
indicators (the year and month of an SSR record), and coordinates of locations
(latitude and longitude of the SSR record).

The predictors that provide the largest explanatory power for monthly SSR
are monthly maximum temperature and month of the interpolation (representative
for the TOA insolation conditions). The output of the spatial interpolation is a
0.5◦ × 0.5◦ monthly gridded dataset with complete land coverage over the period
1961-2019, which is used afterwards in a comprehensive trend analysis for i) each
continent separately, and ii) the entire globe.

1Paper submitted to Journal of Climate. Revision & Resubmit.
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2. Global Trends in Downward Surface Solar Radiation

The continental level analysis reveals the major contributors for the global
dimming and brightening. In particular, the global dimming is primarily dominated
by negative trends in Asia and North America; whereas Europe and Africa, as a
matter of fact, have shown significant increases in SSR over the dimming period
1961-1984. Over the brightening period 1985-2019, Europe and Oceania are the
largest two contributors.

2.1 Introduction

Surface solar radiation is a crucial climate variable and a main constitute of
the Global Energy Balance, playing an important role in temperature change
and the hydrological cycle (e.g., Budyko, 1969; Pfeifroth et al., 2018; Obryk
et al., 2018). The positive trend in downward surface solar radiation since the
1980s in combination with increasing greenhouse gases lead to an intensification
of the land-based hydrological cycle (Wild et al., 2008; Wild and Liepert, 2010;
Wild, 2016). Moreover, it has profound impacts on various aspects of society
and economy, especially on agriculture. For example, crop yields could be
significantly influenced not only by increases or decreases of solar radiation
through enhancing or weakening of photosynthesis, a so-called “insolation effect”,
but also indirectly by the resulting temperature change from solar radiation
variations (Greenwald et al., 2006; Roderick and Farquhar, 2012; Gupta et al.,
2017; Proctor et al., 2018).

To analyze the drivers and economic impact of climate change, it is of
critical importance to have an understanding of surface solar radiation (hereafter
referred to as SSR), in terms of its trends, levels, and variations. Ground-based
observations are believed to be the most reliable long-term data source for solar
radiation, and have been used in many climate studies to monitor its evolution
(e.g., Wild et al., 2005; Sanchez-Lorenzo et al., 2015, 2017; Pfeifroth et al., 2018).
SSR is a key driver of climate, and observations have been applied to study its
effect on temperature (e.g. Storelvmo et al., 2016; Phillips et al., 2020. Despite
their reliability as compared to other sources, one of the main drawbacks of
ground-based measurements is their limited temporal and spatial coverage. For a
start, extensive SSR observations have a relatively short history of only multiple
decades; they were not widely available until the 1960s and have a time lag
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effect due to the time-consuming process of data collecting and homogenizing.
Moreover, continuity of observed time series is often interrupted by missing
values in observational stations due to device failure and operational malfunction.
As for spatial coverage, climate stations tend to be concentrated in developed
regions which can provide the financial and technical support to maintain the
devices. They also tend to cluster on flat terrain rather than mountainous
areas where it could be hard to establish stations in the first place. For areas
with sparse station coverage, the available observations from the stations might
not be sufficient to represent the overall trend over the areas. Therefore it is
essential to extrapolate the available observations, in the dimension of both
space and time, thereby enabling a more comprehensive overview, which better
represents all areas with continuous time series. The method that aims to fill
gaps in spatial datasets is called spatial interpolation. Conventional spatial
interpolation methods such as Inverse Distance Weighting, Kriging, splines, etc.,
have seen extensive applications in various climate processes (e.g., Collins, 1995;
Erxleben et al., 2002; Scudiero et al., 2016). This study contributes to, and
expands, the existing literature by applying a novel machine learning method
to interpolate a station observation dataset of SSR.

Machine learning methods have seen an increasing number of applications
in spatial interpolation and shown effectiveness in reproducing and predicting
climate variables with high accuracy and low uncertainty (see e.g., Jiang, 2008;
Sun et al., 2016; Zhou et al., 2017). Qin et al. (2019) compared the performance
of four physically deterministic models with eight machine learning models in
an application of reproducing data of a certain type of radiation and reported
outperformance of the machine learning methods. Existing literature are mostly
focused on simulating regional patterns of climate variables, for example, Zhou
et al. focus on the US whereas Qin et al. focus on China. In this study
we aim for a comprehensive study of SSR on a global scale; therefore, it is
essential that the selected method should be able to cope with a large quantity of
data. Among a wide range of machine learning approaches, Random Forest has
exceptional advantages in handling a large number of explanatory variables and
in its capacity of processing large datasets due to its computational efficiency
(Firth et al., 2005; Myoung et al., 2020). The study of Leirvik and Yuan

31



2. Global Trends in Downward Surface Solar Radiation

(2020) compared the performance of Random Forest with those of seven other
conventional (deterministic) spatial interpolation methods (e.g., linear regression
models, Kriging, Regression Kriging) in an application of predicting global SSR,
and showed a profound advantage of Random Forest in prediction accuracy and
performance stability. In their application they also investigated the potential
of other machine learning models (i.e., support vector machine and gradient
boosting machine), but they found it is hard for other machine learning methods
to converge in the specific application given the global scale of the input dataset
and the large number of explanatory variables. Due to the superior performance
of the Random Forest method in the settings described above, which is similar
to the setting in this paper, we choose to apply the Random Forest model to
unsampled areas, thereby constructing a global, and more complete, dataset
than has been constructed before.

In this paper, we apply Random Forest to a global SSR dataset, the dataset
of the Global Energy Balance Archive (GEBA). A total of 15 variables are
selected as predictors for SSR, including 9 climatic variables (various temperature
indices, cloud cover, frost days, etc.), geographical coordinates (i.e., longitude
and latitude), altitude, urbanization and temporal indicators that indicate the
time point (year and month) of the observed/simulated SSR record. The model
is first trained on available observations in the dataset (with global average R
squared and mean absolute error being 0.91 and 11.86 Wm−2, respectively),
and then the model is applied to interpolate values at unsampled locations. The
result is a 0.5◦ × 0.5◦ monthly gridded dataset, conforming with the resolution
and time step of the input CRU dataset. The constructed dataset provides
SSR estimations with complete global land coverage and temporal coverage
of 59 years (1961-2019). Based on this dataset, remote land areas, such as
Africa, Siberia, etc., that were barely investigated before, are made accessible
for investigation of their long-term trends.

Trends could vary, or even reverse, during a multidecadal time period, making
it highly important to detect potential breakpoints over the whole period. In
fact, not only are the long-term trends reaching far back in the past of interest,
it is also of critical importance to identify the most recent sustainable trends
up until now. Particularly, global SSR experiences a widespread reduction (on
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the order of 3− 9 Wm−2 per decade) from the 1950s to the 1980s and followed
by an increase (on the order of 1− 4 Wm−2 per decade), which are referred to
as “global dimming” and “global brightening”, respectively (Wild et al., 2005;
Wild, 2009; Gilgen et al., 2009; Wild, 2012; Pfeifroth et al., 2018). Aggregated
series over a region reveal the overall inter-annual variation and trends, but
sub-regional trends are neutralized, or masked, by the aggregation if they are of
opposite sign, which is often the case in many continents. Therefore, the spatial
distribution is investigated for each continent in this study, and the results show
significant spatial diversity.

The paper is organized as follows: section 2 describes the datasets and
methods used in the spatial interpolation; model performance and trend analyses
based on the constructed dataset are discussed in section 3; section 4 is a
discussion of the results found in the paper.

2.2 Datasets and Method

2.2.1 Method

Random Forest (RF) is a decision tree technique for regression and
classification (Breiman, 2001). In contrast to conventional decision tree methods,
Random Forest constructs a forest of decision trees that operates as a predicting
ensemble whose prediction accuracy is higher than that of any individual tree.
Randomness in the RF is the distinctive characteristic that makes it one of the
most powerful and widely-used machine learning methods in recent applications
(Sun et al., 2016; Zhou et al., 2017; Xu et al., 2018).

There are mainly two sources of this randomness. Firstly, the RF uses
bootstrap to generate training sets for each decision tree which allows for
replacement. The process is often known as bagging; it helps to improve the
performance stability by reducing variance and avoiding over-fitting in the
algorithm. Secondly, it incorporates feature randomness in that each tree in the
forest corresponds to only a random subset of independent variables. This adds
more diversity in the trees, resulting in a higher utilization for various regressors
in parallel, rather than splitting at the most separation among observations
sequentially in one decision tree. The parameters that control the two types
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of randomness are the number of bootstraps (i.e., the number of independent
samples used to train the model) and the degree of feature randomness (i.e., the
number of candidate independent variables to split at in each node). Through a
parameter tuning process the number of bootstraps is set to 700 and the degree
of feature randomness is set to 8 (see Supporting Information (SI) A.3.1 for
details).

A range of variables are used as predictors for SSR, including climatic
variables that are closely related to the variation of SSR, geographical
characteristics of locations, together with temporal stamps of the records. Table
2.1 summarizes the symbols and detailed definition of the predictors.

Table 2.1 Predictors summary

Variable Category Symbol Definition

Climatic
Variables

cld cloud cover as percentage
dtr diurnal temperature range in ◦C
frs number of days with ground frost
pre monthly total precipitation data in mm/month
tmn minimum temperature in ◦C
tmp mean temperature in ◦C
tmx maximum temperature in ◦C
vap vapour pressure in hPa
wet number of rainy days in a month

Geographical
Variables

lat latitude of the location
lon longitude of the location
alt terrain altitude in m
urban 1 if urban, 0 if rural

Temporal
Variables

year year of the observation/estimation
mon month of the observation/estimation

Three error metrics are calculated for model evaluation: Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE), and R squared (R2). They
are given by the following equations:
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MAE = 1
n

n∑
i=1
|ẑi − zi|

RMSE =
√√√√1
n

n∑
i=1

(ẑi − zi)2

R2 = 1−
∑n
i=1(ẑi − zi)2∑n
i=1(zi − z̄i)2

(2.1)

where n is the number of predictions, ẑi is the predicted value of station
i, and zi is the observed value of station i. No percentage error measure is
used in the paper because it could be biased toward very large values by small
observation values close to zero, which are common in winter.

2.2.2 Datasets

Ground-based all-sky SSR observations were obtained from the Global Energy
Balance Archive (GEBA, Wild et al. (2017)). The GEBA dataset contains
monthly SSR values from around 1500 observation stations scattered on all
continents except for Antarctica. Table 2.2 provides a summary of the number
of stations and monthly observations in each station. Europe accounts for more
than one-third of the global stations, making it the most extensively covered
continent (refer to SI Figure A.1 for a global station distribution map). The
dataset has an unparalleled temporal coverage, which starts from the early 1950s
until 2013. This dataset has been previously examined for temporal homogeneity
by Sanchez-Lorenzo et al. (2013) and widely used in the literature since the
1990s (see e.g., Ohmura and Gilgen (1993); Arking (1996); Nabat et al. (2014);
Wang et al. (2014); Cherian et al. (2014); He et al. (2018)).

The climatic variables as predictors for SSR are available from the Climate
Research Unit Time-series data version 4.04 (CRU-TS v.4.04, Harris et al.
(2020)). The CRU dataset provides high resolution (0.5◦ × 0.5◦) gridded data
of monthly observations for a range of meteorological variables over the period
1901-2019 (Table 2.1). A 0.5◦×0.5◦ global altitude map is available from NESDIS
(1995). The GRUMP dataset (V1) (CIESIN, 2004) provides a 30 arc-second
urban extents grid based on 1995 data for all land areas except Antarctica and
parts of the Greenland ice sheet. Each grid is classified as either rural or urban.
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Table 2.2 Number of stations and observations in each continent

Continent Abbr.a # of stationsb # of obs.c

South America SA 134 13,362
Oceania OC 76 13,549
Africa AF 234 33,238
North America NrA 214 37,427
Asia AS 312 98,912
Europe EU 516 131,734
Total 1486 328,222

a Abbreviation for continent names.
b Number of stations in the continent.
c Number of monthly observations in the continent.

In order to merge the GRUMP with the CRU data, each 0.5◦ × 0.5◦ grid cell
was obtained as the mean of the 3600 GRUMP values contained in the cell.

The training dataset is obtained by co-locating the GEBA stations with
corresponding gridboxes in the gridded datasets, such that for each station in
the GEBA a range of predictor variables as well as the SSR values are matched
by month. Limited by the data availability in the GEBA dataset, the training
dataset covers the period from 1961 until 2013. For interpolation, all three
gridded datasets are merged and provide the input variables for the trained RF
model. The interpolation data covers the period from 1961-2019, with the end
year given by the extension of the CRU dataset.

2.3 Results

2.3.1 Estimation and Evaluation

A continent-by-continent 10-fold cross validation (CV) was implemented
on the training dataset, such that each continent’s distinctive characteristics is
sufficiently accounted for. Otherwise, if a global universal model is trained, the
trained model would be biased towards the SSR dynamics of the continent with
the most concentrated observations, i.e., Europe. 10-fold CV means to partition
the training dataset into 10 equal size subsamples. Of the 10 subsamples, a
single subsample is retained as the validation data for testing the model, and
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the remaining 9 subsamples are used as the data to train the model. The
cross-validation is repeated 10 times, such that each of the 10 subsamples is used
once as validation data. Combining together simulations for all 10 validation
subsets generates a complete out-of-sample simulation (i.e., the data used for
validation is not used in training) for each observation.

Table 2.3 shows the error measures of monthly anomalies and raw values
(or unprocessed values) of SSR for each continent. In order to obtain monthly
anomalies, for each station raw monthly SSR values are deseasonalized by
subtracting the 1961-2013 mean for the corresponding month, or the mean over
the sub-period during which the station existed/exists. Stations exiting less
than 15 years are excluded to alleviate bias brought from stations that only
existed briefly in history. The R2 of raw values range from the lowest 0.79 (South
America) to the highest 0.97 (North America and Europe), with a global average
of 0.91. This indicates that our RF model captures approximately 91% of the
global SSR variation, primarily induced by the seasonal cycles. If removing
seasonality from SSR, the R2 calculated based on monthly anomalies remain to
be reasonably high for Oceania, North America, Asia, and Europe, indicating the
model’s ability in capturing interannual variabilities of these continents; generally
more than 35% of the interannual variability and nearly 50% for Europe. On the
other hand, the model is not as effective in capturing interannual variabilities of
SSR in South America and Africa, with R2 of anomalies being only 0.09 and
0.11, respectively. This means that the large values of R2 of raw values are
dominated by seasonality in the two continents. The small values of R2 based on
monthly anomalies could be possibly due to either the limitation of the model’s
simulation capacity or the weaker interannual variability in the continents.

RF is a data-intensive machine learning approach which learns model features
solely based on input data and does not rely on any presumptions about model
structure or specification; the performance of which is highly dependent on the
input training data, from perspectives of both quality and quantity. Note that
the RF model was trained for per continent, that is, data characteristics in
each continent affects its performance. Specifically, possible reasons that lead
to the lower RF performance in South America and Africa include, but are not
limited to, the relatively smaller amount of data available and/or the lack of
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homogeneity in the continents’ data. The scatter plots of simulations against
observations (Figure 2.1) provide further graphical confirmation of this. The
continents with better performance show highly clustered points alongside the
regression line, in contrast to South America and Africa (Figure 2.1AB), which
show more scattered points away from the regression line.

Table 2.3 Error measures for RF simulations

Anomalies Raw

Continent MAE.ano RMSE.ano R.Squared.ano R.Squared.raw

South America 17.97 24.40 0.09 0.79
Africa 13.62 18.42 0.11 0.87
Oceania 10.03 14.33 0.37 0.96
North America 9.29 13.33 0.39 0.97
Asia 11.84 16.67 0.39 0.92
Europe 8.42 12.95 0.49 0.97

Global Avg. 11.86 16.68 0.30 0.91
Monthly anomalies are calculated as the deviation from the 1961-2013 mean.

From the permutation variable importance analysis (Figure 2.2), we see that
the most important variable in determining monthly SSR is not surprisingly
month. The strong influence of the month comes from the fact that SSR has a
strong seasonal cycle, at least outside the tropics, so for a prediction of SSR
on a monthly basis it is essential to know which month/time of the year it is.
On the other hand, the physical process behind this month variable would then
be the varying incoming solar radiation at the Top of Atmosphere (TOA) over
the course of a year (determined by astronomical factors). So one could see
the month also as an indication of the TOA insolation at the location to be
interpolated. Latitude is the third most influential indicator; it represents the
spatial distribution of SSR, more specifically, SSR varies largely as latitude
changes, while longitude (the 9th important indicator) makes little contribution
in estimating SSR. However, while the above quantities govern the seasonal
and latitudinal distribution of SSR, they do not influence the estimation of
the SSR trends. These are determined by the climatic variables, among which
temperature indices (i.e., tmx, tmp, dtr, tmn) and cloud coverage (cld) provide
the most explanatory power. Particularly, monthly maximum temperature (tmx)
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2.3. Results

Fig. 2.1 Simulated against observed monthly anomalies. The red line is obtained by regressing
simulated SSR on observed SSR, together with the corresponding equation and R squared.
R2 is the coefficient of determination of the regression. See SI Figure A.4 for a scatter plot
counterpart of SSR raw values.

is the second most important variable, only second to month. Monthly average
temperature and diurnal temperature range are also important indicators for
SSR trends.

2.3.2 Interpolated SSR Dataset Trend Analysis

The 10-fold cross validation (CV) shows the RF model’s capability in out-
of-sample estimation of SSR. In order to make use of the SSR information in
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Fig. 2.2 Random Forest permutation variable importance. All importance values are scaled
by the largest importance. The variables are classified into two groups: the climate variables
that govern the SSR trends (in blue); and the static variables (e.g., latitude) and month (a
proxy of TOA) that determine the mean climatologies of SSR and have no influence on the
trends (in coral).

the GEBA dataset exhaustively, all available SSR observations (instead of 9
out of 10 subsamples used in the 10-fold CV) are used to train the RF model
per continent. The trained RF models are then applied to the interpolation
data. The result of the interpolation is a 0.5 by 0.5 degree gridded monthly
SSR dataset over the period 1961-2019 with complete coverage over global land
areas. The resolution and the time span is determined by the input climatic
variables from the CRU datasest. Note that the GEBA (training) dataset has
substantial amount of observations only until 2013. By extending the prediction
period up until 2019, we assume the prediction relationship between SSR and
the predictors remain the same for the history and onwards.

A station in the GEBA dataset—station 1188—is given as an example to
illustrate the procedure. The station is located at Locarno-Monti (46.17N,
8.78E), Switzerland, and is one of the longest-standing stations in Europe.
We started with the observations (shown by the red lines in Figure 2.3) from
the GEBA dataset. A 10-fold CV was implemented on Europe and thereby
generating out-of-sample estimations corresponding to the observations. The
estimation series are shown by the black lines. Then all available data in Europe
were used to train a RF model which was later used in interpolation for each
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gridbox in Europe. By extracting the values in the gridbox in which station
1188 is located, interpolation series are obtained (shown by the blue lines). We
see that the interpolation series approximate the observations more precisely
than the simulations, this is because the interpolation is an in-sample forecast
which uses 10% more data than the simulations which are based on the 10-fold
CV. By comparing the blue lines with the red lines, we see that the interpolation
series are able to capture the observed SSR variation with reasonable accuracy,
indicating the robustness of the RF model and the reliability of the generated
interpolation series.

Fig. 2.3 Monthly anomalies for station 1188, Locarno-Monti, Switzerland. Monthly SSR
anomaly series (dashed lines) are shown for observations (the red dashed line), simulations (the
black dashed line), and interpolations (the blue dashed line), together with their corresponding
smoothed series (solid lines) using 12-month Gaussian kernel. The series are expressed as
anomalies from the 1961-2019 mean.

Trend Overview over the Entire Period

Annual anomalies for global land areas and for each continent are shown in
Figure 2.4 and 2.5. The global average SSR exhibits rapid dimming trends from
1961 until the mid 1980s, followed by a moderate reversal. A similar reversal
is observed in Oceania, North America, and South America, in contrast to the
relatively continuous positive trends in Europe and Africa. Asia had a drastic
dimming period from 1961 until early 1990s and the continental average SSR
has been stable since then.
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Fig. 2.4 Annual anomalies over the period 1961-2019, part I. The raw series is shown by the
green dashed line, and the 5-year moving average (MA) series is shown by the coral solid line.
When the number of years is less than 5, a partial moving average is used for the available years
up until the time point. The anomaly series are based on the average of the period 1961-2019.
Subplots show results respectively for: A-World, B-Europe, C-Africa, D-Asia. Refer to SI
Figure A.5—Figure A.8 for the continents’ monthly anomaly figures.

Although the global trend reversal takes place at the mid 1980s, each
continent shows different breakpoints, making it of interest to detect structural
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Fig. 2.5 Annual average anomalies over the period 1961-2019, part II. Refer to Figure 2.4
for the series legends. Subplots show results respectively for: E-Oceania, F-North America,
G-South America. Refer to SI Figure A.9—Figure A.11 for the continents’ monthly anomaly
figures.

change for each continent separately. Breakpoints were detected based on moving
sums (MOSUMS) of recursive and least-squares residuals for annual mean values
which, despite of losing monthly temporal details, enables an investigation of
interannual variation and time series segments (Forkel et al., 2013). Time series
segment and structural change detection is widely used in climate research (e.g.,
Cró and Martins, 2017; Adedoyin et al., 2020; Vu et al., 2019). Readers are
referred to Holben (1986) and Bai and Perron (1998, 2003) for the detailed
implementation of the algorithm.

Any breakpoints with the Mann-Kendall trend test significant at 5% are
identified and trends over the separated segments are reported in Table 2.4.
Asia and North America, with decadal linear trends being −3.07 and −1.06
Wm−2/dec, respectively, are the two largest contributors to the global dimming;

43



2. Global Trends in Downward Surface Solar Radiation

whereas the global brightening is mostly attributed to the increasing trends
in Africa, Europe, and Oceania. Overall, with the exception of the stagnated
trends in Africa for the past decade, continents show either a trend transition
from negative to neutral/positive (Asia, North America, and Oceania) or a
trend strengthening from less positive to more positive (Europe, and South
America). It is worth noting that except for Africa that has two breakpoints
(1973 and 2010), only one breakpoint is detected for other continents. In what
follows, this paper will investigate more thoroughly on periods after the latest
detected breakpoints. However, since the lastest breakpoint (2010) in Africa is
rather recent and the period after that might not be long enough to consider its
long-term trends, we will focus on the period after 1973 when Africa is referred
to.

Given the large variability of SSR, the linear trends could be affected
significantly by the different choices of start and end time. To avoid this
bias, a running-trend estimation was implemented on the annual global average
series for all possible segments equal or longer than 10 years. The global decadal
trend raster (Figure 2.6) corroborates the annual anomaly series (Figure 2.4A).
The most negative trends are found between 1965 and 1970 (referring to the start
points), in contrast to the most positive trends over 1990-2000. After entering
into the 21st century, the trends fade away. The continental running-trend
rasters (Figure 2.7) show that Europe, Africa, and South America are dominated
by positive trends, in contrary to Asia which is dominated by negative trends.
The largest variation occurs in Oceania, where the trends span from the most
negative −5 Wm−2/dec in the mid 1960s to the most positive 5 Wm−2/dec

around the mid 1990s and the early 2010s.

The results shed light on how SSR trends evolve over time; nevertheless,
because the data are aggregated over areas, either globally or continentally,
opposite trends cancel each other out when calculating the areal averages,
resulting in less distinct trends overall. Therefore also the regional distribution
of trends as resolved by the 0.5 by 0.5 degree has been investigated. In what
follows, interannual variabilities of annual and seasonal SSR for the globe
and each continent are discussed based on their latest detected breakpoints
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Table 2.4 Decadal linear trends for annual average SSR. After significant breakpoints are
detected, the linear trend of the continental average time series is estimated by least-squares for
each segment. The first row for each continent or the world shows the trend over the whole
period; sub-periods split by the breakpoints are shown in the following rows. For instance,
the global average trend shows a negative slope of −0.15 Wm−2/dec over 1961-2019 and one
breakpoint at 1984 is significantly detected. Split by 1984, a negative trend of −1.54 Wm−2/dec
is reported over the first segment and a positive trend of +0.49 Wm−2/dec is reported over the
latter segment.

Continent Segment Slopea Slope std t value Pval Pval.symbolb

World
1961-2019 -0.150 0.069 -2.185 0.033 *
1961-1984 -1.535 0.117 -13.077 0.000 ***
1985-2019 0.486 0.071 6.892 0.000 ***

Europe
1961-2019 0.500c 0.113 4.433 0.000 ***
1961-1976 0.921 0.701 1.313 0.210
1977-2019 1.010 0.161 6.258 0.000 ***

Africa

1961-2019 0.760 0.072 10.520 0.000 ***
1961-1973 1.196 0.620 1.927 0.080 .
1974-2010 1.319 0.122 10.850 0.000 ***
2011-2019 -0.564 0.679 -0.831 0.434

Asia
1961-2019 -1.278 0.123 -10.406 0.000 ***
1961-1993 -3.074 0.112 -27.476 0.000 ***
1994-2019 -0.032 0.132 -0.244 0.810

Oceania
1961-2019 0.638 0.244 2.614 0.011 *
1961-1972 -0.573 2.382 -0.241 0.815
1973-2019 1.484 0.311 4.778 0.000 ***

North America
1961-2019 0.015 0.072 0.202 0.840
1961-1986 -1.064 0.188 -5.667 0.000 ***
1987-2019 0.015 0.146 0.103 0.918

South America
1961-2019 0.193 0.076 2.550 0.013 *
1961-1970 0.284 0.611 0.466 0.654
1971-2019 0.547 0.072 7.568 0.000 ***

a Slope unit: Wm−2 per decade.
b Significance symbol representation:
*** indicates p < 0.001, ** for p < 0.01, * for p ≤ 0.05, . for p ≤ 0.1, and no symbol if p > 0.1.
c The linear trend is smaller than in both segments due to the large jump in 1976 (refer to panel B in
Figure 2.4).
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Fig. 2.6 Decadal trend raster for the global. The trends are estimated on global average SSR.
The y-axis denotes the start years, and the x-axis denotes the end years.

respectively. Furthermore, the spatial distribution of the trends is visualized in
annual and seasonal maps.

Latest sustainable Trend

Based on the structural breaks in trends, the latest sustainable trends, i.e.,
the period after the latest detected breakpoints, over the globe and each continent
are inspected in this section. Their spatial and seasonal patterns are presented
as trend maps for each season and the entire year. Seasons are defined as follows:
winter (DJF: December-February), spring (MAM: March-May), summer (JJA:
June-August), and autumn (SON: September-November). Seasonal trends after
the detected breakpoints for the globe and each continent are reported in Table
2.5, which will be elaborated in the sections in what follows.
World

The global brightening starts from 1984 and continues onwards, at a moderate
rate of +0.49 Wm−2/dec, only about one-third of the dimming rate before (−1.54
Wm−2/dec). Although the global average SSR has shown a positive trend since
1985, on a regional level, significant dimming is observed in certain regions, in
particular eastern US, South Asia, and the Pacific island countries (Figure 2.8A).
Generally, the majority of the globe has shown positive trends since 1985. Two
centroids of the most positive trends globally are observed in Tibet, China, and
Riyadh, Saudi Arabia, with decadal trends between 5 to 6 Wm−2 per decade.
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2.3. Results

Fig. 2.7 Decadal trend rasters for continents.

The seasonal maps show that the northern hemisphere spring and summer
show the largest trend variability (Figure 2.8C-D), that is, during which both the
strongest positive and negative trends take place. On the other hand, northern
hemispheric winter shows the modest trends, both positive and negative trends
are diminished as expected due to the lower absolute SSR values in northern
hemispheric winter in the extratropics. Note that the decadal trends are squeezed
into a range of −7 ∼ 7 Wm−2 per decade, namely, any extreme values falling
out of the range are assigned as −7 if a value is smaller than −7 , and 7 if a value
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Table 2.5 Decadal linear trends for seasonal average SSR over the period from the detected
breakpoints until 2019.

Continent Seasons Slopea Slope Std t value Pval Pval.symbolb

World
(1985-)

DJF 0.352 0.106 3.306 0.002 **
MAM 0.609 0.120 5.087 0.000 ***
JJA 0.468 0.115 4.071 0.000 ***
SON 0.513 0.131 3.900 0.000 ***

Europe
(1977-)

DJF -0.136 0.114 -1.192 0.240
MAM 1.318 0.333 3.956 0.000 ***
JJA 2.265 0.388 5.839 0.000 ***
SON 0.605 0.226 2.673 0.011 *

Africa
(1974-)

DJF 1.031 0.177 5.838 0.000 ***
MAM 1.218 0.151 8.086 0.000 ***
JJA 0.671 0.109 6.179 0.000 ***
SON 1.038 0.129 8.047 0.000 ***

Asia
(1994-)

DJF 0.025 0.233 0.106 0.916
MAM 0.439 0.257 1.711 0.100
JJA -0.273 0.261 -1.048 0.305
SON -0.380 0.290 -1.312 0.202

Oceania
(1973-)

DJF 1.128 0.593 1.902 0.064 .
MAM 1.470 0.612 2.402 0.020 *
JJA 1.305 0.441 2.961 0.005 **
SON 1.801 0.485 3.712 0.001 ***

North America
(1987-)

DJF 0.097 0.238 0.406 0.687
MAM -0.375 0.250 -1.500 0.144
JJA 0.055 0.251 0.220 0.828
SON 0.304 0.313 0.972 0.339

South America
(1971-)

DJF 0.370 0.094 3.948 0.000 ***
MAM 0.480 0.134 3.574 0.001 ***
JJA 0.730 0.131 5.577 0.000 ***
SON 0.582 0.093 6.276 0.000 ***

a Slope unit: Wm−2 per decade.
b Significance symbol representation: refer to Table 2.4

is larger than 72. More specifically, we observe that the positive trends over
2The 99% percentile of seasonal trends in JJA is 7.08 Wm−2 per decade, therefore, about 1%

values larger than that are forced to be 7. As we will see in the forthcoming result (Figure 2.15), the
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Tibet and Riyadh are mostly attributed to high rates in northern hemispheric
spring and summer. Also noteworthy is that the dimming trends are observed
throughout the year in India, with the most negative trends observed in summer.
For the southern hemisphere the strongest trends are observed in winter (JJA)
and spring (SON), showing widespread positive trends in general.

Fig. 2.8 Linear trends of the annual and seasonal average SSR over the globe during the
period 1985-2019 (after the breakpoint at 1984). The values are estimated for each 0.5 × 0.5
degree grid and expressed as Wm−2 per decade. Panel A shows the decadal trends for annual
average SSR. Panel B-E show the decadal trends for individual seasons. The seasons are defined
as spring (MAM, dated from Mar. to May.), summer (JJA, dated from Jun. to Aug.), autumn
(SON, dated from Sep. to Nov.), and winter (DJF, dated according to the year in which Jan.
and Feb. belong to, plus Dec. from the previous year).

largest concentration of the trends falls within [−4, 4] Wm−2, i.e., the upper and lower 1.5 standard
deviation from the mean, making it reasonable to visualize values in a truncated range of [−7, 7] Wm−2

per decade to better see the small absolute values.
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Europe
The recent long-term trends in Europe show an increase of average SSR at

the rate of 1.01 Wm−2/dec starting from 1977 and up until now (Table 2.4). At
a seasonal scale, except for winter, all the other seasons show significant positive
average trends, with summer having the strongest rate at 2.27Wm−2/dec (Table
2.5).

The spatial distribution in the annual mean shows a widespread increase
with the most positive area located in the Central European Domain (CED)
(Figure 2.9A), defined as land areas from 45◦N to 55◦N and 10◦W and 35◦E,
namely in Germany, southern Poland, Slovakia, and Ukraine. The mean annual
trend for the CED is 1.81 Wm−2/dec, which is about 0.80 Wm−2/dec higher
than the annual trend over the whole continent. In fact, a larger difference,
2.02 Wm−2/dec (4.11 and 2.09 Wm−2/dec for decadal trends over CED and
the whole EU land area, respectively), is observed if only summer (JJA) is
considered. The spatial pattern is also found by Sanchez-Lorenzo et al. (2017),
who reported higher rates of annual and seasonal SSR for the CED as compared
to the entire continent. In particular, they documented a 1.0 Wm−2 per decade
higher rate for the CED as compared to the whole continent for the annual series
over the period 1983-2010, in contrast to a larger difference of 2.2 Wm−2/dec

for the summer counterpart. It is worth noting that in summer, the trends in
the Mediterranean area are actually negative, in contrary to the general positive
trends over the rest of the continent. In particular, the Mediterranean area
shows negative trends throughout the year except spring. The negative trends
are also reported in Sanchez-Lorenzo et al. (2017). Furthermore, our study
shows no significant European-average trends in winter; however, at a regional
level, CED shows slightly negative trends, and also noteworthy are the positive
trends observed in Spain and France. The continuous increase in the winter
series in Spain is also reported by Sanchez-Lorenzo et al. (2013).
Africa

Our results show that Africa exhibits a widespread increase in SSR, especially
from the 1970s to 2000s, during which the continent average SSR increases at 1.32
Wm−2/dec (Table 2.4, Figure 2.4C). Entering into the 2010s, the brightening
trends tend to cease and no significant trends are observed. Central Africa

50



2.3. Results

Fig. 2.9 Linear trends of the annual and seasonal average SSR in Europe during the period
1977-2019.

(20◦S ∼ 20◦N) exhibits generally weaker annual mean trends (0.84 Wm−2/dec)
as compared to the areas in the two ends (Figure 2.10A). The mean decadal
trends for annual average SSR are 1.19 and 1.54 Wm−2/dec for northern and
southern Africa, respectively. This is consistent with the spatial pattern reported
by Soares et al. (2019).

On the seasonal basis, all seasons show positive average trends, with
the strongest rate found in northern hemispheric spring at 1.22 Wm−2 per
decade (Figure 2.10B-E, Table 2.5). The weakest trends are found in northern
hemispheric summer, during which equator areas show strong positive trends
while Sahara area shows neutral trends.
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Fig. 2.10 Linear trends of the annual and seasonal average SSR in Africa during the period
1974-2019.

Asia

Large spatial variability is observed in Asia. Even though extremely strong
trends exist, the opposite signs neutralize each other, resulting in insignificance
in continental average trends after 1993 (Table 2.4, Figure 2.4D). On the regional
level (Figure 2.11A), considerably negative trends are observed in India and
Southeast Asia (consisting of countries south of China and the Pacific island
countries), in contrast to the highly positive trends in the Middle East countries,
Tibet, middle east of Russia, and the areas surrounding the Sea of Japan.
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Generally, the negative trends over India and Southeast Asia persist throughout
the year, with the most negative trends observed in summer.

On the continental scale, the most negative trends take place in autumn,
with a value of −0.38Wm−2/dec, while summer shows a weaker negative trend
at −0.27Wm−2/dec (Table 2.5). Winter and spring show slightly positive
continental average trends. Nevertheless, none of the seasonal as well as the
annual continental trends are significant due to the substantial variability within
the continent. The nonsignificant trends corroborate the findings by Yang et al.
(2018), who indicated that the trend reversal, or jump, in the early 1990s in
China is exaggerated falsely because of instrument and operational changes. A
series of procedures were performed by Yang et al. to obtain a homogenized
series, and based on which, they concluded that no significant trends are found
in China over the period 1990-2016. Moreover, the interpolated dataset of
the current paper mitigates the jump reported in the original observations by
Moseid et al. (2020). This highlights that our constructed dataset functions as
an adjustment to the raw observations toward a homogeneous dataset.

On a seasonal basis, two centroids of strong positive trends are identified
in east China and middle Saudi Arabia in spring. In the southeastern China,
trends vary largely among the seasons, more specifically, significant negative
ones in autumn and winter, and substantial positive ones in spring and summer
(Figure 2.11B-E).
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Fig. 2.11 Linear trends of the annual and seasonal average SSR in Asia during the period
1994-2019.

Oceania

Caution needs to be taken for users to interpret the historic SSR trends
in Oceania prior to 1988: the original data in Australia have been artificially
detrended, as the Metservice there was afraid that the instruments were drifting.
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Therefore, the trends prior to 1988 (Figure 2.5E) might be flatter than they are
supposed to be in reality.

The latest sustainable SSR annual mean trend over Oceania is 1.48
Wm−2/dec starting from 1973, which is the strongest among all continents
(Table 2.4, Figure 2.5E). The continent shows high extent of homogeneity
(Figure 2.12). In particular, unanimous positive annual average trends are
observed in Australia, with the west coast being more positive than the east
coast. New Zealand shows a tendency of neutral trends. The seasonal maps
show highly consistent positive trends; specifically, all seasons show positive
continental average trends. The only neutral regional trends are found in
the west-south coastline in summer (DJF). On a seasonal basis, the strongest
continental average trend is found in spring (SON) at 1.80 Wm−2/dec and the
weakest continental average trend is found in summer (DJF) at 1.13 Wm−2/dec

(Table 2.5).
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Fig. 2.12 Linear trends of the annual and seasonal average SSR in Ocean during the period
1973-2019.

North America
North America has highly diverging trends; similar to Asia, both strong

positive and negative trends are observed over the period 1987-2019, resulting in
the overall neutral continental average trends (Table 2.5, Figure 2.5F). Significant
negative trends are observed in the eastern US in spring (Figure 2.13C). The
majority of the mainland US shows generally negative trends throughout the
year, except for the west-middle areas which show an increase in summer.
Canada shows a tendency of positive or neutral trends throughout the year over
most areas excluding the part bordering with Alaska in summer. Additionally,
positive trends are also observed in Greenland and Mexico. On a seasonal basis,
spring and summer show strong regional trends and winter shows the weakest
trends.
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Fig. 2.13 Linear trends of the annual and seasonal average SSR in North America during the
period 1987-2019.

South America

South America shows a significant and widespread increase in SSR after
1971 at an annual rate of 0.55 Wm−2/dec (Table 2.4, Figure 2.5G). The annual
average SSR trends are stronger in south (Figure 2.14A); especially in the
southern region beyond 30◦S, the annual continental trend of which is 0.60
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Wm−2/dec. Specifically, separated by 30◦S, the southern region and northern
region show a tendency of increase at rates 1.06 and 0.46 Wm−2 per decade,
respectively. On the seasonal scale, all seasons show significant increases, with
winter (JJA) having the strongest continental average trend at 0.73 Wm−2/dec,
and summer (DJF) showing the weakest trend at 0.37 Wm−2 per decade (Table
2.5). The spatial distribution shows high degree of consistency among seasons.

2.4 Discussion

This study interpolates a ground-based solar radiation observation dataset
and constructs a dataset with complete global land coverage at high resolution
covering nearly six decades. This enables a temporal and spatial trend analysis
at the continental and the regional level, making possible for the data scarce
continents, e.g. Africa, to obtain a comprehensive quantification of the long-term
trends. Rather than relying principally on graphic visualization, a structural
breakpoint detection algorithm based on moving sums (MOSUMS test) is applied
and provides quantitative identification of any structural changes in long-term
series. The results show that the global dimming-brightening transition takes
place around 1984, in line with existing literature based on station observations.
The two divided segments show a decrease and an increase at −1.54 Wm−2

and +0.49 Wm−2 per decade, respectively. However, it is worth noting that on
the continental level, four out of six continents, i.e., Europe, Africa, Oceania,
and South America, actually show no significant decreasing trends over the
entire period 1961-2019. In particular, they generally show a transition from
no significant trends to positive trends (Europe, Oceania, and South America),
or experience a positive trend strengthening (Africa). Therefore, it is obvious
that the global dimming is attributed to the substantial reduction of SSR in
Asia and North America, which show reduction rates at −3.07 Wm−2/dec and
−1.06 Wm−2/dec, respectively.

Over the brightening period (1985-2019), considerable spatial diversity is
observed. In particular, two positive centroids are Riyadh, Saudi Arabia and
Tibet, China; substantial decreasing trends are observed in the eastern US,
South Asia, and the Pacific Island countries. Compared to the large spatial
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Fig. 2.14 Linear trends of the annual and seasonal average SSR in South America during the
period 1971-2019.

variability in the northern hemisphere, the southern hemisphere, on the other
hand, shows a consistent widespread increase.

In order to obtain an overview of the distribution of decadal trends for each
gridbox within a continent, Figure 2.15 shows a box plot for annual trends as
well as for each seasonal trends for all gridboxes per continent. A longer box
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and a longer distance between whiskers indicate larger variability and more
heterogeneity among gridboxes in a continent. We observe that most boxes
are generally symmetric, that means the distribution is approximately normal.
However, there exist certain boxes which are asymmetric and show skewness.
For instance, the fact that the median is closer to the lower hinge shows that the
winter box in North America is right skewed. In other words, the majority of
trends for gridboxes are of small values, but the average trend of all gridboxes is
shifted toward a larger value by certain gridboxes with strong trends. The box
plots also indicate that northern hemisphere continents, i.e., Asia, North America,
and Europe, show larger variability than southern hemisphere continents, which
can be concluded from their wider ranges between upper and lower whisker.
On a seasonal basis, the largest variability generally exists in summer, and
the smallest variability exists in winter. The decadal variability for individual
seasons varies largely among the continents. Specifically, box plots for South
America, Africa, and Oceania are more truncated and more consistent among
various seasons. In other words, decadal variabilities in southern hemisphere
continents are at approximately the same level among all seasons.

The intra-annual variability is largely determined by clouds, but the longer
term (decadal) variabilities are often more governed by aerosol changes (Wild,
2016; Boers et al., 2017; Pfeifroth et al., 2018). Wild et al. (2021) reported
that the major cause of the brightening in Europe, especially in the Central
Europe Domain, is highly affected by the aerosol effects through a reduction in
anthropogenic aerosol emissions after the 1980s. Moreover, Sanchez-Lorenzo
et al. (2017) found that seasonal variability of solar radiation trends in Europe
is closely related to changes in cloud coverage. For example, the high rates
of brightening in spring are accompanied with large rates of decrease in cloud
cover; however, the strong trends in summer are less substantiated by cloud
cover changes, which, in fact, demonstrate slightly positive trends. Based on
the reported evidence, we speculate that the profound positive summer trends
in Europe could be due to the reduction of pollution aerosols in summer (Panel
EU in Figure 2.15).

This study provides an observation based dataset with complete spatial and
temporal coverage. It completes the global surface solar radiation trend analysis
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by analyzing continents which are rarely examined before. The quantification of
long-term trends is of significant importance to solar energy deployment (Müller
et al., 2014). Last but not least, this study has the potential to be used for
comparison with climate model simulations. It could serve as a benchmark
reference to the evaluation and calibration for global or regional climate
models. Other potential applications could be climate change monitoring and a
strengthened understanding of its closely related atmospheric or hydrological
processes, for instance, temperature changes, aerosol dispersion, etc.

Fig. 2.15 Box plot for seasonal and annual SSR Trends. The box plots are statistics calculated
based on trends at all individual gridboxes for each continent over the period after the last
corresponding breakpoint and up until 2019. Five values are shown for each box plot from
bottom to top: lower whisker, first quartile (Q1), median (Q2), third quartile (Q3), and upper
whisker. The upper whisker is defined as either the maximum value or, if smaller, as the third
quartile plus 1.5 times the interquartile range (IQR = Q3 − Q1); equally, the lower whisker
is defined as the the minimum value or, if larger, as the first quartile minus the 1.5 times
interquartile range. Continent panels are aligned ascendingly by the median of annual SSR
trends from the left to the right, together with the world plot at the end. Four seasons (DJF,
MAM, JJA, SON) and annual (ANN) trends are shown for each continent.
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APPENDIX A

Supporting Information for Paper 1

A.1 Dataset Description

Figure A.1 shows a map of the distribution of GEBA stations.

A.2 RF model Parameter Tuning

The tuning of the number of bootstraps is shown in Figure A.2. We choose
the parameter value, 700, that the R2 reach a high level and are relatively stable.
Likewise, the number of candidate independent variables is set to 8 (Figure A.3).

A.3 Results

A.3.1 Model Evaluation

Figure A.4 shows a scatter plot of predicted values against observed values
for each continent respectively. We see that the regression coefficients of the
regression lines are reasonably close to 1 and the intercept terms are relatively
small compared to the magnitude of average SSR levels. Although the models
perform differently among the continents (e.g., better performance in North
America and Europe, less ideal performance in South America and Africa), in
general, the models are able to capture the variation of SSR. Caution needs to
be taken when interpreting the high levels of R2. Because the R2 are calculated
based on raw values of SSR, they might have a systematic bias toward large
values caused by the strong seasonality of monthly SSR.
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A.3.2 Continental Average Trend Analysis

When calculating the global/continental average SSR of month t (R̄t), each
grid (Ri,t) is weighted by the cosine of the latitude, which is given by:

R̄t =
N∑
i=1

wiRi,t (A.1)

where

wi = cos(latitudei)∑
i cos(latitudei)

, latitudei ∈ [−π2 ,
π

2 ] (A.2)

The weighting procedure is to account for that the areas of grid boxes reduce
with increasing latitude. By using the weight of cosine of latitude, it means to
apply a weight of one for grid cells at the equator (which have 0 rad latitude,
and therefore assigned a weight of cos(0) = 1), and to apply a weight of zero for
grid cells at the poles (which have π

2 rad latitude, and a weight of cos(π2 ) = 0).
For the entire globe as well as each continent, monthly anomalies of

global/continental average SSR are calculated and visualized in figures. Also
shown are the regression lines for the entire period 1961-2019 and for the sub-
segments separated by the detected breakpoints (refer to main paper Table 4
for the breakpoints as well as the slope coefficients).

Figure A.5—Figure A.11 show the monthly anomaly figures in what follows.

World

Monthly anomalies Figure A.5

Europe

Monthly anomalies Figure A.6

Africa

Monthly anomalies Figure A.7
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Asia

Monthly anomalies Figure A.8

Oceania

Monthly anomalies Figure A.9

North America

Monthly anomalies Figure A.10

South America

Monthly anomalies Figure A.11
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List of Figures

Fig. A.1 Station distribution in the GEBA dataset

Fig. A.2 R2 changing with the number of decision trees

Fig. A.3 R2 changing with the number of randomly preselected predictor variables
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List of Figures

Fig. A.4 Simulation against observation raw values of SSR. The red line is obtained by
regressing simulated SSR on observed SSR, also shown in each panel are the corresponding
equation and R squared.
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Fig. A.5 SSR global monthly anomalies over the time period 1961-2019 (left axis, lower black
lines), and over segments divided by its breakpoint at 1984 (right axis, upper lines), namely,
the first segment over 1961-1984 (dark green lines), and the second segment over 1985-2019
(blue lines). Raw monthly anomaly series are shown by the dashed lines, expressed as anomalies
from the mean over the entire period. Additionally shown are the smoothed series by 12-month
Gaussian filter (solid lines) and the linear decadal regression lines (red solid lines). The values in
the brackets show the mean trend, lower 95% percentile, and upper 95% percentile, respectively.
Note that the right axis is shifted by +5 Wm−2 from the left axis in order to separate the two
series.
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List of Figures

Fig. A.6 SSR monthly anomalies for Europe. Legends are the same as those of Figure A.5,
though two time segments here are 1961-1976 and 1977-2019.

Fig. A.7 SSR monthly anomalies for Africa.
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Fig. A.8 SSR monthly anomalies for Asia.

Fig. A.9 SSR monthly anomalies for Oceania.
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Fig. A.10 SSR monthly anomalies for North America.

Fig. A.11 SSR monthly anomalies for South America.
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Global warming and the increasing incidence of extreme weather events are 
disrupting economies and affecting human lives over the world. This thesis 
intends to constrain the uncertainty of climate sensitivity and to investigate the 
economic impacts of climate change. This thesis consists of four papers.

The first two papers aim to address the uncertainty of the climate sensitivity. The 
authors applied an empirical estimation framework which relates temperature 
to solar radiation and CO₂ in a cointegrating equilibrium relationship. In order 
to facilitate the empirical estimation, the first paper constructs a global dataset 
of surface solar radiation with complete global land surface coverage during 
the period 1961-2019, which provides the input data for the climate sensitivity 
estimation conducted in the second paper. The second paper empirically 
estimates Transient Climate Sensitivity (TCS) for 22 global climate models and 
significantly narrows the confidence interval of TCS compared to previous 
estimates.

The last two papers use panel data analyses to examine how agriculture and 
aggregated economies are influenced by climate change, respectively. Based on 
an extensive dataset covering worldwide countries over more than five decades, 
the agricultural paper contributes to investigate the heterogeneity effects in 
various regions and in rich/poor countries. The last paper investigates the 
possibility of using a novel panel data approach—interactive fixed effects model, 
to allow for the heterogeneous effects of countries affected by the common 
global shocks.
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