
Received December 29, 2021, accepted January 24, 2022, date of publication January 31, 2022, date of current version February 7, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3148131

Optimizing the Performance of Data Warehouse
by Query Cache Mechanism
CH ANWAR UL HASSAN1, (Member, IEEE), MUHAMMAD HAMMAD1,
MUEEN UDDIN 2, (Senior Member, IEEE), JAWAID IQBAL 1, JAWAD SAHI3,
SADDAM HUSSAIN 2, AND SYED SAJID ULLAH4
1Department of Computer Science, Capital University of Science and Technology, Islamabad 44000, Pakistan
2School of Digital Science, Universiti Brunei Darussalam, Gadong, Bandar Seri Begawan BE1410, Brunei
3Department of Computer Science, COMSATS University, Islamabad 44000, Pakistan
4Department of Electrical and Computer Engineering, Villanova University, Villanova, PA 19085, USA
5Department of Information and Communication Technology, University of Agder (UiA), 4898 Grimstad, Norway

Corresponding authors: Saddam Hussain (saddamicup1993@gmail.com) and Syed Sajid Ullah (sullah1@villanova.edu)

ABSTRACT Fast access of data from Data Warehouse (DW) is a need for today’s Business Intelligence
(BI). In the era of Big Data, the cache is regarded as one of the most effective techniques to improve the
performance of accessing data. DW has been widely used by several organizations to manage data and use it
for Decision Support System (DSS). Many methods have been used to optimize the performance of fetching
data from DW. Query cache method is one of those methods that play an effective role in optimization.
The proposed work is based on a cache-based mechanism that helps DW in two aspects: the first one is
to reduce the execution time by directly accessing records from cache memory, and the second is to save
cache memory space by eliminating non-frequent data. Our target is to fill the cache memory with the most
used data. To achieve this goal aging-based Least Frequently Used (LFU) algorithm is used by considering
the size and frequency of data simultaneously. The priority and expiry age of the data in the cache memory
is managed by dealing with both the size and frequency of data. LFU sets priorities and counts the age of
data placed in cache memory. The entry with the lowest age count and priority is eliminated first from the
cache block. Ultimately, the proposed cache mechanism efficiently utilized cache memory and fills a large
performance gap between the main DW and the business user query.

INDEX TERMS Data warehouse, optimization, big data, query optimization.

I. INTRODUCTION
Nowadays, businesses are growing rapidly, and the influence
of Data Warehouses (DWs) has been increasing day by day,
being used by several organizations. High customer demands
are driving DWs to make fast business decisions based on
the latest information [1]. Dealing with a large amount of
data can slow down the performance, especially in data fetch-
ing, which will affect the user experience. Several methods
have been proposed to optimize data execution and data
processing. In [1], the author used query cache algorithms for
optimizing the process of data execution.

The amount of data is increasing day by day due to the
usage of software technology. By using technology, busi-
nesses are automated and things are being recorded to make
it easier and for fast and secure retrieval. To, later on, analyze

The associate editor coordinating the review of this manuscript and

approving it for publication was Xueqin Jiang .

this huge volume of historical data, identify the hidden pat-
terns and make successful business decisions. As we know,
the amount of data is growing day by day, so due to the large
volume of the data, the data retrieval rate is also affected.
To optimize the performance of accessing data, practitioners
apply different approaches to make it easier and faster to
access. In this regard, researchers are focused on the most
advanced query acceleration and cache memory techniques.
Researchers used the cache-based method to enhance the
data access performance of the DW. The cache method can
maintain the performance gap by considering the execution
time between the main database and the cache memory.
In order to efficiently utilize cache space, various techniques
are used. Least Frequently Used (LFU) and Least Recently
Used (LRU) are the two most commonly used algorithms
for cache replacement. In the last few decades, a variety of
combinations of LRU and LFUhave been proposed, and these
combinations are used to come up with the optimal solutions

13472 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-1919-3407
https://orcid.org/0000-0002-5045-7485
https://orcid.org/0000-0003-1523-1330
https://orcid.org/0000-0002-0414-4349


C. A. U. Hassan et al.: Optimizing Performance of Data Warehouse by Query Cache Mechanism

for cache replacement [2]. It is very hard to add all objects
into cache memory in order to make it efficient [3]. An exten-
sive study on cache management has led to a large variety
of algorithms, including both general-purpose and domain-
specific ones. To maximize the utilization of cache memory,
a competent algorithm should always keep the most popular
blocks in cache [4]. The most commonly used algorithms for
cache replacement are: Least Frequently Used (LFU), Most
Frequently Used (MFU), and Least Recently Used (LRU) [5].
Cache memory is placed with the Online Analytical Process
(OLAP) for answering client-based queries, and the results of
business users are fetched from the OLAP server and stored
in cache memory.

Several solutions for DW query cache optimization were
proposed by the researchers. However, these approaches have
some limitations, such as data skew exploiting, poor load
balancing resulting in a long response time, ad hoc query
constraints, query repositioning, textual, spatial, and tempo-
ral data characteristics, and parallel execution of complex
queries, which increases computational resource usage and
affects execution time. Along with this, some authors pro-
posed hardware-based solutions such as cloud-based environ-
ments and modern processors for optimization of DW query
processing. To overcome these limitations, in this paper,
we proposed the query cache mechanism for optimizing DW
performance. Following are some of the major contributions
of your research.

• We designed a cache mechanism intending to build an
efficient cache replacement technique.

• We used the LFU algorithm for query caching while
considering the size and frequency of the data at the
same time. The ability of the cache method to maintain
a performance gap by considering the execution time
between the main database and cache memory.

• The proposed method is cost-effective and doesn’t use
any hardware like modern processors or cloud-based
processing environments for query optimization.
We also can’t reposition and concatenate the queries to
avoid the usage of high computational resources.

• The proposed method has reduced the analytical query
response time and data entry interference caused by the
simultaneous and long-term execution of queries.

By applying the Query cache mechanism, we save the
frequently executed data with data size. Based on frequency
and size, the most frequently used tables will be given high
priority, and data with low priority will be trashed from cache
memory. In this way, cache memory will be saved from
non-frequent data and improve the analytical query response
by responding to user queries efficiently, dealing with limited
and most-demanded data.

The rest of the paper is structured as follows: Section II
presents related work. The LFU replacement strategy and
size-based replacement strategy are discussed in Section III.
The proposed cache mechanism is described in Section IV.
The DW architecture is given in section V, and the algorithm

and pseudo code of the proposed system is presented in
section VI. Finally, section VII concludes the paper.

II. RELATED WORK
Nowadays, fast retrieval of information from the DW is the
need of businesses to take timely decisions. In this regard,
many researchers have proposed different solutions to effec-
tively fetch data from OLAP servers to meet the needs of
BI users. In computing, a DW works as an enterprise DW
to analyze the huge historical data and extract useful infor-
mation from it to make a successful business decision [6].
Day by day, with the advancement of technology, practition-
ers contribute to making the DW more efficient and effec-
tive by enhancing the efficiency of OLAP using algebraic
expressions. In [7], [8], authors optimize the performance
of OLAP by proposing the data cube model and algebraic
expression to support its operations and concisely express and
evaluate complex OLAP queries against the distributed DWs,
respectively.

The amount of data is increasing day by day, with the
increasing amount of data, it is difficult to extract valuable
information or to gain insight from the data for effective
business decisions. In this regard, different strategies were
proposed by practitioners to gain insight from the data and
retrieve the information quickly by optimizing and enhancing
the ETL process and query processing [9]. Query processing
techniques are commonly used in DWs for the fast retrieval
of information. Researchers achieve query processing by
running parallel queries [10] or by employing group-by or
having-based conditional queries [11] efficiently to improve
querying efficiency and performance on large amounts of
data [12]. In [13], the authors show the query cache method
used before the ETL process to increase the performance of
DW. In this method, data is stored in cache memory after
fetching user query results from the DW. If new data is
requested to be fetched from the DW, it first checks it from the
query cache memory to reduce the response time. SQL query
acceleration is presented in [14]. Using the FPGA-based
approach, they speed up database queries using joins signif-
icantly. This work is focused on and achieved by optimizing
hardware-based filtering.

In [15], [16], the authors optimize ETL process mod-
eling by introducing a control-flow-based approach, struc-
turing ETL processes in its application to a business case
that starts from business fact identification, and using the
combination of parallelization and shared cache memory to
optimize the ETL performance of DW respectively. Average
Least Frequency Used Removal (ALFUR) is employed and
contrasted with other cache replacement techniques in [17].
The ALFUR technique outperformed as compared to LFU
and LRU. Results show that ALFUR does not performwell as
compared to LFU in a case where the hitting ratio cache size
increases. However, the size of the data with cache replace-
ment is not considered. If we have a large amount of data
that has been fetched and cached into query cache memory,
in this case, these methods cannot perform effectively, and the

VOLUME 10, 2022 13473



C. A. U. Hassan et al.: Optimizing Performance of Data Warehouse by Query Cache Mechanism

FIGURE 1. Flow chart of cache mechanism.

purpose of the query cache is evaded to use it for fast access.
This slows down the performance of cache methods [18].
Cache techniques vary from task to task. It depends upon the
different parameters to choose a suitable cache algorithm for
a specific domain.

In [19], a cache-based mechanism is implemented using
Spatial Data Stream Warehouse (STAR) to speed up query
processing by combining object-based and query-based
caching techniques. STAR, on the other hand, supports
queries made up of temporal data features, ad-hoc query
constraints, and aggregate functions. The authors of [20], [21]
transform the set of queries into a new one by satisfying
memory constraints to avoid unnecessary re-computation
in the distributed environment and use the cloud environ-
ment for distributed queries to optimize query performance
through data processing time, respectively. A hardware-based
approach is proposed to manage the growing workload with
modern processors to optimize the cache performance [22].

The author improved the data quality by using the query
cache to enhance the performance of ETL processing by
filtering the dirty, unclean data. However, the author only
checks the state of the query. If it is saved, then it is valid.
Otherwise, the query needs to be processed again, which
will increase the processing time [23]. In addition, analyze
cache behavior and implement database operators that are
efficient in the presence of skew. Nevertheless, the author
tries to solve the data skew problem by repositioning the
cache data that affects the parallel execution of complex
database queries, which leads to poor load balancing and high
response times [24].

III. PROPOSED LFU REPLACEMENT ALGORITHM
The fundamental characteristic of the LFU method is that it
keeps monitoring the number of times a block is referenced in

memory. When the cache becomes full and there is no more
space for a new object, the system will expel the object from
the cache having the lowest reference frequency and create
space for new items. For LFU, data is inserted into the cache
as shown in Figure 1.

The LFU experiences the problem of cache pollution. The
object with the extensive reference accounts is replaced even
if the cached objects are not re-accessed again. [25] By
adding an aging faction given by work [size-based cache],
we can overcome this cache pollution and save memory from
non-frequently used data. Unlike LFU, implemented aging-
based LFU adds key value to cached data based on its age.
LFU calculates the key-value of object g using Eq. 1.

k (h) = A+ F(h) (1)

where F(h) is the frequency of the requests of data (h), while
A is a dynamic aging factor. A is initialized to zero and then
updated to the key value of the last removed object. The main
disadvantage of the LFU replacement algorithm is that some
data should be in cache even without using them again for a
long time [25].

A. SIZE-BASED CACHE REPLACEMENT
The size-based cache replacement policy is one of the most
commonly used approaches for caching. When space for a
new object is needed, it replaces the new data with the one
having the largest size. When cache space is utilized and new
data for storage requires a cache, the data having the lowest
key value is eliminated [26]. When the user requests the data
g, the Greedy-Dual-Size (GDS) algorithm suggested by Cao
and Irani assigns the key-value of data g as shown in Eq.2.

k (h) = A+
C(h)
S(h)

(2)

where C(h) is the cost of retrieving data (h) from the server
into the cache; S(h) is the size of the date (h), and A is an
aging factor. A in GDS starts at zero and is updated to the key
value of the last replaced object. The key value k (h) of data
(h) is updated using the newA value since data (h) is accessed
again. Thus, the other equation variable definitions are shown
in Table 1.

TABLE 1. Equation variables definition.

13474 VOLUME 10, 2022



C. A. U. Hassan et al.: Optimizing Performance of Data Warehouse by Query Cache Mechanism

B. CONSIDERING SIZE, FREQUENCY, AND AGING
Data frequency is the number of times the data value occurs,
and data aging is said to be the process of removing the old
data from the storage in order to reuse the space for future
backups. By considering the frequency, size, and age of the
data, the following Eq. 3 applies.

k (h) = A+ F (h) ∗
C(h)
S(h)

(3)

becomes where the age of data A is multiplied with frequency
F(h) before cost and size calculation.

IV. PROPOSED CACHE MECHANISM
We have proposed a query cache mechanism that will retain
all records of the queries that are requested once from the
OLAP server by the business users. This method will keep
setting the priorities of the results fetched from the OLAP
database. Most demanded records have high priorities. This
process is done by using aging-based LFU while consid-
ering the size of the data. Moreover, this cache mecha-
nism holds two states: a valid and an invalid one. When a
query is requested by the business user, it first checks the
state of whether it is valid or invalid rather than directly
hitting the cache memory. If the requested data is already
present in cache memory, then the state is valid and the
cache method allows the query to move forward and pro-
ceed. Ultimately, this will save the execution time of cache
memory.

A. STATES OF THE CACHE MECHANISM
1) INVALID
The state of the cache is invalid when data is not present
in the cache memory. There are two reasons for data not
being available in the cache memory: One is when data
is not fetched from the main database even once, and the
second is when data is fetched once and still states that it
is invalid, which means data is eliminated from cache mem-
ory for not being accessed frequently enough to save cache
space.

2) VALID
The cache state is valid when demanded data is not eliminated
and available in the cachememory. The results will be fetched
from the cache memory and sent to the business users.

B. PROPOSED ALGORITHM
We have performed the simulation of the proposed algorithm
using the CORE i5-8265U@CPU-1.6GHz (8CPUs) 1.8GHz
system, 8192 MB of RAM, and SSD. We configured the
ETL-based DW and then obtained the data from the created
DW using the OLAP servers. When a user enters the query
for the first time, it takes time for execution, as the query
is executed on amps. The most frequent data is placed in
the cache memory to reduce the execution time next time
by directly accessing records from the cache memory, and

Algorithm 1 Algorithm Pseudo Code
Request new data (NewData);
while Check cache status do

if Cache status = Valid then
Proceed towards cache memory;
Fetch requested data;
Store C(g) Fetching cost/ Execution time of data;
Store S(g) Size of data;
Update cache memory K(g);
Update variable values A(g) ++ AND
Increment Variable F(g) ++ K(g) = A(g)+ F(g)
∗ C(g)/S(g);
Return Result Sets

else
Cache status = Invalid;
Proceed towards main database;
Fetch requested tables;
Send result sets to cache memory;
Update cache memory K(g)
Update variable values A(g) ++ AND
Increment Variable F(g) ++ K(g) = A(g)+ F(g)
∗ C(g)/S(g);
Return Result Sets

end
end

the second is to save cache memory space by eliminat-
ing non-frequent data. Our proposed algorithm considered
the size, frequency, and age of the data using the LFU
approach.

C. DATA WAREHOUSE ARCHITECTURE WITH PROPOSED
CACHE MECHANISM
In the proposed solution of cache replacement technique,
cache mechanism is placed with OLAP after ETL operations.
When Ad-hoc queries from business users are requested,
it first checks the result in cache memory as shown in
Figure 2. An ETL framework of DW comprises of three
back-to-back utilitarian steps: extraction, transformation, and
loading which is described as follows;

• Extraction.
• Transformation.
• Loading.

1) EXTRACTION
The extraction of data from source systems like Customer
Relationship Management (CRM), Enterprise Relationship
Management (ERP), and other Online Transaction Pro-
cesses (OLTP) is the collection of all the data into a single
integration point. This is the first step of DW. After collecting
all the data from the source systems, the data is saved into
a single database. Because data is collected from different
source systems, which may not be collaborative before the
DW environment, So, there is a need to clean data errors to

VOLUME 10, 2022 13475



C. A. U. Hassan et al.: Optimizing Performance of Data Warehouse by Query Cache Mechanism

FIGURE 2. Data warehouse architecture with cache mechanism.

make this data pure to use it for a single integration point.
After this step, the data is sent to the transformation step for
data cleansing [27].

2) TRANSFORMATION
Data is extracted into a single database, but it is still not
usable. Here comes the transformation of that data into a
single format. There are various potential transformations,
for example, cleansing the data, correcting misspellings,
resolving domain convicts, managing with missing ele-
ments, parsing into standard formats, and reduplicating data.
Transformation is the second and most important step of
ETL. Furthermore, the transformation of different data needs
various techniques depending upon the business need. Great
data sources will require little change, while others might
require one or more change strategies to meet the busi-
ness and specialized prerequisites of the object database or
the DW [28].

3) LOADING
The final step of the ETL process is the loading of data
into OLAP. During the load step, it is important to guar-
antee that the load is performed accurately and with as
minimum resources as possible. The loading process often
targets the database. The process varies widely. Depending
on the requirements of the organization, A few DW overwrite

the previous information with upgraded information. This
data upgrade is performed as frequently as possible on a
daily, weekly, or monthly basis. This part of DW com-
prises the entire business data aggregation. The data is
then uploaded into the OLAP system of DW to minimize
the number of rows. This layer of DW is also known
as the foundation layer. Now, this foundation layer inter-
acts with the presentation or application layer for data
representation [28].

V. RESULT AND DISCUSSIONS
In this section, we describe the comparisons of the replace-
ment techniques, cache workflow, and discuss the experimen-
tal results.

A. REPLACEMENT TECHNIQUES COMPARISON
The replacement techniques or strategies Least Frequently
Used (LFU), Least Recently Used (LRU) and Size used for
cache memory, are focused the most to overcome the load of
cache memory. The LRU, LFU, and SIZE policies are used
for a long time, these techniques are combined with other
techniques to make a new solution for the replacement of
cache data. Table 2 shows the advantages and disadvantages
of these techniques if we used them separately. To assess
the performance of our approach we compare the size-based,
aging frequency-based policies.

13476 VOLUME 10, 2022



C. A. U. Hassan et al.: Optimizing Performance of Data Warehouse by Query Cache Mechanism

FIGURE 3. Cache data and reuse in workflow.

B. CACHE DATA AND REUSE IN WORKFLOW
The cache is a computer memory used for the storage of
recently used or frequently used data, to save time when
accessing a large volume of data again or when running large
workflows. We can persist data in workflows while using
cache. In Figure.3 the workflow shows how cache memory
replaced data when new data is requested. Also shows step

TABLE 2. Cache replacement algorithms comparison.

FIGURE 4. Simulations of size based technique.

by step mechanism of cache to change the positions and ages
of data depending upon how many times users requested the
same data.

C. SIMULATION RESULTS
We performed the simulation using different sizes of data.
When the user requested a different size of the data, it affects

VOLUME 10, 2022 13477



C. A. U. Hassan et al.: Optimizing Performance of Data Warehouse by Query Cache Mechanism

FIGURE 5. Simulations of LFU technique.

FIGURE 6. Simulations of proposed cache mechanism.

the size-based cache. In Figure. 4 simulations result of the
size-based technique are shown that when the small data
(200 MB) is requested the chance of the cache miss is less
as compared to when a user requested for more amount of
the data. So, when the size of requested data increased, then
there are more chances for a cache miss. Because in size
based, data that is consumingmorememory size is eliminated
first.

In Figure.5, simulations of the LFU technique are evalu-
ated. As shown in Figure.5 User requested different size of
data from memory and the results reveal that when the size
of requested data increase, then there are more chances for a
cache hit, and the execution delay is not much affected, this
technique performs better in terms of execution as compared
to the size base technique & OLAP.

Whereas in Figure 6, the results of our proposed technique
are simulated. The user requested different sizes of data from

FIGURE 7. Simulations and performance comparison.

memory. Results show that when the size of requested data
increases, the execution time starts to decrease by considering
the size and frequency of data to calculate fetching perfor-
mance. This technique performs better as compared to the
Size and LFU techniques.

Figure 7, shows the comparisons of simulations results of
these techniques. LFU and Size perform better as compared
to the other techniques. Results show that by hybridizing
the Least Frequently Used and Size-based techniques we
reveal the better result and optimize the data accessing
performance.

VI. CONCLUSION AND FUTURE WORK
Using LFU, LRU, SIZE or any cache replacement technique
depends upon the data environment and domain. Because
of increasing data, DW implementation of cache memory is
a challenging task for OLAP. We have proposed our cache
mechanism by combining frequency, size, and aging-based
policies. By combining all of them, it will outperform as
compared to LFU, LRU, and SIZE based separately.

In the future, we are going to implement our proposed algo-
rithm in the real-life testing scenario for the OLAP database
server, and we will use materialized views and concatenation
to optimize cache performance to improve analytical query
response time in a real-time data warehousing environment.

REFERENCES
[1] W. Moudani, M. Hussein, M. Moukhtar, and F. Mora-Camino, ‘‘An intel-

ligent approach to improve the performance of a data warehouse cache
based on association rules,’’ J. Inf. Optim. Sci., vol. 33, no. 6, pp. 601–621,
Nov. 2012.

[2] A. Simitsis, P. Vassiliadis, and T. Sellis, ‘‘Optimizing ETL processes in
data warehouses,’’ inProc. 21st Int. Conf. Data Eng. (ICDE), Tokyo, Japan,
2005, pp. 564–575.

[3] D. Matani, K. Shah, and A. Mitra, ‘‘An O (1) algorithm for implementing
the LFU cache eviction scheme,’’ Oct. 2021, arXiv:2110.11602.

[4] S. Huang, Q. Wei, D. Feng, J. Chen, and C. Chen, ‘‘Improving flash-based
disk cache with lazy adaptive replacement,’’ ACM Trans. Storage, vol. 12,
no. 2, pp. 1–24, Mar. 2016.

13478 VOLUME 10, 2022



C. A. U. Hassan et al.: Optimizing Performance of Data Warehouse by Query Cache Mechanism

[5] M. S. A. Khaleel, S. E. F. Osman, and H. A. N. Sirour, ‘‘Proposed ALFUR
using intelegent agent comparing with LFU, LRU, SIZE and PCCIA cache
replacement techniques,’’ in Proc. Int. Conf. Commun., Control, Comput.
Electron. Eng. (ICCCCEE), Khartoum, Sudan, Jan. 2017, pp. 1–6.

[6] Z. Wang, K. Zeng, B. Huang, W. Chen, X. Cui, B. Wang, J. Liu,
L. Fan, D. Qu, Z. Hou, T. Guan, C. Li, and J. Zhou, ‘‘Grosbeak: A data
warehouse supporting resource-aware incremental computing,’’ in Proc.
ACM SIGMOD Int. Conf. Manage. Data, Jun. 2020, pp. 2797–2800.

[7] F. Ravat, O. Teste, R. Tournier, and G. Zurfluh, ‘‘Algebraic and graphic
languages for OLAP manipulations,’’ Int. J. Data Warehousing Mining,
vol. 4, no. 1, pp. 17–46, Jan. 2008.

[8] M. O. Akinde, M. H. Böhlen, T. Johnson, L. V. S. Lakshmanan, and
D. Srivastava, ‘‘Efficient OLAP query processing in distributed data ware-
houses,’’ Inf. Syst., vol. 28, nos. 1–2, pp. 111–135, Mar. 2003.

[9] N. Gupta and S. Jolly, ‘‘Enhancing data quality at ETL stage of data
warehousing,’’ Int. J. Data Warehousing Mining, vol. 17, no. 1, pp. 74–91,
Jan. 2021.

[10] P. Kranas, B. Kolev, O. Levchenko, E. Pacitti, P. Valduriez,
R. Jiménez-Peris, and M. Patiño-Martinez, ‘‘Parallel query processing in
a polystore,’’ Distrib. Parallel Databases, vol. 39, pp. 1–39, Feb. 2021.

[11] M. Zhang and H. Wang, ‘‘Approximate query processing for group-by
queries based on conditional generativemodels,’’ 2021, arXiv:2101.02914.

[12] W. Lehner, ‘‘Query processing in data warehouses,’’ in Encyclopedia of
Database Systems. Boston,MA,USA: Springer, Jan. 2009, pp. 2219–2317,
doi: 10.1007/978-0-387-39940-9_298.

[13] S. Chaudhuri and U. Dayal, ‘‘An overview of data warehousing and OLAP
technology,’’ ACM SIGMOD Rec., vol. 26, no. 1, pp. 65–74, Mar. 1997.

[14] A. Becher, D. Ziener, K. Meyer-Wegener, and J. Teich, ‘‘A co-design
approach for accelerated SQL query processing via FPGA-based data
filtering,’’ in Proc. Int. Conf. Field Program. Technol. (FPT), Queenstown,
New Zealand, Dec. 2015, pp. 192–195.

[15] A. Longo, S. Giacovelli, and M. A. Bochicchio, ‘‘Fact—Centered ETL: A
proposal for speeding business analytics up,’’ Proc. Technol., vol. 16, no. 1,
pp. 471–480, 2014.

[16] M. F. Masouleh, M. A. A. Kazemi, M. Alborzi, and A. T. Eshlaghy,
‘‘Optimization of ETL process in data warehouse through a combination of
parallelization and shared cache memory,’’ Eng., Technol. Appl. Sci. Res.,
vol. 6, no. 6, pp. 1241–1244, Dec. 2016.

[17] R. Mukherjee and P. Kar, ‘‘A comparative review of data warehousing ETL
tools with new trends and industry insight,’’ in Proc. IEEE 7th Int. Advance
Comput. Conf. (IACC), Jan. 2017, pp. 943–948.

[18] P. Tiwari, S. Kumar, A. C. Mishra, V. Kumar, and B. Terfa, ‘‘Improved
performance of data warehouse,’’ in Proc. Int. Conf. Inventive Commun.
Comput. Technol. (ICICCT), Mar. 2017, pp. 94–104.

[19] Z. Chen, G. Cong, and W. G. Aref, ‘‘STAR: A cache-based distributed
warehouse system for spatial data streams,’’ in Proc. 29th Int. Conf. Adv.
Geographic Inf. Syst., Nov. 2021, pp. 606–615.

[20] M. R. Kaseb, S. S. Haytamy, and R. M. Badry, ‘‘Distributed query opti-
mization strategies for cloud environment,’’ J. Data, Inf. Manage., vol. 3,
no. 4, pp. 271–279, Oct. 2021, doi: 10.1007/s42488-021-00057-z.

[21] P. Michiardi, D. Carra, and S. Migliorini, ‘‘Cache-based multi-query opti-
mization for data-intensive scalable computing frameworks,’’ Inf. Syst.
Frontiers, vol. 23, no. 1, pp. 35–51, Feb. 2021.

[22] P. N. Nagendra, ‘‘Improving instruction cache performance for
modern processors with growing workloads,’’ ProQuest Diss.
Publishing, Princeton Univ., Princeton, NJ, USA, Tech. Rep. Nagen-
dra_princeton_0181D_1377, Sep. 2021, pp. 1–121, vol. 28644741.
[Online]. Available: http://arks.princeton.edu/ark:/88435/dsp01js956j943

[23] V. Gour, S. S. Sarangdevot, A. Sharma, V. Choudhary, R. B. Patel, and
B. P. Singh, ‘‘Improve performance of data warehouse by query cache,’’ in
Proc. AIP Conf., 2010, pp. 198–200.

[24] W. Zhang and K. A. Ross, ‘‘Permutation index: Exploiting data skew for
improved query performance,’’ in Proc. IEEE 36th Int. Conf. Data Eng.
(ICDE), Dallas, TX, USA, Apr. 2020, pp. 1982–1985.

[25] A. V Hoof, ‘‘Top40 cache algorithm compared to LRU and
LFU,’’ Citeseer, Mediapark Hilversum SNE, Univ. Amsterdam,
Amsterdam, The Netherlands, Feb. 2009, pp. 1–11. [Online]. Available:
https://rp.os3.nl/2008-2009/p27/report.pdf

[26] N.Megiddo and D. S. Modha, ‘‘ARC: A self-tuning, low overhead replace-
ment cache,’’ in Proc. FAST 2nd USENIX Conf. File Storage Technol.,
San Francisco, CA, USA, vol. 3, Apr. 2003, pp. 115–130.

[27] R. Kimball and M. Ross, The Data Warehouse Toolkit: The Complete
Guide to Dimensional Modeling. Hoboken, NJ, USA: Wiley, Aug. 2011,
pp. 1–389.

[28] A. V. Michael and P. Ahirao, ‘‘Improved use of ETL tool for updation and
creation of data warehouse from different RDBMS,’’ in Proc. 3rd Int. Conf.
Adv. Sci. Technol. (ICAST), Apr. 2020, pp. 1–4, doi: 10.2139/ssrn.3565505.

CH ANWAR UL HASSAN (Member, IEEE)
received the B.S. degree in software engineer-
ing from the National University of Modern
Languages, Islamabad, Pakistan, in 2015, and
the M.S. degree in software engineering from
COMSATS University, Islamabad, in 2019.

After Graduation, he was working as a Visit-
ing Lecturer with the Federal Urdu University of
Arts, Science and Technology, Islamabad. He is
currently working as a Lecturer with the Capital

University of Science and Technology, Islamabad. He is an Experienced
Software Engineer, from 2015 to 2017, where he was working as a Web/App
Developer and was involved in the development of different top-notch soft-
ware being involved from documentation to deployment. From 2017 to 2019,
he was working as a Research Assistant at COMSATSUniversity, Islamabad.
His research interests include blockchain, data warehousing, data analysis,
machine learning, data mining, smart grid energy management, software
process improvements, and software costing and estimation

Mr. Anwar’s awards and honors include the multiple IBM Certifications,
Debate Competition Winner and Runner-Up Awards and Research Poster
Winner Certificate at COMSATS University, in 2017.

MUHAMMAD HAMMAD received the B.S.
degree in software engineering from International
Islamic University, Islamabad, Pakistan, in 2015,
and the M.S. degree in software engineering from
FAST-NUCES University, Islamabad, in 2018.

After Graduation, he was working as a Visiting
Lecturer at Quaid e Azam University, Islamabad.
He is currently working as a Lecturer with the
Capital University of Science and Technology,
Islamabad. He is an Experienced Software Engi-

neer in the IT industry with more than 3.5 years of experience in full-stack
development and research work and involved in the development of
different top-notch software being involved from documentation to deploy-
ment. He has major expertise in development at Microsoft Technologies
(Asp.net and MS SQL Server), angular framework, agile development
(Scrum, XP, andKanban), database development, and software configuration
management (TFS and GIT).

MUEEN UDDIN (SeniorMember, IEEE) received
the B.S. and M.S. degrees in computer sci-
ence from Isra University Hyderabad, Pakistan,
and the Ph.D. degree from Universiti Teknologi
Malaysia (UTM), in 2013. He is currently work-
ing as an Assistant Professor of cybersecurity and
blockchain with Universiti Brunei Darussalam.
He has authored more than 100 international
research articles published in highly indexed and
reputed journals. His research interests include

blockchain, cybersecurity, cloud computing, and virtualization.

VOLUME 10, 2022 13479

http://dx.doi.org/10.1007/978-0-387-39940-9_298
http://dx.doi.org/10.1007/s42488-021-00057-z
http://dx.doi.org/10.2139/ssrn.3565505


C. A. U. Hassan et al.: Optimizing Performance of Data Warehouse by Query Cache Mechanism

JAWAID IQBAL received the Ph.D. degree from
Hazara University, Mansehra, in 2021. He has
been teaching at the university level for more
than nine years. He started his career at the IT
Department, Hazara University, in 2013. He also
served at different universities, like theAbbottabad
University of Science and Technology (AUST)
and the University of Sialkot. Currently, he is an
Assistant Professor with the Department of Com-
puter Science, Capital University of Science and

Technology, Islamabad. He has taught various subjects of computer science
at bachelor’s and M.S. program levels. He is a member of the Advance
Network and Security Research Group, CUST. He has numerous publica-
tions in international conferences and journals. His research interests include
information security and networks. He has intention to work with people
who love to practice new ideas, where he can excel by utilizing his potential
and broaden his horizon by complementing the theoretical knowledge with
practical experience of the professional life, experiencing the culture of
teamwork and individual excellence along the way.

JAWAD SAHI received the B.S. degree in
computer science from COMSATS University,
Islamabad, Pakistan. He is currently pursing the
M.S. degree in software engineering form the
Department of Computer Science, COMSATS
University.

He is an Experienced Software Developer in the
IT industry. He worked as a Data Analyst at Tera
Data, Islamabad, Pakistan. He has major expertise
in data analysis and digital marketing. His research

interests include data analysis, data warehousing, smart grid, and energy
management.

SADDAM HUSSAIN received the bachelor’s
degree from the Islamia College, Peshawar,
in 2017, and the master’s degree from Hazara
University Masehra, Pakistan, in 2021. He is cur-
rently pursuing the Ph.D. degree with the School
of Digital Science, Universiti Brunei Darussalam,
Brunei. He has published several papers in well-
reputed journals, including IEEE, JISA (Elsevier),
Cluster Computing, Computer Communication,
IEEE INTERNET OF THINGS JOURNAL, Hindawi, CMC,

and Electronics. His research interests include cryptography, network secu-
rity, wireless sensor networking (WSN), information-centric networking
(ICN), named data networking (NDN), smart grid, the Internet of Things
(IoT), the IIoT, quantum computing, cloud computing, and edge computing.
He is serving as a Reviewer in reputed journals, including IEEE ACCESS,
International Journal of Wireless Information Networks, Scientific Journal
of Electrical, Computer, and Informatics Engineering, and CMC.

SYED SAJID ULLAH received the master’s (M.S.)
degree in computer science from Hazara Univer-
sity Mansehra, Pakistan. He is currently pursuing
the Ph.D. degree with the Department of Electrical
and Computer Engineering, Villanova University,
PA, USA. He is currently working as a Researcher
with the National Institute of Standards and Tech-
nology (NIST) in the projects (Practical imple-
mentation of Quantum Cryptography and Security
Solutions for Future Internet Architecture Named

Data Networking). His research interests include cryptography, network
security, information-centric networking (ICN), named data networking
(NDN), and the IoT.

13480 VOLUME 10, 2022


