
International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº4

- 18 -

Neural Collaborative Filtering Classification Model
to Obtain Prediction Reliabilities
Jesús Bobadilla*, Abraham Gutiérrez, Santiago Alonso, Ángel González-Prieto

ETSI Sistemas Informáticos, Universidad Politécnica de Madrid, Madrid (Spain)

Received 28 February 2021 | Accepted 3 June 2021 | Published 9 August 2021

Keywords

Artificial Intelligence
Systems, Neural
Classification, Neural
Collaborative Filtering,
Recommender Systems.

Abstract

Neural collaborative filtering is the state of art field in the recommender systems area; it provides some models
that obtain accurate predictions and recommendations. These models are regression-based, and they just
return rating predictions. This paper proposes the use of a classification-based approach, returning both rating
predictions and their reliabilities. The extra information (prediction reliabilities) can be used in a variety of
relevant collaborative filtering areas such as detection of shilling attacks, recommendations explanation or
navigational tools to show users and items dependences. Additionally, recommendation reliabilities can be
gracefully provided to users: “probably you will like this film”, “almost certainly you will like this song”, etc.
This paper provides the proposed neural architecture; it also tests that the quality of its recommendation
results is as good as the state of art baselines. Remarkably, individual rating predictions are improved by
using the proposed architecture compared to baselines. Experiments have been performed making use of four
popular public datasets, showing generalizable quality results. Overall, the proposed architecture improves
individual rating predictions quality, maintains recommendation results and opens the doors to a set of relevant
collaborative filtering fields.

* Corresponding author.

E-mail address: jesus.bobadilla@upm.es

DOI: 10.9781/ijimai.2021.08.010

I. Introduction

RECOMMENDER Systems (RS) [1]-[2] are Artificial Intelligence
systems designed to reduce the Internet information overload

problem. RS can recommend items to users, avoiding large manual
search to select appropriated products or services. Amazon, TripAdvisor,
Netflix and Spotify are remarkable commercial firms that use RS.
The selected filtering approaches are the RS core. The most relevant
filtering methods are content-based [3] (books abstracts, products
descriptions), demographic-based [4] (gender, age, zip), context-aware
[5] (gps location), social [6] (followers, followed, tags), Collaborative
Filtering (CF) [7]-[8] and hybrid [9] ensembles that joins two or more
different filters. From the existing filtering approaches, the CF is the
more relevant because it provides improved accuracy. From a machine
learning point of view, historically CF has been addressed by using
k-nearest neighbours (KNN), then Matrix Factorization (MF) [10] and
currently Neural Collaborative filtering (NCF) [11]-[12]. Both MF and
NCF models create an internal dense representation of each sparse
user and item vector. In the first case we call to the representations:
hidden factors, whereas in NCF they are embedding values. MF makes
use of the same vector space to code users and items factors; NCF
can be designed to make use of the same or different vector spaces.
Finally, MF combines factors in a linear mode, whereas NCF combines
embedding values in a non-linear mode, making it possible to catch
the existing complex non-linear relations between users and items.

NCF has emerged in the RS area providing even better accuracy
[13] than the traditional MF approaches [12]. DeepMF [14] is a general
framework that implements MF by means of a neural model; it is a
regression-based model implemented making use of two Multilayer
Perceptrons (MLP) and a ‘Dot’ output layer. On several benchmark
datasets, this model outperforms state of art machine learning models.
The NCF [11] model extends the DeepMF [14] approach, replacing
the output ‘Dot’ layer with an MLP and catching the complex non-
linear relations between items and users. The NCF model proposed
in [11] also introduces input embedding layers to make the model
more scalable than the DeepMF [14] approach. Both the DeepMF and
the NCF are regression-based architectures. The NCF area has been
expanded to several fields beyond the RS domain; as an example, in
[15] authors propose a new computational method NCFM (Neural
network-based Collaborative Filtering Method) to predict miRNA-
disease associations based on deep neural network. An automated and
unsupervised method for the mitral valve segmentation using neural
network collaborative filtering is explained in [16]. A framework to
attack the QoS prediction in the IoT environment [17] combines NCF
and fuzzy clustering; the NCF model is designed to leverage local
and global features. A two sequential stages model (MF and neural)
to improve fairness in RS [18] obtains fair recommendations without
losing a significant proportion of accuracy. Additionally, a current RS
for researchers and students: Deep Edu [19] makes use of NCF and it
outperforms existing Educational services recommendation methods.
The NCF input embedding layers have been refined in [20] by means
of a user-item interaction graph. Among the remarkable current NCF
approaches, we have selected a Joint Neural Collaborative Filtering
(J_NCF) [21] that couples deep feature learning and deep interaction

Regular Issue

- 19 -

modelling with a rating matrix; the Contextual-boosted Deep Neural
Collaborative filtering (CDNC) model [22] which simultaneously
exploits both item introductions (textual features) and user ratings
(collaborative features), making and ensembling of collaborative
and content-based filtering; Knowledge graphs have been used to
enhance NCF to alleviate the sparsity problem [23]; in [24] authors
effectively combines user–item interaction information and auxiliary
knowledge information for recommendation task; a NCF is proposed
for user generated list recommendation, combining both item-level
information and list-level information to improve performance. Finally,
a neural embedding collaborative filtering (NECF) [25] is designed by
using unsupervised auto-encoders, generating the embedding vectors
from the user-item data, followed by a regression stage; as it can be
seen, this is a DeepMF version where embeddings are replaced by
auto-encoders.

An emerging beyond accuracy RS area is focused on the obtention
of reliability values associated to the prediction ones; in this way,
each prediction and recommendation will be represented by the
pair <prediction, reliability>. The extra information (reliability)
can be used to modulate recommendations: “you probably will like
Avengers: Infinity War”, “We really recommend you Avatar”. Despite
the reliabilities usefulness it has not been a main goal in the RS area:
traditionally, CF has been excessively focused on accuracy. As a result,
we use the number of votes as reliability measure: usually users take
note of the number of people that has voted an item, and we prefer
some four stars gadget voted by 1500 clients than other similar item
voted five stars by 12 clients. Accurate CF methods to obtain prediction
reliabilities can lead to nicer recommendation indications, such as the
above examples. Additionally, the reliability information can be used
for remarkable emerging areas such as detecting shilling attacks [26]:
an unsupervised approach for detecting shilling attacks based on user
rating behaviours [27] uses Dirichlet allocation model to extract latent
topics of user preferences from user rating item sequences, whereas
an MF approach to detect shilling attacks [28] tests the unusual
reliability variations in the item predictions. Reliability values have
also been used to make dynamic browsing of related users or items
[29], to explain recommendations [30] and to filter to the most reliable
recommendations [31]. A variety of methods and models have been
proposed to get prediction and recommendation reliabilities; in a first
stage trust-based [32] and similarity measures-based [33] methods were
developed. Two remarkable machine learning approaches make use of
MF ensembles, the first one [31] designs two sequential MF where the
first one obtains prediction errors from known ratings, whereas the
second MF make predictions from the previous errors, just getting
the expected reliability values. The second MF approach [34] is the
Bernoulli Matrix Factorization (BeMF), which is a matrix factorization
model based on the Bernoulli distribution to exploit the binary nature
of the designed classification model. Basically, BeMF runs a MF for
each possible vote in the RS (e.g.: 1 to 5 stars), returning the probability
(reliability) of each rating. The RS reliability field is growing fast due
to the emerging reliability quality measures: a reliability quality
prediction measure (RPI) and a reliability quality recommendation
measure (RRI) are proposed in [35]. Both quality measures are based
on the hypothesis that the more suitable a reliability measure is, the
better accuracy results it will provide when applied. Current NCF is
based on regression models [11, 12, 14, 19, 20 , 21, 22], whereas our
proposed model is a NCF architecture based on classification. This is
an innovative approach whose RS accuracy must be compared to the
conventional regression models. We have chosen the classification
model because it presents a potential advantage: machine learning
classification results provide probability distributions that could be
used as reliability values in the CF context. Classification approaches
naturally provide reliability values. A classification neural model for

RS is proposed in [36], where the item relations patterns are learned
in the network. It is designed to include an output layer containing as
many neurons as items in the dataset, what usually is an affordable
approach, although it could be considered as not scalable in specific
scenarios; nevertheless, it provides prediction reliabilities. In [37]
two sequential models have been designed to exploit the potentiality
of the reliability information: the first model uses MF to obtain
reliabilities, whereas the second one is a neural model that improves
recommendation accuracy by incorporating in its input layer the
previous MF reliability values.

The proposed classification architecture in this paper borrows
the NCF classification concept from [36] and the NCF design from
[11], trying to catch the individual strengths of both approaches. It
also incorporates two innovative contributions to improve scalability
through the use of input embeddings and to improve accuracy by
replacing the usual regression ‘Dot’ layer with a ‘Concatenate’ layer
that preserves the abstract information from hidden layers. By running
the proposed model, we obtain pairs <prediction value, prediction
reliability> and we make use of the reliability ‘extra’ information
to get the most promising recommendations. Since the proposed
classification architecture returns prediction reliabilities, it opens
the door to remarkable state of art research fields such as mentioned
above. The key question now is: will the classification approach
return less accurate recommendations than the state of art regression
approaches? If the answer is affirmative our classification architecture
loses its purpose, whereas if it returns similar or higher accuracy
than regression NCF it is valuable to use it and to take advantage of
the reliability additional information. Thus, our hypothesis is that
the proposed classification architecture provides similar or higher
accuracy than the current NCF regression models, making it possible
to take advantage of the extra reliability information it returns. The rest
of the paper has been structured as follows: in Section II the proposed
model is explained, and the experiments design is defined. Section III
shows the experiments’ results and their discussions. Finally, Section
IV contains the main conclusions of the paper and the future works.

II. Materials and Methods

This section contains two different subsections: the first one
defines and explains the design of the proposed architecture and
its relationship with the state of art models. The second subsection
focuses on the experiments design and their implementation, defining
the selected datasets, the chosen baselines, the stablished parameter
values and the tested quality measures.

A. The Proposed Classification Based Neuronal Architecture
The proposed classification architecture has been designed

following the DeepMF and the NCF state of art evolution, taking
those elements that are more advantageous to the classification-based
approach and removing the ones that are not appropriate. From the
DeepMF [14] we have borrowed the two designed MLP branches
to separately process item and user’s information. Fig. 1 shows the
DeepMF architecture with its two separate N layers MLP neural
networks. However, this DeepMF design has a remarkable drawback:
it has not an appropriate scalability.

As it can be seen in Fig. 1, both MLP branches are fed by using very
large vectors as input: each user vector of ratings and each item vector
of ratings. Please note that each item vector can contain millions of
ratings, since some RSs contain explicit or implicit ratings coming from
millions of users. Our classification-based solution makes use of an
optimized approach to feed the neural network: the use of embedding
layers. This architectural solution has been used in the NCF [11] design
as shown in Fig. 2: now the input layer is coded by using vectors of bits

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº4

- 20 -

that are processed in the embedding layers, providing both the user
and the item latent vectors. Additionally, and MLP neural network is
used to process the latent vectors instead of the “Dot” layer used in the
DeepMF approach; this MLP makes possible to find the complex non-
linear dependences existing among the embedding values.

Dot layer

item user

Sparse vector of
user’s ratings

to an item
Not escalable

Sparse vector of
ratings to items

casted for an user

regression
result

M
ul

ti
la

ye
r

Pe
rc

ep
tr

on

M
ul

ti
la

ye
r

Pe
rc

ep
tr

on

0 4 0 0 5 0 0 0

Fig. 1. DeepMF architecture [14].

item user

Sparse binary vector
of user’s ratings

to an ítem

Embedding
layer

Embedding
layer

Sparse binary vector
of ratings to items
casted for an user

regression
result

M
ul

ti
la

ye
r

Pe
rc

ep
tr

on

0 4 0 0 5 0 0 0

Fig. 2. NCF architecture [11].

Our proposed architecture is shown in Fig. 3; its inputs are just
two numbers (for each existing rating): the item code and the user
code. These two numbers feed two separate embedding layers that
code each number as a vector of F values. The embedding process
assigns similar embedding layer vector values to similar users (or
similar items), making much easier the subsequent MLP tasks. The
embedding layer operations make use of a lookup table where the
keys are the users (or items) numbers, and the values are the dense
vectors of size F. In this way we do not longer need to maintain
explicit one-hot encoder sparse vectors as the ones shown in the NCF
architecture (Fig. 2). Embedding layers are mainly used in natural
language processing scenarios due to the huge sparsity of the words in
sentence representations. RS datasets also present high sparsity levels,
since users only cast ratings from a very reduced proportion of the
available items. The embedding layer can be instanced by providing
the maximum number of existing elements (users or items in the CF
context) and the size of the compressed information (usually from 5
to 20 values in the CF context). The proposed architecture embedding

layer for items receives as input each item number from each existing
rating. Likewise, the user’s embedding layer receives as input each
user number from each existing rating. Each input number of the
sequence is used as index to access a lookup table (embedding weight
matrix) containing vectors for each user (or item). The lookup tables
efficiently implement the embedding layers. Both the user and the item
embedding layers compress and code each item and user ID (number).
Once the embedding training process is finished, in the same way in
which NLP related words have close embedding representations, CF
related users and items have close embedding representations. Since
our proposed architecture is classification based, the output layer has
V neurons (Fig. 3), in contrast to the regression NCF version (Fig. 2)
where one single neuron makes the regression. The V value depends
on the number of different available implicit ratings or explicit votes in
the RS (e.g.: 1, 2, 3, 4 or 5 stars). The output of the multilayer perceptron
is positional (one neuron for each rating value, in this case 5-stars).
Each output neuron provides a reliability measure. Whereas the NCF
classification loss function is binary, in our classification architecture
we use a categorical cross entropy loss; thus, our classification output
layer returns V probabilities: vi ∈ ℛ, i ∈ {1, 2, ..., V}, ∑i vi = 1. Please
note that the vi value’s argmax function provides us with the discrete
prediction, whereas the corresponding vi value can be seen as the
prediction reliability. This is a very different scenario to the regression
based NCF, where prediction results are continuous prediction values.
The classification NCF results are richer than the regression ones
and it opens the door to use this additional information to deal with
diverse RS goals such as providing prediction reliabilities, improving
recommendation quality, making items or users relations graphs, or
explaining recommendations.

Embedding
layer

Embedding
layer

Concatenate layer

result
classification 1 2 3 4 5

argmax

predictions
<prediction, reliability> : <4, 0, 6>

recommendations
N = 4

probabilities
M

ul
ti

la
ye

r
Pe

rc
ep

tr
on

<5, 0, 9>
<5, 0, 8>
<4, 0, 9>
<4, 0, 8>

<4, 0, 6>
<5, 0, 8>

<5, 0, 9>
<4, 0, 2>

<5, 0, 2>

<5, 0, 4>
<4, 0, 9>

<4, 0, 8>

0,15
0,15

0,05 0,05
0,60

internal lookup
table

item

key F dense values F dense valueskey

347

347 0.91 1.03 0.1
34 0.12 0.2 0.11 0.1

31

980

0.15 0.06 0.12

0.44 0.24

user 347

Fig. 3. Proposed architecture and recommendation method.

In short, we encourage the use of an NCF classification-based
architecture whose samples are simple item and user numbers,
and whose output labels are ratings. This design avoids large input
vectors, and it returns <rating, reliability> prediction pairs. Hereafter
we provide an example to show the flexibility of the classification
based NCF: we will choose the most promising recommendations
from their rich results, compared to the restricted operation evolved in
the regression approach. From the following set of pairs <prediction,
reliability>: <5, 0.3>, <5, 0.2>, <5, 1>, <5, 0.9>, <4, 0.8>, <4, 0.4>, <4,
0.7>, <3, 0.7>, the following ordered list of recommendations could be
obtained: <5, 1>, <5, 0.9>, <4, 0.8>, <4, 0.7>. We have just filtered to
the highest predictions (4 & 5) and the highest reliabilities (reliability
>= 0.5), and then we have ordered the resulting pairs attending to

Regular Issue

- 21 -

their reliability. As it can be seen, risky recommendations have been
avoided (<5, 0.2>, <5, 0.3>, <4, 0.4>) in a process that is not available
using the NCF regression results.

The Algorithm 1 Keras code section shows a specific implementation
of the proposed NCF classification architecture. In this case, the dataset
contains 5 categories (1 to 5 stars) and the chosen embedding size is 10
(line 1). Lines 2 to 4 input each movie number code, embedding them
and prepare their flatten representation; lines 5 to 7 make the same
process for each user number code. Both the movie and user flatten
representations are concatenated in the ‘Concatenate’ layer in line 8.
The existing complex non-linear relations between users and items
are learnt in the hidden layers coded from line 9 to line 12. Line 13
creates the five categories classification output layer, and it assigns
the softmax activation function to the neurons. The whole model is
created in line 14, defining the users/items input tensor and the output
layer. Finally, the compile and fit methods are set in lines 15 and 16.

Algorithm 1. Classification NCF design
1. embed_size = 10; num_categ = 5

2. movie_input = Input(shape=[1])
3. movie_embedding =
 Embedding(num_movies + 1, embed_size)(movie_input)
4. movie_flatten = Flatten()(movie_embedding)

5. user_input = Input(shape=[1])
6. user_embedding =
 Embedding(num_users + 1, embed_size)(user_input)
7. user_flatten = Flatten()(user_embedding)

8. concat =
 Concatenate(axis=1)([movie_flatten, user_flatten])
9. mlp_1 = Dense(80, activation=’relu’)(concat)
10. mlp_2 = Dropout(0.4)(mlp_1)
11. mlp_3 = Dense(25, activation=’relu’)(mlp_2)
12. mlp_4 = Dropout(0.4)(mlp_3)
13. output =
 Dense(num_categ, activation=’softmax’)(mlp_4)

14. model_classification =
 Model([user_input, movie_input], output)
15. model_classification.compile(
 optimizer=’adam’, metrics=[‘mae’],
 loss=’categorical_crossentropy’)
16. history = model_classification.fit(
 [train[:,USER], train[:,ITEM]],
 to_categorical(train[:,RATING]),
 validation_data=([test[:,USER],test[:,ITEM]],
 to_categorical(test[:,RATING])), epochs=EPOCHS,
 verbose=1)

B. Experiments Design
This paper’s hypothesis claims that classification based NCF

provides similar or better accuracy than the regression based NCF
model. Additionally, classification based NCF allows to tackle a variety
of RS goals in a simpler way than the regression approach. To test the
comparative accuracy of both NCF approaches we have designed a
set of experiments involving prediction and recommendation results,
processing a variety of baselines and using several public CF datasets.
The selected RS datasets are: Movielens 100K [38], Movielens 1M [38],
MyAnimeList* (a subset of the original dataset) [39] and Netflix* [40]
(a subset of the original dataset). Table I shows these datasets main
parameter values.

TABLE I. Main Parameters of the Datasets Used in the Experiments

Dataset #users #items #ratings scores sparsity

Movielens 100K 943 1682 99,831 1 to 5 93,71

MovieLens 1M 6,040 3,706 911,031 1 to 5 95,94

MyAnimeList* 19,179 2,692 548.967 1 to 10 98,94

Netflix* 23,012 1,750 535,421 1 to 5 98,68

The paper’s baselines are: DeepMF [14], NCF regression [11],
NCF classification, and binary NCF classification. NCF classification
corresponds to the architecture in Fig. 3, whereas binary NCF
classification is the NCF classification version where ratings have
been converted to “relevant” or “not relevant” (e.g.: relevant ⇔ rating
>= 4, not relevant ó rating < 4), and labels have also been converted
to the exposed ‘relevant’ and ‘not relevant’ discrete classification. The
difference between NCF classification and the proposed method is that
reliability results are not used in the baseline. Table II abstracts both
the proposed and the baselines architectures. Both the DeepMF and
the regression architectures make use of a ‘Dot’ layer to join their
embeddings, whereas a ‘Concatenate’ layer has been used in both the
proposed and the baseline classification architectures.

TABLE II. Proposed and Baseline Architectures

Architecture type merge layer Reliability inf.

Proposed classification concatenate yes

DeepMF regression dot no

Regression regression dot no

Classification classification concatenate no

Binary
classification classification concatenate no

TABLE III. Experiments and Their Main Parameter Values

Experiment # recomm. (N) Relevancy
threshold

Prediction value
threshold

Precision /
recall {2,4,6, …, 10}

{3, 4, 5}
Movielens and

Netflix
{0}

{7, 8, 9}
MyAnimeList

Quality
predicting each
rating {1,2,…,5}

{2, 6, 10} Movielens
and Netflix

{7, 8, 9}
MyAnimeList

{4} {0}

Precision vs.
coverage {10} {3, 4, 5} {4, 4.2, 4.4, 4.6, 4.8}

The main experiments make use of the precision and recall
recommendation measures, tested by using a range from 2 to 10
number of recommendations (N). A secondary set of experiments tests
the prediction quality on each of the dataset ratings (1 to 5 stars), using
2, 6 or 10 number of recommendations (7, 8 and 9 for the MyAnimeList
dataset). Finally, an experiment tests the precision versus coverage
obtained by filtering to predictions higher than a beta threshold. In
the CF context, the relevancy threshold parameter is used to classify
a rating or a prediction in the categorical set {relevant, not_relevant}.
Experiments on datasets where votes range from 1 to 5 (Movielens,
Netflix, etc.) usually set the relevancy threshold in the value 4; that
is: ratings 4 and 5 are considered relevant, and predictions greater
than or equal to 4 are considered as candidates to be recommended.
The relevancy threshold is also important in the cross-validation
testing process, since recommendations made to items voted under
4 are considered as errors, whereas recommendations made to items

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº4

- 22 -

voted 4 or above are considered as successes. In this example, setting
the relevancy threshold to 5 makes it more difficult to get high success
(precision, recall, etc.) levels. Table III shows the experiments and their
main parameter values.

III. Results

Our first experiment compares the quality of recommendations
obtained by using the proposed method and the baselines. The chosen
CF quality measures have been the precision and recall ones. The main
parameters of this experiment are abstracted in the Table III first row.
Fig. 4 shows the results obtained on both the Movielens 100K (top
graphs) and Movielens 1M (bottom graphs). The main conclusion
is that, as expected, the proposed classification based NCF method
reaches adequate recommendation quality results, compared to state
of art NCF baselines. Additionally, we can see that both the recall and
the precision evolutions are the expected ones: precision decreases
as the number of recommendations (N) increases, whereas recall
increases as the N value increases. The y axis scale shows better results
in the graphs corresponding to the 1M Movielens version compared
to the 100K one. Fig. 4 results are particularly interesting when the
recommendations difficulty is increased: when the relevancy threshold
is set to its limit (value 5); in this scenario we find a Movielens 100K
optimum number of recommendations: 7 (graph on the top-right of
Fig. 4), an also a remarkable behaviour of the proposed method when
applied to Movielens 1M (graph on the bottom-right of Fig. 4).

The same kind of experiments have been performed by using
the MyAnimeList* and Netflix* datasets (Table I). Results confirm

the conclusions obtained in both Movielens datasets, particularly it
is confirmed that the proposed NCF classification approach reaches
adequate recommendation results. The top graphs of Fig. 5 show the
MyAnimeList* results; this dataset has a range of votes from 1 to 10,
instead the usual 1 to 5. This circumstance reduces the quality of the
binary classification baseline, since the binary differentiation between
relevant and not relevant ratings becomes less precise.

Fig. 5 top-center and top-right graphs shows the mentioned quality
drop. It is also remarkable that in both Fig. 4 and Fig. 5 we can observe a
better behaviour of the NCF classification proposed approach than the
NCF classification regular method; this means that an adequate use of
the reliability information leads to the expected quality improvements.

The explained experiments are based on the usual approach to test
recommendation quality: proportion of the relevant recommended
items versus the total number of recommendations (precision) or
versus the total number of relevant items (recall). In both cases, we
are considering a hit if the recommended item exceeds a relevancy
threshold. In some RS scenarios we need a more fine-grained
predictions and recommendations. This is the case when we want to
be sure we will not like an item, or we will only like it if it has been
recommended with a particular value; e.g.: I am interested in a set of
songs, but I want to discard everyone who has obtained 1 or 2 stars.
I want to watch some films unknown to me, then I will surf by those
the RS recommendation is three stars. To test the proposed and the
baselines NCF approaches in this scenario, the experiments shown in
the second row of Table III have been run. Basically, we obtain the
quality of each architecture to appropriately recommend each existing

threshold 3 threshold 4 threshold 5

threshold 3 threshold 4 threshold 5

M
ov

ie
le

ns
 1

M
M

ov
ie

le
ns

 1
00

K

R
ec

co
m

en
da

ti
on

 q
ua

lit
y

N (number of recommendations)
2

0.2 0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1
0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.2

0.1

0.2

0.3

0.4

0.5

0.6

0.4

0.6

0.8

1.0

3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 102 3 4 5 6 7 8 9 102 3 4 5 6 7 8 9 10

N (number of recommendations) N (number of recommendations)

R
ec

co
m

en
da

ti
on

 q
ua

lit
y

R
ec

co
m

en
da

ti
on

 q
ua

lit
y

R
ec

co
m

en
da

ti
on

 q
ua

lit
y

N (number of recommendations) N (number of recommendations) N (number of recommendations)

R
ec

co
m

en
da

ti
on

 q
ua

lit
y

R
ec

co
m

en
da

ti
on

 q
ua

lit
y

Precision classification
Recall classification
Precision proposed
Recall proposed
Precision regression
Recall regression
Precision binary class.
Recall binary class.
Precision deepMF
Recall deepMF

Precision classification
Recall classification
Precision proposed
Recall proposed
Precision regression
Recall regression
Precision binary class.
Recall binary class.
Precision deepMF
Recall deepMF

Fig. 4. Precision and recall quality results obtained by using the Movielens 100K (top graphs) and the Movielens 1M (bottom graphs). Three relevancy
thresholds have been tested: 3 (left graphs), 4 (center graphs), 5 (right graphs). The proposed architecture has been compared to the baselines: deepMF [14],
NCF regression [11], regular NCF classification and binary NCF classification. Precision and recall “proposed” values are the results of the proposed method
in the paper (Table II).

Regular Issue

- 23 -

rating in the CF dataset. The binary NCF classification has not been
included since it is not designed to predict individual ratings.

Fig. 6 shows the obtained results on the covered datasets. Beyond
details, it can be seen the superiority of the proposed NCF method
in all the contemplated scenarios. This is the expected result, since
DeepMF and NCF regression just provide prediction values, whereas
the proposed NCF classification architecture returns specific and
complete classification information shaped like <rating, reliability>
pairs. The remarkable differences in the quality results of the different
ratings (x-axis) when predicted by the NCF classification or regression
methods is due to the CF datasets are usually biased to high rating
values. As an example: both Movielens datasets show a much bigger
difference between NCF classification and regression methods for the
rating 1 and the rating 2 predictions; users tend to cast high votes
(4 and 5), and then the number of low votes (1 and 2) are usually
scarce in CF datasets. In this scenario, the NCF classification method
particularly shows its superiority over the NCF regression one.

Finally, a set of experiments have been conducted (third row in
Table III) to compare precision and coverage in the NCF scenario.
It is important to realize that several parameters determine the
recommendation coverage in a cross-validation scenario: a) the dataset
distribution of ratings, particularly the rating matrix sparsity, b) the
requested number of recommendations (N), c) the required threshold
(4 stars, 5 stars); e.g.: it can be difficult to find users to recommend
N=10 items with a 5 threshold in a cross-validation testing scenario.
Usually, recommendation quality and coverage are inversely related.
To conduct the experiments, we introduce a beta threshold used to
select predictions that are greater than beta; e.g.: centered graph in

Fig. 7 shows recommendation results where the relevancy threshold is
4 stars (top label); looking at the x-axis in its 4.4 beta threshold we can
know the obtained coverage and recommendation precision selecting
predictions equal to or higher than 4.4. As it can be seen, by increasing
the beta value we also increase precision, but at the cost of a sharp
decrease of the coverage. In the current experiment, the key question
is to compare the precision versus coverage equilibrium in both the
proposed method and the baselines. We can observe that the proposed
method gets and intermediate position between DeepMF and NCF
regression, and we can conclude that the baselines and the proposed
method similarly performs in this particular issue: thus, the proposed
classification architecture use does not worsen the RS coverage.

IV. Conclusion

Current collaborative filtering deep learning architectures are
focused on the regression approach; they provide accurate predictions
and recommendations compared to the state of art, but they do not
return any reliability value of such predictions and recommendations.
Conversely, classification based deep learning architectures are able
to provide both the value and the reliability of each prediction or
recommendation. By combining the prediction value and the reliability
information it is possible to afford several remarkable tasks, such as
obtaining more reliable recommendations, making some reliability-
based explanations of the recommendations to users, showing
navigable trees that relate users or items, implementing methods to
reduce the shilling attacks consequences, etc.

threshold 7 threshold 8 threshold 9

threshold 3 threshold 4 threshold 5

M
ov

ie
le

ns
 1

M
M

yA
ni

m
eL

is
t*

R
ec

co
m

en
da

ti
on

 q
ua

lit
y

N (number of recommendations)
2

0.2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.25

0.30

0.35

0.40

0.50

0.45

0.55

0.60

0.65

0.4

0.3

0.5

0.6

0.8

0.7

0.9

0.2

0.4

0.3

0.5

0.6

0.8

0.7

0.9

0.3

0.4

0.5

0.7

0.6

0.3

0.4

0.5

0.7

0.6

3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 102 3 4 5 6 7 8 9 102 3 4 5 6 7 8 9 10

N (number of recommendations) N (number of recommendations)

R
ec

co
m

en
da

ti
on

 q
ua

lit
y

R
ec

co
m

en
da

ti
on

 q
ua

lit
y

R
ec

co
m

en
da

ti
on

 q
ua

lit
y

N (number of recommendations) N (number of recommendations) N (number of recommendations)

R
ec

co
m

en
da

ti
on

 q
ua

lit
y

R
ec

co
m

en
da

ti
on

 q
ua

lit
y

Precision classification
Recall classification
Precision proposed
Recall proposed
Precision regression
Recall regression
Precision binary class.
Recall binary class.
Precision deepMF
Recall deepMF

Precision classification
Recall classification
Precision proposed
Recall proposed
Precision regression
Recall regression
Precision binary class.
Recall binary class.
Precision deepMF
Recall deepMF

Fig. 5. Precision and recall quality results obtained by using the MyAnimeList* (top graphs) and the Netflix* (bottom graphs). Three relevancy thresholds have
been tested: 7 or 3 (left graphs), 8 or 4 (center graphs), 9 or 5 (right graphs). The proposed architecture has been compared to the baselines: DeepMF [14], NCF
regression [11], regular NCF classification and binary NCF classification. Precision and recall “proposed” values are the results of the proposed method in the
paper (Table II).

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº4

- 24 -

Despite the mentioned advantages of the classification-based
neural collaborative filtering approach, the proposed approach cannot
be embraced without testing its quality performance: similar or
better results must be obtained by applying the proposed architecture
compared to the state of art regression baselines. Experiments in
this paper show that the proposed classification architecture obtains
similar recommendation accuracy results than the regression
architectures do; precision and recall measures provide comparable
quality results in a complete set of experiments where different
thresholds and diverse number of recommendations are chosen.

Results show a consistent pattern when experiments have been run
on four public datasets. On the other hand, the proposed architecture
shows improved prediction results: it is able to accurately predict
individual ratings, outperforming prediction quality compared with
the state of art regression approaches. Finally, the precision versus
coverage balance stays similar in both the proposed and the baselines
neural architectures.

In short, the proposed classification-based architecture can replace
the state of art neural collaborative filtering approaches: its use does

�
al

it
y

Rating

Movielens 100K

0.1

0.2

0.3

0.4

0.5

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Regression, N = 2
Proposed, N = 2
DeepMF, N = 2
Regression, N = 6
Proposed, N = 6
DeepMF, N = 6
Regression, N = 10
Proposed, N = 10
DeepMF, N = 10

�
al

it
y

Rating

MyAnimeList*

0.25

0.30

0.35

0.40

0.50

0.45

7.00 7.25 7.50 7.75 8.00 8.25 8.50 8.75 9.00

Regression, N = 7
Proposed, N = 7
DeepMF, N = 7
Regression, N = 8
Proposed, N = 8
DeepMF, N = 8
Regression, N = 9
Proposed, N = 9
DeepMF, N = 9

�
al

it
y

Rating

Movielens 1M

Netflix*

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Regression, N = 2
Proposed, N = 2
DeepMF, N = 2
Regression, N = 6
Proposed, N = 6
DeepMF, N = 6
Regression, N = 10
Proposed, N = 10
DeepMF, N = 10

�
al

it
y

Rating

0.1

0.2

0.3

0.4

0.5

0.6

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Regression, N = 2
Proposed, N = 2
DeepMF, N = 2
Regression, N = 6
Proposed, N = 6
DeepMF, N = 6
Regression, N = 10
Proposed, N = 10
DeepMF, N = 10

Fig. 6. Obtained precision quality recommending items for each considered rating; e.g.: proportion of hits recommending items that the user has voted with 2
stars. Top-left graph: Movielens 100K, top-right graph: Movielens 1M, bottom-left graph: MyAnimeList*, bottom-right graph: Netflix*. x-axis: ratings (7, 8 and
9 for MyAnimeList*; 1, 2, 3, 4 and 5 in Netflix* and Movielens). The proposed architecture has been compared to the baselines: DeepMF [14], NCF regression
[11]. “Proposed” values are the results of the proposed method in the paper (Table II).

threshold 3 threshold 4 threshold 5

�
al

it
y

vs
. C

ov
er

ag
e

beta thresold

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8
beta thresold

4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8
beta thresold

4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8

�
al

it
y

vs
. C

ov
er

ag
e

�
al

it
y

vs
. C

ov
er

ag
e

Precision proposed
Proposed coverage
Precision regression
Regression coverage
Precion deepMF
deepMF coverage

Fig. 7. Precision versus coverage results. Dataset: Movielens 1M; number of recommendations (N): 10; relevancy threshold: 3 stars (left graph), 4 stars
(center), 5 stars (right graph); x-axis: beta threshold (selects predictions equal or higher than beta). Precision and coverage “proposed” values are the results
of the proposed method in the paper (Table II).

Regular Issue

- 25 -

not worsen the recommendation quality, it improves the prediction
of individual ratings, and it opens the door to a set of relevant
collaborative filtering areas. Remarkable future works from this paper
are: to make use of reliabilities to detect shilling attacks, to provide
reliability values in the users’ recommendations, and to filter non
reliable recommendations.

Acknowledgment

This research was supported by the Agencia Estatal de Investigación
of Spain (PID2019-106493RB-I00/AEI/10.13039/ 501100011033) and
by the Comunidad de Madrid under Convenio Plurianual with the
Universidad Politécnica de Madrid in the actuation line of Programa de
Excelencia para el Profesorado Universitario.

References

[1] K. Madadipouya, S. Chelliah, “A Literature Review on Recommender
Systems Algorithms, Techniques and Evaluations”, Brain: Broad Research
in Artificial Intelligence and Neuroscience, vol. 8, no. 2, 2017, pp. 109-124.

[2] S.S. Sohail, J. Siddiqui, R. Ali, “Classifications of Recommender Systems:
A review”, Journal of Engineering Science and Technology Review, vol. 10,
no. 4, 2017, pp. 132-153.

[3] H. Zamani, A. Shakery, “A language model-based framework for multi-
publisher content-based recommender systems”, Information Retrieval
Journal, vol. 21, no. 5, 2018, pp. 369-409.

[4] M.Y.H. Al-Shamri, “User profiling approaches for demographic
recommender systems”, Knowledge-Based Systems, vol. 100, 2016, pp.
175-187.

[5] N.M. Villegas, C. Sánchez, J. Díaz-Cely, G. Tamura, “Characterizing
context-aware recommender systems: A systematic literature review”,
Knowledge-Based Systems, vol. 140, 2018, pp. 173-200.

[6] A. Rezvanian, B. Moradabadi, M. Ghavipour, M.M. Daliri Khomami,
M.R. Meybodi, “Social recommender systems”, Studies in Computational
Intelligence, vol. 820, 2019, pp. 281-313.

[7] A. Hernando, J. Bobadilla, F. Ortega, A. Gutiérrez, “A probabilistic model
for recommending to new cold-start non-registered users”, Information
Sciences, vol. 376, 2017, pp. 216-232.

[8] J. Bobadilla, A. Gutiérrez, S. Alonso, R. Hurtado, “A Collaborative
Filtering Probabilistic Approach for Recommendation to Large
Homogeneous and Automatically Detected Groups”, International
Journal of Interactive Multimedia and Artificial Intelligence, 2020, doi:
10.9781/ijimai.2020.03.002.

[9] V. Yu. Ignat’ev, D. V. Lemtyuzhnikova, D. I. Rul’, I. L. Ryabov,
“Constructing a Hybrid Recommender System”, Journal of Computer and
Systems Sciences International, vol. 57, no. 6, 2018, pp. 921-926.

[10] H. Li, Y. Liu, Y. Qian, N. Mamoulis, W. Tu, Wenting ; D. Cheung, “HHMF:
hidden hierarchical matrix factorization for recommender systems”, Data
Mining and Knowledge Discovery, vol. 33, no. 6, 2019, pp. 1548-1582.

[11] H. Xiangnan, L. Lizi, Z. Hanwang, “Neural Collaborative Filtering”, in
International World Wide Web Conference Committee (IW3C2), Perth,
Australia, 2017, doi: 10.1145/3038912.3052569

[12] D. Bokde, S. Girase, D. Mukhopadhyay, “Matrix Factorization Model
in Collaborative Filtering Algorithms: A Survey”, Procedia Computer
Science, vol. 49, 2015, pp. 136-146, doi: 10.1016/j.procs.2015.04.237.

[13] S. Rendle, W. Krichene, L. Zhang, J.R. Anderson, “Neural Collaborative
Filtering vs. Matrix Factorization”, in RecSys ‘20: Fourteenth ACM
Conference on Recommender Systems, Brasil, 2020, pp. 240–248, doi:
10.1145/3383313.3412488.

[14] H.J. Xue, Xi. Dai, J. Zhang, S. Huang, J. Chen, “Deep Matrix Factorization
Models for Recommender Systems”, in Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, Melbourne,
Australia, 2017, pp. 3203-3209, doi: 10.24963/ijcai.2017/447

[15] Y. Liu, S.L. Wang, J.F. Zhang, W. Zhang, W. Li, “A neural collaborative
filtering method for identifying miRNA-disease associations”,
Neurocomputing, vol. 422, 2021, pp. 176-185.

[16] L. Corinzia, F. Laumer, A. Candreva, M. Taramasso, F. Maisano, J.M.
Buhmann, “Neural collaborative filtering for unsupervised mitral valve

segmentation in echocardiography”, Artificial intelligence in medicine,
vol. 110, 2020, pp. 101975-101975.

[17] H. Gao, Y. Xu, Y. Yin, W. Zhang, R. Li, X. Wang, “Context-Aware QoS
Prediction with Neural Collaborative Filtering for Internet-of-Things
Services”, IEEE internet of things journal, vol. 7, no. 5, 2020, pp. 4532-4542,
doi: 10.110’9/JIOT.2019.2956827.

[18] J. Bobadilla, R. Lara-Cabrera, A. González-Prieto, F. Ortega, “DeepFair:
Deep Learning for Improving Fairness in Recommender Systems”,
International Journal Of Interactive Multimedia And Artificial Intelligence,
2020, doi: 10.9781/ijimai.2020.11.001.

[19] F. Ullah, B. Zhang, R.U. Khan, T.S. Chung, M. Attique, K. Khan, S.
Khediri, S. Jan, “Deep Edu: A Deep Neural Collaborative Filtering for
Educational Services Recommendation”, IEEE access, vol. 8, 2020, pp.
110915-110928.

[20] Y. Guo, Z. Yan, “Recommended System: Attentive Neural Collaborative
Filtering”, IEEE access, vol. 8, 2020, pp. 125953-125960.

[21] W. Chen, F. Cai, H. Chen, M. Rijke, “Joint Neural Collaborative Filtering
for Recommender Systems”, ACM transactions on information systems,
vol. 37, no. 4, 2019, pp. 1-30.

[22] S. Yu, M. Yang, Min, Q. Qu, Y. Shen, “Contextual-boosted deep neural
collaborative filtering model for interpretable recommendation”, Expert
systems with applications, vol. 136, 2019, pp. 365-375.

[23] L. Sang, M. Xu, S. Qian, X. Wu, “Knowledge graph enhanced neural
collaborative recommendation”, Expert systems with applications, vol.
164, 2021, pp. 113992, doi: 10.1016/j.eswa.2020.113992.

[24] C. Yang, L. Miao, B. Jiang, D. Li, D. Cao, “Gated and attentive neural
collaborative filtering for user generated list recommendation”,
Knowledge-based systems, vol. 187, 2020, pp. 104839.

[25] T. Huang, D. Zhang, L. Bi, “Neural embedding collaborative filtering for
recommender systems”, Neural computing & applications, vol. 32, no. 22,
2020, pp. 17043-17057.

[26] M. Si, Q. Li, “Shilling attacks against collaborative recommender systems:
a review”, The Artificial intelligence review, vol. 53, no. 1, 2018, pp. 291-
319.

[27] F. Zhang, Z. Ling, S. Wang, “Unsupervised approach for detecting shilling
attacks in collaborative recommender systems based on user rating
behaviours”, IET information security, vol. 13, no. 3, 2019, pp. 174-187.

[28] S. Alonso, J. Bobadilla, F. Ortega, R. Moya, “Robust Model-Based
Reliability Approach to Tackle Shilling Attacks in Collaborative Filtering
Recommender Systems”, IEEE access, vol. 7, 2019, pp. 41782-41798.

[29] A. Hernando, J. Bobadilla, F. Ortega, A. Gutiérrez, “Method to
interactively visualize and navigate related information”, Expert Systems
with Applications, vol. 111, 2018, pp. 61-75.

[30] A. Hernando, R. Moya, F. Ortega, J. Bobadilla, “Hierarchical graph maps
for visualization of collaborative recommender systems”, Journal of
Information Science, vol. 40, no. 1, 2014, pp. 97-106.

[31] B. Zhu, F. Ortega, J. Bobadilla, A. Gutiérrez, “Assigning reliability values
to recommendations using matrix factorization”, Journal of computational
science, vol. 26, 2018, pp. 165-177.

[32] S. Ahmadian, P. Moradi, F. Akhlaghian, Fardin, “An improved model
of trust-aware recommender systems using reliability measurements”, in
6th Conference on Information and Knowledge Technology (IKT), Shahrud,
Iran, 2014, pp. 98-103.

[33] A. Hernando, J. Bobadilla, F. Ortega, J. Tejedor, “Incorporating reliability
measurements into the predictions of a recommender system”,
Information Sciences, vol. 218, 2013, pp. 1-16.

[34] F. Ortega, R. Lara-Cabrera, A. González-Prieto, J. Bobadilla, “Providing
reliability in recommender systems through Bernoulli Matrix
Factorization”, Information sciences, vol. 553, 2021, pp. 110-128.

[35] J. Bobadilla, A. Gutiérrez, F. Ortega, B. Zhu, “Reliability quality measures
for recommender systems”, Information Sciences, Vol. 442-443, 2018, pp.
145-157.

[36] J. Bobadilla, F. Ortega, A. Gutierrez, S. Alonso, “Classification-based Deep
Neural Network Architecture for Collaborative Filtering Recommender
Systems”, International Journal of Interactive Multimedia and Artificial
Intelligence, vol. 6, no. 1, 2020, pp. 68-77.

[37] J. Bobadilla, S. Alonso, A. Hernando, “Deep learning architecture for
collaborative filtering recommender systems”, Applied Sciences, vol. 10,
no. 7, 2020, pp. 2441.

[38] F.M. Harper, J.A. Konstan, “The movielens datasets: History and context”,

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 7, Nº4

- 26 -

ACM Transactions on Interactive Intelligent Systems, vol. 5, no. 4, 2015,
pp. 1–19.

[39] https://www.kaggle.com/azathoth42/myanimelist
[40] F. Ortega, B. Zhu, J. Bobadilla, A. Hernando, “CF4J: Collaborative filtering

for Java”, Knowledge-Based Systems, vol. 152, 2018, pp. 94–99.

Jesús Bobadilla

Jesús Bobadilla received the B.S. and the Ph.D. degrees
in computer science from the Universidad Politécnica de
Madrid and the Universidad Carlos III. Currently, he is a
full professor with the Department of Information Systems,
Universidad Politécnica de Madrid. He is a habitual author
of programming languages books working with McGraw-
Hill, Ra-Ma and Alfa Omega publishers. His research

interests include information retrieval, recommender systems and speech
processing. He oversees the FilmAffinity.com research team working on the
collaborative filtering kernel of the web site. He has been a researcher into the
International Computer Science Institute at Berkeley University and into the
Sheffield University. Head of the research group.

Abraham Gutiérrez

Abraham Gutiérrez received the B.S. and the Ph.D. degrees
in computer science from the Universidad Politécnica de
Madrid. Currently, he is currently an associate professor
with the Department of Information Systems, Universidad
Politécnica de Madrid. He is the author of search papers
in most prestigious international journals. He is a habitual
author of programming languages books working with

McGraw-Hill, Ra-Ma and Alfa Omega publishers. His research interests include
P-Systems, machine learning, data analysis and artificial intelligence. He is in
charge of this group innovation issues, including the commercial projects.

Santiago Alonso

Santiago Alonso received his B.S. degree in software
engineering from Universidad Autónoma de Madrid and his
Ph.D. degree in computer science and artificial intelligence
from Universidad Politécnica de Madrid, in 2015, where he
is currently an associate professor, participating in master
and degree subjects and doing work related with advanced
databases. His main research interests include natural

computing (P-Systems), and did some work on genetic algorithms. His current
interests include machine learning, data analysis and artificial intelligence.

Ángel González-Prieto

Ángel González-Prieto received his Double B.S. in
Computer Sciences and Mathematics from Universidad
Autónoma de Madrid in 2014, his M.Sc. in Mathematics
from the same university in 2015 and his Ph.D. in
Mathematics from Universidad Complutense de Madrid
in 2018. He has been postdoc at Instituto de Ciencias
Matemáticas and, currently, he is teaching assistant at

Universidad Politécnica de Madrid. His research interests include machine
learning, deep learning, and algebraic geometry.

