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Abstract

Neural collaborative filtering is the state of art field in the recommender systems area; it provides some models 
that obtain accurate predictions and recommendations. These models are regression-based, and they just 
return rating predictions. This paper proposes the use of a classification-based approach, returning both rating 
predictions and their reliabilities. The extra information (prediction reliabilities) can be used in a variety of 
relevant collaborative filtering areas such as detection of shilling attacks, recommendations explanation or 
navigational tools to show users and items dependences. Additionally, recommendation reliabilities can be 
gracefully provided to users: “probably you will like this film”, “almost certainly you will like this song”, etc. 
This paper provides the proposed neural architecture; it also tests that the quality of its recommendation 
results is as good as the state of art baselines. Remarkably, individual rating predictions are improved by 
using the proposed architecture compared to baselines. Experiments have been performed making use of four 
popular public datasets, showing generalizable quality results. Overall, the proposed architecture improves 
individual rating predictions quality, maintains recommendation results and opens the doors to a set of relevant 
collaborative filtering fields.
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I. Introduction

RECOMMENDER Systems (RS) [1]-[2] are Artificial Intelligence 
systems designed to reduce the Internet information overload 

problem. RS can recommend items to users, avoiding large manual 
search to select appropriated products or services. Amazon, TripAdvisor, 
Netflix and Spotify are remarkable commercial firms that use RS. 
The selected filtering approaches are the RS core. The most relevant 
filtering methods are content-based [3] (books abstracts, products 
descriptions), demographic-based [4] (gender, age, zip), context-aware 
[5] (gps location), social [6] (followers, followed, tags), Collaborative 
Filtering (CF) [7]-[8] and hybrid [9] ensembles that joins two or more 
different filters. From the existing filtering approaches, the CF is the 
more relevant because it provides improved accuracy. From a machine 
learning point of view, historically CF has been addressed by using 
k-nearest neighbours (KNN), then Matrix Factorization (MF) [10] and 
currently Neural Collaborative filtering (NCF) [11]-[12]. Both MF and 
NCF models create an internal dense representation of each sparse 
user and item vector. In the first case we call to the representations: 
hidden factors, whereas in NCF they are embedding values. MF makes 
use of the same vector space to code users and items factors; NCF 
can be designed to make use of the same or different vector spaces. 
Finally, MF combines factors in a linear mode, whereas NCF combines 
embedding values in a non-linear mode, making it possible to catch 
the existing complex non-linear relations between users and items.

NCF has emerged in the RS area providing even better accuracy 
[13] than the traditional MF approaches [12]. DeepMF [14] is a general 
framework that implements MF by means of a neural model; it is a 
regression-based model implemented making use of two Multilayer 
Perceptrons (MLP) and a ‘Dot’ output layer. On several benchmark 
datasets, this model outperforms state of art machine learning models. 
The NCF [11] model extends the DeepMF [14] approach, replacing 
the output ‘Dot’ layer with an MLP and catching the complex non-
linear relations between items and users. The NCF model proposed 
in [11] also introduces input embedding layers to make the model 
more scalable than the DeepMF [14] approach. Both the DeepMF and 
the NCF are regression-based architectures. The NCF area has been 
expanded to several fields beyond the RS domain; as an example, in 
[15] authors propose a new computational method NCFM (Neural 
network-based Collaborative Filtering Method) to predict miRNA-
disease associations based on deep neural network. An automated and 
unsupervised method for the mitral valve segmentation using neural 
network collaborative filtering is explained in [16]. A framework to 
attack the QoS prediction in the IoT environment [17] combines NCF 
and fuzzy clustering; the NCF model is designed to leverage local 
and global features. A two sequential stages model (MF and neural) 
to improve fairness in RS [18] obtains fair recommendations without 
losing a significant proportion of accuracy. Additionally, a current RS 
for researchers and students: Deep Edu [19] makes use of NCF and it 
outperforms existing Educational services recommendation methods. 
The NCF input embedding layers have been refined in [20] by means 
of a user-item interaction graph. Among the remarkable current NCF 
approaches, we have selected a Joint Neural Collaborative Filtering 
(J_NCF) [21] that couples deep feature learning and deep interaction 
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modelling with a rating matrix; the Contextual-boosted Deep Neural 
Collaborative filtering (CDNC) model [22] which simultaneously 
exploits both item introductions (textual features) and user ratings 
(collaborative features), making and ensembling of collaborative 
and content-based filtering; Knowledge graphs have been used to 
enhance NCF to alleviate the sparsity problem [23]; in [24] authors 
effectively combines user–item interaction information and auxiliary 
knowledge information for recommendation task; a NCF is proposed 
for user generated list recommendation, combining both item-level 
information and list-level information to improve performance. Finally, 
a neural embedding collaborative filtering (NECF) [25] is designed by 
using unsupervised auto-encoders, generating the embedding vectors 
from the user-item data, followed by a regression stage; as it can be 
seen, this is a DeepMF version where embeddings are replaced by 
auto-encoders.

An emerging beyond accuracy RS area is focused on the obtention 
of reliability values associated to the prediction ones; in this way, 
each prediction and recommendation will be represented by the 
pair <prediction, reliability>. The extra information (reliability) 
can be used to modulate recommendations: “you probably will like 
Avengers: Infinity War”, “We really recommend you Avatar”.  Despite 
the reliabilities usefulness it has not been a main goal in the RS area: 
traditionally, CF has been excessively focused on accuracy. As a result, 
we use the number of votes as reliability measure: usually users take 
note of the number of people that has voted an item, and we prefer 
some four stars gadget voted by 1500 clients than other similar item 
voted five stars by 12 clients. Accurate CF methods to obtain prediction 
reliabilities can lead to nicer recommendation indications, such as the 
above examples. Additionally, the reliability information can be used 
for remarkable emerging areas such as detecting shilling attacks [26]: 
an unsupervised approach for detecting shilling attacks based on user 
rating behaviours [27] uses Dirichlet allocation model to extract latent 
topics of user preferences from user rating item sequences, whereas 
an MF approach to detect shilling attacks [28] tests the unusual 
reliability variations in the item predictions. Reliability values have 
also been used to make dynamic browsing of related users or items 
[29], to explain recommendations [30] and to filter to the most reliable 
recommendations [31]. A variety of methods and models have been 
proposed to get prediction and recommendation reliabilities; in a first 
stage trust-based [32] and similarity measures-based [33] methods were 
developed. Two remarkable machine learning approaches make use of 
MF ensembles, the first one [31] designs two sequential MF where the 
first one obtains prediction errors from known ratings, whereas the 
second MF make predictions from the previous errors, just getting 
the expected reliability values. The second MF approach [34] is the 
Bernoulli Matrix Factorization (BeMF), which is a matrix factorization 
model based on the Bernoulli distribution to exploit the binary nature 
of the designed classification model. Basically, BeMF runs a MF for 
each possible vote in the RS (e.g.: 1 to 5 stars), returning the probability 
(reliability) of each rating. The RS reliability field is growing fast due 
to the emerging reliability quality measures: a reliability quality 
prediction measure (RPI) and a reliability quality recommendation 
measure (RRI) are proposed in [35]. Both quality measures are based 
on the hypothesis that the more suitable a reliability measure is, the 
better accuracy results it will provide when applied. Current NCF is 
based on regression models [11, 12, 14, 19, 20 , 21, 22], whereas our 
proposed model is a NCF architecture based on classification. This is 
an innovative approach whose RS accuracy must be compared to the 
conventional regression models. We have chosen the classification 
model because it presents a potential advantage: machine learning 
classification results provide probability distributions that could be 
used as reliability values in the CF context. Classification approaches 
naturally provide reliability values. A classification neural model for 

RS is proposed in [36], where the item relations patterns are learned 
in the network. It is designed to include an output layer containing as 
many neurons as items in the dataset, what usually is an affordable 
approach, although it could be considered as not scalable in specific 
scenarios; nevertheless, it provides prediction reliabilities. In [37] 
two sequential models have been designed to exploit the potentiality 
of the reliability information: the first model uses MF to obtain 
reliabilities, whereas the second one is a neural model that improves 
recommendation accuracy by incorporating in its input layer the 
previous MF reliability values.

The proposed classification architecture in this paper borrows 
the NCF classification concept from [36] and the NCF design from 
[11], trying to catch the individual strengths of both approaches. It 
also incorporates two innovative contributions to improve scalability 
through the use of input embeddings and to improve accuracy by 
replacing the usual regression ‘Dot’ layer with a ‘Concatenate’ layer 
that preserves the abstract information from hidden layers. By running 
the proposed model, we obtain pairs <prediction value, prediction 
reliability> and we make use of the reliability ‘extra’ information 
to get the most promising recommendations. Since the proposed 
classification architecture returns prediction reliabilities, it opens 
the door to remarkable state of art research fields such as mentioned 
above. The key question now is: will the classification approach 
return less accurate recommendations than the state of art regression 
approaches? If the answer is affirmative our classification architecture 
loses its purpose, whereas if it returns similar or higher accuracy 
than regression NCF it is valuable to use it and to take advantage of 
the reliability additional information. Thus, our hypothesis is that 
the proposed classification architecture provides similar or higher 
accuracy than the current NCF regression models, making it possible 
to take advantage of the extra reliability information it returns. The rest 
of the paper has been structured as follows: in Section II the proposed 
model is explained, and the experiments design is defined. Section III 
shows the experiments’ results and their discussions. Finally, Section 
IV contains the main conclusions of the paper and the future works.

II. Materials and Methods

This section contains two different subsections: the first one 
defines and explains the design of the proposed architecture and 
its relationship with the state of art models. The second subsection 
focuses on the experiments design and their implementation, defining 
the selected datasets, the chosen baselines, the stablished parameter 
values and the tested quality measures.

A. The Proposed Classification Based Neuronal Architecture
The proposed classification architecture has been designed 

following the DeepMF and the NCF state of art evolution, taking 
those elements that are more advantageous to the classification-based 
approach and removing the ones that are not appropriate. From the 
DeepMF [14] we have borrowed the two designed MLP branches 
to separately process item and user’s information. Fig. 1 shows the 
DeepMF architecture with its two separate N layers MLP neural 
networks. However, this DeepMF design has a remarkable drawback: 
it has not an appropriate scalability. 

As it can be seen in Fig. 1, both MLP branches are fed by using very 
large vectors as input: each user vector of ratings and each item vector 
of ratings. Please note that each item vector can contain millions of 
ratings, since some RSs contain explicit or implicit ratings coming from 
millions of users. Our classification-based solution makes use of an 
optimized approach to feed the neural network: the use of embedding 
layers. This architectural solution has been used in the NCF [11] design 
as shown in Fig. 2: now the input layer is coded by using vectors of bits 
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that are processed in the embedding layers, providing both the user 
and the item latent vectors. Additionally, and MLP neural network is 
used to process the latent vectors instead of the “Dot” layer used in the 
DeepMF approach; this MLP makes possible to find the complex non-
linear dependences existing among the embedding values.
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Fig. 1. DeepMF architecture [14].
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Fig. 2. NCF architecture [11].

Our proposed architecture is shown in Fig. 3; its inputs are just 
two numbers (for each existing rating): the item code and the user 
code. These two numbers feed two separate embedding layers that 
code each number as a vector of F values. The embedding process 
assigns similar embedding layer vector values to similar users (or 
similar items), making much easier the subsequent MLP tasks. The 
embedding layer operations make use of a lookup table where the 
keys are the users (or items) numbers, and the values are the dense 
vectors of size F. In this way we do not longer need to maintain 
explicit one-hot encoder sparse vectors as the ones shown in the NCF 
architecture (Fig. 2). Embedding layers are mainly used in natural 
language processing scenarios due to the huge sparsity of the words in 
sentence representations. RS datasets also present high sparsity levels, 
since users only cast ratings from a very reduced proportion of the 
available items. The embedding layer can be instanced by providing 
the maximum number of existing elements (users or items in the CF 
context) and the size of the compressed information (usually from 5 
to 20 values in the CF context). The proposed architecture embedding 

layer for items receives as input each item number from each existing 
rating. Likewise, the user’s embedding layer receives as input each 
user number from each existing rating. Each input number of the 
sequence is used as index to access a lookup table (embedding weight 
matrix) containing vectors for each user (or item). The lookup tables 
efficiently implement the embedding layers. Both the user and the item 
embedding layers compress and code each item and user ID (number). 
Once the embedding training process is finished, in the same way in 
which NLP related words have close embedding representations, CF 
related users and items have close embedding representations. Since 
our proposed architecture is classification based, the output layer has 
V neurons (Fig. 3), in contrast to the regression NCF version (Fig. 2) 
where one single neuron makes the regression. The V value depends 
on the number of different available implicit ratings or explicit votes in 
the RS (e.g.: 1, 2, 3, 4 or 5 stars). The output of the multilayer perceptron 
is positional (one neuron for each rating value, in this case 5-stars). 
Each output neuron provides a reliability measure. Whereas the NCF 
classification loss function is binary, in our classification architecture 
we use a categorical cross entropy loss; thus, our classification output 
layer returns V probabilities: vi ∈ ℛ, i ∈ {1, 2, ..., V}, ∑i vi = 1. Please 
note that the vi value’s argmax function provides us with the discrete 
prediction, whereas the corresponding vi value can be seen as the 
prediction reliability. This is a very different scenario to the regression 
based NCF, where prediction results are continuous prediction values. 
The classification NCF results are richer than the regression ones 
and it opens the door to use this additional information to deal with 
diverse RS goals such as providing prediction reliabilities, improving 
recommendation quality, making items or users relations graphs, or 
explaining recommendations.

Embedding
layer

Embedding
layer

Concatenate layer

result
classification 1 2 3 4 5

argmax

predictions
<prediction, reliability> : <4, 0, 6>

recommendations
N = 4

probabilities
M

ul
ti

la
ye

r
Pe

rc
ep

tr
on

<5, 0, 9>
<5, 0, 8>
<4, 0, 9>
<4, 0, 8>

<4, 0, 6>
<5, 0, 8>

<5, 0, 9>
<4, 0, 2>

<5, 0, 2>

<5, 0, 4>
<4, 0, 9>

<4, 0, 8>

0,15
0,15

0,05 0,05
0,60

internal lookup
table

item

key F dense values F dense valueskey

347

347 0.91 1.03 0.1
34 0.12 0.2 0.11 0.1

31

980

0.15 0.06 0.12

0.44 0.24

user 347

Fig. 3. Proposed architecture and recommendation method.

In short, we encourage the use of an NCF classification-based 
architecture whose samples are simple item and user numbers, 
and whose output labels are ratings. This design avoids large input 
vectors, and it returns <rating, reliability> prediction pairs. Hereafter 
we provide an example to show the flexibility of the classification 
based NCF: we will choose the most promising recommendations 
from their rich results, compared to the restricted operation evolved in 
the regression approach. From the following set of pairs <prediction, 
reliability>: <5, 0.3>, <5, 0.2>, <5, 1>, <5, 0.9>, <4, 0.8>, <4, 0.4>, <4, 
0.7>, <3, 0.7>, the following ordered list of recommendations could be 
obtained: <5, 1>, <5, 0.9>, <4, 0.8>, <4, 0.7>. We have just filtered to 
the highest predictions (4 & 5) and the highest reliabilities (reliability 
>= 0.5), and then we have ordered the resulting pairs attending to 
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their reliability. As it can be seen, risky recommendations have been 
avoided (<5, 0.2>, <5, 0.3>, <4, 0.4>) in a process that is not available 
using the NCF regression results.

The Algorithm 1 Keras code section shows a specific implementation 
of the proposed NCF classification architecture. In this case, the dataset 
contains 5 categories (1 to 5 stars) and the chosen embedding size is 10 
(line 1). Lines 2 to 4 input each movie number code, embedding them 
and prepare their flatten representation; lines 5 to 7 make the same 
process for each user number code. Both the movie and user flatten 
representations are concatenated in the ‘Concatenate’ layer in line 8. 
The existing complex non-linear relations between users and items 
are learnt in the hidden layers coded from line 9 to line 12. Line 13 
creates the five categories classification output layer, and it assigns 
the softmax activation function to the neurons. The whole model is 
created in line 14, defining the users/items input tensor and the output 
layer. Finally, the compile and fit methods are set in lines 15 and 16.

Algorithm 1. Classification NCF design
1. embed_size = 10; num_categ = 5

2. movie_input = Input(shape=[1])
3. movie_embedding = 
    Embedding(num_movies + 1, embed_size)(movie_input)
4. movie_flatten = Flatten()(movie_embedding)

5. user_input = Input(shape=[1])
6. user_embedding = 
    Embedding(num_users + 1, embed_size)(user_input)
7. user_flatten = Flatten()(user_embedding)

8. concat = 
    Concatenate(axis=1)([movie_flatten, user_flatten])
9. mlp_1 = Dense(80, activation=’relu’)(concat)
10. mlp_2 = Dropout(0.4)(mlp_1)
11. mlp_3 = Dense(25, activation=’relu’)(mlp_2)
12. mlp_4 = Dropout(0.4)(mlp_3)
13. output = 
    Dense(num_categ, activation=’softmax’)(mlp_4)

14. model_classification = 
     Model([user_input, movie_input], output)
15. model_classification.compile(
       optimizer=’adam’, metrics=[‘mae’], 
       loss=’categorical_crossentropy’)
16. history = model_classification.fit(
    [train[:,USER], train[:,ITEM]], 
    to_categorical(train[:,RATING]), 
    validation_data=([test[:,USER],test[:,ITEM]],
    to_categorical(test[:,RATING])), epochs=EPOCHS,  
    verbose=1)

B. Experiments Design
This paper’s hypothesis claims that classification based NCF 

provides similar or better accuracy than the regression based NCF 
model. Additionally, classification based NCF allows to tackle a variety 
of RS goals in a simpler way than the regression approach. To test the 
comparative accuracy of both NCF approaches we have designed a 
set of experiments involving prediction and recommendation results, 
processing a variety of baselines and using several public CF datasets. 
The selected RS datasets are: Movielens 100K [38], Movielens 1M [38], 
MyAnimeList* (a subset of the original dataset) [39] and Netflix* [40] 
(a subset of the original dataset). Table I shows these datasets main 
parameter values.

TABLE I. Main Parameters of the Datasets Used in the Experiments

Dataset #users #items #ratings scores sparsity

Movielens 100K 943 1682 99,831 1 to 5 93,71

MovieLens 1M 6,040 3,706 911,031 1 to 5 95,94

MyAnimeList* 19,179 2,692 548.967 1 to 10 98,94

Netflix* 23,012 1,750 535,421 1 to 5 98,68

The paper’s baselines are: DeepMF [14], NCF regression [11], 
NCF classification, and binary NCF classification. NCF classification 
corresponds to the architecture in Fig. 3, whereas binary NCF 
classification is the NCF classification version where ratings have 
been converted to “relevant” or “not relevant” (e.g.: relevant ⇔ rating 
>= 4, not relevant ó rating < 4), and labels have also been converted 
to the exposed ‘relevant’ and ‘not relevant’ discrete classification. The 
difference between NCF classification and the proposed method is that 
reliability results are not used in the baseline. Table II abstracts both 
the proposed and the baselines architectures. Both the DeepMF and 
the regression architectures make use of a ‘Dot’ layer to join their 
embeddings, whereas a ‘Concatenate’ layer has been used in both the 
proposed and the baseline classification architectures.

TABLE II. Proposed and Baseline Architectures

Architecture type merge layer Reliability inf.

Proposed classification concatenate yes

DeepMF regression dot no

Regression regression dot no

Classification classification concatenate no

Binary 
classification classification concatenate no

TABLE III. Experiments and Their Main Parameter Values

Experiment # recomm. (N) Relevancy 
threshold

Prediction value 
threshold

Precision / 
recall {2,4,6, …, 10}

{3, 4, 5} 
Movielens and 

Netflix
{0}

{7, 8, 9} 
MyAnimeList

Quality 
predicting each 
rating {1,2,…,5}

{2, 6, 10} Movielens 
and Netflix

{7, 8, 9} 
MyAnimeList

{4} {0}

Precision vs. 
coverage {10} {3, 4, 5} {4, 4.2, 4.4, 4.6, 4.8}

The main experiments make use of the precision and recall 
recommendation measures, tested by using a range from 2 to 10 
number of recommendations (N). A secondary set of experiments tests 
the prediction quality on each of the dataset ratings (1 to 5 stars), using 
2, 6 or 10 number of recommendations (7, 8 and 9 for the MyAnimeList 
dataset). Finally, an experiment tests the precision versus coverage 
obtained by filtering to predictions higher than a beta threshold. In 
the CF context, the relevancy threshold parameter is used to classify 
a rating or a prediction in the categorical set {relevant, not_relevant}. 
Experiments on datasets where votes range from 1 to 5 (Movielens, 
Netflix, etc.) usually set the relevancy threshold in the value 4; that 
is: ratings 4 and 5 are considered relevant, and predictions greater 
than or equal to 4 are considered as candidates to be recommended. 
The relevancy threshold is also important in the cross-validation 
testing process, since recommendations made to items voted under 
4 are considered as errors, whereas recommendations made to items 
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voted 4 or above are considered as successes. In this example, setting 
the relevancy threshold to 5 makes it more difficult to get high success 
(precision, recall, etc.) levels. Table III shows the experiments and their 
main parameter values.

III. Results

Our first experiment compares the quality of recommendations 
obtained by using the proposed method and the baselines. The chosen 
CF quality measures have been the precision and recall ones. The main 
parameters of this experiment are abstracted in the Table III first row. 
Fig. 4 shows the results obtained on both the Movielens 100K (top 
graphs) and Movielens 1M (bottom graphs). The main conclusion 
is that, as expected, the proposed classification based NCF method 
reaches adequate recommendation quality results, compared to state 
of art NCF baselines. Additionally, we can see that both the recall and 
the precision evolutions are the expected ones: precision decreases 
as the number of recommendations (N) increases, whereas recall 
increases as the N value increases. The y axis scale shows better results 
in the graphs corresponding to the 1M Movielens version compared 
to the 100K one. Fig. 4 results are particularly interesting when the 
recommendations difficulty is increased: when the relevancy threshold 
is set to its limit (value 5); in this scenario we find a Movielens 100K 
optimum number of recommendations: 7 (graph on the top-right of 
Fig. 4), an also a remarkable behaviour of the proposed method when 
applied to Movielens 1M (graph on the bottom-right of Fig. 4).

The same kind of experiments have been performed by using 
the MyAnimeList* and Netflix* datasets (Table I). Results confirm 

the conclusions obtained in both Movielens datasets, particularly it 
is confirmed that the proposed NCF classification approach reaches 
adequate recommendation results. The top graphs of Fig. 5 show the 
MyAnimeList* results; this dataset has a range of votes from 1 to 10, 
instead the usual 1 to 5. This circumstance reduces the quality of the 
binary classification baseline, since the binary differentiation between 
relevant and not relevant ratings becomes less precise.  

Fig. 5 top-center and top-right graphs shows the mentioned quality 
drop. It is also remarkable that in both Fig. 4 and Fig. 5 we can observe a 
better behaviour of the NCF classification proposed approach than the 
NCF classification regular method; this means that an adequate use of 
the reliability information leads to the expected quality improvements.

The explained experiments are based on the usual approach to test 
recommendation quality: proportion of the relevant recommended 
items versus the total number of recommendations (precision) or 
versus the total number of relevant items (recall). In both cases, we 
are considering a hit if the recommended item exceeds a relevancy 
threshold. In some RS scenarios we need a more fine-grained 
predictions and recommendations. This is the case when we want to 
be sure we will not like an item, or we will only like it if it has been 
recommended with a particular value; e.g.: I am interested in a set of 
songs, but I want to discard everyone who has obtained 1 or 2 stars. 
I want to watch some films unknown to me, then I will surf by those 
the RS recommendation is three stars. To test the proposed and the 
baselines NCF approaches in this scenario, the experiments shown in 
the second row of Table III have been run. Basically, we obtain the 
quality of each architecture to appropriately recommend each existing 
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Fig. 4. Precision and recall quality results obtained by using the Movielens 100K (top graphs) and the Movielens 1M (bottom graphs). Three relevancy 
thresholds have been tested: 3 (left graphs), 4 (center graphs), 5 (right graphs). The proposed architecture has been compared to the baselines: deepMF [14], 
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rating in the CF dataset. The binary NCF classification has not been 
included since it is not designed to predict individual ratings.  

Fig. 6 shows the obtained results on the covered datasets. Beyond 
details, it can be seen the superiority of the proposed NCF method 
in all the contemplated scenarios. This is the expected result, since 
DeepMF and NCF regression just provide prediction values, whereas 
the proposed NCF classification architecture returns specific and 
complete classification information shaped like <rating, reliability> 
pairs. The remarkable differences in the quality results of the different 
ratings (x-axis) when predicted by the NCF classification or regression 
methods is due to the CF datasets are usually biased to high rating 
values. As an example: both Movielens datasets show a much bigger 
difference between NCF classification and regression methods for the 
rating 1 and the rating 2 predictions; users tend to cast high votes 
(4 and 5), and then the number of low votes (1 and 2) are usually 
scarce in CF datasets. In this scenario, the NCF classification method 
particularly shows its superiority over the NCF regression one.

Finally, a set of experiments have been conducted (third row in 
Table III) to compare precision and coverage in the NCF scenario. 
It is important to realize that several parameters determine the 
recommendation coverage in a cross-validation scenario: a) the dataset 
distribution of ratings, particularly the rating matrix sparsity, b) the 
requested number of recommendations (N), c) the required threshold 
(4 stars, 5 stars); e.g.: it can be difficult to find users to recommend 
N=10 items with a 5 threshold in a cross-validation testing scenario. 
Usually, recommendation quality and coverage are inversely related. 
To conduct the experiments, we introduce a beta threshold used to 
select predictions that are greater than beta; e.g.: centered graph in 

Fig. 7 shows recommendation results where the relevancy threshold is 
4 stars (top label); looking at the x-axis in its 4.4 beta threshold we can 
know the obtained coverage and recommendation precision selecting 
predictions equal to or higher than 4.4. As it can be seen, by increasing 
the beta value we also increase precision, but at the cost of a sharp 
decrease of the coverage. In the current experiment, the key question 
is to compare the precision versus coverage equilibrium in both the 
proposed method and the baselines. We can observe that the proposed 
method gets and intermediate position between DeepMF and NCF 
regression, and we can conclude that the baselines and the proposed 
method similarly performs in this particular issue: thus, the proposed 
classification architecture use does not worsen the RS coverage.

IV. Conclusion

Current collaborative filtering deep learning architectures are 
focused on the regression approach; they provide accurate predictions 
and recommendations compared to the state of art, but they do not 
return any reliability value of such predictions and recommendations. 
Conversely, classification based deep learning architectures are able 
to provide both the value and the reliability of each prediction or 
recommendation. By combining the prediction value and the reliability 
information it is possible to afford several remarkable tasks, such as 
obtaining more reliable recommendations, making some reliability-
based explanations of the recommendations to users, showing 
navigable trees that relate users or items, implementing methods to 
reduce the shilling attacks consequences, etc.
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regression [11], regular NCF classification and binary NCF classification. Precision and recall “proposed” values are the results of the proposed method in the 
paper (Table II).
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Despite the mentioned advantages of the classification-based 
neural collaborative filtering approach, the proposed approach cannot 
be embraced without testing its quality performance: similar or 
better results must be obtained by applying the proposed architecture 
compared to the state of art regression baselines. Experiments in 
this paper show that the proposed classification architecture obtains 
similar recommendation accuracy results than the regression 
architectures do; precision and recall measures provide comparable 
quality results in a complete set of experiments where different 
thresholds and diverse number of recommendations are chosen. 

Results show a consistent pattern when experiments have been run 
on four public datasets. On the other hand, the proposed architecture 
shows improved prediction results: it is able to accurately predict 
individual ratings, outperforming prediction quality compared with 
the state of art regression approaches. Finally, the precision versus 
coverage balance stays similar in both the proposed and the baselines 
neural architectures.  

In short, the proposed classification-based architecture can replace 
the state of art neural collaborative filtering approaches: its use does 
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not worsen the recommendation quality, it improves the prediction 
of individual ratings, and it opens the door to a set of relevant 
collaborative filtering areas. Remarkable future works from this paper 
are: to make use of reliabilities to detect shilling attacks, to provide 
reliability values in the users’ recommendations, and to filter non 
reliable recommendations.
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