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Abstract
We have implemented a self-consistent field solver for Hartree–Fock calculations, 
by making use of Multiwavelets and Multiresolution Analysis. We show how such a 
solver is inherently a preconditioned steepest descent method and therefore a good 
starting point for rapid convergence. A distinctive feature of our implementation is 
the absence of any reference to the kinetic energy operator. This is desirable when 
Multiwavelets are employed, because differential operators such as the Laplacian in 
the kinetic energy are challenging to represent correctly. The theoretical framework 
is described in detail and the implemented algorithm is both presented in the paper 
and made available as a Python notebook. Two simple examples are presented, high-
lighting the main features of our implementation: arbitrary predefined precision, 
rapid and robust convergence, absence of the kinetic energy operator.
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1 Introduction

Atom-centered Gaussians have traditionally been the most common and wide-
spread choice of basis set for molecules [1]. Several strong arguments are in favor 
of such a choice: the compactness of the representation which is defined by a 
handful of coefficients, the ability to represent atomic orbitals well (Slater func-
tions are in theory superior due to the cusp at the nuclear position and the correct 
asymptotic), the simplification in the computation of molecular integrals which 
are often obtained analytically (this is the weak point of Slater orbitals which 
require expensive numerical evaluations). Their main disadvantage is the non-
orthogonality of the basis which can become a severe problem especially for large 
bases leading to a computational bottleneck when orthonormalization is required 
or worse numerical instabilities due to near linear-dependency in the basis [2].

On the opposite side of the spectrum, plane waves (PWs) are ideally suited 
for periodic systems and are orthonormal by construction. However a very large 
number of them needs to be employed in order to achieve good precision, espe-
cially if one is interested in high resolution in the nuclear-core regions [3]. A 
popular choice to circumvent the problem is to use pseudopotentials [4] in the 
core region, thereby reducing the number of electrons to be treated and at the 
same time removing the need for very high-frequency components. Lately, the 
use of projector augmented wave (PAW) [5] and linearized augmented plane 
wave (LAPW) [6] techniques, has made this issue less critical for PW calcula-
tions. Another challenge for PWs is constituted by non-periodic systems, which 
can only be dealt with by using a supercell approach [7].

Quantum chemical modeling is constantly expanding its horizons: cutting edge 
research is focused on achieving good accuracy (either in energetics or molecular 
properties) on large non-periodic systems such as large biomolecules or molecu-
lar nanosystems. This progression is constantly exposing the weaknesses of the 
traditional approach thus rendering the use of unconventional methods, which are 
free from the above mentioned limitations ever more attractive. One such choice 
is constituted by numerical, real-space grid-based methods which are gaining 
popularity in quantum chemistry as a promising strategy to deal with the Self 
Consistent Field (SCF) problem of Hartree Fock(HF) and density functional the-
ory (DFT).

Among real-space approaches, three strategies have been commonly employed: 
Finite Differences [8], Finite Elements [9], Wavelets [10, 11] and Multiwavelets 
(MWs) [12]. MWs are particularly well suited for all-electron calculations [12, 
13]. The basis functions are localized (as Gaussian-type orbitals) yet orthonormal 
(as plane waves). One crucial property of MWs is the disjoint support (zero over-
lap) between basis functions in adjacent nodes [14], paving the way for adaptive 
refinement of the mesh, tailored to each given function. This is essential for an 
all-electron description where varying resolution is a prerequisite for efficiency. 
The price to pay, to provide a representation with a given number of vanishing 
moments, is a basis consisting of several wavelet functions per node. The most 
common choice of basis functions in the MW framework is a generic orthonormal 
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polynomial basis of order k, providing a second possibility to increase the resolu-
tion of the representation alongside the adaptive grid refinement [15]. Currently, 
the main drawbacks of this approach are a large memory footprint (a numerical 
representation of a molecular orbital is much larger in terms of number of coef-
ficients), and a significant computational overhead [16, 17]. On the other hand, 
a localized orthonormal basis is an ideal match for modern massively-parallel 
architectures [18] and we are confident that it is only a matter of time before real-
space grid methods in general and MWs in particular will become competitive 
with or even superior to traditional ones.

To achieve high precision and keep the memory footprint at a manageable level, 
an adaptive strategy which refines grids only if needed is necessary [19]. This choice 
has a profound impact on the minimization strategies that can be adopted in order to 
solve SCF problems such as the Roothaan–Hall equations of the Hartree–Fock (HF) 
method. In other words, strategies which rely upon having a fixed basis, such as the 
most common atomic orbital based methods [20] are excluded. On the other hand, 
only the occupied molecular orbitals are needed both in HF and DFT to describe 
the wavefunction/electronic density. Methods providing a direct minimization of the 
orbitals without requiring a fixed basis representation must be considered. Addition-
ally, using MWs on an adaptive grid generates representations with discontinuities 
at the nodal surfaces, which poses a challenge when differential operators are con-
sidered. As will be shown in the paper, if the Hartree–Fock equations are reformu-
lated as coupled integral equations, it becomes possible to minimize the occupied 
orbitals, without ever recurring to differential operators.

2  Functions and operators in the Multiwavelet framework

When defining the MW framework we think in terms of scaling spaces Vn and wave-
let spaces Wn . The scaling space V0 in 3D real-space is spanned by a set of orthogo-
nal polynomials on the unit cube, and the spaces Vn for n > 0 are obtained recur-
sively by splitting the intervals of Vn−1 in 23 sub-cubes, then translate and dilate the 
original polynomial basis onto those intervals. This results in the ladder of scaling 
spaces

which are approaching completeness in L2 . The wavelet spaces Wn are defined as the 
orthogonal complement of the scaling space Vn in Vn+1

which results in the following relation

(1)V0 ⊂ V1 ⊂ … ⊂ Vn ⊂ …

(2)Wn ⊕ Vn = Vn+1,

(3)VN = V0 ⊕W0 ⊕W1 ⊕…⊕WN−1.
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2.1  Functions

Functions can be approximated by a projection Pn onto the scaling space Vn , 
which we denote as

where the latter sum runs over all the 23n cubes that make up a uniform grid at length 
scale 2−n . Obviously, larger n means higher resolution and thus a better approxi-
mation. Importantly, these cubes completely fill the space of the unit cube, without 
overlapping, which means that all of them are necessary in order to get a complete 
description of f.

Similarly, a function projection onto the wavelet space Wn is denoted as

Here it should be noted that such a wavelet projection is not an approximation to the 
function, but should be regarded as a difference between two consecutive approxi-
mations. By making use of the relation in Eq. (3), we can arrive at two equivalent 
representations for the approximated function:

where the former can be thought of as a high-resolution representation at a uniform 
length scale N, while the latter is a multi-resolution representation that spans several 
different length scales n = {0,… ,N − 1} . The two representations are completely 
equivalent both in terms of precision and complexity (number of expansion coef-
ficients), but the latter has one significant advantage: since it is built up as a series of 
corrections to the coarse approximation at scale zero, one can choose to keep only 
the terms that add a significant contribution [12, 21]

where � is some global precision threshold.

2.2  Convolution operators

As will be shown in the following sections, for SCF algorithms within a precon-
ditioned steepest descent framework, the necessary operators are the Poisson 
operator for the Coulomb and exact exchange contributions and the bound-state 
Helmholtz operator for the SCF iterations. Their Green’s kernel can be written as

(4)f ≈ Pnf
def
= f n =

∑

l

f n
l
,

(5)Qnf
def
=df n =

∑

�

df n
�
.

(6)f ≈ f N =
∑

�

f N
�
= f 0

�
+

N−1∑

n=0

∑

�

df n
�
,

(7)||df n
�
|| > 𝜖

2n∕2
||f ||,
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where 𝜇 > 0 yields the bound-state Helmholtz kernel, whereas � = 0 is the Poisson 
kernel. Their application is achieved by convolution of a function with the corre-
sponding Green’s kernel

once an approximate separated form in terms of Gaussian functions has been com-
puted [21–23]:

The non-standard [22, 24] form of the operator T is built as a telescopic expansion 
of the finest scale projection TN = PNTPN

where An = QnTQn , Bn = QnTPn , Cn = PnTQn . Thanks to the vanishing moments 
of the MW basis, the matrix representations of An , Bn and Cn (which contain at least 
one wavelet projector) are diagonally dominant for both the Poisson and bound-state 
Helmholtz kernels. Therefore, all terms beyond a predetermined bandwidth can be 
omitted in the operator application, by a screening similar to the one for functions in 
Eq. (7). In particular, we have previously shown that the application of the Poisson 
operator for the calculation of the electrostatic potential scales linearly with the size 
of the system [25].

2.3  Derivative operators

The discontinuities in the MW basis leads to a number of problems when consid-
ering derivative operators. In contrast to the well-behaved smoothing properties of 
the integral operators as discussed above, the application of the derivative operator 
will amplify the numerical noise arising from the discontinuity between adjacent 
intervals in the representation. In particular, since the standard construction [14] of 
the operator allows only for a first derivative to be defined, higher derivatives have 
to be computed by repeated application of the first derivative, which will effectively 
propagate, and further amplify, the numerical noise at every step. This prohibits the 
use of MW in certain situations, like iterative time-propagation methods involving a 
derivative in the propagation operator.

A new class of derivative operators was proposed recently by Anderson et al. [26], 
addressing some of the issues with the original construction. The idea behind the new 
construction was to realize that the MW representations are usually discontinuous 

(8)G�(r − r�) =
e−�‖r−r

�‖

4�‖r − r�‖ ,

(9)g(r) = [Tf ](r) = ∫ G�(r − r�)
[
f (r�)

]
dr�,

(10)G�(r − r�) ≈

M∑

i=1

aie
−�i(r−r

�)2 .

(11)TN = T0 +

N−1∑

n=0

(An + Bn + Cn),
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approximations of functions that are supposed to be smooth and continuous. In these 
situations, a workaround can be achieved by moving to an auxiliary continuous basis, 
compute the derivative, and then move back to the original (discontinuous) MW basis. 
Anderson et al. proposed either b-splines or bandlimited exponentials for this auxiliary 
basis.

It should be noted that the new operators assume that the input function is n times 
differentiable, even if its MW representation is clearly not. It is thus only appropriate 
if the function does not in fact contain any analytic discontinuities or cusps. It is well 
known that the non-relativistic electronic wavefunction in any point-nucleus model 
does contain cusps at the nuclear positions, but there are workarounds for this problem, 
by either removing the cusps from the wavefunction analytically [27], or by introducing 
effective core potentials.

In the following we will avoid this issue altogether, by formulating the HF equations 
without any reference to the kinetic energy (or derivative) operator.

3  The Hartree–Fock equations

The HF equations are indisputably the cornerstone of quantum chemistry. We will here 
briefly revise the formalism as presented by Jensen [28]. It constitute a concise yet for-
mally correct derivation, which also has the advantage of being completely independ-
ent of the choice of basis.

We start by considering the energy expression of a Slater determinant:

where � is a single determinant and Ĥ is the electronic Hamiltonian operator.
In terms of the spinorbitals 

{
�i, i = 1…N

}
 defining the Slater determinant, the 

energy expression can be written as follows:

where hi represents the one-electron part of the energy, Jij is the Coulomb interac-
tion, Kij is the exchange interaction and UN constitutes the inter-nuclear repulsion. 
They are obtained respectively as:

(12)⟨E⟩HF = ⟨𝛹 �Ĥ�𝛹⟩,

(13)⟨E⟩HF =
�

i

hi +
1

2

�

ij

�
Jij − Kij

�
+ UN ,

(14)hi =⟨𝜑i�ĥ�𝜑i⟩ = ⟨𝜑i�T̂ + V̂N�𝜑i⟩,

(15)Jij =⟨�i(x1)�j(x2)�1∕r12��i(x1)�j(x2)⟩,

(16)Kij =
⟨
�i(x1)�j(x2)|1∕r12|�j(x1)�i(x2)

⟩
,
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In the above equations, lowercase indices run over the electrons, uppercase ones run 
over the nuclei, Z is a nuclear charge, R is the inter-nuclear distance, r is the inter-
electronic distance, T̂ = −∇2∕2 is the kinetic energy operator, V̂N = −

∑
I ZI∕�RI − r� 

is the nuclear potential, and atomic units ( ℏ = 1 , qe = −1 , me = 1 ) are used through-
out. It is useful to define the effective one-electron Coulomb and Exchange operators 
as:

In accordance to the variational principle, the minimizer is obtained by writing the 
Lagrangian equations with the constraint of orthonormal occupied orbitals, and dif-
ferentiating with respect to orbital variations:

where the Fock operator F̂ is defined as:

The functional derivative of the Lagrangian with respect to an arbitrary orbital vari-
ation ��i and of its complex conjugate ��∗

i
 can then be written as:

The Lagrange multipliers constitute a Hermitian matrix [28], which leads to the cou-
pled HF equations:

The Fock matrix F can be formally obtained by projecting the above equations along 
the directions defined by the set of occupied orbitals:

(17)UN =
∑

I>J

ZIZJ

RIJ

.

(18)Ĵi�𝜑j⟩
def
= ⟨𝜑i�1∕r12�𝜑i⟩�𝜑j⟩,

(19)K̂i�𝜑j⟩
def
=

�
𝜑i�1∕r12�𝜑j

�
�𝜑i⟩.

(20)

𝛿L =
�

i

�
𝛿𝜑i�F̂�𝜑i

�
−
�

ij

𝜆ij⟨𝛿𝜑i�𝜑j⟩ +
�

i

�
𝛿𝜑i�F̂�𝜑i

�∗
−
�

ij

𝜆ji⟨𝛿𝜑i�𝜑j⟩∗,

(21)F̂ = ĥ + Ĵ − K̂ = ĥ +
∑

j

Ĵj − K̂j.

(22)
𝛿L

𝛿𝜑i

= F̂�𝜑i⟩ −
�

j

𝜆ij�𝜑j⟩,

(23)
𝛿L

𝛿𝜑∗
i

= F̂�𝜑i⟩∗ −
�

j

𝜆ji�𝜑j⟩∗.

(24)F̂𝜑j =
∑

i

𝜑iFij.

(25)F =
⟨
𝛷|F̂|𝛷

⟩
.
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In the equation above and in the rest of the paper, we made use of a shorthand nota-
tion, indicating with � = (�1,… ,�N) the row-vector of all occupied orbitals.

The Fock operator depends on the orbitals implicitly through Ĵ and K̂ . The equa-
tions must therefore be solved iteratively. The straightforward iteration would in 
practice correspond to a steepest descent minimization:

where � defines the length of the step and the negative sign emphasizes that the 
step is in the opposite direction of the gradient. We notice also that the orbital set {
�̃�n+1
i

, i = 1…N
}
 is not orthonormal, because the chosen parametrization is linear 

and not exponential [1, 29]. Throughout the paper we will use �̃� to refer to non-
(ortho)normalized orbitals.

The direct minimization described above is at best lengthy and often leads to 
either oscillations or even worse to divergent behavior [1]. The usual strategy to 
solve the HF equations consists in projecting the equations onto a given basis, and 
solving the so called Roothaan–Hall equations thereby obtained with an acceleration 
method known as Direct Inversion of the Iterative Subspace (DIIS) [30]. The DIIS is 
however centered on minimizing the occupied-virtual blocks of the Fock matrix in 
the finite basis representation. As discussed in the previous section, this is prevented 
when a MW approach is employed, because the basis set is adaptively refined for 
each function and should therefore be regarded as infinite and the use of differential 
operators within a MW basis is problematic.

An alternative is constituted by the integral representation of the HF equations as 
shown in the next section.

4  Helmholtz kernel and integral formulation

The use of an integral equation formalism to solve the Schrödinger equation was 
first proposed by Kalos [31]. Let us here consider the derivation for a one-electron 
system, for which we have the Schrödinger equation:

Such an equation can be rewritten in an integral form by making use of a Green’s 
function formalism. The starting point is the Helmholtz equation

which admits a solution in terms of the following Green’s function

(26)�̃�n+1 −𝛷n = −𝛼
𝛿L

𝛿𝛷
= −𝛼

(
F̂n𝛷n −𝛷nFn

)
,

(27)
[
−
∇2

2
+ V(r)

]
�(r) = ��(r).

(28)(−∇2 + �2)g(r) = f (r),

(29)(−∇2 + �2)G�(r) = �(r), G�(r) =
e−�|r|

4�|r| .
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By making use of this Green’s function kernel, and choosing �2 = −2� , the 
Schrödinger equation can be written in an integral form:

The above integral formulation does not require the explicit use of the kinetic energy 
operator, which has been formally inverted as follows:

The integral formulation provides also a natural starting point for efficient iterative 
algorithms. At each iteration n, the successive orbital �n+1 is obtained as:

For a practical realization of the algorithm, it is also necessary to be able to compute 
the energy expectation value 𝜖 = ⟨𝜑�Ĥ�𝜑⟩ without recurring to the explicit evalua-
tion of the kinetic energy. Consider the expectation value at iteration n + 1 , if �n+1 
is obtained through Eq. (32), it is easy to show that �n+1 can be obtained as a direct 
update

This shows that the expectation value of the total energy can be obtained by updat-
ing �n with the matrix element of the potential operator involving the new orbital 
�̃�n+1 and the previous one �n . We underline that such a prescription is valid for an 
arbitrary form of the potential and only requires that the Helmholtz operator used 
in Eq. (32) is computed with � =

√
−2�n . It is however not required that �n be the 

expectation value at iteration n, which allows to start with a predefined initial guess 
�0 at the first iteration.

5  Integral formulation for a many‑electron system

The procedure described in the previous section can be extended to a many-electron 
system, to compute all elements of the Fock matrix defined in Eq. (25). To simplify 
the notation, all occupied orbitals {�i} are collected in the row-vector � . Starting 
from the coupled HF Eq. (26), and applying the Helmholtz operator Ĝ�

n:

In the above equations the operators T̂  and V̂  are applied on each component of 
� . Similarly Ĝ� is applied on each component of the resulting vector in the square 
brackets, making sure the proper �i is employed for each component i. By recalling 
the relationship between the Helmholtz kernel and the shifted kinetic energy, one 
obtains:

(30)𝜑(r) = −2Ĝ𝜇
[
V̂𝜑

]
= −2∫ G𝜇(r − r�)

[
V̂(r�)𝜑(r�)

]
dr�.

(31)(T̂ − 𝜖)−1 = 2Ĝ𝜇.

(32)�̃�n+1 = −2Ĝ𝜇n[
V̂𝜑n

]
.

(33)𝜖n+1 = 𝜖n +

�
�̃�n+1�V̂��̃�n+1 − 𝜑n

�

⟨�̃�n+1��̃�n+1⟩
.

(34)�̃�n+1 −𝛷n = −𝛼Ĝ�
n[(

T̂ + V̂n
)
𝛷n −𝛷nFn

]
.
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where � = 1 and �n
ij
= �n

i
�ij is a diagonal matrix, with �n

i
= −

(�n
i
)2

2
.

Although the integral formulation above and the differential one in Eq. (26) are 
formally equivalent, there is an important distinction to be made. Iterating on the 
differential formulation corresponds to a steepest descent algorithm, whereas the 
integral formulation is instead a preconditioned steepest descent algorithm, with the 
preconditioner B = (T − �ii)

−1 . The integral formulation is therefore a better start-
ing point for optimizations.

Compared to the one-electron case, a few complications arise for the HF coupled 
equations: 

1. The Fock operator, in contrast to the one-electron Hamiltonian, depends on the 
electronic orbitals. Computing the Fock matrix will therefore require the update 
of the potential to be taken into account.

2. The electrons are described by a set of orbitals which must be kept orthonormal, 
in order to arrive at a true Aufbau solution of the HF equations, otherwise a 
straightforward iteration of Eq. (35) would bring all orbitals to the lowest eigen-
function.

There is also an arbitrariness in the choice of the parameters �n
i
 defining the Helm-

holtz kernels. The natural choice is to make sure that the diagonal element in the last 
term cancels ( �ii = Fii ). Numerical tests, performed by using a fixed � , have shown 
that this choice is indeed nearly optimal in terms of the number of iterations needed 
to converge the orbitals.

The simplest approach to keep orthonormality would be to apply Eq.  (35) for 
each orbital followed by a Gram–Schmidt orthogonalization in order of increasing 
energy. This would however lead to very slow convergence, especially for valence 
orbitals, as the convergence of each orbital is restrained by the convergence of 
lower-lying orbitals, which in turn will depend on all orbitals through the potential 
operator V̂ .

Harrison et al. [12] described how to use deflation to extract multiple eigenpairs 
from the Fock operator by recasting the equation for each orbital as a ground state 
problem. Another approach suggested in the same paper is to simply diagonalize the 
Fock matrix at each iteration.

5.1  Calculation of Fock matrix

The starting point is a set of orthonormal orbitals �n and an initial guess for the cor-
responding Fock matrix Fn ≈ ⟨𝛷n�F̂�𝛷n⟩ . We emphasize that such a guess need not 
to be the exact Fock matrix for the given orbital set. The new, and now exact, Fock 
matrix F̃n+1 = ⟨�̃�n+1�F̂��̃�n+1⟩ in the non-orthonormal basis obtained by applying 
Eq. (35) can be computed without any reference to the kinetic energy operator. This 
is in analogy to the one-electron case discussed in Sect. 4.

(35)�̃�n+1 = −2Ĝ�
n[
V̂n𝛷n +𝛷n(𝛬n − Fn)

]
,
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As for the one-electron case, the application of (T̂ − 𝜆n
i
) to the new orbital will 

return the argument from the Helmholtz operator, provided that �n
i
=
√
−2�n

i
 was used 

in this operator:

We can now use the above observation to eliminate the kinetic operator from the 
calculation of the Fock matrix:

where in the last step we have defined four updates:

Assuming that the original orbital set is orthonormal ( Sn
ij
= �ij ), then the new Fock 

matrix can be obtained as an update to the previous guess:

where

For the definition of the new Fock matrix to be consistent, the two-electron contri-
butions to the potential operator at the n + 1 step needs to be constructed using an 
orthonormalized version of the corresponding orbitals �̃�n+1 , while the matrix ele-
ments themselves are evaluated in the original non-orthonormal basis. This requires 
a temporary set �̄� , constructed e.g. through a Gram–Schmidt process, so that 
⟨�̄�i��̄�j⟩ = 𝛿ij . In this basis we can define the Coulomb and Exchange operators as

(36)
(
T̂ − 𝜆n

i

)
�̃�n+1
i

= −
[
V̂n𝜑n

i
+
∑

j

𝜑n
j

(
𝛬n

ji
− Fn

ji

)]
.

(37)

F̃n+1
ij

=
�
�̃�n+1
i

�T̂ + V̂n+1��̃�n+1
j

�

=
�
�̃�n+1
i

�T̂ − 𝜆n
j
��̃�n+1

j

�
+
�
�̃�n+1
i

�V̂n+1 + 𝜆n
j
��̃�n+1

j

�

= −⟨�̃�n+1
i

�V̂n�𝜑n
j
⟩ + ⟨�̃�n+1

i
�
�

k

�
𝛬n

kj
− Fn

kj

�
𝜑n
k
⟩ +

�
�̃�n+1
i

�V̂n+1 + 𝜆n
j
��̃�n+1

j

�

=
�
�̃�n+1
i

�𝛥V̂n��̃�n+1
j

�
+
�
�̃�n+1
i

�V̂n�𝛥�̃�n
j

�
+
�
SnFn

�
ij
+
�
𝛥S̃n

1
Fn

�
ij
+
�
𝛥S̃n

2
𝛬n

�
ij

(38)𝛥�̃�n
i
= �̃�n+1

i
− 𝜑n

i
,

(39)𝛥V̂n = V̂n+1 − V̂n,

(40)𝛥S̃n
1
= ⟨𝛥�̃�n�𝛷n⟩,

(41)𝛥S̃n
2
= ⟨�̃�n+1�𝛥�̃�n⟩.

(42)F̃n+1 = Fn + 𝛥S̃n
1
Fn + 𝛥S̃n

2
𝛬n + 𝛥F̃n

pot
,

(43)𝛥F̃n
pot

= ⟨�̃�n+1�V̂n�𝛥�̃�n⟩ + ⟨�̃�n+1�𝛥V̂n��̃�n+1⟩.
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which are used when computing the potential updates in Eqs. (39) and (43).
We want to emphasize that these expressions are formally exact, but they require 

that the orbitals of the new set �̃�n+1 are related to the orbitals of the old set �n 
exactly through the application of the Helmholtz operator in Eq.  (35). Otherwise 
the application of the kinetic energy operator cannot be avoided to obtain the Fock 
matrix.

5.2  Calculation of energy

The Hamiltonian and the Fock operator differ only by a factor two in the two-elec-
tron contribution. The expectation value of the Hamiltonian defined in Eq. (13) can 
therefore be obtained by taking the trace of the Fock matrix and subtracting the two-
electron contribution

which means that the kinetic energy operator can be avoided also for the expectation 
value.

5.3  Orbital orthonormalization

As already mentioned, the basic iteration of the integral operators in Eq.  (35) to 
all orbitals {�i} does not preserve orthonormality. We thus need to explicitly 
enforce orthonormality in each iteration, but here it is important to avoid projective 
approaches like the Gram–Schmidt procedure, because these will not allow us to 
carry over the Fock matrix to the new orbitals. Instead, we can make use of the over-
lap matrix S̃ = ⟨�̃���̃�⟩ in a Löwdin transformation [32]

which allows us to employ the same transformation to the Fock matrix, thus keeping 
it consistent with the new orthonormal orbitals.

In order to speed up convergence it is useful to augment the Löwdin transforma-
tion with another rotation M that brings the orbitals to a particular form. For small 
systems this can be a diagonalization of the Fock matrix, but for larger systems 
it is often beneficial to localize the orbitals, e.g. in a Foster–Boys [33, 34] trans-
formation that maximizes the separation between the orbitals from the functional 
LFB =

∑
i⟨�i����i⟩2 . In practice it will not be necessary to diagonalize/localize in 

(44)Ĵn+1𝜑 =
∑

j

𝜑(r)∫
�̄�n+1
j

(r�)�̄�n+1
j

(r�)

|r − r�| dr�,

(45)K̂n+1𝜑 =
∑

j

�̄�n+1
j

(r)∫
𝜑(r�)�̄�n+1

j
(r�)

|r − r�| dr�,

(46)E =
�

i

Fii −
�

i

⟨𝜑i�Ĵ − K̂�𝜑i⟩,

(47)�̄� = �̃�S̃−1∕2, ⟨�̄���̄�⟩ = I,
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every SCF iteration, so the matrix M can be chosen as the identity for many inter-
mediate steps. The combined transformation matrix then becomes Ũ = S̃−1∕2MX , 
with X = {C, L, I} for canonical, localized or identity, and the new orbital vector and 
Fock matrix are obtained with

6  Implementation

The general algorithm for the SCF optimization for many-electron systems is sum-
marized in Algorithm 1. At each iteration, the input is an orbital vector �n with the 
corresponding Fock matrix Fn , which may or may not be diagonal. The orbitals are 
used to construct the full potential operator V̂n with updated two-electron contri-
butions. The diagonal part of the Fock matrix is extracted into another matrix �n , 
and its elements are used to construct the Helmholtz operator for the correspond-
ing orbitals. The Helmholtz operator is applied to each orbital separately, where the 
argument is corrected with the off-diagonal terms of the Fock matrix, in case non-
canonical orbitals are used. This results in a non-orthonormal set of orbitals �̃�n+1 , 
and the convergence is judged by the norm of the difference between the input and 
output orbitals at this point. The Fock matrix corresponding to the new set of orbit-
als is computed as a pure update from the previous one, as described in Sect. 5.1. 
It is here important to note that the updated potential operator is computed from an 
orthonormalized version of the new orbitals, while the matrix elements are com-
puted using the original non-orthonormal set. The final step of the algorithm is to 
perform an orbital rotation with the Löwdin orthonormalization matrix, optionally 
combined with another transformation that brings the orbitals to either canonical or 
localized form, as described in Sect. 5.3.

(48)�̄� = �̃�Ũ,

(49)F̄ = Ũ†F̃Ũ.
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7  Results

To illustrate the features of the framework exposed in the previous sections, we pre-
sent two simple examples: the Hydrogen atom as a prototype, one-electron system, 
and the Beryllium atom as a minimal many-electron system. We have used the Mul-
tiwavelet library MRCPP [35] through its Python interface VAMPyR [36] for the 
implementation, and we have prepared Jupyt er Noteb ooks [37] that reproduce all the 
results presented below, which can be run freely on Binder [38]. The many-electron 
implementation is a fully general HF solver. Its limitations are mostly outside the 
scope of the present work: the missing features to extend it to larger systems are the 
possibility to deal with open-shell systems, a robust starting guess generator, an iter-
ation accelerator such as the Krylov Accelerated Inexact Newton (KAIN) method 
[39], and the computational resources which are invariably limited on a Binder 
distribution. Nevertheless these two simple examples are sufficient to highlight the 
main features our our implementation. Within the Multiwavelet library, all math-
ematical objects are represented within a given numerical precision. This means that 
all functions and operators are truncated accordingly in their compressed representa-
tion, i.e. Eqs. (6) and (11), and the operators are applied with bandwidth thresholds 
that are consistent with the target precision. It is then expected that the obtained 
solution is exact with respect to the complete basis set limit up to the given preci-
sion, but not beyond, even if the equations might be converged further than this.

https://github.com/MRChemSoft/Kinetic-energy-free-HF
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7.1  Hydrogen atom

The Hydrogen atom is a simple one-electron system, where the Schrödinger equa-
tion can be solved by straightforward power iteration of Eqs.  (32) and (33), with 
an additional normalization step for the wavefunction after each iterations. The 
potential operator V̂  contains only the fixed nuclear potential in this case. It should 
be noted, however, that even if the potential does not depend on the wavefunction, 
Eq. (32) must still be solved iteratively. This is in contrast to a traditional fixed-basis 
approach where the corresponding matrix equation can be readily inverted in a sin-
gle step.

Figure  1 shows a remarkably uniform convergence of the optimization for the 
Hydrogen atom: the norm of the wavefunction update is almost exactly halved 
between each iteration, while the energy update is divided by four. This behavior is 
expected, since the error in the energy should be quadratic with respect to the error 
of the wavefunction. The initial guess for the orbital was for convenience chosen 
as a simple Gaussian function, which was projected onto the numerical grid before 
entering the iterative procedure. The underlying numerical precision is kept at 10−6 
throughout, and we do not expect the final solution to be more accurate than this, 
relative to the true eigenfunction. Indeed, when comparing to the known exact solu-
tion for Hydrogen we see that error in the orbital stabilizes just below this threshold, 
while the energy is several orders of magnitude more precise than the set threshold.

7.2  Beryllium atom

The Beryllium atom, being a closed-shell two-orbital system, requires the general 
many-electron HF procedure as outlined in Algorithm 1. Figure 2 shows the con-
vergence from a simple starting guess of two linearly independent Gaussians, with 
just a simple Löwdin orthonormalization between each iteration, i.e., no additional 
orbital rotation was performed to obtain either canonical or localized orbitals, as 
described in Sect. 5.3.

Fig. 1  nvergence of the Hydrogen wavefunction and energy by direct power iteration of Eqs. (32) and 
(33). The wavefunction is normalized between each iteration. The plots show both the size of the updates 
relative to the previous iteration, as well as the error with respect to the analytical solution. The overall 
numerical precision is kept at 10−6
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The convergence pattern for Beryllium is very similar to Hydrogen, until the 
requested numerical precision is achieved; thereafter the orbital convergence tails 
off. In contrast to Hydrogen, the orbital mixing caused by the orthonormalization 
step is introducing numerical noise at the order of the truncation threshold, and the 
orbitals are randomly perturbed in every iteration. This in turn prevents further con-
vergence in the norm of the orbital error. The total energy, on the other hand, shows 
again a quadratic convergence relative to the orbital errors, as illustrated in the right-
hand panel of Fig. 2. However, each energy contribution separately is just linear: it 
is only their combined sum which exhibits quadratic convergence. It’s important to 
note, though, that even if the total energy converges rapidly and reaches a numerical 
limit at around 10−12 (around the square of the orbital error), its accuracy relative to 
the HF limit is still bounded by the overall numerical precision in the calculation, in 
this case 10−6 . The reason for this is that in the MW framework, every component is 
approximated according to this precision threshold, including the nuclear, Coulomb 
and exchange operators. We clearly see this bound when comparing the total energy 
with the very precise reference from Thakkar et al. [40], displayed as �Eexact in the 
figure. In practice, this means that it is not really useful to converge the orbitals and 
energies all the way to their numerical limits; the SCF can be considered converged 
whenever the energy update drops below the truncation threshold, in this case after 
10-12 iterations.

8  Conclusions

We have presented an implementation of a MW-based SCF solver for the HF equa-
tions. The formalism is general and able to deal both closed-shell and open-shell 
systems alike. The extension to DFT [41], although not considered here, is straight-
forward by including the exchange and correlation potential. We note however that 
for DFT derivative operators can be avoided only for local density approximation 
(LDA) functionals.

Fig. 2  Convergence of the Beryllium orbitals and energies by iteration of Algorithm  1. The kinetic 
energy is computed indirectly, by subtracting all other contributions from the total energy, which in turn 
was computed by the kinetic-free expression in Eq. (46). �Etot represents the update in total energy w.r.t. 
the previous iteration, while �Eexact represents the difference w.r.t. the Hartree-Fock limit (-14.57302317 
Ha) from Thakkar et al. [40]. The overall numerical precision is kept at 10−6
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We have shown how it is possible to compute the Fock matrix and the electronic 
energy by exploiting the formal relation between the level-shifted Laplacian and 
the bound-state Helmholtz kernel, thus avoiding any reference to the kinetic energy 
operator. This is an advantage within a MW formalism, because differential opera-
tors are formally ill-defined [14], although recent developments have shown that 
good results can still be achieved [26], also for the kinetic energy expectation value.

We have shown that we are able to obtain high-precision results (basis-set limit 
within an arbitrary, predefined threshold), and the robust convergence pattern is con-
sistent with the fact that the integral formulation can be viewed as a preconditioned 
steepest descent [29] method, in contrast to the differential formulation which is 
instead a steepest descent method.

To illustrate the theoretical framework and demonstrate its applicability we 
detailed the algorithm and presented two simple examples (Hydrogen and Beryl-
lium atoms), showing that the convergence achieved is consistent with the expected 
behavior. In particular we have seen that convergence within the predefined thresh-
old is achieved both for the orbital norm and for the energy. Moreover the total 
energy converges quadratically with respect to the norm of the orbital error. Follow-
ing an open science paradigm, our algorithms are made freely and readily available 
for inspection and testing through the Binder platform (Table 1).
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