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Four-component relativistic treatments of the electron paramagnetic resonance g-tensor have so far been
based on a common gauge origin and a restricted kinetically balanced basis. The results of such calculations
are prone to exhibit a dependence on the choice of the gauge origin for the vector potential associated with
uniform magnetic field and a related dependence on the basis set quality. In this work this gauge problem
is addressed by a distributed-origin scheme based on the London atomic orbitals, also called gauge-including
atomic orbitals (GIAOs), which have proven to be a practical approach for calculations of other magnetic
properties. Furthermore, in the four-component relativistic domain, it has previously been shown that a
restricted magnetically balanced (RMB) basis for the small component of the four-component wavefunctions
is necessary for achieving robust convergence with regards to the basis set size. We present the implementation
of a four-component density functional theory (DFT) method for the calculation of the g-tensor, incorporating
both the GIAOs and RMB basis and based on the Dirac–Coulomb Hamiltonian. The approach utilizes the
state-of-the-art noncollinear Kramers-unrestricted DFT methodology to achieve rotationally-invariant results
and inclusion of spin-polarization effects in the calculation. We also show that the gauge dependence of the
results is connected to the non-vanishing integral of the current density in the finite basis, explain why the
results of cluster calculations exhibit surprisingly low gauge dependence, and demonstrate that the gauge
problem disappears for systems with certain point-group symmetries.

I. INTRODUCTION

The determination of the g-tensor, one of the param-
eters of electron paramagnetic resonance (EPR) spec-
troscopy, is an important tool in characterizing the elec-
tronic structure of open-shell systems. The usefulness of
the EPR parameters is further increased by the fact that
EPR tensors can be used to study the Curie contribu-
tion to the nuclear magnetic resonance (NMR) param-
eters of a paramagnetic species.1–3 When heavy atoms
are present in the system, the quality of the relativistic
computational methodology becomes very important in
prediction of the components of the g-tensor. For this
reason, relativistic methods based on density functional
theory (DFT) that include spin-orbit effects variation-
ally (self-consistently) are becoming increasingly popu-
lar for calculation of EPR parameters (see for example
Refs. 4–18). One reason for their popularity is that these
methods combine the computational efficiency of DFT
with the accuracy of four- or two-component relativis-
tic theories. Besides the efficient inclusion of correlation
effects by DFT approaches, the quality of these method-
ologies stands on three pillars: 1) the treatment of rel-
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ativistic effects in general and spin-orbit effects in par-
ticular; 2) the quality of the DFT approaches, i.e. the
inclusion of spin-polarisation effects and the usage of non-
collinear exchange–correlation (xc) functionals; 3) the
quality of the basis sets, i.e. a proper balance of the large-
and small-component basis, and use of a gauge-origin-
dependent basis in order to enforce the gauge-origin in-
dependence of the result.

The difference between the g-tensor and the free elec-
tron g-value, the g-shift, is mainly caused by spin-orbit
(SO) interaction. The prediction of the g-shift for sys-
tems that contain only light elements, e.g. organic rad-
icals, usually requires only the inclusion of linear SO
effects in the calculation. However, even in this case
one should consider more accurate relativistic methodolo-
gies, because there are cases of systems containing rela-
tively light elements for which higher-order SO contribu-
tions becomes important (see for example the quadratic
SO contribution to the g-shift in the SeO molecule in
Ref. 5). In the case of systems containing heavy ele-
ments, the importance of higher-order SO effects should
not be underestimated,11 and the variational inclusion
of relativistic effects becomes necessary. The imple-
mentation of (one-electron) nuclear SO effects variation-
ally is straightforward and computationally undemand-
ing. In contrast, computationally-efficient inclusion of
the (two-electron) spin-same-orbit (SSO) and spin-other-
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orbit (SOO) interactions19 is a more challenging task.
Fortunately, the SOO contributions are relatively more
important in the calculations of systems that contain
only light elements than for heavy-element-containing
systems.16,20 As a result, methods which are based on
the Dirac–Coulomb Hamiltonian, and thus omit the SOO
terms, provide a reasonable compromise between pre-
cision and computational efficiency when predicting g-
tensor parameters of heavy-element-containing systems.

Another issue related to that of inclusion of higher-
order spin-orbit effects in the calculation is the restriction
of current DFT methodologies to the calculation of those
magnetic parts of the EPR effective-spin Hamiltonian
that are only linear in the spin operators.21 The effective
Hamiltonian that contains only linear terms for descrip-
tion of the electronic Zeeman and hyperfine interactions
can only properly describe magnetic interactions of sys-
tems with higher than triplet multiplicity, S > 1, when
higher-than-linear SO effects can be safely neglected.22

On the other hand, for systems where only two or three
electronic states are populated, there is no such restric-
tion, and this type of effective Hamiltonian properly de-
scribes systems with arbitrary-strength SO interactions
of any order.22 Therefore, those DFT approaches that
aim to include higher-order SO effects are currently only
suitable for treatment of systems with doublet or triplet
multiplicity.

Upon the incorporation of spin-orbit effects into the
Hamiltonian, the exchange–correlation energy of open-
shell species derived from nonrelativistic (nr) xc function-
als becomes dependent on the rotation of the Cartesian-
coordinate axis system. This unphysical behavior is a
result of the reliance of nr xc functionals on the quanti-
zation axis that defines alpha and beta densities, and of
the coupling of spatial and spin degrees of freedom medi-
ated by the SO interaction. This class of xc functionals is
often referred to as collinear. Although the ideal solution
to this problem would be to use genuine relativistic non-
collinear xc functionals, so far only limited work has been
done on their development.23–27 Nowadays the preserva-
tion of the rotational invariance of the xc energy is usu-
ally accomplished by the introduction of the noncollinear
variables into the definition of the nr xc functionals. For
example, the collinear variable ρz, the z component of
the spin density, is in the noncollinear approaches sub-
stituted by the length of the spin density vector |~ρ |. An
interested reader can find more details on the develop-
ment of the noncollinear xc functionals for open-shell
systems in Refs. 17,21,28–33 and works cited therein. In
particular, we note the problem of the numerical insta-
bilities that arise when the spin density approaches zero
in the noncollinear xc potentials and kernels that involve
gradient variables, discussion of which may be found in
Refs. 31,32. In this work we employ the noncollinear
ansatz of Scalmani and Frisch31 with the regularization of
xc potentials and kernels presented in Ref. 32. The qual-
ity of the noncollinear DFT methodology is also closely
related to the quality of the Kohn-Sham determinant.

Nowadays, state-of-the-art DFT methodology utilizes a
Kramers-unrestricted Kohn–Sham (KS) determinant to
account for the important spin-polarization effects. In
contrast, the DFT methods based on Kramers-restricted
KS determinants neglect spin-polarization effects, lead-
ing to unsatisfactory results, especially in the case of hy-
perfine coupling constants.34

Without special measures, the calculations of molecu-
lar properties that depend on an uniform external mag-
netic field are plagued by the gauge dependence of the
results. This dependence vanishes in the complete ba-
sis set limit, and thus the gauge dependence problem
can be mitigated by using sufficiently saturated basis
sets. However, there also exist well-established methods
that provide reliable results without the need of impos-
ing additional significant requirements on the basis set
size. The most popular methods in this respect are the
ones that use gauge-including atomic orbitals (GIAOs),
also known as London atomic orbitals (LAOs).35,36 The
success of the GIAO-based approaches is due less to the
formal gauge independence of the results themselves than
to the fast convergence of the results with basis set size.
The use of GIAOs shifts part of the burden of describ-
ing the magnetic field dependence of the wavefunctions
from the molecular orbital coefficients to the atomic or-
bital basis itself, which ultimately decreases the basis set
requirements. In the nonrelativistic case of a hydrogen-
like system, the LAOs properly describe the first-order
response of the wavefunction with respect to an uniform
external magnetic field. In the relativistic case the LAOs
provide a correct description of the first-order response
up to order c−2, see also the discussion in Ref. 37.

In addition, when developing four-component meth-
ods for calculation of molecular properties that in-
volve magnetic fields, one must pay special attention to
proper magnetic balance between the basis of the small-
and large-components of the four-component wavefunc-
tion. Moreover, for the four-component calculation of
second-order magnetic properties the inclusion of mag-
netically balanced basis is absolutely necessary. The
most relevant approaches include the so-called Kutzel-
nigg transformation,38 the restricted magnetically bal-
anced basis (RMB),37,39–41 and the simple magnetic
balance,42,43 (we refer an interested reader to a more de-
tailed discussion of the magnetically balanced bases in
Ref. 44). In this work we will utilize the RMB approach,
as it allows the calculation of both NMR shielding37,39,40

and indirect spin–spin coupling tensors.41 To summa-
rize, one can safely assume that the combination of an
RMB basis with GIAOs for the calculation of the g-tensor
within the four-component framework is expected to ex-
hibit robust convergence with the basis set size.

There is evidence that the gauge dependence of the
calculated results is usually less severe for the g-tensor
than for other magnetic properties, such as, for example,
the NMR shielding tensor.4,20,45–48 However, there are
instances where the gauge dependence of the g-tensor cal-
culations becomes noticeable and warrants development
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of methods that address the issue, see Refs. 4,49–52 and
the discussion in Ref. 52. Glasbrenner et al.52 noticed
that in many cases the somewhat smaller gauge depen-
dence of g-tensor calculations ”can also be explained by
the fact that most previous studies focused on g-tensors
of small molecules”. However, we have also found this to
be the case for some systems containing a single heavy
element, regardless of the system size (see for example
Ref. 48). As explained below, in such a case, the neg-
ligible gauge dependence of the g-tensor is connected to
the symmetry of the immediate electronic environment of
the heavy atom. In other cases even small systems can
exhibit strong gauge dependence of the results when one
moves the gauge away from the molecular center.4,49,52

However, such gauge choices are artificial and chosen only
to make the point; in practical applications one would use
a well-defined molecular gauge (e.g. the center of nuclear
charge of the molecule, the center of mass of the molecule,
or the center of the electron spin density, among others)52

which, as mentioned above, usually leads to rather small
gauge dependence of the results. There are, however, sit-
uations where choosing an optimal position of the gauge
is not possible. The most obvious example are solid-
state (periodic) calculations, in which the computational
methodologies must be based on distributed gauge origin
methods (such as GIAO methods), as potentials depen-
dent on a single gauge origin are not periodic. In single
molecule calculations, the choice of the gauge becomes
problematic if multiple spin centers are present in the
system. A special case of these are so-called ”molecular-
cluster computations”, which are used as an approxima-
tion to solid-state calculations.53

Although the development of DFT methodologies for
g-tensor calculations has a long history, see for exam-
ple Refs. 4,9,20,54–59 and works cited therein, the de-
velopment and implementation of noncollinear DFT ap-
proaches that include spin-orbit effects variationally is
rather rare.5,16,18,60 From this list, only the work of
Franzke and Yu18 tackles the gauge dependence of the
results at all, with the authors employing GIAOs. All
four of the noncollinear DFT methodologies just men-
tioned include the full nuclear SO interaction, but in-
clude the two-electron SO interaction (SSO and SOO
contributions) at various levels of theory that usually
involve some approximation to the full Coulomb–Breit
electron–electron interaction. The authors of the two-
component methodologies presented in Refs. 5,16 approx-
imate SSO and SOO terms by means of the atomic-mean
field approach,61,62 while in Refs 16,18 the SSO contribu-
tion is modeled by scaling the nuclear SO term63,64 and
the SOO contribution is neglected. The four-component
method developed in Ref. 60 is based on the Dirac–
Coulomb Hamiltonian and thus includes the SSO con-
tribution, while the SOO interaction is omitted as it is
a part of the Gaunt electron–electron interaction.19 All
four methodologies5,16,18,60 take advantage of the non-
collinear reformulation of the otherwise collinear nr xc
functionals to make the calculated results rotationally

invariant. However, in order to take into account the
gradient variables that are necessary to utilize function-
als beyond local-density approximation, the noncollinear
ansatz used is derived from the gradient of the length

of the spin density, ~∇|~ρ | (see for example Refs. 33,65).
As a result, some of the terms appearing in the xc po-
tential exhibit numerical instabilities.31,32 In Refs. 5,60
these unstable terms are simply neglected, which makes
the xc potential non-variational with respect to the xc en-
ergy, but the expressions become numerically stable (see
eq 68 and the corresponding discussion in Ref. 17). On
the other hand, the authors of Refs. 16,18 use the non-
collinear methodology as presented in Ref. 66, where it is
not clear if the numerical instabilities have been avoided
by neglecting unstable terms as done in Refs. 5,33,60, by
using a large cutoff threshold as done in Ref. 65, or by
other methods – or if they have been avoided at all.

The goal of this work is to provide a state-of-the-
art methodology that addresses all the points discussed
above as follows: 1) it treats the relativistic effects vari-
ationally and is based on the Dirac–Coulomb Hamilto-
nian; 2) it includes spin-polarisation effects by means
of the Kramers-unrestricted KS determinant, and it uti-
lizes noncollinear regularized xc functionals; 3) it takes
advantage of the London atomic orbitals as well as a re-
stricted magnetically-balanced basis when constructing
the small component of the four-component wavefunc-
tion. The presented approach thus aims to provide both
a benchmark methodology for development of more ap-
proximate relativistic methods, as well as a robust way
to predict the g-tensor in routine applications.

In the following sections III, IV, and V we present the
four-component theory for calculation of the g-tensor us-
ing the RMB–GIAO, RKB, and RMB bases, respectively.
Sec. VI contains computational details of our calcula-
tions, which are then presented in Sec. VII. In Sec. VII
we discuss the convergence of the g-tensor results with
the basis set size, the use of the double point-group sym-
metry in estimation of the g-tensor gauge dependence,
and the surprisingly weak gauge dependence of the re-
sults in the molecular cluster calculations. In Sec. VIII
we present our concluding remarks. Finally, in Appen-
dices A and B we prove the continuity equation within
the framework of DKS theory, as well as an important
consequence thereof: the vanishing integral of the cur-
rent density.

II. NOTATION

Throughout this work we use the Hartree system of
atomic units. Thus for example the Bohr magneton
has the value 1

2c with c being the speed of light in
atomic units. Summation over repeated indices is as-
sumed unless stated otherwise. Indices i, j denote oc-
cupied positive-energy molecular orbitals, u, v, and k
denote Cartesian components, m and n represent com-
ponents of the four-component vector 1 . . . 4, and η repre-
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sents the scalar atomic orbital basis. In addition, we em-
ploy flattened atomic orbital indices µ, ν which combine
the four-component and atomic orbital indices, µ := mη
(see also the discussion in Ref. 32). Unless stated oth-
erwise, bold font indicates a matrix whose dimension is
defined in the text.

III. CALCULATION OF THE g-TENSOR USING AN
RMB–GIAO BASIS

Within the framework of Kramers-unrestricted (KU)
Hartree–Fock (HF) and density functional theory (DFT),
components of the g-tensor can be calculated as5,21,60

guv =
2c

S

dE( ~Jv, ~B)

dBu

∣∣∣∣∣
~B=0

, (1)

where ~Jv is the magnetization vector of the vth Kohn–
Sham (KS) determinant, and S is the effective spin of the
system. The formal multiplicity of the system, 2S+ 1, is
equal to the number of populated states, i.e. the number
of electronic states that are described by the EPR effec-
tive spin Hamiltonian.21,67 Each of the three orthogonal
magnetization vectors corresponds to a separate KS de-
terminant, which is in practice obtained from an indepen-
dent self-consistent calculation (see also the discussion in
Ref. 21). The elements of the g-tensor are then obtained
as the first-order derivative of the total electronic energy

E with respect to an external uniform magnetic field ~B.
In the Coulomb gauge, the vector potential correspond-
ing to this magnetic field has the form

~A =
1

2
( ~B × ~rG), ~rG = ~r − ~r0, (2)

where ~r0 is the position of the gauge origin and ~r is
the position vector of the electron. Within the Dirac–
Hartree–Fock (DHF) and Dirac–Kohn–Sham (DKS) for-

malism the minimal coupling substitution, ~p → ~p + 1
c
~A,

is used to obtain the electronic energy of a system in the
presence of an external magnetic field

E( ~Jv, ~B) = 〈ϕi( ~Jv, ~B)|h( ~B)|ϕi( ~Jv, ~B)〉+ E2e( ~Jv, ~B),
(3)

h( ~B) = c~α · ~p+ ~α · ~A+ (β − I4) c2 − V nuc(~r)I4, (4)

E2e( ~Jv, ~B) = Eee( ~Jv, ~B)− ξEex( ~Jv, ~B)

+ Exc[ ~Jv, ~B, (1− ξ)].
(5)

Here β and ~α are the 4× 4 Dirac matrices

β =

(
I2 02

02 −I2

)
, ~α =

(
02 ~σ
~σ 02

)
, (6)

where ~σ is a vector constructed from the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (7)

and In (0n) is the n × n identity (zero) matrix. The
dependence on the magnetization vector and the exter-

nal magnetic field is denoted by ( ~Jv, ~B). The parameter
ξ represents the admixture of the HF exact exchange:
ξ = 1 corresponds to pure HF theory, ξ = 0 to pure
DFT, and 0 < ξ < 1 to hybrid theories. V nuc(~r) is the
scalar electrostatic potential due to fixed atomic nuclei.
The presence of heavy nuclei and the four-component rel-
ativistic framework necessitates the use of a finite model
for the nuclear charge distribution.68 In this work we use
an s-type Gaussian function to describe the finite-size
nuclear charge distribution (for detailed expressions see
Ref. 17). The two-electron potential energy, Eq. (5), con-
sists of the Coulomb energy Eee, Hartree–Fock exchange
energy Eex, and exchange–correlation energy Exc

Eee =
1

2

¨
ϕ∗mi(~r1)ϕmi(~r1)ϕ∗nj(~r2)ϕnj(~r2)

|~r1 − ~r2|
d3~r1d

3~r2,

(8)

Eex =
1

2

¨
ϕ∗mi(~r1)ϕmj(~r1)ϕ∗nj(~r2)ϕni(~r2)

|~r1 − ~r2|
d3~r1d

3~r2,

(9)

Exc =

ˆ
εxc
[
ρ0, ~∇ρ0, ~ρ, ~∇~ρ

]
d3~r, (10)

where for the sake of simplicity we have droped the de-
pendance on the magnetic field and the magnetization

vector from the MOs, ϕmj(~r1) := ϕmj(~r1, ~Jv, ~B). In
Eq. (10), εxc represents the exchange–correlation energy
density that depends within the generalised-gradient ap-
proximation on the charge and spin densities and their
gradients

ρl( ~Jv, ~B) = ϕ∗mi( ~Jv, ~B) (Σl)mn ϕni( ~Jv, ~B), (11)

Σl =

(
σl 02

02 σl

)
, l = 0 . . . 3, (12)

with σ0 := I2. Methods which include spin-orbit effects
variationally, must employ the so-called noncollinear
ansatz for the nr exchange–correlation functionals (see
also the discussion at the end of this section). We refer
an interested reader to Ref. 17 for a detailed discussion of
the implementation of both the perturbation-free and the
linear response two-electron contributions to the energy
and potentials used in this work [see also Eqs. (27)–(29)].

The four-component molecular orbitals (MOs) ϕmi are
expanded in a finite set of four-component basis func-
tions that combine the GIAOs and the RMB basis for
the small component of the MO as follows17,37 (η is not
a summation index)

ϕmi(~r, ~Jv, ~B) = XRMB–GIAO
mµ (~r, ~B)Cµi( ~Jv, ~B), (13)

XRMB–GIAO
mnη (~r, ~B) = ORMB

mn ωη(~r, ~B)χη(~r), (14)

ORMB =

(
I2 02

02
1
2c
~σ ·
(
~p+ 1

c
~A
))

, (15)
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where µ := nη, and χη(~r) is a scalar basis function. In

Eq. (13) the molecular orbital coefficients Cµi( ~Jv, ~B) are
the solutions of the Fock equation in the presence of a

magnetic field ~B, where the Fock matrix is obtained as
the derivative of the energy given in Eq. (3) with respect
to the density matrix (see for example Refs. 17,32). In
Eq. (14) we apply London orbitals in the framework of
the four-component theory using the approach presented
in Ref. 37, where the phase factor ωη, which ensures en-
ergy invariance with respect to the change of the gauge
origin ~r0, has the form

ωη(~r, ~B) = exp

{
−i
2c

[
~B ×

(
~Rη − ~r0

)]
· ~r
}
. (16)

Here ~Rη is the position of the nucleus at which the atomic
orbital χη is centered. The function ωηχη is known as
a London atomic orbital.35 Because the four-component
basis functions, Eq. (14), have an explicit dependence

on the perturbation parameters ~B, it is useful to fol-
low the perturbation theory formalism based on the La-
grange functional. This allows us to take advantage of
the variational conditions imposed on the Lagrangian
and simplify the expression for the energy derivative (for
more details see for example Refs. 69,70). By employing
the perturbation-dependent basis, Xmµ, the g-tensor can
then be expressed as

guv =
2c

S

[
∂Lv
∂Bu

+
∂Lv
∂Xmµ

dXmµ

dBu

+
∂Lv
∂X∗mµ

dX∗mµ
dBu

]∣∣∣∣
~B=0

,

(17)

where ∂/∂λ and d/dλ denote the partial and total deriva-
tives with respect to the variable λ, respectively. The La-
grange functional Lv is constructed from the electronic
energy in Eq. (3) and the orthonormality constraints on
the molecular orbitals as follows [here and in Eq. (19) v
is not a summation index]

Lv := L
[
~B,X( ~B), C( ~Jv, ~B), ε( ~Jv, ~B)

]
= E

[
~B,X( ~B), C( ~Jv, ~B)

]
− εi( ~Jv, ~B)

[
C†i (

~Jv, ~B) S(X) Ci( ~Jv, ~B)− 1
]
.

(18)

Here the overlap matrix in the RMB–GIAO basis has
the form Sµν = 〈XRMB–GIAO

µ |XRMB–GIAO
ν 〉, and the

bold font on MO coefficients, Ci, indicates that the ith
molecular orbital is a vector, Cµi. Combining Eqs. (17)
and (18) then leads to the following expression for the

g-tensor

guv =
2c

S
C†i (

~Jv, 0)
[
hBu − SBuεi( ~Jv, 0)

+V2e,Bu( ~Jv, 0)
]

Ci( ~Jv, 0),
(19)

hBu
µν = 〈XBu

µ |h(0)|XRKB
ν 〉+ 〈XRKB

µ |h(0)|XBu
ν 〉

+
1

2
〈XRKB

µ |(~rG × ~α)u|XRKB
ν 〉 ,

(20)

SBu
µν = 〈XBu

µ |XRKB
ν 〉+ 〈XRKB

µ |XBu
ν 〉 , (21)

XBu
mµ =

dXRMB–GIAO
mµ

dBu

∣∣∣∣∣
~B=0

, (22)

with the restricted kinetically balanced basis71,72 de-

fined as XRKB = XRMB–GIAO( ~B = 0). For the sake of
simplicity, in the following we omit the explicit depen-

dence on ( ~Jv, 0) of the MO coefficients, one-electron en-
ergies, and two-electron potentials. The MO coefficients
Cµi and one-electron energies εi are the solutions of the
perturbation-free Fock equation

FC = SCε, (23)

Fµν = 〈XRKB
µ |h(0)|XRKB

ν 〉+ V 2e,0
µν , (24)

Sµν = 〈XRKB
µ |XRKB

ν 〉 (25)

with the two-electron perturbation-free potential, V2e,0,
as defined for example in Ref. 32. In Eq. (19) the two-
electron contribution, V2e,Bu , consists of the Coulomb,
HF exact-exchange, and exchange–correlation terms

V2e,Bu = Vee,Bu − ξVex,Bu + Vxc,Bu [1− ξ], (26)

Vee,Bu =

¨
Tr{Ω0,RKB(~r1) D}Ω0,Bu(~r2)

|~r1 − ~r2|
d3~r1 d

3~r2,

(27)

Vex,Bu =

¨
Ω0,RKB(~r1) D Ω0,Bu(~r2)

|~r1 − ~r2|
d3~r1 d

3~r2, (28)

Vxc,Bu =

ˆ [
fl Ω

l,Bu(~r) + f̃lk∇kΩl,Bu(~r)
]
d3~r. (29)

In the above equations for the response two-electron po-
tentials, the density matrix D has the form

Dµν = CµiC
∗
νi, (30)

and the overlap distributions are defined as

Ωl,RKB
µν =

(
XRKB
mµ

)∗
(Σl)mnX

RKB
nν , (31)

Ωl,Bu
µν =

(
XRKB
mµ

)∗
(Σl)mnX

Bu
nν + c.c.. (32)

The implementation of the two-electron four-center inte-
grals in the RMB–GIAO basis and their contraction with
the density matrix, Eqs. (27) and (28), takes advantage
of a novel formulation based on the complex quaternion
algebra, which leads to a significant reduction of the com-
putational cost when compared to standard algorithms.17
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The exchange–correlation contribution Vxc,Bu is given by
the derivatives of the exchange–correlation energy den-
sity εxc

fl =
∂εxc

∂wt

dwt
dρl

, f̃kl =
∂εxc

∂wt

dwt
d(∇kρl)

, (33)

where the perturbation-free charge density ρ0 and spin
density ~ρ have the form

ρl = Tr{Ωl,RKBD}, (34)

and {wt} represents a set of noncollinear variables. In
this work we use the set first proposed by Scalmani and
Frisch31. To make the noncollinear xc potentials Vxc,0

and Vxc,Bu numerically stable we follow the regularisa-
tion procedure first described in Ref. 32 in the frame-
work of four-component KU-TDDFT methodology. In
this work, we have for the first time used this state-
of-the-art noncollinear methodology in combination with
the RMB–GIAO basis for the calculation of the EPR g-
tensor.

IV. CALCULATION OF THE g-TENSOR USING AN
RKB BASIS

When formulating perturbation theory on the basis of
the Lagrange functional, one can choose either the MO
coefficients or the MOs themselves as the variational pa-
rameters. In the former case one formulates the theory in
the finite basis from the start, whereas in the latter case
the transition to the finite basis is made at a later stage of
the derivation. The two different parametrizations lead
to different sets of variational conditions

dLv
dC∗µi

= 0, (35)

δLv
δϕ∗mi

= 0, (36)

which, in the case of the perturbation-dependent basis,
result in different working expressions for molecular prop-
erties. Conversely, if the basis does not depend on the
perturbation parameters the final expressions for both
parametrizations are identical. The approach that de-
fines the variational parameters as MO coefficients, is a
more rigorous one, as it takes into account the finite na-
ture of the basis from the start. The difference between
the approaches vanishes in the complete basis, therefore
both approaches are valid if the provided finite basis is
sufficiently large.

In Sec. III we have used MO coefficients as the varia-
tional parameters, and so the g-tensor expressions con-
tain terms where the basis depends on the perturbation
parameters, namely the second and third terms on the
right-hand-side (RHS) of Eq. (17). To derive the final
expressions for the g-tensor with the RKB basis one op-
tion is to start from the RMB–GIAO expressions and

remove terms that originate in the London phase factor
[Eq. (16)] and the magnetic part of the RMB basis. Al-
ternatively, one may use the MOs as variational param-
eters, as was done in Ref. 60, and therefore neither the
London orbitals nor the magnetic part of the RMB basis
appear in the final working expression. Note in passing,
that the formulation of the response theory based on the
MOs as variational parameters may prove advantageous,
as it simplifies the implementation of the indirect spin-
spin coupling tensor17, and helps to avoid possible diver-
gences arising from the operator of the nuclear magnetic
moment.73

In the following we reformulate the theory for the cal-
culation of the g-tensor presented in Ref. 60 in terms of
the four-component current density. This formulation be-
comes useful later in the analysis of the molecular-cluster
calculations and in double point-group symmetry con-
siderations (see Sec. VII). The DKS expression for the
g-tensor that depends only on the gauge origin and the
RKB basis, has the form (v is not a summation index)60

guv =
2c

S
C†i (

~Jv, 0) hBu,G Ci( ~Jv, 0), (37)

hBu,G
µν =

1

2
〈XRKB

µ |(~rG × ~α)u|XRKB
ν 〉 . (38)

Using the expression for the four-component
perturbation-free current density

~j( ~Jv, 0) = −cTr
{

XRKB†~αXRKBD( ~Jv, 0)
}
, (39)

one can rewrite Eq. (37) as follows

guv = − 1

S

ˆ [
~rG ×~j( ~Jv, 0)

]
u
d3~r. (40)

We refer the interested reader to other works74,75 that
use the current density in four-component theories of
magnetic properties. Eq. (40) allows us to separate the
gauge-dependent term in the expression for the g-tensor
into two terms

guv = − 1

S

{ˆ [
~r ×~j( ~Jv, 0)

]
u
d3~r

−
[
~r0 ×

ˆ
~j( ~Jv, 0)d3~r

]
u

}
.

(41)

From this expression one can deduce that the integral of
the current density vanishes in a complete basis, as the
g-tensor results are gauge-independent in the basis set
limit ˆ

~j( ~Jv, 0)d3~r = 0. (42)

Eq. (42) follows from the continuity equation and the fact
that in the static (time-independent) case the number of
electrons is constant in time in any closed volume. In
Appendix A we prove the continuity equation within the
DKS theory, and then use it in the proof of Eq. (42) in
Appendix B. Interestingly, in pure DFT, ξ = 0, Eq. (42)
holds for the current density generated by an individual
MO (see Appendices A and B).
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V. CALCULATION OF THE g-TENSOR USING AN
RMB BASIS

Following on from the discussion in Sec. IV one can
also devise a theory for g-tensor calculations by choosing
the MO coefficients as the variational parameters and
by selecting the RMB condition as the only dependence
of the basis on the magnetic field, i.e. not considering
the London orbitals. The EPR g-tensor expressions then
depend on the gauge origin while also utilizing an RMB
basis39 for the small component of the four-component
MOs

ϕmi(~r, ~Jv, ~B) = XRMB
mµ (~r, ~B)Cµi( ~Jv, ~B), (43)

XRMB
mnη (~r, ~B) = ORMB

mn χη(~r), (44)

where µ := nη, and ORMB is defined in Eq. (15). The
expressions for the calculation of the g-tensor then have
formally the same form as the one presented in Sec. III
[see Eq. (19)], where a RMB–GIAO basis was employed
(v is not a summation index)

guv =
2c

S
C†i (

~Jv, 0)
[
hBu − SBuεi( ~Jv, 0)

+V2e,Bu( ~Jv, 0)
]

Ci( ~Jv, 0).
(45)

However, the different form of the RMB basis, compared
to RMB–GIAO one, gives different expression for XBu

XBu
mµ =

dXRMB
mµ

dBu

∣∣∣∣∣
~B=0

. (46)

Then to obtain the final working equations for g-tensor
calculations in the framework of an RMB basis, one may
simply substitute Eq. (46) for all occurrences of XBu in
Sec. III.

VI. COMPUTATIONAL DETAILS

In this work we shall discuss the components of the g-
shift ∆gu, which are defined as the relative change of the
g-tensor eigenvalues with respect to the absolute value of
the electron spin g-factor, ge ≈ 2.002319

gu = ge + ∆gu. (47)

The g-tensor eigenvalues gu are calculated as the square
root of the G-tensor eigenvalues, where G = ggT. The
sign of the g-tensor eigenvalues is chosen such that the
product g1g2g3 has the same sign as the determinant of
the g-tensor (see Refs. 21,76,77). In the present work all
g-tensor determinants are positive, and therefore we have
chosen all g-tensor eigenvalues to be positive.

All calculations were performed with a devel-
oper’s version of the ReSpect program,17,78 using
the Dirac–Kohn–Sham approach, and the nonrela-
tivistic exchange–correlation (xc) functionals PBE,79–81

PBE0,79–82 BLYP,79,83,84 and B3LYP79,83–86. Further-
more, the xc potential is formulated within the Kramers-
unrestricted noncollinear methodology, as specified in
Table I in Ref. 32. The numerical integration of the
xc potential was done with an adaptive molecular grid
of medium size (program default, which is about 10000
points per atom). In all calculations we used the Gaus-
sian nuclear charge model,68 and the one-center approxi-
mation for the [SS|SS] integral class.17 We utilized all-
electron uncontracted Gaussian-type orbital basis sets
of double-ζ, triple-ζ, and quadruple-ζ quality, plus ver-
sions thereof augmented with various types of additional
basis functions. In particular, we employed the basis
sets of Dyall that include various additional function-
types denoted by small letters: (v) valence-correlating
and valence-dipole polarization functions, (c) core corre-
lating functions, and (a) diffuse (augmenting) functions.
In this work we have used specifically the bases labeled
dyall-XZ, dyall-vXZ, dyall-cvXZ, and dyall-acvXZ, where
X = D, T, Q.87–93 In addition, we employed Dunning’s
cc-pV(X+d)Z basis set for third row elements and cc-
pVXZ basis set for the rest of light atoms, both standard
and augmented with diffuse functions.94–98

In some calculations we employed the resolution-of-
identity approximation for the Coulomb contribution to
the Fock matrix (RI-J).99 In the case of Table III we used
the RI-J technique to speed up the calculation, whereas
in the case of Table S1 in the supplementary material
we used RI-J out of necessity as the theory described in
Sec. V is implemented in the ReSpect program only in
conjunction with the RI-J technique. The auxiliary basis
sets for the RI-J procedure were generated by a modified
even-tempered algorithm100 and are part of the latest re-
lease of the ReSpect program package version 5.1.0 (see
Ref. 78).

The geometry of the trans-trans conformation of
N-acetylglycyl radical (labeled here as TT-NAG) has
been taken from Ref. 101, and the geometry of the
Ru(III) anti-tumor metastasis inhibitor, trans-(dimethyl
sulfoxide)-(imidazole) tetrachlororuthenate(III)102 (la-
beled here as NAMI), from Ref. 103. The geome-
try of 6,6’-[1,2-phenylenebis(azanediyl)] bis(phenolato)
tellurate(-1) (labeled here as Te–N anion) has been ob-
tained from Ref. 104 by substituing tBu groups by hydro-
gen atoms in the crystallographic dataset no. 2005030.
The geometry of [Re3S4(H2PCH2CH2PH2)3Br3]+ (de-
noted here as Re3S4 cluster) has been taken from Ta-
ble S2 in the supplementary material of Ref. 105. The
orientations of the g-tensor principal axes of Re3S4 clus-
ter, Te–N anion, TT-NAG, and NAMI are shown in Fig-
ures S1–S4 in the supplementary material. The geome-
tries for ClO3, GeH3, SiH3, SO−3 , and MgF have been
taken from Ref. 52, and for TeO, TeS, and Te2, from
Ref. 106. For the SnH3 molecule we have used the geom-
etry resulting from the relativistic optimization published
in Ref. 55. Finally, the geometries of OsOF5 and TiF3

have been taken from Refs. 11 and 53, respectively.

Note that the visualizations in Figs. 2–5 depict the
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magnitude of the spin density, as the spin density is a
vector field rather than a scalar field when obtained by
relativistic methods that include spin–orbit effects.

VII. RESULTS AND DISCUSSION

Calculations of the g-tensor using an RMB ba-
sis in conjunction with a common gauge origin:
In sections III–V we have presented four-component the-
ories for calculation of the g-tensor based on the RMB–
GIAO, RKB, and RMB bases, respectively. The last two
approaches depend on the choice of the common gauge
origin (CGO), and therefore from now on we will label
them as the RKB–CGO and RMB–CGO methods. The
advantage of the RKB–CGO method lies in its compu-
tational efficiency (no four-center integrals in a magnetic
basis are involved) while RMB–GIAO has superior con-
vergence with the basis set size (see the discussion be-
low). For the purpose of this work we have also im-
plemented the RMB–CGO method to check whether it
has any computational advantage over the RKB–CGO
or RMB–GIAO approaches. In Table S1 in the supple-
mentary material, we compare RKB–CGO and RMB–
CGO g-shifts using a basis of double-ζ quality, a case
in which the differences would be most pronounced. As
seen from the table the differences between the meth-
ods are negligible and thus the RMB–CGO method pro-
vides no computational advantage over the RKB–CGO
approach. The insignificance of the effect of including
the RMB basis when compared to the RMB–GIAO basis
can be understood by the fact that the magnetic part of
the RMB basis affects only the small-components, while
GIAOs influence both the large and small-components
of the four-component MOs. In the complete basis the
four-component expressions for the first-order magnetic
properties (including the g-tensor) depend only on the
occupied unperturbed MOs.60 Therefore, one expects a
rather minor effect of the RMB basis, as it affects only
the small-components of the MOs, which are small in
the case of occupied unperturbed MOs. On the other
hand, the four-component expressions for the second-
order magnetic properties in the complete basis, depend
on the linear-response MOs.107 More importantly, the ex-
pansion of the linear-response MOs contains vacant un-
perturbed negative-energy MOs38,108 for which the small-
components of the MOs are large. Therefore, the accu-
rate description of the linear-response MOs requires the
magnetically balanced basis (see Refs. 37–44), e.g. the
RMB basis.37,39–41 In principle, there could exist situa-
tions where the RMB–CGO method has a significantly
better convergence with basis set size than the RKB–
CGO method. However, the RMB–CGO approach has
no significant computational advantage over the superior
RMB–GIAO method and thus should be abandoned al-
together.

In the view of the above discussion, an interesting ques-
tion is whether the RKB–GIAO basis would yield simi-

lar results as RMB–GIAO one and whether it could sig-
nificantly reduce the computational cost because of the
simplified calculation of the two-electron integrals. In
Sec. S1 in the supplementary material we analyze con-
sequences of the two possible definitions of the RKB–
GIAO basis in comparison to the RMB–GIAO one. The
key takeaway is that both RKB–GIAO approaches have
only a minor computational advantage over the RMB–
GIAO approach, as the calculation of the time-consuming
two-electron integrals over functions of higher cardinal
number that originate from the London phase factor,
Eq. (16), is necessary in all approaches. In addition, a
theoretical analysis reveals the inferiority of the RKB–
GIAO methods compared to the RMB–GIAO approach
in the estimated error in variational bounds for the total
electronic energy and the gauge-dependence of the final
expressions. We therefore conclude that the RMB–GIAO
method is the preferred four-component method of choice
for the calculation of the EPR g-tensor.

On the use of contracted and uncontracted basis
sets: The four-component calculations with the ReSpect
program17 are allowed only with uncontracted bases, and
hence the conclusions drawn below are valid only for
those bases. Table I presents the components of the
g-shift for a series of small compounds, including those
for which a strong dependence on the gauge origin was
found earlier in Ref. 52. Two different choices of CGO,
at the center of nuclear charges (COC) and at a point
shifted by 10Å from the COC in all (x, y and z) di-
rections, yield only minor differences in the results even
for the low-quality double-ζ bases. The use of triple-ζ
bases further diminishes these differences (see Table S2 in
the supplementary material). This finding is in disagree-
ment with the results presented in Ref. 52. This may be
explained by different computational protocols used in
the two works: different hybrid functionals (PBE0 versus
B3LYP), four-component treatment versus perturbation
theory based on a nonrelativistic ansatz (one-component
treatment), and the effect of using uncontracted bases in
the four-component calculations. To verify this we per-
formed additional calculations for GeH3, a molecule for
which, according to Ref. 52, the components of the g-
shift significantly depend on the CGO choice. In these
calculations we employed the B3LYP functional and the
def2-SVP and def2-TZVP bases as in Ref. 52. We did the
calculations at the one-component and four-component
levels (see Tables S3 and S4 in the supplementary mate-
rial, respectively), where in the one-component calcula-
tions we employed basis in both contracted and uncon-
tracted forms. It turned out that at the one-component
level, the use of uncontracted bases dramatically reduces
the dependence of the g-shift on the CGO choice com-
pared to the use of contracted bases. Therefore for small
and moderate-size systems the use of uncontracted bases
may be a good option for the CGO calculation of the
EPR g-tensor in the absence of GIAOs.

Convergence with the basis set size of the im-
plemented RMB–GIAO method: The first exam-
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TABLE I: Calculated components of the g-shift (in ppt)
using PBE0 xc functional, dyall-vDZ basis for Os and
Te, cc-pV(D+d)Z for Mg, Si, S, and Cl, and cc-pVDZ

for the rest of atoms.

Gauge ∆g1 ∆g2 ∆g3

ClO3 RMB–GIAOa 1.254 9.473 9.475

COCb 1.526 10.028 10.029

COC+10Åc 1.520 9.717 9.722

GeH3 RMB–GIAOa -1.205 15.977 15.978

COCb -1.200 15.587 15.589

COC+10Åc -1.205 15.170 15.178

MgF RMB–GIAOa -2.053 -2.053 -0.063

COCb -2.061 -2.060 -0.053

COC+10Åc -1.727 -1.685 -0.011

SiH3 RMB–GIAOa -0.144 2.332 2.332

COCb -0.137 2.297 2.298

COC+10Åc -0.160 2.661 2.685

SO−
3 RMB–GIAOa 0.266 3.794 3.796

COCb 0.330 3.965 3.968

COC+10Åc 0.031 5.829 6.129

TeO RMB–GIAOa -28.860 -28.860 -4.894

COCb -25.624 -25.624 -4.878

COC+10Åc -29.752 -29.459 -4.580

Te2 RMB–GIAOa -88.832 -88.832 -11.842

COCb -85.015 -85.015 -11.828

COC+10Åc -85.015 -85.015 -11.828

TT-NAG RMB–GIAOa -0.184 1.748 3.316

COCb -0.182 1.616 3.125

COC+10Åc -0.169 1.487 3.611

OsOF5 RMB–GIAOa -374.500 -374.452 -179.871

COCb -377.637 -377.587 -188.002

COC+10Åc -380.119 -380.034 -187.975

a Data calculated using RMB-GIAO basis (see the theory
described in Sec. III).

b Data calculated using RKB basis (see the theory described in
Sec. IV). Gauge origin is placed at the center of nuclear charges
(COC).

c Data calculated using RKB basis (see the theory described in
Sec. IV). Gauge origin is placed at the distance of 10Å from the
COC in each x, y, and z directions.

ple chosen for the validation of our implementation of
the RMB–GIAO approach is the trans-trans conforma-
tion of N-acetylglycyl (TT-NAG) radical. The EPR pa-
rameters of the TT-NAG radical have been studied, and
a significant gauge dependence of the g-tensor has been
reported.101

The structure, the numbering of atoms, and the ori-
entation of the g-tensor principal axis system of TT-
NAG are shown in Figures 1 and S1 in the supplemen-
tary material. As seen in Figure 2, the distribution of
the spin density in this radical is strongly delocalized,
which makes it an excellent case study for comparing
g-tensors calculated with different choices of gauge ori-
gins, see Table II. Besides RMB–GIAO, we also calcu-
lated the g-shift components with CGO at the center
of nuclear charges (COC) and at different non-hydrogen
atoms. The presented results were obtained with the
non-augmented triple-ζ basis (cc-pVTZ used in this par-
ticular case), which is commonly used as a highest-quality
basis set in DFT applications. We also show the differ-
ence between the cc-pVTZ results and the results ob-
tained with a significantly larger basis set, augmented
cc-pVQZ (both in absolute values and as percentages).
As expected, the calculated g-tensors exhibit significant
dependence on the choice of gauge origin, though not
all components are affected equally. The smallest com-
ponent ∆gx, perpendicular to the radical plane, shows
the weakest dependence. This can be attributed to the
nearly symmetric distribution of the spin-density along
this principal axis (see Figure 2). In contrast, the spin-
density along the other two principal axes of the g-tensor
in TT-NAG is more delocalized and asymmetric due to
the π-system of the radical. Consequently, the y and
z principal components are more affected by the choice
of gauge origin. For the y component the difference be-
tween the RMB–GIAO value and the value obtained with
a particularly bad choice of CGO, at the position of O3,
is above 160 ppm. The placement of the gauge origin
at Cα, closer to the maximum of the spin density, also
does not bring the calculated ∆gy and ∆gz into satis-
factory agreement with the RMB–GIAO values, with a
difference of about 100 ppm for ∆gy and 120 ppm for
∆gz. The full results of the g-shift components calcu-
lated with cc-pVXZ (X = D, T, Q) basis sets, both the
basic and augmented versions, can be found in Tables S5
and S6 in the supplementary material. The convergence
of the isotropic g-shift value with basis set quality, as cal-
culated with both RMB–GIAO and RKB–CGO, is shown
in Figure S5 in the supplementary material. As expected,
the RMB–GIAO values converge faster than their RKB–
CGO counterparts when non-augmented bases are em-
ployed. However, in the case of augmented bases, RMB–
GIAO and RKB–CGO yield almost identical results (the
solid and dashed black lines), though the use of aug-
mented bases in routine applications would be imprac-
tical due the increased computational cost even with the
RKB–CGO method. Addition of core correlating func-
tions to valence bases (labeled as cv and v, respectively)
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does not change the results, probably because the dif-
ference between these bases is insignificant for light ele-
ments.

FIG. 1: Atom numbering of TT-NAG.

FIG. 2: Isosurface of the spin density
magnitude for TT-NAG (value = 0.01 a.u.).

FIG. 3: Isosurface of the spin density
magnitude for NAMI (value = 0.005 a.u.).

It has been shown that the gauge origin problem
in g-tensor calculations may be more severe for larger
systems.52 Also, larger systems, especially containing

heavy elements, are computationally challenging, es-
pecially when using GIAOs at the relativistic four-
component level. Therefore, our two next examples are
the Te–N anion and Re3S4 cluster (see Figures S2 and S3
in the supplementary material). The Te–N anion is an
asymmetric doublet system with highly delocalized spin-
density (Figure 5). The Re3S4 cluster is a quartet system
that contains three metal centers with unpaired electrons,
and the spin-density is symmetrically distributed among
Re and three S atoms (Figure 4). The components of
the g-shift were calculated using RMB–GIAO and RKB–
CGO with CGO at the center of nuclear charges (see
Table III). We used double- and triple-ζ quality valence
basis sets (Dyall’s on Re and Te and Dunning’s on the
rest of atoms). The Dyall basis sets were extended by
core correlating and diffuse functions, and the Dunning
basis sets by diffuse functions and by d functions for P
and S (see Sec. VI for more details). The bases of double-
ζ quality perform poorly for the Re3S4 cluster, which is
probably because they are not adequate for the calcula-
tion of the g-tensor in cases of strongly delocalized spin
density (see columns ∆%). In both systems in Table III,
the effect of adding diffuse functions to the triple-ζ basis
is negligible in the RMB–GIAO results, whereas it is still
substantial in the RKB–CGO results. Furthermore, the
core-correlating functions for Te and Re and additional
d functions for P and S in the RMB–GIAO calculations
have a larger effect on RMB–GIAO results than diffuse
functions. As expected, for both compounds, the RMB–
GIAO results converge faster than the RKB–CGO results
with increasing quality of the basis set.

Furthermore, we verified the conclusions about the
convergence of the RMB–GIAO and RKB–CGO results
with the size of Dyall’s bases, which are specifically de-
signed for relativistic calculations and are in general big-
ger than standard nonrelativistic basis sets. For this pur-
pose, we plotted the dependences of the isotropic g-shift
value on the basis set quality for a series of small com-
pounds (see Figures S6–S10 in the supplementary mate-
rial). The calculations were performed with a series of
bases, starting with dyall-vXZ (X = D, T, Q) and ex-
tending them by adding core correlating and augmenting
(diffuse) functions. For educational purposes we included
some results obtained with dyall-XZ bases (Figures S7–
S10 in the supplementary material). As expected, the
absence of valence correlating and valence dipole polar-
ization functions in the basis set has significant negative
consequences for the g-tensor calculations. Additionally,
we demonstrated the relative errors of the g-shift values
calculated with different bases compared to the results
obtained with RMB–GIAO method and dyall-acvQZ ba-
sis taken as the basis set limit (see Figure S11 in the
supplementary material). We have also plotted the ef-
fect of the basis set quality on the components of the
g-shift for Te–N anion and Re3S4 cluster, shown in Fig-
ures S12 and S13, correspondingly. For all systems, ad-
dition of augmenting functions is more important for the
RKB–CGO calculations than for RMB–GIAO because
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TABLE II: Calculated components of the g-shift (in ppm) for TT-NAG radical using PBE xc functional and
cc-pVTZ basis set, compared with values obtained with augmented cc-pVQZ basis at RMB–GIAO level. Data is

calculated using theory that is based either on the RMB–GIAO basis (see Sec. III) or on the RKB basis (see
Sec. IV) with various choices of gauge origin.

∆gx ∆gy ∆gz

Gauge cc-pVTZ ∆c ∆%
d cc-pVTZ ∆c ∆%

d cc-pVTZ ∆c ∆%
d

RMB–GIAO -180.8 1.4 0.8 1818.9 -4.6 0.3 3471.3 -0.6 0.0

COCa -183.3 3.9 2.2 1716.3 98.0 5.4 3370.7 100.0 2.9

Cα
b -183.4 4.0 2.2 1719.1 95.2 5.2 3352.2 118.5 3.4

C1b -184.4 5.0 2.8 1753.8 60.5 3.3 3345.6 125.1 3.6

C2b -182.2 2.8 1.6 1677.1 137.2 7.6 3396.1 74.6 2.1

C3b -182.0 2.6 1.4 1672.9 141.4 7.8 3434.0 36.7 1.1

O1b -184.9 5.5 3.1 1774.3 40.0 2.2 3368.4 102.3 2.9

O2b -184.7 5.3 3.0 1761.3 53.0 2.9 3312.1 158.6 4.6

O3b -181.7 2.3 1.3 1654.1 160.2 8.8 3376.4 94.3 2.7

N1b -183.1 3.7 2.1 1709.7 104.6 5.8 3385.2 85.5 2.5

a Gauge origin placed at the center of nuclear charges (COC) of the molecule.
b Gauge origin placed at the specific atom, labeled according to Figure 1
c Difference between results obtained with augmented cc-pVQZ and cc-pVTZ basis sets, see Tables S5 and S6 in the supplementary

material.
d Deviation from values obtained with augmented cc-pVQZ basis in %.

the inclusion of the London orbitals extends the basis set
with functions with higher angular momentum thus par-
tially substituting augmenting functions. The use of a
double-ζ quality basis set, including its extended forms
(up to acvDZ basis), may yield highly unsatisfactory re-
sults even with RMB–GIAO method, e.g. TeO, TeS, and
Te2 in Figure S11. The RKB–CGO results obtained with
extended dyall-acvXZ bases converge almost as well, or
just as well, as the RMB–GIAO results. However, the cal-
culations with augmented bases containing diffuse func-
tions with high angular momentum become computation-
ally demanding for moderate-sized systems.

To check the necessity of using diffuse functions we
separated the effects of core correlating and augmenting
(diffuse) functions on the isotropic part of the g-tensor.
We compared the relative errors of the results obtained
with dyall-avXZ and dyall-cvXZ bases (X = D, T, Q)
in Figure S14 in the supplementary material. It appears
that for all considered systems in Figure S14 except for
TT-NAG (consisting only of light elements) the inclusion
of core correlating functions improves the results more
than augmenting basis sets with diffuse functions. More-
over, addition of augmenting functions to double-ζ bases
may worsen the results, e.g. TeO, TeS, and Te2 in Fig-
ure S14. The role of core correlating functions for the
calculations of the g-tensor can be rationalized as follows.
The g-tensor can be primarily viewed as a valence-shell
property. However, valence-shell orbitals, being orthogo-
nal to the core orbitals, are affected by spin-polarization
of the latter. It was shown that core orbitals of transition
metals, in particular 2s and 3s, can be strongly polarized,
sometimes even stronger than valence-shell (see Tables 1
and 2 in Ref. 109). The inclusion of core correlating func-

tions may not be necessary for all atoms (see Tables S8
and S9 in the supplementary material). We have plot-
ted the relative errors of the calculated g-shift compo-
nents for Te–N anion and Re3S4 cluster (see Figures S15
and S16 in the supplementary material) when core corre-
lating functions are added to the basis only for selected
atoms. It appears that for Te–N anion core correlating
functions are necessary only for Te (see Figure S15 in
the supplementary material). However, for Re3S4 clus-
ter, core correlating functions on the heavier atoms – Re
and Br – do not affect the results (Figure S16 in the sup-
plementary material, options c1 and c2), whereas they
are important for S, dyall-(c3)vXZ basis, and light ele-
ments (bases dyall-cvXZ, X = D, Z). Note, that standard
nonrelativistic basis sets for light elements may not con-
tain core correlating functions (e.g. cc-pVXZ basis for
S). Perhaps, some insight which atoms may need core
correlating functions may be obtained by plotting the
spin density obtained from a pilot calculation with a rel-
atively small basis set (see Figures S17 and 4 showing
the spin-density in Te–N anion and Re3S4 cluster, respec-
tively). From the other side, in terms of computational
time, extending basis sets with core correlating functions
costs less than with augmenting functions because the
latter have higher angular momentum. In conclusion,
we recommend to use RMB–GIAO method using basis
of triple-ζ quality with core correlating functions added
at least for heavy and moderately heavy atoms, where
significantly polarized core is expected.

Double point-group symmetry considerations:
The g-tensor of the planar system TiF3 exhibits a van-
ishingly small dependence on the position of the gauge
(see columns with n = 1 in Table IV). This can be ratio-
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TABLE III: Calculated components of the g-shift (in ppt) using RKB (CGO) and RMB–GIAO (GIAO) basis.
Gauge origin is placed at the center of nuclear charges. The data have been calculated with PBE xc functional and

RI-J approximation.

∆gx ∆gy ∆gz

CGOa ∆%
c GIAOb ∆%

c CGOa ∆%
c GIAOb ∆%

c CGOa ∆%
c GIAOb ∆%

c

Te–N anion vDZd -30.254 -2.3 -30.527 -1.4 14.370 53.2 12.846 37.0 -14.027 -18.4 -16.878 -1.8

cvDZe -30.030 -3.0 -30.340 -2.0 13.957 48.8 12.330 31.5 -14.670 -14.6 -17.269 0.5

acvDZf -31.022 0.2 -31.404 1.4 8.971 -4.4 9.815 4.6 -18.762 9.2 -18.347 6.8

vTZg -30.364 -1.9 -30.398 -1.8 10.498 11.9 10.411 11.0 -14.594 -15.1 -16.411 -4.5

cvTZh -30.191 -2.5 -30.234 -2.3 10.006 6.7 9.809 4.6 -15.362 -10.6 -16.905 -1.6

acvTZi -30.459 -1.6 -30.956 0.0 8.841 -5.7 9.379 0.0 -17.210 0.2 -17.183 0.0

Re3S4 cluster vDZd 2.341 -75.2 3.300 -65.1 2.853 -70.9 3.834 -60.9 -89.818 7.7 -88.605 6.3

cvDZe 3.056 -67.7 5.096 -46.1 3.446 -64.9 5.502 -43.9 -87.569 5.0 -85.966 3.1

acvDZf 5.740 -39.3 5.922 -37.4 6.174 -37.1 6.355 -35.2 -89.931 7.9 -89.992 7.9

vTZg 8.811 -6.8 8.261 -12.6 9.240 -5.8 8.696 -11.4 -84.300 1.1 -84.413 1.3

cvTZh 8.673 -8.3 9.244 -2.2 9.068 -7.6 9.647 -1.7 -82.943 -0.5 -82.658 -0.9

acvTZi 9.615 1.7 9.456 0.0 9.987 1.8 9.810 0.0 -83.243 -0.2 -83.369 -0.0

a Data calculated using the theory described in Sec. IV
b Data calculated using the theory described in Sec. III
c Deviation from values obtained with RMB–GIAO method and acvTZ basis in %.
d Basis of double-ζ quality: dyall-vDZ for Te and Re, and cc-pVDZ for the rest of atoms.
e Basis of double-ζ quality: dyall-cvDZ for Te and Re, cc-pV(D+d)Z for P and S, and cc-pVDZ for the rest of atoms.
f Basis of double-ζ quality: dyall-acvDZ for Te, dyall-cvDZ for Re, augmented cc-pV(D+d)Z for P and S, and augmented cc-pVDZ for

the rest of atoms.
g Basis of triple-ζ quality: dyall-vTZ for Te and Re, and cc-pVTZ for the rest of atoms.
h Basis of triple-ζ quality: dyall-cvTZ for Te and Re, cc-pV(T+d)Z for P and S, and cc-pVTZ for the rest of atoms.
i Basis of triple-ζ quality: dyall-acvTZ for Te, dyall-cvTZ for Re, augmented cc-pV(T+d)Z for P and S, and augmented cc-pVTZ for

the rest of atoms.

nalized by using double group theory, which in this case
predicts that the integral of the current density, Eq. (42),
vanishes even in the finite basis. To prove this statement
it is convenient to express the four-component current
density via the MOs, as written in Eq. (A8). Taking time-
reversal symmetry into consideration, one can show that
the MO pairs that constitute Kramers partners generate
current densities with opposite signs. Therefore, from the
form of Eq. (A8) it is clear that in the Kramers-restricted
methodology the current density is determined solely by
the singly-occupied MOs (SOMOs), i.e. by the MOs
without occupied Kramers partners. In the Kramers-
unrestricted methodology (used in this work) one can
still determine approximate Kramers partners as well as
the approximate SOMOs that usually give the dominant
contribution to the current density. The TiF3 system
belongs to the D3h group, and its SOMO belongs to the
E1/2 irreducible representation (irrep) of that group. In
addition, the Dirac matrices ~α transform under the dou-
ble point-group operations in the same way as the posi-
tion vector, and therefore in the case of D3h, the (αx,αy)
pair and αz belong to the E′ and A′′2 irreducible represen-
tations, respectively (here z is the symmetry axis). The
integral of the four-component current density generated
by the TiF3 SOMO then vanishes, because none of the
direct products E1/2 ⊗ E1/2 ⊗ E′ and E1/2 ⊗ E1/2 ⊗ A′′2

contains the totally symmetric D3h irreducible represen-
tation A′1.

There are two useful points one may further infer from
the analysis of the molecular symmetry. Firstly, the rel-
ative strength of the gauge dependence caused by the
different components of the gauge vector may also be
deduced from double group theory. For example, analyz-
ing the symmetry of the OsOF5 system reveals that the
dominant gauge dependence is along its symmetry axis
(because z belongs to the totally symmetric C4v irrep
A1). Secondly, in many systems containing one heavy el-
ement the SOMOs are often centered on the heavy atom,
so it may be useful to analyze the approximate symme-
try of the immediate chemical environment of that heavy
atom. For example, in NAMI, a compound investigated
for its potential in clinical application,110,111 the weak
gauge dependence of the g-tensor results (also studied in
Ref. 48) can be explained by double group theory even
though the system is not symmetric. The structure of
NAMI and the distribution of the spin density are shown
in Figure 3. The components of the g-shift calculated
with the RMB–GIAO and RKB–CGO methods for three
different CGO choices are presented in Table S7, and the
orientation of the g-tensor principal axes is shown in Fig-
ure S4 in the supplementary material. The computations
were done with dyall-cvXZ bases (X = D, T, Q). As men-
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FIG. 4: Isosurface of the spin density magnitude of
Re3S4 cluster (value = 0.01 a.u.)

FIG. 5: Isosurface of the spin density magnitude of
Te–N anion (value = 0.001 a.u.)

tioned above, the gauge dependence of the g-tensor re-
sults is small and remains so even for the most extreme
choice of the gauge at COC+100Å (compare with the
results for TT-NAG in Table S5 in the supplementary
material). One can rationalize this weak dependence as
follows. The immediate chemical environment of ruthe-
nium belongs approximately to the C4v group. However,
the distribution of the spin-density magnitude, Figure 3,
suggests that the SOMO has an approximate symmetry
of Oh rather than C4v. Indeed, upon closer analysis it
can be shown that the SOMO approximately belongs to
the F3/2g irrep of Oh group. Because the direct product
F3/2g⊗F3/2g⊗T1u does not contain the totally symmet-
ric Oh irrep A1g, this part of the SOMO gives a van-
ishing contribution to the integral of the current den-
sity, Eq. (42). Therefore, the weak gauge dependence
of the g-tensor results of NAMI is caused only by the
smaller, non-symmetric parts of the SOMO (i.e. by the

small deviation of the SOMO from being perfectly Oh-
symmetrical), and by spin-polarisation effects, i.e. by
the remaining occupied MOs (see the discussion above).

Molecular-cluster computations: Cluster calcula-
tions are used in quantum chemistry as an approximation
to full periodic calculations of solids. In some cases, sim-
ulating solids by clusters may be the only choice, because
for calculations of many molecular properties relativistic
methods incorporating periodic boundary conditions are
not available. When a cluster is composed of individual
molecules with a relatively weak intermolecular interac-
tion, then cluster computations usually provide a fair ap-
proximation to full periodic calculations. In the follow-
ing we will consider only this type of molecular clusters.
As shown above, for some molecular systems the gauge-
dependence of the results is so significant that it cannot
be mitigated by a suitable choice of common gauge origin.
An important question is whether this gauge dependence
is a serious issue in molecular-cluster calculations. At
first glance one would expect that the gauge dependence
of the results is more severe in cluster than in single-
molecule calculations. This expectation is based on the
following reasoning. First, a cluster generally occupies a
much larger space than a single molecule, and it has a
highly delocalized spin density. Therefore, whatever the
choice of the gauge, there is always a molecule within
the cluster that is far from the gauge origin. Second, one
would assume that the gauge error arising from a single
molecule is additive, and thus it will increase with the
number of the molecules in the cluster. However, this
assumption is not correct when one chooses a gauge ori-
gin at the center of the cluster, e.g. at the center of the
nuclear charges (COC). In this case the gauge error re-
mains approximately constant regardless of the number
of molecules in the cluster (see Table IV). The small
changes of the g-shift that occur when varying the size of
the cluster (see columns with n = 1 . . . 5) are due to the
interaction of the individual molecules within the clus-
ter. The distance between molecules was chosen 10Å to
minimize this interaction. The small dependence of the
g-shit of the [TiF3]n system can be rationalized by the
negligible gauge dependence of the single TiF3 molecule,
see the discussion in the previous paragraph. However,
this argument is not valid for the [SnH3]n and [OsOF5]n
systems, which have non-negligible dependence of the g-
shift on the gauge position, see columns with n = 1 in
Table IV. The insensitivity of the g-shift to the size of
the cluster when COC is chosen as the gauge origin can
be easily understood from Eq. (41), if one neglects the
intermolecular interaction. In that case, the current den-
sity can be decomposed into n identical current densities
~jc, ~j =

∑n
c=1

~jc, one for each molecule in the cluster.
Then Eq. (41) can be reformulated as follows

guv = − 1

S

n∑
c=1

{ˆ [
~rc ×~jc(~rc, ~Jv, 0)

]
u
d3~rc

−
[
(~r0 − ~r0c)×

ˆ
~jc(~rc, ~Jv, 0)d3~rc

]
u

}
,

(48)
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where we have applied the integration-by-substitution
method (also known as change of variables) with ~rc =
~r−~r0c. Here the new integration variable ~rc is the vector
relative to the center of the nuclear charges of individual
molecules within the cluster, ~r0c. Because we have im-
posed a ferromagnetic state on the cluster, i.e. the spins
of the individual molecules are aligned, the effective spin
of the cluster has the form S = nS1, with S1 being the ef-
fective spin of a single molecule. In addition, because we
have neglected intermolecular interaction and used the
COC of the cluster as the common gauge origin ~r0, the
second term on the RHS of the equation vanishes, and
Eq. (48) simplifies to

guv = − 1

S1

ˆ [
~r1 ×~j1(~r1, ~Jv, 0)

]
u
d3~r1. (49)

The reason why the sum of the gauge-dependent terms in
Eq. (48) vanishes is because for each molecule within the
cluster there exists another one that has the oposite vec-
tor (~r0 − ~r0c), and thus their contributions to the gauge
dependence [the second term on the RHS of Eq. (48)]
cancel each other. In the case of an odd number n
of molecules, there are pairs of molecules with can-
celling terms plus a central (unpaired) molecule for which
(~r0 − ~r0c) = 0. As a result, Eq. (49) represents the g-
tensor of a single molecule with the gauge origin at its
COC and thus it does not depend on the size of the clus-
ter. The small changes between the results for different n
in Table IV can be attributed to intermolecular interac-
tion within the cluster, which have been neglected in the
derivation of Eq. (49). Therefore, if the gauge origin is
placed at the center of the cluster, the gauge error is not
cumulative and its magnitude is approximately the same
as the gauge error for a single molecule. If the gauge ori-
gin is shifted away from the center of the cluster by some
∆, then again the magnitude of the total gauge error is
approximately the same as the gauge error for a single
molecule with gauge shifted by ∆ from the center of that
molecule, see the last two columns in Table IV. One can
prove this by simply adding ∆ to ~r0 and ~r0c vectors in
Eq. (48). Note that, on the basis of these considerations,
before doing cluster calculations it would make sense to
first estimate the gauge-related error with the intended
basis set for a single molecule, as the difference between
the results obtained when employing the RMB–GIAO
(Sec. III) and RKB–CGO (Sec. IV) methods. Then, if
the error is small, one may proceed with cluster calcula-
tions using the computationally-cheaper methodology in-
volving the RKB basis. This procedure does not account
for the intermolecular interaction within the cluster, but
in principle it validates the results obtained by the in-
ferior RKB–CGO method when computational demands
prohibit the use of a method based on the RMB–GIAO
basis.

VIII. SUMMARY AND CONCLUDING REMARKS

In this work we have presented a four-component
Dirac–Kohn–Sham method for the calculation of the elec-
tron paramagnetic resonance g-tensor that takes advan-
tage of both the restricted magnetically balanced (RMB)
basis and gauge-including atomic orbitals (GIAO). The
developed RMB–GIAO method is based on the Dirac–
Coulomb Hamiltonian and thus includes nuclear spin–
orbit and spin-same-orbit effects to arbitrary order and
strength. Furthermore, the method utilizes a recently
developed noncollinear regularized xc potential so it be-
comes independent on the rotation of the Cartesian coor-
dinate axis system and provides increased computational
stability when compared to older noncollinear schemes.
In order to include the important spin-polarization ef-
fects, the method is based on the Kramers-unrestricted
Kohn–Sham determinant.

We have demonstrated the generally superior conver-
gence, with regards to the basis set size, of the proposed
RMB–GIAO method compared to the method based on
the restricted kinetically balanced basis (RKB) with a
common gauge origin (CGO). Exceptions to this include
small systems and systems with a certain symmetry, i.e.
systems for which the choice of gauge origin only has
a minor or no effect on the calculated g-tensors. The
use of double-ζ quality basis sets, including extended
forms thereof, may yield highly unsatisfactory results
even when obtained with the RMB–GIAO method. The
RKB–CGO results for small systems obtained with bases
extended by core correlating and diffuse functions con-
verge almost as well, or just as well, as the RMB–GIAO
results. For moderate-size systems with delocalized spin
density the RKB–CGO results obtained with bases of
triple-ζ quality without additional core correlating and
diffuse functions may deviate from the RMB–GIAO re-
sults up to 15%.

In all considered examples, the RMB-GIAO results
converge monotonically to the basis set limit starting
with valence triple-ζ bases. In general, for the RMB-
GIAO calculations of the g-tensor, core correlating func-
tions are more important than diffuse functions. The
smallest basis set that can be expected to provide suffi-
ciently converged RMB-GIAO results (the relative error
below 10%) should be of triple-ζ quality extended by core
correlating functions on atoms with the significantly po-
larized core. Those atoms are not necessarily limited to
heavy-atom centers, but may include lighter atoms as
well.

Using the formulation of the RKB–CGO method via
the current densities, we have shown that the gauge de-
pendence of the g-tensor results vanishes in the basis set
limit. In particular, we have proved the validity of the
continuity equation within the framework of the DKS
theory, as well as its connection to the gauge-independent
g-tensor results by using the divergence theorem. The
key point of the proof is the vanishing integral of the
current density in the basis set limit. In addition, we
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TABLE IV: Calculated isotropic g-shift for linear clusters of TiF3, SnH3 and OsOF5 containing n (1 to 5) molecules
separated by 10Å in the direction of the symmetry axis of the molecules. All values were calculated using the PBE
xc functional, cc-pVDZ basis for light and dyall-vDZ basis for heavy atoms (Sn and Os), and the relativistic theory

based on the RKB basis described in Sec. IV.

symmetrya COCb COC+20Åc

n = 1 n = 2 n = 3 n = 4 n = 5 n = 1 n = 5

[TiF3]n D3h -32.39 -32.39 -32.36 -32.35 -32.35 -32.39 -32.35

[SnH3]n C3v 21.48 21.47 21.46 21.46 21.46 24.56 24.55

[OsOF5]n C4v -341.43 -341.53 -341.47 -341.43 -341.41 -333.49 -333.67

a Point-group symmetry of the molecule.
b Gauge origin placed at the center of nuclear charges (COC).
c Gauge origin placed 20Å (two intermolecular distances) away from the COC in the positive direction.

used the formulation of the RKB–CGO method via the
current density to show how the double point-group sym-
metry may be useful in analyzing the gauge dependence
of the g-tensor results. For example, we demonstrated
that the gauge independence of the g-tensor of TiF3 is a
consequence of the fact that its SOMO belongs to E1/2

irreducible representation (irrep) of the D3h group. Al-
though NAMI is not a symmetric system, its SOMO be-
longs (approximately) to the F3/2g irrep of Oh group,
which results in a weak gauge dependence of the calcu-
lated g-tensors.

Finally, we have discussed the somewhat surprising re-
sult that, in molecular cluster calculations, the gauge er-
ror does not increase on increasing the size of the cluster,
if the gauge origin is chosen to be in the center of the
cluster. To explain this behavior we have used the for-
mulation of the RKB–CGO method based on the current
densities. In this formulation the gauge-dependent term
of an individual molecule within the cluster depends lin-
early on the integral of the current density and on the
relative position of the molecule with respect to the cen-
ter of the cluster. As a result, one can show that the
gauge error of the entire cluster equals the gauge error
of a single molecule, if the intermolecular interactions
are sufficiently small. However, even in the case of non-
vanishing intermolecular interactions, the gauge error is
still significantly diminished, and increases only weakly
with increasing size of the cluster.

Appendix A: The continuity equation within the DHF and
DKS theory

To show the validity of the continuity equation and
the corresponding definition of the charge and current
densities in the framework of the DHF and DKS theories,
we start from the equation of motion for the ith occupied
molecular orbital ϕi(~r, t)

i

(
dϕi
dt

)
=
[
c (~α · ~π) + (β − I4) c2 + V(~r, t)

]
ϕi, (A1)

with ~π = ~p + 1
c
~A being the mechanical momentum op-

erator. Here and in the following we use bold font on
MOs to indicate that they have a four-component form.
The level of theory (DHF or DKS) is specified by the
choice of the four-component potential V(~r, t) (see the
discussion of the parameter ξ in Sec. III). By multiply-

ing the left side of Eq. (A1) with ϕ†i we get [here and in
Eqs. (A3)–(A5) i is not a summation index]

iϕ†i

(
dϕi
dt

)
= cϕ†i (~α · ~π)ϕi +ϕ†i (β − I4) c2ϕi

+ϕ†i [V(~r, t)ϕi]

, (A2)

and by subtracting its Hermitian adjoint we obtain the
expression

i
d

dt

(
ϕ†iϕi

)
= cϕ†i (~α · ~πϕi)− c (~α · ~πϕi)

†
ϕi

+ϕ†i
[
(β − I4) c2ϕi

]
−
[
(β − I4) c2ϕi

]†
ϕi

+ϕ†i [V(~r, t)ϕi]− [V(~r, t)ϕi]
†
ϕi.

(A3)

In contrast to the operators ~α · ~A and (β − I4)c2, the
operator that contains the momentum operator, ~α · ~p, is
not Hermitian in the matrix sense [because for the dagger

operation used above it holds that (~pϕi)
† = −~pϕ†i ].

Therefore, while the third and fourth terms on the RHS
of Eq. (A3) vanish, the first two terms yield

cϕ†i (~α · ~pϕi)− c (~α · ~pϕi)
†
ϕi

= −ic
[
ϕ†i ~α ·

(
~∇ϕi

)
+
(
~∇ϕi

)†
· ~αϕi

]
= −ic~∇ ·

(
ϕ†i ~αϕi

)
.

(A4)

The last two terms in Eq. (A3) vanish for any local Her-
mitian potentials, such as the xc potential or Coulomb
contribution to the Fock operator. On the other hand,
in the case of a non-local HF exchange potential one gets
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the following expression

ϕ†i (~r1) [Vex(~r1)ϕi(~r1)]− [Vex(~r1)ϕi(~r1)]
†
ϕi(~r1)

=
∑
j

ϕ†i (~r1)

[ˆ
ϕ†j(~r2)ϕi(~r2)

|~r1 − ~r2|
d3~r2

]
ϕj(~r1)

−
∑
j

ϕ†j(~r1)

[ˆ
ϕ†i (~r2)ϕj(~r2)

|~r1 − ~r2|
d3~r2

]
ϕi(~r1),

(A5)

which vanishes only if one performs an additional sum-
mation over the occupied index i. By collecting equations
(A3)–(A5) we get the equation

d

dt

(
−ϕ†iϕi

)
= −~∇ ·

[
−cϕ†i ~αϕi

]
, (A6)

where in the presence of an HF exchange potential the
summation over index i is required, while in its absence
this summation is optional, /i.e. the equation holds both
for the sum and for the individual occupied MOs.

In the DHF or DKS theory the charge density ρ can be
expressed as the sum of molecular orbital contributions

ρ =
∑
i

ρi = −
∑
i

ϕ†iϕi. (A7)

Here we have used the physical definition of the charge
density of the electrons, i.e. that it integrates to the
charge of the system, which is equal to the number of
electrons multiplied by their charge (-1). We note in
passing that the definition of ρ0 in Eq. (34) gives the
number of electrons when integrated, and thus lacks the
minus sign. The continuity equation describes a pro-
cess of transporting some physical quantity. It sets up a
mathematical relation between the charge and the cur-
rent density of the said quantity. If we assume that the
continuity equation is satisfied in the framework of the
DHF and DKS theory, and we take the charge density
as defined by Eq. (A7), then the four-component current
density necessarily has the form

~j =
∑
i

~ji = −
∑
i

ϕ†i c~αϕi. (A8)

Then according to Eq. (A6) and the corresponding dis-
cussion, within the framework of pure DFT, ξ = 0, the
continuity equation holds for the charge and current den-
sity of the individual MOs

dρi
dt

= −~∇ ·~ji. (A9)

If, on the other hand, the HF exchange potential is
present in the Fock operator, the continuity equation is
satisfied for the total charge and current densities only

dρ

dt
= −~∇ ·~j. (A10)

Appendix B: Integral of the current density in R3

In this section we will prove that the integral of the
current density vanishes, Eq. (42), when the continuity
equation, Eq. (A10), is satisfied

dρ

dt
= −~∇ ·~j ⇒

˚
~j d3~r = 0. (B1)

For a time-independent charge density, ρ 6= ρ(t), the con-
tinuity equation gives, for any closed volume V, the fol-
lowing relation

˚

V

dρ

dt
dV = −

˚

V

~∇ ·~j dV = 0. (B2)

The application of the divergence theorem (also known
as Gauss’s theorem) to this expression then leads to the
following relation

˚

V

~∇ ·~j dV =

‹

S

~j · d~S = 0, (B3)

where V is a three-dimensional closed volume and S = ∂V
is its boundary. Let us choose the volume V to be the
upper half of a sphere with radius R, V = {x2+y2+z2 ≤
R, z ≥ 0}. The boundary of V consists of the hemisphere
S1 = {x2 + y2 + z2 = R, z > 0} and the disc in the xy
plane S2 = {x2 + y2 ≤ R, z = 0}. The surface integral in
Eq. (B3) then becomes

‹

S

~j · d~S =

‹

S1

~j · d~S1 +

‹

S2

~j · d~S2 = 0. (B4)

When the current density ~j(~r) decreases asymptotically
faster than |~r|−2 (which is satisfied in the usual quantum
chemical calculations of an isolated molecule), then in the
limit R → ∞ the first integral on the right-hand side of
Eq. (B4) vanishes. Because the integral over the surface
S = S1 + S2 vanishes as well, Eq. (B4) simplifies to

lim
R→∞

‹

S2

~j · d~S2 = 0. (B5)

In the limit R→∞ the integral over the disc with radius
R turns into the integral over the xy plane. Keeping in
mind that the orientation of the surface normal points
outwards of a closed volume, one gets the expression

lim
R→∞

‹

S2

~j · d~S2 = −
¨

jz dx dy = 0. (B6)

Finally, we can rewrite the three-dimensional integral of
the current density as follows

˚
jz d

3~r =

ˆ (¨
jz dy dx

)
dz = 0. (B7)
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A similar result can be obtained for each component of
the current density ~j by choosing a different orientation
of the closed integration area V. Q.E.D.

On the basis of Eq. (A9) and the corresponding dis-
cussion, for the pure DFT functionals (ξ = 0) one may
prove the theorem in Eq. (B1) for individual molecular
orbitals

∀i :
dρi
dt

= −~∇ ·~ji ⇒
˚

~ji d
3~r = 0. (B8)

SUPPLEMENTARY MATERIAL

See the supplementary material for the discussion of
the RKB–GIAO method, for the orientation of the prin-
cipal axes of the g-tensor in TT-NAG, Te–N anion, Re3S4

cluster, and NAMI systems, for the comparison of the
RKB–CGO and RMB–CGO methods, for the perfor-
mance of the RMB–GIAO method with various basis
sets, and for def2-SVP, def2-TZVP, and def2-QZVPPD
fitting bases for hydrogen and germanium.
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