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ABSTRACT We propose a novel and adaptive feature space distillation method (AFSD) to reduce the
communication overhead among distributed computers. The proposed method improves the Codistillation
process by supporting longer update interval rates. AFSD performs knowledge distillates across the models
infrequently and provides flexibility to the models in terms of exploring diverse variations in the training
process. We perform knowledge distillation in terms of sharing the feature space instead of output only.
Therefore, we also propose a new loss function for the Codistillation technique in AFSD. Using the feature
space leads to more efficient knowledge transfer between models with a longer update interval rates. In our
method, the models can achieve the same accuracy as Allreduce and Codistillation with fewer epochs.

INDEX TERMS Distributed deep learning, convolutional neural networks, knowledge distillation, codistil-
lation.

I. INTRODUCTION
To efficiently process big data, new deep learning based
systems have been proposed. These systems significantly
improve the overall performance when considering the big
data. Furthermore, these systems scale up the training and
inference process of deep learning techniques. To address the
need for computational resources, the training process could
be distributed across multiple computers connected by a net-
work [1], [2]. Distributed deep learning is the most widely
used approach to speed up the neural network training by
leveraging the computational resources of multiple devices
(e.g., multiple GPUs) [1]. These devices are used to accelerate
training by distributing data (data-parallel) across the devices.
Each device holds a copy of the model being trained, and the
copies are kept synchronized throughout the training process.
In one step of a typical implementation, every device com-
putes a gradient using different data samples. The gradients
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are then averaged across all devices (e.g., via an Allreduce
operation). Subsequently, each device locally performs an
optimization step using the average gradient [1], [3], [4]. The
model parameters on every device are initialized to the same
value to keep them synchronized. Increasing the number of
devices brings more computational power. However, it also
brings a significant communication overhead to synchronize
the model parameters across all devices at every step [5], [6].

In the literature, different methods are introduced to reduce
the communication overhead. For example, quantizing or
compressing gradients before synchronizing them [7], syn-
chronizing periodically rather than on every update [8], and
only synchronizing among subsets of devices [9]. These
methods reduce the communication overhead per update but
they also impact the quality of a model or training time.
In this regards, one-step Codistillation [10] method is pro-
posed based on online distillation. The distillation process
involves training a single model to match the ensemble output
rather than the real data labels [11]. Codistillation makes use
of distillation in an online manner to accelerate training by
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transferring the improved performance of the ensemble to
each model [12]. In the codistillation technique, the update
interval for synchronizing the stored models is important,
because it can affect the communication overhead between
the machines. However, by having a longer update inter-
val, the efficiency of knowledge distillation is crucial for
knowledge sharing between models. Otherwise, the train-
ing time would increase which is against the essence of the
Codistillation process.

In this paper, we propose adaptive feature space distilla-
tion (AFSD). In our proposed method, the models perform
knowledge distillation by sharing features instead of output
as in regular Codistillation [10]. We achieve this by means
of a new loss function for the Codistillation technique, char-
acterized by reduced communication overhead. Our method
can achieve the same accuracywith longer update intervals by
considering fewer epochs. Our method performs knowledge
distillation across the models infrequently, which provides
flexibility to themodels in terms of learning diverse variations
in the data. In short, the main contribution of this paper are:
• A novel and adaptive feature space distillation method
characterized by reduced communication overhead.

• A new loss function for knowledge distillation which
shares features instead of output in the Codistillation
technique.

• We outperform the state-of-the-art methods, Allreduce
andCodistillation, by getting the same performancewith
fewer epochs.

The paper is organized as follows: related work is
discussed in Section II and background material in
Section III. We present the AFSD method in Section IV.
Section V validates the proposed method experimentally.
Section VI discuss the conclusions and future work.

II. RELATED WORK
We can categorize distributed deep learning techniques from
two perspectives [1], namely concurrency in networks and
concurrency in training. The first category can be further
divided into the two sub-categories: model parallelism and
data parallelism.

A. CONCURRENCY IN NETWORKS
In this category, we compute the output of the layers or the
whole network in concurrent mode for the forward evalua-
tion and backpropagation phases. Model parallelism divides
the work according to the neurons in each layer. Different
parts of the Deep Neural Network (DNN) are computed on
different processors in different machines [1]. For example,
Huang et al. [13] proposed an approach for training huge
DNNs that can not be stored in one GPU. With data paral-
lelism, several replicas of a neural network model are created
during training, each on a different worker (processor). The
workers process different mini-batches locally at each step
using an optimizer. For example, the replicas of the model
are synchronized (i.e., either by average gradients or parame-
ters) at every step by communicating either with a centralized

parameter server [14], [15] or decentralized using Allre-
duce [16], [17], [18]. By relaxing the synchronization restric-
tions and creating an inconsistent model, training workers can
read parameters and update gradients asynchronously [19].
Data communication in distributed deep learning can be
reduced using methods such as quantization [20], [21], [22]
or sparsification [23], [24], [25], [26], [27].

B. CONCURRENCY IN TRAINING
In this category, concurrency is used in the training stage.
Multiple instances of training processes run independently
on different machines. Concurrency is also used for ensem-
ble learning. Distributed training of ensembles is a com-
pletely parallel process, requiring no communication between
the workers [28]. Ensemble learning requires more mem-
ory and computational power in the training and inference
phases. Therefore, knowledge distillation has been used in
a two-step training to transfer knowledge of an ensemble
with several networks to a single network [12], [29], [30].
To handle the problem of two-step training, Zhang et al. [31]
investigated how an ensemble of students can learn collab-
oratively and teach each other throughout the training pro-
cess. Kim et al. [32] introduced a fusion learning method
that trains a robust classifier by integrating feature maps.
Park and Kwak [33] used feature-level ensembles for knowl-
edge distillation by transferring the ensemble knowledge
between multiple teacher networks. Although these meth-
ods can be trained in parallel, their main problem is accu-
racy when the number of epochs is not taken into account.
Codistillation [10] taken advantage of ensemble learning and
mutual learning to speed up the training. Codistillation uses
a distillation-like loss that penalizes predictions made by one
model on a batch of training samples for deviating from the
predictions made by other models on the same batch.

Our proposed method falls in the category concurrency in
training. It includes distilled knowledge between models by
directly tuning their feature space.

III. BACKGROUND
Distributed ensemble learning (DEL) addresses the problem
of communication overhead by training multiple instances
of models (weights) independently on the same dataset. The
overall prediction is the average of the predictions of all the
models. DEL requires no communication between the com-
puters [1]. However, ensemble learning increases the cost
during the validation stage since the predictions from mul-
tiple machines are averaged. Ensemble learning also causes
latency [1]. The distillation approach [12] addresses this
problem by a two-step processes. In the first step, ensem-
ble learning is performed over several machines, so-called
teachers. In the second step, a student model is trained to
mimic the teacher models. The student model is then used
during the test stage. It reduces the cost of ensemble learn-
ing by adding another phase to the training process. Using
more machines, distillation increases the training time and
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FIGURE 1. Architecture of our proposed method. The checkpoints of the models are stored on a shared storage or a prediction server after the specific
interval (N). Each model is forced to produce the same feature space as the others models for the same inputs batch.

complexity in return for a quality improvement close to a
larger teacher ensemble model [10].

However, the ensemble method with distillation remains
time consuming. In contrast, one-step Codistillation [10] is
based on online distillation and trains N copies of a model
in parallel. It starts distillation early in the training pro-
cess. In the Codistillation technique, the length of the update
interval can affect the communication overhead among the
machines. For example, the longer the update interval,
the lower is the communication overhead. In the ideal
case, the communication among different models should be
reduced with longer update intervals. Moreover, the update
interval affects the diversity between the trained models. The
distillation process in Codistillation reduces diversity by forc-
ing themodels to predict the same outputs for the same inputs.

IV. AFSD: ADAPTIVE FEATURE SPACE DISTILLATION
AFSD, the method proposed in this paper, exploits the feature
space of each model to explore more variations in the training
data instead of using the outputs of the networks to share
knowledge between the models. In fact, we tune the mod-
els to generate similar feature spaces for transferring knowl-
edge between the models. We consider feature spaces to be
similar when the distance between extracted features is the
same for the same inputs using different models. To perform
knowledge distillation more efficiently with fewer epochs,
we manipulate and tune the feature space by considering a
distillation term. Our method is based on the Codistillation
technique [10] to share knowledge between models rather
than synchronizingmodels to have the sameweights.We train
n copies of a model in parallel and start distillation early in the
training process by adding a new distillation loss term to the
loss function. In fact, we have a set of students who simulta-
neously learn during the training process to handle the classi-
fication together (Figure 1). Each model saves the checkpoint
of its weights on a shared storage after each update interval,
so each model considers the other models as teachers in a
distillation-like setup. However, each model uses the stale

version of stored models on shared storage (or a prediction
server) and performs additional forward passes with the same
input batch.

A. FORMULATION OF THE LEARNING PROCESS
We consider an input batch X = {x1, . . . xn} where xk is an
input sample and n is the size of the input batch and labels
Y = {y1, y2, . . . , yn} according to the input batch X . The
output of model i is defined by fθ i(xk ) where xk ∈ X and θi is
the parameter of model i. The extracted features from model
i are represented by Fθ i(xk ) = aik where aik are extracted
features by considering the xk sample by the model i. The
number of models is represented by m.
We propose a loss function including a distillation penalty

to force the models to produce the same feature space
(extracted features before fully connected layers (FC)). For
this purpose, the penalty term forces models to have the
same distance between extracted features when considering
the same inputs. In other words, if the distance between two
features for two samples is shorter or longer using one model,
the distance between the features for the same two samples
extracted from the other models should be similar. For this
purpose, we formulate a n × n distance matrix representing
the distance between an individual feature and all other fea-
tures. We formulate the distance matrix Ei of the model i as

Ei =


D(ai1, ai1) D(ai1, ai2) . . . D(ai1, ain)
D(ai2, ai1) D(ai2, ai2) . . . D(ai2, ain)

. . . . . . . . . . . .

D(ain, ai1) D(ain, ai2) . . . D(ain, ain)


(1)

where aik and aij are extracted features consider-
ing samples xk and xj using model i. Let D be
the distance metric and n the input batch size.
We formulate the loss function for the model i as
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FIGURE 2. Comparison between earliest epoch number that achieves the same accuracy as Allreduce considering Codistillation and our
proposed method.

follows:

loss = L(Y , fθ i(X ))+ α
1

m− 1

∑
g(Ei,Ej)

i 6= j and j ∈ 1, 2, 3, . . .m (2)

g(Ei,Ej) =
1
n
eT |Ei − Ej|e (3)

where m is the number of models on different
machines, X is the input batch, Y is the input labels,
α is the penalty coefficient and L represents the loss
between prediction and the labels. The function g
indicates the average distance between elements of
Ei and Ej considering batch size n, where e is the
column vector whose entries are all 1’s and T is
the transpose operator. The first term is the cross
entropy loss and the second term is the distillation
loss. Based on this loss function, we show our pro-
posed method in Algorithm 1.

Algorithm 1 AFSD Algorithm
1: Initialization of network parameters (θi, i ∈ 1, 2, 3,
. . . ,m)

2: Initialization of learning rate µ and penalty coefficients
α for each model

3: Repeat for the number of epochs:
4: Do in parallel for i ∈ 1, 2, 3, . . . ,m :
5: Get next batch (X,Y) by size n
6: Update θ :
θk+1i = θki + µ∇θ i(L(Y , f

k
θ i(X )) + α

1
m−1

∑
g(Ei,Ej))

i 6= j and j ∈ 1,2,3, . . .m

V. EXPERIMENTAL ANALYSIS
In our experiments, wewant to evaluate ourmethod
and show that it can address the aforementioned
problems. The evaluation is done in terms of four
research questions (RQs). RQ1: How does AFSD
cope with the impact of the update interval with-
out affecting the performance? RQ2: Does AFSD
achieve the same performance with fewer epochs
considering a longer update interval? RQ3: How
does the new distillation loss term based on the fea-
ture space affect the training process and the out-
puts of the models? RQ4: How does AFSD work
when different network architectures are trained?
We address these research questions in the subsec-
tions V-A, V-B, V-C, respectively.
Experimental Setup and Design: In our experi-

ments, we use the standard CIFAR10 dataset [34].
For comparison, we consider the Allreduce [16]
and the Codistillation [10] techniques. We con-
sider the Allreduce technique as a baseline for
comparison. For the Allreduce technique, we used
hyperparameters and the gradual warmup strategy
for changing the learning rate [16]. For evaluating
our model, we also consider different architectures,
namely ResNet20, ResNet32, and VGG16. In case
of ResNet20, we trained the network using the
Allreduce technique and we achieved a top-1 vali-
dation accuracy of 91.71% after 114 epochs. In the
Allreduce technique, the input batch is divided
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TABLE 1. Validation accuracy and earliest epoch that achieves the same accuracy as Allreduce considering Codistillation [10] and AFSD with update
interval between 40 and 3500.

TABLE 2. Validation accuracy and earliest epoch that achieves the same accuracy as Allreduce considering Codistillation [10] and AFSD with update
interval between 4000 and 15000.

between different GPUs. However, we use the same
batch input for training the models based on AFSD.
Therefore, we feed the data twice as compared to
the Allreduce technique and we expect that AFSD
driven by linear scalability should achieve the same
accuracywith half the number of epochs.We set the
batch size such that each GPU receives 128 sam-
ples in each batch in all three methods.
In our experiments, we use two servers with

three Nvidia GPUs namely Quadro RTX 5000 with
16GB memory on each. The servers are connected
through a point-to-point 10Gb network. We use
NFS shared storage to save and restore models
checkpoints.

A. UPDATE INTERVAL (RQ1 AND RQ2)

We compare our proposed method with the
Codistillation method [10] considering different
update intervals.We consider update intervals from
50 steps to 15000 steps. To show the capability
of our proposed method, we compare the epoch
number on which each method achieves the desired
accuracy based on the Allreduce method. The com-
parison between the Codistillation method and our
proposed method is shown in Figure 2. Table 1
shows validation accuracy and earliest epoch that
achieves the same accuracy as Allreduce consider-
ing Codistillation [10] andAFSDwith update inter-
val 40 to 3500 and Table 2 shows same validation
accuracy for update interval from 4000 to 15000.
In this experiment, we record the epoch number
when a specific method reaches the same accu-
racy as Allreduce. It can be seen, when the update
interval is longer, our method achieves the desired

accuracy with much fewer epochs. Additionally,
our proposed method is driven by linear scalability
and tolerates longer update intervals considering
12000 steps. In fact, when using 9000 steps as the
update interval, we update the saved checkpoint
after 23 epochs (the batch size is 128, and we have
50000 samples in the training dataset). This shows
that our method can achieve the same accuracy and
scalability with very little communication over-
head. However, when we update the models more
often with shorter update intervals, we reduce the
diversity of the models. When we use more power-
ful distillation, information sharing does not have
the intended benefits. The comparison between
Allreduce, Codistillation, and our proposedmethod
using ResNet20 [36] is shown in Figure 3. We con-
sider update intervals equal to 5000 and 9000 steps.
We use the early stopping strategy when Codistil-
lation and AFSD achieve 91.71% or more accu-
racy. We reduce the learning rate on epochs 45 and
55 with a factor 0.1 when Codistillation and AFSD
are used. We also consider the first four epochs
as the warm-up epochs applicable to the update
interval. Otherwise, we let the networks continue
the training independently, based on the specified
update intervals. As we can see in Figure3, our
method can achieve the same accuracy with fewer
epochs compared to Allreduce and Codistillation.
Since we are using much longer update intervals,
the networks are trained more independently in a
different direction. Therefore, we can see a rise in
training loss when we transfer knowledge based on
distillation loss terms. However, the loss reduces
through the training process.
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FIGURE 3. Validation accuracy and training loss using Codistillation [10], our proposed method, and Allreduce [35]. We use the early stopping
strategy when the Codistillation achieves the same accuracy of Allreduce considering 9000 steps (a, b) and 5000 steps (c, d) update intervals.

FIGURE 4. Distillation losses based on the outputs and features considering Codistillation and our proposed method. We do not include
distillation loss based on the outputs in our method, but we measure it to compare with the Codistillation approach.

B. DISTILLATION LOSS (RQ3)

The loss function is based on two terms: cross-
entropy loss and distillation loss. The Codistilla-
tion technique uses distillation loss based on the
output of the networks. In contrast, our method
encodes distillation loss based on the feature space.
Wewant to illustrate the difference between the two

loss terms by showing how these behave during the
training process for AFSD. Figure4 shows the dis-
tillation loss considering the Codistillation method
andAFSD. It should be noted, in ourmethod, we do
not use output-based distillation, but we measure
it during the training. As we can see, in Figures4
(a) and4 (c), distillation based on outputs fluctuates
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and even increases with AFSD. The networks are
robust for classifying the extracted features even
with different outputs since we just force them to
generate the same features. This is because the
neural network models can represent the same
function in different ways with different parameter
values [37]. However, Figures4 (b) and4 (d) show
that the loss between extracted features is reduced
through the training, and we can transfer knowl-
edge between the models. Even small changes in
the features can lead to more effective distillation,
and the networks can achieve the same accuracy
with fewer epochs.

C. NETWORK ARCHITECTURES (RQ4)

In order to evaluate the generalization capability
of AFSD regardless of the use of a specific net-
work architecture, we consider other architectures
in this section. Figure5 shows the validation accu-
racy of the ResNet32 network using Codistil-
lation and AFSD for update intervals equal to
5000 and 9000 steps. For this experiment, we con-
sider 92.41% as the top-1 accuracy of Allreduce.
The Allreduce operation achieves this accuracy
after 123 epochs. We use the learning rate schedule
for this network to reduce the learning rate by a fac-
tor of 0.1 on the epoch number equal to 50 and 60.
As we can see, our method achieves this accuracy
with fewer epochs compared to the Codistillation
method.
We also explore the VGG-16 [38] model and

a 13-layer CNN [39] architecture to consider
architectures not belonging to the ResNet fami-
lies. However, considering both Codistillation and
AFSD, using these architectures, we would not
get the same accuracy with fewer epochs then
needed for the Allreduce technique. Therefore it
seems these methods can bemore effective with the
ResNet family of architectures.

D. THREATS TO VALIDITY

In our experiments, we used three GPUs on each
server. In each server we considered the Allreduce
algorithm to train a model in a synchronized man-
ner on these three GPUs. Increasing the number
of GPUs on each server could affect the results
since it would increase the number of epochs to
get the appropriate accuracy. Since this would be

FIGURE 5. Validation accuracy of the ResNet32 network using
Codistillation and our proposed method for the update intervals equal to
5000 and 9000.

same for both Codistillation and AFSD, we con-
sider them significant parameters. Experiments
with more GPUs on each server in a two-way setup
can be considered.
We considered the ResNet20, ResNet30, VGG16

and a 13-layer CNN [39] architectures in our
experiments. Deeper architectures with more
parameters could exhibit different behaviors.
Deeper architectures usually learn features at var-
ious levels of abstractions. Therefore, considering
only high-level features at the end of the network
would not be sufficient to share knowledge.We can
also observe this issue when a pure convolution
network like VGG16 is used. Hence deeper archi-
tectures with more parameters and more inter-
mediate features can be considered for future
experiments.
We consider random initialization as a diversity

enforcement regularization. However, it can violate
a specific situation when the initialized weights or
training directions are aligned together. Hence we
assume that this diversity can be accomplished by
weight randomization.

VI. CONCLUSION
In this paper, we propose AFSD, a new method
for large scale distributed deep learning. The main
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novelty of AFSD is knowledge sharing based on
the feature space of parallel models in the Codis-
tillation setup. Our method supports much longer
update intervals using a new knowledge distillation
loss function. By prolonging the update interval,
the models become more diverse and contribute
more to the training process. Additionally, the
communication overhead is significantly reduced.
We show that with only two updates through the
training process, the models can achieve linear
scalability using the feature space for sharing the
information.
In future work, we will consider our approach of

feature space sharing for scalable semi-supervised
learning. It has been shown that generating
pseudo-labels for unlabeled data using fea-
ture spaces increases the performance of deep
semi-supervised learning [40], [41]. An extension
of our method to semi-supervised learning, could
be useful to address the issue of scarce training
data, which is critical in many areas where a small
number of labeled data and a large amount of unla-
beled data are available.
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