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Abstract: The synergy of fine-to-moderate-resolutin (i.e., 10–60 m) satellite data of the Landsat-8
Operational Land Imager (OLI) and the Sentinel-2 Multispectral Instrument (MSI) provides a pos-
sibility to monitor the dynamics of sensitive aquatic systems. However, it is imperative to assess
the spectral consistency of both sensors before developing new algorithms for their combined use.
This study evaluates spectral consistency between OLI and MSI-A/B, mainly in terms of the top-
of-atmosphere reflectance (ρt), Rayleigh-corrected reflectance (ρrc), and remote-sensing reflectance
(Rrs). To check the spectral consistency under various atmospheric and aquatic conditions, near-
simultaneous same-day overpass images of OLI and MSI-A/B were selected over diverse coastal and
inland areas across Mainland China and Hong Kong. The results showed that spectral data obtained
from OLI and MSI-A/B were consistent. The difference in the mean absolute percentage error (MAPE)
of the OLI and MSI-A products was ~8% in ρt and ~10% in both ρrc and Rrs for all the matching
bands, whereas the MAPE for OLI and MSI-B was ~3.7% in ρt, ~5.7% in ρrc, and ~7.5% in Rrs for
all visible bands except the ultra-blue band. Overall, the green band was the most consistent, with
the lowest MAPE of ≤ 4.6% in all the products. The linear regression model suggested that prod-
uct difference decreased significantly after band adjustment with the highest reduction rate in Rrs

(NIR band) and Rrs (red band) for the OLI–MSI-A and OLI–MSI-B comparison, respectively. Further,
this study discussed the combined use of OLI and MSI-A/B data for (i) time series of the total sus-
pended solid concentrations (TSS) over coastal and inland waters; (ii) floating algae area comparison;
and (iii) tracking changes in coastal floating algae (FA). Time series analysis of the TSS showed that
seasonal variation was well-captured by the combined use of sensors. The analysis of the floating
algae bloom area revealed that the algae area was consistent, however, the difference increases as the
time difference between the same-day overpasses increases. Furthermore, tracking changes in coastal
FA over two months showed that thin algal slicks (width < 500 m) can be detected with an adequate
spatial resolution of the OLI and the MSI.

Keywords: spectral adjustment; water-leaving reflectance; TSS concentration; floating algae bloom;
time series; water quality; Landsat; Sentinel

1. Introduction

Coastal and inland waters are adversely affected by the anthropogenic activities and
climate change. Population density within 100 km of coastlines is three times higher than
the average density of the global population [1]. Coastal cities rely on both a high-quality
resource of drinking water and clean coastal resources for sustainable coastal ecosystems
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and coastal economy. Inland freshwater resources are also a vital source of drinking water,
providers of ecosystem services, centers of recreational activities, and homes to aquatic
species. Increasing land exploitation activities and changing climate are posing threats
to coastal and inland waters [2]. Heavy nutrients flow into these water resources from
land activities as changing agricultural practices and improper management of industrial
waste have led to more frequent occurrences of harmful algae blooms that endanger human
health, economy, and aquatic ecosystems [3–5].

To cope with the adverse consequences of water pollution, there is an urgent need
to monitor the potential changes in these water resources [6,7]. The traditional methods
adopted to monitor these resources are labor-intensive and time-consuming. Consis-
tent coverage with high temporal resolution of ~2–3 days of the Landsat and Sentinel-2
(S-2 hereafter) virtual constellation along with an adequate spatial resolution from
10–30 m [8] provides possibilities for reliable monitoring of aquatic systems [9]. In the
coming 10–15 years, the Multispectral Imager (MSI) onboard Sentinel-2 mission and the Op-
erational Land Imager (OLI) onboard Landsat-8/9 are expected to provide well-calibrated
and robust water quality products [10,11]. High-frequency revisits can be fully achieved
as Landsat-9 also became operational in 2021. Considering the data gaps caused by cloud
cover and various environmental conditions, this temporal frequency is critical in capturing
dynamic coastal and inland waters. With reliable radiometric performances, the OLI and
the MSI can monitor several water quality indicators, such as chlorophyll-a (Chl-a) [12],
suspended particulate matter (SPM) or total suspended solids (TSS) [13–15], and water clar-
ity [16]. Both the OLI and the MSI have four visible bands, i.e., ultra-blue/coastal aerosol,
blue, green, and red. In addition to the four visible bands, the OLI has one near-infrared
(NIR) band and two shortwave-infrared (SWIR) bands, while MSI has three additional NIR
bands that allow the use of alternative algorithms for retrieving Chl-a or other pigments
responsible for inland/coastal algae blooms [17–19]. This undoubtedly makes the MSI
more effective in studying algae blooms and Chl-a. The MSI also has one NIR and two
SWIR bands, similarly (i.e., closely spaced) to the OLI.

Recent studies have proved the efficiency of Landsat-8 (L-8) OLI and/or S-2 MSI
data for the monitoring of coastal and inland resources. Vanhellemont and Ruddick [20]
studied the impact of offshore wind farms on the TSS and quantified the width and length
of plumes. OLI data with adequate spatial resolution were adopted to study dynamic
thin turbid wakes. Qiu et al. [21] retrieved the TSS in the Yellow River estuary using OLI
data. With the use of the MSI, Gernez et al. [22] studied the influence of Chl-a and TSS
concentrations on oyster physiological responses in an economically important intertidal
zone, and highlighted the importance of the MSI red and NIR bands for estimation of
the TSS [23]. Liu et al. [13] highlighted the use of an additional NIR band (783 nm) of
the MSI in the retrieval of the TSS in Poyang Lake. Hafeez and Wong [14] also studied
small coastal algae blooms in turbid waters of Hong Kong using MSI data. Other similar
studies have either demonstrated the use of MSI data for water quality [24] or algorithm
development and bottom mapping [25]. The combined use of two sensors is important for
high temporal monitoring. Many studies have demonstrated the use of harmonized OLI
and MSI time-series data for diverse terrestrial applications, such as detection of irrigated
areas [26], urban areas, evaluation of land indices [27], monitoring selective logging [28],
winter crop mapping and winter wheat yield [29], and crop monitoring [30]. However,
to our knowledge, there is limited work on aquatic applications using combined satellite
sensor data. Only a few studies have explained the combined use of the OLI and MSI
missions for aquatic applications [11,16].

For creating a consistent, seamless multi-sensor record for monitoring inland and
coastal areas, ensuring the spectral consistency among the sensors at both level 1, i.e., cali-
brated top-of-atmosphere (TOA) reflectance (ρt), and level 2, i.e., water-leaving reflectance
(ρw) or remote-sensing reflectance (Rrs), is critical. Data consistency of different sensors has
been extensively studied in the case of land [26,31] and open-ocean applications [32–34].
Researchers have also studied the consistency of spectral characteristics of OLI and MSI
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data for land applications. For example, Mandanici and Bitelli [35] studied the comparison
between the OLI- and MSI-derived indices, such as normalized difference vegetation in-
dex (NDVI) [36], normalized difference water index (NDWI) [37], and ferrous iron index
(FII) [38], using both satellite images and simulated data. They found a high correlation
among these indices. Runge and Grosse [39] also examined permafrost by comparing
OLI data with the same-day MSI data. They performed spectral band adjustment through
ordinary least squares regression, with OLI as reference data. More recently, Pahlevan
et al. [11] studied spectral consistency between the OLI and the MSI for aquatic appli-
cations. However, they studied simulated top-of-atmosphere (TOA) reflectance using
the MODerate resolution atmospheric TRANsmission (MODTRAN) code [40] for each
matchup site, and to derive Rrs, seaDAS software was used. Their study was also limited to
moderately eutrophic/turbid waters. Nonetheless, there is a need to evaluate the spectral
consistency in OLI–MSI products by introducing other processing systems and considering
eutrophic–hypereutrophic or colored dissolved organic matter (CDOM)-rich waters.

In the present study, the consistency between the OLI and MSI-A (MSI onboard S-
2 A) and the OLI and MSI-B (MSI onboard S-2 B) products were evaluated through an
extensive evaluation of spectral consistency in terms of the calibrated TOA reflectance
(ρt), Rayleigh-corrected reflectance (ρrc), and remote-sensing reflectance of a water pixel
(Rrs) using simultaneous same-day data. The analysis was performed over oligotrophic
to hypereutrophic inland and coastal waters of Mainland China and Hong Kong. The
possibilities of combined sensor use are studied through (i) time series analysis of coastal
and inland waters; (ii) comparison of the algae bloom areas; and (iii) tracking coastal
floating algae. Spectral consistency provides insights into the cross-mission consistency
of various water conditions, i.e., oligotrophic, eutrophic, and in regions of high turbidity
caused by suspended sediments. Time series allows the assessment of relative performance
under various atmospheric and aquatic conditions and provides insights into the filling of
data gaps after the launch of S-2. In the present study, the L-8 OLI served as the reference
sensor for the evaluation of S-2 MSI-A and S-2 MSI-B’s relative performances due to its
high signal-to-noise ratio.

2. Materials and Method

This section covers: (i) a brief overview of the test area; (ii) relative spatial accuracy;
(iii) an explanation of atmospheric correction (AC) using vicarious calibration gains; and
(iv) spectral consistency assessment. This section also includes examples of combined use
of the OLI and the MSI for aquatic applications such as (i) time series analysis of the TSS
concentrations; (ii) algae bloom area intercomparison; and (iii) the tracking of floating algae.
Here, we refer to both MSI sensors onboard S-2 A/B as the MSI, but to be specific, MSI-A
or MSI-B refer to their satellites, when necessary.

2.1. Testing Area

Only a few large lakes in China can be monitored using low-resolution satellite data
like MODIS and the Sentinel-3 Ocean and Land Colour Instrument (OLCI). However,
there are around 3000 lakes with areas of more than 1 km2, and most of them belong
to case II waters featuring a large volume of shallow waters [41]. Low-resolution data
are not sufficiently reliable when it is adopted to monitor these small and average-size
lakes. Furthermore, an investigation conducted in 2013 by the Ministry of Ecology and
Environment in China showed that 57.4% of the lakes surveyed were eutrophic, with an
extra 27.8% in a hypereutrophic condition [42]. Most lakes in the northeastern China are
highly eutrophic, and algae bloom events are quite common in these lakes. Furthermore,
the Chinese coastal area is the home ground of the largest fishing industry in the world,
and its annual contribution to China’s food supply is over 57 million metric tons, and
the industry provides over 9.2 million jobs [43]. Eutrophication caused by the nutrient
enrichment and frequency of harmful algae blooms has displayed a steady trend, posing a
threat to the coastal activities in these waters [5]. Therefore, the inland and coastal waters
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of China were selected for this study. Figure 1a–k shows the test sites. Eight diverse,
oligotrophic-eutrophic lakes and three coastal regions were selected for the current study.
Lake Taihu, Lake Hongze, Lake Chaohu, Lake Dianchi, and Lake Poyang are eutrophic [42],
while Lake Ulungur, Lake Ebinur, and Qinghai Lake are oligotrophic. Qinghai Lake is also
one of the calibration sites for space-borne remote sensors [44]. Water in the Yangtze River
estuary is highly turbid, while moderate-to-low turbid in the Lianyungang coastal area and
the Hong Kong coastal area.
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Figure 1. Landsat-8 RGB composites of the overlapping area for the test sites. The red frames
show the Landsat-8 image footprint and the blue frames show the Sentinel-2 image footprint of
the same-day acquisitions used in this study. (a) Yangtze River estuary, (b) Lake Taihu, (c) Lake
Hongze, (d) Lianyungang coastal area, (e) Lake Chaohu, (f) Lake Poyang, (g) Hong Kong coastal area,
(h) Lake Dianchi, (i) Qinghai Lake, (j) Lake Ebinur, (k) Lake Ulungur.

2.2. Dataset

L-8 and S-2 A/B have 185 km and 290 km fields of view, respectively, with equa-
torial crossing times at 10:00 a.m. ± 15 min and 10:30 a.m., are placed in orbits such
that they occasionally capture the same area on Earth simultaneously with <30 min time
difference [45,46]. Both satellites provide data with a radiometric quantization of 12 bit. Details
of satellite sensors are given in Table 1. Overall, 46 near-simultaneous nadir overpass images,
20 by L-8 and 26 by S-2 A/B, were selected for 11 test sites. Near-simultaneous images with
time difference of≤25 min were considered. We selected scene pairs with low/no cloud cover
and low aerosol loading. Level-1 C MSI and level-1 T OLI data were acquired from ESA’s
Copernicus Open Access Hub and Earth Explorer over the test sites, respectively. The images
used in this study are given in Table S1 of the Supplementary Materials.
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Table 1. Sentinel 2 MSI A/B and Landsat-8 OLI sensor characteristics.

Sentinel-2 MSI-A Sentinel-2 MSI-B Landsat-8 OLI

Central
wavelength
(nm) of the
band

Resolution
(m)

Bandwidth
(nm)

Central
Wavelength
(nm) of the
Band

Resolution
(m)

Bandwidth
(nm)

Signal-to-
Noise
Ratio

Central
Wavelength
(nm) of the
Band

Resolution
(m)

Bandwidth
(nm)

Signal-to-
Noise
Ratio

B1: 443.9 60 27 B1: 442.3 60 45 439 B1: 442.96 30 15.98 284
B2: 496.6 10 98 B2: 492.1 10 98 102 B2: 482.04 30 60.04 321
B3: 560 10 45 B3: 559 10 46 79 B3: 561.41 30 57.33 223
B4: 664.5 10 38 B4: 665 10 39 45 B4: 654.59 30 37.47 113
B8A: 864.8 20 33 B8A: 864 20 32 16 B5: 864.67 30 28.25 45
B10: 1373.5 60 75 B10: 1376.9 60 76 – B9:1373.43 30 20.39 –
B11: 1613.5 20 143 B11: 1610.4 20 141 2.8 B6: 1608.86 30 84.72 10.1
B12: 2202.4 20 242 B12: 2185.7 20 238 2.2 B7: 2200.73 30 186.66 7.4

Radiometric resolution: 12-bit Radiometric resolution: 12-bit

Temporal Resolution: 5 days Temporal Resolution: 16 Days

2.3. Data Processing

Figure 2 shows the workflow of data processing for consistency assessment. The
following subsections cover the details of data processing.

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 21 
 

 

Table 1. Sentinel 2 MSI A/B and Landsat-8 OLI sensor characteristics. 

Sentinel-2 MSI-A Sentinel-2 MSI-B Landsat-8 OLI 
Central 
wavelengt
h (nm) of 
the band 

Resolution 
(m) 

Bandwidth 
(nm) 

Central 
Wavelengt
h (nm) of 
the Band 

Resolution 
(m) 

Bandwidth 
(nm) 

Signal-to-
Noise 
Ratio 

Central 
Wavelengt
h (nm) of 
the Band 

Resolution 
(m) 

Bandwidth 
(nm) 

Signal-to-
Noise 
Ratio 

B1: 443.9 60 27 B1: 442.3 60 45 439 B1: 442.96 30 15.98 284 
B2: 496.6 10 98 B2: 492.1 10 98 102 B2: 482.04 30 60.04 321 
B3: 560 10 45 B3: 559 10 46 79 B3: 561.41 30 57.33 223 
B4: 664.5 10 38 B4: 665 10 39 45 B4: 654.59 30 37.47 113 
B8A: 864.8 20 33 B8A: 864 20 32 16 B5: 864.67 30 28.25 45 
B10: 1373.5 60 75 B10: 1376.9  60 76 – B9:1373.43 30 20.39 – 
B11: 1613.5 20 143 B11: 1610.4 20 141 2.8 B6: 1608.86 30 84.72 10.1 
B12: 2202.4 20 242 B12: 2185.7 20 238 2.2 B7: 2200.73 30 186.66 7.4 
Radiometric resolution: 12-bit Radiometric resolution: 12-bit 
Temporal Resolution: 5 days Temporal Resolution: 16 Days 

2.3. Data Processing 
Figure 2 shows the workflow of data processing for consistency assessment. The fol-

lowing subsections cover the details of data processing. 

 
Figure 2. Workflow for spectral consistency assessment of Landsat-8 and Sentinel-2. 

2.3.1. Relative Co-Registration Test 
Both satellite images were first projected to the same projection system. Before the 

relative co-registration test, MSI data were resampled to 30 m resolution to match the OLI 
pixel dimensions. Sixty benchmarks were collected regularly over 12 image pairs, mainly 
from marine structures or water channels entering inland/coastal waters. Co-registration 
among OLI and MSI data was tested as follows: 

The difference between Easting (∆E) and Northing (∆N) was calculated for all the 
benchmarks; mean (𝑚𝑚∆E, 𝑚𝑚∆N) and standard deviation values (𝑆𝑆∆E, 𝑆𝑆∆N) were computed; 
𝑚𝑚∆E, 𝑚𝑚∆N were considered as a measure of bias and 𝑆𝑆∆E, 𝑆𝑆∆N were considered as a meas-
ure of precision. In the relative co-registration test, bias is the relative difference between 
two datasets. Bias is assumed negligible if standard deviation < mean. The total error of 
the generic point was as follows: 

∆𝑖𝑖= �∆E𝑖𝑖2 + ∆N𝑖𝑖
2 (1) 

Figure 2. Workflow for spectral consistency assessment of Landsat-8 and Sentinel-2.

2.3.1. Relative Co-Registration Test

Both satellite images were first projected to the same projection system. Before the
relative co-registration test, MSI data were resampled to 30 m resolution to match the OLI
pixel dimensions. Sixty benchmarks were collected regularly over 12 image pairs, mainly
from marine structures or water channels entering inland/coastal waters. Co-registration
among OLI and MSI data was tested as follows:

The difference between Easting (∆E) and Northing (∆N) was calculated for all the
benchmarks; mean (m∆E, m∆N) and standard deviation values (S∆E, S∆N) were computed;
m∆E, m∆N were considered as a measure of bias and S∆E, S∆N were considered as a measure
of precision. In the relative co-registration test, bias is the relative difference between two
datasets. Bias is assumed negligible if standard deviation < mean. The total error of the
generic point was as follows:

∆i =
√

∆E2
i + ∆N2

i (1)

The root-mean-square error (RMSE) was considered as a synthetic measure of accuracy:

RMSE =

√
1
n

n

∑
i=1

∆2
i (2)

where n is the total number of benchmark points.
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2.3.2. Atmospheric Correction and Masking

Acolite Python version 20180925.0 [47] was adopted to derive calibrated ρt, ρrc, Rrs.
Acolite is designed for correcting Landsat (5–9) and S-2 A/B images for coastal and inland
water applications [47]. It includes the dark spectrum fitting (DSF) [48] and exponential
extrapolation (EXP) [49] methods for atmospheric correction. For the L-8 OLI and the
S-2 MSI, it is recommended to use the recently developed DSF method. In addition to
atmospheric correction, Acolite also includes already developed models as in-built models
which can be adopted to retrieve several water quality parameters, i.e., Chl-a, TSS, and
turbidity. Vicarious calibration gains reported by Pahlevan et al. [50] were used for OLI
data, and gains reported by Pahlevan et al. [11] were used for MSI-A and MSI-B in the
Acolite software. A unit gain was used for the 492 nm band of MSI-A as recommended [11].
No sun-glint correction method was applied in Acolite. The SWIR-I band (at 1600 nm) with
threshold 0.0215 was adopted in masking land, cloud, and sun glint pixels, as it is proven
to be effective in discriminating land and cloud from water pixels, even in turbid coastal
waters [51]. Currently, Acolite has resampling capability only for the MSI. Therefore, only
the MSI was resampled to 60 m resolution, and OLI data retained their original resolution
after processing.

2.3.3. Spectral Consistency Assessment

Spectral consistency assessment was performed at two levels, i.e., level 1 (ρt, ρrc)
and level 2 (Rrs) for matching bands of OLI and MSI-A and MSI-B using simultaneous
same-day data. Pixels pairs for spectral consistency analysis were selected from test sites
(Figure 1 and Table S1) such that pixels were 100 m distant from land and one pair was
at least 500 m apart from the next one. To minimize the effects of the BDRF (bidirectional
reflectance distribution factor), pixels within ±7◦ of the view zenith angles were selected.
To avoid the computational burden, a maximum of 300 matchups for each scene pair were
considered. Matchup pixels with cloud shadow were dropped carefully as the masking
algorithm does not work well if the cloud shadow exists, it is reported as clear water. Data
from both sensors (OLI/MSI) were resampled to 60 m to minimize random noise and/or
artefacts before the extraction of band values from coeval MSI and OLI data. Spectral values
for the non-masked area (water pixel) were adopted for ρt, ρrc, and Rrs comparison. A large
dataset comprising 4409 and 542 matchups was selected for comparing level-1 OLI data
with MSI-A data, and level-1 OLI data with MSI-B data, respectively. For level-2 product
comparison, 4409 and 408 matchups were selected from same-day overpass pairs for the
OLI–MSI-A and the OLI–MSI-B comparison, respectively.

Spectral band differences were expressed in terms of the root-mean-square error
(RMSE), the mean absolute percentage error (MAPE), and the median difference (MD)
(Equations (3)–(5)). The median was preferred over the mean in case there were any outliers
and any noise present in the data due to atmospheric correction or difference in the spectral
response function.

RMSE =

√
1
N ∑ (ρ S2(λi) − ρ L8(λi))

2 (3)

MAPE = 100× 1
N ∑

∣∣∣ρ L8(λi) − ρS2(λi)
∣∣∣

ρ L8(λi)
(4)

MD = Median (ρS2(λi) − ρ L8(λi)) (5)

where ρ denotes ρt, ρrc, or Rrs, S2(λi) denotes the band i value recorded by the S-2 MSI-A
or S-2 MSI-B, L8 (λi) denotes the band i value recorded by the L-8 OLI, and N is the total
number of matchup pixels.

For spectral band adjustment, the abovementioned condition (view zenith angles
within ±7◦) was not considered, and matchups from overlapping areas of L-8 and S-2 were
collected (i.e., 11,000 for L-8 and S2-A and 6000 for L-8 and S2-B). The linear regression
model was used using L-8 as reference data for the spectral adjustment that was calibrated
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using 70% of the data and evaluated using 30% of same-day data. The linear regression
method is also applied to synthetic data of surface reflectance processed from a large
number of hyperspectral EO-1 Hyperion scenes for deriving harmonized Landsat-S-2
surface reflectance products [52]. The spectral band differences after band adjustment were
expressed in terms of the RMSE (Equation (2)). The RMSE reduction rate (RRR) was used
to quantify the cross-sensor consistency improvement as follows:

RRR =

(
RMSE− RMSE′

)
RMSE

× 100 (6)

where RMSE and RMSE
′

refer to the spectral difference before and after band adjustment.

2.3.4. Combined Landsat-8/OLI and Sentinel-2/MSI Use for Coastal/Inland Water Applications

This section covers some case studies considering coastal and inland water applications
where data from the L-8 and S-2 virtual constellation can be used for detailed monitoring.

i. Example 1: TSS time series analysis

Through time series analysis, the TSS consistency for same-day overpass is explained,
and the analysis also serves as a way of showing how MSI-A and MSI-B fill data gaps
in inland and coastal areas, making it possible to study the dynamic behavior of these
resources. For time series analysis, one lake area (Lake Chaohu) and one coastal area
(Port Shelter coastal area of Hong Kong) were selected. A total of 58 OLI, 29 MSI-A, and
13 MSI-B cloud-free images were used in time series analysis over the coastal area of Hong
Kong (Table S2). Similarly, 53 OLI, 27 MSI-A, and 18 MSI-B images were used in time series
analysis at Lake Chaohu, China (Table S3). The TSS algorithm by Nechad et al. [53] was
used in this study. This algorithm was recalibrated for the OLI and the MSI and embedded
in Acolite version 20180925.0. Data from all the sensors were resampled to 60 m prior to
applying the TSS algorithm.

ii. Example 2: Floating algae area comparison

The floating algae area was extracted by incorporating the floating algae index
(FAI) [54] (Equations (7) and (8)). The FAI has been found to be relatively stable as compared
to the NDVI and enhanced vegetation index (EVI), especially with respect to atmospheric
turbidity [54]. Cloud-free Rayleigh-corrected OLI and MSI data were used to derive the
FAI from four lakes, Lake Taihu, Lake Chaohu, Lake Dianchi, and Lake Ebinur. The data
were further classified based on the FAI threshold (FAI > 0) to algal and non-algal pixels.
For each lake, surface reflectance in the SWIR-I band of the cloud-free image was adopted
to extract the feature boundary of inland water. The threshold value of 0.0215 was used to
separate water from the land area. The data used for FAI analysis are shown in Table S4.

FAI = ρrc,NIR − ρ′rc,NIR (7)

ρ′rc,NIR = ρrc,RED + (ρrc,SWIR − ρrc,RED).
λNIR − λRED

λSWIR − λRED
(8)

iii. Example 3: Tracking of coastal floating algae

The Yellow Sea, 35◦0′N 123◦0′E, is a semi-closed sea and is usually affected by floating
algae in the summer. The floating algae area was extracted using all available OLI and
MSI data collected in June and July (2019). A total of 83 OLI, MSI-A, and MSI-B images
were adopted (Table S5). The floating algae area was extracted based on the methodology
explained in Section 2.3.4.

3. Results
3.1. Geometric Assessment

Relative geometric assessment between OLI and MSI data was assessed using the mean
(m∆E, m∆N), standard deviation (S∆E, S∆N), and the RMSE. Statistics (Table 2) show that no



Remote Sens. 2022, 14, 3155 8 of 20

systemic errors were present since m∆E and m∆N remained lower than the corresponding
S∆E and S∆N. Furthermore, the RMSE was 23.5 m, which is less than the OLI pixel size
(30 m), ensuring that spectral measures from OLI and MSI data refer to the same ground
point and therefore represent the same type of surface.

Table 2. Relative co-registration error statistics: mean (m), standard deviation (S) of Easting (∆E) and
Northing (∆N) differences, and root-mean-square error (RMSE).

OLI vs. MSI

m∆E(m) m∆N(m) S∆E(m) S∆N(m) RMSE(m)
12.3 5.5 14.3 12.6 23.5

3.2. Spectral Consistency Assessment

The OLI and MSI-A/B data were corrected for atmospheric effects using Acolite soft-
ware [49]. Acolite has been demonstrated with reasonable results for the OLI [23,55] and
the MSI [56] for water quality applications. Figure 3 presents the initial comparison of the
OLI and the MSI-A (Rrs) in a coastal region and an inland region. The lower and higher
limits and the spatial variation of Rrs for the OLI and MSI-A bands are consistent across
these test sites. However, the OLI produced higher values as compared with the MSI-A
values over relatively less turbid coastal waters in band 1 (area indicated by an ellipse in
Figure 3). For detailed assessment, band-by-band consistency comparison for the same-day
OLI–MSI-A/B level-1 and level-2 products are discussed in this section. The OLI–MSI-A and
OLI–MSI-B pixel pairs were compared separately to access the consistency. Band agreements
are displayed using scatterplots (Figures S1–S6 of the Supplementary Materials) where the
1:1 line represents perfect agreement between the sensor bands and allows visual assessment
of misalignment between two sensors.
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3.2.1. Top-of-Atmosphere Reflectance (ρt)

With the values of the slope, intercept, and coefficient of determination (R2), it is
possible to evaluate the consistency of OLI and MSI products. R2 is high, ≥0.80, in all the
bands for OLI and MSI-A pairs. R2 is also high, ≥0.80, for all the visible and NIR bands for
OLI and MSI-B pairs. The highest R2 was observed in the green band for OLI and MSI-A
pairs (OLI: 561 nm, MSI-A: 560 nm) and in the red band for OLI and MSI-B pairs, although
the red band did not fully overlap (OLI: 655 nm, MSI-B: 665 nm). The product difference in
terms of the MAPE (MAPE in all the channels except SWIR bands) was ≤5% and ≤8% for
the OLI–MSI-A and OLI–MSI-B comparison, respectively. The MAPE is lowest in band 3
(2.0 % in the OLI–MSI-A pair and 1.5% in the OLI–MSI-B pair) and highest in SWIR bands
≥ 13.5%. The corresponding slope, intercept, RMSE, MD, and MAPE for each band for
OLI–MSI-A and OLI–MSI-B pairs are summarized in in Table 3. Scatterplots for OLI–MSI-A
and OLI–MSI-B comparison are given in Figure S1. Large ρt-NIR values were observed
during the occurrence of algae bloom events.

Table 3. Intercomparison of unitless ρt after vicarious calibration.

MSI-A vs. OLI (N = 4409)

Central Wavelength,
MSI-A–OLI (nm) 443–443 497–482 560–561 665–655 865–865 1613–1608 2200–2200

Slope 0.9734 1.0235 1.0301 1.0003 0.9632 0.9257 0.8104
Intercept 0.0018 −0.0084 −0.0027 −0.0042 0.0016 0.001 0.0018
R2 0.97 0.97 0.99 0.98 0.97 0.91 0.80
RMSE 0.0041 0.0066 0.0035 0.0058 0.0035 0.0016 0.0017
MD 0.0040 0.0040 −0.0006 0.0075 0.0008 −0.0003 −0.0009
MAPE (%) 2.1 4.0 2.0 4.6 4.9 13.5 28.5

MSI-B vs. OLI (N = 542)

Central Wavelength,
MSI-B–OLI (nm) 442–443 492–482 559–561 665–655 864–865 1611–1608 2184–2200

Slope 1.2982 1.2069 1.081 1.0075 1.0175 0.7195 0.504
Intercept −0.0499 −0.0359 −0.0093 −0.0068 −0.0015 0.0022 0.0024
R2 0.92 0.88 0.98 0.99 0.85 0.41 0.39
RMSE 0.0047 0.0077 0.0022 0.0065 0.0060 0.0018 0.0009
MD 0.0007 0.0063 −0.0011 0.0073 0.0002 0.0007 −0.0002
MAPE (%) 2.1 5.0 1.5 8.0 7.2 14.2 14.4

3.2.2. Rayleigh-Corrected Reflectance (ρrc)

The values of the slope, intercept, and R2 show that Rayleigh-corrected reflectance
(ρrc ) is also consistent in visible and NIR bands, with R2 ≥ 0.87 for all the test sites (Table 4).
The highest R2 (0.99) was observed in the green band, with low MAPE (3.4%) for the OLI–
MSI-A comparison. The green band also showed the highest consistency for the OLI–MSI-B
comparison (R2 = 0.98, MAPE = 2.3%). Table 4 shows slope, intercept, RMSE, MD, and
MAPE for each band in the OLI and the MSI-A/B. The scatterplot of ρrc (NIR) shows that
the values are almost consistent for NIR < 0.06, and the inter-consistency between the
OLI and the MSI-B decreases with higher NIR values (Figure S4). Large ρrc (NIR) values
are observed during the occurrence of algae bloom events. Rayleigh-corrected red, NIR,
and SWIR bands are important for the detection of floating algae during algae bloom
events, as floating algae reflect significantly in the NIR portion of the spectrum [54]. The
average MAPE in the coastal aerosol band is high as compared to visible and NIR bands
for OLI–MSI-A/B comparison. This uncertainty could be attributed to pixel size difference
(60 m in the MSI-A/B and 30 m the OLI) or error in atmospheric correction. High MAPE
was observed in SWIR bands. These differences may have been due to differences in the
signal-to-noise ratio (SNR) or spectral range differences of SWIR bands.
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Table 4. Inter-comparison of ρrc after vicarious calibration.

MSI-A vs. OLI (N = 4409)

Central Wavelength,
MSI-A–OLI (nm) 443–443 497–482 560–561 665–655 865–865 1613–1608 2200–2200

Slope 0.9905 1.0284 1.0415 0.9961 0.9577 0.9248 0.8106
Intercept (1/sr) −0.0033 −0.0038 −0.0033 −0.003 0.0017 0.001 0.0018
R2 0.97 0.96 0.99 0.98 0.97 0.91 0.79
RMSE (1/sr) 0.0062 0.0063 0.0045 0.0054 0.0037 0.0017 0.0017
MD (1/sr) 0.00504 0.00006 0.00003 0.00680 0.00076 −0.00029 −0.00087
MAPE (%) 8.1 6.4 3.4 5.3 6.1 14.7 29.9

MSI-B vs. OLI (N = 542)

Central Wavelength,
MSI-B–OLI (nm) 442–443 492–482 559–561 665–655 864–865 1611–1608 2184–2200

Slope 1.3151 1.2218 1.0867 1.002 1.0148 0.7248 0.5072
Intercept (1/sr) −0.0311 −0.0228 −0.0087 −0.0059 −0.0015 0.002 0.0023
R2 0.95 0.92 0.98 0.99 0.87 0.42 0.41
RMSE (1/sr) 0.0101 0.0066 0.0026 0.0061 0.0060 0.0018 0.0009
MD (1/sr) 0.0049 0.0039 0.0002 0.0068 0.0005 0.0006 −0.0002
MAPE (%) 13.3 6.9 2.3 10.6 9.3 15.3 14.9

3.2.3. Water-Leaving Remote-Sensing Reflectance (Rrs)

Remote-sensing reflectance (Rrs = ρw/pi; ρw is water-leaving-reflectance) data are
critical for water quality algorithm development. Satellite-based ρw or Rrs products are
adopted in several studies to develop models for retrieving different water quality parame-
ters [16,57,58]. A research study was also conducted to map water clarity with combined
OLI and MSI data and perform single model calibration and validation [16]. The assess-
ment of inter-sensor consistency in Rrs is important before the combined use. The Rrs
comparison shows the consistencies between OLI and MSI data (Table 5). Like the ρt
and ρrc comparison, the green band was highly consistent with the lowest MAPE in the
OLI–MSI-A and OLI–MSI-B comparison. Overall, a higher R2 was found in green and red
channels. The MAPE is highest in band 1 for both comparison datasets. The reason behind
low consistency can be pixel size differences (60 m in the MSI-A/B and 30 m in the OLI) or
an error in atmospheric correction. Pahlevan et al. [59] suggested that if ambient aerosol
properties are not considered, high uncertainty in Rrs (443) is expected.

Table 5. Inter-comparison of Rrs after vicarious calibration.

MSI-A vs. OLI (N = 4103)

Central Wavelength,
MSI-A–OLI (nm) 443–443 497–482 560–561 665–655 865–865

Slope 1.0453 1.1286 1.0758 0.998 0.9567
Intercept (1/sr) −0.0101 −0.0132 −0.01 −0.0063 −0.0003
R2 0.92 0.93 0.99 0.99 0.97
RMSE (1/sr) 0.0029 0.0026 0.0019 0.0025 0.0014
MD (1/sr) 0.0024 0.0003 0.0006 0.0027 0.0006
MAPE (%) 12.2 9.2 4.6 8.6 10.8

MSI-B vs. OLI (N = 542)

Central Wavelength,
MSI-B–OLI (nm) 442–443 492–482 559–561 665–655 864–865

Slope 1.002 1.1796 1.073 1.1152 0.9251
Intercept (1/sr) −0.013 −0.0196 −0.0086 −0.0185 0.0006
R2 0.84 0.87 0.88 0.97 0.75
RMSE (1/sr) 0.0042 0.0023 0.0008 0.0031 0.0021
MD (1/sr) 0.0041 0.0022 0.0003 0.0030 0.0007
MAPE (%) 21.0 9.0 1.6 12.1 10.9

3.3. Spectral Band Adjustment

A linear regression model (using 70% band pair data) was suggested in this study for
spectral band adjustment. With the coefficients mentioned in Tables 6 and 7, band 1–4 and
band 9 of MSI-A/B was adjusted to fit the OLI spectral values. After band adjustment, we
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recalculated the R2 the RMSE’. and the RRR for test data (30%). Tables 6 and 7 show that bias
removal determines an appreciable improvement in spectral consistency of OLI–MSI-A and
OLI–MSI-B. The adjustment in MSI-A data shows that the RMSE in visible bands increased
significantly with higher RRR in coastal aerosol and the blue band for ρt and the highest
RRR was observed for the NIR band when ρrc and Rrs were adjusted for the OLI. The
RRR was also high for the coastal aerosol band and the blue band when MSI-B bands were
adjusted. Additionally, RRR was also high when MSI-B data were adjusted for the OLI red
band. Overall RRR values show that a linear regression model can be used to adjust MSI-A
and MSI-B data to fit OLI spectral data with a considerable decrease in the RMSE. To further
remove the bias, the researcher also suggested applying normalization when multi-sensor
data (OLI and MSI-A/B) were under consideration for the same statistical distribution [30].

Table 6. Statistical parameters of linear regression, RMSE before and after band adjustment for test
data and the RMSE reduction rate (RRR) considering the OLI and MSI-A comparison.

MSI-A ρt

Slope Intercept R2 RMSE RMSE’ RRR
Band 1 0.954 0.004 0.95 0.0058 0.0034 41.4
Band 2 0.992 −0.005 0.88 0.0064 0.0033 49.5
Band 3 1.007 0.001 0.99 0.0046 0.0031 32.6
Band 4 0.994 −0.002 0.97 0.0075 0.0059 20.3
Band 8-A 0.901 0.006 0.99 0.0048 0.0033 30.6

MSI-A ρrc

Slope Intercept R2 RMSE RMSE’ RRR
Band 1 1.003 −0.004 0.97 0.0046 0.0034 26.1
Band 2 0.993 −0.001 0.84 0.0087 0.0078 10.3
Band 3 0.997 0.003 0.97 0.0060 0.0051 16.3
Band 4 0.984 0.000 0.97 0.0067 0.0057 14.8
Band 8-A 0.874 0.006 0.98 0.0055 0.0034 37.0

MSI-A Rrs

Slope Intercept R2 RMSE RMSE’ RRR
Band 1 1.039 −0.009 0.95 0.0021 0.0012 42.5
Band 2 1.038 −0.006 0.89 0.0032 0.0027 15.2
Band 3 1.006 0.000 0.98 0.0021 0.0020 4.6
Band 4 0.997 −0.004 0.98 0.0026 0.0016 40.3
Band 8-A 0.783 0.005 0.93 0.0032 0.0011 63.8

Table 7. Statistical parameters of linear regression, RMSE before and after band adjustment for test
data and the RMSE reduction rate (RRR) considering the OLI and MSI-B comparison.

MSI-B ρt

Slope Intercept R2 RMSE RMSE’ RRR
Band 1 1.154 −0.027 0.90 0.0075 0.0046 38.6
Band 2 1.043 −0.014 0.89 0.0083 0.0047 43.4
Band 3 0.965 0.002 0.99 0.0030 0.0028 4.7
Band 4 0.909 −0.001 0.99 0.0087 0.0040 53.3
Band 8-A 0.744 0.007 0.93 0.0057 0.0043 23.9

MSI-B ρrc

Slope Intercept R2 RMSE RMSE’ RRR
Band 1 0.993 −0.008 0.95 0.0041 0.0031 22.6
Band 2 0.987 −0.006 0.96 0.0055 0.0039 28.8
Band 3 0.955 0.000 0.99 0.0050 0.0031 37.7
Band 4 0.901 −0.002 0.99 0.0083 0.0051 39.0
Band 8-A 0.746 0.005 0.94 0.0060 0.0044 26.3

MSI-B Rrs

Slope Intercept R2 RMSE RMSE’ RRR
Band 1 1.063 −0.002 0.88 0.0021 0.0012 42.5
Band 2 0.982 0.003 0.97 0.0025 0.0022 11.5
Band 3 0.952 0.002 0.99 0.0013 0.0009 31.5
Band 4 0.932 −0.003 0.99 0.0026 0.0016 40.3
Band 8-A 0.813 0.001 0.80 0.0030 0.0026 15.3

3.4. Example 1: Time Series Analysis

The utility of combined OLI–MSI products is discussed by assessing the time series
of the TSS in a coastal region and a lake region under diverse atmospheric and aquatic
conditions. Figure 4 shows the time series plots which exhibit valid TSS retrievals from
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August 2013 (after the launch of the OLI). These plots show diverse seasonal variability
between the TSS in the coastal area of Hong Kong and Lake Chaohu. The arbitrary point
was selected for TSS data extraction from both sites. The extraction was conducted by
taking the mean over the 4 × 4 and 6 × 6 averaging window (equivalent to 120 m2) from
OLI and MSI data, respectively. The location of the arbitrary point was arranged in such
a way so as to ensure the window sizes mentioned above were not affected by the pixels
adjacent to the land/cloud shadow. The analysis of two different aquatic systems, coastal
and inland, illustrated with different TSS concentrations, highlighted the value of the
combined use of the OLI and the MSI. Time series plots clearly show that MSI data fill the
gap of OLI data. For instance, there is a visible data gap from January to July 2014, and
from January to July 2015, in both areas. This gap started to be filled partially after the
launch of the MSI-A. Data from the MSI-B fill more data gaps. It can be seen from both
plots that the cloud-free data availability after June 2017 has increased. The solid red square
and the black hollow square represent the same-day overpass (<25 min time difference).
Two overpasses revealed that the TSS products estimated by the OLI were slightly higher
than the ones estimated by the MSI. The TSS concentration range varied from 5–25 mg/L
in the port shelter coastal area of Hong Kong. High values are recorded during the winter
season. TSS concentration values are large at Lake Chaohu from 20 to 190 mg/L. Triplets of
the sensors evidently capture the seasonal variability across these areas, with the TSS peak
occurring in December 2017 in the coastal area of Hong Kong, and the TSS peak occurring
in December 2017 and November 2018 at Lake Chaohu. Jiang, et al. [60] also observed an
average of 31.1 ± 20.78 mg/L during summer months (May–August), which is comparable
to the results for this time series analysis. The same-day overpass data were not adequate
for the performance of the statistical analysis. Further research is required to quantify the
errors in the OLI, MSI-derived TSS using in-situ TSS data; and calibration and validation of
TSS algorithm using combined OLI-MSI data.
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Figure 4. TSS concentration together with the time series plot of an arbitrary location (indicated by
the star symbol in maps) in the coastal area of Hong Kong and at Lake Chaohu. Blue dots, brown dots,
and green triangles show the TSS derived by the Landsat-8 OLI and Sentinel-2 MSI A/B, respectively.
The same-day OLI and MSI overpasses are shown by the red square and the black hollow square.
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3.5. Example 2: Floating Algae Area Comparison

The advantages of the spatial resolution of MSI (10–20 m) and OLI (30 m) data for the
mapping of floating algae areas at four diverse lakes using same-day overpass data are
discussed in this section. Figures 5 and 6 show the comparable algae area derived from
the same-day OLI and MSI data. The floating algae area is slightly higher in MSI products
in all the lakes except Lake Taihu. MSI data led to the largest difference in the algae area
of 268 km2 at Lake Taihu. This large difference in the area can be attributed to the largest
time difference (19 min) between overpasses. MSI-A data were 19 min ahead, and algae
bloom grew more rapidly where there were favorable environmental conditions, such as
higher temperature, exposure to light, and suitable wind. The time difference is 7 min at
Lake Chaohu, 4 min at Lake Dianchi, and 12 min at Lake Ebinur. This analysis shows the
competency of higher MSI spatial resolution and the benefits of the combined use of OLI
and MSI data.
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Figure 6. Floating algae area derived by Landsat-8 OLI and Sentinel-2 MSI.

With a high resolution of the OLI and the MSI (10–30 m) as compared to the MODIS
(500–1000 m) and the OLCI (300 m), relatively accurate floating algae area as the MODIS
and the OLCI can be provided, and the algal pixel can be detected as non-algal due to
mixed pixel effect or vice versa can be detected. Of these four lakes, serious eutrophication
was observed at Lake Taihu and Lake Chaohu [61,62], which are the third and fifth largest
freshwater lakes in China, respectively. The monitoring of cyanobacterial blooms at Lake
Taihu started in 2008. Since then, an increase in the affected area has been reported by
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researchers [61,63]. A comprehensive study based on fourteen-year MODIS data archive at
Lake Chaohu also found an increase in the surface algae bloom frequency, bloom coverage,
and duration [62]. Lake Chaohu is the major potable water resource for the Hefei City,
but due to the reoccurrence of massive algae blooms, the water resource was changed to
Dongpu reservoir [4]. Algae blooms of different seriousness take place every year, but the
upper part of Lake Dianchi displays higher algae bloom frequency [64], and the water of
Lake Ebinur is relatively clear with occasional occurrences of thin algae slicks.

3.6. Example 3: Tracking of Coastal Floating Algae

Accurate and timely detection of coastal floating algae (FA) and tracking of bloom
time are relatively difficult if the traditional ocean color satellite data are adopted and the
surface area of FA is relatively small in the start and the end of bloom. Reliable revisit
frequency of the OLI and the MSI with high-resolution data provides an opportunity to
track the record of the accurate coastal area affected by FA. However, the coverage area
of the MSI and the OLI is limited when the open sea is considered. Here, this analysis
provides insight into the tracking of coastal FA during June and July 2019 based on the
combined use of OLI and MSI-A/B data. Figure 7 shows the changes in FA in the two
months. The bloom started in the lower (33.6◦N 122.1◦E) and central (35.7◦N 120.9◦E) parts
of the Yellow Sea in the beginning of June and persisted in this part until the end of June
(Figure 7: upper blue box). The bloom also grew in the northern part (36.3◦N 121.1◦E) by
the end of June (Figure 7: upper red and black box), and coastal areas of Yancheng were
also affected. In early July, the bloom area moved a little eastward, and in mid-July, more
FA appeared near the coastal areas of Qingdao (Figure 7: lower red and black box). These
changes in FA are attributed to both new FA growth and/or its movements caused by
currents. At the start of the bloom, the maximum width of a floating algal slick was 700 m,
which is difficult to be detected by a traditional ocean color sensor. The width of an algal
slick increased to 6000 m during the peak bloom.
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4. Discussion and Future Directions

Integrated Landsat-8/9 and Sentinel-2 data open new opportunities for monitoring
coastal and inland waters at a frequency that has never been possible before because the
temporal coverage at 10–60 m spatial resolution can be improved with combined use. The
resulting increase in the average revisit time, as well as in the number of cloud-free images,
can guarantee better monitoring of the dynamics of inland and coastal waters [11]. Further-
more, the combined use of these satellite sensors provides a great opportunity to build time
series with an improved spatial and temporal resolution [26], thus enabling limnologists,
aquatic ecologists, coastal oceanographers, and water resource managers to enhance their
monitoring efforts [10,21]. NASA scientists have developed a harmonized Landsat and S-2
(HLS) surface reflectance product [31]. Although the HLS product is a free and valuable
opportunity to create combined OLI–MSI datasets, there are some shortcomings, which
hamper its utilization by the ocean color community. In general, HLS products are mostly
designed for land applications [65], and the atmospheric correction method adopted does
not correct for the adjacency effect, the sun-glint effect, etc., i.e., the main issues concerning
water applications using satellite data. Furthermore, the HLS data are available only for
selected sites (120 worldwide), so the combined OLI–MSI application is not possible every-
where in the world. A study by Shang and Zhu [65] discusses the OLI–MSI data consistency
and time-series based on the reflectance adjustment approach. However, they masked the
water and snow/ice data to focus on land surface reflectance. Pahlevan et al. [11] evaluated
OLI–MSI spectral consistency for aquatic application considering multiple inland and
coastal regions around the world. However, they considered limited view zenith and az-
imuth angles during data extraction to minimize the effects of the bidirectional reflectance
distribution factor. Moreover, Runge and Grosse [39] suggested that localized harmonized
OLI–MSI data can be generated through the least square regression for the adjustment of
the spectral band. Therefore, in this study, the spectral consistency OLI–MSI data were
evaluated, and afterwards the capability of combined OLI–MSI data for TSS time series,
algae bloom area mapping, and tracking of floating coastal algae bloom was discussed.

Spectral consistency analysis shows that OLI and MSI products, ρt, ρrc, and Rrs ,
are adequately consistent. The products’ differences are ~8% in ρt and ~10% in both
ρrc and Rrs for all the matching bands. Overall, the lowest RMSE and MAPE were found
in the green band for level-1 and level-2 products for both OLI–MSI-A and OLI–MSI-B
comparisons. The difference in some matchups in the NIR band can be attributed to the
occurrence of rapid algae bloom changes caused by the time difference between L-8 and
S-2 overpasses. The algae may grow readily under changing light conditions; therefore,
consistency in NIR values tends to decrease as the time difference between same-day
overpasses increases. Our finding on Rrs (OLI: 655 nm; MSI: 665 nm) agrees well with the
corresponding results provided by Ciancia et al. [66]. The spectral consistency analyses
by Pahlevan et al. [11] were based on the image products processed via SeaDAS, and
they suggest that the relative consistency in OLI–MSI products, which are processed
through other available processing systems, should be studied, especially in extremely
eutrophic/turbid conditions and/or CDOM-rich waters where SeaDAS retrievals often
fail. In this study, spectral consistency analysis was performed with the use of image
products processes via Acolite [47]. Acolite is an atmospheric correction algorithm and
processing software developed at RBINS for aquatic applications of Landsat (5–9) and S-2
(A/B) satellite data. Acolite can not only be adopted to perform atmospheric correction but
can also retrieve several water quality parameters derived from water reflectance.

The assessment of TSS variability plays a key role in inland and coastal water manage-
ment and tries to answer questions such as how these fluctuations influence water clarity,
light availability, and the physical, chemical, and biological processes (such as primary
production) [13,58,67]. In this study, the time series constructed based on the combined
use of OLI–MSI data further emphasize the effectiveness and consistency of L-8 and S-2
missions. No band adjustment algorithm was used before retrieving the TSS from either
sensor. Analysis showed that overall, the TSS concentrations derived from OLI data were
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slightly higher than MSI-A/B data. Algae bloom area comparison also showed consistent
results. However, the difference in the algae bloom area increased as the time difference
between the same-day overpass images increased. Moreover, tracking of floating algae
bloom using available cloud-free OLI and MSI data reveals interesting results in case of
open sea, despite their lower swath coverage as compared to traditional ocean color sensors.
Small algal slicks (width ~700 m), at the start of the two-month long algae bloom event,
were accurately identified, which is quite impossible if the traditional ocean color satellite
is adopted. Coastal oceanographers and aquatic ecologists can precisely identify the loca-
tion and season which are more favorable for algae bloom events by taking advantage of
high-resolution OLI–MSI data.

It is important to use consistent algorithms for consistent product records for Landsat
and Sentinel-2 missions. Both sensors have their distinct advantages such as the MSI has
additional red edge bands (705, 740, and 783 nm) which allow the application and devel-
opment of alternative algorithms for Chl-a retrievals in hypereutrophic systems [17,18],
whereas the OLI has a panchromatic band which enables it to identify cyanobacteria
biomass by the detecting phycocyanin pigment using the orange contraband (620 nm). Fur-
ther studies should also emphasize the limitations and advantages of product consistency,
band adjustment approaches for consistent products and improve water quality parameters
(e.g., Chl-a, TSS, CDOM) retrievals by combined use. As the S-2-MSI can produce more
robust Chl-a records by taking advantage of additional red edge bands and its higher
spatial resolution than that of the L-8/9 OLI, an S-2-based independent algorithm can be
used separately in hypereutrophic waters while another set of consistent algorithms can
be applied to both L-8/9 and S-2 data to produce consistent Chl-a or other water quality
parameters such as water clarity [16], TSS, or algae bloom area record.

5. Conclusions

The present study aims to evaluate the inter-sensor consistency for Operational Land
Imager (OLI) and Multispectral Imager (MSI), Level-1 and level-2 products which are
important for the generation of aquatic ocean color products for inland and nearshore
coastal waters. The dark spectrum fitting method in Acolite was adopted for atmospheric
correction. This demonstration was performed at a near-simultaneous same-day overpass
allowing for almost similar atmospheric conditions. The study shows that vicariously
calibrated OLI and MSI-A/B average products difference is ~8% in ρt , and ~10% in ρrc and
Rrs for all matching bands, and ~3.7% in ρt, ~5.7% in ρrc and ~7.5% in Rrs for all visible
bands except the coastal aerosols band. The lowest MAPE was found in green band for
level-1 and level-2 products for both OLI–MSI-A and OLI–MSI-B comparison. The linear
regression model showed that RMSE has decreased significantly after band adjustment
with the highest reduction rate in NIR band and red band for OLI-MSIA and OLI-MSIB
comparison. Consistency in total suspended solids (TSS) for same-day has also been
evaluated for various water types. Time series in the coastal and inland waters provide
detailed insight into the TSS derived from OLI and MSI-A/B with MSI producing slightly
lower TSS, while there is a need for more in-situ data to evaluate OLI and MSI derived TSS
over test sites. Triplets of satellites, with two to three days revisit time, provide more data
enabling end-users to derive consistent water quality products, with reliable resolution
and further investigation of seasonal trends. Floating algae bloom area extraction was
performed using same-day OLI and MSI-A/B data. The analysis reveals that the difference
in the algae area increases with the time difference between the same-day overpass. Coastal
algae bloom tracking using available OLI and MSI data shows the application of these
satellites reveals interesting results in case of open sea, despite their lower swath coverage
as compared to traditional ocean color sensors. Further, the reliable resolution of OLI and
MSI is capable of detecting thin algal slicks. Although results suggest that the S-2 MSI and
L-8/9 OLI products at level 1 and level 2 are consistent and can be used qualitatively, and
quantitatively, for monitoring inland and nearshore coastal waters. Nonetheless, further
research efforts are needed: to develop band adjustment approaches to minimize the
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product difference, improve atmospheric correction models, and suitable biogeochemical
algorithms to maximize the synergy use of these sensors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14133155/s1, Figure S1: Inter-comparison of Top of atmosphere
reflectance (ρ_t) for OLI – MSI-A pairs; Figure S2: Inter-comparison of Top of atmosphere reflectance
(ρ_t) for OLI – MSI-B pairs; Figure S3: Inter-comparison of Rayleigh corrected reflectance (ρ_rc)
for OLI – MSI-A pairs; Figure S4: Inter-comparison of Rayleigh corrected reflectance (ρ_rc) for
OLI – MSI-B pairs; Figure S5: Inter-comparison of remote sensing reflectance (R_rs) for OLI – MSI-
A pairs; Figure S6: Inter-comparison of remote sensing reflectance (R_rs) for OLI – MSI-B pairs;
Table S1: Landsat 8 OLI and Sentinel 2-MSI A/B near- simultaneous overpass images used for
spectral consistency analysis and band adjustment; Table S2: Landsat-8 OLI and Sentinel 2-MSI
A/B images used for Total suspended solids (TSS) time series analysis over Hong Kong; Table S3:
Landsat-8 OLI and Sentinel 2-MSI A/B images used for Total suspended solids (TSS) time series
analysis over Lake Chaohu; Table S4. Landsat-8 OLI and Sentinel 2-MSI A/B images used for floating
algal area comparison; Table S5. Landsat-8 OLI and Sentinel 2-MSI A/B images used for floating
algal bloom tracking over the Yellow Sea.
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