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Simple Summary: Tumor tissues sampled from patients contain prognostic and predictive infor-
mation beyond what is currently being used in clinical practice. Large-scale digitization enables
new ways of exploiting this information. The most promising analysis pipelines include deep learn-
ing/artificial intelligence (AI). However, to ensure success, AI often requires a time-consuming
curation of data. In our approach, we repurposed AI pipelines and training data for cell segmentation
and classification to identify tissue-infiltrating lymphocytes (TILs) in lung cancer tissue. We showed
that our approach is able to identify TILs and provide prognostic information in an unseen dataset
from lung cancer patients. Our methods can be adapted in myriad ways and may help pave the way
for the large-scale deployment of digital pathology.

Abstract: Increased levels of tumor-infiltrating lymphocytes (TILs) indicate favorable outcomes in
many types of cancer. The manual quantification of immune cells is inaccurate and time-consuming
for pathologists. Our aim is to leverage a computational solution to automatically quantify TILs in
standard diagnostic hematoxylin and eosin-stained sections (H&E slides) from lung cancer patients.
Our approach is to transfer an open-source machine learning method for the segmentation and
classification of nuclei in H&E slides trained on public data to TIL quantification without manual
labeling of the data. Our results show that the resulting TIL quantification correlates to the patient
prognosis and compares favorably to the current state-of-the-art method for immune cell detection
in non-small cell lung cancer (current standard CD8 cells in DAB-stained TMAs HR 0.34, 95% CI
0.17–0.68 vs. TILs in HE WSIs: HoVer-Net PanNuke Aug Model HR 0.30, 95% CI 0.15–0.60 and
HoVer-Net MoNuSAC Aug model HR 0.27, 95% CI 0.14–0.53). Our approach bridges the gap between
machine learning research, translational clinical research and clinical implementation. However,
further validation is warranted before implementation in a clinical setting.

Keywords: NSCLC; deep learning; digital pathology; tumor-infiltrating lymphocytes

1. Introduction

Increasing the availability of digital pathology opens new possibilities. Digital whole
slide images (WSIs) stored on servers are easily retrieved for review by pathologists.
Viewing serial WSIs from the same patient side-by-side enables the pathologist to assess
the morphology and protein expression at the same time, as opposed to swapping the
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slides back-and-forth when viewing with a microscope. As a bonus, the field of view
is vastly increased compared to the ~1000-µm circle offered at 400× in a microscope.
Further, residents in pathology may demark areas of interest and pass these to consultant
pathologists for feedback and learning.

Although digital pathology will optimize the current work flows, computational
pathology is by many believed to be one of its most significant advantages. A standard
three-channel WSI is approximately 100,000 × 100,000 pixels. This represents an enormous
amount of information that may be used to identify, and subsequently quantify, macro-
(patches of cartilage and bone, islets of cancer or vessels); intermediate- (different types of
cells) and micro-structures (different cellular components). Whilst some of this information
is utilized in classical light microscopy, important information is likely discarded. Moreover,
image features, abstract to the human mind, may be extracted and incorporated as biomark-
ers into existing diagnostic pipelines, expanding the prognostic and predictive toolkit. An
additional benefit may be a reduction of intra- and interobserver variations [1]—a known
diagnostic challenge that is especially pronounced if the problem is complex and/or open
for personal opinions.

A hematoxylin & eosin (H&E)-stained tissue slide is the principal method used to
evaluate tissue morphology, while immunohistochemistry (IHC), with chromogens or fluo-
rophores bound to an antibody, is used to visualize specific protein expressions. Classically,
the focus has been on the morphology and protein expression of cancer cells. However,
numerous studies have highlighted the interactions between cancer cells and their sur-
roundings. This interplay, popularly termed the tumor microenvironment, impacts patients’
prognoses and is likely important when deciding treatment strategies. Immune cells and,
especially, tumor-infiltrating lymphocytes (TILs) are among the most important cells in
the tumor microenvironment and will, in many cases, directly influence cancer develop-
ment. As a result, different variations of TILs have been suggested as prognostic and/or
predictive biomarkers in various types of cancers, including colorectal cancer, breast cancer,
melanoma and non-small cell lung cancer (NSCLC) [2–5]. Interestingly, the strategies for
TIL identification vary between cancer types. In colorectal cancer (CRC), IHC is used to
visualize CD3+ and CD8+ TILs [4], while conventional H&E is used for TIL identification
in breast cancer and melanoma [2,3]. Moreover, TIL quantification ranges from fully dis-
crete grouping via semi-quantitative to absolute count-based methods. For other cancers,
such as NSCLC, the preferred method of TIL identification and quantification is yet to be
determined [2,5,6]. While IHC-based methods provide information about the cell type
and function, they add complexity, time spent and cost. Hence, using conventional H&E
for TIL identification is tempting, especially if identification can be conducted without
time-consuming manual counting.

Computational pathology presents an opportunity for automatic TIL identification
in H&E WSIs. The methods range from simple rule-based systems, which rely on easily
understandable hand-crafted features such as shape, size and color, to deep learning (DL)
approaches, which calculate and combine image features nonlinearly. Given proper imple-
mentation, DL will usually outperform the sensitivity/specificity of simpler approaches at
the cost of increased complexity, calculation time and loss of interpretability. Unfortunately,
DL requires thousands of annotated images to reach its full potential, and the procure-
ment of annotated training datasets may be challenging due to the required pathologist
effort. Fortunately, several recent projects provided datasets and introduced highly accurate
DL models for cell segmentation and classification in H&E images [7–13]. However, to
our knowledge, none of these approaches have been adapted to TIL quantification in a
clinical setting.

Herein, we present our approach and cloud-based system for the quick evaluation and
deployment of machine learning models in a clinical pathology setting using our real-world
dataset from patients with NSCLC. To investigate the clinical usefulness of DL for TIL
quantification, we:
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1. Implemented the HoVer-Net [7] algorithm and compared our results to the original
paper and the work of Gamper et al. [10].

2. Tested how HoVer-Net performs on unseen data, which will be the case in a clinical setting.
3. Evaluated an additional augmentation approach with the aim of improving the

performance on unseen data [14].
4. Compared the prognostic performance of TILs identified by HoVer-Net to the standard

state-of-the-art approach (CD8 staining).
5. Assessed the immune cell annotations produced by six HoVer-Net models trained on

three datasets for our unlabeled dataset comprising H&E-stained images of NSCLC.
6. Created a system for deploying machine learning models in a cloud to support

the implementation of computational pathology and to quickly evaluate promising
methods in a clinical setting.

2. Materials and Methods

We present our approach and cloud-based system for transferring open-source ma-
chine learning models trained on public datasets to solve new problems in H&E WSI
annotation. As a proof-of-concept, we customized the HoVer-Net algorithm [7] to detect
and quantify TILs in tissue samples from patients diagnosed with NSCLC. However, the
developed pipeline is easily adapted to any object detection task in WSIs. To validate the
customized model performance on our data without annotating hundreds of thousands of
cells, we used a visual inspection of the inference results and confirmed their clinical utility
in 1189 1000 × 1000-µm patches at a resolution of 0.2428 µm/px from 87 NSCLC patients.

3. Datasets
3.1. Public Datasets to Train and Test a Machine Learning Model

In the past decade, several excellent annotated datasets for cell segmentation and
classification were made publicly available, as summarized in Table 1. The CoNSeP,
PanNuke and MoNuSAC datasets were, at the time of submission, the only publicly
available datasets comprising both the segmentation masks and class labels necessary
to train DL models for simultaneous cell segmentation and classification. The dataset
characteristics are summarized in Table 1, and a simplified version of how patches are
generated and processed during the training procedure is illustrated in Figure 1.

3.2. UiT-TILs Dataset Used to Clinically Validate TIL Classifications

To validate the clinical relevance of TIL detection, we compiled the UiT-TILs dataset
comprising 1189 image patches from 87 NSCLC patients with matched clinical data. The
UiT-TILs dataset is a subset of the cohort presented by Rakaee et al. in 2018 [15]. The
patches were generated in QuPath [16] using thresholding to detect the tissue area, followed
by the generation of 4019 × 4019 px (1000 × 1000-µm) patches and the manual selection
of up to 15 consecutive patches from the tumor border. Due to differences in the tumor
size, tissue quality and the absolute length of the tumor border present in each WSI, the
target number of 15 patches from each patient could not be met in all instances (median
number = 15, range 3–16). The patient’s clinical data are summarized in Table S1.

3.3. Augmentation

Our augmentation strategy includes the use of a heuristic data augmentation scheme
thought to boost the classification performance [17]. First, we augment the two training
datasets using the augmentation policies provided in the HoVer-Net source code [7]. These
include affine transformations (flip, rotation and scaling), Gaussian noise, Gaussian blur,
median blur and color augmentations (brightness, saturation and contrast). Second, we
introduce a linear augmentation policy proposed by Balkenhol et al. [14] for better gen-
eralizability and overall improvement of the trained models. The image is (1) converted
from the RGB to the HED color space using the scikit image implementation of color
deconvolution, according to the Ruifrok and Johnston algorithm [18]; (2) each channel is
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transformed using a linear function that stochastically picks coefficients from a predefined
range, and (3) transformed channels are combined and converted back into the RGB space.

Table 1. Characteristics of the datasets providing annotations and/or classifications publicly available
for the training and validation of models for instant cell segmentation and classification.

Dataset CoNSeP PanNuke MoNuSAC CRCHisto * TNBC MoNuSeg CPM-15 CPM-17

Author Graham Gamper Verma Sirinukunwattana Naylor Kumar Vu Vu
Year 2019 2020 2020 2019 2017 2017 2019 2019

Origin UHCW UHCW/TCGA TCGA UHCW Curie Institute TCGA TCGA TCGA
Tissue types CRC Various (19) Various (4) CRC TNBC Various (8) Various (2) Various (4)

Unique
patients

Number of
patches 41 7901 294 100 50 30 15 64

Training 27 § 2722 209 NA NA 16 # NA 32
Validation § 2656 NA NA NA # NA NA

Testing 14 2523 85 NA NA 14 # NA 32

Patch size 1000 × 1000 256 × 256 Various 500 × 500 512 × 512 1024 × 1024 400 × 400 up
to 600 × 1000

500 × 500 up
to 600 × 600

Scanner(s) Omnyx
VL120 Various Various Omnyx VL120

Philips
Ultra-Fast

Scanner 1.6RA
Various Various Various

Magnification 40× 40× 40× 20× 40× 40× 40× and 20× 40× and 20×
Resolution 0.275

µm/px Various NA 0.55 µm/px 0.245 µm/px NA NA NA

Annotation NC NC NC CoN NC NC NC NC
Cells 24,319 205,343 46,000 29,756 4022 21,623 2905 7570

Labeled cells 24,319 205,343 46,000 22,444 NA NA NA NA
Cell types 7 5 4 (5) 4 NA NA NA NA

Abbreviations: CoNSeP, CRCHisto, colorectal histology; PanNuke, MoNuSAC, TNBC, triple-negative breast
cancer; MoNuSeg, CPM, NC, nucleus contour; UHCW, University Hospital; TCGA, The Cancer Genome Atlas;
CoN, center of nucleus; NG, not given. * CRCHisto only provides center of the nucleus annotations. § Graham
et al. 2019 suggested splitting the 27 training images into a training and validation set. However, the paper
does not provide information on the split conducted in their published paper. # Kumar et al. 2017 suggested
splitting into a training/validation set of 16 and 14 images. They also provided the split conducted in their
published paper.

Figure 1. For each dataset, the original patches are divided into nonoverlapping (CoNSeP) and
overlapping (PanNuke/MoNuSAC) mini-patches. A sub-patch is generated by adding padding
using image information from adjacent tissue in the original image patch and/or by mirroring in edge
cases. The central part of the sub-patch is cropped and used in the training procedure. The output
of the network (segmented/classified cells) is equal to the mini-patch. Each model is subsequently
trained for 100 epochs.
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3.4. Replicated Training Algorithm

We repurpose the training pipeline from the HoVer-Net source code. In brief, we
preprocess the data and extract sub-patches from the training dataset. For the CoNSeP,
MoNuSAC and PanNuke datasets, the input patch sizes are 270 × 270 px, 256 × 256 px and
256 × 256 px, respectively. For each input patch, the RGB channels are normalized between
0 and 1. The datasets are augmented via predefined policies and handled by the generator
during training. Figure 1 is a simplistic depiction of preprocessing and training. The
training procedure is performed in two phases—training decoders and freezing encoders
and fine-tuning of the full model. The training is initialized on weights pretrained on
ResNet50 and optimized using Adam optimization while decreasing the learning rate after
25 epochs for each phase. The models are trained for a total of 100 epochs. The ConSeP
dataset used by Graham et al. is split into training and test subsets with 27 and 14 image
patches, respectively. Since no validation set is provided for the CoNSeP dataset, we use
the training and test sets to train and validate the CoNSeP models, and the test set is used
again to evaluate the model performance. The MoNuSAC dataset provides training and
test sets, and when training our models, we split the training set 80/20 into training and
validation sets, respectively. The PanNuke dataset provides separate sets for the training,
validation and testing models. For additional details about the training parameters, we
refer to the original paper and their open-source code [7,10,11].

3.5. A System for Training, Tuning and Deploying Machine Learning Models

To easily tune and evaluate machine learning models, we need an environment that
has the computing resource to keep the training time short, provide easy deployment, keep
track of the experimental configuration and ensure that our experiments are reproducible.
In addition, we want to make the code portable. This will enable us to deploy the containers
on a commercial cloud with GPU support to gain access to the needed computing resources
for fast training or on a secure platform to train on sensitive data that cannot be moved to a
commercial cloud.

To solve the above challenges, we containerize the code so that we can easily deploy it
on a cloud platform or our in-house infrastructure. We use Docker [19] containers and a
Conda [20] environment for dependency handling. We use Kubernetes [21] for container
management. To ensure the experiment reproducibility and to keep track of the tuning
parameters, we use Pachyderm [22], since it enables data and model provenance and
parallelized batch processing.

We deploy our customized HoVer-Net model using our approach summarized in
Figure 2. To make it easier to test different training data, augmentation and parameters, we
use configuration profiles implemented as YAML files generated in the process and stored
in the code repository. We split data wrangling and training from inferences to make it
easier to deploy these on a new platform. To reduce the execution time, we use Tensorpack
with Tensorflow 1.12 to infer and post process patches in parallel.

We use a docker container on a local server with a RTX Titan GPU for development
and debugging. We train and tune the models on the Azure cloud, using AKS (Azure
Kubernetes Service) with GPU nodes with the Pachyderm framework. As a node pool, we
use 1 Standard NC6 (6 cores, 56 GB RAM) node with 1× K80 GPU accelerator.

3.6. Interactive Annotation of WSIs

To demonstrate and visually evaluate the TIL classifications and quantification, we
developed the hdl-histology system (Figure 3). It is an interactive web application for
exploring and annotating gigabyte-sized WSIs. Our web server implements the URL
endpoints required to request and transfer WSI tiles with interactive response times. It uses
the Flask framework to implement a RESTful API. We use Gunicorn (Green Unicorn) [23]
to handle concurrent requests. We use OpenSeadragon (OSD) to implement a tiled map
service [24]. To achieve an interactive performance for high-resolution WSIs, we export the
slides from their native format (.vms, .mrxs and .tiff, etc.) using vips dzsave and generate
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Microsoft’s DeepZoom Image (.dzi) tiles as a pyramidal folder hierarchy of .jpegs on a disk.
We provide classification as a service for interactive patch annotation. We use Tensorflow
Serving as a containerized server for the trained models. This service exports a REST API.
The input is the patch to process and the name of the model to use. The service returns
a class probability map that can be used to create a visual mask for the cells in the patch.
The REST API is used by the webserver that overlays the returned pixel matrix of the
annotated regions.

Figure 2. Overview of cloud deployment of the web application. WSIs are uploaded into Azure Blob
storage and mapped as a file system in the web application. The web application is built by an Azure
Pipeline from a docker file contained in the histology git repository. We use the Kubernetes platform in
Azure to train and validate our implementation of HoVer-Net. The exported models are implemented
as inference containers in the histology application service and served using Tensorflow Serving.

The web server runs in a docker container on the Azure App Service. The app service
pulls the docker image from our Azure Container Registry. The images are stored in
a blob container, which is path mapped to our app service. To deploy updates to the
system, we use continuous integration with azure pipelines. The deployment pipeline
triggers push events of an azure branch in the git repository using GitHub Webhooks (https:
//docs.github.com/en/developers/webhooks-and-events/about-webhooks, accessed on
1 August 2019). The build pipeline pulls the latest change from the branch and builds a

https://docs.github.com/en/developers/webhooks-and-events/about-webhooks
https://docs.github.com/en/developers/webhooks-and-events/about-webhooks
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docker container from the repos Dockerfile and pushes the container image into our Azure
Container Registry (Figure 2).

Figure 3. Overview of the slide viewer front end, back end and inference container. Selected regions
of the front end are cropped out at the back end and transferred to the inference container. The
inference container returns a contour matrix that is converted into a contour image and overlaid on
top of the front end WSI.

3.7. Validation of TIL Quantification on Unlabeled Data

To pragmatically evaluate the quantification of TILs without the large effort required
for manual labeling, we apply three methods.

First, to verify that our modifications to HoVer-Net do not change the results, we
reproduce the results described in the original HoVer-Net and PanNuke papers using
the CoNSeP and PanNuke datasets (Table S2) [7,10]. Further, to investigate whether
an additional augmentation leads to more robust and generalizable models, we use the
CoNSeP, MoNuSAC and PanNuke datasets to train separate models with and without
additional augmentations.

For comparison to the original HoVer-Net paper, we evaluate the segmentation and clas-
sification tasks using the metrics provided in the HoVer-Net source code [7]. The full descrip-
tion of the metrics used in the replication study is available in the Supplementary Materials.

For all other comparisons, we use the conventional and well-established metrics
to compare and benchmark our models. Since the models encompass both segmenta-
tion and classification, we compare the segmentation and classification separately and
combined. The definitions of the metrics we used to evaluate the segmentation and
classification separately are available in the Supplementary Materials. The integrated
segmentation/classification metrics include:

Accuracyt
dc =

TPt
dc + TNt

dc
TPt

dc + TNt
dc + FPt

dc + FNt
dc

(1)
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Precisiont
dc =

TPt
dc

TPt
dc + FPt

dc
(2)

Recallt
dc =

TPt
dc

TPt
dc + FNt

dc
(3)

F1t
c =

TPt
dc

TPt
dc + 0.5

(
FPdct + FNt

dc
) (4)

where TPt
dc- detected cells with the GT label t, classified as t, TNt

dc- detected or falsely
detected cells with a GT label other than t, classified as other than t, FPt

dc- detected or falsely
detected cells with a GT label other than t, classified as t, and FNt

dc- detected cells with the
GT label t, classified as other than t and all cells with the GT label t not detected for each
class t.

As t, we use inflammatory and cancer cells. To compare our augmentation approach
with the original approach we applied the trained models to their respective test datasets
and used cross-inference with the test data from the other dataset. For an evaluation of
the cross-inference results, we had to count both normal epithelial and neoplastic cells as
cancer cells, due to the fact that the CoNSeP and MoNuSAC datasets do not differentiate
between normal and neoplastic epithelial cells.

Second, to demonstrate that our methods may be adapted for use in a clinical setting,
we apply our models on all patches in the UiT-TILs dataset and calculate the median
number of cells classified as inflammatory/TILs for each patient. The median number of
identified immune cells will then be correlated to the number of immune cells identified
using digital pathology and specific immunohistochemistry on tissue microarrays and
semi-quantitatively scored TILs previously evaluated in the same patient cohort [15,25].
To assess the impact of TILs identified using our deep learning approach, the patients
are stratified into high- and low-TIL groups, and their outcomes are compared using the
Kaplan–Meier method and the log–rank test with disease-specific survival as the endpoint.

Third, to demonstrate that our methods are meaningful in a clinical pathology setting,
two experienced pathologists (LTRB and RS) visually inspected the segmentation and
classification results for the TILs and cancer cells in 20 randomly sampled patches from
the provided dataset. During the inspection, they estimated the precision and recall for
the TILs and cancer cells using 10% increments for each measurement. We calculate the F1
scores based on the estimated precision and recall for each patch.

4. Results
4.1. Model Performance

We trained a total of three pairs of HoVer-Net models with and without additional
augmentations using training data from: (1) CoNSeP, (2) MoNuSAC and (3) PanNuke.
Each model’s performance was evaluated on its respective test set and on the test set of the
other models. Additional information on the training and inference times are available in
the Supplementary Materials.

First, we verified that our replication of the original HoVer-Net models, trained on
the CoNSeP and PanNuke datasets, provided comparable performances to the results
presented by Graham et al. [7] and Gamper et al. [10]. The results are presented in Table S2
and show that our implementations performed within the expected range compared to the
original studies’ results. We believe the small differences are due to missing details in the
original studies (for ConSeP, the partitioning and preprocessing is not clearly described; for
PanNuke, the source code and model hyperparameters are not available).

Second, to get an estimation on real-world model performance, we evaluated our
original HoVer-net models trained on CoNSeP, MoNuSAC and PanNuke data on the
corresponding test sets for each dataset. As expected, all models suffered a drop in
performance when used for inference on a test set generated from another data source.
This effect was most prominent for the model trained on ConSeP data, whose performance
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dropped significantly when tested on MoNuSAC and PanNuke data (Tables 2 and S3,
columns BI and CI vs. AII). The performance drop was especially prominent during
classification and was consistent for both cancer and inflammatory cells. A similar trend
was observed for the model trained on MoNuSAC data (Tables 2 and S3, columns CV vs.
AV and BV). The PanNuke model tested on ConSeP and MoNuSAC data (Tables 2 and S3,
column BIII vs. AIII and CIII) exhibited less variable results on different data.

Third, we evaluate the effect of our augmentation policies on the cross-inference
performances, since better augmentation often improves model transferability. However,
our results do not indicate a significant performance improvement of the CoNSeP model
(Table 2, columns B I vs. B II and CI vs. CII), the MoNuSAC model (Table 2, columns AV
vs. AVI and BV vs. BVI) or the PanNuke model (Table 2, columns AIII vs. AIV and CIII
vs. CIV).

Finally, we compare the augmented models (Table 2). The CoNSeP and MoNuSAC
models perform best on their own data and experience performance drops when used on
unseen data. Interestingly, the PanNuke model performs better on MoNuSAC data and
compares favorably with models trained on the CoNSeP and MoNuSAC datasets when
tested on their data. Consequently, we believe the PanNuke test data results are the most
representative of the expected performance on lung tumor tissue in the UiT-TIL data, since
PanNuke includes patches with this tissue type. We therefore expect PanNuke to perform
better on UiT-TILs.

4.2. Correlation of TIL Quantification with Cancer Survival Rate

We compared the number of TILs identified with the PanNuke Aug model, with the
number of TILs identified using our simple rule-based approach (Helm, described in the
Supplementary Materials). HoVer-Net models trained on the CoNSeP, MoNuSAC and
PanNuke datasets with and without additional augmentations and different subsets of
T-lymphocytes in TMAs previously investigated in the same patients (Kilvaer et al. 2020)
(Figure S1). TILs identified using the rule-based approach (R 0.44) and with the CoNSeP
(Original R 0.54; Aug R 0.92), MoNuSAC (Original R 0.89; Aug R 0.90) and PanNuke
models (Original R 0.94) were moderately-to-strongly correlated with the TILs identified
with the PanNuke Aug model. Moderate correlations were also observed with the number
of TILs identified by the pan T-lymphocyte marker CD3 and the cytotoxic T-cell marker
CD8 (R-values of 0.54 and 0.39, respectively) in TMAs from the same patients.

We evaluated the clinical impact of the TILs identified using our approach in the
UiT-TIL cohort. The results are summarized in Figure 4 and in Table S4. In brief, we show
that TILs, identified by either the original and augmented MoNuSAC and PanNuke models
or the augmented CoNSeP model, can be used to identify TILs as prognostic factors in
NSCLC (Table S4 and Figure 4E–G). Specifically, patients with an above median number
of TILs present with superior survival and compared favorably with state-of-the-art CD8
lymphocyte detection in the same patients (Table S4 and Figure 4C). This shows that a deep
learning model could be used instead of CD8 staining to quantify TILs.

4.3. Manual Validation of Classification Results

Two pathologists, LTRB and RS, manually validated the performances of three original
and three augmented HoVer-Net models in a real-world dataset comprising 20 patches.
The results for all the patches are provided in Tables S5 and S6. For cancer cells, the recall
was >90% for all models, while the precision was variable. For inflammatory cells, the
recall was variable, while the precision was >90% for all models. Figure 5 exemplifies the
best, worst and largest range for the classification of the individual patches according to
our visual validation. Both pathologists reported that, for cancer cells, precision seemed to
be directly correlated to the number of cancer cells, while, for immune cells, recall seemed
to be inversely correlated to the number of immune cells.
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Table 2. A summary of the performance of four deep learning models trained using the CoNSeP (A I and II and B I and II) and the PanNuke (A III and IV and B
III and IV) datasets using the original training pipeline as published by Graham et al. without (A I and III and B I and III) and with (A II and IV and B II and IV)
enhanced augmentation. The best results for each parameter (1) within each dataset are in bold, and (2) models trained on another dataset are in italics. Separate
comparisons of the segmentation and classification steps are provided in Table S3.

Test Data CoNSeP PanNuke MoNuSAC
Model CoNSeP PanNuke MoNuSAC CoNSeP PanNuke MoNuSAC CoNSeP PanNuke MoNuSAC

Augmentation HoVer Aug HoVer Aug HoVer Aug HoVer Aug HoVer Aug HoVer Aug HoVer Aug HoVer Aug HoVer Aug
Numbering AI AII AIII AIV AV AVI BI BII BIII BIV BV BVI CI CII CIII CIV CV CVI

Integrated segmentation and classification
Accuracyin f lammatory

dc
0.78 0.80 0.71 0.71 0.72 0.55 0.73 0.76 0.71 0.72 0.47 0.46 0.59 0.70 0.74 0.75 0.73 0.73

Precisionin f lammatory
dc

0.81 0.77 0.60 0.70 0.84 0.79 0.59 0.52 0.61 0.68 0.48 0.45 0.86 0.79 0.78 0.92 0.77 0.77

Recallin f lammatory
dc

0.58 0.66 0.79 0.74 0.83 0.60 0.28 0.36 0.64 0.61 0.53 0.57 0.26 0.49 0.78 0.80 0.86 0.87

F1in f lammatory
dc

0.68 0.71 0.68 0.72 0.83 0.68 0.38 0.42 0.63 0.64 0.50 0.50 0.40 0.60 0.78 0.86 0.81 0.82
Accuracycancer

dc 0.57 0.59 0.54 0.51 0.38 0.38 0.42 0.45 0.57 0.58 0.45 0.45 0.53 0.63 0.63 0.62 0.68 0.70
Precisioncancer

dc 0.59 0.61 0.61 0.62 0.68 0.72 0.53 0.50 0.64 0.63 0.70 0.72 0.70 0.62 0.58 0.57 0.71 0.73
Recallcancer

dc 0.74 0.73 0.68 0.66 0.45 0.44 0.26 0.34 0.68 0.73 0.51 0.50 0.10 0.42 0.92 0.93 0.84 0.85
F1cancer

dc 0.66 0.66 0.64 0.64 0.54 0.55 0.35 0.40 0.66 0.68 0.59 0.59 0.18 0.50 0.71 0.71 0.77 0.79
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Figure 4. (A) All possible dichotomized cut-offs for the TILs identified by CD8 IHC in TMAs or using
the HeIm, PanNuke or CoNSeP models plotted against p-values indicating the significance of the DSS
for all included patients (n = 87). (B–G) Disease-specific survival curves for high- and low-TIL scores
for (B) the semi-quantitative model proposed by Rakaee et al. 2018. (C) The CD8 model proposed
by Kilvaer et al. 2020. (D–F) High and low numbers of TILs identified using the baseline rule-based
HeIm algorithm (described in the Supplementary Materials) or DL models trained on the CoNSeP,
MoNuSAC and PanNuke datasets, respectively.
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Figure 5. The top, middle and bottom rows represent the best, worst and largest range of F1 scores
for the immune cell classifications from our manual validation, respectively. The first column is an
overview of the entire image patch, while the second to fifth columns represent a focused region with
and without detection/classification overlays.

5. Discussion
5.1. Summary of the Results

In this paper, we presented our adaptation of HoVer-Net. Specifically, we implemented
the original approach as presented by Graham et al. and retrained the model on an
expanded dataset published by Gamper et al. [7,10]. To increase the model accuracy and
prevent overfitting, we introduced additional augmentations and compared models trained
with and without these. Interestingly, our additional augmentations did not lead to a
measurable increase in the model performance (Table 2 and Table S3). Moreover, we
published UiT-TILs, a novel retrospective dataset consisting of patient information and
tumor images sampled from 87 patients with NSCLC. We used this dataset to explore the
possible clinical impact of our approach and compared it with the current state-of-the-art
methods for TIL evaluation in NSCLC patients. Our results suggest that the prognostic
impact of TIL identification in H&E-stained sections with the current DL approach is
comparable, and possibly superior to, the chromogenic assays (standard IHC-stained CD8
cells in TMAs HR 0.34, 95% CI 0.17–0.68 vs. TILs in HE WSIs: HoVer-Net PanNuke Aug
Model HR 0.30, 95% CI 0.15–0.60, and HoVer-Net MoNuSAC Aug model HR 0.27, 95%
CI 0.14–0.53, Figure 4 and Table S5). Finally, to provide an environment for easy and fast
prototyping and deployment for experiments and production, we built a cloud-based WSI
viewer to support our back end. Our system is scalable, and both the front end and back
end can function separately.
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5.2. Related Works and Lessons Learned

The number of potential use cases for digital pathology is increasing. However,
while the basic research is making strong headway, the use of digital pathology in routine
clinical pathology is currently not aligned with the expectations for most laboratories. In a
recent paper, Hanna et al. reviewed the process of adopting digital pathology in a clinical
setting and shared from their process at the Department of Pathology, Memorial Sloan
Kettering Cancer Center [26]. They concluded that, to increase the number of pathologists
willing to adopt digital pathology, the technology has to offer benefits that impact the
pathologist’s daily work. While conventional image analyses have proven suitable for
some tasks, such as counting the number of cancer cells staining positive for Ki67 in
breast cancer [27], they are prone to failure, given the increasing complexity. We, among
many others, believe that DL will deliver the tools necessary to irreversibly pave the way
for digital pathology. Despite this optimism, one of the main arguments against DL in
medicine in general, and in cancer care in particular, is its inherent black box nature. As
an example, Skrede et al. published DoMore-v1-CRC, a prognostic model in colorectal
cancer that outperformed the prognostic impact of the TNM staging system for CRC
patients in retrospective data [28]. Moreover, their model may help select patients that
will benefit from adjuvant chemotherapy. However, whether their lack of explanation will
impede its implementation remains to be seen. We chose to focus on cell segmentation
and classification in general and on TILs in particular. Distinct from models that derive
patients’ prognoses from abstract features from imaging data alone, the success of our
model can be evaluated directly based on its output (Figure 5). Interestingly, the prognostic
impact derived from TILs identified on NSCLC H&E WSIs by the current state-of-the-art
segmentation and classification models are equal or superior to the IHC-based methods.
This latter finding was corroborated by our manual validation, where the segmentation
and classification of the TILs were consistent through the majority of the images. However,
we observed a significant difference in the model performances for an image with a darker
background and overall worse performances in images where TILs were scarce. These
latter points suggest that our models are overfitting on the dataset. To summarize, our
present effort illustrates that it is possible to repurpose existing DL algorithms for use on
real patient samples with understandable output translating into clinical information that
may be used to make informed treatment-related decisions for patients.

In an attempt to further generalize our models, we adapted a linear augmentation
policy proposed by Balkehol et al. to the HoVer-Net training pipeline [14]. For models
trained on the PanNuke and MoNuSAC datasets, we did not observe the expected benefits
of the additional augmentations (Tables S2 and S3). For models trained on the CoNSeP
dataset, there was a tendency towards better performances when additional augmentations
were used. Currently, there is no reference augmentation policy for use on histopathol-
ogy datasets. Our experience suggests that smaller datasets may benefit the most from
additional augmentation. However, there are several steps, including, but not limited to,
tissue handling, staining, scanning, normalization and additional augmentations fitted
before or during training, that may impact the model performance. Exploring these is
beyond the scope of the current paper, but our use of MLOps best practices should make it
easy to evaluate different normalization techniques and augmentation policies. Based on
the reasonable performances of the CoNSeP models on CRC tissues and on the CoNSeP
dataset, another feasible approach is to generate specific datasets for each problem. This
latter strategy may make models less complex, because the variability will be reduced.
However, we do not believe that task-specific datasets will contribute to more accurate TIL
detection, as TILs, contrary to cancer cells, are morphologically equal across all cancers.

5.3. Future Work

As a general direction for future works, we can outline the following points: prune
and optimize models to run faster with less computational power; improve web server
applications to reduce response times; integrate with widely used tools such as ImageJ/Fiji,
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Cell Profiler, QuPath and others; add additional features useful as decision support for
pathologists and test acquired models on new datasets to validate the model performance
on other tissue types. It is also pertinent to explore new methods for dataset generation that
incorporate all the steps from tissue handling to staining to segmentation, auto-labeling
and manual and/or automatic feedback.

For the specific use case of TIL segmentation and classification, future studies should
address localization and the possible varying distributions of TILs in a tumor. Further, tile
sampling may reduce the amount of tissue needed to be assessed and thereby compute
resources. In addition, incorporating additional elements, such as the class of surrounding
cells and information of the tissue structure, may further improve the performance of the
classification step.

5.4. Limitations

In our composed dataset, we manually extracted patches to test our models and
hypotheses. In future works, we plan to eliminate that flaw and automatically extract the
region of interest in the WSI.

In this work, our aim was to provide an interactive graphical user interface for pathol-
ogists able to test and evaluate different machine learning models for a WSI analysis. The
response time is minutes for average size patches and hours for WSIs. It can be improved by
using a more powerful GPU or multiple GPUs. However, we also want to make the service
accessible to pathologists by using cloud services. The cloud service cost may be significant,
especially if the service is running continuously. Model optimization may reduce the cost
and improve the response times by using, for example, hardware accelerators or pruning
techniques. It may also be more cost-efficient to deploy the systems on an on-premise
server with GPUs. Currently, our tool is designed for hypothesis generation, testing and
education. In a clinical implementation, we need to improve the response times, reduce
the costs, make it easier and more convenient to use, integrate it with the existing clinical
ecosystems, test it in clinical scenarios and obtain permission from regulatory bodies for its
use as a medical device.

6. Conclusions

In conclusion, we used already published state-of-the-art DL models for the segmenta-
tion and classification of cells and adapted and retrained these for use on new data. We
showed that TIL identification using DL models on H&E WSIs is possible and, further, that
the clinical results obtained are comparable to, and possibly supersede, the prognostic im-
pact of conventional IHC-based methods for TIL identification in tissues from lung cancer
patients. Moreover, our approach, utilizing published datasets, significantly limits the need
for creating additional costly labeled datasets. Distributed deployment and deployment as
a service allow for easier and faster model deployment, potentially facilitating the use of
DL models in digital pathology. However, before clinical implementation, the efficacy of
our methods needs to be further validated in independent datasets, and the system must be
tightly integrated into the clinical work flow to ensure adaptation to the daily diagnostics.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14122974/s1, Table S1: Clinicopathologic variables and
their correlations with the median dichotomized TILs identified using the PanNuke Aug model
(n = 87, chi-squared and Fisher’s exact tests). Table S2: HoVer-Net trained on the CoNSeP dataset
(A I) and our reproduction (A II) and HoVer-Net trained on the PanNuke dataset (B I) and our
replication (B II). Table S3: A summary of the performances of four deep learning models trained
using the CoNSeP (A I-II and B I-II) and the PanNuke (A III-IV and B III-IV) datasets using the
original training pipeline as published by Graham et al. (Graham et al. 2019) without (A I and III
and B I and III) and with (A II and IV and B II and IV) enhanced augmentation (Graham et al. 2019).
The best results for each parameter (1) within each dataset are in bold, and (2) the models trained
on another dataset are in italics. The integrated classification results are in Table 2. Table S4: A
comparison of the disease-specific survival of NSCLC patients according to high and low levels

https://www.mdpi.com/article/10.3390/cancers14122974/s1
https://www.mdpi.com/article/10.3390/cancers14122974/s1


Cancers 2022, 14, 2974 15 of 16

of TILs identified in H&E WSIs using different approaches (n = 87, univariable analyses, log–rank
test). Table S5: Manual estimation of the precision and recall and calculated F1 scores for cancer
and immune cells on the output of the PanNuke, CoNSeP and MoNuSAC models with updated
augmentation. The 20 1000 × 1000-µm patches were randomly sampled from our lung cancer cohort.
Table S6: Manual estimation of the precision and recall and calculated F1 scores for cancer and
immune cells on the output of the PanNuke, CoNSeP and MoNuSAC models with the original
augmentation. The 20 1000 × 1000-µm patches were randomly sampled from our lung cancer cohort.
Figure S1: Median number of immune cells for each patient identified using the augmented PanNuke
model plotted against the median number of immune cells identified by: (1) HeIm, CoNSeP original
(HoVer-Net paper), CoNSeP augmented, MoNuSAC original, MoNuSAC augmented and PanNuke
original using the dataset provided in this publication and (2) CD3, CD4, CD8, CD20 and CD45RO
identified on TMAs for each patient (the full TMA results were published (Kilvaer et al. 2020). Each
dot represents data from an individual patient and is labelled according to the semi-quantitative
TIL score he/she was assigned in Rakaee et al. 2018. MM S1: Helm: A simple rule-based algorithm.
MM S2: Definition of the metrics used in the replication study.
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