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Abstract
A State of the Art lecture titled “Proteomics in Thrombosis Research” was presented 
at the ISTH Congress in 2021. In clinical practice, there is a need for improved plasma 
biomarker-based tools for diagnosis and risk prediction of venous thromboembo-
lism (VTE). Analysis of blood, to identify plasma proteins with potential utility for 
such tools, could enable an individualized approach to treatment and prevention. 
Technological advances to study the plasma proteome on a large scale allows broad 
screening for the identification of novel plasma biomarkers, both by targeted and 
nontargeted proteomics methods. However, assay limitations need to be considered 
when interpreting results, with orthogonal validation required before conclusions 
are drawn. Here, we review and provide perspectives on the application of affinity- 
and mass spectrometry-based methods for the identification and analysis of plasma 
protein biomarkers, with potential application in the field of VTE. We also provide a 
future perspective on discovery strategies and emerging technologies for targeted 
proteomics in thrombosis research. Finally, we summarize relevant new data on this 
topic, presented during the 2021 ISTH Congress.

K E Y W O R D S
biomarker, mass spectrometry, plasma protein, proteome, proteomics, thrombosis, venous 
thromboembolism, VTE
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Essentials

•	 There is a need for novel plasma biomarkers for diagnosis and risk prediction of thrombosis.
•	 Recent technology developments have enabled large scale analysis of plasma protein profiles.
•	 We describe current and emerging technologies and strategies for identification of biomarkers.
•	 We review reports where these technologies are applied in the field of thrombosis research.

1  |  INTRODUC TION

Venous thromboembolism (VTE), comprising both deep vein throm-
bosis (DVT) and pulmonary embolism (PE) is a common, multicausal 
disease with serious short-term and long-term complications. It is 
associated with high mortality in the first year, especially within 
the first 30 days (~30% for PE) and a high risk of recurrence, with 
a cumulative incidence rate of 25% within 10 years.1-4 There is a 
need for better clinical tools for diagnosis and risk prediction of 
VTE; identification of VTE specific plasma biomarkers that could 
be routinely analyzed within existing clinical settings could trans-
form clinical management. However, in contrast to acute coronary 
syndrome and heart failure, where plasma biomarkers such as 
high sensitivity troponin and proBNP represent the cornerstone 
in diagnosis and clinical decision making, biomarkers with similar 
characteristics in VTE remain to be identified. D-dimer is the only 
established biomarker in clinical management routines, but it is 
not specific for VTE. Because the predisposing common risk fac-
tors and clinical presentation of VTE are consistent with multiple 
other conditions, particularly in the case of PE, diagnosis of acute 
VTE can represent a clinical challenge. Current VTE diagnostic 
workup includes assessment of clinical probability (e.g., using the 
Well score) in combination with measurement of the plasma bio-
marker D-dimers.5,6 Because of its low specificity for VTE, D-dimer 
is limited to ruling out VTE in low-probability cases, whereas diag-
nostic imaging is necessary to rule out or confirm diagnosis in me-
dium- or high-probability cases. With less than 20% of computed 
tomography pulmonary angiograms performed on suspicion of PE 
confirming the diagnosis,7-9 more specific biomarker-based tools 
implemented in the diagnostic workup have potential to reduce un-
necessary imaging. Several studies have proposed biomarker candi-
dates for acute VTE (e.g., p-selectin, microRNAs),10,11 but none have 
yet translated to clinical implementation. Prediction of recurrence 
represents another clinical challenge where improved biomarker-
based tools could facilitate treatment decisions for the individual 
patient (e.g., length of anticoagulant treatment). Risk scores based 
on D-dimer levels together with clinical risk factors have been de-
veloped for prediction for risk of recurrence,12-16 but, again, none 
are yet routinely integrated into clinical practice. When incorporat-
ing genetic variants contributing to VTE into such risk scores, in-
cluding recently discovered common genetic variants,17,18 they still 
lack sufficient precision for individual risk prediction.19,20 This likely 
reflects the interplay between persistent and transient risk factors 
in VTE development, including genetics, acquired risk factors, and 
environmental exposures.21

Blood plasma is an easily obtainable sample for analysis in a 
clinical setting that reflects active secretion, release, shedding, 
or leakage from cells and tissues in direct or indirect contact with 
blood. Because VTE is a disease of the intravascular compartment, 
the blood proteome could reflect combined environmental, genetic, 
and epigenetic contributors to risk variation between individuals. 
However, compared with other disease states, a limited number 
of plasma proteomics studies has been reported, where novel bio-
marker candidates for VTE are identified.22-29 Today, several of the 
plasma proteins reportedly associated with VTE, and subsequently 
evaluated when incorporated into risk scores, have emerged from 
hypothesis driven analysis of a single, or limited set, of proteins 
based on known links to thrombosis (e.g., P-selectin30). Systematic 
profiling of a larger portion of circulating plasma proteins could lead 
to discovery of novel protein biomarkers with potential clinical util-
ity for VTE diagnosis and/or prediction. Recent technology devel-
opments in the proteomics field have made such high-throughput 
screening more accessible through commercial systems available 
as fee for service at core facilities and/or through commercial pro-
viders. Here, we will provide an overview of existing and emerging 
technologies and review the current literature on their relevance in 
VTE research and provide future perspectives.

2  |  TECHNOLOGIES FOR PL A SMA 
PROTEOMIC S

Blood plasma is complex to analyze because of the very large con-
centration range (1012) between most abundant (e.g., albumin, im-
munoglobulins) and least abundant (e.g., interluekin-6, interferon 
gamma) proteins. Indeed, less than 1% of the individual proteins 
found in plasma constitute more than 90% of the total protein 
concentration.31-34 Thus, analysis of the full protein profile in plasma, 
the circulating proteome, remains a challenge with currently availa-
ble technologies. Today, analysis of the plasma proteome is typically 
performed using mass spectrometry (MS) or affinity-based methods. 
MS-based methods inherently have a high specificity for detected 
proteins through direct identification of generated peptides, but the 
detection of low-abundance proteins remains challenging, and prac-
tical aspects limit sample throughput capacity. Affinity-based meth-
ods have gained popularity because of greater throughput capacity, 
multiplexity, small sample size, and reduced processing requirement 
(e.g., high abundance protein depletion or fractionation is not re-
quired), and a higher capacity than MS-based methods for the de-
tection of low-abundance proteins.33,35,36 Here, we will discuss the 
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different approaches, their associated limitations, and the degree of 
consistency between the described platforms.

2.1  |  Affinity proteomics: Technologies

Affinity proteomics is based on the use of molecules (antibodies or 
aptamers) with specific binding capability to proteins of interest. 
Over the years, affinity-based assays have moved from the detec-
tion a single protein at a time, as in Western blot or enzyme-linked 
immunosorbent assay (ELISA), to the measurement of large protein 
panels for the identification of signatures associated with specific 
disease conditions or health status.31,33,35,37 Here, we discuss the 
three in-solution technology platforms for large-scale screening 
of biomarker candidates that, to date, have been most commonly 
used for plasma proteomic analysis: the antibody-based suspen-
sion bead array (SBA),38 the proximity extension assay (PEA),39 and 
the aptamer-based SomaScan assay.40 All three platforms allow for 
highly multiplexed profiling of proteins in many samples using a 
plate-based format. The conceptual principles of these methods are 
shown in Figure 1.

The SBA technology is run on a commercial platform provided by 
Luminex Corp. (Austin, Texas, USA), which measures relative protein 
plasma levels using a flow cytometer-based analysis of multiplexed 
suspension bead arrays of protein-specific antibodies (Figure 1A). 
The Luminex platform (FlexMAP3D) can analyze up to 500 pro-
teins in 384 samples, using as little as 3 μl of plasma per sample run. 
However, reliability depends on the specificity and functionality of 
antibodies used and any findings should be orthogonally validated. 
Advantages, compared with the current PEA and aptamer-based 
platforms, include full flexibility in designing custom antibody panels 
in a scalable fashion.33,41 This technology platform has been used 
in proteomics studies for health assessment and various disease 
states,33,42-44 including VTE.22,23

The PEA technology platform (Olink Proteomics AB, Uppsala, 
Sweden) uses selected paired antibodies, labeled with comple-
mentary DNA linkers, for the recognition of proteins (Figure 1B). A 
semiquantitative signal readout is generated either by quantitative 
polymerase chain reaction39,45,46 or sequencing.47 Conceptually, 
the application of dual antibodies targeting different neighboring 
epitopes increases specificity and reduces the risk that the sig-
nal reflects off-target binding. The unique sequences of the DNA 
linkers attached to the antibodies allow for a high level of multiplex-
ing without the extensive cross-reactivity that would occur using 
conventional ELISAs. Still, differences in amplification efficacy and 
lack of quantitative standards mean that the measurements are 
semiquantitative and can only be used for relative comparisons of 
protein levels. PEA is commercially available as a high-throughput 
platform in a 96-plate format with multiplex immunoassays panels 
containing 48, 92, or 384 markers that are measured simultaneously. 
The potential for agnostic interrogation of the plasma proteome to 
discover entirely novel biomarkers is somewhat limited by the re-
liance on predefined panels designed based on prior knowledge. 

Currently, Olink offers 15 target panels (up to 92 protein markers/
panel) designed as “disease oriented” (e.g., cardiovascular panels) 
or pathway oriented (e.g., immune response, “cardiometabolic”). 
There is not a panel designed with a specific thrombosis/hemostasis 
focus, and a comprehensive interrogation of pathways and systems 
with known role or relevance for thrombosis requires the analysis 
of several different panels in combination (e.g., cardiovascular dis-
ease, cardiometabolic, cytokines). Four larger “exploratory panels” 
targeting approximately 1500 unique proteins have become avail-
able, with a focus on cardiometabolic-, oncology-, neurology-, and 
inflammation-associated biomarkers, and more recently a combined 
Explore 3072 panel targeting approximately 2950 unique proteins 
has been launched. This technology has been applied to biomarker 
profiling studies of VTE.24-26

The aptamer-based SomaScan technology platform (Somalogic, 
Boulder, Colorado, USA) has emerged as an attractive alternative 
to antibody-based approaches48(Figure  1C). Whereas, like Olink, 
it relies on predefined panels, the most recent Somalogic platform 
v4.1, with a library of SOMAmers targeting roughly 7000 unique 
proteins, conceptually allows for a semiagnostic interrogation of 
the plasma proteome using only 55 μl of plasma, potentially reveal-
ing novel pathways. With increasing numbers of studies using this 
platform, limitations inherent to the technology is attracting atten-
tion.49 Similar to SBA, it is a single binder assay in which findings 
should be orthogonally validated. Furthermore, compared with 
antibody-based assays, aptamer-based assays are likely more vul-
nerable to nonspecific protein binding and to the effect of missense 
single nucleotide polymorphisms because of the resultant modifi-
cation in electric charge (through amino acid substitutions), which 
can affect binding of the negatively charged aptamers.50 This was 
recently demonstrated for a protein-altering variant in the solu-
ble urokinase plasminogen activator receptor, where results were 
strongly influenced by an epitope-binding artefact when using an 
aptamer assay.51 Pairwise comparisons of protein measurements 
with SomaScan and conventional immunoassays have shown highly 
variable correlations,52 with some reporting poor agreement with 
standardized assays on validated laboratory instruments for estab-
lished VTE-associated biomarkers, such as D-dimer.53

2.2  |  Affinity proteomics: Considerations

In affinity proteomics, the signals generated cannot automatically 
be assumed to reflect target protein abundance because of poten-
tial for interference with the target/binder interaction (Figure 2).54 
Antigen occlusion through posttranslational modifications, complex 
formation, differential splicing, or single nucleotide polymorphisms 
in the binding epitope can affect signal strength. Missense muta-
tions directly affecting epitopes, or protein structure and binding 
accessibility, can affect the protein recognition in a manner in which 
genetic differences drive the associations, rather than protein lev-
els.55,56 In addition, the measured signal can be generated by off-
target low-affinity binding of a high abundant protein, outcompeting 
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the true target.33 Compared with PEA/Olink, which rely on dual an-
tibodies targeting two different epitopes, both SBA and SomaScan 
are conceptually more vulnerable to reporting off-target binding ef-
fects. Such effects can be highly platform and binder dependent be-
cause binders may target different regions of the protein and/or be 
differently affected by changes in protein structure. Furthermore, 
neither the SBA, PEA, or SomaScan technologies provide abso-
lute quantitative protein concentrations, only relative values, and 
each on different scales. Thus, individual signals cannot be directly 

compared between different studies, even when assayed with the 
same assay panels. Therefore, for results obtained with affinity pro-
teomics, orthogonal quantitative measurements (e.g., conventional 
immunoassays, targeted quantitative MS) are needed to confirm 
an association between protein level and disease/phenotype. For 
example, immunoaffinity pulldown where the binder is coupled 
to magnetic beads and used to pull down the target from plasma 
before it is eluted, digested, and analyzed by liquid chromatogra-
phy (LC)-MS, a method called immunocapture MS (IC-MS), can be 

F I G U R E  1 Affinity proteomics technologies. (A) Suspension bead array assay (Luminex): All proteins within the plasma sample are 
labelled with biotin for subsequent detection (A1) before incubation with a suspension of multiplexed protein-specific antibodies, each 
coupled to a unique color-coded micrometer-sized bead (A2). Unbound proteins are removed by washing and fluorescent-labeled-
streptavidin is added to detect the protein biotin tag (A3). The suspension is analyzed by a cytometry-based instrument (Luminex), where the 
color of the antibody-bound bead provides the antibody identification, and the mean fluorescence intensity provides a relative measure of 
the corresponding target protein levels. (B) Proximity extension assay (Olink): for each biomarker, a matched pair of antibodies recognizing 
neighboring epitopes on the same target protein are linked to unique complementary oligonucleotides. Multiplex panels of matched 
antibody pairs are added to plasma (B1). When binding in close proximity on the protein target, the stretch of nucleotides hybridizes. 
DNA polymerase is added, and the annealing product is extended and amplified (B2) and detected by either quantitative polymerase 
chain reaction or next-generation sequencing (B3). The readout provides a relative measure of respective protein level in plasma. (C) 
SomaScan Assay (SomaLogic): for each biomarker, a single-stranded oligonucleotide, aptamer, folded into a tertiary structure, binds the 
target protein with affinity and specificity comparable to antibodies. The SomaScan platform is based on slow off-rate modified DNA 
aptamers (SOMAmers) labeled with a fluorescence reporter, photocleavage linker, and biotin. Multiplex panels of SOMAmers together with 
streptavidin coated beads bind respective target proteins in plasma (C1). Following washing to remove unbound proteins, fluorescent-labeled 
aptamer-protein complexes are released from the beads by ultraviolet-induced photocleavage, labeled with biotin (C2) and captured on 
fresh streptavidin-coated beads added to the sample, followed by washing to remove nonspecifically bound aptamers (C3). Protein-bound 
aptamers are released in denaturing buffer and detected by hybridization to complementary oligonucleotide probes on a microarray chip 
with the fluorescence intensity (C4) providing a relative measure of respective protein level in plasma. Figure created with BioRe​nder.com
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used to technically validate the target of the binder (Figure 3).54,57 
This can detect coenrichment of the target protein with other pro-
teins, which can reflect complex binding with the intended target, 

cross-reactivity, or parallel on-target and off-target binding. Thus, 
identification of the intended target in IC-MS data does not exclude 
that a nontarget protein contributes to the signal associated to a 
trait or phenotype.

2.3  |  Mass spectrometry-based proteomics: 
Technologies

The most commonly used method for peptide identification when 
using MS is the shotgun proteomics strategy, which often is used 
for discovery studies. This unbiased method can measure more 
than 1000 proteins in plasma from single samples, using a peptide 
prefractionation strategy.58 Discovery workflows allow research-
ers to profile proteins in numerous samples in an unbiased manner 
and to compare differentially abundant proteins between samples. 
However, the accuracy and precision of label-free shotgun prot-
eomics methods are often affected by analytical biases introduced 
during the sample preparation process. Small deviations and un-
certainties in chromatography and ionization, in combination with 
the highly complex nature of clinical samples, make the precur-
sor selection process complex and a source of error affecting the 
quantitative performance. It is often described as a stochastic 
process when selecting which ion to select and identify through 
tandem MS (MS/MS), making peptide identification and quanti-
fication inherently difficult to reproduce.59-61 Therefore, data-
independent or targeted proteomics approaches have become an 
attractive alternative to the shotgun method for validation stud-
ies where the same set of proteins are quantified across hundreds 
of samples. The data-independent acquisition,62,63 or sequential 
window acquisition of all theoretical fragment ion spectra MS,64 
was introduced to improve the quantitative accuracy of peptide 
quantification across many samples. This is a step toward the 

F I G U R E  2 Representation of the possible binding scenarios 
for protein binding to the affinity reagent in a complex plasma 
matrix. (A) On-target: the antibody specifically binds the intended 
target protein. (B) Co-target: the antibody specifically binds the 
intended target protein in a protein complex. (C) Off-target: the 
antibody binds a nontargeted protein, either through binding to an 
epitope with similar linear amino acid sequence or conformational 
epitope structure, or a background signal is generated by unspecific 
binding. (D) Target isoforms: the antibody binds only one isoform of 
the intended target protein. This can occur when a coding genetic 
variation (missense single nucleotide polymorphism) cause an 
amino acid substitution in the epitope, or changes conformation. 
Figure created with BioRe​nder.com

F I G U R E  3 Workflow for ImmunoCapture-mass spectrometry (IC-MS). Plasma samples are incubated with magnetic beads coupled 
with the affinity reagent (e.g., antibody). Beads with captured proteins are separated by applying a magnetic field, and nonbound proteins 
removed through sequential washes. Proteins bound to the antibody-coupled beads are digested with trypsin, and after bead removal, the 
resulting sample with peptide fragments are injected into liquid chromatography tandem MS for analysis. Figure created with BioRe​nder.com
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rationale behind targeted proteomes, where specific and well-
characterized ions are used to quantify a predefined set of pep-
tides. One of these more targeted methods is the parallel reaction 
monitoring (PRM) ion sampling strategy, in which targeted acqui-
sition is performed to simultaneously analyze all fragment ions 
of a preselected list of peptides.65,66 The more stringent type of 
targeted proteomics method is the selective reaction monitoring 
(SRM) strategy.67 The SRM method demands a lot of preanalytical 
work spent at the assay generation stage, but when optimized, the 
assay can deliver excellent quantitative performance. The analyti-
cal method shows the highest degree of assay linearity, low limit 
of quantification, and high repeatability, which is in accordance 
with many existing clinical assays, making SRM particularly useful 
when studying a predefined set of proteins.67,68 To achieve abso-
lute quantification, an accurately determined amount of a stand-
ard peptide (either as a peptide or as part of a protein), which is an 
isotopologue of the endogenous analyte of interest, is added to 
the sample as detailed previously.

Targeted proteomics is a powerful MS-based technique used 
for high-quality protein quantification in complex matrices, such as 
human blood plasma.69 The method is an attractive alternative to 
many affinity-based methods because it can quantify proteins of 
interest without the need for any affinity reagent. The analytical 
strategy provides both high sensitivity, reproducibility, and quanti-
tative performance over a broad dynamic range.70 Recent efforts of 
standardizing bottom-up proteomics workflows, where proteins are 
digested into peptides by trypsin, has enabled characterization and 
identification of hundreds of proteins in undeleted human plasma, 
including many Food and Drug Administration-approved biomark-
ers.71-76 This, in combination with the unsurpassed specificity of 
mass spectrometers,77 over many other molecular technologies, has 
made it an attractive choice for precision medicine and future diag-
nostic applications.

Stable Isotope Standards (SIS), in the form of either peptides or 
proteins, can be added either before or after the proteolytic diges-
tion step that facilitates quantification of the target peptide ana-
lyte. The peptides selected as reference standards must be unique 
to the protein of interest and suitable for quantification. The SIS 
peptide and the peptides originating from the endogenous protein 
behave identically throughout the sample preparation and so the 
relative ratio provides quantitative information because the pep-
tides can be distinguished by the mass spectrometer. The absolute 
concentration of the target protein can be calculated using the ratio 
of heavy (standard) and light (target) peptides, and can potentially 
replace traditional serology, using only 1 ml of input plasma. The 
use of SRM to quantify proteins in blood plasma generally range 
from 31 mg/ml for albumin down to 18 ng/ml for peroxidredox-
in-2.78 As many as 267 proteins have been quantified in multiplex 
by SRM, including 61 Food and Drug Administration-approved tar-
gets.79 Mohammed et al.80 developed a multiplexed PRM based 
quantification of a panel of 31 coagulation and hemostasis markers 
and found good agreement with results from conventional stan-
dardized laboratory assays.

2.4  |  Mass spectrometry-based proteomics: 
Considerations

Despite the identification of many possible biomarkers from stud-
ies using quantitative MS-based proteomics experiments, very few 
have made it to the clinic. Many quantitative, bottom-up proteom-
ics workflows are affected by biases introduced throughout the 
sample preparation process, which includes protein denaturation, 
reduction, alkylation, digestion, and peptide separation, taking 
place upfront the mass analyzer.61 This can be minimized through 
strict, standardized approaches81 to limit variation and ensure high 
statistical significance when evaluating biomarkers of interest.82,83 
However, systematic biases are introduced and are often accounted 
for by the introduction of stable isotope standards that are added di-
rectly to the sample of interest, which will act as a reference point of 
calibration. Addition at the peptide level cannot account for differ-
ences introduced at the digestion step,84 but alternative strategies 
have been implemented. SIS guidelines can combat this, including 
flanked peptides (cleavable site), either by extension or by combining 
multiple protein targets combined into a single recombinant protein 
fragment (Quantification concatemer, QconCAT).85 The most repro-
ducible, but most expensive, alternative is a full-length SIS recom-
binant protein86 (Figure 4A). This performance can be mimicked by 
the QPrESTs technology87 where a shorter, 50 to 150 amino acid 
sequence that contains prototypic peptides can be spiked to the 
plasma instead (Figure  4B). In contrast to spiked peptides, spiked 
SIS proteins or protein fragments generate multiple proteotypic 
peptides to be added before the trypsin cleavage, ensuring that un-
cleaved endogenous peptides will not affect the quantification, as 
long as the digestion efficiency of the protein standard is the same 
as that of the endogenous protein target. Addition of PrESTs show 
very robust with interday coefficient of variations around 5%.88 The 
PrEST technology has been used to quantify more than 100 proteins 
in human plasma89 with addition-only protocols. This has introduced 
a new and more precise quantification rationale of proteins present 
in body fluids with good quantitative accuracy (<15%)90 if compared 
with fully labeled protein standards.

2.5  |  Comparisons of plasma proteomics assays in 
clinic study sample sets

Multiple studies have observed variable degrees of agreement 
between protein quantification in identical samples using dif-
ferent high-throughput proteomics platforms or immunoassays 
(conventional single-protein ELISA and optimized multiplexed 
assays).50,52,91,92

Liu et al.52 compared concordance between SomaScan and 
conventional immunoassays in two sets of samples obtained from 
the same 294 subjects undergoing cardiac surgery (pre- and post-
operatively). For 26 proteins measured both by immunoassay and 
SomaScan assay, 20% and 35%, respectively, showed high Spearman 
correlation (rs ≥ 0.75), whereas 53% and 41% had low correlation 
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(rs < 0.5), respectively, in the two sample sets. They also tested for 
association with acute kidney injury (AKI) using both methods; only 
about one-half of the AKI associations found using immunoassay 
data were replicated in the SomaScan data, with statistically signif-
icant differences in odds ratio for paired proteins generally found 
in the group of markers with low or medium correlations rs < 0.75. 
Strong interplatform correlations and more consistent biomarker 
AKI odds ratio tended to be observed when biomarkers had a higher 
plasma concentration,52 suggesting that these platforms are more 
likely to replicate with concordance for abundant proteins, rather 
than those with than low abundance.

Raffield et al.91 compared overlapping sets of analytes analyzed 
with Olink platform and the SOMAscan 1.1k array, in the same set 
of 48  samples from a cohort of 10 myocardial infarction patients. 
For the 425 proteins measurements obtained in both platforms, 

Spearman correlation ranged from −0.58 to 0.93; only 56 (13%) 
proteins were highly correlated (rs ≥ 0.7), whereas 179 (42%) were 
poorly correlated (rs  <  0.3). They also compared data for a set of 
63 proteins that were assayed both with the SomaScan 1.3 k plat-
form and multiplexed conventional immunoassays in two separate 
chronic obstructive pulmonary disease (COPD) cohorts (n = 371 and 
n = 176).91 Here, Spearman correlation ranged from −0.13 to 0.97, 
with a median of ~0.5. In contrast to Liu et al.,52 Raffield et al.91 found 
that the abundance of the individual proteins did not affect the de-
gree of correlation in their measurement across platforms. The 63 
proteins analyzed in the COPD cohorts were assessed for presence 
of cis pQTL to provide a measure of aptamer specificity for the re-
spective target proteins. Of the 63 proteins, 31 (49%) had evidence 
of a cis pQTL in at least one of the two COPD cohorts, using data 
obtained with either of the two assays (SomaScan or immunoassays). 

F I G U R E  4 Targeted proteomics experiment using either spiked protein or peptide standards. (A) Stable isotope standards (SIS), 
incorporating an amino acid labeled with the stable isotopes, are added directly to the plasma sample prior to digestion. Alternatively, SIS 
peptides can be added upfront to liquid chromatography tandem mass spectrometry analysis. Target peptides are eluted and measured 
using selective reaction monitoring analysis. The endogenous (light) peptide concentration is calculated as a ratio between the heavy 
standard peptides of known concentration. A separate standard curve is established to define the dynamic range, limit of detection, and 
limit of quantification. (B) Illustration of the principle of SIS recombinant proteins (PrEST) as internal standards. SIS PrEST have amino acid 
sequences that uniquely align to the endogenous target protein. On tryptic digestion, proteotypic peptide fragments are released from the 
SIS PrEST and its target and the standard can be added upfront enzymatic digestion
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Furthermore, using public data, 42 (67%) were found to have a re-
ported pQTL in either of two large studies.56,93 However, the me-
dian correlation in the subgroup of proteins with a pQTL (r = 0.5) 
was comparable to the overall correlation. Furthermore, they did not 
observe any systematic pattern for presence/absence of common 
missense variants among low- or high-correlating proteins. In gen-
eral, presence of concordant cis pQTLs for a protein (suggestive of 
binding the annotated target) did not ensure high correlation across 
assays; however, discordant cis pQTLs were generally found only for 
low-correlating proteins. This indicates that although pQTL analysis 
is a useful tool to assess if a signal measures an on-target binding, 
further validation (e.g., orthogonal quantification of protein level) is 
necessary.

In a more recent study, Pietzner et al.,50 used the SomaScan v4 
platform covering 4775 unique human protein targets, together 
with the Olink platform covering 1069 unique proteins to measure 
samples from the same 485 individuals. Of 871 overlapping proteins 
that were successfully was assayed by both platforms, they found 
a median correlation of 0.38 (interquartile range 0.08–0.64), span-
ning a wide range, from highly concordant (r = 0.95) to inversely cor-
related (r = −0.48). When combining with genome-wide association 
studies data, they identified in total 504 pQTL, of which 306 (61%) 
were shared with both platforms, whereas 198 (39%) were plat-
form specific. Platform-specific cis-pQTLs were more likely to have 
low Spearman correlation, lower binding affinity of the SOMAmer 
reagent to the protein target, or to be in linkage with a missense 
variant, pointing to epitope or structure altering variants affecting 
affinity reagent binding.

Studies comparing performance of MS and affinity proteomics 
platforms include that by Petrera et al.,92 where 173 human plasma 
samples were analyzed using Olink assays (eight panels with 736 
nonredundant proteins) or MS-based platforms, either with data-
independent acquisition (734 proteins) or data-dependent acquisi-
tion (368 proteins). Of 35 overlapping proteins, 23/35 (65%) had a 
correlation >0.5 between the two MS platforms, whereas only 6/35 
(20%) of proteins had a correlation >0.5 in all three platforms. The 
difference in sensitivity to lower abundance proteins is likely to ex-
plain part of the low overlap between the MS and affinity proteom-
ics platforms.

3  |  PL A SMA PROTEOMIC S IN VENOUS 
THROMBOSIS RESE ARCH

A rather limited number of studies have been reported using plasma 
proteomics for identification of novel plasma biomarkers associated 
with VTE. Both affinity-based proteomics and MS-based proteomics 
methods have been used, with very few overlaps in terms of identi-
fied proteins between studies, which could reflect that several re-
ports are based on small studies. The more relevant publications are 
summarized in Table 1.

We used multiplex antibody SBAs targeting 408 selected can-
didate proteins22 to perform a proteomics discovery screen in 88 

cases and 85 matched controls in the Venous Embolism BIOmarker 
study, where patients were sampled after discontinuation of anti-
coagulant treatment for a first-time VTE. With access to the large 
resource of antibody reagents generated as result of the Human 
Protein Atlas covering >85% of the proteins encoded in the human 
genome94 (www.prote​inatl​as.org), we custom designed suspension 
bead arrays using 755 antibodies, targeting 408 candidate proteins 
that were selected for (1) their known roles in the coagulation/fibri-
nolysis cascade and/or intermediate traits of relevance to thrombo-
sis, (2) their specific expression in endothelial cells (a key cell type 
involved in thrombosis physiopathology), or (3) encoded by genes 
identified in pangenomic studies as associated with several cardio-
vascular disease-linked biological pathways (e.g., platelet function, 
renal function, inflammation). Following a replication in 580 cases 
and 589 controls from the French FARIVE study,22 platelet-derived 
growth factor β (PDGFB) was identified as a novel VTE-associated 
biomarker, together with von Willebrand factor. To verify the target 
specificity of the PDGFB capture antibody, we used IC-MS and an 
ELISA assay.22 In another study, Razzaq et al. identified Plexin-A4 
(PLXNA4) as a new susceptibility gene for PE using an original in-
tegrated proteomics and genetics strategy, based on a proteomics 
analysis of samples from 1388  VTE patients from the MARTHA 
study, generated with a custom designed SBA of 376 protein-
specific antibodies targeting 234 plasma proteins,23 selected using 
similar criteria to that described previously.22

Using the PEA technology, Ten Cate et al. profiled 444 pro-
teins with five 96-plex Olink immunoassay panels (Cardiovascular 
II and III, Cardiometabolic, Inflammation, Immune Response) in 532 
individuals with VTE, sampled at diagnosis, in the Genotyping and 
Molecular Phenotyping of Venous ThomboEmbolism (GMP-VTE) 
study.24 They identified five proteins as more specifically associ-
ated with an isolated PE phenotype compared with DVT or DVT-
associated PE, of which three (interferon-γ), glial cell-line derived 
neurotrophic factor, and interleukin-15Rα were replicated in Olink 
data from 5778 individuals in the Gutenberg Health Study. Target 
specificity for the corresponding Olink assays was validated using cis 
pQTL analysis. In a subsequent study, using the same Olink panels to 
analyze VTE patients sampled at diagnosis and at 12 months after 
the index event in GMP-VTE, they identified a body mass-associated 
proteomic signature of 11 proteins that were consistently related to 
body mass index in plasma of VTE patients sampled at diagnosis and 
at 12 months after the index event.25 However, this signature did not 
explain the obesity paradox in VTE patients, but leptin was inversely 
associated with the combined endpoint of recurrent VTE and death.

In an earlier study, Memon et al. used a single Olink panel, 
Cardiovascular III, to measure 92 proteins in a small study of 45 pa-
tients with acute DVT and 45 controls. They identified seven pro-
teins with significant association with acute VTE.26 These included 
three  known VTE-associated markers: p-Selectin, tissue factor 
pathway inhibitor, and von Willebrand factor, together with four 
novel markers: transferrin receptor protein 1, osteopontin, bleomy-
cin hydrolase, and ST2 protein. Tala et al. used the SomaScan assay 
targeting 1317 proteins, together with conventional immunoassays 
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(e.g., ELISA) for 16 hemostasis biomarkers (e.g., coagulation factors, 
von Willebrand factor), to analyze plasma from 59 critically ill ado-
lescents, of whom nine developed incident DVT.27 CD36 molecule, 
macrophage inhibitory cytokine-1, and erythropoietin receptor were 
marginally associated with DVT using the SomaScan data. Jensen 
et al. used untargeted tandem mass tag-synchronous precursor 
selection-mass spectrometry-based proteomic profiling to analyze 
plasma from 100 cases of incident VTE and 100 controls, reporting 
transthyretin, vitamin K-dependent protein Z, and protein/nucleic 
acid deglycase DJ-1 as plasma proteins most strongly associated 
with incident VTE.28 Orthogonal validation of the results from these 
studies, or replication in other cohorts, have not yet been reported.

Zhang et al. performed a proteomic analysis of serum in a small 
study of 24 patients with acute PE and 24 controls.95 A discov-
ery in a subset of nine cases and nine controls was analyzed using 
two-dimensional gel electrophoresis and matrix-assisted laser de-
sorption/ionization time-of-flight MS analysis, which identified 
eight proteins associated with disease, of which one, haptoglobin, 
was orthogonally validated with ELISA in the full sample set. Han 
et al. applied data-independent acquisition MS and antibody array 
proteomic technology in two small case control studies (n  =  13 
and n  =  32) of PE patients and healthy controls, with orthogonal 

validation by ELISA quantification in a separate study of 50 patients 
and 26 controls.29 Five proteins including serum amyloid A-1, cal-
protectin, tenascin-C, gelsolin, and histidine-rich glycoprotein were 
identified with significant differences between PE and controls.

Several of the studies reported analyze a small number of 
cases,27,29,95 which limits their statistical power to identify novel bio-
markers for VTE, and when not combined with independent and ad-
equately powered replication cohorts, results should be interpreted 
with caution.

4  |  PL A SMA PROTEOMIC S IN 
ATHEROTHROMBOSIS

Mass spectrometry-based methods have been used to identify novel 
plasma biomarkers of acute atherothrombosis using a two-step ap-
proach of unbiased proteomic discovery analysis in a smaller sample 
set, followed by targeted validation of selected markers in a larger 
sample set. Shin et al. used LC-MS/MS in a discovery proteomics 
analysis of plasma from 50 patients with acute coronary syndrome 
(ACS) and 50 controls, followed by validation in 120 ACS and 120 con-
trols by targeted MS proteomics for absolute quantification of seven 

Bruzelius et al., 
Blood 201622

This report describes the first large-scale affinity proteomics study in 
the venous thrombosis field. A total of 408 proteins are targeted in a 
discovery case/control study (VEBIOS, n = 88 cases and 85 controls) 
with validation in an independent case/control study (FARIVE, n = 580 
cases, 589 controls). It describes the application of immuno-capture 
mass spectrometry to validate assay target specificity. Plasma level 
of platelet-derived growth factor β is identified as associated with 
venous thromboembolism risk.

Ten Cate et al., 
Blood 202124

This report describes the application of machine learning techniques to 
analyze affinity proteomics data. A total of 444 proteins are targeted 
in a discovery cohort (Genotyping and Molecular Phenotyping of 
Venous ThomboEmbolism, n = 532 cases) with validation in an 
independent population cohort (Gutenberg Health Study, n = 5778). 
It describes the application of cis pQTL analysis to validate assay 
target specificity. Plasma levels of interferon-γ, glial cell-line derived 
neurotrophic factor, and interluekin-15Rα proteins are identified as 
associated with isolated pulmonary embolism.

Razzaq et al., Sci 
Rep. 202123

This report describes an original integrated affinity proteomics and 
genetics strategy using a neural network approach, based on 
proteomics and genome-wide association studies data in the 
MARTHA study (n = 1388 cases) with replication in the EOVT study 
(n = 339 cases). PLXNA4 is identified as a new susceptibility gene for 
pulmonary embolism.

Iglesias et al., 
Arterioscler 
Thromb Vasc 
Biol 202137

This report describes a novel endothelial cell centric affinity proteomics 
strategy targeting 216 proteins with endothelial enriched expression 
in a population-based cohort (SCAPIS n = 1008). Plasma levels of 
38 endothelial-derived proteins are identified as associated with 
cardiovascular disease risk.

Deutsch et al, J 
Proteome Res 
202136

This publication provides a comprehensive overview of technological 
developments and applications of mass spectrometry- and affinity-
based plasma proteomics methods, summarizing recent advances and 
challenges for translating plasma proteomics into clinical utility for 
precision medicine. It presents the Human Plasma PeptideAtlas build 
2021-07 and the Human Extracellular Vesicle PeptideAtlas 2021-06.

TA B L E  1 Publications of relevance for 
proteomics-based thrombosis research
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identified top candidates,96 replicating four (AGP1, C5, LRG1, vitron-
ectin) as significantly increased and one (gelsolin) as decreased in ACS. 
All four upregulated proteins are expressed predominantly in liver, 
not myocardium, and thus possibly linked to the pathogenic mecha-
nisms in the acute arterial thrombotic event, rather than reflecting 
cardiomyocyte injury. Pan et al. used LC-MS/MS in a discovery pro-
teomics analysis of plasma from 12 patients with acute ST elevation 
infarction (STEMI), 12 non-ST elevation myocardial infarction and 
8  healthy controls, followed by validation in 75 STEMI, 75  non-ST 
elevation myocardial infarction, and 75 controls by ELISA for nine se-
lected candidates.97 Of these, the noncardiomyocyte proteins serum 
amyloid A-1, S100A8, Ficolin-2, and lipopolysaccharide-binding pro-
tein were identified with significant differences between STEMI and 
non-STEMI, thus partly overlapping the proteins identified by Han 
et al. as associated with PE.29 Endothelial dysfunction, injury, and 
vascular inflammation are shared features of both cardiovascular and 
thrombotic disease, and comprehensive interrogation of vasculature-
derived proteins in plasma by targeted proteomics could reveal novel 
plasma biomarkers linked to underlying pathogenic mechanisms 
in the vasculature. Proteomics platforms that allow for flexibility in 
developing large-scale multiplexed custom designed assay panels 
(e.g., affinity-based Luminex SBA and MS-based multiplexed PRM 
assays) facilitate strategies focusing on vascular cell-type specific 
proteins. Using a novel bioinformatic approach for deconvolution 
of RNA bulk sequencing, Butler et al.98 identified a core endothelial 
cell-enriched transcriptome. These candidates were explored in the 
VEBIOS study22 and more recently in the population-based Swedish 
CArdioPulmonary bioImage Study, SCAPIS, identifying endothelial cell 
proteins associated with cardiovascular disease risk factors and the 
Framingham risk score.37 With a similar strategy, Ishizaki et al. devel-
oped a multiplex SRM MS assay for quantitation of a panel of 135 
biomarker candidates for vascular inflammatory disease that included 
87 endothelium-related proteins predicted to be present in blood 
through in silico screening of public databases.99 The SRM panel was 
used to analyze paired plasma samples from 23 and 29 patients with 
vasculitis before and after treatment, identifying nine  markers that 
were validated by conventional ELISA in 169 patients.99

5  |  ISTH CONGRESS REPORT

A limited number of studies aiming to identify biomarkers for VTE 
by applying state-of-the-art proteomics screening technology plat-
forms (e.g., PEA and targeted MS) were presented at the ISTH 2021 
virtual congress.

Panova et al. (OC 10.4) analyzed plasma proteomics profiles using 
PEA in 652 individuals from GMP-VTE study, of which 82 had can-
cer. Using the same Olink panels as in two previous reports based on 
the same study,24,25 they identified 60 unique proteins (13% of inter-
rogated proteins) that in a model together (with nine other variables, 
not described) differentiate between cancer-associated thrombo-
sis (CAT) and noncancer VTE with an area under the curve (AUC) 
of 0.89. The 60 proteins were primarily related to complement, 

coagulation, angiogenesis, immune response, and cell growth regu-
lation, which could reflect the preselection biases of the PEA panels 
(e.g., Cardiovascular, Immune Response). In another study from the 
same group, Ten Cate et al. (PB 0496) presented an abstract for their 
recently published study that identified five proteins as more specif-
ically associated with an isolated PE phenotype compared with DVT 
or DVT-associated PE.24

Zwicker et al. (OC 23.1) used PEA assays to profile 1161 unique 
proteins in baseline samples for 183 gastric and lung cancer patients 
in the HYPERCAN study,100 of which 32% developed CAT. A ma-
chine learning model identified 10 plasma proteins that, together 
with six  clinical parameters, were predictive of future CAT (AUC 
0.75 + 0.04). In comparison, the Khorana score101 was not predictive 
of VTE in this study (AUC 0.52).

Buijs et al. (PB 0492) used quantitative MS-based targeted pro-
teomics, with internal standards, to measure 269 proteins in plasma 
samples of 142 colorectal cancer patients sampled at initiation of 
chemotherapy, of which 12 (8.4%) subsequently developed VTE. 
They identified four proteins associated with risk of future CAT: an-
giotensinogen, apolipoprotein B100, CD5 antigen-like, and immuno-
globulin heavy constant mu.

Because these studies had not been peer reviewed and results 
not validated in independent studies and/or were based on small 
number of cases and thereby limited in statistical power, the re-
ported results should be considered preliminary.

6  |  FUTURE DIREC TIONS

6.1  |  Applications of plasma proteomics 
technologies in thrombosis research

The COVID-19 pandemic has resulted in thousands of publications re-
porting the effects of SARS-CoV-2 infection, including those featur-
ing the technologies discussed here, to analyze changes in the serum 
or plasma proteome. A recent literature review identified 53 reports 
(peer reviewed, or available on preprint servers, up to June 2021),36 
that used either conventional immunoassays, MS-based proteomics, 
or affinity-based proteomics (SomaLogic and Olink platforms), or two 
of these technologies,102 to analyze plasma from COVID-19 patients. 
With an urgent need for clinically applicable biomarkers predictive 
of short- and long-term prognosis for COVID-19 disease severity and 
complications,36 and the central role of thrombotic complications in 
COVID-19 pathology, we are likely to see an increasing number of 
studies applying state-of-the art plasma proteomics strategies to in-
vestigate the increased risk of VTE in COVID-19.103

6.2  |  Novel strategies for plasma biomarker 
discovery with targeted proteomics

Thus far, candidate biomarker selection for studies of VTE have 
been predominantly centered around preexisting knowledge, 
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with commercially available screening panels still primarily con-
figured to detect proteins with known functions in pathophysi-
ological processes and pathways involved in vascular disease. A 
significant number of candidates in such panels have wide tissue 
and/or cell type expression, which can complicate interpretation 
of pathophysiological relevance of identified markers. Indeed, a 
common feature of most clinically useful biomarkers is expression 
specificity to a particular tissue or cell type (e.g., plasma levels of 
a cardiac-specific isoform of intracellular troponin, such as TnT) 
is used to detect protein leakage from injured cardiomyocytes in 
myocardial infarction. Indeed, the discovery of clinical biomarkers 
in use today typically followed the identification of the tissue- and/
or cell-specific expression patterns of the proteins. Developments 
in mRNA sequencing, of both tissue and single cells, has relatively 
recently transformed our understanding of the specificity of pro-
tein expression across the human body.104 In the context of VTE 
research, the selection of potential candidate targets based on the 
discovery of their high specificity of expression in disease-relevant 
cell types, such endothelial cells98 or others,104 could uncover novel 
and more specific VTE biomarkers that could otherwise be missed 
by existing screening panels.

6.3  |  Emerging technologies for targeted plasma 
proteomics and biomarker validation

Mass spectrometry is the leading technology to accurately measure 
proteins in complex samples on a large scale. Targeted proteomics, 
in combination with the spike in stable isotope standards, is consid-
ered the gold standard and can improve both the analytical preci-
sion and specificity of the assay. The targeted proteomics workflow 
is very flexible and highly suitable for biomarker validation studies 
because it can report absolute protein concentrations, which can 
be compared across sites and studies. The combination of targeted 
proteomics and stable isotope standards are now robust enough 
for precision medicine efforts, where protein quantification must 
be reproducible over time. Technical leaps in chromatography allow 
for up to 100 proteomes to be quantified within 1 day, with hun-
dreds of proteins quantified with median coefficient of variations 
less than 10% at an absolute scale.89 These panels can be either 
be increased to cover a more comprehensive list of medium to high 
abundant plasma proteins, or tailored toward few biomarkers with 
high clinical significance.
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