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Abstract—This study derives regression models for aboveground
biomass (AGB) estimation in miombo woodlands of Tanzania that
utilize the high availability and low cost of Sentinel-1 data. The lim-
ited forest canopy penetration of C-band SAR sensors along with
the sparseness of available ground truth restricts their usefulness
in traditional AGB regression models. Therefore, we propose to
use AGB predictions based on airborne laser scanning (ALS) data
as a surrogate response variable for SAR data. This dramatically
increases the available training data and opens for flexible regres-
sion models that capture fine-scale AGB dynamics. This becomes a
sequential modeling approach, where the first regression stage has
linked in situ data to ALS data and produced the AGB prediction
map; we perform the subsequent stage, where this map is related
to Sentinel-1 data. We develop a traditional, parametric regression
model and alternative nonparametric models for this stage. The
latter uses a conditional generative adversarial network (cGAN)
to translate Sentinel-1 images into ALS-based AGB prediction
maps. The convolution filters in the neural networks make them
contextual. We compare the sequential models to traditional, nonse-
quential regression models, all trained on limited AGB ground ref-
erence data. Results show that our newly proposed nonsequential
Sentinel-1-based regression model performs better quantitatively
than the sequential models, but achieves less sensitivity to fine-scale
AGB dynamics. The contextual cGAN-based sequential models
best reproduce the distribution of ALS-based AGB predictions.
They also reach a lower RMSE against in situ AGB data than
the parametric sequential model, indicating a potential for further
development.

Index Terms—Aboveground biomass (AGB), airborne laser
scanning (ALS), conditional adversarial generative network
(cGAN), sensor fusion, Sentinel-1, synthetic aperture radar (SAR).
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I. INTRODUCTION

A S A consequence of climate change, there is an increasing
need for accurate carbon accounting systems for mea-

suring, reporting, and verification (MRV) on a national level.
Through the REDD+ program (officially named “Reducing
emissions from deforestation and forest degradation and the
role of conservation, sustainable management of forests, and
enhancement of forest carbon stocks in developing countries”),
developing countries are motivated to implement such an MRV
system to monitor the potential reduction of carbon emissions
from tropical forests [1]. The documentation of reduced defor-
estation on a national level could potentially result in a financial
reward being released through the program for the countries
associated with the REDD+ program [2].

Forests are well known for being one of the major carbon
sinks and need to be properly and accurately monitored by the
MRV system. This can be achieved by accurately estimating
the amount of forest aboveground biomass (AGB), as AGB
is a primary variable related to the carbon cycle [3], [4]. To
calibrate the MRV system, AGB data over the area of interest
(AOI) is needed. It can be collected either through destructive or
nondestructive in situ sampling. The former implies harvesting,
drying, and weighing the plants to estimate the biomass. The
latter does not involve harvesting trees but measuring parameters
such as tree height and stem diameter. Measured parameters
from the nondestructive sampling can be used to predict AGB
by allometric models developed for the AOI [4]. Unfortunately,
AGB in situ measurements of both above categories are costly
and time-demanding to collect manually. As a consequence,
most research instead focuses on establishing a relationship
between a small amount of AGB field data and remote sensing
(RS) data using different sensors [2], [5]–[19].

Among different platforms and sensor types, airborne laser
scanning (ALS) systems are shown to provide AGB models that
are significantly more accurate than models developed using
radar or passive optical data [20], [21]. The reason is probably
that ALS can provide accurate data describing canopy cover
density and canopy height, which is highly correlated with forest
AGB [3], [21]. This result was also confirmed in [22], where the
ALS-based regression model achieved the highest accuracy of
AGB estimates in the miombo woodlands of Tanzania. However,
airborne data are associated with high acquisition cost, which
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limits the use of ALS data in national MVR systems that require
regular acquisitions to keep forest inventories up to date [3],
[21].

One of the advantages of employing spaceborne SAR sensors
to AGB estimation is that it provides data with extensive spatial
coverage that can be acquired with high temporal frequency.
SAR data can thus yield frequently updated AGB predictions
over large areas. Another advantage is the SAR sensor’s ability
to penetrate clouds, which makes it effective to monitor regions
with a significant amount of cloud coverage. Unfortunately,
the use of SAR data for AGB estimation is limited by the
saturation level, the property that SAR intensity does not in-
crease with AGB beyond a certain AGB level. This property
is dependent on the specific wavelength used by the SAR
sensor and implies, in general, that AGB at middle-to-high
level cannot be distinguished in the SAR intensity data [3],
[23]–[25]. Additionally, SAR data are strongly dependent on
the environmental conditions on the ground, where a change
in moisture conditions impacts the measured backscatter [23].
The former is a well-known limitation of SAR data that may
restrict its use in MRV systems of high precision, and the latter
might be circumvented by the use of SAR data acquired at, e.g.,
dry seasons [24]. The different challenges of SAR and ALS
have fostered studies on their combined use for forest AGB
estimation. Several of these studies were reviewed in [3] and
[21], which conclude that the combination of SAR and ALS may
improve AGB estimation, especially when SAR data are used to
upscale and extend accurate ALS measurements of forest height
to obtain accurate AGB predictions over large areas [3].

Well-known regression models from statistics have tradition-
ally been used to directly relate a small set of ground reference
data of AGB to RS data from a single sensor. A popular choice
among the conventional regression models is a variation of
traditional linear regression: Multiple linear regression and step-
wise multiple regression; see, e.g., [11], [14], [15], [17], [19],
[26], [27]. The evolution of machine learning (ML) methods
has introduced many alternative methods for AGB estimation,
with random forests, artificial neural networks (ANNs), and
support vector machines for regression as some of the most
prominent, see, e.g., [9], [10], [12], [14]–[18], [28]–[31]. Like
the traditional statistical regression models, these ML-based
models also directly relate ground reference data of AGB to
RS data from a single sensor. Due to the limited amount of
ground reference AGB data, both traditional statistical regres-
sion models and ML-based models are restricted to relate single
observations of the ground reference AGB data to single pixels
from the RS data source. Thus, the spatial contextual information
from neighboring pixels in the RS data source are generally not
incorporated in the learning of the regression model. This is
likely to inhibit the learning of the AGB dynamics and fine scale
variability. The emerging field of deep learning (DL) methods
has further opened many new possibilities in the analysis of
RS images. Deep neural networks (DNNs) have, among other
things, increased the ability to perform accurate regression be-
tween different image modalities acquired from different sensors
at possibly different times. The combination of multimodal RS
images, such as, e.g., SAR and ALS, has been shown to improve

AGB estimation results through regression models of increased
complexity. Although the different RS images cover the same
scene, their pixel measurements represent different domains,
like, for example, ALS-derived measurements of heights or
SAR-based backscatter intensity data. Transfer learning (TL),
domain adaptation (DA) [32]–[34], and image translation [35]
are some theoretical frameworks of recent popularity that can be
used to handle such challenging and complex problem settings.
Also, a challenging regression problem arises when data from
different multimodal RS sensors are combined to upscale the
extent of an accurate sensor-based AGB prediction map. In
the context of such a data fusion task, sequential approaches
with two subsequent regression models become relevant as an
alternative to the simpler strategy with a single-stage regression
model.

In this article, we refer to sequential modeling as the process
where two regression models are used in a chain to achieve
more training data for AGB prediction. Sequential modeling
can also be used to upscale the spatial extent of an initial AGB
prediction map. In the first stage, one regression model relates
ground reference AGB data to a single RS data source with high
information content about the target variable, but with limited
geographical coverage. The outcome of the first model is an
accurate sensor-based AGB prediction map, which is used in
the second regression model as a surrogate for ground reference
data to regress on data from an additional RS sensor with
larger spatial extent. Both traditional regression models, such
as simple and multiple linear regression (see, e.g., [36]–[38]),
and ML-based models, such as random forest and support vector
regression (e.g., [39]–[42]), have previously been applied in a
sequential modeling fashion for AGB estimation. In this work,
we differentiate between sequential modeling and the traditional
approach with a single-stage regression model by referring to the
latter as a nonsequential modeling approach.

Both sequential and nonsequential regression models for
AGB estimation have traditionally operated on an individual
pixel level. That is, the prediction at a pixel location is based on
regressors exclusively from the same location, without any use
of spatial context of neighboring pixels. However, a key feature
of DNNs, that partly explains their success in many prediction
and regression problems, is their use of convolutional filters.
This implies that the prediction of any single pixel is based
on regressors from a spatial neighborhood that surrounds it. It
also means that the prediction is done by processing blocks of
pixels, with image layers of regressor variables in input and a
corresponding layer for the response variable in output. This
mapping of predictor images to a response variable image is
equivalent to the operation known as image translation in DL.
Isola et al. [35] define image translation as follows: Given
sufficient training data, image-to-image translation is defined
as the problem of translating one possible representation of a
scene into another. Within DL, the family of generative models
is known to enable cross-modal image translation by translating
data from one known distribution to another target distribution.
Among the generative models are the generative adversarial
networks (GANs) [43] particularly popular; see, e.g., [35], [44]–
[50]. GANs are trained to capture the data distribution of a target
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domain in a minimax optimization procedure. After training, the
generator network, G, can be used to map a random noise vector
to a target output image. This idea was later extended to the
conditional generative adversarial network (cGAN) architecture
[51]. In the cGAN setting, the learnt mapping to the target
output image distribution is conditioned on the distribution of an
input image [35]. Considering the enormous potential of GANs,
we wish to address AGB prediction from a DL perspective.
However, as a DNN, the cGAN model requires a substantial
amount of training data for cross-modal image translation.
Therefore, it cannot learn to directly translate between a small
set of AGB ground reference data and spatially continuously
RS data. Thus, we propose to tackle the regression problem
through sequential modeling by applying the cGAN architecture
in the second regression model in the sequence. This approach is
only possible as we propose to use an AGB prediction map as a
surrogate for ground reference data, which makes a large amount
of spatially continuous target data available to the regression
model. The cGAN’s convolutional filters open for the use of
spatial contextual information in the predictions. Based on the
discussion above, the definition of the research problem in this
article is described as follows.

A. Problem Definition

As a developing country and associated with the REDD+
program, Tanzania has the potential to achieve a financial ben-
efit by implementing an MRV system to monitor their forests.
Therefore, the primary aim of this work is to develop forest AGB
prediction models that could be implemented in an MRV system
for Tanzania. For an AGB prediction model to be of practical
use in the MRV system of Tanzania, the model should be able
to provide frequently updated AGB predictions with extensive
spatial coverage, of a high accuracy, and at a low cost. This puts
some constraints on the data used.

1) We need to rely on RS data, as large-scale in situ sampling
will be infeasible.

2) We cannot afford performing frequent ALS campaigns to
frequently update a low-cost MRV system.

3) Due to its location, Tanzania experiences rain periods,
which constrains the use of passive sensors, as they are
not able to penetrate clouds.

The second constraint further limits the use of RS data from
sensors that are neither freely available, nor easily accessible.
Based on the constraints of this project, we have decided to
utilize the Sentinel-1 sensor, as it provides us with freely avail-
able and frequently updated data with extensive spatial coverage.
However, a simple SAR-based AGB prediction model may limit
the precision of the MRV system and consequently the advantage
of implementing the system for operational forest monitoring.

Both [3] and [52] advocate the potentials of combining ALS
and SAR for large-scale AGB mapping with improved accuracy.
Encouraged by this, we restrict the focus of this work to an
AOI in the Liwale district in southeast Tanzania. Here, we have
access to a small amount of ground reference vector data and
continuous raster of ALS data, which has previously been used
in combination with four other RS datasets: optical RapidEye

and Landsat imagery, interferometric TanDEM-X radar imagery
(X-band SAR), and ALOS-PALSAR (hereby PALSAR) radar
imagery (L-band SAR), to develop five different traditional
nonsequential regression models; see [22]. The ALS-based pre-
diction model of Næsset et al. [22] was further used to create a
wall-to-wall map of ALS-based forest AGB predictions. Their
ground reference dataset and the wall-to-wall map of ALS-based
forest AGB predictions were provided to us for this work, and
will be used together with Sentinel-1 data to develop low-cost
AGB prediction models for the AOI. However, since we aim
to contribute with AGB prediction models that can be applied
not only in the AOI, but also in extended areas, we put further
restrictions on the focus of this work.

1) To develop AGB prediction models of high accuracy and
with potentially extensive spatial coverage, we wish to
investigate if a sequential modeling approach is better than
a traditional nonsequential regression model.

2) By utilizing the wall-to-wall ALS-based AGB prediction
map as a surrogate for AGB ground reference data, we are
able to implement the second part of the sequential model
with a DDN. Thus, in the case of sequential modeling, we
additionally investigate the possible benefits of applying a
DL-based model instead of a traditional regression model.

Our approach to sequential modeling is to coregister and
resample the SAR intensity image data to the same spatial
resolution as the available wall-to-wall map of ALS-based AGB
predictions, produced with the classical nonsequential regres-
sion model presented in [22]. Motivated by the achievements of
image-to-image translation, we propose to utilize a cGAN model
for the second model in the sequence. We train the cGAN model
to synthesize ALS-based AGB maps from false color SAR inten-
sity images. As far as we know, this is the first time contextual
DNNs, in the form of cGAN models, have been utilized in a
sequential modeling strategy to upscale a limited amount of
ground reference data and simulate AGB predictions. We see any
modification of the ALS-based regression model as outside the
scope of this work. Fig. 1 shows the overall view of the proposed
cGAN-based sequential approach used to generate synthetic
ALS-based AGB predictions from false color Sentinel-1 im-
age patches. We validate the proposed cGAN-based sequential
model against two noncontextual Sentinel-1-based regression
models, also proposed for this work: a nonsequential model
and a traditional sequential model. The nonsequential regression
model relates single pixels of Sentinel-1 data to the small set of
AGB ground reference data. For the noncontextual sequential
regression model, we trained the second model in the sequence to
relate ALS-based AGB predictions to single pixels of Sentinel-1
data. For both noncontextual models, we use the state-of-the-art
regression model in the AOI, i.e., a multiple linear regression
model with square root transformation of the response variable.
This is the same regression model as used by Næsset et al. [22].

B. Contribution

To summarize, the contributions of this article are as follows.
1) We extend the work in [22] by developing a similar type

of regression model based on Sentinel-1 data.
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Fig. 1. Flowchart over the proposed cGAN-based sequential modeling ap-
proach. The generator network is trained to translate false color Sentinel-1
backscatter patches (consisting of the VV and VH band and their difference, i.e.,
VV-VH) into realistic-looking synthetic ALS-based AGB prediction patches.
The discriminator network is trained to distinguish between a “real” combination
of the input patch from Sentinel-1 and the actual AGB prediction patch to a “fake”
combination of the input patch from Sentinel-1 and the synthetic AGB prediction
patch. The cGAN components, the G network and the D network, are trained in
a minimax optimization procedure. After training, the G network can generate
realistic-looking synthetic ALS-based AGB prediction patches in an AOI from
corresponding false color Sentinel-1 data in the AOI (see prediction phase).
Both the individual bands of the false color SAR patch and the ALS-based AGB
patches only consist of one channel but are here represented in colors to ease
the interpretation.

2) We propose to model forest AGB by a novel sequential
modeling approach, in which the second model relates
SAR data to ALS-based AGB predictions. We propose
two different regression models for the second stage of
regression.

a) One traditional regression model, similar to 1);
b) one DL-based regression model based on image-to-image

translation with a cGAN [35].
3) Since the application of cGANs as AGB regression mod-

els is uncommon, we provide a comprehensive study on
different hyperparameters, objective functions, and G and
D networks.

4) We empirically evaluate the three proposed AGB predic-
tion models against previous results presented in [22] and
against each other.

5) We demonstrate the potential of using Sentinel-1 data for
AGB predictions and show that our C-band-based models
perform better than some of the previously developed
models for the AOI.

While we argue for the benefit of using Sentinel-1-based
models to extend the spatial coverage of the AGB predictions,
the scope for this study is to develop models for the AOI. We
therefore see the construction of AGB prediction maps over an
extended area as outside the scope of this work.

The remainder of this article is organized as follows. In
Section II, we introduce our proposed sequential modeling ap-
proach for forest AGB prediction. Section III presents published
research in related areas within nonsequential and sequential
regression models for AGB prediction through sensor fusion,
and related research on image translation through GANs. Sec-
tion IV presents the datasets, and formally define the proposed
nonsequential and sequential regression models. Results are
presented and analyzed in Section V, while we discuss our
work in Section VI. Finally, Section VII concludes this article.
Additional experiments and methodological contributions are
collected in the Appendix.

II. BACKGROUND

In this section, we introduce the proposed sequential modeling
approach for forest AGB prediction in both general terms and
with a particular emphasize on employing a cGAN for the
second part of the sequential model. We continue with a general
introduction to the concepts of the cGAN model and how it
can be utilized for image-to-image translation in our sequential
modeling approach.

A. Non-sequential modeling

As previously introduced, colocated ALS data (y) and AGB
ground reference data (z) consisting of 88 field plots were
in Næsset et al. [22] used to fit a traditional nonsequential
regression model f : y �→ z. The specific regression model from
[22], denoted f, uses a square root transformation of the response
variable and was trained using ordinary least squares (OLS)
regression with stepwise forward selection of the variables. It
was used to map spatially continuous ALS measurements into
what we refer to as a ALS-based AGB prediction map by

ẑy = f(y)

where ẑy denotes each individual ALS-based AGB prediction.
The regression coefficients are published in [22] and the re-
sulting prediction map has been made available to us by the
authors. The traditional nonsequential approach is illustrated on
the left-hand side of Fig. 2, where a single regression model is
trained to relate some remotely sensed predictor, such as SAR
backscatter intensity (denoted x) or ALS data (y), to a colocated
set of sparse AGB ground reference data (z). Here, ẑx refers to
SAR-based AGB predictions obtained with the traditional non-
sequential regression model. The ALS-based biomass prediction
map, ẑy , is of relatively high accuracy compared to maps made
from other RS data sources in the same work [22].

B. Sequential modeling

In the modeling strategy with two sequential regression mod-
els, we keep the regression model from [22], i.e., f , as the first
model in the sequence. We then propose the second regression
model in the sequence to relate SAR backscatter intensity data,
x, to wall-to-wall maps of ALS-based forest AGB predictions,
ẑy . We thereby utilize ẑy as a dense surrogate for z. This gives
rise to the second regression model, g : x �→ ẑy , which in the
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Fig. 2. Illustration of the difference between a traditional nonsequential regression model and the proposed sequential regression models. We let x denote data
from a SAR sensor, y denote ALS data, and z denote AGB ground reference data. Regression models are represented by f, g, and h, where f is a regression model
between y data and z, h is a regression model between x data and z, while g is a regression model between x data and ALS-based AGB predictions denoted̂ zy .
Additionally,̂ zx denote SAR-based AGB predictions from a traditional nonsequential regression model. In the sequential setting,̂ zy|x denote the outcome from
the second part of the two subsequent regression models, i.e., a generated synthetic ALS-based AGB predictions retrieved from x data.

prediction phase can be used to map SAR images, unseen by the
model, to generate synthetic ALS-based AGB maps by

ẑy|x = g(x)

where ẑy|x denotes each individual generated synthetic ALS-
based AGB prediction. Thus, the two regression models f and
g link SAR intensity data to AGB ground reference data in a
sequential process. The main benefit of the sequential modeling
approach is that the model g can be trained with a large amount
of spatially continuous data instead of the few ground reference
field plots. Consequently, our sequential modeling approach
additionally facilitates for the full exploitation of convolutional
DL models for AGB regression as they require access to spatially
continuous data. Our proposed sequential modeling approach
is shown on the right-hand side of Fig. 2. It should be noted
that the described sequential approach is lacking in one respect:
The SAR-based prediction, ẑy|x, is regressed against a surrogate
regression target ẑy, which, despite its relatively high accuracy,
must necessarily contain some uncertainty. Therefore, the se-
quential modeling could be followed by a calibration step step
where the mean of g is calibrated against the original ground
reference data, z. This is discussed in footnote 3.

We propose two different versions for model g: A traditional
sequential model and a DL-based sequential model. In the
traditional sequential regression setting, we let g take the same
form as f, i.e., a multiple linear regression model with square
root transformation of the response variable. In the DL-based
sequential regression setting, we instead use a cGAN model as
the second regression model. The latter is only possible due to
the sequential modeling approach, which allows g to be trained
on the wall-to-wall map of ALS-based AGB predictions. As
the cGAN model utilizes convolutional filtering to exploit the
contextual information between neighboring pixels, it carries the
potential to capture more information and possibly make better
predictions of forest AGB compared to a noncontextual sequen-
tial regression model. We let ẑy|x denote generated synthetic
ALS-based AGB predictions from the noncontextual sequential

model, while ẑy|x denote generated synthetic ALS-based AGB
predictions from the contextual sequential model. The bold font
therefore specifies that both the input and the output of g is an
image patch (i.e., a subimage from the AOI) and not a single
pixel value. For the remaining of this work, we use plain font
for variables representing single pixels while a notation in bold
font represents a set of pixels.

C. Conditional Generative Adversarial Networks

Cross-modal image translation based on GANs has drawn
considerable attention since the architecture was proposed in
2014 [43]. Image translation is achieved through a generative
model, referred to as the generatorG, that is trained to capture the
data distribution of the target domain. Simultaneously, a discrim-
inative model, referred to as the discriminator D, is trained to
distinguish between image samples generated by G and images
from the actual target domain. The GAN components G and D
are trained in a minimax optimization procedure, where they
are adapted alternatingly while seeking to optimize conflicting
performance criteria. The convergence of both benefits from
the battle with the adversary as long as the alternating adaption
is appropriately balanced. After training, G can be utilized
separately to generate data from the specific distribution.

In the standard GAN setting, the generative model G learns
a mapping from a random noise vector to a target output im-
age, while the discriminative model D is trained to distinguish
between the generated output image and the corresponding
target output image. The whole process, with respect to AGB
estimation, is illustrated in Fig. 1 and the upper part of Fig. 3.
Here, β denotes a random noise vector, the target output image,
i.e., ALS-based AGB predictions, is represented by ẑy , while
the generated synthetic output image is represented by z̃y . Thus,
z̃y represent an approximation to ẑy , generated from random
noise.

In the cGAN setting, the learned mapping to the target output
image is conditioned on the distribution of an input image.
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Fig. 3. Illustration of a GAN (upper) and cGAN (lower) model. G and D
denote the generator and discriminator networks. x represents images of SAR
backscatter intensity from the input domain X . ALS-based AGB predictions
in both models are denoted aŝ zy . The subscript y indicates that the AGB
predictions are retrieved from a model trained on ALS data. Generated synthetic
ALS-based AGB predictions retrieved fromX domain using a cGAN are denoted
ẑy|x .̃ zy represents generated synthetic ALS-based AGB predictions retrieved
from random noise, and β in a GAN.

Consequently, the discriminative model, D, instead learns to
distinguish between a real pair or false pair of images. The
training process of a cGAN, with respect to AGB estimation,
is shown in the lower part of Fig. 3. When we let the second part
of the sequential model, i.e., g, be represented by a cGAN model,
we condition the regression model on a patch of SAR backscatter
intensity data, x. By the condition on SAR data, the generated
synthetic output image of ALS-based AGB predictions is now
denoted ẑy|x. In the cGAN setting, the aim ofD is to distinguish
between {x, ẑy} and {x, ẑy|x}.

III. RELATED WORK

This section frames our work within related research literature
on sensor fusion with a particular emphasis on fusion between
ALS and radar, traditional nonsequential regression modeling,
sequential regression modeling, and image translation through
GANs.

A. Traditional Nonsequential Regression by Sensor Fusion

In this context, we refer to traditional nonsequential regression
as the conventional process of relating ground reference data of
AGB directly to RS data through a single regression model. This
process is illustrated on the left-hand side of Fig. 2. Research on
traditional regression models that map SAR backscatter to forest
AGB has gained considerable research attention over the years.
Two seminal and much-cited works from the year 1992 are the
publications of Dobson et al. [53] and Le Toan et al. [54], which
both investigate the dependence between forest AGB and SAR
intensity data acquired with different frequencies. Since then, a
natural research progression has been to investigate traditional
nonsequential regression models by utilizing sensor fusion, i.e.,
fusion of different RS data sources. Some popular models within
traditional regression methods are linear regression, multiple
linear regression and stepwise multiple regression [11], [14],

[15], [17], [19], [26], [27] for fusion of different radar data
sources [27], fusion of radar and optical data [11], [17], [19],
[30], or fusion of ALS and optical data [14], [26].

Since [53] and [54] published their classical statistical ap-
proaches, the possibilities of using ML and DL models for forest
AGB retrieval through sensor fusion have also been investigated
widely. Within these fields have fusion of radar and optical data
attracted considerable attention [9], [12], [15], [17], [28]–[30],
but also fusion of ALS with a multitude of data sources [14], [16],
[18], [31] and fusion of different radar data sources [10]. Among
the different ML and DL algorithms, random forest-based algo-
rithms are some of the most popular for AGB estimation, see
for example [9], [10], [12], [14], [15], [17], [18], [28]–[30], in
addition to ANNs (in particular multilayer perceptrons) [12],
[16], [18], [28]–[31] and support vector machines for regression
[14], [16], [18], [28]–[30]. Research on pure DL methods applied
to sensor fusion within traditional nonsequential regression for
AGB estimation is still limited. This can probably be explained
by the sparsity of ground reference data, which makes it chal-
lenging to train DL models. However, one example is found
in the work by Zhang et al. [14], where ALS data and optical
Landsat 8 imagery are integrated to achieve both structural and
spectral information predictors for forest AGB estimation. The
DL-based model they consider is a stacked sparse autoencoder
(SSAE) network, which consists of several sparse autoencoder
networks (SAE), each consisting of an encoder and a decoder
network. After training each individual SAE, they remove all
decoder networks to establish an SSAE by stacking the remain-
ing encoder networks layer-wise. The final SSAE regression
network is obtained by adding an unspecified regression model
to the end of the SSAE model. While not explicitly mentioned in
[14], their SSAE model is a noncontextual model that operates
on a single pixel level as it learns to relate RS predictor variables
to single AGB measurements, retrieved from a total of 236
field plots. The SSAE network obtains the best performance
in comparison with four other traditional regression models and
ML models evaluated in [14].

B. Data Fusion With Sequential Regression Models

In this section, we review related research that, like us, ap-
plies a modeling strategy with sequential regression models.
Characteristic for this review is that it does not focus on the
choice of estimation technique. We instead emphasize research
on forest AGB estimation through data fusion of different types
of RS data sources, which all employs a chain of two models.
Common for the research we identified is that the second model
exploits predictions from the first model as a dependent variable
in the second modeling stage; see right-hand side of Fig. 2. We
found that research on AGB estimation applying this particular
modeling strategy has been a topic in several studies from year
2008 [55] until today; see, for example, [23], [36]–[42], [56]–
[65]. While reviewing earlier research that applies two sequential
regression models in their modeling strategy, we noted a variety
of terms describing the same concept in the literature. While
we choose to refer to this as a sequential regression approach,
we additionally found the following use of terminology for
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similar, but not necessary identical approaches: two-step mod-
eling strategy [40], [57], [65], two-stage regression [41], [62],
two-stage up-scaling method [23], [42], two-phase estimator
[59], two-phase (or three-phase) sampling design [56], [61],
hybrid and hierarchical model-based inference [60], [64], and
three-phase design [36]. Additionally, [37]–[39], [55], [58], [63]
also apply a modeling approach with two sequential regression
models without labeling it by any particular term. Most of the
previous research that we identified focuses on relating ground
reference data to ALS, and then relates ALS-derived AGB
estimates to spaceborne LiDAR data [36], [55], [56], [58], [59],
[61] or a combination of different sensors [23], [38], [42], [60],
[63]–[65]. Some others relate the ALS-derived AGB estimates
to a single sensor, such as Sentinel-2 [39], [41], Landsat [40],
[62], GEDI Lidar [65], PALSAR, [57], or SRTM X-band radar
[37].

In previous research that adopts a modeling strategy with two
sequential regression models, we found traditional regression
models to be most common [36]–[38], [55]–[57], [59]–[61],
[64], [65], such as, e.g., [38], which focuses on multiple linear
regression for upscaling biomass estimates to large areas in the
tropical forest of Indonesia. Although Englhart et al. [38] in-
cluded neither ML nor DL, their overall idea has similarities with
our modeling strategy. Their work starts by relating collected
AGB sample plots to colocated ALS measurements, resulting
in a regression model used to predict AGB on the whole ALS
dataset. In the final stage, their second regression model relates
X- and/or L-band SAR data to ALS-based AGB estimates to
extend the AGB estimates to the spatial coverage of the SAR
data.

Different ML models have also been applied for AGB esti-
mation that involves data fusion and sequential modeling. As
for traditional regression, we find that random forest is one
of the most commonly used ML methods, see, e.g., [39]–[42],
[63], while, e.g., [23], [63] can be consulted for some additional
examples of ML-based methods. In the intersection between
traditional regression models and ML models, we also find
[58], which applies three different kriging methods [66]: co-
kriging, regression kriging, and regression co-kriging, to extend
ALS-derived biomass transects to wall-to-wall AGB maps by
including L- and C-band data.

Among research that applies a modeling strategy with two
sequential regression models, we notice an absence of research
using DL models for the regression task. Only one study was
identified [63], which similarly to [14] employs an SSAE for the
regression task.1 While [63], like us, uses a sequential modeling
approach to establish a relationship between ALS-derived forest
biomass predictions and satellite predictors from, e.g., Sentinel-
1 data, there are some distinct differences. Although Shao et al.
consider some contextual predictor variables, their SSAE model
is a noncontextual model that only considers single pixels in the
training and prediction phase. A novelty of this work is that the
cGAN model lets us exploit the contextual information between
neighboring pixels through its convolutional filters. Second, [63]
adds a nonspecified regression model to the end of the trained

1See Section III-A and [14] for a discussion on the SSAE.

SSAE network to perform AGB predictions, as does [14]. In our
case, the cGAN model is in itself the regression model and there
is no need for additional models to accomplish AGB predictions.
Thus, by letting one of our proposed sequential models employ
a cGAN model, we contribute with new insight on how DL and
RS data can be combined for AGB prediction.

C. Image Translation With Generative Adversarial Networks

Image-to-image translation is the task of translating a rep-
resentation of the imaged scene into another. Examples of this
process can, for example, be to translate from a grayscale repre-
sentation into an RGB image or translating an aerial photo into a
map view of the same area [35]. In such a translation process, the
G network is commonly conditioned on the first representation,
i.e., the input signal or distribution, to achieve better translation.
This makes the cGAN and the Pix2pix architecture [35], as one
specific example, better suited for this task than a generator
network conditioned on noise, as the traditional GAN [67].
In this work, we choose to condition the G network on SAR
measurements of the backscatter coefficient in the same area,
from which we wish to generate ALS-based biomass prediction
maps.

Research on RS data simulation through image translation
can be found in, e.g., [48], [50], [67]. Li et al. [50] focus
on change detection (CD) and propose a GAN-based deep
translation network for translation between SAR and optical
images. By translating images from both sensors into a com-
mon feature domain, image characteristics from both images
become comparable and can aid the network in the CD task.
Ao et al. [67] proposed a framework for translation between
different SAR sensors. By conditioning their dialectical GAN
on urban input images from the low-resolution (LR) Sentinel-1
sensor, they enable generation of corresponding high-resolution
TerraSAR-X images. The dialectical GAN uses a modification
of the Pix2pix cGAN proposed in [35] and combines concepts
of both the cGAN and traditional neural networks. Bao et al.
[48] consider three nonconditional GAN networks to simulate
SAR data of vehicles from random noise. While [50] focuses
on translating between instruments with different physical mea-
surement principles, does neither of [48], [50] focus on using
image translation through GANs for regression purposes as we
intend to.

In general, most of today’s research on semisupervised learn-
ing through GANs focuses on solving a classification task;
see e.g., [49], which propose the DLR-GAN architecture to
perform LR image classification. To improve classification on
this challenging task, they propose to let the G network learn to
recover the LR components and the high-frequency components
of the LR image. Only a very very few studies were identified that
apply their architecture to regression tasks [68]. Within the GAN
literature, Rezagholizadeh and Haidar [68] presented one of the
first models aimed at regression, named the Reg-GAN. They use
two different networks, where one learns data generation while
the other predicts continuous labels. It is applied in a computer
vision task for self-driving vehicles, where the GAN generates
images of a road segment and a regression network predicts the
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matching steering angle. Olmschenk et al. [69] later proposed
the feature contrasting loss function and outperformed [68]
on the same semisupervised GAN regression task. Additional
examples were also shown in [69] on the combined task of face
generation and age prediction as well as on crowd counting. The
proposed work in our article differs from earlier related research
[68], [69], as we do not perform any additional regression on the
image content of the generated synthetic patches. This is possible
due to the nature of our proposed modeling strategy with two
sequential regression models, which results in a cGAN-based
model that is able to make predictions in new unseen areas
through the image translation.

IV. MATERIAL AND METHODOLOGY

The related work presented in Section III positions our work
with respect to published research in related areas. Based on
this literature survey, and previous published research on AGB
estimation in the AOI, we make the following methodological
contributions.

1) By proposing our Sentinel-1-based nonsequential AGB
regression model, we extend the work of Næsset et al.
[22].

2) The two proposed sequential models extend previous work
on sensor fusion in the AOI. Furthermore, by introducing
the DL-based sequential model, this work also contributes
with novel insight on the possibilities for AGB prediction
by using DL models for sensor fusion. These DDNs have
convolutional layers that extract contextual spatial infor-
mation, which has been exploited both in other types of re-
gression problems [70] and also for AGB prediction [71],
but not in a sequential regression approach to upscaling
and information enhancement.

3) The proposed method applies image translation to truly
heterogeneous images and domains in a regression con-
text. Similar image translation has previously been done
for general purposes [72] and within image analysis tasks
like change detection [73], but is new in the biomass
estimation and regression setting.

We accomplish the mentioned novelties in 2) and 3) for
the DL-based sequential model by using a modification of the
Pix2Pix image translation architecture [35] to generate synthetic
yet realistic ALS-based AGB predicted maps with SAR intensity
data as input. We refer to the Appendix, i.e., Section A1, for a
list over these modifications and their motivation.

We will in the following describe the datasets used in this
article, the preprocessing steps applied to the data, and give an
overview of the different models we consider.

A. Study Area and Dataset Description

1) Study Area: The AOI is a rectangular area with size
11.25× 32.50 km (WGS 84/UTM zone 36S), located in the
Liwale district in southeast Tanzania (9◦52′–9◦58’S, 38◦19′–
38◦36′E). Fig. 4 shows the relative location of the AOI in
Tanzania. The Liwale district experiences two rain periods each
year: A shorter period from late November to January and a
longer period from March to May. Liwale’s main dry season

Fig. 4. Location of a subset of the Sentinel-1 scene, as well as the location of
the ground reference plots (in red) in the country of Tanzania.

occurs between July and October. The miombo woodlands of
the Liwale districts is characterized by a large diversity of tree
species, with Brachystegia sp., Julbernadia sp., and Pterocarpus
angolensis being the most dominant ones [2], [7], [22].

2) Field Data: The field data used in this work, from now on
referred to as AGB ground reference data or z, were collected
within 88 field plots during January–February 2014 [22]. These
field plots were distributed in groups of eight in each of the 11
L-shaped clusters, shown with red dots in the Sentinel-1 scene
in Fig. 4. The sample plots are circular, each of size 707m2, i.e.,
they have a radius of 15 m. We refer to [74] for a thorough work
on the national level sampling design for Tanzania, and to, e.g.,
[2], [7], [22] for reference work on, e.g., the use of field data in
the AOI for large-scale AGB estimation. Measured AGB in the
AOI ranged from 0 to 213.4 Mgha−1 [22].

3) ALS-Based AGB Data: The ALS data were acquired in
2014; see [7], [22] for details of this process. Næsset et al. [22]
trained a regression model on the ALS data to make ALS-based
AGB predictions on a grid with square pixels of size 707 m2.
Their model, referred to as f , is the first regression model in
our proposed modeling strategy with two sequential regression
models. The output from the ALS-based regression model in
[22], i.e., ALS-based AGB predictions, ẑy , was made available
for this work. These ALS-based AGB predictions will serve as
a surrogate for the AGB ground reference data in the second
regression model g, when SAR data is used with either a tradi-
tional regression model or a cGAN model for image translation
to upscale the ALS-based AGB predictions. See right-hand side
of Fig. 2 for an illustration of the sequential modeling strategy
with notation.

4) SAR Data: Our SAR data consists of a C-band SAR scene
obtained from the Sentinel-1sensor, which provides data in two
bands, i.e., the VV and VH polarization. This sensor was chosen
since an AGB model trained on data from this sensor meets
most of the needs listed in Section I-A; the data is frequently
updated, it has extensive spatial coverage, and is freely available.
For this article, we choose a Sentinel-1scene acquired on 15
September 2015, as it fulfils three additional criteria: 1) It covers
our AOI, 2) it is closest in time to acquisition of the ALS data,



4620 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

and 3) it was acquired during one of the area’s two yearly
dry seasons. The latter implies that the scene achieves optimal
sensitivity to dynamic AGB levels. We initially aimed to create
a multitemporal stack of Sentinel-1scenes, but as only one scene
meets all the three additional criteria, we had to settle for this
single scene. The SAR data are obtained in a high-resolution
Level-1 ground range detected (GRD) format, with a pixel size
of 10 m. It was downloaded from Copernicus Sentinel Scientific
Data Hub.2 Fig. 4 visualizes the scene and indicates its relative
location in Tanzania.

B. SAR Data Processing and Preparation of Datasets

To process the Sentinel-1 GRD product, we used the ESA
SNAP toolbox [75] and followed the workflow suggested in
[76] with some modifications. The final processing workflow is
summarized as follows:

1) apply orbit file;
2) thermal noise correction;
3) border noise removal;
4) calibration;
5) range Doppler terrain correction (bilinear interpolation);
6) (conversion to dB).
We also experimented with speckle filtering, using a refined

Lee filter [77] with the SNAP default window size of 7× 7 as
an optional additional processing step between step 4) and step
5). However, since models trained on speckle filtered Sentinel-1
data experience higher variations in AGB predictions than mod-
els trained without speckle filtered Sentinel-1 data, we decided to
omit speckle filtering in the processing workflow. See Section
A2 in the Appendix for details. Step 6) was only applied to
the cGAN-based sequential regression model. We provide an
investigation of the impact that Sentinel-1 data on dB scale or
linear scale have on AGB predictions for cGAN-based models
in the Appendix, see Section A5. During step 6) for the data
used in the cGAN-based regression model or after step 5) for
the two other models, we also applied the same map projection
as in [22], i.e., WGS 84/UTM zone 36S, to make sure that the
Sentinel-1 dataset and the ALS-based AGB prediction dataset
are aligned.

After performing the above processing steps, our Sentinel-1
dataset was further processed in QGIS [78]. In QGIS, we first
reprojected the Sentinel-1 dataset to the same projection that
the ALS-based AGB grid pixel dataset used in [22]. Then, cubic
convolution resampling was applied to resample the pixel size of
the Sentinel-1 dataset from its original pixel spacing of 10 m×10
m to the same pixel size as the grid pixels of the ALS-based AGB
predictions, i.e., 26.6 m × 26.6 m. As a final step, a subset of
the entire Sentinel-1 scene corresponding to the extension of the
ALS-based AGB data was extracted.

For the image-to-image translation task, i.e., the cGAN-based
model g, a false-color image was created from the processed
Sentinel-1 dataset. This was done since the chosen cGAN
architecture, Pix2Pix, requires three-channel RGB images or
grayscale images as input. The false-color image was created as

2See [Online]. Available: https://scihub.copernicus.eu/dhus/#/home

Fig. 5. Top row: ALS-based AGB predictions from [22]. Bottom row: False-
color image of the Sentinel-1 dataset.

follows: red = VV, green = VH, and blue = VV-VH. The ALS-
based AGB prediction dataset was kept as a grayscale image as
each grid pixel in the dataset only consists of one feature, i.e., an
AGB prediction. Fig. 5 shows the ALS-based AGB prediction
dataset and the corresponding false-color Sentinel-1 scene after
performing all processing steps with the ESA SNAP toolbox
and QGIS. For illustrative purposes, we choose to show the
ALS-based AGB prediction dataset of Fig. 5 in pseudo-colors,
where dark blue pixels indicate biomass closer to 0 Mgha−1

while green through yellow to red pixels indicate increasing
biomass content (Mgha−1).

C. Traditional Sentinel-1A-Based AGB Regression Models

In [22], several models were explored to construct traditional
nonsequential regression models for AGB relating different
remotely sensed datasets and the 88 field plots. They settled
for a model with square root transformation of the response
variable for ALS, RapidEye, Landsat, and PALSAR, since this
model performed equally well as more complex models and
since it always predicts values> 0. Inspired by their findings, we
develop a similar baseline nonsequential regression model for
AGB between Sentinel-1 and the same 88 field plots according
to

E
[√

AGB
]
= α0 +ΣJ

j=1αjxj (1)

where α0 is the intercept, i.e., a constant, αj are regression
coefficients, and xj are explanatory variables. We followed the
procedure in [22] and performed OLSs regression with stepwise
forward selection of the variables. Our inclusion criteria focus
on variables being significant at 5% level using an F-test. For
the Sentinel-1 product, VH and VV backscatter coefficients on a
linear scale plus square and square root transformations of these
variables were subject to the stepwise selection. We follow the
procedure from [22] and correct for bias when transforming our
model to arithmetic scale in accordance with [79]

̂AGB =
(
α̂0 +ΣJ

j=1α̂jxj

)2
+MSE (2)

where MSE is the mean square error computed from the fitted
model on square root form, i.e., from 1.

https://scihub.copernicus.eu/dhus/#/home
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TABLE I
SYMBOLS AND NOTATION INTRODUCED IN SECTION I-A AND USED

THROUGHOUT THE ARTICLE FOR THE DIFFERENT DATASETS, IN

NONSEQUENTIAL MODELING, SEQUENTIAL MODELING, THE GAN, AND THE

CGAN MODEL

Notation in plain font indicates variables represented by single pixels, while notation
in bold font indicates variables represented by image patches consisting of a pixel
neighborhood.

D. cGAN-Based AGB Regression Models

This section formally introduces some popular choices of
objective functions, the generator network, and the discrimi-
nator network of a cGAN, with a special focus on the Pix2Pix
architecture [35]. We also relate the cGAN framework to model
g in our sequential modeling strategy by using the same notation
that was introduced in Section I-A. See Table I for a summary
of the notation, and Figs. 2 and 3 for illustrations of how the
different entities of Table I are used in the sequential modeling
approach or in the cGAN network.

In our application, the input domain consists of image patches
from the Sentinel-1 scene, and the output domain of correspond-
ing image patches from the ALS-based AGB wall-to-wall map.
Thus, conditioned on images from the input domain, x ∈ X ,
the generator network G of the cGAN aims to capture the
data distribution of the output domain ẑy ∈ Z , by generating
corresponding synthetic image samples ẑy|x ∈ Z . Image pairs
are then presented to the discriminator network D of the cGAN,
which aims to distinguish if it is presented with a real pair of
images, {x, ẑy}, or a fake pair, {x, ẑy|x}. The whole training
process of a cGAN is illustrated in the lower part of Fig. 3. As
G aims to fool D, its ultimate goal is to obtain ẑy|x ≈ ẑy ≈ z,
where ẑy|x, ẑy, z ∈ Z . In other words, at the position of each
single AGB ground reference measurement, the generated syn-
thetic ALS-based AGB predictions should resemble both z and
the ALS-based AGB predictions well on a pixel basis. During
adaption of the cGAN, both G and D are trained simultaneously
to outperform each other, resulting in the following minimax
objective function [43]:

min
G

max
D

V (D,G) = Ex,ẑy
[logD(x, ẑy)]

+ Ex[log(1−D(x, G(x))]. (3)

A cGAN network trained with the objective function in 3 is
referred to as a Vanilla GAN. The least squares generative adver-
sarial network (LSGAN) was proposed to overcome issues with
stability during training of the Vanilla GAN [80]. Its objective
functions in a conditional setting are

min
D

VLSGAN(D) =
1

2
Ex,ẑy

[
(D(x, ẑy)− b)2

]

+
1

2
Ex

[
(D(x, G(x))− a)2

]

min
G

VLSGAN(G) =
1

2
Ex

[
(D(x, G(x))− c)2

]
(4)

where a and b are labels for fake and real data, while c denotes a
value that G tricks D to believe for fake data [80]. Introduced in
[81] for further stabilization of training and high-quality image
generation, we also consider the Wasserstein GAN with gradient
penalty (WGAN-GP). It considers real data, simulated data, and
a combination of these in its objective function, which in the
conditional setting has the following form [81]:

min
G

max
D

V (D,G) = Ex[D(x, G(x))]

− Ex,ẑy
[D(x, ẑy)] + λEẑ

[
(||∇ẑD(ẑ)||2 − 1)2

]
(5)

with

ẑ = εẑy + (1− ε)G(x) . (6)

ẑy in 3, 4, and 5 denotes a real ALS-based AGB image patch
from the Z domain while G(x) = ẑy|x represents a generated
synthetic image patch.

1) Generator Network: Three different G networks were
tested, all based on the ResNet model [82]: ResNet-4, ResNet-5,
and ResNet-6. ResNet-6 is a part of the original Pix2Pix ar-
chitecture [35] and consists of two encoder blocks followed
by six residual blocks and two decoder blocks. ResNet-4 and
ResNet-5 consist of the same number of encoder–decoder blocks
as ResNet-6, but only 4 and 5 residual blocks, respectively. The
two smaller networks were proposed as we work with small
image patches of 64× 64 pixels; see Section V-B2.

2) Discriminator Network: Isola et al. [35] evaluate different
variations of the neural network discriminator architecture by
varying the patch size N of the discriminator receptive fields
from a 1× 1 PixelGAN to anN ×N PatchGAN. Since we work
with fairly small image patches in number of pixels, we decide
to settle for the following three discriminator networks:
� a 1× 1 PixelGAN;
� a 16× 16 PatchGAN;
� a 34× 34 PatchGAN.
The two PatchGAN networks were designed by adjusting the

depth of the GAN discriminator to obtain a receptive field of
16× 16 or 34× 34, respectively. In a PixelGAN, the discrimi-
nator tries to classify each 1× 1 pixel in the image patch as real
or fake, while for the two PatchGAN networks, the discriminator
tries to classify each N ×N patch of pixels in the image patch
as real or fake. The discriminator network is applied across an
image patch in a convolutional matter during the discriminator
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TABLE II
PEARSON CORRELATION COEFFICIENT, R, RMSE, LEAVE-ONE-OUT CROSS-VALIDATION RMSE (LOOCV RMSE), AND MEAN ABSOLUTE ERROR (MAE)

COMPUTED BETWEEN GROUND REFERENCE PLOTS OF AGB, z, AND AREA-WEIGHTED MEANS OF PREDICTED AGB FROM EITHER THE FIVE NONSEQUENTIAL

REGRESSION MODELS [22] OR OUR SENTINEL-1-BASED NONSEQUENTIAL REGRESSION MODEL

All units are in Mgha−1.
aIndication of which remote -sensed data source that were used in [22] to train traditional their non-s equential regression models.
bThe traditional non-sequential regression model developed between Sentinel-1 and AGB reference data.
cSee [22] for reference to specific models and computed LOOCV RMSE.
.

phase to produce several classification responses. Eventually, all
responses are averaged to provide the discriminator output with a
real or false decision. Thus, for each image patch pair,{x, ẑy} or
{x, ẑy|x}, D outputs a binary prediction, based on D’s belief of
the input pair. Optimally, we wish D to predict a fake pair when
the image par consists of an image patch from x and another
from G(x), i.e., {x, ẑy|x}.

V. EXPERIMENTS AND RESULTS

In this section, the proposed Sentinel-1-based regression
models for AGB prediction are presented: The nonsequential
regression model, the baseline sequential regression model, and
the cGAN-based sequential regression model. The performance
of the proposed models is evaluated by comparing predicted
AGB to AGB ground reference data and the constructed AGB
prediction maps to each other, and the AGB prediction maps
of [22]. Qualitative and quantitative results are provided. We
keep the notation introduced in Table I and let z denote ground
reference AGB data, ẑx denotes AGB predictions from the
Sentinel-1-based nonsequential regression model, ẑy denotes
AGB predictions from the nonsequential ALS-based model [22],
and ẑy|x denotes either generated synthetic ALS-based AGB
predictions from the baseline sequential regression model or
single predictions from the cGAN-based sequential regression
model. In contrast, ẑy|x denotes a patch of predictions from
the cGAN-based sequential regression model. We refer to the
Sentinel-1-based nonsequential regression model as h, the ALS-
based nonsequential regression model from [22] as f , and either
of the sequential models, i.e., the baseline traditional sequen-
tial regression model or the cGAN-based sequential regression
model, as g.

A. A Traditional Nonsequential Regression Model for AGB

We extend the work of [22] by developing a traditional
nonsequential regression model, h, for the 88 field plots of
AGB ground reference data (z) according to (2). To do so,
we laid the circular field plots of z on top of the Sentinel-1
pixel grid. VH and VV backscatter values corresponding to z
were found by computing the area-weighted mean of Sentinel-1
pixels intersecting the field plots. Only one explanatory variable,

Fig. 6. Scatter plots between ground reference AGB, z, and model-predicted
AGB. Model-predicted AGB is retrieved from either (a) the ALS, (b) InSAR,
(c) RapidEye, (d) Landsat, (e) PALSAR, or (f) our proposed Sentinel-1-based
nonsequential regression model. The black lines are reference lines indicating
100% correlation between z and predictions. Units are in Mg ha−1

i.e., VV, was selected in the stepwise forward selection proce-
dure. The achieved model, h, for AGB per hectare, is listed
in Table II. Since the model was fitted on the whole ground
reference dataset z, we follow [22] and perform additional
quantitative model assessment analysis through leave-one-out
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Fig. 7. Aboveground biomass prediction maps (in Mgha−1). (a)–(e) Results of the traditional nonsequential regression models presented in [22]. The AGB
biomass map in (f) was constructed from the proposed nonsequential Sentinel-1-based AGB model in Table II. (a) ALS. (b) InSAR. (c) RapidEye. (d) Landsat.
(e) PALSAR. (f) Non-sequental Sentinel-1.

cross-validation (LOOCV) to compare the consistency of pre-
dicted AGB. We also compute the Pearson correlation coefficient
(R), root-mean-squared error (RMSE), and mean absolute error
(MAE) between model predicted AGB and z. These metrics are
collected in Table II together with computed R and RMSE from
the nonsequential regression model developed in [22]. Addition-
ally, we qualitatively assessed our model against those developed
in [22] by plotting model-predicted AGB against z in Fig. 6 and
by illustrating model-derived AGB wall-to-wall maps in Fig. 7.
Minor differences between the scatter plots in Fig. 6(a)–(e) and
data reported in Table II, compared to the corresponding figures
and table in [22], can be explained by differing pixel grids used
in the area-weighting of RS pixel values. Næsset et al. [22]
developed their traditional nonsequential regression models for
InSAR, RapidEye, Landsat, and PALSAR by using the original
pixel grid of the satellite data. When reporting metrics, they
further used each sensor’s original pixel grid to compute the
area-weighted average of pixel values within the coverage of
each field plot. After preprocessing the Sentinel-1 scene, both the
Sentinel-1 dataset and the ALS-based AGB predictions are on
the same grid with pixel size 707 m2, representing an area of 26.6
m× 26.6 m on the ground. In this work, we did not have access to
the original pixel grids of the ALS, InSAR, RapidEye, Landsat,
and PALSAR data. Therefore, we chose to use the grid with
pixel size 707 m2 for also these models whenever area-weighted
metrics were computed. The resulting differences to [22] must
therefore be endured.

We observe from Table II that only two of the previously
developed models in [22], i.e., the ALS-based (f ) and the
RapidEye-based models, experience lower RMSE and a higher
Pearson correlation coefficient with respect to z than our model
h. Surprisingly, the respective InSAR and PALSAR-based mod-
els perform worse than the proposed model h in terms of R and
RMSE. The InSAR-based AGB model, used in [22] and devel-
oped by [83], uses mean InSAR heights as the only explanatory
variable. As canopy heights are highly correlated with AGB [3],
[21], this model was expected to correlate better with z than
our model h. However, Næsset et al. [22] highlight the temporal
mismatch between the acquisition of the InSAR data (2012) and
the acquisition of the field work (2014) as a probable explanation
for the model’s low performance. In one case, for example,
they identified that a field plot recently had been harvested in
2014, while the InSAR data from 2012 identified biomass in
the same area [22]. In theory, we expect a model based on
the L-band ALOS PALSAR data to perform better than our
C-band based Sentinel-1 model, as C-band data is known to
saturate at a lower biomass level than L-band data [5], [53],
[54]. However, Table II shows that this is not the case. As the
PALSAR data used in [22] consist of a mosaic of yearly scenes,
the mosaic does not achieve optimal sensitivity to dynamic AGB
levels as scenes from wet and dry seasons are mixed. The low
dynamic range of the PALSAR-based and the Landsat-based
models is also shown in Fig. 6 and the wall-to-wall maps in
Fig. 7. Although most Sentinel-1 predictions on the ground
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reference AGB dataset are bounded between 25 and 75Mgha−1

[see Fig. 6(f)], the model as a whole is able to predict AGB
up to around 200 Mgha−1; see Fig. 7(f). The upper limit of
the ẑx-based predictions [Fig. 6(f)] can probably be explained
by the low saturation limit of C-band data. Nevertheless, our
upper limit of C-band-based AGB predictions is still remarkable,
compared to previous studies on biomass retrieval from C-band
data, e.g., Imhoff [84] who showed that C-band data saturates
around 20 Mgha−1 in the tropical forests of Hawaii. We wish
to highlight the fact that the proposed model h is not able to
predict biomass close to 0 Mgha−1[ see Figs. 6(f) and 7(f).
This is probably due to the square root transform in 1 and the
correction of bias in 2, the latter applied to achieve correct AGB
predictions on arithmetic form, i.e., back-transformation from
the

√
AGB domain. The InSAR-based model, on the other hand,

is able to predict AGB levels close to 0 Mgha−1 [see Table II
and Fig. 6(b)] and also achieves lower MAE than the proposed
model h.

B. Sequential Regression Models for AGB

This section presents the two alternatives for g, the second
model in the sequential modeling approach, i.e., the traditional
baseline sequential model and the cGAN-based model. Since
the regression model f achieves the highest correlation to z, see
[22], we train our two versions of g to use the ALS-based AGB
predictions (on pixel-wise form: ẑy , or patch-wise form: ẑy) as
a surrogate for z. Each AGB prediction, i.e., ẑy , represents a
square pixel of size 26.6 m × 26.6 m on the ground. Qualitative
and quantitative results from both models are presented and
discussed in Section V-B3.

1) Baseline Sequential Regression Model: The proposed
baseline sequential regression modeling strategy utilizes the tra-
ditional regression model in (2) for both stages in the sequence.
In Section V-A, the small size of the z dataset constrained us to
use all available data during both model fitting and evaluation.
Reusing all available data for both model fitting and evaluation is
not optimal, which also Table II shows, i.e., the RMSE computed
for model h is lower than the corresponding LOOCV RMSE.
In contrast to the situation in Section V-A, the sequential model
setting provides access to 516 906 AGB predictions to be used
as surrogate response variables. Thus, the dataset size enables
us to fit and evaluate model g on different parts of the dataset.

We adopt a dataset split of 20% validation data and 80% test
data. We use the validation data to select the models’s explana-
tory variables through stepwise forward selection. Contrary to
the nonsequential modelh, which only selects VV as a regressor,
all six explanatory variables are included in the baseline model
g by this method. The final baseline sequential regression model
is shown in Table IV. The test dataset was divided into k = 5
subsets for k-fold cross-validation (CV). The chosen test metric
is CV RMSE (CV-RMSE), which is reported in addition to the
Pearson correlation coefficient and the RMSE in Table IV. The
latter two metrics are computed on the entire dataset. All reported
metrics are computed between the surrogate, i.e., ẑy , and AGB
predictions achieved from the baseline sequential model, i.e.,
ẑy|x.

TABLE III
THREE OPTIMAL CGAN-BASED MODELS APPLIED FOR THE SECOND PART OF

THE SEQUENTIAL MODELING APPROACH

They were identified from experiments reported in the Appendix; see Sections A2
and A3. Vanilla GAN, LSGAN, and WGAN-GP refer to specific objective functions.
BN denotes batch normalization and BS denotes batch size.

2) cGAN-Based Sequential Regression Models: Finally, we
approach the sequential modeling strategy from a DL perspec-
tive by applying a cGAN for the second regression model, g.
The cGAN-based model utilizes convolutional filters in both
the G and the D network. Therefore, the image-to-image trans-
lation requires the data we condition on, and the output data,
to be represented by image patches instead of individual im-
age pixels. Image patches were created from the input data,
i.e., the processed Sentinel-1 image, and the output dataset of
516 906 ALS-based AGB predictions, i.e., ẑy , similarly and
simultaneously. For simplicity, we only describe the process
for the Sentinel-1 data. First, nonoverlapping image patches of
size 64× 64 pixels were extracted in a grid manner from the
Sentinel-1 scene in Fig. 5. Each patch corresponds to an area of
approximately 289.6 ha on the ground. These nonoverlapping
image patches were randomly divided into five disjoint sets for
five-fold CV. For each of the five folds, one of the disjoint sets
was considered the test set, while the remaining four folds were
combined into a training set. To increase the number of image
patches further, we extracted additional training patches in each
training set by allowing a 50% overlap between adjacent patches.
Finally, we applied data augmentation with flipping and rotation
to the training image patches. Since we do not allow overlap
between test and training image patches, it implies that the final
five training sets, after data augmentation, range between 2264
and 2424 patches. Each test set consists of 22 image patches
since no data augmentation was applied to the test sets.

By condition on Sentinel-1 image patches, we trained differ-
ent cGAN-based models to generate realistic-looking synthetic
ALS-based AGB prediction image patches, ẑy|x, of size64× 64
pixels. Optimal translation would imply ẑy|x = ẑy or at least
ẑy|x ≈ ẑy . All models were trained for 200 epochs with a
learning rate of 2× 10−4. We refer to Sections A2 and A3 in
the Appendix for an extensive evaluation of the impact that the
choice of hyperparameters, objective function, and/or discrimi-
nator network have on the performance of the different cGAN
models. For the remaining of this article, we only report results
for the three optimal cGAN-based models listed in Table III,
which were identified from the extensive evaluation. Despite the
selected objective function, these three models were trained with
identical generator architecture, discriminator architecture, and
hyperparameters. We therefore refer to them by their objective
function, i.e., as the Vanilla GAN, LSGAN, or WGAN-GP
model.

As the input and output to each of the optimal cGAN-based se-
quential models are of size 64× 64 pixels, we created synthetic
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TABLE IV
PEARSON CORRELATION COEFFICIENTS, R, RMSE, AND CV-RMSE COMPUTED BETWEEN ALS-PREDICTED AGB, ẑy , AND MODEL-PREDICTED AGB, ẑy|x,

ACHIEVED FROM OUR SEQUENTIAL MODELING APPROACH

All metrics are in units of Mgha−1.
aBaseline sequential model, see Sec. V-B1.
bcGAN-based sequential models, see Sec. V-B2.

ALS-based AGB prediction maps from the Sentinel-1 scene as
follows: The whole AOI was first partitioned into 64× 64 image
patches with 50% overlap. For each of the optimal models, these
patches were then fed into the trainedG network to generate syn-
thetic image patches with 50% overlap. The generated synthetic
image patches were then merged to construct a ẑy|x prediction
map. Due to the overlap between the generated synthetic image
patches, most pixels in this intermediate prediction map con-
stitute of a weighted average of pixels from neighboring image
patches. Therefore, as a last step to the final ẑy|x prediction map,
we apply mosaicking through linear image blending, using the
p-norm with a heuristic value of p = 5. Different norms were
also considered; however, we conclude that the specific choice
of the norm has little impact on the blended result.

After training, we evaluated the performance of the Vanilla
GAN, LSGAN, and WGAN-GP models against each other and
the baseline sequential regression model defined in Section V-
B1. We qualitatively and quantitatively compared ẑy|x generated
from the cGAN-based models against the 88 ground reference
AGB plots, z, and the surrogate wall-to-wall map of AGB
predictions, i.e., ẑy .

3) Sequential Model Evaluation: Here, we present results
and evaluate the two subsequent models, g, that were proposed
in Sections V-B1 and V-B2. Note that the performance assess-
ment in Table IV and Fig. 9 is performed with respect to the
ALS-predicted ẑy , which in the sequential modelling strategy
replaces ground reference z.

Computed metrics between ẑy|x and ẑy , i.e., the Pearson
correlation coefficient (R), RMSE, and CV-RMSE, for all four
sequential models are collected in Table IV. Results in Ta-
ble IV indicate that the baseline sequential model is preferred
to the three cGAN-based models as it experiences both a
smaller RMSE and CV-RMSE, and a higher R with respect
to ẑy . Among the cGAN-based models, the Vanilla GAN is
preferred as it achieves the highest correlation and the lowest
RMSE to ẑy . However, the Vanilla GAN model also experi-
ences the largest difference between RMSE and CV-RMSE,
implying that AGB predictions retrieved from this model are less
consistent.

Generated synthetic AGB prediction maps for the proposed
sequential models are shown in Fig. 8. The prediction map
from the baseline sequential model is shown in Fig. 8(b), while
Fig. 8(c)–(e) shows corresponding prediction maps constructed
from the cGAN-based models, i.e., the Vanilla GAN, LSGAN,
and WGAN-GP model. The ultimate goal of the sequential

model g is to achieve AGB prediction maps that resemble the ẑy
prediction map in Fig. 8(a). Although the computed metrics for
the baseline sequential regression model indicate that this model
is preferred to the cGAN-based models, it is unable to capture
the dynamic range of ALS-based AGB predictions; see Fig. 8(b).
The model’s inability to predict near-zero biomass is particularly
severe, which, similar to model model h, can be explained by
the square root transform and the bias correction applied. The
cGAN-based models are, however, able to predict zero biomass.
Their constructed biomass maps also exhibit a higher dynamic
range in levels of predicted biomass. All sequential AGB models
are generally underpredicting ẑy .

In Fig. 9, we visualize density plots between ẑy and predicted
AGB from the proposed sequential AGB regression models.
The white lines indicate a reference line for 100% correlation
between ẑy and ẑy|x. While the baseline model achieves better
RMSE and R, the Vanilla GAN model achieves the lowest
MAE. We note that all four sequential models struggle to predict
ẑy correctly at low AGB levels. They are generally biased
toward overpredicting at low ẑy . While the cGAN-based models
manage to predict zero biomass, the baseline model cannot.
Since the baseline model only predicts AGB over 100 Mgha−1

occasionally, it consequently underpredicts high ẑy . The density
plots of the three cGAN-based models indicate that they also
underpredict high levels of ẑy , but not to the same extent as the
baseline sequential model.

We also compute the pixel-wise difference between ẑy and
ẑy|x, i.e., ẑy − ẑy|x, for each proposed sequential models. The
pixel-wise differences are visualized in Fig. 10, where Fig. 10(b)
is the difference for the baseline model, Fig. 10(c) for the Vanilla
GAN model, Fig. 10(d) for the LSGAN model, and Fig. 10(e)
for the WGAN-GP model. By comparing the AGB difference
maps in Fig. 10 with the actual ẑy prediction maps in Fig. 8,
we again show that all sequential models underpredict AGB
in areas with high levels of ẑy [shown as pink or blue in (b)–
(e)]. We also highlight that at all sequential models overpredict
AGB areas with low levels of ẑy [shown as green in (b)–(e)].
The baseline sequential model’s inability to predict zero or low
levels of biomass can probably explain the larger extent of green
regions in Fig. 10(b), compared to Fig. 10(c)–(e).

For further comparison, we provide sequential modeling re-
sults for the few ground reference AGB measurement we have
available. We argue that achieving large-scale AGB maps that
reflect the dynamic range of ẑy is one desired goal, but more
important is the ability of the AGB predictions to match z values.
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Fig. 8. Generated synthetic ALS-based AGB prediction maps (in Mgha−1) together with the surrogate for ground reference plots, i.e., the ALS-based AGB map
shown in (a) [this AGB map is the same as in Fig. 7(a)]. (b) A synthetic ALS-based AGB prediction map generated through the baseline sequential Sentinel-1-model
[see (2)]. (b)–(e) Generated synthetic ALS-based AGB prediction maps generated through our proposed sequential regression models using (c) Vanilla GAN,
(d) LSGAN, and (e) WGAN-GP.

Fig. 9. Density plots between constructed AGB maps and ALS-based AGB biomass predictions, ẑy , for (a) baseline sequential model, (b) Vanilla GAN, (c)
LSGAN, and (d) WGAN-GP models. Reported metrics are the RMSE, Pearson correlation coefficient (R), and the MAE between ẑy and the sequential model-based
AGB predictions. The white lines are reference lines indicating 100% correlation between ẑy and predictions.

Thus, we computed the correlation between AGB predictions
obtained with the proposed sequential modeling strategy and
the 88 ground reference plots, shown with red markers in Fig. 4.
Since the physical area of each ground reference plot could
intersect with several of the grids with pixel size 707 m2, we
calculated the area-weighted mean of grid pixels intersecting
with each separate ground reference plot. Fig. 11 shows scatter
plots of the correlation between z and model-predicted AGB,
retrieved from the sequential models, together with computed

metrics: i.e., RMSE, R, and MAE. Quantitative results derived
from Fig. 11 are also summarized in Table V together with
computed metrics for model f . Similar to the scatter plot for
model h, Fig. 11(a) also indicates that AGB predictions from
the baseline sequential model are bounded between 25 and 75
Mgha−1. Table V shows that neither of the proposed sequential
models achieves as high correlation or low RMSE and MAE with
respect to z that model f achieves. Nevertheless, it should be
noted that f [22] was fitted against the available z. The sequential
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Fig. 10. AGB difference maps (in Mgha−1). Pixel-wise difference between
the ALS-based AGB prediction map, shown in (a), and constructed AGB
prediction maps achieved form the four sequential models: baseline sequential
model (b), Vanilla GAN (c), LSGAN (d) and WGAN-GP (e).

TABLE V
COMPUTED PEARSON CORRELATION COEFFICIENTS (R), RMSE, AND MAE

BETWEEN AREA-WEIGHTED MEANS RETRIEVED FROM REGRESSION MODELS

AND GROUND REFERENCE PLOTS OF AGB (Mgha−1)

aThe non-sequential ALS-based regression model proposed in [22].
bThe baseline sequential regression model, proposed in Sec. V-B1.
cThe cGAN-based sequential regression models, proposed in Sec. V-B2.

TABLE VI
OVERALL RMSE AND RMSE COMPUTED FOR EACH QUARTILE, I.E.,

RMSE(Q0,1), RMSE (Q1,2), RMSE(Q2,3), AND RMSE (Q3,4) (LOWER IS

BETTER)

The RMSE metrics are computed between AGB prediction maps con-
structed in this work and the ALS-based AGB prediction map. All metrics
are in units of Mgha−1.

models, on the other hand, were optimized to achieve ẑy|x ≈ ẑy
as they were fitted against ẑy .3 While Table IV indicates that the
baseline sequential regression model predicts ẑy best, Table V
indicates that both the LSGAN model and the Vanilla GAN
model perform better than the baseline sequential model on
all three metrics. Additionally, all cGAN-based models obtain
lower MAE with respect to z than the baseline sequential model
achieves. Among them, the LSGAN model performs best in
predicting z. Additionally, all cGAN-based models obtain lower
MAE with respect to z than the baseline sequential model
achieves. Interestingly, by comparing Table II with Table V, we
identify the LSGAN model, in terms of R and RMSE, to perform
better in predicting z than the InSAR model. We therefore argue
that the LSGAN and the Vanilla GAN model should be the first
and second choice if one aims to achieve a model that reflects
the dynamic range of the true AGB best.

C. Nonsequential and Sequential Modeling

To broaden the discussion, evaluate the suitability of the
Sentinel-1 sensor as a data source for AGB regression models
and enable further comparison of the nonsequential and sequen-
tial modeling strategies, we provide three additional results:
Fig. 12 and Tables VI and VII.

In Fig. 12(d), we show histogram plots over predicted AGB
values derived from the ALS-based regression model f together
with AGB predictions from models proposed in this work: The
nonsequential Sentinel-1 model [Fig. 12(b)], the baseline se-
quential model [Fig. 12(c)], the Vanilla GAN model [Fig. 12(e)],
the LSGAN model [Fig. 12(f)], and the WGAN-GP model
[Fig. 12(g)]. We also show a histogram of measured ground
reference AGB, z, in Fig. 12(a) overlaid with a nonparametric
estimate of the underlying probability density function. Note
the similarities between the distributions of z and ẑy [22] in
Fig. 12(b). Besides not being able to predict low AGB values [see
Fig. 12(b) and (c)], both the nonsequential Sentinel-1 model and

3In Section A6 in the Appendix, we experiment with an additional calibration
step to further calibrate model g against z. Results indicate that post-calibration
of the output from g with either gamma or linear calibration increases the
accuracy and the correlation by a small amount. Nevertheless, the possible
improvement is modest and we omit this additional step as the nonsequential
Sentinel-1-based model still outperforms the post-calibrated sequential models
on computed RMSE, MAE and R.
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Fig. 11. Scatter plots between ground reference AGB, z, and model-predicted AGB. Model-predicted AGB values are retrieved from the (a) baseline sequential
regression model; see Section V-B1, or the proposed cGAN-based sequential models; (b) Vanilla GAN, (c) LSGAN, and (d) WGAN-GP. See Section V-B2 for
details on the cGAN-based methods. The black lines are reference lines indicating 100% correlation between z and predictions.

TABLE VII
PEARSON CORRELATION COEFFICIENT COMPUTED BETWEEN PIXEL-WISE

PREDICTIONS FOR PAIRS OF MAPS VISUALIZED IN FIG. 7 (UPPER TABLE) AND

FIG. 8

(Lower Table). Models referred to as ALS, InSAR, RapidEye, Landsat, and PAL-
SAR are retrieved from [22]. Remaining models are developed for this work.

the baseline sequential model predict some extreme AGB values
of 15 640Mgha−1 in Fig. 12(b) and 1751Mgha−1 in Fig. 12(b),
which neither of the cGAN-based models do. Instead, the max-
imum predicted AGB from the three cGAN-based AGB models
are rather close to the maximum measured AGB in the field plots,
i.e., 213.4 Mgha−1 [22]. Also, all cGAN-based models behave
more similar to z and f for middle-to-high levels of AGB; see
Fig. 12(e), (f), and (g) compared to Fig. 12(a) and (d). This
could indicate that the more complex cGAN-based models have
learned AGB dynamics of z and f better in middle-to-high levels
of AGB, than the simpler nonsequential and baseline sequential
model manages.

To emphasize where the proposed models are more or less
consistent with the ALS-based AGB prediction map, we evaluate
AGB predictions from the five models against ẑy|x in terms of
overall RMSE and RMSE computed for each quartile. Results
provided in Table VI clearly show that AGB predictions from
the nonsequential Sentinel-1 model deviate most from ẑy|x, both
overall and in each quartile. The baseline sequential model is
most similar to ẑy|x in the second and third quartile and achieves
the smallest RMSE among all five proposed models in the fourth
quartile. As expected from the histograms in Fig. 12 and the
constructed AGB prediction maps in Fig. 8, Table VI shows that
all cGAN-based models produce low RMSE in the first quarter

quartile, with the LSGAN model being better than the Vanilla
GAN model. Among the cGAN-based models, the Vanilla GAN
model only receives the smallest RMSE in the fourth quartile.
Once again, it is shown in Table VI that the WGAN-GP model
is the worst among the cGAN-based models.

Table VII shows the Pearson correlation coefficient computed
between pixel-wise AGB predictions for pairs of maps from
either Fig. 7 or 8. Correlations computed between AGB predic-
tions retrieved from the nonsequential models are listed in the
upper part of Table VII, while correlations computed between
AGB predictions from the sequential models and the surrogate
regression target, i.e., ẑy , are combined in the lower part of
the table. Previous results from [22] identified the ALS-based
AGB prediction map and the InSAR-based AGB map to have
the greatest correlation with each other (see Table VII), and
with z (see Table II). AGB predictions from the Landsat- and
PALSAR-based models achieved the smallest correlation with z;
see Table II. The proposed nonsequential modelh achieves by far
the lowest correlations with any of the other five nonsequential
AGB models; see Table VII. This is probably a consequence of
the Sentinel-1-based model’s inability to predict low biomass
levels. For example, the left part of the AOI (see Fig. 7), the
ALS-, InSAR-, and the RapidEye-based AGB models predict
AGB around 0 Mgha−1 in approximately the same areas,
while predicted AGB levels retrieved from the nonsequential
Sentinel-1-based model deviates highly in the same areas. Note
that all sequential models achieve a much higher correlation
with model f than what model h achieves. Logically, this could
be explained by the fact that all sequential models were fitted
against f . While the nonsequential Sentinel-1-based model h,
the InSAR model, and the ALS model f achieve the highest
correlations and lowest RMSE with respect to z, the surprisingly
low correlation between h and f is notable. It could imply that
model h is overconfident on the small set of z measurements.
Among the sequential models, Tables IV and VII show that
the proposed baseline model achieves the lowest RMSE and
highest correlation coefficient with respect to ẑy . Furthermore,
the cGAN-based model trained with the WGAN-GP objective
function achieves the smallest correlation with ẑy; see Table VII.
Overall, the correlations between the sequential models and the
ALS-based model f are all higher than the corresponding corre-
lation between AGB predictions from f and the PALSAR model,
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Fig. 12. Histograms of AGB predictions from the proposed AGB models.
(b) Nonsequential Sentinel-1. (c) Baseline sequential. (e) Vanilla GAN.
(f) LSGAN. (g) WGAN-GP. A histogram over the collected ground reference
AGB is shown in (a), while (d) shows a histogram over ALS-based AGB
predictions. Reported metrics are the sample mean, µ, median, and maximum
and minimum predicted AGB (Mg ha−1).

and similar to the correlation between AGB predictions from f
and the Landsat model. In addition to the discovery that the
LSGAN model performs better than the nonsequential InSAR
model in predicting z, these results suggest that the cGAN-based
sequential modeling approach and the use of Sentinel-1 data for
AGB prediction are worth pursuing further.

VI. DISCUSSION

The focus of this work has been to develop nonsequential
and sequential regression models based on C-band SAR for
AGB prediction in Tanzania. One main advantage of utilizing
Sentinel-1 data as regressors is that it enables frequent and
affordable updates of an AGB map with extensive coverage. This
approach has a low cost compared to keeping the most accurate
prediction model from [22] up-to-date by repeated acquisition
of ALS data. Our results show that the proposed nonsequential
Sentinel-1-based modelh and the sequential LSGAN model best
provide AGB predictions close to measured ground reference
AGB, z. Only the ALS and the RapidEye-based model in [22]
perform better on this task. Noteworthy, in terms of R and RMSE,
both the model h and the sequential LSGAN model were iden-
tified to be more accurate than the InSAR-based nonsequential
model on the same task. Since the InSAR-based model provides
estimates of canopy height that are highly correlated with AGB
[3], [21], we expected it to be superior in predicting z. We
emphasize that we are training all our models using C-band
SAR intensity data, which have previously been shown to suffer
from much lower saturation levels than, e.g., the L-band ALOS
PALSAR sensor. As C-band data neither penetrates as deeply
into the forest volume as L-band data, nor can it compete with
the accuracy of AGB estimates produced from optical data [20],
[52]–[54], it has traditionally been considered an inferior infor-
mation source for AGB estimation. Thus, we have in this work
demonstrated the potential of using Sentinel-1 data for AGB
prediction and suggest further research on Sentinel-1-based
models for AGB retrieval.

Formally, the proposed models were assessed in terms of
their relative accuracy on AGB prediction with respect to model
f , [22], and available AGB in situ measurements. However,
whenever a certain methodology is implemented for operational
purposes in an MRV system, the ultimate goal is to produce
estimates of carbon stocks and changes. Among these, estimates
for the AGB pool are essential. Further, the Intergovernmental
Panel on Climate Change specifies that results should be reported
as inferences in the form of confidence intervals [85] (p. 1.10).
Thus, although the maps themselves can be useful, for example,
to identify critical areas of carbon loss, the prediction map is just
an intermediate product on the way to estimating the carbon bud-
get. AGB can easily be estimated from the prediction maps con-
structed by the current methods by aggregating individual pixel
values. Estimating the uncertainty of AGB estimates in the form
of variances or confidence intervals for nonparametric methods
such as ANNs, support vector machines, random forest regres-
sion, and other techniques is a current research issue. To provide
such estimates was beyond the scope of the current study. Recent
applications of, e.g., bootstrap resampling for random forest-
based prediction models demonstrate that such variance estima-
tors may easily be adopted for ANN models as well; see e.g.,
[86]. However, the computational burden will be substantial.

By approaching AGB prediction through sequential modeling
with ALS-based predictions as a surrogate for z, deep contextual
models could be utilized for the regression task. As far as
we know, this is the first time that contextual cGAN models
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have been used to simulate ALS-based AGB prediction maps
from Sentinel-1 data. A natural question is whether DL-based
approaches for AGB predictions are worth further investigation,
especially since they are more complex to train than traditional
statistical regression models. We would argue that more research
is needed in utilizing contextual DL models to retrieve biophys-
ical parameters from RS data. We have shown that the LSGAN
model performs well and reproduces dynamic AGB levels more
realistically than simpler noncontextual models. Despite this,
the cGAN-based models fall behind the traditional sequential
and nonsequential models on RMSE with respect to ground
reference data. The trade-off between perceptual quality and
reconstruction accuracy is known from the research field of
single image superresolution (SR), [87]–[91]. SR in RS data
has been studied in, e.g., [92]–[94]. For future work on AGB
prediction by DL regression, it appears relevant to incorporate
ideas from the field of SR and investigate additional architectures
and balancing of GAN losses against traditionalL1 andL2 losses
for reconstruction. The purpose would be to obtain a model that
focuses on the reconstruction loss, yet produces AGB prediction
maps that maintain local dynamics.

A. Error Discussion

The accuracy of the proposed models is influenced by many
factors, such as the radiometric accuracy of radar images, time
lag, and error propagation through the model sequence. The
latter was also pointed out in [38]. We refer to the time lag as
the time difference between collecting the field inventory data in
January–February 2014, the acquirement of ALS measurements
in 2014, and the acquisition of the Sentinel-1 scene in September
2015. Possible inaccuracies may propagate, first when the ALS
model upscales the field inventory data to a ẑy map, and, second,
when the sequential models are trained. Additional factors that
may affect the overall accuracy is resampling of the Sentinel-1
scene to the same grid as the ALS-based AGB prediction map
or the image blending process which is applied to construct the
full cGAN-based AGB prediction maps from a set of patches.
Despite this, the advantage of using a sequential modeling
approach on Sentinel-1 data is the ability to achieve biomass pre-
diction maps with high update frequency on a national level. Our
sequential approach also has potential use in biomass change
detection, where the relative change of biomass from one time
to another is of higher interest than the absolute AGB values.

As previously mentioned, z was collected within circular sam-
ple plots, the most common plot shape in boreal and temperate
forest sampling [74]. However, all remotely sensed datasets used
in [22] and this work are represented by square pixels. Therefore,
using circular field plots is suboptimal, as each model’s corre-
spondence to z needs to be computed by an area-weighted mean
of neighboring pixels. The sequential models are not directly
related to the circular plots, but through the ẑy , which was trained
against z. Nevertheless, when computing the correspondence
between the sequential model’s AGB predictions and z, the
above challenge arises when the area-weighted mean between
square pixels intersecting a circular pixel is computed. In the
end, this will influence the overall accuracy of the models. Note

that the sampling design in [74] was optimized for field-based
estimation of AGB given a limited budget for inventories, not for
upscaling supported by RS, in which case the species diversity
and spatial variability of AGB in the miombo woodlands imply
that larger sample plots should be used. We sustain [95], which
concludes that decisions regarding the sample plot size, and
thereby its shape, is one of many parameters that have to be
considered in future field-based surveys if one aims to enhance
estimation through the use of remotely sensed data.

VII. CONCLUSION

The focus of this work was to investigate the suitability of
Sentinel-1-based models for AGB prediction in an MRV system
for miombo forests in Tanzania. Previously, Næsset et al. [22]
developed traditional nonsequential regression models for AGB
in a Tanzanian AOI using either ALS, TanDEM-X InSAR,
RapidEye, Landsat, or PALSAR data with a limited amount of
ground reference AGB data. The ALS-based AGB predictions
achieved the highest accuracy, but the cost and infrequent update
of ALS data prevent this model from being of practical use in
an MRV system. Therefore, we turned to freely available and
easily accessible Sentinel-1 data for this work and developed
three different models for AGB prediction from this source: A
traditional nonsequential model, a baseline sequential model,
and a DL-based sequential model. We compared each model’s
accuracy on the AGB prediction task. Additionally, maps of
AGB predictions were compared and evaluated with respect to
their ability to recreate realistic biomass dynamics. The model
performances and most important results are summarized below.

1) Nonsequential Sentinel-1 Model: This model was, as the
models in [22], trained against the limited ground reference
data. Its performance can, therefore, be directly compared to
the results in [22]. Among all models proposed for this work,
this model achieves the lowest RMSE and highest correlation
coefficient (R) against ground reference data. Although this
model cannot predict AGB levels between 0 and 20 Mgha−1, it
performs better than the InSAR-based model in terms of R and
RMSE. It is only beaten by the ALS-based and the RapidEye-
based models [22]. However, the nonsequential Sentinel-1
model achieves the highest RMSE in a pixel-by-pixel compari-
son with the ALS-predicted AGB map. Hence, we conclude that
it sacrifices a more realistic prediction of the dynamic range and
local variability of AGB values to meet the goal of producing a
low RMSE against ground reference data.

2) Sequential Models: These were developed to enable AGB
prediction on a larger scale through a modeling strategy with
two subsequent regression models. We propose to employ the
ALS-based model [22] as the first model. The second model
in the chain is trained to relate SAR backscatter images to
ALS-based AGB prediction maps, which are used as a surrogate
for ground reference data. The baseline sequential model applies
a traditional statistical regression model also in the second
stage. The alternative sequential model instead uses a DDN
for cross-modal image-to-image translation, i.e., the Pix2Pix
cGAN architecture [35] with some modifications warranted by
the application. This cGAN architecture generates synthesized
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ALS-based AGB predictions during model fitting by condition-
ing on SAR backscatter data. In contrast to the other models,
it uses contextual information from pixel neighborhoods in its
predictions. The baseline sequential model, followed by the
Vanilla GAN model, achieves the highest R and lowest RMSE
against the ALS-based AGB predictions. Conversely, the LS-
GAN model is the best among the sequential models at reproduc-
ing ground reference data, and is only beaten by the ALS-based
and RapidEye-based models from [22]. In this respect, the
LSGAN model achieves slightly higher RMSE and lower R
than the nonsequential Sentinel-1-based model. However, the
LSGAN model can predict AGB levels around 0 Mgha−1 and
also achieves higher correlation with the ALS-based predictions.
Thus, the contextual cGAN-based models seem to better capture
the dynamic range and local variability of AGB.

We have in this research demonstrated the potential of utiliz-
ing Sentinel-1 data for AGB prediction in Tanzania. Although
C-band Sentinel-1 data traditionally have been considered an
inferior information source for AGB estimation due to low
penetration of the canopy, our results show that Sentinel-1-based
models are a viable alternative for forest AGB retrieval, espe-
cially considering that the data are freely available.

APPENDIX

This appendix includes a specification of the modifications
done to the Pix2Pix architecture [35] to make it suitable for
generation of synthetic ALS-based AGB image patches in our
sequential modeling strategy. It also provides additional exper-
iments and results that were conducted for this work.

A. Modified Pix2Pix Architecture

The cGAN-based sequential model used for generation of
synthetic ALS-based AGB image patches, ẑy|x, is based on the
image-to-image translation framework Pix2Pix [35]. To meet
our needs, we modified it in the following ways.

1) We enable the use of calibrated pixel values read from
image files in GeoTIFF format. This is necessary since
we work with images with pixel values that carry informa-
tion about physical entities and represent either calibrated
σ0 values (backscatter coefficients) or AGB predictions
measured in Mgha−1.

2) We change the activation function in the output layer from
a hyperbolic tangent (tanh) function used in [35] to a rec-
tified linear unit (ReLU) activation function. In an earlier
phase of this work [96], we noticed that the tanh activation
function we used in the output layer generated AGB values
that overestimated the ALS-based AGB predictions from
[22], and particularly failed to predict AGB values close
to zero. An essential criterion for our cGAN regression
model is that it should be able to predict zero biomass to
correlate well with AGB ground reference data, z, in non-
vegetated areas. The overprediction observed in [96] can
be explained by the nature of the tanh activation function.
As the range of the tanh function is [0.0, 1.0], it implies
that all data introduced to the cGAN need to be normalized
to the same range. The tanh function must output exactly
zero to predict zero biomass, which only happens when the

Fig. 13. Boxplot comparison between models trained with different types ofD
on datasets produced with or without speckle filtering. Green triangles indicate
the mean value computed over the five folds, while orange horizontal lines
indicate the median.

action potential goes to−∞. This explains why prediction
with the tanh function seems to clip the AGB values at a
level higher than zero.

In conclusion, by substituting the tanh activation function with
a ReLU function in the output layer and allowing the regression
target to be calibrated AGB values in Mgha−1 units, instead of
being normalized to [0.0, 1.0], our modified Pix2Pix architecture
no longer overestimates AGB that should be close to zero.

B. Experiment 1: A Study of the Impact of Speckle Filtering
and Choice of Discriminator Network

A common preprocessing step for SAR products is speckle
filtering. Speckle filters reduce the effects of the inherent speckle
phenomenon on the product and smooths the pixel values. In
this experiment, we evaluate if speckle filtering of the Sentinel-
1product affects the accuracy and the quality of cGAN-generated
AGB predictions. To this end, we created two different datasets
from the Sentinel-1 GRD product: The first was produced by
following the SAR processing workflow defined in Section IV-B;
for the second dataset, we used the refined Lee filter [77] with
SNAP’s default window size of 7× 7 to apply speckle filtering
between steps 4) and 5) in the same workflow. We refer to them
as the Sentinel-1 dataset with and without speckle filtering. A
separate cGAN network was trained on each.

Additionally, we evaluated the three discriminator networks
D presented in Section IV-D2 against each other to assess
their effect on cGAN performance for data generation. For all
experiments in this section, we trained the cGAN for 200 epochs
using a ResNet-6 network, WGAN-GP objective function, batch
size (BS) of 2, layer normalization (LN) for D, and batch
normalization (BN) for G. These settings were determined by
the model validation results presented in [96].

Results: A boxplot of average RMSE, computed between ẑy
and ẑy|x for the different models trained with five-fold CV, is
shown in Fig. 13. Light blue bars indicate results obtained with
models trained on speckle filtered data, while dark blue bars
represent models trained on unfiltered data. Within a specific
color, the left, middle, and right-most bar represent models
trained with a PixelGAN, a 16× 16 PatchGAN, and a 34× 34
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Fig. 14. Impact of normalization method, BN or IN, on model performance. Light blue bins and dark blue bins represent models trained with BS and IN,
respectively. Green triangles are mean values computed over the five folds, while orange vertical lines are medians. The two vertical black lines in each column
are arbitrary reference lines to easen visual comparison. Columns: Models trained with Vanilla GAN (left), LSGAN (middle), and WGAN-GP (right).

PatchGAN, respectively. Overall, Fig. 13 shows less spread and
tighter boxes for models trained on the dataset where speckle fil-
tering was omitted. Thus, during preprocessing of the Sentinel-1
product, speckle filtering should be skipped to achieve slightly
smaller RMSE between ẑy and ẑy|x. In general, Fig. 13 also
shows that the specific type of discriminator has little impact on
the average RMSE for the dataset without speckle filtering. As
the PixelGAN discriminator produces slightly less spread than
the two other discriminator networks, we applied it to all re-
maining experiments in this work and choose to omit speckle
filtering in the processing of the Sentinel-1 product.

C. Experiment 2: A Comparison of Model Architectures,
Normalization Methods, and Objective Functions

Here, we investigated if any combination of model archi-
tecture, normalization method, and cGAN objective function
improves the accuracy of ẑy|x with respect to ẑy . Based on the
results in Section A2, we kept the dataset fixed, i.e., we used
the Sentinel-1product processed without speckle filtering and
applied the 1× 1 PixelGAN discriminator for all models trained
in this section. Nine different cGAN generator architectures G
were trained by combining the three ResNet networks and the
three objective functions from Section IV. We also applied BN or
instance normalization (IN) for Vanilla GAN and LSGAN, while
for WGAN-GP, we applied LN for D and either BN or IN the
G network, as suggested in [81]. We additionally experimented
with a BS between 1 and 4. For each model, we applied 5-fold
CV, and trained it for 200 epochs. We evaluate the different
models on the 5-fold CV test sets by visualizing boxplots of
average RMSE computed between ẑy and ẑy|x.

Results: Fig. 14 visualizes models trained on the three differ-
ent objective functions in separate columns, i.e., Vanilla GAN in
the left column, LSGAN in the middle column, and WGAN-GP
in the right column. We show models trained with BN in light
blue color, while models trained with IN are shown in dark blue
color. For all three objective functions, models trained with BN
achieve a smaller average RMSE. Additionally, Fig. 14 shows
that most models trained with BN also experience a smaller
spread in average RMSE over the 5-fold CV dataset. Thus, we
conclude from Fig. 14 that applying BN is preferable to produce
ẑy|x predictions with smaller average RMSE.

In Fig. 15, we compare models trained with different ResNet
architectures and BS values to each other. In the left column,
the models are first sorted by objective function, then by as-
cending BS, and finally by ascending ResNet model order. The
grouping by BS is indicated with colors. In the middle column,
models are again first sorted by objective function, but then
by ascending ResNet model order (color-coded groups), and
finally by ascending BS. In the right column, models are first
sorted by ascending ResNet model order, then by ascending
BS (color-coded groups), and, finally, by objective function.
Overall, Fig. 15 shows that the choice of objective function has
little influence on the average RMSE, as the group of bins for
the different objective functions look very similar to each other.
Neither does the choice of ResNet model order have a significant
impact on the average RMSE, although the positions of the green
triangles in the left column of Fig. 15 indicate that ResNet-6 has
a slightly smaller mean value than ResNet-5 and ResNet-4. What
influences the average RMSE the most is the choice of BS. All
columns show that BS = 1 yields a smaller spread of average
RMSE, but also a higher mean value. Models trained on BS =
2, 3, or 4 achieve a similar spread of average RMSE for all three
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Fig. 15. Boxplot of average RMSE for models trained with all three objective functions, ResNet-4, 5, or 6, with BS varying between 1 and 4 and BN only. Green
triangles indicate the mean value computed over the five folds, while orange vertical lines indicate the median. The two vertical black lines are arbitrary chosen
reference lines to easen visual comparison. Left column: Grouped by BS in ascending order (top to bottom). Middle column: Grouped by ResNet in ascending order
(top to bottom) in addition to BS in ascending order (top to bottom). Right row: Grouped by objective functions together with similar hyperparameters, sorted by
ResNet and BS in ascending order (top to bottom).

objective functions, although the WGAN-GP shows slightly less
spread. To summarize, the choice of normalization method and
batch size has the largest impact on the RMSE, compared to
other hyperparameters and the objective functions for the G or
D networks. We recommend that BN should be chosen instead
of IN, and that BS = 1 should be avoided.

D. Image Patch Generation

In this experiment, we evaluated the correspondence between
generated image patches ẑy|x to ẑy . Table III lists the implemen-
tational choices for each cGAN variant used in this experiment;
these are based on the validation described above; see Sections
A2 and A3. Each cGAN variants were trained on a training set,
while the test sets were kept aside. After training, we allowed
the trained G network of each model to generate ẑy|x image
patches from Sentinel-1 image patches. These Sentinel-1 image
patches were from the test set, and had therefore not been seen
by the network during training. Since the test set also contains
the corresponding target, i.e., ẑy image patches, these were
used to evaluate the generator’s performance quantitatively and
qualitatively.

Results: For each of the models in Table III, we select test
patches, i.e., ẑy|x and corresponding ẑy , having the smallest
and greatest RMSE (Mgha−1) to investigate the worst and best
case scenarios. The RMSE is computed over all pixels within the
image test patch. Fig. 16 shows a qualitative comparison of the

TABLE VIII
LIST OF MINIMUM AND MAXIMUM RMSE FOR THE TEST IMAGE PATCHES

SHOWN IN FIG. 16

The listed models are from Section A4 and only differ from each other by the objective
functions.

identified test patch with the smallest and greatest RMSE for the
three models. The first row of Fig. 16 visualizes patches from
the input domain, i.e., Sentinel-1, the middle row from the target
domain, i.e., ẑy , and the third row from the generated domain,
i.e., ẑy|x. Columns with caption Min indicate an image patch
with the smallest RMSE for a specific model, while caption
Max instead indicates an image patch with the largest RMSE.
Columns (a) and (b) correspond to patches from the optimal
Vanilla GAN, (c) and (d) from the optimal LSGAN, while (e) and
(f) are from the optimal WGAN-GP. Quantitative comparisons
of RMSE for the patches in Fig. 16 are shown in Table VIII.

As the same patch was identified as the easiest to translate
by both the Vanilla GAN and the LSGAN models, these two
cGAN variants must have learned similar translation dynamics
between the input and output domains. See columns (a) and (c)
of Fig. 16. The results provided in Section V-B3 also point to
the same direction; overall, the Vanilla GAN and the LSGAN
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Fig. 16. First row: Sentinel-1 patches. Second row: Target image patches, i.e., ALS-based AGB predictions ẑy . Third row: Generated synthetic image patches,
i.e., ẑy|x. Columns (a) and (b): Vanilla GAN; (c) and (d): LSGAN; (e) and (f): WGAN-GP. Columns with caption Min and Max, respectively, refer to an image

patch within the test set that achieves minimum and maximum RMSE, computed over all 64× 64 pixels in the test patch (Mgha−1).

Fig. 17. Scatter plots between AGB ground reference data, z, and model-predicted AGB. Upper row: models trained with Sentinel-1 data on dB scale, i.e., (b) the
proposed Vanilla GAN, (c) LSGAN, and (d) WGAN-GP models. Lower row, same models as above, but trained with Sentinel-1 on linear scale. (a) Model-predicted
AGB values from the baseline sequential regression model given in (2) trained with Sentinel-1 data on linear scale. The black lines are reference lines indicating
100% correlation between z and AGB predictions. Units are in Mg ha−1.
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models perform more similar to each other and achieve higher
accuracy than the WGAN-GP model. Table VIII clearly shows
that the WGAN-GP model is the worse among the three, having
an RMSE which is almost twice as high as for the Vanilla GAN
or LSGAN. From Fig. 16, it can be noted that all three objective
functions seem to be approximately equally appropriate for
translating from X to ẑy|x ∈ Z when patches from the two
domains have similar appearance, but struggle when the X
and ẑy|x ∈ Z domains deviate from each other in appearance.
Visually, all three objective functions generate synthetic patches
which are somewhat more blurry than ẑy predictions. Blurriness
is a known weakness with generative models, such as GANs
[97], [98]. Several possible explanations to it exists; for example,
that blurriness can be related to the transposed convolution
upsampling method used in the second part of the G network.
These upsampling methods affect the model’s ability to correctly
reproduce the spectral distribution in images, or to generate new
images with sharp high-frequent components such as edges [98].

E. Comparison of Linear or dB-Scale SAR Input

In the Sentinel-1 processing workflow, we settled for, see
Section IV-B, conversion to dB scale was only applied if the
Sentinel-1 scene was used by the cGAN-based sequential mod-
els. The use of dB scale on the Sentinel-1 data for these models
was decided by the results of the experiments provided in this
section. We evaluated the impact of keeping the Sentinel-1 input
data on linear scale versus to transform it to a logarithmic
decibel (dB) scale. This was done by creating two versions
of the Sentinel-1 dataset, where conversion to dB was applied
to one of these. Except for this step, both Sentinel-1 datasets,
referred to as Sentinel-1 linear or Sentinel-1 dB, were identically
processed. For each of the optimal model implementations listed
in Table III, we trained one model on the Sentinel-1 linear
dataset and another on the Sentinel-1 dB dataset. This yielded
six different possibilities to generate ẑy|x, i.e., three different
linear cGAN-based models and three different dB cGAN-based
models. From each of these six models, we extracted ẑy|x
predictions corresponding to the position of each AGB ground
reference measurement z.

Results: We provide scatter plots of ẑy|x predictions and z in
Fig. 17, where Fig. 17(b)–(d) represents results from the cGAN
models trained on linear scale, while Fig. 17(e)–(g) represent
corresponding results from the cGAN models trained on dB
scale. For comparison with the baseline sequential Sentinel-1
model, we also show a corresponding scatter plot of it in
Fig. 17(a) [it is the same figure as in Fig. 11(a)]. We also provide
computed RMSE, R, and MAE in each scatter plot. Overall,
Fig. 17 shows that R decreases while both RMSE and MAE
increase if any of the cGAN models are trained on linear scale
as compared to dB scale. We conclude that the conversion of
calibrated σ0 values to dB scale, which increases the dynamic
range of the pixel values in the image, is advantageous for
achieving more accurate image-to-image translation through the
cGAN architecture.

F. Postcalibration of Sequential Models

Although the nonsequential Sentinel-1 model cannot predict
AGB between 0 and 20.3 Mgha−1, it still achieves a higher
correlation coefficient R and a lower RMSE/MAE with respect
to z than any of the proposed sequential models. One expla-
nation can be that the nonsequential model had access to the
ground reference data z during model fitting. By contrast, the
sequential models were only using ẑy during model fitting and
have therefore not been calibrated against z. In this experiment,
we investigated if the accuracy of the sequential regression
models could improve if we, after constructing the synthetic
AGB prediction maps, calibrated them against z. As the original
LSGAN model achieved the highest correlation with z, we focus
the experiments in this section on this model and the baseline
sequential Sentinel-1 model. Furthermore, for the LSGAN, we
considered both Sentinel-1 data on linear scale and dB scale.
Overall, we investigated five common calibration methods, i.e.,
linear, exponential, gamma, nth-root, and logarithmic calibra-
tion. Among these, we choose to show gamma and linear
calibration results, as we obtained the best results with these
methods.

Results: Fig. 18 shows results from the experiment with
postcalibration of ẑy|x, i.e., scatter plots between z and cali-
brated model-predicted AGB. To ease the comparison, we have
provided some reference images, which are retrieved from the
results presented in Section V, i.e., scatter plots for the ALS-
based model [Fig. 18(a)], the nonsequential Sentinel-1-based
model [Fig. 18(b)], LSGAN on dB scale Fig. 18(c)], LSGAN
on linear scale [Fig. 18(f)], and the baseline sequential Sentinel-1
model [Fig. 18(i)]. We show results for the calibrated LSGAN
model on dB scale using gamma calibration in Fig. 18(d) and
linear calibration in Fig. 18(e). Furthermore, we show results
for the calibrated LSGAN model on linear scale using gamma
calibration in Fig. 18(g) and linear calibration in Fig. 18(h).
Fig. 18(j) and (k) shows the results for the calibrated baseline
sequential Sentinel-1 model on linear scale using gamma cali-
bration [Fig. 18(j)] and linear calibration [Fig. 18(k)].

We note from the figure that the gamma and linearly calibrated
models yield slightly lower or lower RMSE/MAE for all models
included in the evaluation. For the LSGAN models, the gamma
calibration reduces R slightly, while the correlation coefficient is
unchanged for the linear calibration. For the baseline sequential
model, R is unchanged for both the gamma and the linear
calibration. Unfortunately, neither of the models achieve as high
R and low RMSE/MAE as the nonsequential Sentinel-1-based
model, nor the nonsequential ALS-based model. However, the
LSGAN models, with or without calibration, can still predict 0
AGB, while neither of the baseline sequential models, with or
without calibration, can produce such low AGB predictions. We
conclude from this experiment that postcalibrating sequential
AGB predictions against z can yield some modest improve-
ments to higher accuracy. However, as these possible modest
improvements come with the cost of applying an extra step to the
prediction process, we choose to omit it in the results provided
in Section V-B3.
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Fig. 18. Scatter plots between predicted AGB and ground reference AGB data, z. (a)–(c), (f), and (i) Reference images, corresponding to AGB predictions from
the ALS-based regression model, the nonsequential Sentinel-1 model, the LSGAN model trained with dataset on dB scale, the LSGAN model trained with dataset
on linear scale, and the baseline sequential Sentinel-1 model trained with dataset on linear scale. (d), (g), and (j) AGB predictions from respective model after
calibration with gamma transform. (e), (h), and (k) Corresponding results after calibration with a linear transform. The black lines are reference lines indicating
100% correlation between z and predictions. Units are in Mg ha−1.
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