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Resumo 
 

O crescente desenvolvimento do setor espacial tem vindo a impulsionar novas tecnologias e 

métodos inovadores. Um destes métodos, o rendezvous orbital, está presente desde a década 

de 60, e consiste em aproximar dois veículos espaciais, um deles passivo denominado de 

“target” e o outro ativo denominado de “chaser”. Este segundo, por sua vez, executa manobras 

com o auxílio de propulsores de modo a reduzir a distância relativa entre os dois veículos até 

que esta seja aproximadamente nula. Inicialmente, este processo era feito manualmente, no 

entanto, atualmente, a tecnologia progrediu de tal forma que o processo consegue ser 

completamente autónomo. No início da automação desta manobra espacial, a preocupação 

seria apenas completar a missão, contudo esta progrediu no sentido de melhorar este processo 

de automação tendo em conta o consumo de propelente e a quantidade de tempo gasto. Desta 

forma, a presente dissertação tem como objetivo desenvolver e implementar um controlador 

robusto, baseado numa metodologia de Lyapunov, de modo a mostrar a sua performance, 

robustez e eficácia numa missão de rendezvous orbital. Ao utilizar um sistema linear dinâmico 

em que a excentricidade da órbita do “target” se assume como uma incerteza do sistema, o 

controlador não-linear consegue criar uma trajetória suave, para que o “chaser” se aproxime 

do “target”. Os resultados obtidos demonstram que este controlador consegue encontrar a 

solução para o problema de rendezvous tanto para pequenas distâncias e velocidades relativas 

assim como para grandes, gerando sempre trajetórias suaves sem ultrapassar o “target”. 

Verifica-se também que, mesmo perturbando o sistema com a incerteza, o controlador 

consegue gerar uma trajetória robusta com ótimos resultados. Este tipo de controlador para 

missões de rendezvous, para além de ser robusto e eficaz, como demonstrado nos resultados 

obtidos, consegue gerar ótimos resultados para rendezvous entre órbitas não-coplanares não-

circulares. 
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Abstract 
 

The growing development of the space sector has been driving new technologies and innovative 

methods. One of these methods, the orbital rendezvous, has been around since the 1960s and 

consists of bringing together two spacecrafts, one of them is passive, named "target", and the 

other is active, called the "chaser". This second spacecraft, in turn, performs maneuvers with 

the aid of thrusters in order to reduce the relative distance between the two vehicles until it 

is approximately zero. Initially, this process was done manually, however, today technology has 

progressed such that the process can be completely autonomous. At the beginning of the 

automation of this space maneuver, the concern would only be to complete the mission, 

however, it has progressed towards improving this automation process taking into account 

propellant consumption and the amount of time spent to perform it. Thus, the present 

dissertation aims to develop and implement a robust controller, based on a Lyapunov’s 

approach, to show its performance, robustness, and effectiveness in an orbital rendezvous 

mission. By using a linear dynamic system, where the orbital eccentricity of the target is 

assumed to be a system uncertainty, the nonlinear controller can create a smooth trajectory 

so that the chaser approaches the target. The results show that this nonlinear controller can 

find the solution to the problem of rendezvous for short relative distances and low relative 

speeds as well as for large, always generating smooth paths without overshooting the target. It 

was also found that even by disturbing the system with uncertainty, the controller can generate 

a robust trajectory with great results. This type of controller for rendezvous missions, besides 

being robust and effective, as demonstrated in the obtained results, can generate excellent 

results for rendezvous between non-circular non-coplanar orbits. 
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Chapter 1 - Introduction 

 
Since the dawn of mankid, the sky and the space beyond have always been a cause of wonder. 

Initially adopted by men to guide them on the discovery of new worlds on Earth, space turned 

out to be a profitable way of making business and testing new technologies. It all started out 

with Sputnik-1, a very simple USSR satellite, with the objective of demonstrating launching and 

orbiting capabilities of the Sputnik program. From there it started the famous space race that 

boosted space exploration which led to massive investments on space technology. No more than 

8 years later, the first successful rendezvous mission took place with the spacecrafts Gemini 6 

and Gemini 7. Later on, the moon landing happened, becoming a milestone in space 

exploration. Subsequently, new space programs such as the International Space Station (ISS), 

the Space Shuttle and the Mir Station were launched.  

Currently, the continued presence in space has been established, starting with the assembly 

of the ISS. Maintaining and delivering supplies and/or astronauts to this facility is an ongoing 

process that requires performing a successful rendezvous and docking maneuver. The orbital 

rendezvous and docking process was initially performed manually, i.e., by the spacecraft’s crew 

or by a ground station. By doing so, many safety issues would arise, and the mission’s success 

could be compromised. In order to overcome this problem and to guarantee the human factor 

is not a risk to the mission, some spacecrafts such as the European automated transfer vehicle 

(ATV) and the Japanese H-II Transfer Vehicle (HTV) both unmanned, rely on an absolute GPS 

navigation based on position, velocity and time (PTV) filtering that provides the absolute 

position estimation with the accuracy required by the specific relative GPS processing. 

More recently, the SpaceX Dragon was appointed to deliver cargo, making it the first-ever 

reusable cargo spacecraft. Following this development, Dragon-2 is currently being tested to 

perform fully automated RND’s delivering cargo and/or personnel to the ISS.  

In the future, RND operations may be used to refuel spacecrafts, on-orbit, for interplanetary 

expeditions, making access to space more affordable. 
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Figure 1.1: SpaceX Dragon-2 docking with the ISS. 

 

1.1 Orbital Rendezvous and Docking Operations 

The orbital rendezvous is one of the many maneuvers performed by spacecrafts during their 

missions. The rendezvous maneuver implies a pre-determined meeting between two 

spacecrafts, the chaser and the target spacecrafts, with a specific mission (delivering supplies 

and/or personal, maintenance, etc.), where the two entities’ relative position and velocity 

approximate to zero. The designations “chaser” and “target” are assigned based on the use of 

thrusters to perform the orbital maneuver, where the chaser is classified as “active” and the 

target is classified as “passive” regarding the use of its propulsion system to complete the task 

at hand. In some cases, the target can also use thrusters in the orbital rendezvous, in which 

case its classification changes to “active”. 

Regarding human space activities, the rendezvous maneuver is, most of the time, hand to 

hand with the docking maneuver, where the first one is needed for the second one to be 

accomplished. A typical rendezvous and docking maneuver (RND) can be divided into five stages 

named launch, phasing, close-range rendezvous, final approaching, and docking. The close-

range rendezvous is then subdivided into the homing and closing phases.  

The launch stage starts when the chaser is launched into space with the intent to perform 

an orbital rendezvous. The following phase, the phasing stage, where the main goal is to start 

the relative navigation using the ground telemetry tracking and command network, requiring 

the chaser to detect the target, is achieved by carrying out several maneuvers to reduce the 

orbital plane differences, to adjust the phase angle between the chaser and the target and to 

increase the orbital height. 

In the homing phase, the aim is to autonomously attain the target’s orbit and to reduce the 

chaser’s relative velocity, where the phase’s final position is only a couple of kilometers away 

from the target and denominated a station-keeping point, a location where orbital maneuvers 

are executed in order to keep a spacecraft in an assigned orbit.  

In the closing phase, the chaser gets to another station-keeping point located a few hundred 

meters away from the target. Finally, to complete the RND maneuver, the final approaching 

phase takes place, where the chaser approaches the target along a straight line, satisfying the 



 3 

relative position, velocity, attitude and angular rate requirements for the docking. The 

procedure is completed when the chaser touches the target. Figure 1.2 illustrates a typical RND 

process, as described above. 

 

Figure 1.2: Spacecraft rendezvous and docking process. 

 

1.2 Rendezvous Guidance Schemes 

RND maneuvers have always been a hard challenge to overcome throughout space missions’ 

history. In the early years, for the Apollo Lunar Landing program, the focus of the rendezvous 

guidance systems was mostly on coplanar and near-circular orbits, while in close proximity, 

making them only relevant for the terminal rendezvous phase. Those systems would rely on the 

positions and velocities of the two spacecrafts in a common frame and would employ continuous 

corrections while canceling the angular rate of the line of sight (LOS) by applying a thrust 

normal to the vector connecting the two spacecrafts. Some early studies mainly focused on the 

optimization of linear rendezvous trajectories, i.e., the propellant-optimal linear impulse 

rendezvous problem. Lawden [1] proposed the use of primer-vector theory of impulse 

maneuvers, based on the Pontryagin maximal principle, while also providing the first-order 

conditions for propellant-optimal trajectories. Lion and Handelsman [2] later improved the 

primer-vector theory to the non-optimal primer-vector theory by adding maneuver or coasting 

arcs, showing that a trajectory not satisfying Lawden’s first-order conditions could be improved 

to an optimal one. More recently, Wang et al. [3] extended the primer-vector theory to help 

optimize a four-impulse elliptical rendezvous trajectory while many studies tried to deal with 

propellant-optimal, time and trajectory optimizations became a concern too. Miele et al. [4] 

used a sequential gradient-restoration algorithm (SGRA) to obtain time-optimal and fuel-

optimal solutions for the rendezvous problem in a circular orbit.  

Until recently, almost all the solutions to deal with the rendezvous problem assume the 

target’s orbit to be perfectly circular, which isn’t the case in the real world. To deal with this 

gap, Wan et al. [5] developed a robust guaranteed cost observer-controller in near-circular 

orbits using the noncircularity of the target orbit as a parametric uncertainty. Furthermore, a 

multi-objective robust 𝐻  controller [6] was also proposed to solve the rendezvous problem of 



 4

two neighboring spacecrafts exposed to parameter uncertainties and external perturbations, 

using a Lyapunov approach. Although 𝐻  guarantees robustness, since it takes into 

consideration that the worst possible disturbance cannot destabilize the system, performance 

objectives may not be fulfilled such as time-optimal and/or fuel-optimal solutions. To 

guarantee robust stability and performance, Haddad et al. [7] suggest a generalization of the 

classical Hamilton-Jacobi-Bellman conditions to deal with the design of robust nonlinear 

optimal controllers for uncertain linear systems. Such a controller is attained by modifying the 

nonlinear-nonquadratic performance criterion to account for system uncertainty.  

Going even further, studies on the rendezvous problem started to account for perturbations 

such as the aerodynamic drag and Earth oblateness. Park et al. [8] used a two-step sliding mode 

control in the presence of the earth’s gravitational perturbation while minimizing the amount 

of delta-v needed to perform the rendezvous. Further, Pernicka et al. [9] proposed optimal 

techniques for determining translational and rotational maneuvers that simplify the RND 

process, while considering the Earth oblateness, more precisely, the 𝐽  perturbation. 

The tides shifted from having guidance controls where the goal was to have a successful 

mission, independently of the propellant consumption, to having precise systems that account 

for time, fuel and trajectory optimizations while under perturbations, and they will, most 

likely, progress to even more precise and safer systems. 

 

1.3 Objectives and Contributions 

The present dissertation aims to demonstrate the robustness and performance of a nonlinear 

control when applied to a dynamic linear model of a rendezvous problem where the chaser 

spacecraft performs a rendezvous maneuver in a near-circular orbit. A first-order relative 

uncertain motion model in near-circular orbit is employed to account for the noncircularity of 

the target orbit as a parametric uncertainty. Following the controller design, four simulations 

will be made to generate four numerical examples to be examined and compared. The first 

three examples will demonstrate the controller robustness for a range of relative distances and 

velocities while the last one will demonstrate that the controller can still deliver great results 

even when perturbations are added to the system. 

The present framework intents to find safer and more reliable solutions for the growing need 

for new controllers on RND operations. 

 

1.4 Layout of the Dissertation 

The present dissertation is divided into five chapters, where each one provides detailed 

information regarding current methodologies, used algorithm, results and so one. 

The first chapter is used as an introduction to the dissertation, briefly explaining the concept 

of Rendezvous and Docking, mentioning current methodologies applied to rendezvous problem 

and commenting on the objectives and contributions of the present dissertation. 
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The second chapter describes the relative motion model and the coordinate system that was 

used, while presenting the progress on the relative dynamic equations, from the basic to the 

point where it takes into account parametric uncertainty. 

The third chapter explains how to obtain the nonlinear control law for the rendezvous 

problem using a Lyapunov based approach, briefly describing the concepts of linear systems, 

and feedback control while also explaining the used methodology in the current dissertation. 

The fourth chapter presents the results obtained using the designed controller in the 

previous chapter, presenting four examples, three with no perturbations and one with, where 

comments are made regarding robustness, performance, and efficiency of the nonlinear 

controller. 

The fifth and last chapter presents a brief summary of the dissertation, stating its 

objectives, used methodology, obtained results and future perspectives. 
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Chapter 2 – Dynamic Model 

 
Man has always tried to translate natural phenomena into a language that he comprehends 

best. From fields such as biology to mathematics and physics, models have been made to 

understand and portray what surrounds the human species. The space beyond Earth’s 

atmosphere is no exception, therefore, many models were created to represent, as accurate 

as possible, the mechanisms that rule in such a harsh environment.   

 
2.1 Coordinate System 

To formulate the rendezvous problem and to define its dynamical model a coordinate system 

must be chosen first. A local vertical local horizontal (LVLH) frame centered on the target 

spacecraft is used, where the x-axis, also called R-bar, is directed radially outward along the 

position vector r, centered on Earth, the y-axis, also called V-bar, is along the velocity direction 

and the z-axis, also called H-bar is normal to the reference orbit plane. Figure 2.1 illustrates 

the coordinate system described above.  

 
Figure 2.1: Local vertical local horizontal frame. 

 

2.2 Relative Motion Model 

 

2.2.1 Basic relative dynamics equations 

On the early steps of the RND breakthrough, only basic orbital relative motion models existed. 

Clohessy and Wiltshire [10] developed one of them in which state that when two spacecrafts, 

orbiting the same body in near-circular orbits, have a relative distance much shorter than the 

spacecraft’s geocentric distance, while ignoring orbital perturbations, the relative motion can 

be described by the following set of linear dynamics equations 
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�̈� + 2𝜔𝑦̇ + 3𝜔 𝑥 = 𝑎
�̈� − 2𝜔�̇� = 𝑎

�̈�+𝜔 𝑧 = 𝑎

 (2.1) 

 

where ω is the orbital angular rate of the target and 𝑎 , 𝑎  and 𝑎  are the thrust acceleration 

components on each axis. The Clohessy-Wiltshire equations also referred to as the Hill 

equations, have a closed-form analytical solution that allows the relative motion to be divided 

into two different parts, the in-plane motion (x-y plane) and the out-of-plane motion (z-

direction). Also, by looking at the equation set, it is noticeable that only the motion in the 

directions of 𝑥 and 𝑦 are coupled with each other. Furthermore, when the control forces are 

removed, the out-of-plane trajectory waves as a trigonometric function and the in-plane 

trajectory relates closely to its initial state. 

 

2.2.2 Relative dynamics equations with parametric uncertainty 

When the chaser spacecraft experiences an additional perturbing force 𝑓, the set of equations 

that describes the relative motion using a cartesian referential can be derived as [11] 

 

⎩
⎪
⎨

⎪
⎧ �̈� =

2𝜇

𝑟
𝑥 + �̇�𝑦 + 𝜔 𝑥 + 2𝜔�̇� +

𝑓

𝑚

�̈� = −
𝜇

𝑟
𝑦 − �̇�𝑥 + 𝜔 𝑦 − 2𝜔�̇� +

𝑓

𝑚

�̈� = −
𝜇

𝑟
𝑧 +

𝑓

𝑚

 (2.2) 

 

where μ is the gravitational parameter, 𝑓 , 𝑓  and 𝑓  are the components of the control force 𝑓 

and 𝑚 is the mass of the chaser spacecraft. Wan et al. [11] also used a generalized Langrage’s 

expansion theorem to further linearize the equation set (2.2) to allow for the use of linear 

control theory. Furthermore, the equation set (2.2) was rewritten as the functions of the 

eccentric anomaly of the target spacecraft, E, the mean anomaly of the target spacecraft, 𝑀, 

the time of periapsis passage, 𝑡 , and the eccentricity of the target orbit, 𝑒, according to the 

conversions between the orbital parameters and Kepler’s time equation 

 

𝐸 = 𝑀 + 𝑒 sin(𝐸) (2.3) 

 

𝑀 = 𝑛 𝑡 − 𝑡  (2.4) 

 

where 𝑡 is an arbitrary time and 𝑛 is the mean motion defined as 

 

𝑛 =
𝜇

𝑎
 (2.5) 
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with 𝑎 being the semimajor axis of the target orbit. Wan also states that when the eccentricity 

of the target orbit is sufficiently small, the nonlinear terms can be expanded as power series 

in constant 𝑒. By truncating at order 𝑒, the following linearized results are obtained in a 

Keplerian referential 

 

𝜇

𝑟
= 𝑛

𝑎

𝑟
= 𝑛

1

1 − 𝑒 cos 𝐸
≈ 𝑛 (1 + 3𝑒 cos 𝑀) (2.6) 

𝜔 =
ℎ

𝑟
= 𝑛

1

1 − 𝑒 cos 𝐸
≈ 𝑛(1 + 2𝑒 cos 𝑀) (2.7) 

𝜔 =
ℎ

𝑟
= 𝑛

1

1 − 𝑒 cos 𝐸
≈ 𝑛 (1 + 4𝑒 cos 𝑀) (2.8) 

�̇� =
−2ℎ

𝑟
= −2𝑛

𝑒 sin 𝐸

(1 − 𝑒 cos 𝐸)
 ≈ −2𝑒𝑛 sin 𝑀 (2.9) 

 

where ℎ and 𝑟 are the angular momentum and the radius of the target orbit, respectively. Next, 

the state vector can be defined as 

 

𝑥(𝑡) = [𝑥, 𝑦, 𝑧, �̇�, �̇�, �̇�]  (2.10) 

 

and the control vector as 

 

𝑢(𝑡) = 𝑓 , 𝑓 , 𝑓 ,  (2.11) 

 

Now, by substituting (2.6)-(2.9) into the equation set (2.2), the first-order relative motion 

model for rendezvous in near-circular orbits can be rewritten in a matrix form as 

 

�̇�(𝑡) = (𝐴 + ∆𝐴)𝑥(𝑡) + 𝐵𝑢(𝑡) (2.12) 

 

where matrices 𝐴, ∆𝐴, and 𝐵 are defined as 

 

𝐴 =

⎣
⎢
⎢
⎢
⎢
⎡

0
0
0

3𝑛
0
0

0
0
0
0
0
0

0
0
0
0
0

−𝑛

1
0
0
0

−2𝑛
0

0
1
0

2𝑛
0
0

0
0
1
0
0
0

 

⎦
⎥
⎥
⎥
⎥
⎤

 𝐵 =

⎣
⎢
⎢
⎢
⎢
⎡

 

0
0
0
1
0
0

   

0
0
0
0
1
0

   

0
0
0
0
0
1

  

⎦
⎥
⎥
⎥
⎥
⎤

 

∆𝐴 =

⎣
⎢
⎢
⎢
⎢
⎡

0
0
0

10𝑒𝑛 cos 𝑀
2𝑒𝑛 sin 𝑀

0

0
0
0

  −2𝑒𝑛 sin 𝑀
𝑒𝑛 cos 𝑀

0

0
0
0
0
0

−3𝑒𝑛 cos 𝑀

0
0
0
0

−4𝑒𝑛 𝑐𝑜𝑠 𝑀
0

0
0
0

4𝑒𝑛 cos 𝑀   
0
0

0
0
0
 0
0
0

 

⎦
⎥
⎥
⎥
⎥
⎤

 

(2.13) 
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The norm-bounded matrix ∆𝐴 defined as ∃ 𝜆 > 0:  ‖Δ𝐴‖ ≤ 𝜆 that contains eccentricity of the 

target orbit is defined as the noncircular model uncertainty. By using this motion model, the 

controller to be designed will be simpler and more robust. Furthermore, since most rendezvous 

missions are conducted in near-circular orbits, the present model is more accurate for 

engineering applications. Also, comparing it with the equation set (2.2), the near-circular-orbit 

model is more precise, which can guarantee robustness and better performance on the 

controller implementation. Additionally, this kind of relative motion model makes the 

controller design easier than a controller based on elliptical-orbit models.   
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Chapter 3 – Nonlinear Control Law for 

The Rendezvous Problem 

 
Guidance and control of RND operations has always been a case of study since the early days 

of spaceflight. As mentioned before, the rendezvous problem progressed from the mission’s 

successfulness to its optimization, by either minimizing fuel or time or a combination of the 

two.  

Currently, many techniques have been applied to solve the rendezvous control problem. 

Most use real-time computations, on-line or off-line, to generate a priori trajectories plans to 

be further implemented during RND operations. The present chapter presents a brief 

introductory explanation of linear dynamic systems, Lyapunov’s theory and feedback control 

for a better understanding of the rendezvous controller formulation.  

 

3.1 Linear Dynamic System 

A system is merely a collection of elements that interact with its environment using a set of 

input variables 𝑢 and output variables 𝑦. Going further, systems can be classified as static or 

dynamic. A system is said to be static if its output depends only on its present input, i.e. there 

exists a function 𝑓(𝑢, 𝑡) such that for all 𝑡 ∈ 𝑇, 

 

𝑦(𝑡) = 𝑓(𝑢(𝑡), 𝑡) (3.1) 

 

In contrast, a dynamic system requires past input to determine the system output, i.e., there 

exists a function 𝑓(𝑥, 𝑢, 𝑡) and a function ℎ(𝑥, 𝑢, 𝑡) such that 

 

�̇� = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) (3.2) 

𝑦 = ℎ(𝑥(𝑡), 𝑢(𝑡), 𝑡) (3.3) 

 

where 𝑥 and 𝑢 represent the state and control variables, respectively. Most common systems 

take the form 

 

�̇� = 𝐴(𝑡)𝑥 + 𝐵(𝑡)𝑢 (3.4) 

𝑦 = 𝐶(𝑡)𝑥 + 𝐷(𝑡)𝑢 (3.5) 

 

where 𝑥(𝑡) ∈ ℝ , 𝑢: [0, ∞) → ℝ  and 𝑦: [0, ∞)  → ℝ . 𝐴(𝑡) is the 𝑛 × 𝑛 state matrix, 𝐵(𝑡) is the 

𝑛 × 𝑚 input matrix, 𝐶(𝑡) is the 𝑝 × 𝑛 output matrix and 𝐷(𝑡) is the 𝑝 × 𝑚 feedthrough matrix 
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and can be obtained from the Jacobian linearization of a nonlinear system such as the one 

described in (3.2) and (3.3). 

 

3.2 Feedback control 

To control a system is to make its variables obey to a particular value, commonly called the 

reference value. This control can assume two types, the open-loop control, in which the system 

does not measure the output and there is no correction of the actuating signal to make sure it 

leads the system to the reference value and the closed-loop (feedback) control, in which the 

system includes a sensor to measure the output and uses the feedback of the sensed value to 

impact the control variable. 

 

 
Figure 3.1: Diagram of an open-loop system. 

 

 

 
Figure 3.2: Diagram of a closed-loop system. 

 

3.3 Controllability and Observability 

Having a linear dynamic system, it is not enough to state that it can even be controlled or if it 

can even be observed. Kalman introduced these two concepts stating that controllability is 

concerned with whether one can design control input to steer the state to arbitrary values and 

observability is concerned with whether without knowing the initial state, one can determine 

the state of a system given the input and the output. 

 

3.3.1 Controllability 

Considering a system in the state-space form described by equations (3.4) and (3.5), the system 

is controllable if and only if the controllability matrix 

 

𝒞 = [𝐵 𝐴𝐵 𝐴 𝐵 … 𝐴 𝐵] (3.6) 

has 𝑟𝑎𝑛𝑘(𝒞) = 𝑛. 
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3.3.2 Observability 

Just like controllability, the observability of a system can be checked using a similar test. Given 

the same system in the state-space form described by equations (3.4) and (3.5), the system is 

observable if and only if the observability matrix 

 

𝒪 =

⎣
⎢
⎢
⎢
⎡

𝐶
𝐶𝐴

𝐶𝐴
⋮

𝐶𝐴 ⎦
⎥
⎥
⎥
⎤

 (3.7) 

 

has 𝑟𝑎𝑛𝑘(𝒪) = 𝑛. 

 

3.4 Lyapunov Stability Theory 

With the observability and controllability concepts, one has tools to survey the linear dynamic 

system, but it still fails to have the tools to control it. One way to control a system is by using 

a point of equilibrium where the stability of solutions near it is assessed. Lyapunov stability 

theory uses this principle by providing a means of stabilizing unstable nonlinear systems using 

feedback control. By selecting a suitable Lyapunov function and force it to decrease along the 

trajectory of the system, one can converge the system to its equilibrium. This rate of 

convergence to the equilibrium can also be controlled by forcing the Lyapunov function to 

decrease to zero faster. To illustrate this theory, consider the general nonlinear autonomous 

dynamical system 

 

�̇�(𝑡) = 𝑓 𝑥(𝑡) , 𝑥(0) = 𝑥  (3.8) 

 

From this system, six different types of stability can be observed: 

 

 The zero solution 𝑥(𝑡) ≡ 0 to (3.8) is Lyapunov stable if, for all 𝜀 > 0, there exists 𝛿 =

𝛿(𝜀) > 0 such that if ‖𝑥(0)‖ < 𝛿, then ‖𝑥(𝑡)‖ < 𝜀, 𝑡 ≥ 0; 

 

 The zero solution 𝑥(𝑡) ≡ 0 to (3.8) is locally asymptotically stable if it is Lyapunov stable 

and there exists 𝛿 > 0 such that if ‖𝑥(0)‖ < 𝛿, then lim
→

𝑥(𝑡) = 0; 

 

 The zero solution 𝑥(𝑡) ≡ 0 to (3.8) is locally exponentially stable if there exist positive 

constants 𝛼, 𝛽 and 𝛿 such that if ‖𝑥(0)‖ < 𝛿, then ‖𝑥(𝑡)‖ ≤ 𝛼‖𝑥(0)‖𝑒 , 𝑡 ≥ 0; 

 

 The zero solution 𝑥(𝑡) ≡ 0 to (3.8) is globally asymptotically stable if it is Lyapunov 

stable and for all 𝑥(0) ∈ ℝ , lim
→

𝑥(𝑡) = 0; 
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 The zero solution 𝑥(𝑡) ≡ 0 to (3.8) is globally exponentially stable if there exist positive 

constants 𝛼, 𝛽 and 𝛿 such that if ‖𝑥(0)‖ < 𝛿, then ‖𝑥(𝑡)‖ ≤ 𝛼‖𝑥(0)‖𝑒 , 𝑡 ≥ 0, for all 

𝑥(0) ∈ ℝ ; 

 

 Finally, the zero solution 𝑥(𝑡) ≡ 0 to (3.8) is unstable if it is not Lyapunov stable. 

 

 
Figure 3.3: Lyapunov stability of an equilibrium point. 

 

 
Figure 3.4: Asymptotic stability of an equilibrium point. 

 

Figure 3.5 portrays the comparison between three different types of stability 

 
Figure 3.5: Asymptotically stable, Lyapunov stable and unstable equilibrium points. 
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As for the Lyapunov function, it is a scalar function 𝑉: 𝒟 → ℝ such that 

 

𝑉(0) = 0 (3.9) 

 

𝑉(𝑥) > 0, 𝑥 ∈  𝒟,  𝑥 ≠ 0 (3.10) 

  

𝑉 (𝑥)𝑓(𝑥) ≤ 0, 𝑥 ∈ 𝒟 (3.11) 

 

and has a continuous first-order partial derivates at every point of 𝒟. The existence of this 

function guarantees the Lyapunov stability of the zero solution 𝑥(𝑡) ≡ 0. In addition, if 

 

𝑉 (𝑥)𝑓(𝑥) < 0, 𝑥 ∈ 𝒟, 𝑥 ≠ 0 (3.12) 

 

then the zero solution 𝑥(𝑡) ≡ 0 to (3.8) is asymptotically stable. Furthermore, if there exist 

scalars 𝛼, 𝛽, 𝜀 > 0 and 𝑝 ≥ 1 such that 𝑉: 𝒟 → ℝ satisfies 

 

𝛼‖𝑥‖ ≤ 𝑉(𝑥) ≤ 𝛽‖𝑥‖ , 𝑥 ∈ 𝒟  (3.13) 

 

𝑉 (𝑥)𝑓(𝑥) ≤ −𝜀𝑉(𝑥), 𝑥 ∈ 𝒟 (3.14) 

 

then the zero solution 𝑥(𝑡) ≡ 0 to (3.8) is exponentially stable. Next, considering the Lyapunov 

function candidate 𝑉(𝑥) = 𝑥 𝑃𝑥 where 𝑥 ∈ ℝ  and 𝑃 ∈ ℝ ×  is positive definite, note that 

 

�̇�(𝑥) = 𝑉 (𝑥)𝑓(𝑥) = 2𝑥 𝑃𝐴𝑥 = 𝑥 (𝐴 𝑃 + 𝑃𝐴)𝑥 (3.15) 

 

and if there exists a nonnegative-definite matrix 𝑅 ∈ ℝ ×  such that 𝐴 𝑃 + 𝑃𝐴 = −𝑅 so that 

𝑉 (𝑥)𝑓(𝑥) = −𝑥 𝑅𝑥 ≤ 0, then it is useful to determine the existence of a positive-definite 

matrix 𝑃 satisfying, what is called, a Lyapunov equation 

 

0 = 𝐴 𝑃 + 𝑃𝐴 + 𝑅 (3.16) 

  

Also, if 𝑅 = 𝐶 𝐶 where 𝐶 ∈ ℝ × , and assuming (A, C) is observable, then the zero solution 

𝑥(𝑡) ≡ 0 to (3.8) is globally asymptotically stable if and only if there exists a unique positive-

definite matrix 𝑃 ∈ ℝ ×  satisfying 

 

0 = 𝐴 𝑃 + 𝑃𝐴 + 𝐶 𝐶 (3.17) 
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3.5 Problem Formulation 

From the concepts and conditions mentioned above, the orbital rendezvous problem can now 

be properly framed. In this section, to generate a nonlinear feedback control for a linear system 

a transparent generalization of the Hamilton-Jacobi-Bellman conditions for time-invariant and 

infinite horizon problems is used.  

Firstly, let 𝐷 ⊂ ℝ  be an open set and let 𝐶 ⊂ ℝ  where 0 ⊂ 𝐷 and 0 ⊂ 𝐶. Furthermore, let 

ℱ ⊂ 𝑓: 𝐷 × 𝐶 → ℝ : 𝑓(0,0) = 0  represent the class of uncertain closed-loop nonlinear systems 

where 𝑓 (∙,∙) ∈ ℱ defines the nominal nonlinear system. To tackle the rendezvous problem, the 

following uncertain system must be controlled 

 

�̇� = 𝑓 𝑥(𝑡), 𝑢(𝑡) ,   𝑥(0) = 𝑥 , 𝑡 ≥ 0 (3.18) 

 

where the control 𝑢(∙) is limited to the class of admissible controls such that 𝑢(𝑡) ∈ 𝑈, for all 

𝑡 ≥ 0, with a control law 𝜙(∙) that takes the form of a feedback control 𝑢(𝑡) = 𝜙 𝑥(𝑡)  and 

minimizes the performance functional 

  

𝐽 𝑥 , 𝑢(∙) ≜ 𝐿 𝑥(𝑡), 𝑢(𝑡)  𝑑𝑡 (3.19) 

 

The closed-loop system is now defined as 

 

�̇� = 𝑓 𝑥(𝑡), 𝜙 𝑥(𝑡) ,   𝑥(0) = 𝑥 , 𝑡 ≥ 0 (3.20) 

 

and it is assumed that it has a unique solution forward in time. 

 

3.6 Theoretical Method 

The next step is to describe robust feedback controllers that guarantee robust stability over a 

class of nonlinear uncertain systems and minimize an auxiliary performance functional, thus 

using the Hamilton-Jacobi-Bellman conditions. 

Firstly, let 𝐿: 𝐷 × 𝑈 → ℝ and 𝐶 define the set of asymptotically stabilizing controllers for the 

nominal system 𝑓 (∙,∙) such that 𝑥(∙) given by equation (3.18) satisfies 𝑥(𝑡) → 0 as 𝑡 → ∞ with 

𝑓(∙,∙) = 𝑓 (∙,∙). Secondly, considering the controlled uncertain system define on equation (3.20) 

with performance functional from equation (3.19), and assuming 𝑉: 𝐷 → ℝ, Γ: 𝐷 × 𝑈 → ℝ 

functions exist and a control law 𝜙: 𝐷 → 𝑈 where 𝑉(∙) is a Lyapunov function such that 

 

𝑉(0) = 0 (3.21) 

 

𝑉(𝑥) > 0, 𝑥 ∈ 𝐷, 𝑥 ≠ 0 (3.22) 
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𝜙(0) = 0  (3.23) 

 

𝑉 ( ) , ( ) ≤ 𝑉 (𝑥)𝑓 𝑥, 𝜙(𝑥) + 𝛤 𝑥, 𝜙(𝑥) , 𝑥 ∈ 𝐷, 𝑓(∙,∙) ∈  ℱ (3.24) 

 

𝑉 (𝑥)𝑓 𝑥, 𝜙(𝑥) + 𝛤 𝑥, 𝜙(𝑥) < 0, 𝑥 ∈ 𝐷, 𝑥 ≠ 0 (3.25) 

 

𝐻 𝑥, 𝜙(𝑥) = 0, 𝑥 ∈ 𝐷 (3.26) 

 

𝐻(𝑥, 𝑢) ≥ 0, 𝑥 ∈ 𝐷, 𝑢 ∈ 𝑈 (3.27) 

 

where 𝐻(∙,∙) is defined as 

 

𝐻(𝑥, 𝑢) ≜ 𝐿(𝑥, 𝑢) + 𝑉 (𝑥)𝑓 (𝑥, 𝑢 ) + 𝛤(𝑥, 𝑢) (3.28) 

 

If all the conditions stated above are to be satisfied (equations (3.21)-(3.27)), then there exists 

a neighborhood 𝐷 ⊂ 𝐷 of the origin such that if 𝑥 ⊂ 𝐷 , the solution 𝑥(𝑡) = 0, 𝑡 ≥ 0 of the 

controlled uncertain system is locally asymptotically stable or all 𝑓(∙,∙) ∈  ℱ. Furthermore, the 

performance functional on equation (3.19) can now be defined as 

 

𝐽 𝑥 , 𝑢(∙) ≜ 𝐿 𝑥(𝑡), 𝑢(𝑡) + 𝛤 𝑥(𝑡), 𝑢(𝑡) ] 𝑑𝑡 (3.29) 

 

and, if 𝑥 ⊂ 𝐷 , then the feedback control 𝑢(𝑡) = 𝜙 𝑥(𝑡)  minimizes the performance functional 

on equation (3.29). Going even further, if 𝐷 = ℝ , 𝑈 = ℝ  and 𝑉(𝑥) → ∞ as ‖𝑥‖ → ∞, then the 

solution 𝑥(𝑡) = 0, 𝑡 ≥ 0 of the controlled uncertain system is globally asymptotically stable for 

all 𝑓(∙,∙) ∈  ℱ. 

 

3.7 Robust feedback control of linear uncertain systems 

Having defined the general case for all nonlinear uncertain systems, a better-suited formulation 

is used to deal with linear uncertain systems controlled by nonlinear controllers that minimize 

a polynomial cost function.  

Firstly, the following linear uncertain system is considered 

 

�̇�(𝑡) = (𝐴 + ∆𝐴)𝑥(𝑡) + 𝐵𝑢(𝑡), 𝑥(0) = 0, 𝑡 ≥ 0 (3.30) 

 

where the set of uncertain linear systems ℱ is given by: 

 

{(𝐴 + ∆𝐴)𝑥 + 𝐵𝑢: 𝑥 ∈ ℝ , 𝐴 ∈ ℝ × , 𝐵 ∈ ℝ × , ∆𝐴 ∈ ∆} (3.31) 
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And ∆∈ ℝ ×  is a given bounded uncertainty set of the uncertain perturbation ∆𝐴 of the nominal 

system 𝐴. Secondly, for the linear uncertain system on equation (3.30), let the weighing 

matrices 𝑅 ∈ ℙ × , 𝑅 ∈ ℙ ×  and 𝑅 ∈ ℕ × , 𝑘 = 2, … , 𝑟, where 𝑟 is a positive integer. Thirdly, 

it is assumed, there exists Ω: ℝ × → ℝ ×  in such a way that 

 

∆𝐴 𝑃 + 𝑃∆𝐴 ≤ Ω(𝑃), ∆A ∈ ∆, P ∈ ℝ ×  (3.32) 

 

and there exists P ∈ ℙ × , 𝑀 ∈ ℝ × , 𝑘 = 2, … , 𝑟 in such a manner that 

 

0 = 𝐴 𝑃 + 𝑃𝐴 + 𝑅 + Ω(𝑃) − 𝑃𝑆𝑃 (3.33) 

 

0 = (𝐴 − 𝑆𝑃) 𝑀 + 𝑀 (𝐴 − 𝑆𝑃) + 𝑅 + Ω(𝑀 ) (3.34) 

 

where 𝑆 ≜ 𝐵𝑅 𝐵 . Fourthly, let 𝐿 and 𝛤 be 

 

𝐿(𝑥, 𝑢) = 𝑥 𝑅 + (𝑥 𝑀 𝑥) 𝑅 + (𝑥 𝑀 𝑥) 𝑀 𝑆 (𝑥 𝑀 𝑥) 𝑀 𝑥 + 𝑢 𝑅 𝑢 (3.35) 

 

𝛤(𝑥, 𝑢) = 𝑥 Ω(𝑃) + (𝑥 𝑀 𝑥) Ω(𝑀 )  (3.36) 

 

Then, the linear uncertain system in equation (3.30) takes the performance functional 

 

𝐽∆ 𝑥 , 𝑢(∙) ≜ 𝐿(𝑥, 𝑢) 𝑑𝑡 (3.37) 

 

and is globally asymptotically stable for all 𝑥 ∈ ℝ  and ∆𝐴 ∈ ∆ with the feedback control 

 

𝜙(𝑥)  ≜ −𝑅 𝐵 𝑃 + (𝑥 𝑀 𝑥) 𝑀 𝑥 (3.38) 

 

Next, it is necessary to assign an explicit structure to the set ∆ and to the bounding function 

Ω(⋅). For the uncertainty set ∆, it is assumed to be of the form 

 

∆≜  ∆𝐴 ∈ ℝ × : ∆A = 𝜎 𝐴 ,
𝜎

𝛼
≤ 1 , 𝑖 = 1, … , 𝑝 (3.39) 
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where 𝐴 ∈ ℝ ×  are fixed matrices denoting the structure of the parametric uncertainty and 

𝜎  is an uncertain real parameter that, for the linear dynamic system described in chapter 2 

take the shape of 

𝐴 =

⎣
⎢
⎢
⎢
⎢
⎡

0
0
0

10
0
0

     

0
0
0
0
1
0

    

0
0
0
0
0

−3

     

0
0
0
0
0
0

    

0
0
0
0
0
0

      

0
0
0
0
0
0

 

⎦
⎥
⎥
⎥
⎥
⎤

 (3.40) 

𝐴 =

⎣
⎢
⎢
⎢
⎢
⎡
0
0
0
0
2
0

     

0
0
0

−2
0
0

    

0
0
0
0
0
0

     

0
0
0
0
0
0

    

0
0
0
0
0
0

      

0
0
0
0
0
0

 

⎦
⎥
⎥
⎥
⎥
⎤

 (3.41) 

𝐴 =

⎣
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0

     

0
0
0
0
0
0

    

0
0
0
0
0
0

     

0
0
0
0

−4
0

    

0
0
0
4
0
0

      

0
0
0
0
0
0

 

⎦
⎥
⎥
⎥
⎥
⎤

 (3.42) 

 

𝜎 = 𝑒𝑛 cos 𝑀 (3.43) 

𝜎 = 𝑒𝑛 sin 𝑀 (3.44) 

𝜎 = 𝑒𝑛𝑐𝑜𝑠 𝑀 (3.45) 

 

and 𝛼  is an arbitrary positive scalar. For the bounding function Ω(⋅), it takes the form 

 

Ω(P) =
𝛼

𝛼
𝐴 𝑃𝐴 + 𝛼𝑃 (3.46) 

 

where 𝛼 = ∑ 𝛼 . Additionally, let 

 

𝐴 = 𝐴 +
𝛼

2
𝐼  (3.47) 

 

where 𝐼  denotes 𝑛 × 𝑛 identity matrices. For the present case study, 𝑟 = 2 is enough to obtain 

the optimal robust controller and to solve the modified Riccati equations in (3.33)-(3.34). 

Therefore, equations (3.33)-(3-36) can be rewritten as 

 

0 = 𝐴 𝑃 + 𝑃𝐴 + 𝑅 +
𝛼

𝛼
𝐴 𝑃𝐴 − 𝑃𝑆𝑃 (3.48) 
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0 = (𝐴 − 𝑆𝑃) 𝑀 + 𝑀 (𝐴 − 𝑆𝑃) + 𝑅 +
𝛼

𝛼
𝐴 𝑀 𝐴  (3.49) 

 

𝐿(𝑥, 𝑢) = 𝑥 𝑅 + 𝑥 𝑀 𝑥𝑅 + (𝑥 𝑀 𝑥) 𝑀 𝑆𝑀 𝑥 + 𝑢 𝑅 𝑢 (3.50) 

 

𝛤(𝑥, 𝑢) = 𝑥
𝛼

𝛼
𝐴 𝑃𝐴 + 𝛼𝑃 + 𝑥 𝑀 𝑥

𝛼

𝛼
𝐴 𝑀 𝐴 + 𝛼𝑀 𝑥 (3.51) 

 

The control matrices 𝑅  and 𝑅  can also be written using the modified Bryson’s Method, in 

which they take the following shape 

 

𝑅 =

⎣
⎢
⎢
⎢
⎡

𝜂

𝑥  

0
⋮
0

     

0
𝜂

𝑥  

⋮
0

     

⋯
⋯
⋱
⋯

    

0
0
⋮

𝜂

𝑥  ⎦
⎥
⎥
⎥
⎤

 (3.52) 

 

where 𝜂 , 𝜂 , …, 𝜂 ≥ 1 and 𝑥  , 𝑥  , … , 𝑥   are maximum acceptable values for each 

state, which, in the rendezvous problem, is the initial state since the relative distance between 

the two spacecrafts is greater than in any other state, and  

 

𝑅 =

⎣
⎢
⎢
⎢
⎡

𝜆

𝑢  

0
⋮
0

     

0
𝜆

𝑢  

⋮
0

     

⋯
⋯
⋱
⋯

    

0
0
⋮

𝜆

𝑢  ⎦
⎥
⎥
⎥
⎤

 (3.53) 

 

where 0 < 𝜆 , 𝜆 , …, 𝜆 ≤ 1 and 𝑢  , 𝑢  , … , 𝑢   are maximum acceptable values for 

each control, which, for the current problem, is the maximum thrust force generated in each 

axis. Matrix 𝑅  is also a diagonal matrix with the following shape 

 

𝑅 =

𝜀
0
⋮
0

     

0
𝜀
⋮
0

    

⋯
⋯
⋱
⋯

    

0
0
⋮

𝜀

 (3.54) 

 

where 𝜀 , 𝜀 , …, 𝜀 ≥ 0. Because the numerator on each matrix (𝜂 , 𝜆  and 𝜀 ) has a great effect 

on the performance and robustness of the controller, many iterations and tests were conducted 

to find the best-suited values for each one. 
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Chapter 4 – Simulation Results and 

Discussion 

 
In this chapter, four examples will be presented to demonstrate and validate the effectiveness 

and robustness of the nonlinear controller when applied to a linear uncertain system. Although 

all four cases use the same target orbit and only the initial state is changed to evaluate the 

performance for a wide range of distances, only the last one will take into account the 

uncertainty as a perturbation while simulating the linear system. Also, for those simulations, 

to generate data and process it, the programming language PythonTM is used.  

Firstly, a table is presented with the necessary target orbit parameters and some spacecraft 

properties (thrust and vehicle mass) needed to generate a linear dynamic system that describes 

the rendezvous process accurately. Secondly, the linear dynamic system is discretized in order 

to solve the rendezvous problem to the target orbit. Further on this chapter, two methods are 

described to understand how all the matrices mentioned in the previous chapters are obtained. 

Lastly, a detailed analysis is made to fully understand and evaluate the controller’s 

performance. 

 

4.1 Target orbit parameters and spacecraft properties 

Nowadays, most RND operations are performed to deliver personnel and supplies to the ISS. 

Based on this data and because the ISS has a near-circular orbit, it is appropriate to study the 

controller performance using its orbital parameters as the target orbit. Having only the perigee 

distance and the eccentricity of the target orbit, all the other parameters must be calculated 

using the following equations: 

𝑟 = 𝑟 ×
1 + 𝑒

1 − 𝑒
 (4.1) 

𝑎 =
𝑟 + 𝑟

2
 (4.2) 

𝑇 = 2𝜋 𝑎 /𝜇 (4.3) 

𝑛 =
2𝜋

𝑇
 (4.4) 

𝑡𝑝 = 2𝜋
𝑟

𝜇
 (4.5) 

𝑀 = 𝑛 ∗ 𝑡𝑝 (4.6) 
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Table 4.1: Target orbit parameters 

Parameter Value 

rp [m] 6728140 

e 0.01 

ra [m] 6864062 

a [m] 6796101 

μ [m3.s-2] 3.986 χ 1014 

T [s] 5575.7 

n [rad/s] 0.00113 

tp [s] 5659.5 

M [rad] 6.378 

 

Another important parameter is the chaser spacecraft’s mass that is needed to generate the 

control matrix 𝐵. Furthermore, a saturation function is employed to limit the maximum thrust 

force generated on each axis by the chaser spacecraft so that the simulation portrays a real 

engineering problem as accurately as possible. Both mass and maximum thrust forces on each 

axis were chosen based on multiple articles that simulate similar cases such as Wan et al. [11] 

and Miele et al. [4].  

 

Table 4.2: Chaser Spacecraft characteristics 

Parameter Value 

m [kg] 200 

Maximum control thrust along x-axis [N] 100 

Maximum control thrust along y-axis [N] 100 

Maximum control thrust along z-axis [N] 20 

 

4.2 Linear Dynamic system 

The next step to start the simulation is to generate the linear dynamic system that portrays the 

orbital rendezvous, combining matrices 𝐴, ∆𝐴 and 𝐵 from chapter 2 with the orbital elements 

and the chase spacecraft characteristic above. Because the target orbit will suffer no change, 

all the above matrices are constant for all three examples. The following results were obtained: 

 

𝐴 =

⎣
⎢
⎢
⎢
⎢
⎡

0
0
0

3.810 ∙ 10
0
0

        

0
0
0
0
0
0

      

0
0
0
0
0

−1.270 ∙ 10

     

1.000 ∙ 10
0
0
0

−2.254 ∙ 10
0

    

0
1.000 ∙ 10

0
2.254 ∙ 10

0
0

      

0
0

1.000 ∙ 10
0
0
0

 

⎦
⎥
⎥
⎥
⎥
⎤

 (4.7) 

 

𝐵 =

⎣
⎢
⎢
⎢
⎢
⎡

 

0
0
0

0.005
0
0

    

0
0
0
0

0.005
0

    

0
0
0
0
0

0.005

  

⎦
⎥
⎥
⎥
⎥
⎤

 (4.8) 
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∆𝐴 =

⎣
⎢
⎢
⎢
⎢
⎡

0
0
0

 1.264 ∙ 10
 2.396 ∙ 10

0

        

0
0
0

−2.396 ∙ 10
1.264 ∙ 10

0

   

0
0
0
0
0

−3.793 ∙ 10

    

0
0
0
0

−4.487 ∙ 10
0

     

0
0
0

4.487 ∙ 10
0
0

      

0
0
0
 0
0
0

 

⎦
⎥
⎥
⎥
⎥
⎤

 (4.9) 

 

and the state matrix, 𝐴, can be added up to the norm-bounded matrix, ∆𝐴, 

 

𝐴 + ∆𝐴 =

⎣
⎢
⎢
⎢
⎢
⎡

0
0
0

 3.936 ∙ 10
 2.396 ∙ 10

0

      

0
0
0

−2.396 ∙ 10
1.264 ∙ 10

0

 

0
0
0
0
0

−1.308 ∙ 10

    

1.000 ∙ 10
0
0
0

−2.299 ∙ 10
0

    

0
1.000 ∙ 10

0
2.299 ∙ 10

0
0

      

0
0

1.000 ∙ 10
 0
0
0

 

⎦
⎥
⎥
⎥
⎥
⎤

 (4.10) 

 

Regarding the output vector 𝑦(𝑡) from equation (3.5), matrix 𝐶 is an output matrix related to 

the measurability of the state variables and it takes the shape 

𝐶 =
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 (4.11) 

Furthermore, ∀ , 𝜎  are also constant because they only depend on the target orbit, hence, they 

can be quickly obtained: 

 

𝜎 = 1.264 ∙ 10  (4.12) 

𝜎 = 1.198 ∙ 10  (4.13) 

𝜎 = 1.122 ∙ 10  (4.14) 

  

As for the arbitrary positive scalars, 𝛼 , many iterations were performed to achieve the best 

results for the control while taking into consideration the condition: 

 

𝜎

𝛼
≤ 1 , 𝑖 = 1, … , 𝑝 (4.15) 

 

Thus, the best results obtained were achieved by using: 

 

𝛼 = 2.4 ∙ 10  (4.16) 

𝛼 = 1.4 ∙ 10  (4.17) 

𝛼 = 1.3 ∙ 10  (4.18) 
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𝛼 = 𝛼 = 𝛼 + 𝛼 + 𝛼 = 2.94 ∙ 10  (4.19) 

Having all the above parameters defined,  𝐴  can now be determined using equation (3.47): 

 

𝐴 =

⎣
⎢
⎢
⎢
⎢
⎡
1.470 ∙ 10

0
0

3.810 ∙ 10
0
0

      

0
1.470 ∙ 10

0
0
0
0

    

0
0

1.470 ∙ 10
0
0

−1.270 ∙ 10

     

1.000 ∙ 10
0
0

1.470 ∙ 10
−2.254 ∙ 10

0

    

0
1.000 ∙ 10

0
2.254 ∙ 10
1.470 ∙ 10

0

     

0
0

1.000 ∙ 10
0
0

1.470 ∙ 10

 

⎦
⎥
⎥
⎥
⎥
⎤

 (4.20) 

 

In order to generate trajectory, velocity and thrust force data for the linear dynamic system, 

a model must be used to solve them. For the present case study and considering the continuous-

time state equations (3.4) and (3.5), a solution must be found where it is excited by the initial 

state 𝑥(0) and the input 𝑢(𝑡). This solution can be obtained by pre-multiplying 𝑒  on both 

sides of equation (3.4) yielding  

 

𝑒 �̇�(𝑡) − 𝑒 𝐴𝑥(𝑡) = 𝑒 𝐵𝑢(𝑡) (4.21) 

 

which implies  

 

𝑑

𝑑𝑡
𝑒 𝑥(𝑡) = 𝑒 𝐵𝑢(𝑡) (4.22) 

 

and integrating from 0 to 𝑡 

 

𝑒 𝑥(𝜏) = 𝑒 𝐵𝑢(𝜏)  𝑑𝜏 (4.23) 

 

the following equation is obtained  

 

𝑒 𝑥(𝑡) − 𝑒 𝑥(0) = 𝑒 𝐵𝑢(𝜏)  𝑑𝜏 (4.24) 

 

Because the inverse of 𝑒  is 𝑒  and 𝑒 = 𝐼 and reordering equation (4.24) the final solution 

is obtained 

 

𝑥(𝑡) = 𝑒 𝑥(0) + 𝑒 ( )𝐵𝑢(𝜏)  𝑑𝜏 (4.25) 
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Although equation (4.25) provides a solution, it still cannot be solved on a computer. To solve 

this problem a discretization is used in order to compute the linear system. Firstly, let 𝑢(𝑡) be 

an input generated by a computer and let 

 

𝑢(𝑡) = 𝑢(𝑘𝑇) =: 𝑢[𝑘], 𝑓𝑜𝑟 𝑘𝑇 ≤ 𝑡 < (𝑘 + 1)𝑇 (4.26) 

 

for 𝑘 = 0, 1, 2, … . Since this input changes values only at discrete-time instants, and computing 

(4.25) at 𝑡 = 𝑘𝑇 and 𝑡 = (𝑘 + 1)𝑇 yields  

 

𝑥[𝑘] = 𝑥(𝑘𝑇) = 𝑒 𝑥(0) + 𝑒 ( )𝐵𝑢(𝜏)  𝑑𝜏 (4.27) 

 

𝑥[𝑘 + 1] = 𝑥((𝑘 + 1)𝑇) = 𝑒 ( ) 𝑥(0) + 𝑒 (( ) )𝐵𝑢(𝜏)
( )

 𝑑𝜏 (4.28) 

 

Equation (4.28) can be rewritten as 

 

𝑥[𝑘 + 1] = 𝑒 𝑒 𝑥(0) + 𝑒 ( )𝐵𝑢(𝜏)  𝑑𝜏 + 𝑒 ( )𝐵𝑢(𝜏)
( )

 𝑑𝜏 (4.29) 

 

and by introducing a new variable 𝛼 = 𝑘𝑇 + 𝑇 − 𝜏 

 

𝑥[𝑘 + 1] = 𝑒 𝑥[𝑘] + 𝑒  𝑑𝛼 𝐵𝑢[𝑘] (4.30) 

 

In a more friendly way, and if an input changes value only at discrete-time instants 𝑘𝑇 and only 

computing the responses at 𝑡 = 𝑘𝑇, equation (4.30) can be written as 

 

𝑥[𝑘 + 1] = 𝐴 𝑥[𝑘] + 𝐵 𝑢[𝑘] (4.31) 

 

where  

 

𝐴 = 𝑒  (4.32) 

 

𝐵 = 𝑒  𝑑𝜏 𝐵 (4.33) 
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The only step left is to calculate these two matrices using power series, using the following 

equations 

𝐴 = 𝐼 +
𝐴𝑇

1!
+

𝐴 𝑇

2!
+ ⋯ +

𝐴 𝑇

𝑛!
 (4.34) 

 

𝐵 = 𝐼𝑇 +
𝐴𝑇

2!
+

𝐴 𝑇

3!
+ ⋯ +

𝐴 𝑇

(𝑛 + 1)!
𝐵 (4.35) 

 

Parameter 𝑛 will directly affect how accurate these two matrices will be, which, based on the 

available literature, 𝑛 = 3 is enough to get accurate results. Also, because matrices 𝐴 and 𝐵 

are constant throughout each simulation, and since 𝐴  and 𝐵  only depend on those same 

matrices and the time step, T, which is constant too, they’re also constant for the first three 

examples. For the fourth case, because the norm-bounded matrix ∆𝐴 is considered a 

perturbation to the system, matrix 𝐴  will present different values. Thus, for the first three 

cases, the discretized matrices are as follows 

 

𝐴 =

⎣
⎢
⎢
⎢
⎢
⎡

1.000 ∙ 10
−1.431 ∙ 10

0
3.810 ∙ 10

−4.293 ∙ 10
0

        

0
1.000 ∙ 10

0
0
0
0

     

0
0

1.000 ∙ 10
0
0

−1.270 ∙ 10

    

1.000 ∙ 10
−1.129 ∙ 10

0
1.000 ∙ 10

−2.254 ∙ 10
0

    

1.129 ∙ 10
1.000 ∙ 10

0
2.254 ∙ 10
1.000 ∙ 10

0

      

0
0

1.000 ∙ 10
0
0

1.000 ∙ 10

 

⎦
⎥
⎥
⎥
⎥
⎤

 (4.36) 

 

𝐵 =

⎣
⎢
⎢
⎢
⎢
⎡

2.500 ∙ 10 1.878 ∙ 10 0
−1.878 ∙ 10 2.500 ∙ 10 0

0 0 2.500 ∙ 10
5.000 ∙ 10 5.634 ∙ 10 0

−5.634 ∙ 10 5.000 ∙ 10 0
0 0 5.000 ∙ 10

 

⎦
⎥
⎥
⎥
⎥
⎤

 (4.37) 

 

4.3 Preliminary system analysis  

Since the linear dynamic system is defined, with matrices 𝐴, ∆𝐴, 𝐵, and 𝐶, it can be tested to 

evaluate the system’s controllability and observability to understand whether the chosen linear 

system can be observed and controlled or not. Regarding the observability matrix, 𝒪, using 

equation (3.7), and calculating its rank the following result was obtained 

 

𝑟𝑎𝑛𝑘(𝒪) = 6 (4.38) 

 

As for the controllability matrix, 𝒞, using equation (3.8), and calculating its rank, the 

subsequent result was achieved 

 

𝑟𝑎𝑛𝑘(𝒞) = 6 (4.39) 
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Because both matrices are enormous (dimensions 12 × 6), only the rank is presented since it is 

the only value needed to evaluate the controllability and observability of the system. Now, 

looking at the dimensions of matrices 𝐴, 𝐵, and 𝐶, 𝑛 = 6, therefore, 𝑟𝑎𝑛𝑘(𝒞) = 𝑛 and 𝑟𝑎𝑛𝑘(𝒪) =

𝑛 coming to the conclusion that the selected linear dynamic system is both controllable and 

observable. 

 

4.4 Modified Riccati equations 

To calculate the control law for the nonlinear controller, matrices 𝑃 and 𝑀  need to be 

determined first. To do so, the modified Riccati equations (3.48)-(3.49) were used. Since those 

equations cannot be solved using the CARE (continuous algebraic Riccati equation) function on 

PythonTM, they were transformed into differential equations so they can be solved using the 

Euler’s method: 

�̇� = 𝐴 𝑃 + 𝑃𝐴 + 𝑅 +
𝛼

𝛼
𝐴 𝑃𝐴 − 𝑃𝑆𝑃 (4.40) 

 

�̇� = (𝐴 − 𝑆𝑃) 𝑀 + 𝑀 (𝐴 − 𝑆𝑃) + 𝑅 +
𝛼

𝛼
𝐴 𝑀 𝐴  (4.41) 

 

This numerical method is implemented to solve ODE (ordinary differential equations) with a 

given initial value, i.e., having an unknown curve that starts at the given initial point, 𝑦(𝑡 ) =

𝑦 , and satisfies a given differential equation, 𝑦 (𝑡) = 𝑓(𝑡, 𝑦(𝑡)), and using a small step, ℎ, along 

the tangent line described by that same differential equation, a new point of the unknown 

curve can be approximated using: 

 

𝑦 = 𝑦 + ℎ𝑓(𝑡 , 𝑦 ) (4.42) 

 

This process can be repeated to accurately describe the unknown curve.  

On the present case study, the Euler’s method is used not to find the unknown curve but to 

find the point on that curve where the two differential equations are equal to zero: 

 

�̇� = 0 (4.43) 

�̇� = 0 (4.44) 

  

Because it would take too much time and resources to find an absolute zero on both equations, 

another condition was created to deal with this problem. If 𝑦 − 𝑦 ≤ 10 , then the program 

will stop and 𝑦  will provide accurate values for matrices 𝑃 and 𝑀 .  

Since the Euler’s method is only used to find the point where the differential equations are 

zero, the step size needs to be small enough to “catch” this point but, at the same time, not 
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too small, considering that the processing time will increase greatly with smaller ℎ. 

Consequently, for all the three case studies, ℎ = 0.01 was used. The only thing left to be defined 

is the given initial point, 𝑦(𝑡 ) = 𝑦 , i.e., give initial estimations to 𝑃 and 𝑀  on the first 

iteration. Thus, both matrices start the process as 𝑃 = 𝐼  and 𝑀 = 𝐼 . 

 

4.5 Case studies 

In this section, four different case studies are presented in order to analyze and compare each 

other, taking into account trajectory robustness and control effectiveness. The first three 

examples will only simulate the linear system with no perturbations, i.e. the norm-bounded 

matrix ∆𝐴 is not used to model the solutions of the ODE, while the fourth example will take 

into account the uncertainty parameter as a perturbation. In this simulation, based on the 

available literature, a time step of 0.01 seconds was used to obtain all the data. For the four 

cases, trajectory, relative position, and generated thrust will be presented. Velocity data will 

be presented in the annex since it is not of great relevance to the current analysis. 

 

4.5.1 First example 

For the first example, the initial state is 

 

𝑥 =

⎣
⎢
⎢
⎢
⎢
⎡

3000
−4000

20
−3
4

−0.02 ⎦
⎥
⎥
⎥
⎥
⎤

, (4.45) 

 

and using the modified Bryson’s method, matrices 𝑅  and 𝑅  can be created, obtaining 

 

𝑅 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

10

3000
0
0
0
0
0

    

0
10

(−4000)
0
0
0
0

     

0
0

10

20
0
0
0

      

0
0
0

10

(−3)
0
0

      

0
0
0
0

10

4
0

      

0
0
9
0
0

10

(−0.02)

 

⎦
⎥
⎥
⎥
⎥
⎥
⎤

, (4.46) 

 

𝑅 =

⎣
⎢
⎢
⎢
⎢
⎡

0.5

100
0 0

0
0.5

100
0

0 0
1

20

 

⎦
⎥
⎥
⎥
⎥
⎤

, (4.47) 

 

Regarding matrix 𝑅 , through trial and error and considering the smoothness of the trajectory 

and the robustness of the controller, the following result was obtained  
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𝑅 =

⎣
⎢
⎢
⎢
⎢
⎡
10

0
0
0
0
0

    

0
10

0
0
0
0

     

0
0

10
0
0
0

      

0
0
0

1.1 ∙ 10
0
0

      

0
0
0
0

10
0

      

0
0
9
0
0

10

 

⎦
⎥
⎥
⎥
⎥
⎤

, (4.48) 

 

With matrices 𝑅 , 𝑅  and 𝑅  calculated, Euler’s method can now be applied to estimate matrices 

𝑃 and 𝑀 . Using a step of ℎ = 0.01 the resulting matrices were obtained 

 

𝑃 =

⎣
⎢
⎢
⎢
⎢
⎡

1.319 ∙ 10
−7.000 ∙ 10

0
5.593 ∙ 10
6.000 ∙ 10

0

    

−7.000 ∙ 10
8.502

0
−6.000 ∙ 10
4.803 ∙ 10

0

     

0
0

8.491
0
0

1.694

      

5.593 ∙ 10
−6.000 ∙ 10

0
4.717 ∙ 10

6.400 ∙ 10
0

      

6.000 ∙ 10
4.803 ∙ 10

0
6.400 ∙ 10
3.540 ∙ 10

0

      

0
0

1.694
0
0

5.005 ∙ 10

 

⎦
⎥
⎥
⎥
⎥
⎤

, (4.49) 

 

𝑀 =

⎣
⎢
⎢
⎢
⎢
⎡

1.134 ∙ 10
3.000 ∙ 10

0
2.034 ∙ 10

−1.000 ∙ 10
0

    

3.000 ∙ 10
9.233

0
2.000 ∙ 10
1.380 ∙ 10

0

     

0
0

1.627
0
0

2.911 ∙ 10

      

2.034 ∙ 10
2.000 ∙ 10

0
2.333 ∙ 10

−6.700 ∙ 10
0

      

−1.000 ∙ 10
1.380 ∙ 10

0
6.700 ∙ 10
2.827 ∙ 10

0

      

0
0

2.911 ∙ 10
0
0

1.051 ∙ 10

 

⎦
⎥
⎥
⎥
⎥
⎤

, (4.50) 

 

Now, the linear dynamic system can be simulated using the matrix exponential method. The 

nonlinear controller will stop its action course when the rendezvous is accomplished, that is 

when the state vector is equal to 0. Fig. 4.1 shows the rendezvous trajectory\y described by 

the chaser spacecraft until it achieves the rendezvous task.  

 
Figure 4.1: Rendezvous trajectory of the chaser spacecraft for the initial state 𝑥 =

[3000 −4000 20 −3 4 −0.02] .  

This trajectory presents a smooth profile with no abrupt turns. It is also noticeable that the 

controller firstly tries to converge the z-axis to zero and, then, almost at the same rate, the x-
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axis and the y-axis. From figs 4.2-4.3, displaying the 3 axes with respect to time, the zero 

solution to the linear dynamic system is indeed asymptotically stable and it is also noticeable 

that until 𝑡 = 600 𝑠 the controller employs a high rate of convergence until it reaches short 

relative distances in which it changes this rate to make sure there is no overshooting the target. 

For the z-axis, the same thing happens but for a shorter period (around 𝑡 = 200 𝑠) 

 
Figure 4.2: Relative position on each axis for the initial state 𝑥 =

[3000 −4000 20 −3 4 −0.02] . 

 
Figure 4.3: Relative position on the z-axis for the initial state 𝑥 =

[3000 −4000 20 −3 4 −0.02] . 

Next, Fig 4.4 reveals the thrust profile for every axis. Because a saturation function was used, 

the maximum thrust on each axis is limited to the displayed values, also mentioned on the 

spacecraft properties. At first, the thrust profile appears to be a solid rectangle, but is, in fact, 

a single line with a bang-bang profile applied by the control, as can be shown on (d), (e) and 

(f). 
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Figure 4.4: Thrust profile for each axis (a, b, c) and a closer look at the bang-bang profile (d, e, f) for the initial state 𝑥 =

[3000 −4000 20 −3 4 −0.02] . 

(d) (a) 

(b) (e) 

(c) 
(f) 
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It is also possible to observe when the controller stops its action course by noticing how the 

line flattens out and the thrust force produced is equal to zero Newtons. Furthermore, as stated 

before, the z-axis is the first to converge asymptotically to zero since the thrust produced on 

this axis stops at around 500 seconds while the other two axes stay active until around 850 

seconds.  

 

4.5.2 Second example 

In the next example, both initial positions and velocities are increased by one order of 

magnitude to test the controller robustness and effectiveness when dealing with high relative 

distances and velocities. Therefore, the initial state can be written as follows 
 

𝑥 =

⎣
⎢
⎢
⎢
⎢
⎡

30000
−40000

200
−30
40

−0.2 ⎦
⎥
⎥
⎥
⎥
⎤

 (4.51) 

 

and matrices 𝑅  and 𝑅  can be created, using modified Bryson’s method 

 

𝑅 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

10

30000
0
0
0
0
0

    

0
10

(−40000)
0
0
0
0

     

0
0

10

200
0
0
0

      

0
0
0

10

(−30)
0
0

      

0
0
0
0

10

40
0

      

0
0
9
0
0

10

(−0.2)

 

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (4.52) 

 

𝑅 =

⎣
⎢
⎢
⎢
⎢
⎡

0.1

100
0 0

0
0.1

100
0

0 0
1

20

 

⎦
⎥
⎥
⎥
⎥
⎤

 (4.53) 

 

Just as in the first example, matrix 𝑅  is created using trial and error while taking into account 

the controller robustness. Thus, the matrix that presents the best results for the given initial 

state in (4.51) is 

 

𝑅 =

⎣
⎢
⎢
⎢
⎢
⎡
10

0
0
0
0
0

    

0
10

0
0
0
0

     

0
0

10
0
0
0

      

0
0
0

1.1 ∙ 10
0
0

      

0
0
0
0

10
0

      

0
0
9
0
0

10

 

⎦
⎥
⎥
⎥
⎥
⎤

 (4.54) 

Once again, Euler’s method is implemented to solve the modified Riccati equations and find 

matrices 𝑃 and 𝑀  using the same step, ℎ, as the previous example. 
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𝑃 =

⎣
⎢
⎢
⎢
⎢
⎡
7.484 ∙ 10
3.000 ∙ 10

0
1.394 ∙ 10
1.000 ∙ 10

0

    

3.000 ∙ 10
1.634

0
0

4.139 ∙ 10
0

     

0
0

8.491
0
0

1.694

      

1.394 ∙ 10
0
0

2.149
−6.900 ∙ 10

0

      

1.000 ∙ 10
4.139 ∙ 10

0
−6.900 ∙ 10

1.581 ∙ 10
0

      

0
0

1.063
0
0

5.223 ∙ 10

 

⎦
⎥
⎥
⎥
⎥
⎤

 (4.55) 

 

𝑀 =

⎣
⎢
⎢
⎢
⎢
⎡

4.094 ∙ 10
7.900 ∙ 10

0
9.597 ∙ 10

−7.000 ∙ 10
0

    

7.900 ∙ 10
2.962 ∙ 10

0
−7.000 ∙ 10
4.181 ∙ 10

0

     

0
0

1.827
0
0

1.492

      

9.567 ∙ 10
−7.000 ∙ 10

0
1.027 ∙ 10

7.550 ∙ 10
0

      

−7.000 ∙ 10
4.181 ∙ 10

0
7.550 ∙ 10
1.265 ∙ 10

0

      

0
0

1.492
0
0

9.886 ∙ 10

 

⎦
⎥
⎥
⎥
⎥
⎤

 (4.56) 

 

The resulting rendezvous trajectory for the second example, using the matrix exponential to 

simulate the linear system as a function of time is portrayed in fig 4.5. 

 

 
Figure 4.5: Rendezvous trajectory of the chaser spacecraft for the initial state 𝑥 =

[30000 −40000 200 −30 40 −0.02] . 

 

Like the first example, this trajectory shows a smooth profile, with no overshooting. Because 

the relative distances are greater on the x and y-axis, the controller now applies a high rate of 

convergence until 𝑡 = 1000 𝑠, where it switches to a lower one after that to avoid overshooting. 

For the z-axis, this phenomenon occurs until 𝑡 = 500 𝑠. Additionally, the controller firstly 

converges the z-axis to zero and then, the x-axis and y-axis approach zero almost at the same 

rate. A few seconds before the final stage of the rendezvous, the x-axis approaches zero prior 

to the y-axis. A more detailed view of this complex process is presented in figs 4.6-4.7. 
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Figure 4.6: Relative position on each axis for the initial state state 𝑥 =

[30000 −40000 200 −30 40 −0.02] . 

 
Figure 4.7: Relative position on the z-axis for the initial state state 𝑥 =

[30000 −40000 200 −30 40 −0.02] . 

 

Regarding the thrust analysis of the second example, fig 4.8 reveals that contrarily to the first 

example, the thrust generated on the x-axis stays at -100 N for almost 400 seconds, changing 

to 100 N for the next 100 seconds. This variation on the thrust signal reveals that its vector 

sense has changed. After 500 seconds, the controller, once again, generates a bang-bang profile 

to converge the solution to zero. On the y-axis, something similar happens. In the first 150 

seconds, the controller generates 100 N, which changes to -100 N until around 500 seconds, 

showing, yet again, that the thrust vector switches its sense. Afterward, the bang-bang profile 

is exhibited until the solution 𝑥 = 0 is found. Only the z-axis presents the same behavior as in 

the first example.  
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(a) (d) 

(b) (e) 

(c) (f) 
 

Figure 4.8: Thrust profile for each axis (a, b, c) and a closer look at the bang-bang profile (d, e, f) for the initial state 𝑥 =

[30000 −40000 200 −30 40 −0.02] . 
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4.5.3 Third example 

For the last example, only the position and velocity on the z-axis are incremented by two orders 

of magnitude. The purpose of this example is to show that the most sensible and unstable to 

change axis can also be controlled while the solution 𝑥 = 0 is found. For this reason, the initial 

state takes the following values 

 

𝑥 =

⎣
⎢
⎢
⎢
⎢
⎡

30000
−40000
20000

−30
40

−20 ⎦
⎥
⎥
⎥
⎥
⎤

 (4.57) 

 

and matrices 𝑅  and 𝑅  can be generated using the modified Bryson’s method 

 

𝑅 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

10

30000
0
0
0
0
0

    

0
10

(−40000)
0
0
0
0

     

0
0

10

20000
0
0
0

      

0
0
0

10

(−30)
0
0

      

0
0
0
0

1.2 ∙ 10

40
0

      

0
0
9
0
0

1.5 ∙ 10

(−20)

 

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (4.58) 

 

𝑅 =

⎣
⎢
⎢
⎢
⎢
⎡

0.1

100
0 0

0
0.2

100
0

0 0
0.1

20

 

⎦
⎥
⎥
⎥
⎥
⎤

 (4.59) 

 

Matrix 𝑅  is created, once more, using trial and error 

 

𝑅 =

⎣
⎢
⎢
⎢
⎢
⎡
10

0
0
0
0
0

    

0
10

0
0
0
0

     

0
0

10
0
0
0

      

0
0
0

1.35 ∙ 10
0
0

      

0
0
0
0

10
0

      

0
0
9
0
0

10

 

⎦
⎥
⎥
⎥
⎥
⎤

 (4.60) 

 

Through Euler’s method, matrices 𝑃 and 𝑀  can be calculated, using a step of ℎ = 0.01 

 

𝑃 =

⎣
⎢
⎢
⎢
⎢
⎡
9.183 ∙ 10
4.000 ∙ 10

0
1.700 ∙ 10
3.000 ∙ 10

0

    

4.000 ∙ 10
1.695

0
0

5.536 ∙ 10
0

     

0
0

4.830 ∙ 10
0
0

2.483 ∙ 10

      

1.700 ∙ 10
0
0

2.162
−1.400 ∙ 10

0

      

3.000 ∙ 10
5.536 ∙ 10

0
−1.400 ∙ 10

2.450 ∙ 10
0

      

0
0

2.483 ∙ 10
0
0

1.951 ∙ 10

 

⎦
⎥
⎥
⎥
⎥
⎤

 (4.61) 
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𝑀 =

⎣
⎢
⎢
⎢
⎢
⎡

5.253 ∙ 10
1.550 ∙ 10

0
9.623 ∙ 10

−2.100 ∙ 10
0

    

1.550 ∙ 10
3.112 ∙ 10

0
−1.300 ∙ 10
6.470 ∙ 10

0

     

0
0

8.062 ∙ 10
0
0

8.562

      

9.623 ∙ 10
−1.300 ∙ 10

0
1.114 ∙ 10

1.544 ∙ 10
0

      

−2.100 ∙ 10
6.470 ∙ 10

0
1.544 ∙ 10
1.633 ∙ 10

0

      

0
0

8.562
0
0

2.569 ∙ 10

 

⎦
⎥
⎥
⎥
⎥
⎤

 (4.62) 

 

and the orbital rendezvous trajectory can be generated, depicted in fig 4.9. 

 
Figure 4.9: Rendezvous trajectory of the chaser spacecraft for the initial state 𝑥 =

[30000 −40000 20000 −30 40 −20] .  

 

Because the relative distance on each axis has the same order of magnitude, the trajectory 

is not as smooth as in the previous examples. Nevertheless, the controller is still capable of 

finding the solution 𝑥 = 0 to the implemented linear dynamic system. Furthermore, from fig. 

4.10, this same solution is proven to be globally asymptotically stable since, when 𝑡 → ∞, 𝑥(𝑡) =

0. Moreover, just like the previous examples, the controller applies a high rate of convergence 

until 𝑡 = 1000 𝑠, for all axes, where it changes to a lower one. Furthermore, in this example, 

there is no difference in the rate of convergence, as the previous examples, between axes 

because all of them have the same order of magnitude. 
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Figure 4.10: Relative position on each axis for the initial state 𝑥 =

[30000 −40000 20000 −30 40 −20] . 

 

Also, the implemented nonlinear controller applies the same rate of convergence to the x-axis 

and y-axis. Regarding the z-axis, it takes more time to asymptotically converge to zero, until 

around 𝑡 = 500 seconds, where it finally catches up. From there, all the 3 axes converge 

asymptotically to the solution, without overshooting the target. Regarding the thrust profile, 

both the x-axis and y-axis present the same shape as in the example before but the z-axis 

changes radically. It starts by generating -20 N for 250 seconds and it changes to 20 N after 

that, indicating a change in the vector’s sense. After 𝑡 = 600 seconds, the controller employs 

a bang-bang profile in the z-axis direction. 

 

 
(a) 

 
(d) 
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(b) 

 
(e) 

 
(c) 

 
(e) 

Figure 4.11: Thrust profile for each axis (a, b, c) and the bang-bang profile (d, e, f) for the initial state 

𝑥 = [30000 −40000 20000 −30 40 −20] . 

 

4.5.4 Fourth example 

This last example will have the same initial state matrix and matrices 𝑅 , 𝑅  and 𝑅  as the 

previous example. Thus, matrices 𝑃 and 𝑀  will stay the same. Matrices 𝐴  and 𝐵  will change, 

since the norm-bounded matrix ∆𝐴 will be added to matrix 𝐴 to account for perturbations in 

the system. 

 

𝐴 = 𝐼 +
(𝐴 + ∆𝐴)𝑇

1!
+

(𝐴 + ∆𝐴) 𝑇

2!
+ ⋯ +

(𝐴 + ∆𝐴) 𝑇

𝑛!
 (4.63) 

 

𝐵 = 𝐼𝑇 +
(𝐴 + ∆𝐴)𝑇

2!
+

(𝐴 + ∆𝐴) 𝑇

3!
+ ⋯ +

(𝐴 + ∆𝐴) 𝑇

(𝑛 + 1)!
𝐵 (4.64) 
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𝐴 =

⎣
⎢
⎢
⎢
⎢
⎡

1.000
1.183 ∙ 10

0
3.936 ∙ 10
2.351 ∙ 10

0

        

−1.198 ∙ 10
1.000

0
−2.396 ∙ 10
1.264 ∙ 10

0

     

0
0

1.000
0
0

−1.308 ∙ 10

    

1.000 ∙ 10
−1.149 ∙ 10

0
1.000

−2.299 ∙ 10
0

    

1.149 ∙ 10
1.000 ∙ 10

0
2.299 ∙ 10

1.000
0

      

0
0

1.000 ∙ 10
0
0

1.000

 

⎦
⎥
⎥
⎥
⎥
⎤

 (4.65) 

 

𝐵 =

⎣
⎢
⎢
⎢
⎢
⎡

2.500 ∙ 10 1.915 ∙ 10 0
−1.916 ∙ 10 2.500 ∙ 10 0

0 0 2.500 ∙ 10
5.000 ∙ 10 5.747 ∙ 10 0

−5.747 ∙ 10 5.000 ∙ 10 0
0 0 5.000 ∙ 10

 

⎦
⎥
⎥
⎥
⎥
⎤

 (4.66) 

 

The resulting trajectory showed in fig. 4.12, demonstrates how the nonlinear controller deals 

with a system that is perturbed by an uncertainty parameter, the orbital eccentricity. By 

comparing fig. 4.9 with fig. 4.12, it’s noticeable that there is almost no change in the 

trajectory. 

 

 

 
Figure 4.12: Rendezvous trajectory of the chaser spacecraft for the initial state 𝑥 =

[30000 −40000 20000 −30 40 −20] , with perturbation. 

 

With fig. 4.13, the difference between the two examples is clearer. The controller takes a little 

longer to converge the system in the x-direction.  
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Figure 4.23: Relative position on each axis for the initial state 𝑥 =

[30000 −40000 20000 −30 40 −20] , with perturbation. 

 

Looking at the thrust profile for each axis for this example, in fig. 14, it exhibits the same 

pattern as the previous example. 

 

 
(a) 

 
(d) 
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(b) 

 
(e) 

 
(c) 

 
(f) 

Figure 4.14: Thrust profile for each axis (a, b, c) and the bang-bang profile (d, e, f) for the initial state 

𝑥 = [30000 −40000 20000 −30 40 −20] , with perturbation. 
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Conclusion 

 
A nonlinear control was designed to solve the orbital rendezvous problem while demonstrating 

robustness and performance when applied to a dynamic linear system where the chaser 

spacecraft performs the rendezvous maneuver in a near-circular orbit. This feedback control, 

based on a Lyapunov approach, was used on a linear dynamic system that uses the non-

circularity of the target’s orbit as an uncertainty parameter, for a wide range of relative 

distances and velocities, while also taking into account perturbations to the system. It was also 

proven that the control can, in addition, be applied to non-coplanar orbits, with great results.  

The four cases tested using this kind of control were able to provide the solution to the linear 

system, i.e., bring the chaser spacecraft to the target spacecraft, while generating a smooth 

trajectory with no overshooting. Even though a saturation function was used to cap the thrust 

produced in each direction, making it a real-world engineering problem and not only a 

theoretical problem, the designed algorithm could still find an asymptotically stable solution 

to each studied case with a reduced time frame and relatively low computer processing time. 

The thrust profiles for each simulation showed that the controller applies a bang-bang control, 

proving that this is an active rendezvous method. On all the cases presented it is also noticeable 

that the generated thrust is equal to zero when the controller has found a solution, 

demonstrating that, in fact, the controller properly works. 

Regarding the control matrices, that was proven to be the most difficult task to deal with, since 

the methodology used to find them was through trial and error, a method based on the user’s 

experience that is very time-consuming. Nonetheless, this method provided great results on 

finding those matrices given that the relative position on each direction for all examples 

converged smoothly with no overshooting. Only for the last two examples, the trajectory 

presented a little oscillation, indicating there exist control matrices better suited for them. 

Overall, the controller produced satisfactory results with and without perturbations in the 

system, for a wide range of relative distances and velocities. Its robust stability and 

effectiveness were indeed demonstrated. 

In the future, it is highly recommended the use of a nonlinear dynamic system to describe the 

problem as accurately as possible. Furthermore, a better-suited methodology to find 

appropriate control matrices is recommend, reducing workload and improving the overall 

controller performance and robustness. Additionally, it is suggested the implementation of this 

controller to a system under other disturbance characteristics, for instance, solar pressure and 

𝐽  perturbations. 
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Annex A 

 

Velocity graphics for each case study 

 

Figure A.1: Relative velocities for the initial state 𝑥 = [3000 −4000 20 −3 4 −0.02] . 

 

 

Figure A.2: Relative velocities for the initial state 𝑥 = [30000 −40000 200 −30 40 −0.2] . 
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Figure A.3: Relative velocities for the initial state 𝑥 = [30000 −40000 20000 −30 40 −20] . 

 

 

Figure A.4: Relative velocities for the initial state 𝑥 = [30000 −40000 20000 −30 40 −20] , 

with perturbation. 
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Robust nonlinear feedback control for Rendezvous in near-

circular orbits 

 

Eduardo D. Godinho. 

(To be submitted to the AASS) 
  



 52

 
 

 

 

 

 

 

 

Robust nonlinear feedback control for Rendezvous in near-

circular orbits 

 

Eduardo D. Godinho 

 

 

Abstract.  This paper investigates an optimal robust guarantee nonlinear nonquadratic feedback 

control to address the problem of uncertain systems on orbital rendezvous missions. This control 

uses a based Lyapunov approach with two modified Riccati equations in order to guarantee the 

control robustness. A linear dynamic system is used, based on the two-body problem, with the 

noncircularity of the target orbit being the uncertain parameter. A saturation function is also used to 

make sure the control forces stay within acceptable limits. Three numerical examples are used to 

demonstrate the effectiveness and robustness of the nonlinear nonquadratic control with and without 

perturbation between non-coplanar orbits. 

Keywords:  Lyapunov based approach, Noncircularity, Nonlinear control, Rendezvous, Robust control. 

 

 

1. Introduction 

 

Rendezvous and docking (RND) maneuvers have always been a hard challenge to overcome 

throughout space missions’ history. Gemini 6 and 7 were the first two spacecrafts to perform a 

space rendezvous. Following this remark, the Gemini 8 and the Agena Target Vehicle 

successfully accomplished the first manual docking. A year later, the Cosmos program achieved 

the first automated unmanned docking. Five decades have gone by and human intervention is still 

needed to successfully perform RND maneuvers. Although ground and/or astronaut onboard 

control is standard procedure, an effort is being made to autonomously rendezvous and dock 

spacecrafts. Different methodologies have been implemented to solve the rendezvous problem, 

usually taking the burn time and maneuver impulse to solve the trajectory design, while the 

propellant cost, the total time of flight or trajectory robustness is being taken into account to 
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optimize the process. To implement and solve the rendezvous problem, a controller must be 

designed. Moon et al. used a Linear Quadratic Control (LQC) to obtain the energy optimal 

guidance law for rendezvous missions while Miele, Weeks and Ciarcià used a sequential gradient-

restoration algorithm (SGRA) to obtain time-optimal and fuel-optimal solutions for the 

rendezvous problem in a circular orbit. Wan, Liu, and Karimi developed a robust guaranteed cost 

observer-controller in near-circular orbits using the noncircularity of the target orbit as a 

parametric uncertainty. Furthermore, a multi-objective robust H infinity controller was also 

proposed to solve the rendezvous problem of two neighboring spacecrafts exposed to parameter 

uncertainties and external perturbations, using a Lyapunov approach. Although H infinity 

guarantees robustness, since it takes into consideration that the worst possible disturbance cannot 

destabilize the system, performance objectives may not be fulfilled such as time-optimal and/or 

fuel-optimal solutions. To guarantee robust stability and performance, Haddad, Chellaboina, and 

Fausz suggest a generalization of the classical Hamilton-Jacobi-Bellman conditions to deal with 

the design of robust nonlinear optimal controllers for uncertain linear systems. Such a controller 

is attained by modifying the nonlinear-nonquadratic performance criterion to account for system 

uncertainty. 

The present paper studies the robustness and performance of a nonlinear nonquadratic controller 

applied to a rendezvous problem where the chaser spacecraft performs a rendezvous maneuver in 

a near-circular orbit. Based on the work of Wan et al., a first-order relative uncertain motion 

model in near-circular orbit is used to account for the noncircularity of the target orbit as a 

parametric uncertainty. 

 

2. Problem Formulation and Dynamical Model 

 

In this section, a nonlinear nonquadratic controller is formulated to deal with the rendezvous 

task. 

Additionally, a relative dynamic model and a coordinate system for the rendezvous problem in 

near-circular orbit is established. 

 

 

2.1 Problem Formulation 

 

The present paper applies a transparent generalization of the Hamilton-Jacobi-Bellman 

conditions for time-invariant and infinite horizon problems to generate a nonlinear feedback 

controller for a nonlinear system. Also, let ℝ denote real numbers and let ℝ × denote real 𝑛 × 𝑚 

matrices. To denote 𝑛 × 𝑛 nonnegative and positive define matrices, the notations ℕ𝑛×𝑛 and ℙ𝑛×𝑛 

are used, respectively. 
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Let 𝐷 ⊂ ℝ  be an open set and let 𝐶 ⊂ ℝ , where 0 ⊂ 𝐷 and 0 ⊂ 𝐶. Furthermore, let ℱ ⊂

𝑓: 𝐷 × 𝐶 → ℝ : 𝑓(0,0) = 0 represent the class of uncertain closed-loop nonlinear systems 

where 𝑓(0,0) ∈ ℱ defines the nominal nonlinear system. The main task of this section is to 

control the 

following, uncertain system 

 

 �̇� = 𝑓 𝑥(𝑡), 𝑢(𝑡) ,   𝑥(0) = 𝑥 , 𝑡 ≥ 0 (1) 

 

where 𝑓(∙,∙) ∈ ℱ and the control 𝑢(∙) is limited to the class of admissible controls such that 𝑢(𝑡) ∈

𝑈 for all 𝑡 ≥ 0 where the control constraint set 𝑈 ⊂ 𝐶 is given, with a control law 𝜙(∙) that takes 

the form of a feedback control 𝑢(𝑡) = 𝜙 𝑥(𝑡)  and minimizes the performance functional 𝐽 (∙,∙

)from equation (3). The closed-loop system is now defined as 

 

 �̇� = 𝑓 𝑥(𝑡), 𝜙 𝑥(𝑡) ,   𝑥(0) = 𝑥 , 𝑡 ≥ 0, ∀𝑓(∙,∙) ∈ ℱ (2) 

 

It is assumed that equation (2) has a unique solution forward in time and that 𝑓(∙,∙) ∈ ℱ  is 

smooth and Lipschitz defined in a neighborhood of the origin 𝐷 × 𝐶. 

 

 

2.2 Theoretical Method 

 

The next step is to describe robust feedback controllers that guarantee robust stability over a 

class of nonlinear uncertain systems and minimize an auxiliary performance functional. First, let 

𝐿: 𝐷 × 𝑈 → ℝ and 𝐶 define the set of asymptotically stabilizing controllers for the nominal system 

𝑓 (∙,∙) such that 𝑥(∙) given by equation (1) satisfies 𝑥(𝑡) → 0 as 𝑡 → ∞ with 𝑓(∙,∙) = 𝑓 (∙,∙). 

Now, considering the controlled uncertain system defined above with performance 

functional 

 

 𝐽 𝑥 , 𝑢(∙) ≜ ∫ 𝐿 𝑥(𝑡), 𝑢(𝑡)  𝑑𝑡 (3) 

 

and assuming 𝑉: 𝐷 → ℝ, Γ: 𝐷 × 𝑈 → ℝ functions exist and a control law 𝜙: 𝐷 → 𝑈 where 𝑉(∙) is 

a Lyapunov function such that 

 

 𝑉(0) = 0 (4) 

 𝑉(𝑥) > 0, 𝑥 ∈ 𝐷, 𝑥 ≠ 0 (5) 
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 𝜙(0) = 0   (6) 

 𝑉 ( ) , ( ) ≤ 𝑉 (𝑥)𝑓 𝑥, 𝜙(𝑥) + 𝛤 𝑥, 𝜙(𝑥) , 𝑥 ∈ 𝐷, 𝑓(∙,∙) ∈  ℱ (7) 

 𝑉 (𝑥)𝑓 𝑥, 𝜙(𝑥) + 𝛤 𝑥, 𝜙(𝑥) < 0, 𝑥 ∈ 𝐷, 𝑥 ≠ 0 (8) 

 𝐻 𝑥, 𝜙(𝑥) = 0, 𝑥 ∈ 𝐷 (9) 

 𝐻(𝑥, 𝑢) ≥ 0, 𝑥 ∈ 𝐷, 𝑢 ∈ 𝑈 (10) 

 

where 𝐻(∙,∙) is defined as 

 

 𝐻(𝑥, 𝑢) ≜ 𝐿(𝑥, 𝑢) + 𝑉 (𝑥)𝑓 (𝑥, 𝑢 ) +  𝛤(𝑥, 𝑢) (11) 

 

Then, there exists a neighborhood 𝐷 ⊂ 𝐷 of the origin such that if 𝑥 ⊂ 𝐷 , the solution 𝑥(𝑡) =

0, 𝑡 ≥ 0 of the controlled uncertain system is locally asymptotically stable or all 𝑓(∙,∙) ∈  ℱ. 

Furthermore, the performance functional can now be defined as  

 

 𝐽 𝑥 , 𝑢(∙) ≜ ∫ 𝐿 𝑥(𝑡), 𝑢(𝑡) + 𝛤 𝑥(𝑡), 𝑢(𝑡) ] 𝑑𝑡 (12) 

 

and, if 𝑥 ⊂ 𝐷 , then the feedback control 𝑢(𝑡) = 𝜙 𝑥(𝑡)  minimizes the performance 

functional on equation (12).  

To complete the statements above, if 𝐷 = ℝ , 𝑈 = ℝ  and 𝑉(𝑥) → ∞ as ‖𝑥‖ → ∞, then the 

solution 𝑥(𝑡) = 0, 𝑡 ≥ 0 of the controlled uncertain system is globally asymptotically stable for 

all 𝑓(∙,∙) ∈  ℱ. 

 

 

2.3 Robust feedback control of linear uncertain systems 

 

Taking the previous statements into account, a better-suited formulation is used to deal with 

uncertain linear systems controlled by nonlinear controllers that minimize a polynomial cost 

function. Considering the following linear uncertain system 

 �̇�(𝑡) = (𝐴 + ∆𝐴)𝑥(𝑡) + 𝐵𝑢(𝑡), 𝑥(0) = 0, 𝑡 ≥ 0 (13) 

 

where the set of uncertain linear systems ℱ is given by 

 

 {(𝐴 + ∆𝐴)𝑥 + 𝐵𝑢: 𝑥 ∈ ℝ , 𝐴 ∈ ℝ × , 𝐵 ∈ ℝ × , ∆𝐴 ∈ ∆} (14) 
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and ∆∈ ℝ ×  is a given bounded uncertainty set of the uncertain perturbation ∆𝐴 of the nominal 

system 𝐴. For the uncertain linear system above, let the weighing matrices 𝑅 ∈ ℙ × , 𝑅 ∈

ℙ ×  and 𝑅 ∈ ℕ × , 𝑘 = 2, … , 𝑟, where 𝑟 is a positive integer, be given. 

Assuming there exists Ω: ℝ × → ℝ ×  in such a way that 

 

 ∆𝐴 𝑃 + 𝑃∆𝐴 ≤ Ω(𝑃), ∆A ∈ ∆, P ∈ ℝ ×  (15) 

 

and there exists P ∈ ℙ × , 𝑀 ∈ ℝ × , 𝑘 = 2, … , 𝑟 in such a manner that 

 

 0 = 𝐴 𝑃 + 𝑃𝐴 + 𝑅 + Ω(𝑃) − 𝑃𝑆𝑃 (16) 

 0 = (𝐴 − 𝑆𝑃) 𝑀 + 𝑀 (𝐴 − 𝑆𝑃) + 𝑅 + Ω(𝑀 ) (17) 

 

where 𝑆 ≜ 𝐵𝑅 𝐵 . Additionally, let 𝐿 and 𝛤 be 

 

𝐿(𝑥, 𝑢) = 𝑥 𝑅 + ∑ (𝑥 𝑀 𝑥) 𝑅 +

[∑ (𝑥 𝑀 𝑥) 𝑀 ] 𝑆[∑ (𝑥 𝑀 𝑥) 𝑀 ] 𝑥 + 𝑢 𝑅 𝑢

  (18) 

 𝛤(𝑥, 𝑢) = 𝑥𝑇 Ω(𝑃) + ∑ (𝑥𝑇𝑀𝑘𝑥)𝑘−1Ω(𝑀
𝑘
)𝑟

𝑘=2  (19) 

 

Then, the linear uncertain system in equation (13) takes the performance functional 

 

 𝐽∆ 𝑥 , 𝑢(∙) ≜ ∫ 𝐿(𝑥, 𝑢) 𝑑𝑡 (20) 

 

and is globally asymptotically stable for all 𝑥 ∈ ℝ  and ∆𝐴 ∈ ∆ with the feedback control 

 

 𝜙(𝑥)  ≜ −𝑅 𝐵 [𝑃 + ∑ (𝑥 𝑀 𝑥) 𝑀 ]𝑥 (21) 

 

For the present case study in this paper, a more explicit formulation is made. Firstly, let 

 

 ∆≜  ∆𝐴 ∈ ℝ × : ∆A = ∑ 𝜎 𝐴 , ∑ ≤ 1 , 𝑖 = 1, … , 𝑝 (22) 

 

where 𝐴 ∈ ℝ ×  are fixed matrices denoting the structure of the parametric uncertainty, 𝛼  is 

an assumed positive number and 𝜎  is an uncertain real parameter. Secondly, let  

 

 Ω(P) = ∑ 𝐴 𝑃𝐴 + 𝛼𝑃 (23) 
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where 𝛼 = ∑ 𝛼 . Additionally, let 

 

 𝐴 = 𝐴 + 𝐼  (24) 

 

where 𝐼  denotes 𝑛 × 𝑛 identity matrices. For the present case study, 𝑟 = 2 is enough to obtain 

the optimal robust controller and to solve the modified Riccati equations in (16)-(17). 

Now, assuming there exists 𝑃 ∈ ℙ × and 𝑀 ∈ ℕ ×  and attending to the previous 

statements, it follows that 

 

 0 = 𝐴 𝑃 + 𝑃𝐴 + 𝑅 + ∑ 𝐴 𝑃𝐴 − 𝑃𝑆𝑃 (25) 

and 

 

 0 = (𝐴 − 𝑆𝑃) 𝑀 + 𝑀 (𝐴 − 𝑆𝑃) + 𝑅 + ∑ 𝐴 𝑀 𝐴  (26) 

 

Furthermore, let  

 

 𝐿(𝑥, 𝑢) = 𝑥 𝑅 + 𝑥 𝑀 𝑥𝑅 + (𝑥 𝑀 𝑥) 𝑀 𝑆𝑀 𝑥 + 𝑢 𝑅 𝑢 (27) 

 𝛤(𝑥, 𝑢) = 𝑥 ∑ 𝐴 𝑃𝐴 + 𝛼𝑃 + 𝑥 𝑀 𝑥 ∑ 𝐴 𝑀 𝐴 + 𝛼𝑀 𝑥 (28) 

 

Consequently, the linear uncertain system is globally asymptotically stable for all 𝑥 ∈ ℝ  and 

∆𝐴 ∈ ∆ with the feedback control 

 

 𝜙(𝑥)  ≜ −𝑅 𝐵 [𝑃 + (𝑥 𝑀 𝑥)𝑀 ]𝑥 (29) 

 

2.3 Dynamical Model 

 
The rendezvous problem implies a pre-determined meeting between two spacecrafts, the 

chaser and the target spacecrafts, where the two entities’ relative position and velocity 

approximate to zero. The designations “chaser” and “target” are assigned based on the use of 

thrusters to perform the orbital maneuver, where the chaser is classified as “active” and the 

target is classified as “passive” regarding the use of its propulsion system to complete the task at 

hand. 

To formulate the rendezvous problem a coordinate system must be chosen first. A local 

vertical local horizontal (LVLH) frame centered on the target spacecraft was used, where the x-
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axis is directed radially outward along the position vector r, centered on Earth, the y-axis is along 

the velocity direction and the z-axis is normal to the reference orbit plane. Figure 1 illustrates the 

coordinate system described above. Following the coordinate system’s description, the relative 

uncertain dynamic model can be expressed as 

 

  �̇�(𝑡) = (𝐴 + ∆𝐴)𝑥(𝑡) + 𝐵𝑢(𝑡) (30) 

 

Fig.1 Local vertical local horizontal frame. 

 

where 𝑥(𝑡) = [𝑥, 𝑦, 𝑧, �̇�, �̇�, �̇�]  is the state vector that contains the position and velocity states of 

the chaser spacecraft and 𝑢(𝑡) = 𝑓 (𝑡), 𝑓 (𝑡), 𝑓 (𝑡),  is the input control vector where 𝑓 (𝑡) for 

𝑖 = 𝑥, 𝑦, 𝑧 are the chaser’s control forces along each axis. Matrices 𝐴, ∆𝐴, and 𝐵 can be written 

as  

 

𝐴 =

⎣
⎢
⎢
⎢
⎢
⎡

0
0
0

3𝑛
0
0

0
0
0
0
0
0

0
0
0
0
0

−𝑛

1
0
0
0

−2𝑛
0

0
1
0

2𝑛
0
0

0
0
1
0
0
0

 

⎦
⎥
⎥
⎥
⎥
⎤

 𝐵 =

⎣
⎢
⎢
⎢
⎢
⎡

 

0
0
0
1
0
0

   

0
0
0
0
1
0

   

0
0
0
0
0
1

  

⎦
⎥
⎥
⎥
⎥
⎤

 

 ∆𝐴 =

⎣
⎢
⎢
⎢
⎢
⎡

0
0
0

10𝑒𝑛 cos 𝑀
2𝑒𝑛 sin 𝑀

0

0
0
0

  −2𝑒𝑛 sin 𝑀
𝑒𝑛 cos 𝑀

0

0
0
0
0
0

−3𝑒𝑛 cos 𝑀

0
0
0
0

−4𝑒𝑛 𝑐𝑜𝑠 𝑀
0

0
0
0

4𝑒𝑛 cos 𝑀   
0
0

0
0
0
 0
0
0

 

⎦
⎥
⎥
⎥
⎥
⎤

 (31) 

 

where 𝑛 is the mean motion of the target spacecraft, 𝑚 is the chaser’s mass, 𝑒 is the eccentricity 

of the target orbit. 𝑀 = 𝑛 ∙ 𝑡  is the target’s mean anomaly where 𝑡  is the time of periapsis 

passage. The norm-bounded matrix ∆𝐴 represents the uncertain perturbations on the target’s orbit 

which, in the present study, is the eccentricity parameter. The present model was adopted for the 
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case in study since it is more accurate when compared to the nonlinear model for elliptical orbits 

and it is more designer-friendly. 

 

3. Simulation Results and Discussion 

 

In this section, two examples will be presented to demonstrate and validate the effectiveness and 

robustness of the nonlinear nonquadratic controller when applied to a linear uncertain system. 

For this simulation, the Euler method is used to calculate matrices 𝑃 and 𝑀 . The first example 

will simulate the controller’s performance for a close relative distance (in the order of the one 

thousand meters) to the target spacecraft while the second example will simulate the same 

controller but for a greater relative distance (in the order of the ten thousand meters). The last 

example will use the same initial state as the second but it will use the norm-bounded matrix ∆𝐴 

as perturbations to the system. For all examples, the target orbit will be the same and the chaser 

spacecraft will have the same mass. Also, the maximum control thrusts along the x-, y- and z-

axis will be the exact same, employed by a saturation function. Table I sums up the target orbit 

parameters, the chaser’s mass and the control thrusts used. Furthermore, the modified Bryson 

Method is used to, in both cases, find the most suitable 𝑅  and 𝑅 . The 𝑅  matrix is put together 

using trial and error to get the best results. For the parameters 𝛼  all examples will use 𝛼 =

2.4 ∙ 10 , 𝛼 = 1.4 ∙ 10 , and 𝛼 = 1.3 ∙ 10 , also using trial and error to get the best-suited 

values. Matrices 𝑃 and 𝑀  are calculated using the Euler’s Method on the modified Riccati 

equations (25) and (26), where both are transformed into differential equations as follows 

 
 �̇� = 𝐴 𝑃 + 𝑃𝐴 + 𝑅 + ∑ 𝐴 𝑃𝐴 − 𝑃𝑆𝑃 (32) 
 
 �̇� = (𝐴 − 𝑆𝑃) 𝑀 + 𝑀 (𝐴 − 𝑆𝑃) + 𝑅 + ∑ 𝐴 𝑀 𝐴  (33) 
 
Both matrices are assumed to be an identity matrix for the first iteration and the process stops 

when �̇� and �̇�  converge to zero, meaning that both matrices have converged to the solution. 

 

Table 1 Target orbit parameters, chaser’s mass and control thrusts. 

Perigee distance [m] 6728140 

Eccentricity 0.01 

Mean motion [rad/s] 0.0013 

Mean anomaly [rad] 6.378 

Chaser’s mass [kg] 200 

Maximum control thrust along x-axis [N] 100 

Maximum control thrust along y-axis [N] 100 

Maximum control thrust along z-axis [N] 20 
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For the first example, the starting state is 
 

 𝑥 =

⎣
⎢
⎢
⎢
⎢
⎡

 

3000
−4000

20
−3
4

−0.02 ⎦
⎥
⎥
⎥
⎥
⎤

 (34) 

 
and the controls matrices are 

 𝑅 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0
0
0
0
0

    

0

( )

0
0
0
0

     

0
0

0
0
0

      

0
0
0

( )

0
0

      

0
0
0
0

0

      

0
0
9
0
0

( . )

 

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (35) 

 𝑅 =

⎣
⎢
⎢
⎢
⎡

.
0 0

0
.

0

0 0

 

⎦
⎥
⎥
⎥
⎤

 (36) 

 

 

 𝑅 =

⎣
⎢
⎢
⎢
⎢
⎡
10

0
0
0
0
0

    

0
10

0
0
0
0

     

0
0

10
0
0
0

      

0
0
0

1.1 ∙ 10
0
0

      

0
0
0
0

10
0

      

0
0
9
0
0

10

 

⎦
⎥
⎥
⎥
⎥
⎤

 (37) 

 
and the calculated matrices 𝑃 and 𝑀  are 
 

𝑃 =

⎣
⎢
⎢
⎢
⎢
⎡

1.319 ∙ 10
−7.000 ∙ 10

0
5.593 ∙ 10
6.000 ∙ 10

0

    

−7.000 ∙ 10
8.502

0
−6.000 ∙ 10
4.803 ∙ 10

0

     

0
0

8.491
0
0

1.694

      

5.593 ∙ 10
−6.000 ∙ 10

0
4.717 ∙ 10

6.400 ∙ 10
0

      

6.000 ∙ 10
4.803 ∙ 10

0
6.400 ∙ 10
3.540 ∙ 10

0

      

0
0

1.694
0
0

5.005 ∙ 10

 

⎦
⎥
⎥
⎥
⎥
⎤

 (38) 

 

The nonlinear nonquadratic controller will stop its action course when the rendezvous is 

accomplished, that is, when the state vector equals 0. Fig. 2 shows the rendezvous trajectory 

described by the chaser spacecraft until it achieves the rendezvous task. 
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Fig.2 Rendezvous trajectory of the chaser spacecraft for the first example.  

It is possible to notice that a smooth trajectory is generated by the controller applied to the 

linear uncertain system. Furthermore, the rendezvous task is indeed fulfilled, getting the chaser 

spacecraft to the target’s position. A further look at Fig.3 shows the robustness and 

effectiveness of the controller, demonstrating the convergence to zero asymptotically. 

 

 

(a) 

 

(b) 

Fig. 3 Relative positions on each axis (a) and a closer look on the z-axis (b) 

 

From Fig.4, the thrust profile can be contemplated, with its bang-bang attitude, on a closer 

look. The maximum control forces stipulated on the saturation function employed on the 

controller are working properly since none of the control forces exceed the maximum imposed 

value. 
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(a) (b) 

Fig. 4 Control forces of the chaser spacecraft on the x-axis (a) and a closer look at the bang-

bang profile (b). 

 

 

 

 

For the second example, the initial state is 

 

 𝑥 =

⎣
⎢
⎢
⎢
⎢
⎡

30000
−40000
20000

−30
40

−20 ⎦
⎥
⎥
⎥
⎥
⎤

 (39) 

 

and the controls matrices are 

 

 𝑅 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0
0
0
0
0

    

0

( )

0
0
0
0

     

0
0

0
0
0

      

0
0
0

( )

0
0

      

0
0
0
0

0

      

0
0
9
0
0

( )

 

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (40) 

 

 𝑅 =

⎣
⎢
⎢
⎢
⎡

.
0 0

0
.

0

0 0
.

 

⎦
⎥
⎥
⎥
⎤

 (41) 
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 𝑅 =

⎣
⎢
⎢
⎢
⎢
⎡
10

0
0
0
0
0

    

0
10

0
0
0
0

     

0
0

10
0
0
0

      

0
0
0

1.35 ∙ 10
0
0

      

0
0
0
0

10
0

      

0
0
9
0
0

10

 

⎦
⎥
⎥
⎥
⎥
⎤

 (42) 

 

and the calculated matrices 𝑃 and 𝑀  are  

 

 

𝑃 =

⎣
⎢
⎢
⎢
⎢
⎡
9.183 ∙ 10
4.000 ∙ 10

0
1.700 ∙ 10
3.000 ∙ 10

0

    

4.000 ∙ 10
1.695

0
0

5.536 ∙ 10
0

     

0
0

4.830 ∙ 10
0
0

2.483 ∙ 10

      

1.700 ∙ 10
0
0

2.162
−1.400 ∙ 10

0

      

3.000 ∙ 10
5.536 ∙ 10

0
−1.400 ∙ 10

2.450 ∙ 10
0

      

0
0

2.483 ∙ 10
0
0

1.951 ∙ 10

 

⎦
⎥
⎥
⎥
⎥
⎤

 (43) 

 

 𝑀2 =

⎣
⎢
⎢
⎢
⎢
⎡

5.253 ∙ 101

1.550 ∙ 10−3

0

9.623 ∙ 10−1

−2.100 ∙ 10−4

0

    

1.550 ∙ 10−3

3.112 ∙ 101

0

−1.300 ∙ 10−4

6.470 ∙ 10−1

0

     

0

0

8.062 ∙ 101

0

0

8.562

      

9.623 ∙ 10−1

−1.300 ∙ 10−4

0

1.114 ∙ 102

1.544 ∙ 10−2

0

      

−2.100 ∙ 10−4

6.470 ∙ 10−1

0

1.544 ∙ 10−2

1.633 ∙ 102

0

      

0

0

8.562

0

0

2.569 ∙ 103

 

⎦
⎥
⎥
⎥
⎥
⎤

(44)  

 

 

Although the relative distance on each axis is greater than the previous example, especially 

on the z-axis, the resulting trajectory, in Fig. 5, shows a successful rendezvous maneuver with a 

smooth trajectory. 
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Fig. 5 Rendezvous trajectory of the chaser spacecraft for the second example. 

 

Fig. 6 portrays the asymptotic convergence to zero on each axis, evidencing the robustness of 

the nonlinear feedback controller. 

 

 

Fig.6 Relative positions on each axis for the second example. 

 

Looking at the control forces, in Fig. 7, until 𝑡 = 400𝑠 the control produces 100 𝑁 in the 

negative direction, thus the minus signal. After 𝑡 = 470𝑠, the controller employs a bang-bang 

profile to the generated thrust.  
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(a) 

 

(b) 

Fig. 7 Control forces of the chaser spacecraft on the x-axis (a) and a closer look at the bang-bang 

profile (b). 

 

 

For the last example, the initial state vector will be the same as the second example, and all 

control matrices will remain the same. Because matrices 𝑃 and 𝑀  only depend on those matrices 

they will be constant too. The norm-bounded matrix ∆𝐴 will be used as perturbation during the 

simulation of this example. Fig. 8 shows that even though those perturbations were added to the 

system, the controller can still deliver very good results 

 

 

 

 

Fig. 8 Rendezvous trajectory of the chaser spacecraft for the third example. 
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Fig. 9 shows that the convergence process enforced by the controller, with perturbations to the 

system, is still smooth without overshooting the target. 

 

 

Fig.9 Relative positions on each axis for the third example. 

 

The generated thrust for this example exhibits approximately the same profile, with no evident 

change in Fig. 10. 

 

 

 

Fig. 10 Control forces of the chaser spacecraft on the x-axis for the third example. 

 

 

On all the generated thrust figures, it is noticeable that the controller has stopped when the 

produced thrust is equal to zero, another sign that the controller can indeed fulfill the orbital 

rendezvous between the two vassals. 

 

4. Conclusions 
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This paper has discussed a nonlinear nonquadratic controller for the spacecraft rendezvous 

problem. A relative dynamic model with parameter uncertainty for rendezvous in near-circular 

orbits has been established. An optimal controller that guarantees robust stability and performance 

for nonlinear and linear uncertain systems was developed by modifying the nonlinear-

nonquadratic performance criterion to account for system uncertainty. Three examples were used 

to demonstrate the robustness and effectiveness of the controller, the first in the order of the one 

thousand meters and the second in the order of the ten thousand meters, showing that the nonlinear 

nonquadratic controller can perform well and guarantee robust stability even for large relative 

distances and noncoplanar orbits. The third example demonstrates that by using the uncertain 

parameter as a perturbation to the system, the controller can still deliver great results by generating 

a smooth trajectory with adequate rates of convergence in each axis. 
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