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A B S T R A C T   

Aviation emissions from landing and takeoff operations (LTO) can degrade local and regional air quality leading 
to adverse health outcomes in populations near airports and downwind. In this study we aim to quantify the air 
quality and health-related impacts from commercial LTO emissions in the continental U.S. for two recent years’ 
inventories, 2011 and 2016. We quantify the LTO-attributable PM2.5, O3, and NO2 concentrations and health 
outcomes for mortality and multiple morbidity health endpoints. We also quantify the impacts from two sce
narios representing a nation-wide implementation of 5% or 50% blends of sustainable alternative jet fuels. We 
estimate 80 (68–93) and 88 (75–100) PM2.5-attributable and 610 (310–920) and 1,100 (570–1,700) NO2- 
attributable premature mortalities in 2011 and 2016, respectively. We estimate a net decrease of 28 (14–56) and 
54 (27–110) in O3-attributable premature mortalities across the U.S. in 2011 and 2016, respectively due to the 
large O3 titration effects near the airports. We also find that the asthma exacerbations due to NO2 exposures from 
LTO emissions increase from 100,000 (2,500–200,000) in 2011 to 170,000 (4,400–340,000) in 2016. Imple
menting a 5% or 50% blend of sustainable alternative jet fuel in 2016 results in a 1% or 18% reduction, 
respectively in PM2.5-attributable premature mortalities. Monetizing the value of avoided total premature 
mortalities, we find that a 50%-blended sustainable alternative jet fuel results in a 19% decrease in PM2.5 
damages per ton of fuel burned and a 2% decrease in total damages per ton of fuel burned as compared to 
damages from traditional jet fuel. We also quantify health impacts by state and find California to be the most 
impacted by LTO emissions. We find that LTO-attributable PM2.5 and NO2 premature mortalities increase by 10% 
and 80%, respectively from 2011 to 2016 and that NO2-attributable premature mortalities are responsible for 
91% of total LTO-attributable premature mortalities in both 2011 and 2016. And since we find LTO-attributable 
NO2 to be unaffected by the implementation of sustainable alternative jet fuels, additional approaches focused on 
NOX reductions in the combustor are needed to mitigate the air quality-related health impacts from LTO 
emissions.   

1. Introduction 

Commercial aviation emissions’ impact on air quality has been 
estimated to be responsible for approximately 16,000 premature mor
talities each year globally (Yim et al., 2015; Grobler et al., 2019). Both 
international and domestic forecasts for aviation traffic call for 
continued growth, 2.1% and 3.5% growth in revenue passenger miles 
over the next 20 years, respectively (FAA, 2014), with total fuel burn 
from commercial aircraft globally increasing by 71% between 1992 and 
2006 (Olsen et al., 2013) and increasing by 28% between 2006 and 2015 

(Grobler et al., 2019). Modeling studies have aimed to quantify air 
quality impacts and climate effects from all stages of an aircraft’s flight 
trajectory, often looking at impacts at the landing and takeoff (LTO) 
stages (Arunachalam et al., 2011; Unal et al., 2005; Woody et al., 2011; 
Levy et al., 2012b; Lee et al., 2013; Woody and Arunachalam, 2013; 
Wolfe et al., 2014; Vennam et al., 2015; Woody et al., 2015; Woody 
et al., 2016; Penn et al., 2017) (below 3,000 ft) and full-flight (cruise) 
stages (Barrett et al., 2010; Barrett et al., 2012; Koo et al., 2013; Caiazzo 
et al., 2017; Cameron et al., 2017; Vennam et al., 2017; Grobler et al., 
2019; Quadros et al., 2020; Lee et al., 2021). 
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A recent paper by Dedoussi et al. 2021 (Dedoussi, 2021) has high
lighted the important research questions surrounding aviation- 
attributable air pollution such as global impacts versus local impacts, 
aviation’s impact in a changing atmosphere, and emission reduction 
strategies focused on technological changes such as alternative jet fuels. 
Recent modeling studies have aimed to quantify global impacts from 
full-flight cruise emissions; with over 75% of health impacts due to 
aviation-attributable air pollution estimated to be from full-flight 
emissions (Barrett et al., 2010; Yim et al., 2015; Dedoussi, 2021). 
However, global studies may not be capturing the local impacts due to 
limited chemistry and coarser model grid cell resolutions (Barrett et al., 
2010; Levy et al., 2012b; Dedoussi et al., 2020). Local to regional scale 
modeling efforts to quantify health impacts from aviation-attributable 
pollution in the U.S. have utilized emission inventories from the early 
2000s (Ratliff et al., 2009; Levy et al., 2012b; Lee et al., 2013; Koo et al., 
2013; Ashok et al., 2013; Wolfe et al., 2014; Yim et al., 2015; Penn et al., 
2017) which do not represent the impacts of the economic recession in 
2007–2009 and the impacts of a changing U.S. atmosphere (Pye et al., 
2020; Dedoussi, 2021). In fact, the recession in 2007–2009 had slowed 
aviation growth such that U.S. commercial air carriers’ total number of 
domestic departures had not increased above 2007 levels until 2016 
(FAA, 2014). And as far as the authors are aware, no study that has 
looked at health impacts from aviation-attributable air pollution have 
quantified the impacts from aviation-attributable NO2, a potentially 
dangerous local-scale pollutant from mobile sources (Khreis et al., 2017; 
Atkinson and Butland, 2018; Achakulwisut et al., 2019; Mohegh et al., 
2020). And while one study has looked at the air-quality-related health 
benefits from desulfurizing jet fuel (Barrett et al., 2012), and two others 
have looked at the non-volatile particulate matter (nvPM) emissions 
reductions from alternative jet fuels (Speth et al., 2015; Lobo et al., 
2011), no study has looked to quantify the air-quality-related health 
benefits from fleet-wide implementation of sustainable alternative jet 
fuel. 

This study aims to address some of the gaps of the prior studies by 
quantifying LTO aviation-attributable fine particulate matter (PM2.5), 
ozone (O3), and nitrogen dioxide (NO2) concentrations and health im
pacts in the continental U.S. (CONUS) for the two most recent U.S. 
Environmental Protection Agencies’ (EPA) National Emissions In
ventories’ (NEI) years of 2011 and 2016. Two additional 2016 LTO 
emission inventories have been generated and modeled to quantify the 
air quality impacts of a 5% and 50% blend of sustainable alternative jet 
fuel implemented across the U.S. This will be the first study to quantify 
the impacts from aviation-attributable NO2 in the U.S. and the imple
mentation of sustainable alternative jet fuel blends nationwide. We hope 
these results can add to the growing list of literature surrounding 
aviation-attributable air pollution and associated health impacts. 

2. Methods 

We utilize a modeling platform consisting of the Weather Research 
and Forecasting (WRF) model (Skamarock et al., 2008) to process 
meteorology inputs, the Sparse Matrix Operator Kernel Emissions (Baek 
and Seppanen, 2018) (SMOKE) model to process background emissions, 
and the Community Multi-Scale Air Quality Model (CMAQ) to estimate 
LTO aviation-attributable PM2.5, O3, and NO2 across the continental U.S. 
(CONUS) for the years 2011 and 2016. CMAQv5.2 (US EPA Office of 
Research and Development, 2017) with the Carbon Bond 6 revision 3 
mechanism (CB6r3) (Luecken et al., 2019) is used to quantify pollutant 
concentrations across our modeling domain. Our modeling domain 
covers the continental U.S. with 12 km × 12 km horizontal grid cell 
resolution. Background emissions (all sectors excluding commercial 
aviation) are from the U.S. EPA’s 2011 (2011 NEI v2) (US Environ
mental Protection Agency, 2011) and 2016 (2016 NEI v1) (US Envi
ronmental Protection Agency, 2016) National Emissions Inventories. 
Aircraft emissions in this study were constructed from the FAA’s Avia
tion Emission Design Tool (AEDT) (FAA-AEDT, 2016) for National Air 

Space (NAS)-wide LTO aircraft activity for the years 2011 and 2015. 
LTO segments from AEDT datasets (Wilkerson et al., 2010) were pro
cessed into gridded emission rate files using AEDTProc (Baek et al., 
2012) such that LTO emissions of nitrogen oxides (NOX) (speciated to 
nitrogen oxide (NO), NO2, and nitrous acid (HONO)), carbon monoxide 
(CO), sulfur dioxide (SO2), total organic gases (TOG) (speciated to CB6r3 
model species according to EPA’s speciation profile (US Environmental 
Protection Agency and Federal Aviation Administration, 2009)), and 
primary PM (sulfate, organic aerosols, and elemental carbon (Wayson 
et al., 2009; Wilkerson et al., 2010)) are allocated to CMAQ-ready 
emission input files. Two additional LTO emissions inventories were 
generated to represent the expected emissions if sustainable alternative 
jet fuels (AJFs) were implemented across the U.S. as a 5% blend of 
existing jet fuel and a 50% blend of existing jet fuel. These inventories 
were generated by scaling hourly emission rates of the 2015 LTO in
ventory by fractional impact factors (values in S8) derived from field 
studies as defined in a recent synthesis study from the Airports Coop
erative Research Program (ACRP) that quantified emissions reductions 
due to use of sustainable alternate jet fuels (Hamilton, 2019). AJFs are 
produced from non-petroleum sources which reduces the life-cycle 
greenhouse gases (Pavlenko and Searle, 2021; Martinez-Valencia 
et al., 2021) and when burned in aircraft engines, AJFs emit less air 
pollutants. In this study we are concerned with the latter as it pertains to 
air quality impacts from airport aircraft operations. AJF use has been 
shown to reduce emissions of sulfur oxides (SOX) and nvPM significantly 
(∼90% and ∼50% SOX reductions for 100% and 50% blends of AJFs, 
respectively (Beyersdorf et al., 2014; Corporan et al., 2010) and ∼65% 
nvPM reductions for 50% blends (Beyersdorf et al., 2014; Chan et al., 
2015; Lobo et al., 2011)) and to a lesser extent, CO (∼10% CO reductions 
for 50% blends of AJF (Shouse et al., 2012)). There are currently three 
potential routes for AJFs: synthetic liquid fuels manufactured from 
current fossil fuels or biomass, bio-jet fuels made from agricultural oil 
crops, and hydrogen. Current use of AJFs requires a certain percentage 
to be blended with conventional petroleum-based jet fuel. Hence, the 5% 
and 50% impact factors derived in the ACRP report are from field 
campaigns that quantify the emissions and effects of different AJFs at 
specified blends up to 50%. In addition to the two NEI background 
emission inventories and LTO emission inventories, we made use of two 
meteorology datasets for 2011 and 2016. Details regarding model set
tings and datasets used can be found in tables S1–S2 and details 
regarding model evaluation against observations can be found in figures 
S1-S7 and table S5. 

The health impact assessment tool BenMAPR is used to quantify the 
expected mortalities and morbidities due to LTO-attributable pollutants. 
Similar to the U.S. EPA’s Benefits Mapping and Analysis Program 
(BenMAP) (Sacks et al., 2018), BenMAPR is a geospatial air pollution 
health impact assessment modeling platform written in the statistical 
computing language R (R Core Team, 2017) that links air pollution ex
posures to data on exposed populations and their background health. It 
then calculates the health impacts of these exposures using concentra
tion response functions (CRFs) from the epidemiological literature. 
BenMAPR has been used in other health impact analyses (Arter et al., 
2021) and relies on the same calculations and datasets used in BenMAP. 
For quantifying PM2.5-attributable premature mortalities, we make use 
of a CRF from a recently published meta-analysis (Vodonos et al., 2018) 
that found a 1.29% (95% CI 1.09–1.5) increase in all-cause mortality per 
10 μg/m3 increase in PM2.5. For O3-attributable premature mortalities, 
we use a CRF associating all-cause mortality to long-term O3 exposure 
with a hazards ratio of 1.02 (95% CI 1.01–1.04) per 10 ppb increase in 
O3 (Turner et al., 2016). For NO2-attributable premature mortalities, we 
use a CRF from a meta-analysis that found a pooled effect on mortality to 
be 1.04 (95% CI 1.02–1.06) with an increase in 10 μg/m3 in NO2 
(Faustini et al., 2014). In addition to mortality estimates, we expand the 
analysis to incorporate multiple morbidity estimates such as: respiratory 
and cardiovascular hospitalizations (Levy et al., 2012a; Zanobetti et al., 
2009), non-fatal heart attacks (Mustafić et al., 2012), and asthma 
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hospitalizations, emergency department visits, and exacerbations in 
those ages 5 to 17 (Orellano et al., 2017). Information regarding the 
morbidity CRFs and the underlying datasets used can be found in table 
S4. We chose CRFs in studies that best represent present day health 
outcomes and North American populations. If no suitable CRF could be 
found, we then relied on the CRFs that are currently used in BenMAP. 

3. Results 

3.1. Emissions 

Table 1 shows the number of arrivals and departures at CONUS 
airports and annual emissions of CONUS LTO CO, NOX, primary 
elemental carbon (PEC), and SO2 for each simulation year. While the 
total number of arrivals and departures slightly decrease from 2011 to 
2016, total fuel burned increases by ∼10% (from ∼4.66 Tg in 2011 to 
∼5.13 Tg in 2016) resulting in emissions increasing from 2011 to 2016. 
Emissions of CO, PEC, and SO2 decrease under the 5% and 50% 2016 
AJF scenarios with the amount decreased given by the impact factors in 
the ACRP report (table S8). It is important to note that other emission 
species, such as NOX, HAPs, and volatile organic compounds (VOC) were 
estimated to be negligibly impacted by currently approved blend per
centages (up to 50%) of sustainable alternative jet fuels. The ACRP 
report found no statistically significant impact for NOX and HAPs and no 
statistically meaningful results for VOCs from their fitting of the 
experimental data. Hence, the authors cautioned applying impact fac
tors for those species and we left those emission species unchanged from 
2016 in the 5% and 50% blend scenarios. 

We are able to quantify airport level emissions by looking at the 
emissions in the airport-containing grid cell. Fig. 1 shows the CO, NOX, 
primary elemental carbon (PEC), and SO2 emissions at the airport- 
containing grid cells for the top 28 airports in terms of passenger 
boardings (Air Carrier Activity Information System (ACAIS), 2015). The 
ORD (Chicago O’Hare International)-containing grid cell has the most 
NOX emissions at 2,184 tons in 2011 and the JFK (John F. Kennedy 
International)-containing grid cell has the most NOX emissions at 2,880 
tons in 2016. The ATL (Hartsfield-Jackson Atlanta International)- 
containing grid cell has the most CO emissions at 1,421 tons in 2011 
and the LAX (Los Angeles International)-containing grid cell has the 
most CO emissions at 1,519 tons in 2016. The ATL-containing grid cell 
has the most PEC emissions at 3.7 tons in 2011 and at 3.7 tons in 2016. 
The ORD-containing grid cell has the most SO2 emissions at 172 tons in 
2011 and at 192 tons in 2016. Emissions at the grid cell level are largely 
linear with respect to the number of flights at these airports. Figures S8- 
S11 show the number of arrivals and departures at 66 airports across the 
U.S. versus emissions of NOX, CO, SO2, and PEC in the airport-containing 
grid cell. 

3.2. Air quality 

Table 2 shows the CONUS-averaged population-weighted 

concentrations for LTO-attributable PM2.5, O3, and NO2. PM2.5 and NO2 
concentrations represent the annual average while O3 concentrations 
represent the annual average of the daily 8 h maximum. PM2.5 
population-weighted concentrations increase by 7.7% from 2011 to 
2016. PM2.5 population-weighted concentrations are expected to 
decrease in 2016 by 2.4% if a 5% blend of sustainable alternative jet fuel 
is implemented and by 18.4% if a 50% blend is implemented. O3 
population-weighted concentrations are negative in both 2011 and 
2016, meaning that LTO emissions near the airport are removing O3. 
This is due to localized NOX/VOC ratios impacting whether O3 forma
tion is limited by NOX or VOC concentrations and as it is often the case 
for densely populated urban areas; NOX emissions can lead to a reduc
tion in O3 in VOC-limited areas. From Table 1 we can see that NOX 
emissions from LTO across the U.S. are larger in 2016 than 2011 which 
corresponds to an 82% decrease in O3. As both NOX and VOC emissions 
are unaffected by the implementation of sustainable alternative jet fuels, 
O3 concentrations are not impacted. NO2 population-weighted concen
trations increase by 77% from 2011 to 2016 and are also unaffected by 
the implementation of sustainable alternative jet fuels. 

Figs. 2–4 show the LTO-attributable PM2.5, O3, and NO2 concentra
tions, respectively across the continental U.S. aggregated to the county 
scale for both 2011 and 2016. Impacts are mostly seen in counties either 
containing an airport or surrounding an airport. Large negative O3 
concentrations (in blue in Fig. 3) outweigh positive O3 concentrations 
that are occurring downwind of the airports in NOX-limited areas. In 
2016, two counties in Northwest Washington, Pierce and Island 
Counties, have negative LTO-attributable PM2.5 due to the negative 
LTO-attributable nitrate (NO−

3 ), ammonium (NH+
4 ), and organic matter 

(OM) components of PM2.5. These components are reduced with LTO 
emissions due to LTO emissions of NOX reacting with available O3 and 
gas phase NO−

3 near the airport to form nitrogen pentoxide (N2O5); 
resulting in a reduction of both gas phase NO−

3 and oxidants available to 
form SOA (Woody and Arunachalam, 2013). In the summer, warmer 
temperatures can limit the particle-phase partitioning of ammonium 
nitrate (NH4NO3) resulting in negative LTO-attributable NH+

4 . The 
higher temperatures limiting the partitioning of NH4NO3 into particle 
phase can also make the impacts on aerosol sulfate (SO2−

4 ) formation 
more pronounced. Aerosol SO2−

4 formation can be reduced by the 
additional LTO NOX increasing aqueous-phase acidity and subsequently 
reducing the dissolution of SO2 in the aqueous-phase; as well as LTO 
NOX limiting the oxidants available to oxidize SO2 to sulfuric acid 
(H2SO4). And while these impacts are seen across the U.S. for other grid 
cells, these two Washington counties that are north and south of the 
Seattle-Tacoma airport are impacted enough by these effects to cause 
each county to have on average negative LTO-attributable PM2.5. 

Figs. 5–7 show the monthly LTO-attributable PM2.5, O3, and NO2 
concentrations, respectively across the continental U.S. for 2011 and 
2016 as boxplots for all grid cells within the continental U.S. (top of each 
figure) and the monthly mean LTO-attributable concentrations (bottom 
of each figure). Figures S17 and S18 show the monthly mean LTO- 
attributable PM2.5 component concentrations for 2011 and 2016, 
respectively. In 2011, LTO-attributable NO−

3 and NH+
4 are largest in the 

month of March due to the most LTO NOX being emitted in March. The 
LTO NOX can positively impact NO−

3 and NH+
4 formation far enough 

downwind of airports in the month of March where the competition for 
available oxidants between LTO NOX and SO2 to form NO−

3 and SO2−
4 , 

respectively, and the competition of the subsequent nitric acid (HNO3) 
and H2SO4 for available NH3 to determine the phase state of HNO3 and 
subsequent aerosol phase NH4NO3 near the airport is no longer occur
ring. In cooler months, limited NH3 near the airports will keep HNO3 in 
the gas phase and H2SO4 neutralized. But downwind of the airports, LTO 
NOX can positively impact NH4NO3 concentrations where this compe
tition is no longer occurring. And while NOX emissions are also large in 
the summer months, we see NO−

3 being a much smaller portion of the 
LTO-attributable PM2.5 due to effects that occur near the airport and the 

Table 1 
LTO emissions in the U.S. for each scenario, a percent change from 2011, b 

percent change from 2016.   

2011 2016 2016AJF5 2016AJF50 

Arrivals and 
Departures 

24,151,176 24,141,257 
(− 0.04%)a 

24,141,257 24,141,257 

CO (Tons/year) 44,637 49,382 (11%)a 48,888 
(− 1%)b 

44,049 
(− 11%)b 

NOX (Tons/ 
year) 

64,056 73,926 (15%)a 73,926 
(0%)b 

73,926 (0%)b 

PEC (Tons/ 
year) 

161 164 (2%)a 149 (− 9%)b 58 (− 65%)b 

SO2 (Tons/ 
year) 

5,481 6,038 (10%)a 5,814 
(− 4%)b 

3,773 
(− 38%)b  
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warmer temperatures impacting the particle-phase partitioning of 
NH4NO3 and reduced formation of SO2−

4 as described in the previous 
paragraph. The distribution of grid cell concentrations shows the 
localized impacts of LTO emissions with outlier points’ absolute values 
being order of magnitudes larger than the mean values and indicative of 
airport-containing grid cells (Figures S13-S15 show the monthly LTO- 
attributable PM2.5, O3, and NO2 concentrations for airport-containing 
grid cells). These outliers drive the population-weighted exposures 
and as we will see, the health outcomes. Mean values of O3 and NO2 

show opposite monthly trends with mean LTO-attributable O3 concen
trations peaking in the summer and diminishing in the winter and LTO- 
attributable NO2 exhibiting the opposite. Both LTO-attributable O3 and 
NO2 impacts are driven by LTO NOX emissions. 

Similar to individual airport’s emissions, we can look at the con
centrations of PM2.5, O3, and NO2 at the airport-containing grid cell 
level. It is important to note that the airport-grid cell concentrations are 
not indicative of the total impacts felt by LTO emissions near an airport, 
and this analysis is simply a comparison of concentrations in the grid 
cells containing the top 28 airports in terms of passenger boardings. 
Fig. 8 shows the pollutant concentrations at the airport-containing grid 
cell level for the same group of airports in Fig. 1. The SFO (San Francisco 
International)-containing grid cell has the largest increase in PM2.5 
concentration of 5.4E-02 μg/m3 in 2011 and the LAX-containing grid 
cell has the largest increase in PM2.5 concentration of 4.9E-02 μg/m3 in 
2016. O3 titration impacts are seen at the airport-containing grid cell 
level where O3 concentrations are decreased by the addition of LTO 
emissions. The SFO-containing grid cell has the largest decrease in O3 
concentration at − 1.13 ppb in 2011 and − 1.86 ppb in 2016. The LAX- 

Fig. 1. Number of arrivals and departures and the LTO emissions in the airport-containing grid cells, table S6 describes the full names associated with each of the 
airport ID codes. 

Table 2 
Annual average population weighted concentrations due to LTO emissions in the 
U.S.   

2011 2016 2016AJF5 2016AJF50 

PM2.5 (μg/m3)  2.72E− 03 2.93E− 03 2.86E− 03 2.39E− 03 
O3 (ppb) − 8.24E− 03 − 1.50E− 02 − 1.50E− 02 − 1.50E− 02 

NO2 (ppb) 3.92E− 02 6.93E− 02 6.94E− 02 6.94E− 02  

Fig. 2. LTO-attributable PM2.5 concentrations in 2011 (left) and 2016 (right).  
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containing grid cell has the largest increase in NO2 concentration at 
1.76 ppb in 2011 and 4.44 ppb in 2016. Impacts in the SFO-containing 
grid cell may not be entirely due to LTO activity from SFO due to the 
close proximity to OAK (Oakland International) (see figure S12). 
Figure S16 breaks down the PM2.5 at the airport-containing grid cell 
level into concentrations of NH+

4 , NO−
3 , SO2−

4 , elemental carbon (EC), 
and OM chemical constituents. LTO emissions are positively contrib
uting to concentrations of NH+

4 , SO2−
4 , EC, and OM while concentrations 

of NO−
3 are negatively impacted. Decreases in NO−

3 and O3 concentra
tions at the grid cell level can be explained by LTO emissions of NO being 
converted to NO2. This process is possible due to the reaction of NO with 
O3, which results in O3 concentrations being reduced and NO2 concen
trations increasing. NO2 is able to react with NO−

3 to form N2O5. Hence, 
the reduction of both NO−

3 and O3 can also impact secondary organic 
aerosol (SOA) formation as both NO−

3 and O3 are precursors needed for 
SOA formation (Woody and Arunachalam, 2013); which we are able to 
see by looking at the few cases in which OM is negatively impacted in 
2016 in the ATL, IAH (George Bush Intercontinental/Houston), MCO 
(Orlando International), and SFO-containing grid cells. LTO emissions of 
NOX at the airport-containing grid cell level are fairly linear with NO2 
concentrations (Figure S19) and O3 concentrations (Figure S20) with 
opposite correlations. 

3.3. Health impacts 

Table 3 shows the total adverse health outcomes due to air quality 
degradation from LTO emissions in the U.S. in 2011 and 2016 and under 
two sustainable alternative jet fuel implementation scenarios in 2016. 
PM2.5-attributable premature mortalities increase by 10% from 2011 to 
2016. We estimate a net decrease in O3-attributable premature mortal
ities across the U.S. in both 2011 and 2016 due to the large O3 titration 
effects near the airports. Hence, the titration of O3 in heavily populated 
regions around airports outweigh the formation of O3 downwind. That is 
not to say that there are no adverse O3 health outcomes in communities 
downwind of airports as we will see for health outcomes broken down by 
state in the next section. NO2-attributable premature mortalities in
crease by 80% from 2011 to 2016 and are responsible for 91% of total 
premature mortalities in both 2011 and 2016. Implementing a 5% or 
50% blend of sustainable alternative jet fuel in 2016 results in a 1% or 
18% reduction, respectively in PM2.5-attributable premature mortalities 
in 2016. 

Figs. 9–11 show the number of PM2.5, O3, and NO2-attributable 
mortalities, respectively in each state. California saw the most PM2.5- 
attributable mortalities in 2011 and 2016 with 17.7 (14.9–20.6, 95% CI) 
and 23.7 (20.0–27.5) mortalities, respectively. Texas saw the most O3- 
attributable mortalities in 2011 with 2.0 (1.0–4.1) mortalities while 
Georgia saw the most O3-attributable mortalities in 2016 with 3.3 

Fig. 3. LTO-attributable O3 concentrations in 2011 (left) and 2016 (right).  

Fig. 4. LTO-attributable NO2 concentrations in 2011 (left) and 2016 (right).  
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(1.6–6.6) mortalities. California saw the most NO2-attributable mortal
ities in 2011 and 2016 with 155 (78–233) and 323 (161–484) mortal
ities, respectively. 

We can monetize the value of avoided mortalities by applying a value 
of statistical life (VSL) approach as recommended by the EPA (US 
Environmental Protection Agency, 2010) and divide by the estimated 
fuel burned to approximate the economic damages per ton of fuel 
burned. We multiply the number of PM2.5 and total (the sum of PM2.5, 
O3, and NO2) attributable premature mortalities in 2016 by a 2016 USD 
income-adjusted value of $10.3 million and divide by the total fuel burn 
estimated through the total SO2 emitted. We do this for our three sce
narios in 2016 representing the economic damages per ton of traditional 
jet fuel burned, 5%-blended sustainable alternative jet fuel, and 50%- 
blended sustainable alternative jet fuel. We find LTO activity in 2016 to 
be responsible for 177 (90–292) USD PM2.5 damages per ton of fuel 
burned. Implementing a 5% or 50% blend of sustainable alternative jet 
fuels results in 175 (88–292) and 144 (74–234) USD PM2.5 damages per 
ton of fuel burned, respectively. Total damages per ton of fuel burned in 
2016 are 2,211 (738–4,850) USD and drop to 2,209 (736–4,850) and 
2,178 (723–4,791) USD for a 5% and 50% blend, respectively. The 
values in parentheses indicate an uncertainty in the willingness to pay 
for a reduction in mortality risk as given in table S3. Hence, a 50%- 
blended sustainable alternative jet fuel results in a 19% decrease in 
PM2.5 damages per ton fuel burned from traditional jet fuel and a 2% 
decrease in total damages. 

4. Discussion 

We can compare health outcome estimates from prior studies that 
aimed to quantify the impacts from LTO-attributable PM2.5 and O3. Levy 
et al. 2012 (Levy et al., 2012b) utilized a 36 km × 36 km CMAQ 
platform for 99 airports in the U.S. that account for 94% of passenger 
enplanements in 2005 and quantified the LTO-attributable PM2.5 pre
mature mortalities to be 75. Ashok et al. 2013 (Ashok et al., 2013) and 
Ratliff et al. 2009 (Ratliff et al., 2009) also utilized a 36 km × 36 km 
CMAQ platform for a 2005 LTO inventory and quantified 195 and 160 
PM2.5 premature mortalities, respectively. Each of these studies utilized 
different CMAQ versions and emissions inventories which owe to the 
variation in results. Barrett et al. 2010 (Barrett et al., 2010) utilized 
GEOS-Chem at a 1◦ × 1◦ resolution for a 2006 LTO inventory and 
quantified the LTO-attributable PM2.5 premature mortalities to be ∼ 92 
(20% of 458 premature mortalities due to full flight emissions). Koo 
et al. 2013 (Koo et al., 2013) utilized an adjoint of GEOS-Chem to 
quantify 20 PM2.5 premature mortalities from LTO SO2 emissions and 
150 from LTO NOX emissions in 2006. These studies both relied on 
global simulations in GEOS-Chem with limited chemistry and coarser 
model resolution. We estimate 80 and 88 LTO-attributable PM2.5 pre
mature mortalities in 2011 and 2016, respectively which are in line with 
the findings of these prior studies. 

Fewer studies have aimed to quantify LTO-attributable O3 mortal
ities. Yim et al. 2015 (Yim et al., 2015) utilized a 36 km × 36 km CMAQ 
platform for a LTO inventory in 2006 and quantified LTO-attributable 
premature mortalities from both PM2.5 and O3 to be 650 in North 
America. Dedoussi et al. 2020 (Dedoussi et al., 2020) utilized GEOS- 

Fig. 5. Monthly LTO-attributable PM2.5 concentrations for the grid cells that comprise the continental U.S.  
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Chem at 0.5◦ × 0.67◦ resolution for a LTO inventory in 2011 and 
quantified LTO-attributable premature mortalities from both PM2.5 and 
O3 to be 209 in the U.S. Both of these studies have quantified total O3 
mortalities from LTO to be positive. However, these studies also high
light the impact of coarser model resolutions not being able to capture 
LTO NOX emissions decreasing O3 formation in VOC-limited areas. A 
recent global aviation sensitivity study by Qaudros et al. 2020 (Quadros 
et al., 2020) stated that LTO emissions cause close to zero net increase in 
surface level ozone over the year due to airports often being located in 
areas with high NOX surface level concentrations and the additional NOX 
from aircraft is able to decrease O3, especially in the winter. Two CMAQ- 
DDM studies aimed at quantifying sensitivities to individual airports 
(Penn et al., 2017; Arter and Arunachalam, 2021) also found O3 
depletion at airports from LTO NOX emissions, with Penn et al. 2017 
claiming that the 36 km × 36 km model resolution used may still be 
reducing the likelihood of NOX-saturated/VOC-limited conditions (Penn 
et al., 2017). Missing from all of these studies is the quantification of 
LTO-attributable NO2 adverse health outcomes which is closely tied to 
the localized O3 impacts. In VOC-limited areas, NO2 and O3 will often be 
inversely correlated as a reduction in NOX emissions can lead to an in
crease in O3. Hence, additional NOX from LTO activity in VOC-limited 
areas will impact both NO2 and O3 concentrations. A recent study in 
Hong Kong (Hossain et al., 2021) has aimed to quantify the added health 
risk (AR) associated with NO2 and O3 in a VOC-limited, heavily popu
lated city and found the decrease of AR from ambient NO2 from 
decreased NOX emissions measured at roadside stations was consider
ably higher than the increase in AR associated with increased ambient 
O3 in those urban areas. Another recent study (Mohegh et al., 2020) 

aimed to quantify the sensitivity of estimated NO2-attributable health 
outcomes to grid resolution and found performing their analyses across 
U.S. cities at 10 km and 100 km resulted in 6% and 32% fewer adverse 
health outcomes, respectively than the analysis being performed at 100 
m up to 1 km. Hence, by not taking into account LTO-attributable NO2, 
especially at the resolutions needed to capture NOX-saturated/VOC- 
limited conditions, we may be underestimating the air-quality related 
health impacts from LTO emissions. 

Yim et al. 2015 (Yim et al., 2015) and Grobler et al. 2019 (Grobler 
et al., 2019) monetized the damages from LTO-attributable PM2.5 and O3 
premature mortalities. Yim et al. 2015 estimated 439 USD per ton of fuel 
burned in North America and Grobler et al. 2019 estimated 320 USD per 
ton of fuel burned in the U.S. for damages from PM2.5 and O3. We esti
mate 177 USD per ton of fuel burned for damages from PM2.5 and 2,211 
USD for damages from PM2.5, O3, and NO2. We did not apply a cessation 
lag as was done in Yim et al. 2015 (Yim et al., 2015) and Grobler et al. 
2019 (Grobler et al., 2019) when monetizing the damages. As we are 
comparing LTO-attributable PM2.5, O3, and NO2 premature mortalities 
across LTO inventories, a PM cessation lag used in the results would not 
vary between the comparisons, and not match the CRF used here. In 
addition, the authors are unaware of research pertaining to cessation 
lags for use in NO2-attributable premature mortalities. Future work can 
make use of proposed cessation lags for PM2.5-attributable premature 
mortalities (Walton, 2010). While no other studies have quantified the 
impacts due to implementation of sustainable alternative jet fuel blends, 
Barrett et al. 2012 quantified the air quality related health impacts from 
implementation of ultra low sulfur fuel by reducing aircraft SO2 emis
sions by 97.5% and found ∼120–230 avoided PM2.5 mortalities in the U. 

Fig. 6. Monthly LTO-attributable O3 concentrations for the grid cells that comprise the continental U.S.  
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Fig. 7. Monthly LTO-attributable NO2 concentrations for the grid cells that comprise the continental U.S.  

Fig. 8. LTO-attributable PM2.5, O3, and NO2 concentrations in the airport-containing grid cells.  
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S. depending on model choice and CRF. Barrett et al. 2012 (Barrett et al., 
2012) estimated PM2.5 exposure to be reduced by 6% globally by using 
ultra low sulfur fuel. We estimate a reduction in PM2.5 population- 
weighted concentrations of 2.4% and 1 fewer PM2.5 mortalities in the 
U.S. if a 5% blend of sustainable alternative jet fuel is implemented and 

an 18.4% reduction in PM2.5 population-weighted concentrations and 
16 fewer PM2.5 mortalities if a 50% blend is implemented. 

To account for uncertainty in the health outcome estimates, we have 
included results from the 95% confidence intervals in the CRFs. The 
confidence intervals for each mortality and morbidity outcome reflect 

Table 3 
Total U.S. LTO-attributable air quality-related mortality and morbidity outcomes for each scenario (Values in parentheses reflect the 95% confidence intervals from the 
uncertainties in the CRFs, and estimates are rounded to two significant figures).    

2011 2016 2016AJF5 2016AJF50 

Premature Mortalities PM2.5 80 (68–93 ) 88 (75–100) 87 (73–100) 72 (61–84 ) 
O3 − 28 (− 14 to − 56) − 54 (− 27 to − 110 ) − 54 (− 27 to − 110 ) − 54 (− 27 to − 110 ) 

NO2 610 (310–920) 1,100 (570–1,700 ) 1,100 (570–1,700 ) 1,100 (570–1,700 ) 
Total 670 (360–960) 1,200 (610–1,700 ) 1,200 (610–1,700 ) 1,100 (600–1,700 ) 

Cardiovascular Hospitalizations PM2.5 3.7 (2.6–4.9) 4.6 (3.1–6 ) 4.5 (3.1–5.9) 3.7 (2.6–4.9) 
Respiratory Hospitalizations PM2.5 3.7 (1.9–5.4) 4.5 (2.3–6.6) 4.4 (2.3–6.5) 3.7 (1.9–5.4) 

O3 − 12 (− 4.5 to − 20) − 25 (− 8.9 to − 40) − 25 (− 8.9 to − 40) − 25 (− 8.9 to − 41) 
Total − 8.7 (− 2.6 to − 15) − 20 (− 6.6 to − 34) − 20 (− 6.6 to − 34) − 21 (− 7 to − 35) 

Non-fatal Heart Attacks PM2.5 3.7 (2.2–5.3) 4.1 (2.5–6 ) 4.1 (2.4–5.8) 3.4 (2–4.9) 
NO2 41 (22–59 ) 75 (41–110) 75 (41–110) 75 (41–110) 
Total 44 (24–65 ) 79 (43–110) 79 (43–110) 78 (43–110) 

Asthma Hospitalizations Ages 5 to 17 PM2.5 0.27 (0–0.54 ) 0.28 (0–0.57 ) 0.28 (0–0.56 ) 0.23 (0–0.46 ) 
NO2 14 (0.35–27 ) 23 (0.6–47 ) 23 (0.6–47 ) 23 (0.6–47 ) 
Total 14 (0.35–28 ) 24 (0.6–47 ) 24 (0.6–47 ) 24 (0.6–47 ) 

Asthma Emergency Department Visits Ages 5 to 17 PM2.5 2.6 (0–5.3) 2.7 (0–5.5) 2.7 (0–5.4) 2.2 (0–4.5) 
NO2 130 (3.2–250) 220 (5.6–430) 220 (5.6–430) 220 (5.6–430) 
Total 130 (3.2–260) 220 (5.6–440) 220 (5.6–440) 220 (5.6–440) 

Asthma Exacerbations Ages 5 to 17 PM2.5 2,100 (0–4,300 ) 2,300 (0–4,600 ) 2,200 (0–4,500 ) 1,900 (0–3,800 ) 
NO2 100,000 (2,500–200,000) 170,000 (4,400–340,000) 170,000 (4,400–340,000) 170,000 (4,400–340,000) 
Total 100,000 (2,500–200,000) 170,000 (4,400–340,000) 170,000 (4,400–340,000) 170,000 (4,400–340,000)  

Fig. 9. PM2.5-attributable mortalities in each state in 2011 (left) and 2016 (right), the orange bars reflect the 95% confidence intervals from the uncertainties in 
the CRFs. 
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the variability in the results from the epidemiological studies used to 
construct the CRFs. We accounted for uncertainty in the damages per ton 
of fuel burn by including lower and upper bounds for the 2016 USD ($) 
income-adjusted value of $10.3 million as given in table S3. Additional 
uncertainties exist in each stage of the emission-to-health outcome 
modeling chain. Uncertainties in the emission inventories and the air 
quality model outputs are not accounted for in this study as the focus is a 
comparison of emission inventories. Additional work is needed to asses 
the uncertainty surrounding the emission inventories and air quality 
model outputs. Follow up studies should also look to distinguish the 
impacts from various types of sustainable alternative jet fuels. The 
impact factors used in this work are derived from multiple types and 
blends of sustainable alternative jet fuels. Next steps in this work should 
aim to quantify the impacts by fuel, engine, and aircraft type to get a 
better estimate of local air quality impacts from an airport’s fleet 
makeup and choice of sustainable alternative jet fuel. 

In this study we compare impacts of the LTO emission sector between 
two years, 2011 and 2016, that have varying background and LTO 
emission inventories, meteorological datasets, and population esti
mates. We did not perform sensitivity analyses that determine the im
pacts due to each of those varying datasets. Hence, when we make 
comparisons between the two years we are assuming that we are 
capturing the most accurate representations of each modeling year. 
Additional work can quantify the impacts due to each variable similar to 
the work done in Levy et al. 2012 (Levy et al., 2012b) which quantified 
LTO impacts by varying background emissions, LTO emissions, and 
populations in 2005 and projected 2025 values. However, that study 
also did not quantify impacts due to changing meteorology which can be 

significant especially for timeframes indicative of changing climates 
(Fann et al., 2021). 

While we are the first to report large adverse health outcomes from 
LTO-attributable NO2, other studies have started to include NO2 in 
traffic-related pollution health burden studies (Atkinson and Butland, 
2018; Mohegh et al., 2020; Hossain et al., 2021; Southerland et al., 
2021). As NO2 is a localized to the emission source, coarsely resolved 
modeling efforts may not capture the spatial variability of NO2 (Anen
berg et al., 2017) and its health impacts (Mohegh et al., 2020). While 12 
km × 12 km resolution is not as fine as 4 km× 4 km or 1 km × 1 km, the 
results from this study are more finely resolved than results from prior 
aviation-related health impact modeling studies. That being said, 12 km 
× 12 km resolution may still be missing the fine resolution needed to 
capture NO2 variability leading to an underestimation of impacts. And 
while other studies have quantified the impact of LTO emissions on 
PM2.5 concentrations at varying grid cell resolutions (Arunachalam 
et al., 2011; Woody et al., 2016; Rissman et al., 2013) and found PM2.5 
population exposure to be mostly unaffected by grid cell resolution, NO2 
exposure is dependent on grid cell resolution. In addition, 12 km × 12 
km resolution may still be too coarse to accurately describe the NOX- 
saturated/VOC-limited conditions that govern O3 response near air
ports. Future modeling studies should continue to move to finer spatial 
resolutions when estimating NO2 and O3 concentrations. In addition to 
finer spatial resolutions, incorporating plume level processes may 
improve LTO-attributable NO2 and O3 estimates. Two studies (Cameron 
et al., 2013; Fritz et al., 2020) have looked at the impacts of including 
plume level treatment for aircraft sources as compared to instant mixing 
within a photochemical model’s grid cell. Both of these studies found an 

Fig. 10. O3-attributable mortalities in each state in 2011 (left) and 2016 (right), the orange bars reflect the 95% confidence intervals from the uncertainties in 
the CRFs. 
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overestimation of O3 production without plume level treatment and an 
underestimation of the remaining NOX. In addition these studies also 
quantified the conversion of NOX into reservoir species with and without 
plume treatment, with one study (Cameron et al., 2013) finding the 
plume treatment results in more NOX remaining in the plume than 
compared to the grid treatment, and the other study (Fritz et al., 2020) 
finding that plume treatment results in NOX to HNO3 conversion being 
reduced by 16% and NOX to N2O5 by 37%. Hence, we can surmise that 
by not including plume level treatment, we are underestimating NO2 
impacts. 

From this study we have two rather impactful findings: 1. LTO- 
attributable NO2 is responsible for 91% of total LTO-attributable pre
mature mortalities in the U.S. and 2. Implementing a 5% or 50% blend of 
sustainable alternative jet fuels leaves LTO-attributable NO2 concen
trations untouched as sustainable alternative jet fuels do not reduce NOX 
emissions. Table 10 in the ACRP report (Hamilton, 2019) shows the 
impact factors for NOX for each experimental study considered. Of the 
34 distinct measurements made with varying engine type, conventional 
jet fuel, sustainable alternative jet fuel, and blend percentage cited in 
Table 10 of the ACRP report; only 5 measurements showed non-zero 
impact factors, and after the ACRP authors attempted to construct a fit 
of the data, the uncertainty was greater than the absolute value of the 
impact factor. Hence, the authors of the ACRP report concluded that 
there is no statistically significant impact associated with sustainable 
alternative jet fuels for NOX. As LTO NOX emissions are almost entirely 
responsible for LTO-attributable NO2, we find that sustainable alterna
tive jet fuel implementation will do little to mitigate the NO2 air quality- 
related health impacts from LTO emissions in the U.S. NOX emissions are 

primarily due to combustion in the air flow, and compared to nitrogen 
content in the fuel; atmospheric nitrogen is the dominant source of NOX 
(National Academies of Sciences, Engineering, and Medicine, 2018). 
Hence, to reduce LTO NOX emissions and the associated adverse air 
quality-related health outcomes, technologies aimed at combustion 
modifications such as Lean Premixed Prevaporized (LPP) combustion 
(Sattelmayer et al., 1998; Anacleto et al., 2003), Lean Direct Injection 
(LDI) combustion (Liu et al., 2017), and water/steam injection (Block 
Novelo et al., 2019; Golzari et al., 2021) need to be explored. 

As recent studies surrounding aviation-related environmental im
pacts have shifted toward the impacts from full flight emissions at global 
scales, the results from this study hope to highlight the importance of a 
continued effort in reducing the air quality-related impacts from LTO 
emissions on vulnerable populations near airports. By including LTO- 
attributable NO2 health burden estimates, we introduce an additional 
factor to consider when assessing the public health impact of the avia
tion sector. This study also shows the benefits of implementing sus
tainable alternative jet fuel blends at a national scale which can help to 
inform aviation sustainability efforts while also protecting public health. 
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