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C H A P T E R  1  

Introduction 

Mobile sensing is an alternative paradigm that offers numerous advantages compared to the conventional 
stationary sensor networks. Mobile sensors have low setup costs, collect spatial information efficiently, and 
require no dedicated sensors to any particular structure. Most importantly, they can capture comprehensive 
spatial information using few sensors. The advantages of mobile sensing combined with the ubiquity of 
smartphones with the internet of things (IoT) connectivity have motivated researchers to think of 
cars+smart phones as large-scale sensor networks that can contribute to the health assessment of structures.  

Working with mobile sensors has several challenges. The signals collected within a vehicle’s cabin 
are contaminated by the vehicle suspension dynamics; therefore, the extraction of bridge vibration from 
signals collected within a vehicle is not an easy task. Additionally, mobile sensors simultaneously measure 
vibration data in time while scanning over a large set of points in space, which creates a different data 
structure compared with fixed sensors. Since collected data are mixed in time and space, they contain spatial 
discontinuities. 

When these challenges are addressed, mobile sensing is a promising data resource enabling 
crowdsourcing and an opportunity to extract information about infrastructure conditions at an 
unprecedented rate and resolution. In this regard, this project proposes deep learning frameworks specific 
to mobile sensing to perform input force identification and learn underlying governing equations of a 
dynamic system from data. 

Input force identification is of great interest among researchers across various disciplines, such as 
mechanical, structural, and aerospace engineering. For structural modeling and analysis as well as system 
identification, input estimation is a key component for both computational and experimental 
implementations (Park et al. 2009). In many realistic situations, measuring applied loads to structures with 
high accuracy is impractical (for instance wind or traffic loads on buildings and bridges, respectively). In 
the case of structures subjected to an ensemble of environmental and stochastic load sources, the collective 
effect of the applied load is usually modeled as a white Gaussian random process, which is a simplification 
and may adversely influence further analyses. The majority of existing methods for input estimation rely 
on a prior description of the dynamic system, which limits the application. In addition, unlike solving for 
the response by a system of differential equations, the inverse problem can lead to issues such as non-unique 
solutions and high condition numbers. Sanchez and Benaroya (2014) present a comprehensive review of 
input estimation techniques. Input estimation of vehicle systems is of particular interest for indirect bridge 
structural health monitoring on the grounds that the vehicle response that can be conveniently collected 
within the cabin is highly contaminated by vehicle suspension systems. However, the tire-level input is 
substantially more informative (Eshkevari et al. 2020).  

Due to the nonlinearity and complexity of realistic dynamic systems, it is required to design an 
approach that accomplishes the input estimation with no baseline model or restrictive assumptions. In this 
project, a recurrent neural network (RNN) framework is developed that is able to learn the nonlinear input 
to output transformation of dynamic systems and then exploit this information to deconvolve the output. 
Figure 1 presents a schematic overview of the inference using the proposed framework. In this figure the 
neural network is represented as an RNN block with an inverted L-shape input; at each time step the RNN 
block processes the input and output values inside the L-shape binder to predict the one-step backward 
estimation of the input. This process is repeated until the maximum possible length of the input signal is 
estimated. In this framework, the input signals are associated to the tire contact point (CP) of a vehicle and 
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cabin signals are systems’ outputs. Note that the figure depicts a single input single output (SISO) case in 
which the number of response channels equals to one. However, in multi-degree-of-freedom (MDOF) 
systems, the network dimensions adapt accordingly with no substantial change in the proposed structure or 
the pipeline. 

 

 
Figure 1. Schematic diagram of the input estimating network. 

 
Partial differential equations (PDEs) are widely adopted in a plethora of science and engineering 

fields to explain a variety of phenomena such as heat, diffusion, electrodynamics, fluid dynamics, elasticity, 
and quantum mechanics, to mention a few. This is primarily due to their ability to model and capture the 
behavior of complex systems as well as their versatility. However, solving PDEs is far from a trivial task. 
Often incredible amounts of computing power and time are required to get reasonable results, and the 
methods used can be complicated and highly sensitive to the choice of parameters. The rapid development 
in data sensing (collection) and data storage capabilities provides scientists and engineers with another 
avenue for understanding and making predictions about these phenomena. The massive amounts of data 
collected from highly complex and multi-dimensional systems have the potential to provide a better 
understanding of the underlying system dynamics. 

In this project, inspired by finite-difference approximations and residual neural networks (He et al. 
2016), we propose a novel neural network framework, finite difference neural networks (FD-Net), to learn  
the governing partial differential equations from trajectory data, and iteratively estimate future dynamical 
behavior. Mimicking finite-difference approximations, FD-Net employs “finite-difference” block(s) (FD-
Block) with artificial time steps to learn first-, second- and/or higher-order partial derivatives, and thus  
learn the underlying PDEs from neighboring spatial points over the time horizon.  

BACKGROUND 
Among the most notable and recent works, variations of Kalman filtering and Gaussian process 

latent force modes (GPLFM) have been proposed for estimating inputs of MDOF systems. In the Kalman-
based approach, the general strategy is to concatenate the input vector to the state vector in order to build 
an augmented state and perform state tracking algorithms (Maes et al. 2016). Nayek et al. (2019) proposed 
a GPLFM-based method for predicting the state-input vectors of a known linear mechanical system. The 
process was numerically validated on a 10-DOF shear frame and a 76-story building subjected to various 
excitation scenarios (e.g., impact, harmonic, earthquake, and random) with comparisons to the previous 
joint input state estimation algorithms. The GPLFM showed high accuracy in most experiments; however, 
the primary challenge for the application of such methods is their reliance on a baseline model of the 
structure. This can be partially overcome with preliminary or simultaneous system identification. 
Nevertheless, the baseline model is not always available, and additional system identification may not lead 
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to a sufficiently accurate surrogate model. Hence, model-free algorithms, such as deep learning models, 
play as a qualified substitute to model-based methods as this project pursues. In the context of vehicle input 
force estimation, the first approach to address this inverse dynamic problem was suggested based on 
deconvolving the response with a simplified linear transfer function (Eshkevari et al. 2020). Yang et al. 
(2018) proposed a closed-form transfer function-based solution for calculating the contact point (CP) input 
of an undamped single-degree-of-freedom (SDOF) vehicle suspension model, given its cabin response and 
the model properties. Yang et al. (2020) tested the direct solution by constructing a single-axle trailer 
matching the SDOF suspension model. Simplifying assumptions aside, the study demonstrated enhanced 
bridge modal identification using real data when CP estimates are used instead of the recorded cabin 
responses. In addition, the improvements lowered the detrimental impact of the sensing vehicle’s speed. To 
expand on these deterministic approaches, Nayek and Narasimhan (2020) proposed a GPLFM-based 
stochastic method for CP estimation of vehicles for bridge health monitoring. The GPLFM jointly estimates 
the state and input of a known damping MDOF vehicle system. The proposed model was evaluated using 
numerical trials and was found beneficial for retrieving information regarding the higher bridge modes that 
were low-pass filtered by the vehicle transfer function, further supporting the use of CP measurements for 
indirect bridge health monitoring. However, as stated earlier, these approaches are limited by the 
requirements of a model. Hence, in this project, the developments in deep learning have been harnessed for 
the construction of a purely data-driven approach to input force estimation.  

OBJECTIVES 
The overarching theme of the project was to employ recent advances in deep learning in conjunction with 
rigorous physics-based foundations to exploit sensed data from SHM applications. The key objectives of 
the project are as follows: 

1. To develop a deep learning-based framework for input force estimation. This allows for estimating 
tire-level response in vehicles from cabin vibrations, thus facilitating the removal of the impact of 
vehicle dynamics on recorded responses that will be used for bridge identification and monitoring.  

2. To develop a deep neural network-based approach that can identify governing partial differential 
equation of a dynamic system purely from response data.   

3. To validate the performance of the proposed frameworks through numerical and experimental 
studies. The experiment includes data collected from a real vehicle.  

DATA AND DATA STRUCTURES 
The project evaluates the performance of the proposed DNN framework through numerical and laboratory 
experiments. For objective 1, experiments involving sensors deployed on a real car was performed. The 
details of the setup are provided in the subsequent sections of this report. The installed sensors collect 
accelerations from inside the cabin and from a location close to the tires.  For objective 2, numerical 
experiments were performed. The raw data are available upon request from the PI as ASCII text files. 
 
 
  



 

 4 r3utc.psu.edu 
 

C H A P T E R  2  

Methodology 

PROPOSED RNN FRAMEWORK 

RNN for input estimation  

Overview and network architecture 

The state transition equation of a nonlinear time invariant dynamic system can be represented as: 
 

𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘 ,𝑢𝑢𝑘𝑘) + 𝜐𝜐𝑘𝑘 
 
where 𝑥𝑥𝑘𝑘 is the full state vector of the system at time step k, f(.) is a characteristic function of the system, 
u_k is the applied load at time step k, and υ_k is the process noise. This state equation usually pairs with 
an observation equation in which the measurement vectors and full state vectors are related. In the direct 
dynamic problems, given u_k and initial state x_0, the full state space can be estimated in a data-driven 
fashion with no need for available estimates of f(.). Recurrent neural architectures have been widely 
proposed for signal regression tasks due to their capability of learning temporal dependencies and dynamic 
equations. The main objective is to tackle the inverse problem: given x_k for k∈(1,2,….,T) and a prior 
estimate for u_T, it is desired to estimate u_k for k∈(1,2,….,T-1). This problem is equivalent to the response 
deconvolution of a dynamic system (linear or nonlinear) without using the prior knowledge about the 
system. 
 

  
Figure 2. Neural architecture of the RNN blocks. 

 
The structure of the RNN block is given in Figure 2. This architecture incorporates fully connected 

layers for transitioning between two consecutive time steps. The data flow through two stages in the 
network: shared layers and channel-specific layers. Channels are defined as input signals collected from 
different axes (i.e., x, y, z) or at different degrees of freedom. By using the shared layers, the network is 
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constrained to learn information that is equally useful for input estimations in different channels. In 
addition, the number of learning variables is reduced significantly. In contrast, our preliminary experiments 
showed that by merely utilizing shared layers, the performance is noticeably lower, suggesting the use of a 
few channel-specific layers at the terminal end of the network flow. In general, learning-based regression 
models are designed to directly estimate regressed outputs with no confidence quantification (e.g., estimate 
scalars or a set of values). In contrast, the estimated outputs of a classifier are class probabilities, which are 
also useful for uncertainty analyses. For example, in the case of risk-averse problems, by setting higher bars 
for the classification probabilities, it is possible to enhance the accuracy of the classification predictions at 
the expense of lowering the recall. Such estimation confidence analyses are not possible when the neural 
network outputs deterministic values (i.e., regression models). To address that, we introduce a probabilistic 
learning-based regression model that estimates a normal distribution for the regressed values, instead of 
estimating actual values. During the training process, the optimization objective is designed to push the 
mean values of the normal distributions to the actual regression values and shrink the variance for reaching 
higher confidence. For inference, the means of distributions are considered as actual regressed predictions, 
while standard deviations indicate the prediction confidence (e.g., low standard deviation means a narrow 
normal distribution, which translates to high confidence). From Figure 2, the last layer of each channel-
specific network predicts 𝜇𝜇 and 𝜎𝜎, constructing the normal distribution for that particular channel. To certify 
that 𝜎𝜎 > 0, the value of the associated output node is passed through an exponential function. The proposed 
network is termed as a probabilistic regression model, since its final product is not a deterministic regression 
value but a Gaussian probability distribution (see Figure 2). For better demonstration of the probabilistic 
nature of the estimations, consider two regression estimations, both yielding the same mean value, but one 
has lower variance. Given this information and the construction of both Gaussian probability distributions, 
the model results in a higher probability density value for the prediction associated with the lower variance 
(i.e., narrower distribution is taller). Therefore, the network not only estimates the regression value but also 
quantifies its probability. For inference, the output inevitably collapses to the mean values of the 
distributions to enable the recurrent feedback. 

Training 

In the training phase, multiple input and output signals from the system of interest are required so that the 
dynamical system can be learned by the RNN model. This is potentially made possible by temporarily 
sensing the system’s input or using finite element surrogate models for simulation. In the inference stage, 
however, the only input value that should be available is the input at the terminal state (the systems’ input 
at the last discrete value of the signal). This input value in many applications can be simply set to zero, 
considering an at-rest condition at the end of the sensing period (e.g., buildings after an earthquake will 
return to zero acceleration). Given this trivial input state, the system can unravel the previous inputs by 
processing the outputs that are fully available. 

To train the proposed probabilistic regression model, conventional error-minimizing loss functions 
are not applicable, since these functions incorporate deterministic values rather than distributions. Instead, 
the loss function has to directly incorporate the negative log likelihood of the observations, given the model 
parameters. In this context, the RNN block is parameterized by 𝜃𝜃 and the goal is to maximize the probability 
of correctly estimating targets 𝑦𝑦𝑖𝑖 given system inputs 𝑥𝑥𝑖𝑖 under the trained parameters. With this definition, 
the loss function ℒ(𝜃𝜃) is defined as the following: 

 
ℒ(𝜃𝜃) = −𝑙𝑙𝑙𝑙𝑙𝑙[𝑝𝑝(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖,𝜃𝜃)] + ℒ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝜃𝜃, 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� 

 
where 𝑝𝑝(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖, 𝜃𝜃) is the probability of drawing system input 𝑦𝑦𝑖𝑖 given system output 𝑥𝑥𝑖𝑖 and model 
parameters 𝜃𝜃. The second term of the loss function is the projection loss, with a projection length of 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
and based on the parameterized model 𝑓𝑓(𝜃𝜃). As the likelihood term becomes smaller, we ensure that the 
network’s output distributions are more likely to predict values that are close to the actual outputs. The 
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second term of the loss function also attempts to enhance the regression accuracy for longer projections in 
a conventional mean squared error (MSE) minimization manner. In this term, a strictly increasing geometric 
factor is element-wise multiplied to the outputs in the trajectory to put more weight on the accuracy of more 
distant estimations. Further algorithmic details can be found in Eshkevari et al. (2022). 

EXPERIMENTAL SETUP FOR VALIDATING RNN FRAMEWORK 

Test setup 
 
To demonstrate the efficacy of the proposed network, an experiment was designed and conducted in order 
to estimate the input of a real-world vehicle using its cabin acceleration data. In this experiment, the data 
are collected in two locations: inside the vehicle cabin and in proximity to the CP. Note that the actual 
vehicle’s CP is practically inaccessible for a sensor device. Therefore, the lower control arm was selected 
as a feasible location, and a manually assembled sensor bundle was attached to that location. 

 
Figure 3.  (a) Schematic view of the car and sensor layout; (b) sensor setup used in the 

experiment: the main board is a Raspberry Pi zero and the sensing device 
is an ADXL345 accelerometer. 

 
The sensors were wirelessly communicating with a computer, which was held by the operator in 

the passenger’s front seat. The cabin sensor was attached to the dashboard of the vehicle. The sensor layout 
is presented schematically in Figure 3(a). As shown in the figure, sensor 2 is mounted on the lower control 
arm, which was found to be a suitable location for the vehicle input data collection and is not affected by 
the suspension springs. The arm is a solid beam attached to the rim and is located right before the spring 
and the shock absorber on the load path from the tire to the vehicle cabin. The sensor bundle used for vehicle 
data collection is shown in Figure 3(b) (a similar configuration is used in both locations). The bundle 
consists of three components: (1) a Raspberry Pi zero board, (2) an ADXL345 accelerometer, and (3) a 
power source. The Raspberry Pi was selected for its data processing and storage functionality as well as its 
low cost, easy programming, and wireless connectivity. ADXL345 is a three-axis accelerometer, which is 
compatible with Raspberry Pi and collects data with a high rate. The acceleration range and sampling 
frequency can be tuned based on the application and required accuracy. To select these parameters, a lab-
scale experiment was conducted on a single-degree-of-freedom system and the accuracy of the neural 
network predictions was compared for data collected from different sensor settings. Based on this 
preliminary study, the sampling frequency of 500 Hz and acceleration range of ±16.0 g were set for the 
final experimental trial. Note that the adjusted frequency is an upper bound for the sensor, and in practice 
the sensor collects data with nonuniform time intervals and lower rates. This is found affected by the 
throughput rate of the Raspberry Pi and its wireless communication. 
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For the road test, a KIA Forte 2020 was equipped with the sensor sets. According to the vehicle’s 
official specifications, the vehicle suspension is equipped with nonlinear suspension systems in front and 
rear positions. In particular, the suspension system consists of MacPherson strut and twin tube shock 
absorbers that both exhibit nonlinear behaviors. The instrumented vehicle was driven over roads with 
different roughness conditions, including recently paved, poor condition, and gravel roads near Lehigh 
University campus. In total, 23 scans of 50,000 samples were collected. The vehicle speed was mostly kept 
within 10–12.5 mph; however, in rare situations of traffic congestion in the testing area, the speed varied. 
The collected data were then preprocessed for training, which included the following steps: (1) signal 
resampling in order to even the time intervals between samples, (2) signal filtering using a band-limited 
filter, and (3) downsampling to 100 Hz. Filtering and downsampling steps reduce high-frequency noise as 
well as measurement drifts in the collected signals. After preprocessing, signals were normalized linearly 
using the previously explained approach. This approach for normalization is found to yield better 
performance compared to other conventional methods (e.g., based on maximum absolute value). The 
training process of the real-world vehicle experiment is the same as the previous case studies. From 23 
scans, 10, 1, and 12 samples were randomly picked for training, evaluation, and testing, respectively. Note 
that the majority of data were kept for testing for better performance assessment. 

DISCOVERY OF GOVERNING EQUATIONS 

FD-Net  

Overview and network architecture 

In this section, we describe the fundamental components of FD-Net. The building blocks of FD-Net are 
FD-Blocks, whose design is inspired by finite-difference approximations of partial derivatives. Figure 4 
shows an instance of FD-Block. An FD-Block is a deep residual learning block that aims to learn the 
evolution of a dynamical system for one artificial time step on [𝑡𝑡, 𝑡𝑡 + ∆𝑡𝑡]. It is composed of groups of 
convolutional layers, a fully connected (FC) layer, and a multi-step skip connection. More details on the 
architecture and training and testing data can be found in Shi et al. (2020). The algorithm was numerically 
tested for the heat equation.  
 

 
Figure 4. An illustration of a FD-Block. 
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C H A P T E R  3  

Findings 

RESULTS FOR RNN FRAMEWORK 
To evaluate the performance of the network for input estimation, the reconstructed input signals for one of 
the testing samples are presented in Figure 5. It generally confirms the efficacy of the input estimation in 
all three axes. The original input signal is highly nonstationary, which is caused by irregular road conditions 
(such as road bumps or potholes) that complicate the process of learning. Yet, the trained network 
successfully estimated the overall patterns 
 

 
 

Figure 5.  Vehicle input signal predictions in three axes. 
 

RESULTS FOR FD-NET 
As stated earlier, FD-Net was tested using the heat equation. The proposed framework’s performance was 
compared to a forward Euler solver. Furthermore, the proposed algorithm was trained using two different 
optimizers. The popular ADAM optimizer with two different learning rates and 10,000 iterations was used. 
It is shown that training time can be significantly reduced and the accuracy of the solutions can be drastically 
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improved by using a second-order method. Specifically, second-order Hessian-Free method, Trust-Region 
(TR) Newton Conjugate Gradient (CG) was employed (Steihaug 1983). The TR method was trained with 
only 100 iterations. Clearly, the TR-based approach yields the highest accuracy.  
 

 
Figure 6. Sequence of predictions along with the squared errors for the forward Euler approach, 

Trust region-based optimizer approach (TR), and traditional Adam optimizer approach (A followed 
by the learning rate). 
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C H A P T E R  4  

Recommendations  

FUTURE DIRECTIONS OF RESEARCH 
In this project we demonstrate the efficacy of a DNN-based framework for estimating input forces for a 
vehicle, thus deconvolving the effects of vehicle dynamics in signals sensed from the cabin of a vehicle. 
The proposed framework demonstrated its efficacy for both numerical and field data. Furthermore, a DNN-
based network was developed that can learn the underlying governing partial differential equation of 
dynamic systems. Both of these frameworks will help facilitate a mobile sensing paradigm for bridge 
monitoring.  
 
In the future, the research team plans to further generalize the DNN framework and validate the data 
collection API by pursuing the following  directions: 

• Harness the power of further advancements in deep learning that will allow for modeling the 
various spatio-temporal dependencies of the problem. 

• Augment deep learning frameworks with more involved physical principles associated with the 
problem at hand to enhance performance and facilitate interpretability from a physical standpoint.  
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