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A SHORT LIST OF EQUALITIES INDUCES LARGE SIGN-RANK\ast 

ARKADEV CHATTOPADHYAY\dagger AND NIKHIL S. MANDE\ddagger 

Abstract. We exhibit a natural function Fn on n variables that can be computed by just a

linear-size decision list of ``Equalities,"" but whose sign-rank is 2\Omega (n1/4). This yields the following two
new unconditional complexity class separations. 1. Boolean circuit complexity. The function Fn can
be computed by linear-size depth-two threshold formulas when the weights of the threshold gates are
unrestricted (\sansT \sansH \sansR \circ \sansT \sansH \sansR ), but any \sansT \sansH \sansR \circ \sansM \sansA \sansJ circuit (the weights of the bottom threshold gates are

polynomially bounded in n) computing Fn requires size 2\Omega (n1/4). This provides the first separation
between the Boolean circuit complexity classes \sansT \sansH \sansR \circ \sansM \sansA \sansJ and \sansT \sansH \sansR \circ \sansT \sansH \sansR . While Amano and
Maruoka [Proceedings of the 30th International Symposium on Mathematical Foundations of Com-
puter Science, 2005, pp. 107--118] and Hansen and Podolskii [Proceedings of the 25th Annual IEEE
Conference on Computational Complexity, 2010, pp. 270--279] emphasized that superpolynomial sep-
arations between the two classes remained a basic open problem, our separation is in fact exponential.
In contrast, Goldmann, H\r astad, and Razborov [Comput. Complexity, 2 (1992), pp. 277--300] showed
more than twenty-five years ago that functions efficiently computable by \sansM \sansA \sansJ \circ \sansT \sansH \sansR circuits can also
be efficiently computed by \sansM \sansA \sansJ \circ \sansM \sansA \sansJ circuits. In view of this, it was not even clear if \sansT \sansH \sansR \circ \sansT \sansH \sansR 
was significantly more powerful than \sansT \sansH \sansR \circ \sansM \sansA \sansJ until our work, and there was no candidate function
identified for the potential separation. 2. Communication complexity. The function Fn (under the
natural partition of the inputs) lies in the communication complexity class \sansP \sansM \sansA . Since Fn has large
sign-rank, this implies \sansP \sansM \sansA \nsubseteq \sansU \sansP \sansP , strongly resolving a recent open problem posed by G\"o\"os, Pitassi,
and Watson [Comput. Complexity, 27 (2018), pp. 245--304]. In order to prove our main result, we
view Fn as an \sansX \sansO \sansR function and develop a technique to lower bound the sign-rank of such func-
tions. This requires novel approximation-theoretic arguments against polynomials of unrestricted
degree. Further, our work highlights for the first time the class ``decision lists of exact thresholds""
as a common frontier for making progress on longstanding open problems in threshold circuits and
communication complexity.

Key words. Boolean threshold circuits, communication complexity, sign-rank, approximation
theory
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1. Introduction. Sign-rank is a delicate but powerful notion, which has a ma-
trix rigidity-like flavor. It was introduced in the seminal work of Paturi and Simon
[51]. The sign-rank of a \{  - 1, 1\} valued matrix M is defined to be the minimum rank
of a real valued matrix each of whose entries agrees in sign with the corresponding
entry of M . Sign-rank has found numerous applications in computer science in ar-
eas like communication complexity, Boolean circuit complexity, and computational
learning theory. Paturi and Simon showed that the logarithm of the sign-rank of a
(communication) matrix is essentially equivalent to the unbounded-error two-party
communication complexity of the underlying function. Forster et al. [24] showed
that proving lower bounds on the sign-rank of a function gives lower bounds on the
minimum size of any \sansT \sansH \sansR \circ \sansM \sansA \sansJ circuit computing it. Sign-rank is known to be equiv-

\ast Received by the editors June 28, 2019; accepted for publication (in revised form) January 26,
2022; published electronically June 14, 2022. A preliminary version of this article appeared in
Proceedings of the 59th IEEE Annual Symposium on Foundations of Computer Science, 2018.

https://doi.org/10.1137/19M1271348
Funding: The first author was partially supported by a Ramanujan fellowship of the DST. The

second author was partially supported by a TCS fellowship.
\dagger School of Technology and Computer Science, Tata Institute of Fundamental Research, Mumbai,

400005, India (Arkadev.c@tifr.res.in).
\ddagger QuSoft and CWI, Amsterdam, 1098XG, The Netherlands (nikhil.s.mande@gmail.com).

820

D
ow

nl
oa

de
d 

08
/1

1/
22

 to
 1

92
.1

6.
19

1.
13

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/19M1271348
mailto:Arkadev.c@tifr.res.in
mailto:nikhil.s.mande@gmail.com


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A SHORT LIST OF EQUALITIES INDUCES LARGE SIGN-RANK 821

alent to dimension complexity, a geometric notion that is of fundamental importance
in computational learning theory. Even proving lower bounds on the sign-rank of a
random function is nontrivial and was first done by Alon, Frankl, and R\"odl [3]. On
the other hand, proving strong lower bounds on the sign-rank of an explicit function,
\sansI \sansP , was a breakthrough achieved by Forster [23] fifteen years later. Since that work,
there have relatively been just a few results proving strong sign-rank lower bounds on
explicit functions [59, 54, 12, 9, 14, 61]. While many basic questions about sign-rank
remain unanswered, new connections between it and other areas of mathematics keep
showing up (see, for example, [4]).

We consider the following easily describable function Fn: The input, of length
n = 2m\ell , is split into two disjoint parts, X \in \{  - 1, 1\} m\ell and Y \in \{  - 1, 1\} m\ell .1 X and
Y are each further divided into \ell disjoint blocks X1, . . . , X\ell , Y1, . . . , Y\ell , of length m
each. The function Fn outputs  - 1 iff the largest index i \in [\ell ] for which Xi = Yi holds
is an odd index (in particular, Fn outputs 1 if there is no such index). For the purposes
of this paper, we set m = \ell 1/3 + log \ell . It is not hard to see that Fn can be easily
described as a decision list (formally defined in section 2) of Equalities. Decision lists
are a natural class of functions to study and have widespread applications in learning
theory, for example, [55, 42, 43].

Our main theorem shows a strong lower bound on the sign-rank of MFn
, where

the rows of MFn
are indexed by the inputs X, the columns by Y , and the (x, y)th

entry is Fn(x, y). We overload notation and refer to the sign-rank of MFn as the
sign-rank of Fn.

Theorem 1.1 (main). The function Fn has sign-rank 2\Omega (n1/4).

An active research program is to search for functions in AC0 that are increasingly
hard to approximate under various natural measures. For example, recently Bun and
Thaler [13] gave near-optimal lower bounds for the approximate degree for functions
in AC0. Sign-rank is arguably one of the hardest notions of approximability to an-
alyze. There have been a series of works [54, 12, 14] on improving sign-rank lower
bounds for functions computable in AC0. Most recently, Sherstov and Wu [61] showed
near-optimal sign-rank lower bounds for functions computable in AC0. All these re-
sults exploit the considerable computing power of AC0 to come up with more intricate
functions that are harder to approximate. In our work, Theorem 1.1 contrasts with
these efforts by finding in some sense a simpler function Fn in AC0, that still remark-
ably has large sign-rank. The building block of Fn is Equality, which is a very simple
function under various models of computation. It turns out Fn can be computed by
a depth-2 linear-size threshold formula. This simplicity of Fn, mainly in its depth
complexity, enables us to settle two open problems. The first is a twenty-five year
old (open since the work of Goldmann, H\r astad, and Razborov [25]) and very basic
problem of understanding the relative power of weights in depth-2 threshold circuits.
This application of our result is outlined in subsection 1.1. The second problem, posed
much more recently by G\"o\"os, Pitassi, and Watson [29], is a communication complexity
class separation, outlined in subsection 1.2. Interestingly, our resolution of these two
problems also serves to highlight an emerging barrier, which we call the ``sign-rank
barrier,"" against proving new lower bounds against depth-2 threshold circuits and
communication protocols just above the first level of the polynomial hierarchy.

1Throughout this paper, we consider the input and output domains to be \{  - 1, 1\} n and \{  - 1, 1\} ,
rather than \{ 0, 1\} n and \{ 0, 1\} , respectively.  - 1 is identified with ``True"" and 1 with ``False.""
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822 ARKADEV CHATTOPADHYAY AND NIKHIL S. MANDE

1.1. Application: Bottom weights can matter. Linear threshold functions
(LTFs) form one of the most central classes of Boolean functions that are studied.
Every such function corresponds to the halfspace induced by a real weight vector
w \in \BbbR n+1, denoted by \sansT \sansH \sansR \bfw , in the following way: For each x \in \{  - 1, 1\} n,

\sansT \sansH \sansR \bfw 

\bigl( 
x
\bigr) 
= sgn

\Biggl( 
w0 +

n\sum 
i=1

wixi

\Biggr) 
.

It is well known [49] that for every threshold function with n inputs, there exists
a threshold representation for it that uses only integer weights of magnitude at most
2O(n logn). From now on, we only consider threshold representations of threshold
functions that use integer weights. The power of an LTF depends on the magnitude
of the weights allowed. For instance, the Boolean function GT(x, y) that determines
if the n-bit integer x is at least as large as the n-bit integer y is an example of
an LTF that has no representation as an LTF with subexponentially small weights.
Indeed in various areas, several questions and problems have been solved when the
LTFs arising in the study are restricted to having small weights, but extending them
to unrestricted weights are either open or have been solved after spending much
research effort. Examples of such areas are learning theory [41, 60], pseudorandom
generators [57], analysis of Boolean functions [33], and Boolean circuit complexity [21].
Understanding the relative power of large weights vs. small weights in the context of
small-depth circuits having LTFs as gates has attracted attention in several works [5,
25, 62, 31, 32, 53, 30, 36, 26].

In this section, we describe the applicability of our main theorem in answering
a longstanding open question that completes the picture of the role weights play in
depth-2 threshold circuits. The class of all Boolean functions that can be computed
by circuits of depth d and polynomial size, comprising gates computing LTFs (of

polynomially bounded weights), is denoted by LTd (\widehat LT d). Indeed, the class of func-
tions computable by constant-depth threshold circuits, commonly denoted \sansT \sansC 0, has
received wide attention lately in various areas [18, 20, 63, 19], including those men-
tioned earlier in this section. In the context of proving explicit lower bounds against
small-depth threshold circuits, the seminal work of Minsky and Papert [46] showed
that a simple function, Parity, is not in LT1. While it is not very hard to verify
that Parity is in \widehat LT 2, an outstanding problem is to exhibit an explicit function that
is not in LT2. This problem is now a well-identified frontier for research in circuit
complexity.

By contrast, the relatively early work of Hajnal et al. [30] established the fact
that the Inner-Product modulo 2 function (denoted by \sansI \sansP ), which is easily seen to be

in \widehat LT 3, is not in \widehat LT 2. It turns out that there is a natural class sitting between \widehat LT 2

and LT2, denoted by \sansT \sansH \sansR \circ \sansM \sansA \sansJ , where the top \sansT \sansH \sansR gate has unrestricted weights,
but the weights of the bottom \sansM \sansA \sansJ gates are restricted to being only polynomially
large. Goldmann, H\r astad, and Razborov [25] proved several interesting results, which
implied the following structure:

\widehat LT 2
[25]
= \sansM \sansA \sansJ \circ \sansT \sansH \sansR 

[25]
\subsetneq \sansT \sansH \sansR \circ \sansM \sansA \sansJ \subseteq LT2

[25]
\subseteq \widehat LT 3.

In a breakthrough work, Forster [23] showed that \sansI \sansP has sign-rank 2\Omega (n) for the natural
partition of input variables. Forster et al. [24] observed that sign-rank lower bounds
for a function f imply lower bounds on the size of \sansT \sansH \sansR \circ \sansM \sansA \sansJ circuits computing f .
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A SHORT LIST OF EQUALITIES INDUCES LARGE SIGN-RANK 823

This yielded an exponential separation between \sansT \sansH \sansR \circ \sansM \sansA \sansJ and \widehat LT 3. This meant
that at least one of the two containments \sansT \sansH \sansR \circ \sansM \sansA \sansJ \subseteq LT2 and LT2 \subseteq \widehat LT 3 is strict.
Which of these containments is strict has intrigued researchers. For instance, Pudl\`ak
in private communication [52] conjectured that \sansT \sansH \sansR \circ \sansM \sansA \sansJ = LT2. This was motivated
by the fact that Goldmann and co-authors showed that in the related setting of the top
gate being weight-restricted, weights at the bottom gates do not give more power, i.e.,
\sansM \sansA \sansJ \circ \sansM \sansA \sansJ = \sansM \sansA \sansJ \circ \sansT \sansH \sansR . Alman and Williams [2] recently showed interesting upper
bounds on the ``probabilistic sign-rank"" for functions in LT2. In contrast, Amano
and Maruoka [5] and Hansen and Podolskii [31] state that separating \sansT \sansH \sansR \circ \sansM \sansA \sansJ 
from \sansT \sansH \sansR \circ \sansT \sansH \sansR = LT2 would be an important step for shedding more light on the
structure of depth-2 Boolean circuits. However, as far as we know, there was no clear
target function identified for the purpose of separating the two classes. No progress
on this question was made until our work.

We show that indeed \sansT \sansH \sansR \circ \sansM \sansA \sansJ \subsetneq \sansT \sansH \sansR \circ \sansT \sansH \sansR and the function Fn achieves
the desired separation. To see why it does, we first note that Fn can be conveniently
expressed as a composed function in the following way: consider a simple adaptation
of the well-known \sansO \sansD \sansD -\sansM \sansA \sansX -\sansB \sansI \sansT function, which we denote by \sansO \sansM \sansB 0

\ell . The function
\sansO \sansM \sansB 0

\ell outputs  - 1 precisely if the rightmost bit that is set to 1 occurs at an odd index
(in particular, \sansO \sansM \sansB 0

\ell outputs 1 if there is no such index). It is simple to observe that
it is a linear threshold function:

\sansO \sansM \sansB 0
\ell 

\bigl( 
x
\bigr) 
=  - 1 \Leftarrow \Rightarrow 

\ell \sum 
i=1

( - 1)i+12i (1 + xi) \geq 0.5.

For functions fm : \{  - 1, 1\} m \rightarrow \{  - 1, 1\} and gn : \{  - 1, 1\} n \rightarrow \{  - 1, 1\} ,2 let fm \circ gn :
\{  - 1, 1\} m\times n \rightarrow \{  - 1, 1\} denote the composed function on mn input bits, where each of
the m input bits to the outer function fm is obtained by applying the inner function
gn to a block of n bits. It is not hard to verify that Fn = \sansO \sansM \sansB 0

\ell \circ \sansO \sansR \ell 1/3+log \ell \circ \sansX \sansO \sansR 2.
We first observe that Fn can be computed by linear-size \sansT \sansH \sansR \circ \sansT \sansH \sansR formulas.

For each x \in \{  - 1, 1\} n, let \sansE \sansT \sansH \sansR \bfw (x) =  - 1 \Leftarrow \Rightarrow w0 + w1x1 + \cdot \cdot \cdot + wnxn = 0.
Thus, \sansE \sansT \sansH \sansR gates are also called exact threshold gates. By first observing that every
function computed by a formula of the form \sansT \sansH \sansR \circ \sansO \sansR can also be computed by a
formula of the form \sansT \sansH \sansR \circ \sansA \sansN \sansD with a linear blow-up in size, it follows that Fn can
be computed by linear-size formulas of the form \sansT \sansH \sansR \circ \sansA \sansN \sansD \circ \sansX \sansO \sansR 2. Note that each
\sansA \sansN \sansD \circ \sansX \sansO \sansR 2 is computable by an \sansE \sansT \sansH \sansR gate. Hence, Fn is computable by a linear-size
\sansT \sansH \sansR \circ \sansE \sansT \sansH \sansR formula. A result of Hansen and Podolskii [31] shows that every linear-
size \sansT \sansH \sansR \circ \sansE \sansT \sansH \sansR formula can be simulated by a linear-size \sansT \sansH \sansR \circ \sansT \sansH \sansR formula. Thus,
along with the fact that sign-rank lower bounds yield lower bounds on \sansT \sansH \sansR \circ \sansM \sansA \sansJ 
circuit size [24], our main theorem (Theorem 1.1) and the above observation yield the
following circuit class separation.

Theorem 1.2. The function Fn can be computed by linear-size \sansT \sansH \sansR \circ \sansT \sansH \sansR for-

mulas, but any \sansT \sansH \sansR \circ \sansM \sansA \sansJ circuit computing it requires size 2\Omega (n1/4).

The message of Theorem 1.2 may be contrasted with previous knowledge as fol-
lows: While weights at the bottom do not matter if the top is light, they do matter
if the top is heavy. Further, Theorem 1.2 provides the first explanation for why cur-
rent lower bound methods fail to get traction with \sansT \sansH \sansR \circ \sansT \sansH \sansR . Interestingly, it also
suggests some new paths along which progress seems feasible. This is discussed in
section 8.

2We sometimes drop the subscript when the arity of the underlying function is clear from context.
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1.2. Application: Communication complexity. G\"o\"os [27] pointed out that
Fn can be used to demonstrate another complexity class separation, this time in
communication complexity. Complexity classes in communication complexity were
first introduced in the seminal work of Babai, Frankl, and Simon [6] as an analogue
to the standard Turing complexity classes. While unconditionally understanding the
relative power of (non)determinism and randomness in the context of Turing machines
seems well beyond current techniques, Babai and co-authors had hoped that making
progress in the miniworld of communication protocols would be less difficult. Indeed,
we understand a lot more in the latter world. For instance, the class \sansP cc is strictly
contained in both \sansB \sansP \sansP cc and \sansN \sansP cc, while \sansB \sansP \sansP cc and \sansN \sansP cc are provably different.
A major goal, set by Babai and co-authors, is to prove lower bounds against the
polynomial hierarchy for which the simple function \sansI \sansP has long been identified as a
target. Unfortunately, it even remains open to exhibit a function that is not in the
second level of the hierarchy. Our result explains this lack of progress by showing that
a total function, conceivably well below the second level, has large sign-rank.

Henceforth, we often drop cc from the superscript for convenience since we deal
exclusively with communication complexity classes. The strongest lower bound tech-
nique currently known in communication complexity is the sign-rank method, as dis-
cussed earlier in section 1. Functions whose communication matrix of dimension
2n\times 2n have sign-rank upper bounded by a quasi-polynomial in n were shown in [51]
to correspond exactly to the complexity class \sansU \sansP \sansP . The lower bound on sign-rank by
Razborov and Sherstov [54] implied that \sansP \sansH (in fact, \Pi 2\sansP ) contains functions with
large sign-rank, rendering the sign-rank technique essentially useless to prove lower
bounds against the second level. A natural question is to understand until where,
between the first and second level, does the sign-rank method suffice to prove lower
bounds.

Indeed, there is a rich landscape of communication complexity classes below the
second level as discussed in a recent, almost exhaustive survey by G\"o\"os, Pitassi, and
Watson [29]. To motivate our contributions, we informally define \sansM \sansA protocols.3

Merlin, an all powerful prover, has access to Alice and Bob's inputs. He sends a
(purported) proof string to Alice and Bob, who then run a randomized protocol to
verify the proof. The protocol accepts an input iff the verification goes through.
We say the protocol computes a function F if for all inputs to Alice and Bob, the
probability of outputting the correct answer is at least 2/3. The cost of the protocol
on an input is the sum of the length of Merlin's proof string and the number of bits
communicated between Alice and Bob. A function is said to be in the complexity
class \sansM \sansA if there is such a protocol computing it with polylogarithmic worst-case cost
(in the size of the input). For example, the function \sansO \sansR \circ \sansE \sansQ can be seen to be in
\sansM \sansA as follows: Merlin sends Alice and Bob the index of an input to the \sansO \sansR gate
(if it exists) where \sansE \sansQ outputs  - 1, and Alice and Bob run an efficient randomized
protocol for \sansE \sansQ to verify this. The class \sansM \sansA is a natural generalization of \sansN \sansP and
has received a lot of attention, starting with the work of [40]. It is known that \sansM \sansA is
strictly contained in \sansU \sansP \sansP .

One could similarly define \sansA \sansM , but its power remains much less understood.
G\"o\"os, Pitassi, and Watson [29] conjectured that the (potentially incomparable) classes
\sansA \sansM \cap \sansc \sanso \sansA \sansM and \sansS 2\sansP contain functions of large sign-rank. In a very recent work,
Bouland et al. [9] showed that there is a partial function in \sansA \sansM \cap \sansc \sanso \sansA \sansM which has large

3The definition of \sansU \sansP \sansP can be found in section 2. A formal description of all other communication
complexity classes defined in this section can be found in the appendix.
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sign-rank, (partially) resolving the first conjecture.4 We provide a strong confirmation
of the second conjecture.

In order to state our result, let us consider the complexity class \sansP \sansM \sansA that is
contained in \sansS 2\sansP . A function is in \sansP \sansM \sansA if it can be computed by deterministic protocols
of polylogarithmic cost, where Alice and Bob have oracle access to any function in\sansM \sansA .
The function Fn under the natural input partition (recall that it can be expressed as a
decision list of equalities) can be efficiently solved by \sansP \sansM \sansA protocols by an appropriate
binary search, and querying an \sansO \sansR \circ \sansE \sansQ oracle at each step. A formal description of
this protocol is given in Algorithm 6.1.

We thus prove the following as a consequence of our main theorem.

Theorem 1.3. The function Fn witnesses the following communication complex-
ity class separation:

\sansP \sansM \sansA \nsubseteq \sansU \sansP \sansP .

Our result thus strongly confirms the second conjecture of G\"o\"os and co-authors
by exhibiting the first total function in a complexity class contained, plausibly strictly,
in \Pi 2P, that has large sign-rank.

On the other hand, it is known that \sansP \sansN \sansP \subsetneq \sansU \sansP \sansP and \sansM \sansA \subsetneq \sansP \sansP \subsetneq \sansU \sansP \sansP . These
facts combined with Theorem 1.3 show that \sansP \sansM \sansA is right on the frontier between
what we understand and what we do not. Thus, proving lower bounds against \sansP \sansM \sansA 

protocols emerges as a natural program for advancing the set of currently known
techniques, given our work. Future directions are further discussed in section 8.

1.3. Related work. Long after Forster [23] showed that upper bounding the
spectral norm of a \{  - 1, 1\} valued matrix suffices to show sign-rank lower bounds,
Sherstov [59] introduced an innovative method that designed a passage to a suitable
approximation problem via LP duality. This basic framework was again used by
Razborov and Sherstov [54], developing more approximation-theoretic tools, to prove

the first exponential lower bounds of 2\Omega (n1/3) on the sign-rank of a function in AC0.
This function can be computed by a depth-3 linear-size circuit. After a series of works
improving this bound [12, 14], Sherstov and Wu [61] recently proved a near-optimal

2\Omega (n1 - \epsilon ) lower bound on the sign-rank of a function computable in AC0. Bouland et
al. [9] recently proved strong sign-rank bounds for a partial function with interesting
applications. All of these works [59, 54, 12, 9, 14, 61] rely on the passage, invented
by Sherstov [59], to an approximation-theoretic problem involving low degree polyno-
mials. This passage is made possible by exploiting the elegant spectral properties of
communication matrices of the target functions, following the basic pattern matrix
method of Sherstov [58].

Unfortunately, it seems difficult to embed a pattern matrix in a function in
\sansT \sansH \sansR \circ \sansT \sansH \sansR . Consequently, we come up with a different type of function, Fn, that is
an XOR function. Proving lower bounds on the communication complexity of \sansX \sansO \sansR 
functions, in general, has received a lot of attention recently [48, 65, 64, 34, 39, 17].
However, there seem to be just two previous works that prove a lower bound on the
sign-rank of an \sansX \sansO \sansR function, due to Hatami and Qian [35] and independently by
Ada, Fawzi, and Kulkarni [1]. Their result characterizes the sign-rank of functions of
the form f \circ \sansX \sansO \sansR when f is symmetric. In contrast, our target function Fn is not a
symmetric \sansX \sansO \sansR function. Moreover, both the works [35] and [1] obtain their result
using neat reductions from pattern matrices of symmetric functions, which had been

4It still remains unknown if there are total functions in \sansA \sansM \cap \sansc \sanso \sansA \sansM that have large sign-rank.
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analyzed by Sherstov [59]. Such a reduction for a function in \sansT \sansH \sansR \circ \sansT \sansH \sansR is unknown,
and plausibly impossible. This forces us to use a first-principle based argument for
bounding the sign-rank of an \sansX \sansO \sansR function. Such functions also have nice spectral
properties that are, however, different from those of pattern matrices. More specif-
ically, the approximation-theoretic problem that one is led to in this case involves
polynomials with unrestricted degree but low Fourier weight. A similar flavored but
simpler problem had been tackled in a recent work of the authors [15], which charac-
terized the discrepancy of \sansX \sansO \sansR functions. Roughly speaking, in that work, the primal
program asked for a distribution \mu such that f correlates poorly with all parities
w.r.t. \mu . However, there was no smoothness constraint imposed on \mu in [15], which
is what we are constrained to have in this work. Analyzing this combination of high
degree parity constraints and the smoothness constraints is the main new technical
challenge that our work addresses.

It is simple to verify that Fn is computed by a linear-size AC0 circuit. Theo-
rem 1.1 therefore yields a new argument to show that AC0 has large sign-rank. While
our bounds on the sign-rank of Fn are weaker than that of [54, 12, 14, 61], Fn is sim-
pler than the earlier functions in other ways. It is just a decision list of ``Equalities""
that is, therefore, both in the Boolean circuit class \sansT \sansH \sansR \circ \sansT \sansH \sansR and the communi-
cation complexity class \sansP \sansM \sansA . It is precisely this property of Fn that allows us to
simultaneously answer two open questions.

1.4. Our techniques. We strive to prove a lower bound on the sign-rank of a
function F \in \sansT \sansH \sansR \circ \sansT \sansH \sansR . We are guided by a communication complexity theoretic in-
terpretation of sign-rank, due to Paturi and Simon [51]. Paturi and Simon introduced
a model of two-party randomized communication, called the unbounded-error model.
In this model, Alice and Bob are only required to give the right answer with proba-
bility strictly greater than 1/2 on every input. This is the strongest known two-party
model against which we know how to prove lower bounds. Paturi and Simon [51]
showed that the sign-rank of the communication matrix of F essentially characterizes
its unbounded-error communication complexity.

Why should some function F \in \sansT \sansH \sansR \circ \sansT \sansH \sansR have large unbounded-error communi-
cation complexity? A natural protocol one is tempted to use is the following. Sample
a subcircuit of the top gate with a probability proportional to its weight. Then use
the best protocol for the sampled bottom \sansT \sansH \sansR gate. Note that for any given input
x, with probability 1/2 + \epsilon , one samples a bottom gate that agrees with the value of
F (x). Here, \epsilon can be inverse exponentially small in the input size. Thus, if we had a
small cost randomized protocol for the bottom \sansT \sansH \sansR gate that errs with probability
significantly less than \epsilon we would have a small cost unbounded-error protocol for F .
Fortunately for us (the lower bound prover), there does not seem to exist any such

efficient randomized protocol for \sansT \sansH \sansR , when \epsilon = 1/2n
\Omega (1)

.
Taking this a step further, one could hope that the bottom gates could be any

function that is hard to compute with such tiny error \epsilon . The simplest such canonical
function is Equality (denoted by \sansE \sansQ ). Therefore, a plausible target is \sansT \sansH \sansR \circ \sansE \sansQ .
This still turns out to be in \sansT \sansH \sansR \circ \sansT \sansH \sansR as \sansE \sansQ \in \sansE \sansT \sansH \sansR . Moreover, \sansE \sansQ has a nice
composed structure. It is just \sansA \sansN \sansD \circ \sansX \sansO \sansR , which lets us reexpress our target as
F = \sansT \sansH \sansR \circ \sansA \sansN \sansD \circ \sansX \sansO \sansR , for some top \sansT \sansH \sansR that is ``suitably"" hard. At this point, we
view F as an \sansX \sansO \sansR function whose outer function, f , needs to have sufficiently good
analytic properties for us to prove that f \circ \sansX \sansO \sansR has high sign-rank.

We are naturally drawn to the work of Razborov and Sherstov [54] for inspiration
as they bound the sign-rank of a three-level composed function as well. They showed
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sr(f \circ \sansX \sansO \sansR ) large

f correlates poorly
with all parities

under approximately
smooth distribution \mu 

Spectral properties
of \sansX \sansO \sansR functions
(Lemma 2.13)

Modified Forster's theorem
[54] (Theorem 2.10)

f has no
low weight, good
``mixed margin""
representation

LP duality LP1, LP2

Fig. 1. Approximation-theoretic hardness of f implies large sign-rank of f \circ \sansX \sansO \sansR (Theorem 3.1).

that \sansA \sansN \sansD \circ \sansO \sansR \circ \sansA \sansN \sansD 2 has high sign-rank. They exploited the fact that this function
embeds a pattern matrix inside it, which has nice convenient spectral properties as
observed in [58]. These spectral properties dictate them to look for an approximately
smooth orthogonalizing distribution w.r.t. which the outer function f = \sansA \sansN \sansD \circ \sansO \sansR 
has zero correlation with small degree parities. This naturally gives rise to a linear
program that seeks to maximize the smoothness of the distribution under the con-
straints of low-degree orthogonality. The main technical challenge that Razborov and
Sherstov overcome is the analysis of the dual of this LP using and building appropri-
ate approximation-theoretic tools. We follow this general framework of analyzing the
dual of a suitable LP. However, as we are forced to work with an \sansX \sansO \sansR function, there
are new challenges that crop up. This is understandable, for if we take the same outer
function of \sansA \sansN \sansD \circ \sansO \sansR , then the resulting \sansX \sansO \sansR function has small sign-rank. Indeed,
this remains true even if one were to harden the outer function to \sansM \sansA \sansJ \circ \sansO \sansR . This is
simply because \sansO \sansR \circ \sansX \sansO \sansR is nonequality (\sansN \sansE \sansQ ). A simple efficient \sansU \sansP \sansP protocol for
\sansM \sansA \sansJ \circ \sansN \sansE \sansQ exists: pick a random \sansN \sansE \sansQ and then execute a protocol of cost O(log n)
that solves this \sansN \sansE \sansQ with error less than 1/n2.

Figure 1 describes a general passage from the problem of lower bounding the
sign-rank of a function f \circ \sansX \sansO \sansR to a sufficient problem of proving an approximation-
theoretic hardness property of f , namely, f has no good ``mixed margin"" representa-
tion by low weight polynomials. Theorem 3.1 states the precise connection between
the approximation-theoretic property of f and the sign-rank of f \circ \sansX \sansO \sansR . This passage
is made possible by using well known spectral properties of \sansX \sansO \sansR functions and LP
duality. This is similar to earlier works [54, 59, 12, 9, 14, 61], where the spectral prop-
erties of pattern matrices were analyzed. The key difference between our work and
theirs is in the nature of the approximation-theoretic problem that we end up with.
While all these previous works had to rule out good low degree representations, our
Theorem 3.1 stipulates us to rule out good low weight representations of otherwise
unrestricted degree.

Our main technical contribution is Theorem 4.1, which shows that the function
\sansO \sansM \sansB 0 \circ \sansO \sansR is inapproximable by low weight polynomials of unrestricted degree, in a
sense which we elaborate on below. We prove this by a novel combination of ideas,
sketched in Figure 2, that differs entirely from analysis in earlier works. One may view
this result as a hardness amplification result, albeit specific to the function \sansO \sansM \sansB 0.
We start with the function \sansO \sansM \sansB 0, which has no low weight ``worst case margin""
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Unrestricted degree, low weight
good approximation
over \oplus basis, for g \circ \vee 

Unrestricted degree, low weight
good approximation
over \vee basis, for g

Implicit ideas in [44]

Low degree, low weight
good approximation
over \vee basis, for grest

Random restriction

\sansO \sansM \sansB \sanszero has a low degree, low weight
good approximation over \vee basis

Contradiction!

Approximation theory

g = \sansO \sansM \sansB 0

Lemma 4.2
Lemma 4.3

Lemma 4.5

Lemma 4.4

Fig. 2. Approximation-theoretic analysis (Theorem 4.1).

representation when the degree of the approximating polynomial is bounded [7]. We
show that on composition with large fan-in \sansO \sansR gates, the function \sansO \sansM \sansB 0\circ \sansO \sansR becomes
``mixed margin""-inapproximable by low weight polynomials, even with unrestricted
degree. We believe this result to be of independent interest in the area of analysis of
Boolean functions and approximation theory.

The first step in our method is to borrow an averaging idea from Krause and
Pudl\'ak [44] to show the following: a low weight good approximation of g \circ \sansO \sansR m by
a polynomial p over the parity (Fourier) basis implies that there exists a low weight
polynomial q over the \sansO \sansR basis which approximates g as well as p approximates
g \circ \sansO \sansR m, save an additive loss of at most 2 - m. This transformation to q is very useful
because although it is still unrestricted in degree, it is over the \sansO \sansR basis, which is
vulnerable to random restrictions. Indeed, in the next step, we hit q with random
restrictions to reduce its degree. At this point, we extract a low weight and low
degree polynomial r that still approximates grest, the restriction of g. We now appeal
to interesting properties of the \sansO \sansD \sansD -\sansM \sansA \sansX -\sansB \sansI \sansT function by setting g = \sansO \sansM \sansB 0. First,
we observe that \sansO \sansM \sansB 0 on \ell bits, under random restrictions, retains its hardness as
it contains \sansO \sansM \sansB 0 on \ell /8 bits with high probability. Next, we show that \sansO \sansM \sansB 0 does
not have low degree good approximations by appealing to classical approximation-
theoretic tools, suitably modifying the arguments of Buhrman, Vereshchagin, and
de Wolf [11] and Beigel [7]. This provides us with the required contradiction.

2. Preliminaries. In this section, we provide some necessary preliminaries.

2.1. Notation. All logarithms in this paper are taken base 2. For a positive
integer n and a set X \subseteq \{  - 1, 1\} n, let Xc denote the complement of X in \{  - 1, 1\} n.
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For positive integers m, \ell > 0 and a string x = (x1, . . . , x\ell ) \in \{  - 1, 1\} m\ell , let
\bigvee 
(x) =

(
\bigvee 

m(x1), . . . ,
\bigvee 

m(x\ell )) \in \{  - 1, 1\} \ell . Here
\bigvee 

m denotes the \sansO \sansR function on m input
bits, which outputs  - 1 if there exists an index where the input is  - 1, and outputs 1
otherwise. We drop the subscripts when m, \ell are clear from context.

We require the following form of the Chernoff bound (see, for example, [47, The-
orem 4.5]).

Lemma 2.1 (Chernoff bound). Let X1, X2, . . . , Xn be independent \{ 0, 1\} -valued
random variables. Let X =

\sum n
i=1 Xi denote their sum, and let \mu = \BbbE (X). Then for

all 0 < \delta < 1,

Pr[X \leq (1 - \delta )\mu ] \leq e - \mu \delta 2/2.

Definition 2.2 (\sansO \sansR polynomials). Define a function p : \{  - 1, 1\} n \rightarrow \BbbR of the
form p(x) =

\sum 
S\subseteq [n] aS

\bigvee 
i\in S xi to be an \sansO \sansR polynomial. Define the weight of p (in

the \sansO \sansR basis) to be
\sum 

S\subseteq [n] | aS | and its degree to be maxS\subseteq [n]\{ | S| : aS \not = 0\} .
Remark 2.3. In the above definition, ``\sansO \sansR monomials"" are defined as follows:

\bigvee 
i\in S

xi =

\Biggl\{ 
1 xi = 1 \forall i \in S,

 - 1 otherwise.

Unless mentioned otherwise, all polynomials we consider will be over the parity basis.

Definition 2.4 (decision lists). A decision list of length k is a sequence D =
(L1, a1), (L2, a2), . . . , (Lk, ak), where each ai \in \{  - 1, 1\} , and Lk is the constant  - 1
function. The decision list computes a function f : \{  - 1, 1\} n \rightarrow \{  - 1, 1\} as follows. If
L1(x) =  - 1, then f(x) = a1; else if L2(x) =  - 1, then f(x) = a2; else if . . . , else if
Lk(x) =  - 1, then f(x) = ak. That is,

f(x) =

k\bigvee 
i=1

\left(  ai
\bigwedge 

Li(x)
\bigwedge 
j<i

\neg Lj(x)

\right)  .

2.2. Threshold circuits. We permit negated variables as inputs in all circuit
classes under consideration in this paper.

Definition 2.5 (threshold functions). A function f : \{  - 1, 1\} n \rightarrow \{  - 1, 1\} is
called a linear threshold function if there exist integer weights a0, a1, . . . , an such
that for all inputs x \in \{  - 1, 1\} n, f(x) = sgn(a0 +

\sum n
i=1 aixi). Let \sansT \sansH \sansR denote the

class of all such functions.

Definition 2.6 (exact threshold functions). A function f : \{  - 1, 1\} n \rightarrow \{  - 1, 1\} 
is called an exact threshold function if there exist reals w1, . . . , wn, t such that

f(x) =  - 1 \Leftarrow \Rightarrow 
n\sum 

i=1

wixi = t.

Let \sansE \sansT \sansH \sansR denote the class of exact threshold functions.

Hansen and Podolskii [31] showed the following.

Theorem 2.7 (Hansen and Podolskii [31]). If a function f : \{  - 1, 1\} n \rightarrow \{  - 1, 1\} 
can be represented by a \sansT \sansH \sansR \circ \sansE \sansT \sansH \sansR formula of size s, then it can be represented by
a \sansT \sansH \sansR \circ \sansT \sansH \sansR formula of size 2s.
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For the sake of completeness and clarity, we provide the proof below.

Proof. Let h be an exact threshold function with the representation
\sum n

i=1 wixi =
t. There exists an \epsilon h > 0 such that

\sum n
i=1 wixi > t =\Rightarrow 

\sum n
i=1 wixi > t+ \epsilon h. Consider

a \sansT \sansH \sansR \circ \sansE \sansT \sansH \sansR formula of size s which computes f . Say it computes sgn(c0+
\sum s

i=1 cifi),
where the fi's have exact threshold representations

\sum n
j=1 wi,jxj = ti, respectively.

Consider the \sansT \sansH \sansR \circ \sansT \sansH \sansR formula of size 2s, given by sgn (
\sum s

i=1 ci(gi,1  - gi,2 + 1)),
where the gi's are threshold functions with representations as follows:

gi,1 = 1 \Leftarrow \Rightarrow 
n\sum 

j=1

wi,jxj \geq ti,

gi,2 = 1 \Leftarrow \Rightarrow 
n\sum 

j=1

wi,jxj \geq ti + \epsilon fi .

It is easy to verify that this formula computes f .

Remark 2.8. In fact, Hansen and Podolskii [31] showed that the circuit class
\sansT \sansH \sansR \circ \sansT \sansH \sansR is identical to the circuit class \sansT \sansH \sansR \circ \sansE \sansT \sansH \sansR . However, we do not require
the full generality of their result.

We now note that any function computable by a \sansT \sansH \sansR \circ \sansO \sansR formula can be com-
puted by a \sansT \sansH \sansR \circ \sansA \sansN \sansD formula without a blowup in the size.

Lemma 2.9. Suppose f : \{  - 1, 1\} n \rightarrow \{  - 1, 1\} can be computed by a \sansT \sansH \sansR \circ \sansO \sansR 
formula of size s. Then, f can be computed by a \sansT \sansH \sansR \circ \sansA \sansN \sansD formula of size s.

Proof. Consider a \sansT \sansH \sansR \circ \sansO \sansR formula of size s, computing f , say,

f(x) = sgn

\left(  s\sum 
i=1

wi

\bigvee 
j\in Si

xj

\right)  .

Note that
s\sum 

i=1

wi

\bigvee 
j\in Si

xj =

s\sum 
i=1

 - wi

\bigwedge 
j\in Si

xc
j .

Thus, sgn
\Bigl( \sum s

i=1 - wi

\bigwedge 
j\in Si

xc
j

\Bigr) 
is a \sansT \sansH \sansR \circ \sansA \sansN \sansD representation of f , of size s.

2.3. Sign-rank. Define the sign-rank of a real valued matrix A = [Aij ], denoted
by sr(A), to be the least rank of a real matrix B = [Bij ] such that AijBij > 0 for all
(i, j) such that Aij \not = 0.

We require the following generalization of Forster's theorem [23] by Razborov and
Sherstov [54].

Theorem 2.10 (Razborov and Sherstov [54]). Let A = [Axy]x\in X,y\in Y be a real
valued matrix with s = | X| | Y | entries, such that A \not = 0. For arbitrary parameters
h, \gamma > 0, if all but h of the entries of A satisfy | Axy| \geq \gamma , then

sr(A) \geq \gamma s

| | A| | 
\surd 
s+ \gamma h

.

Forster et al. [24] showed that functions with efficient \sansT \sansH \sansR \circ \sansM \sansA \sansJ representations
have small sign-rank.
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Lemma 2.11 (Forster et al. [24]). Let F : \{  - 1, 1\} n \times \{  - 1, 1\} n \rightarrow \{  - 1, 1\} be a
Boolean function computed by a \sansT \sansH \sansR \circ \sansM \sansA \sansJ circuit of size s. Then,

sr(MF ) \leq sn,

where MF denotes the communication matrix of F .

For the purposes of this paper, we abuse notation and use sr(F ) and sr(MF )
interchangeably to denote the sign-rank of MF .

2.4. Fourier analysis. Consider the vector space of functions from \{  - 1, 1\} n to
\BbbR , equipped with the following inner product:

\langle f, g\rangle = \BbbE x\in \{  - 1,1\} n [f(x)g(x)] =
1

2n

\sum 
x\in \{  - 1,1\} n

f(x)g(x).

Define ``characters"" \chi S for every S \subseteq [n] by \chi S(x) =
\prod 

i\in S xi. The set \{ \chi S : S \subseteq [n]\} 
forms an orthonormal basis for this vector space. Thus, every f : \{  - 1, 1\} n \rightarrow \BbbR can

be uniquely written as f =
\sum 

S\subseteq [n]

\widehat f(S)\chi S , where

(2.1) \widehat f(S) = \langle f, \chi S\rangle = \BbbE x\in \{  - 1,1\} n [f(x)\chi S(x)] .

For a polynomial p =
\sum 

S\subseteq [n] cS\chi S , define

mon(p) = | S \subseteq [n] : cS \not = 0| .

Also define the weight of p by

wt(p) =
\sum 
S\subseteq [n]

| cS | .

Since every function f : \{  - 1, 1\} n \rightarrow \BbbR has a unique polynomial exactly representing it,
we abuse notation and use mon(f) and wt(f) to denote the corresponding quantities
for this polynomial.

We require the following well-known identity (see, for example, [50]).

Fact 2.12 (Plancherel's identity). For any functions f, g : \{  - 1, 1\} n \rightarrow \BbbR ,

\BbbE x\in \{  - 1,1\} n [f(x)g(x)] =
\sum 
S\subseteq [n]

\widehat f(S)\widehat g(S).
The following lemma characterizes the spectral norm of the communication matrix

of \sansX \sansO \sansR functions (see, for example, [8]).

Lemma 2.13 (folklore). Let f : \{  - 1, 1\} n \rightarrow \BbbR be any real valued function and
let M denote the communication matrix of f \circ \sansX \sansO \sansR . Then,

| | M | | = 2n \cdot max
S\subseteq [n]

\bigm| \bigm| \bigm| \widehat f(S)\bigm| \bigm| \bigm| .
2.5. Polynomial approximations. The following is a well-known lemma by

Minsky and Papert [46].
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832 ARKADEV CHATTOPADHYAY AND NIKHIL S. MANDE

Lemma 2.14 (Minsky and Papert [46]). Let p : \{  - 1, 1\} n \rightarrow \BbbR be any symmetric
real polynomial of degree d. Then, there exists a univariate polynomial q of degree at
most d, such that for all x \in \{  - 1, 1\} n,

p(x) = q(\#1(x)),

where \#1(x) = | \{ i \in [n] : xi = 1\} | .

We require the following approximation-theoretic lemma by Ehlich and Zeller [22]
and Rivlin and Cheney [56].

Lemma 2.15 ([22, 56]). The following holds true for any real valued \alpha > 0 and
integer k > 0. Let p : \BbbR \rightarrow \BbbR be a univariate polynomial of degree d <

\sqrt{} 
k/4, such

that p(0) \geq \alpha , and p(i) \leq 0 for all i \in [k]. Then, there exists i \in [k] such that
p(i) <  - 2\alpha .

2.6. Communication complexity. In the model of communication we con-
sider, two players, say, Alice and Bob, are given inputs X \in \scrX and Y \in \scrY for some
finite input sets \scrX ,\scrY . They are given access to private randomness and wish to com-
pute a given function F : \scrX \times \scrY \rightarrow \{  - 1, 1\} . We will use \scrX = \scrY = \{  - 1, 1\} n for
the purposes of this paper. Alice and Bob communicate using a randomized protocol
which has been agreed upon in advance. The cost of the protocol is the maximum
number of bits communicated in the worst case input and coin toss outcomes. A
protocol \Pi computes F with advantage \epsilon if the probability of F agreeing with \Pi is at
least 1/2+ \epsilon for all inputs. We denote the cost of the best such protocol to be R\epsilon (F ).
Note here that we deviate from standard notation (used in [45], for example, where
the subscript denotes the error probability rather than advantage). Unbounded-error
communication complexity was introduced by Paturi and Simon [51] and is defined
as follows:

\sansU \sansP \sansP (F ) = inf
\epsilon >0

(R\epsilon (F )).

This measure gives rise to the natural communication complexity class \sansU \sansP \sansP cc, defined
as \sansU \sansP \sansP cc(F ) \equiv \{ F : \sansU \sansP \sansP (F ) = polylog(n)\} .

Paturi and Simon [51] showed an equivalence between \sansU \sansP \sansP (F ) and the sign-rank
of MF .

Theorem 2.16 (Paturi and Simon [51]). For any function F : \{  - 1, 1\} n \times 
\{  - 1, 1\} n \rightarrow \{  - 1, 1\} ,

\sansU \sansP \sansP (F ) = log sr(MF )\pm O(1).

3. Sign-rank to polynomial approximation. In this section, we prove how
a certain approximation-theoretic hardness property of f implies that the sign-rank
of f \circ \sansX \sansO \sansR is large, as outlined in Figure 1.

Let f : \{  - 1, 1\} n \rightarrow \{  - 1, 1\} be any function, \delta > 0 be a parameter, and X be any
subset of \{  - 1, 1\} n. We consider the following linear program, which has exactly the
same structure as in (LP1) in [59] except for one crucial difference, which is described
below:
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(LP1)

Variables \epsilon , \{ \mu (x) : x \in \{  - 1, 1\} n\} 
Minimize \epsilon 

s.t.

\bigm| \bigm| \bigm| \bigm| \sum 
x
\mu (x)f(x)\chi S(x)

\bigm| \bigm| \bigm| \bigm| \leq \epsilon \forall S \subseteq [n]\sum 
x
\mu (x) = 1

\epsilon \geq 0
\mu (x) \geq \delta 

2n \forall x \in X
\mu (x) \geq 0 \forall x \in \{  - 1, 1\} n

The first constraint in (LP1) specifies that the correlation of f against all parities
needs to be small w.r.t. a distribution \mu . Note that in [59], this constraint was only
imposed for low degree parities. This difference between the two linear programs
forces us to entirely change the analysis of the dual from the one in [59]. As discussed
earlier in subsection 1.4, this analysis is one of our main technical innovations. The
second-to-last constraint enforces the fact that \mu is ``\delta -smooth"" over the set X. As
we had indicated earlier in subsection 1.4, these constraints make analyzing the LP
challenging.

Standard manipulations (as in [15], for example) and strong linear programming
duality reveal that the optimum of (LP1) equals the optimum of (LP2). Let \sansO \sansP \sansT 
denote the optima of these programs.

(LP2)

Variables \Delta , \{ \alpha S : S \subseteq [n]\} , \{ \xi x : x \in X\} 
Maximize \Delta + \delta 

2n

\sum 
x\in X

\xi x

s.t. f(x)
\sum 

S\subseteq [n]

\alpha S\chi S(x) \geq \Delta \forall x \in \{  - 1, 1\} n

f(x)
\sum 

S\subseteq [n]

\alpha S\chi S(x) \geq \Delta + \xi x \forall x \in X\sum 
S\subseteq [n]

| \alpha S | \leq 1

\Delta \in \BbbR 
\alpha S \in \BbbR \forall S \subseteq [n]
\xi x \geq 0 \forall x \in X

The objective function of (LP2) consists of a ``worst-case component"" \Delta and an
``average-case component"" \delta 

2n

\sum 
x\in X

\xi x. The first set of constraints indicates that a

dual polynomial p must satisfy f(x)p(x) \geq \Delta for all x \in \{  - 1, 1\} n (justifying the
terminology ``worst-case component"").5 The second set of constraints says that at
each point x over the smooth set X, the dual polynomial has to better the worst-case
component by at least \xi x (justifying the terminology ``average-case component""). If
\sansO \sansP \sansT is large, then it means that on average, the dual polynomial did significantly
better than its worst-case component. It is for this reason we call the optimum the
``mixed margin""6 as mentioned in subsection 1.4.

We now show that upper bounding \sansO \sansP \sansT for any function f yields sign-rank lower
bounds against f \circ \sansX \sansO \sansR . The proof idea is depicted in Figure 1.

Theorem 3.1. Let f : \{  - 1, 1\} n \rightarrow \BbbR be any function. For any \delta > 0 and X \subseteq 
\{  - 1, 1\} n, suppose the value of the optimum of (LP2) (and hence (LP1)) is at most

5Note that \Delta might be negative.
6The mixed margin is always nonnegative, since a suitably scaled version of the polynomial

exactly representing f acts as a feasible dual polynomial.
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834 ARKADEV CHATTOPADHYAY AND NIKHIL S. MANDE

\sansO \sansP \sansT . Then,

sr(f \circ \sansX \sansO \sansR ) \geq \delta 

\sansO \sansP \sansT + \delta \cdot | X
c| 

2n

.

Proof. By (LP1), there exists a distribution \mu on \{  - 1, 1\} n such that \mu (x) \geq \delta 
2n

for all x \in X, and max
S\subseteq [n]

| \widehat f\mu (S)| \leq \sansO \sansP \sansT 
2n . By Lemma 2.13,

| | Mf\mu \circ \sansX \sansO \sansR | | = 2n \cdot max
S\subseteq [n]

\bigm| \bigm| \bigm| \widehat f\mu (S)\bigm| \bigm| \bigm| \leq \sansO \sansP \sansT .

Each x \in X contributes to 2n entries of Mf\mu \circ \sansX \sansO \sansR whose absolute value is at least \delta .
Plugging values into Theorem 2.10, we obtain

sr(f \circ \sansX \sansO \sansR ) \geq sr(f\mu \circ \sansX \sansO \sansR ) \geq 
\delta 
2n \cdot 2

2n

\sansO \sansP \sansT \cdot 2n + \delta 
2n \cdot 2n \cdot | Xc| 

=
\delta 

\sansO \sansP \sansT + \delta \cdot | X
c| 

2n

,

which proves the desired sign-rank lower bound.

The above theorem can also be seen to imply sign-monomial complexity lower
bounds, a measure that is more basic than sign-rank. We provide a definition of
this measure and a self-contained proof of the resultant lower bounds in Appendix B,
which does not involve the use of Forster's theorem.

4. Hardness of approximating \bfsansO \bfsansM \bfsansB \bfzero 
\ell \circ \bfsansO \bfsansR \bfitm . Below is our main technical re-

sult, capturing the essence of Figure 2, which says that no dual polynomial exists with

a large optimum value for (LP2) when f = \sansO \sansM \sansB 0
\ell \circ 
\bigvee 

\ell 1/3+log \ell : \{  - 1, 1\} \ell 
4/3+\ell log \ell \rightarrow 

\{  - 1, 1\} , even when the smoothness parameter \delta is as high as 1/4.

Theorem 4.1 (main technical result). For a positive integer \ell , let m = \ell 1/3 +
log \ell . Define f = \sansO \sansM \sansB 0

\ell \circ 
\bigvee 

m : \{  - 1, 1\} \ell m \rightarrow \{  - 1, 1\} , \delta = 1/4, and X = \{ x \in 
\{  - 1, 1\} \ell m :

\bigvee 
(x) =  - 1\ell \} . Then for sufficiently large values of \ell , the optimal value

\sansO \sansP \sansT of (LP2) is less than 2 - 
\ell 1/3

81 .

Theorem 4.1 can be viewed as a hardness amplification theorem as follows. Our
base function is \sansO \sansM \sansB 0, which is known to be hard to approximate in the worst case
by low degree sign representing polynomials [7, 11]. We show that a lifted version of
this function, \sansO \sansM \sansB 0

\ell \circ \sansO \sansR m, cannot be approximated well under a significantly weaker
notion of approximation where we permit any approximating polynomial to have the
following additional power:

\bullet unrestricted degree but low weight,
\bullet it need not sign represent \sansO \sansM \sansB 0

\ell \circ \sansO \sansR m, but its ``mixed margin"" is small
(see (LP2)).

We prove Theorem 4.1 toward the end of this section. We first outline the various
tools that go into proving Theorem 4.1, following the schematic in Figure 2.

We first use an idea from Krause and Pudl\'ak [44] that enables us to work with
polynomial approximations for g, given a polynomial approximation for g \circ 

\bigvee 
m. We

use the following notation for the following two lemmas. For any set H \subseteq [\ell ] \times [m],
define I \subseteq [\ell ] to be the projection of H on [\ell ]; i \in I \Leftarrow \Rightarrow \exists j, xi,j \in H. Note
that I depends on H. However, we do not make this dependence explicit to avoid
clutter. The set H from which I is obtained will be clear from context. For any
y \in \{  - 1, 1\} \ell , let \mu y denote the uniform distribution over all inputs x \in \{  - 1, 1\} m\ell 

such that
\bigvee 

m(x) = y. Lemmas 4.2 and 4.3 represent the first implication in Figure 2.
The first tool we use is an approximation of monomials (in the parity basis) by \sansO \sansR 
functions, with a small error.
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Lemma 4.2. Let \ell \geq 4 and m be positive integers such that m > 2 log \ell . For any
set H \subseteq [\ell ]\times [m], y \in \{  - 1, 1\} \ell ,\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \BbbE \mu y

\left[  \bigoplus 
(i,j)\in H

xi,j

\right]   - 1

2
 - 1

2

\bigvee 
i\in I

yi

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq 2\ell 2 - m.

The proof of Lemma 4.2 appears in the proof of Lemma 2.3 in [44]. However, we
reproduce the proof below for clarity and completeness.

Proof. First observe that for all y \in \{  - 1, 1\} \ell , and for all x satisfying
\bigvee 

m(x) = y,
the monomial corresponding to H equals\bigoplus 

(i,j)\in H

xi,j =
\bigoplus 

(i,j)\in H,yi= - 1

xi,j .

Let A = \{ i \in [\ell ] : yi =  - 1\} . If A \cap I = \emptyset , then

\BbbE \mu y

\left[  \bigoplus 
(i,j)\in H

xi,j

\right]  =
\bigvee 
i\in I

yi = 1.

Else,
\bigvee 

i\in I yi =  - 1. Also,

(4.1) \BbbE \mu y

\left[  \bigoplus 
(i,j)\in H

xi,j

\right]  = \BbbE x\in \{  - 1,1\} (A\cap I)\times [m]:
\bigvee 
(x)= - 1| A\cap I| 

\left[  \bigoplus 
(i,j)\in H,yi= - 1

xi,j

\right]  .

Note that

(4.2) \BbbE x\in \{  - 1,1\} (A\cap I)\times [m]

\left[  \bigoplus 
(i,j)\in H,yi= - 1

xi,j

\right]  = 0.

Denote | A \cap I| = t. Using (4.2) and a simple counting argument, the absolute value
of the right-hand side (and thus the left-hand side) of (4.1) can be upper bounded as
follows (note that we require 1 \leq t \leq \ell in the following computations):\bigm| \bigm| \bigm| \bigm| \bigm| \BbbE \mu y

\Biggl[ \bigoplus 
(i,j)\in H

xi,j

\Biggr] \bigm| \bigm| \bigm| \bigm| \bigm| \leq 2mt  - (2m  - 1)
t

(2m  - 1)
t

\leq 2mt  - (2mt  - t2m(t - 1))

(2m  - 1)t

\leq t \cdot 2mt - m

2mt/2

\leq 2\ell 2 - m.

The second inequality above holds because the sum of the remaining terms in binomial
expansion of (2m - 1)t is positive as m > 2 log \ell . The third inequality above holds for
the following reason: (2m  - 1)t = 2mt(1 - 1/2m)t \geq 2mt(1 - 1/\ell 2)t since m > 2 log \ell .
As \ell \geq 4 and t \leq \ell , we can use the standard fact that (1 - x) \geq e - 2x for all x < 1/2

to conclude that 2mt(1  - 1/\ell 2)t \geq 2mte - 2t/\ell 2 \geq 2mte - 1/2 > 2mt/2. Hence, for all
y \in \{  - 1, 1\} \ell , we have

(4.3)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \BbbE \mu y

\left[  \bigoplus 
(i,j)\in H

xi,j

\right]   - 1

2
 - 1

2

\bigvee 
i\in I

yi

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq 2\ell 2 - m.D
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The next lemma states that g can be approximated well over the \sansO \sansR basis, given
a good approximation for g \circ 

\bigvee 
over the parity basis.

Lemma 4.3. Let \ell \geq 4 and m be positive integers such that m > 2 log \ell , and
g : \{  - 1, 1\} \ell \rightarrow \{  - 1, 1\} be any function. Define f = g\circ 

\bigvee 
m : \{  - 1, 1\} m\ell \rightarrow \{  - 1, 1\} ,\Delta \in 

\BbbR , ex \geq 0 for all x \in X, where X denotes the set of all inputs x in \{  - 1, 1\} m\ell such
that

\bigvee 
m(x) =  - 1\ell , and let p be a real polynomial such that

\forall x \in \{  - 1, 1\} m\ell , f(x)p(x) \geq \Delta ,

\forall x \in X, f(x)p(x) \geq \Delta + ex.

Then there exists an \sansO \sansR polynomial q, of weight at most wt(p), such that

\forall y \in \{  - 1, 1\} \ell , q(y)g(y) \geq \Delta  - wt(p)
\bigl( 
2\ell \cdot 2 - m

\bigr) 
,

q( - 1\ell )g( - 1\ell ) \geq \Delta +

\sum 
x\in X ex

| X| 
 - wt(p)

\bigl( 
2\ell \cdot 2 - m

\bigr) 
.

Proof. Note that for any y \in \{  - 1, 1\} \ell ,

(4.4) \BbbE \mu y
[f(x)p(x)] = g(y) \cdot \BbbE \mu y

[p(x)] \geq \Delta 

and

(4.5) \BbbE \mu  - 1\ell 
[f(x)p(x)] = g( - 1\ell ) \cdot \BbbE \mu  - 1\ell 

[p(x)] \geq \Delta +

\sum 
x\in X ex

| X| 
.

Denote the unique multilinear expansion of p by p = v0+
\sum 

k vkpk, where pk(x) =
\oplus (i,j)\in Hk

xi,j . Let Ik denote the projection of Hk on [\ell ]. Define

q = v0  - 
\sum 

k vk
2
 - 
\sum 
k

vk
2

\bigvee 
i\in Ik

yi.

Note that

wt(q) = wt

\Biggl( 
v0  - 

\sum 
k vk
2
 - 
\sum 
k

vk
2

\bigvee 
i\in Ik

yi

\Biggr) 
=

\bigm| \bigm| \bigm| \bigm| v0  - \sum k vk
2

\bigm| \bigm| \bigm| \bigm| +\sum 
k

\bigm| \bigm| \bigm| vk
2

\bigm| \bigm| \bigm| \leq wt(p).

Thus, using linearity of expectation and Lemma 4.2, (4.4) and (4.5) yield that for
all y \in \{  - 1, 1\} \ell ,

q(y) \cdot g(y) \geq \Delta  - wt(p)
\bigl( 
2\ell \cdot 2 - m

\bigr) 
and

q( - 1\ell ) \cdot g( - 1\ell ) \geq \Delta +

\sum 
x\in X ex

| X| 
 - wt(p)

\bigl( 
2\ell \cdot 2 - m

\bigr) 
.

Next, we use random restrictions that reduce the degree of the approximating
\sansO \sansR polynomial, at the cost of a small error. In particular, we consider the case when
g = \sansO \sansM \sansB 0

\ell . This represents the dashed implication in Figure 2.

Lemma 4.4. Let \ell \geq 4 and m be any positive integers such that m > 2 log \ell . Let
g\ell = \sansO \sansM \sansB 0

\ell : \{  - 1, 1\} \ell \rightarrow \{  - 1, 1\} , f = g\ell \circ 
\bigvee 

m, and \Delta , \{ ex \geq 0 : x \in X\} (where X is
defined as in Lemma 4.3), and p be a real polynomial such that

\forall x \in \{  - 1, 1\} m\ell , f(x)p(x) \geq \Delta ,

\forall x \in X, p(x) \geq \Delta + ex.
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Then for any integer d > 0, there exists an \sansO \sansR polynomial r : \{  - 1, 1\} \ell /8 \rightarrow \BbbR , of
degree d and weight at most wt(p), such that

\forall y \in \{  - 1, 1\} \ell /8, r(y)g\ell /8(y) \geq \Delta  - wt(p)
\Bigl( 
2\ell \cdot 2 - m + 2 - (d - 1)

\Bigr) 
and r( - 1\ell /8) \geq \Delta +

\sum 
x\in X ex

| X| 
 - wt(p)

\Bigl( 
2\ell \cdot 2 - m + 2 - (d - 1)

\Bigr) 
.

Proof. Lemma 4.3 guarantees the existence of an \sansO \sansR polynomial q, of weight at
most wt(p), such that

\forall y \in \{  - 1, 1\} \ell , q(y)g\ell (y) \geq \Delta  - wt(p)
\bigl( 
2\ell \cdot 2 - m

\bigr) 
,(4.6)

q( - 1\ell )g( - 1\ell ) \geq \Delta +

\sum 
x\in X ex

| X| 
 - wt(p)

\bigl( 
2\ell \cdot 2 - m

\bigr) 
.

Now, set each of the \ell variables to  - 1 with probability 1/2, and leave it unset
with probability 1/2. Call this random restriction R. Any \sansO \sansR monomial of degree at
least d gets fixed to  - 1 with probability 1 - 2 - d. Thus, by linearity of expectation, the
expected weight of surviving monomials of degree at least d in q is at most wt(p) \cdot 2 - d.
Let M | R denote the value of a monomial M after the restriction R. By Markov's
inequality,

Pr
R

\left[  \sum 
M :deg(M | R)\geq d

wt(M | R) > wt(p) \cdot 2 - d+1

\right]  < 1/2.

Consider \ell /2 pairs of variables, \{ (x2i, x2i+1) : i \in [\ell /2]\} (assume without loss of
generality that \ell is even). For any pair, the probability that both of its variables
remain unset is 1/4. This probability is independent over pairs. Thus, by a Chernoff
bound (Lemma 2.1), the probability that at most \ell /16 pairs remain unset is at most

2 - 
\ell 
64 , since the expected number of pairs with both variables unset equals \ell /8.
By a union bound, there exists a setting of variables such that at least \ell /16 pairs

of variables are left free, and the weight of degree \geq d monomials in q is at most
wt(p) \cdot 2 - d+1. Set the remaining 7\ell /8 variables to the value  - 1. After the restriction,
drop the monomials of degree \geq d from q to obtain r, which is now an \sansO \sansR polynomial
of degree less than d and weight at most wt(p). Note that the function g\ell hit with
this restriction just becomes g\ell /8.

Thus, (4.6) yields the following:

\forall y \in \{  - 1, 1\} \ell /8, r(y)g\ell /8(y) \geq \Delta  - wt(p)
\Bigl( 
2\ell \cdot 2 - m + 2 - (d - 1)

\Bigr) 
and r( - 1\ell /8) \geq \Delta +

\sum 
x\in X ex

| X| 
 - wt(p)

\Bigl( 
2\ell \cdot 2 - m + 2 - (d - 1)

\Bigr) 
.

4.1. Hardness of \bfsansO \bfsansM \bfsansB \bfzero . The following lemma states that approximating \sansO \sansM \sansB 0

well by a low weight polynomial p is not possible unless the degree of p is large. This
captures the last implication in Figure 2.

Lemma 4.5. Suppose p : \{  - 1, 1\} n \rightarrow \BbbR is a polynomial of degree d <
\sqrt{} 
n/4

and let a > 0, b \in \BbbR be reals such that p( - 1n) \geq a and \sansO \sansM \sansB 0
n(x)p(x) \geq b for all

x \in \{  - 1, 1\} n. Define

pmax = max
i\in \{ 0,...,\lfloor n/10d2\rfloor \} 

\{ 2ia+
\bigl( 
3 \cdot 2i  - 3

\bigr) 
b\} .

Then there exists x \in \{  - 1, 1\} n such that | p(x)| \geq pmax.

D
ow

nl
oa

de
d 

08
/1

1/
22

 to
 1

92
.1

6.
19

1.
13

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

838 ARKADEV CHATTOPADHYAY AND NIKHIL S. MANDE

A simple consequence of the above lemma is that the weight of a polynomial p
(in either the \sansO \sansR basis or the parity basis) satisfying the assumptions of Lemma 4.5
is at least pmax. This property of p suffices for our need.

The proof of Lemma 4.5 follows an iterative argument, making repeated use of
Lemma 2.15, inspired by the arguments of Beigel [7] and Buhrman, Vereshchagin,
and de Wolf [11].

Remark 4.6. We remark here that this strengthens the result of Beigel [7], who
proved that any good approximation by a low degree sign representing polynomial
for \sansO \sansM \sansB 0 must have large weight. Our approximating polynomial is not constrained
to be sign representing (b might be negative in Lemma 4.5). In fact, it might disagree
in sign on all inputs but  - 1n.

We now proceed to prove Lemma 4.5. We first require the following intermediate
claim.

Claim 4.7. If a and b are reals such that a > 0, b \in \BbbR , and 2ia+
\bigl( 
3 \cdot 2i  - 2

\bigr) 
b \leq 0

for some integer i \geq 0, then 2ja+
\bigl( 
3 \cdot 2j  - 3

\bigr) 
b < 0 for all integers j > i.

Proof. Note that since a > 0 and 2ia+
\bigl( 
3 \cdot 2i  - 2

\bigr) 
b \leq 0, b must be negative. For

any j > i, write 2ja+
\bigl( 
3 \cdot 2j  - 3

\bigr) 
b = 2j - i

\bigl( 
2ia+

\bigl( 
3 \cdot 2i  - 2

\bigr) 
b
\bigr) 
+ (2j - i+1  - 3)b < 0.

Proof of Lemma 4.5. Divide the n variables into \lfloor n/10d2\rfloor contiguous blocks of
size 10d2 each. Define imax = min \{ \lfloor n/10d2\rfloor , j\} , where j is the smallest nonnegative
integer such that 2ja+(3\cdot 2j - 2)b \leq 0. We prove the following hypothesis by induction.

Induction hypothesis: For each i \in \{ 0, . . . , imax\} , there exists an input xi \in 
\{  - 1, 1\} n such that the following hold:

\bullet xi
j =  - 1 for all indices j to the right of the ith block (thus, x0 = ( - 1)n).

\bullet The values of xi
j for indices j to the left of the ith block are set as dictated

by the previous step. That is, xi
j = xi - 1

j for all indices j to the left of the ith
block.

\bullet p(xi) \geq 2ia +
\bigl( 
3 \cdot 2i  - 3

\bigr) 
b for i even and p(xi) \leq  - 2ia  - 

\bigl( 
3 \cdot 2i  - 3

\bigr) 
b for i

odd.
To see why proving this hypothesis would prove Lemma 4.5, we first note that the hy-
pothesis implies the existence of an x \in \{  - 1, 1\} n satisfying | p(x)| \geq maxi\in \{ 0,...,imax\} \{ 2ia+\bigl( 
3 \cdot 2i  - 3

\bigr) 
b\} . This is true for the following reason: consider any i \leq imax, for which

vali = 2ia+
\bigl( 
3 \cdot 2i  - 3

\bigr) 
b \leq 0. For such an i, p(x0) = a > vali. For all other i \leq imax,

the hypothesis directly shows | p(xi)| \geq vali. By the definition of imax and Claim 4.7,
we have 2ia +

\bigl( 
3 \cdot 2i  - 3

\bigr) 
b < 0 for all i > imax. Thus, again p(x0) = a > vali for

all i > imax. This yields Lemma 4.5. All that remains is to prove the induction
hypothesis, which we do now.

\bullet Base case: Say i = 0. By assumption, p( - 1n) \geq a. If imax = 0, the proof is
complete. Else we proceed to the inductive step.
\bullet Inductive step: Say the hypothesis is true for all 0 \leq j \leq i  - 1 for some
i \geq 1. In the ith block, set the variables corresponding to the even indices
to  - 1 if i is odd, and set the odd indexed variables to  - 1 if i is even. Set
the variables outside the ith block as set in the (i - 1)'th step. Assume that
i is odd (the argument for even i follows in a similar fashion, with suitable
sign changes). Denote the free variables by y1, . . . , y5d2 . Define a polynomial

pi : \{  - 1, 1\} 5d
2 \rightarrow \BbbR by pi(y) = \BbbE \sigma \in S5d2

\~p(\sigma (y)), where \~p(y) denotes the value
of p on input y1, . . . , y5d2 , and the remaining variables are set as described
earlier. The expectation is over the uniform distribution. Note that pi is a
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symmetric polynomial of degree at most d and satisfies

pi( - 15d
2

) \geq 2i - 1a+
\bigl( 
3 \cdot 2i - 1  - 3

\bigr) 
b, pi(y) \leq  - b \forall y \not =  - 15d

2

.

By Lemma 2.14, there exists a univariate polynomial p\prime i such that for all
j \in \{ 0\} \cup [5d2],

p\prime i(j) = pi(y) \forall y such that \#1(y) = j.

Thus,

p\prime i(0) \geq 2i - 1a+
\bigl( 
3 \cdot 2i - 1  - 3

\bigr) 
b, p\prime 1(j) \leq  - b \forall j \in [5d2].

Define p\prime \prime i = p\prime i + b. Thus,

p\prime \prime i (0) \geq 2i - 1a+
\bigl( 
3 \cdot 2i - 1  - 2

\bigr) 
b, p\prime \prime i (j) \leq 0 \forall j \in [5d2].

Note that p\prime \prime i (0) > 0 since i - 1 < imax. Hence the conditions of Lemma 2.15
are satisfied, and it implies the existence of a j \in [5d2] such that p\prime \prime i (j) \leq 
 - 2ia - 

\bigl( 
3 \cdot 2i  - 4

\bigr) 
b, and hence p\prime i(j) \leq  - 2ia - 

\bigl( 
3 \cdot 2i  - 3

\bigr) 
b. This implies the

existence of an xi in \{  - 1, 1\} n (with all variables to the right of the ith block
still set to  - 1, and variables to the left of the ith block as dictated by the
previous step) such that p(xi) <  - 2ia - 

\bigl( 
3 \cdot 2i  - 3

\bigr) 
b.

We are now ready to prove our main technical result, following the schematic
depicted in Figure 2.

Proof of Theorem 4.1. Let p be a polynomial of weight 1, for which (LP2) at-
tains its optimum. Denote the values taken by the variables at the optimum by

\Delta \sansO \sansP \sansT , \{ \xi x,\sansO \sansP \sansT : x \in X\} . Toward a contradiction, assume \sansO \sansP \sansT \geq 2 - 
\ell 1/3

81 .
Lemma 4.4 (set m = \ell 1/3 + log \ell ) shows the existence of an \sansO \sansR polynomial r, on

\ell /8 variables, of degree \ell 1/3 and weight 1, such that

for all y \in \{  - 1, 1\} \ell /8, r(y)\sansO \sansM \sansB 0
\ell /8(y) \geq \Delta \sansO \sansP \sansT  - 4 \cdot 2 - \ell 1/3

and r( - 1\ell /8) \geq \Delta \sansO \sansP \sansT +

\sum 
x\in X \xi x,\sansO \sansP \sansT 

| X| 
 - 4 \cdot 2 - \ell 1/3 .

Note that

(4.7) \sansO \sansP \sansT \geq 2 - 
\ell 1/3

81 =\Rightarrow \Delta \sansO \sansP \sansT \geq 2 - 
\ell 1/3

81  - \delta 

\sum 
x\in X \xi x,\sansO \sansP \sansT 

2n
.

The polynomial r satisfies the assumptions of Lemma 4.5 with d = deg(r) = \ell 1/3 <\sqrt{} 
\ell /32 (since any \sansO \sansR polynomial of degree d can be represented by a polynomial of

degree at most d), a = \Delta \sansO \sansP \sansT +
\sum 

x\in X \xi x,\sansO \sansP \sansT 

| X|  - 4 \cdot 2 - \ell 1/3 , and b = \Delta \sansO \sansP \sansT  - 4 \cdot 2 - \ell 1/3 .

Here, a is positive because of the following:

a = \Delta \sansO \sansP \sansT +

\sum 
x\in X \xi x,\sansO \sansP \sansT 

| X| 
 - 4 \cdot 2 - \ell 1/3 \geq 2 - 

\ell 1/3

81  - 4 \cdot 2 - \ell 1/3 > 0.
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840 ARKADEV CHATTOPADHYAY AND NIKHIL S. MANDE

Set k = \ell 1/3/80 for the remainder of this proof. By Lemma 4.5, there exists an
x \in \{  - 1, 1\} \ell /8 such that

| r(x)| \geq 2ka+
\bigl( 
3 \cdot 2k  - 3

\bigr) 
b

= \Delta \sansO \sansP \sansT (4 \cdot 2k  - 3) + 2k
\sum 

x\in X \xi x,\sansO \sansP \sansT 

| X| 
 - 4 \cdot 2 - 80k(4 \cdot 2k  - 3)

\geq 
\bigl( 
4 \cdot 2k  - 3

\bigr) \biggl( 
2 - 

\ell 1/3

81  - \delta 

\sum 
x\in X \xi x,\sansO \sansP \sansT 

2n

\biggr) 
+ 2k

\sum 
x\in X \xi x,\sansO \sansP \sansT 

| X| 
 - 4 \cdot 2 - 80k(4 \cdot 2k  - 3)

\geq 
\bigl( 
4 \cdot 2k  - 3

\bigr) \Bigl( 
2 - 80k/81  - 4 \cdot 2 - 80k

\Bigr) 
> 1.

The second inequality above holds because of (4.7), and the last inequality follows
because \delta = 1/4, and k \geq 1. This yields a contradiction, since r was a polynomial of
weight (in the \sansO \sansR basis) at most 1.

5. Proof of main theorem. We are now ready to prove our sign-rank lower
bound.

Theorem 5.1 (restatement of Theorem 1.1). Let f = \sansO \sansM \sansB 0
\ell \circ 

\bigvee 
\ell 1/3+log \ell :

\{  - 1, 1\} \ell 4/3+\ell log \ell \rightarrow \{  - 1, 1\} . Then, for sufficiently large values of \ell ,

sr(f \circ \sansX \sansO \sansR ) \geq 2
\ell 1/3

81  - 3.

Proof. Let n = \ell 4/3 + \ell log \ell . Theorem 4.1 says that the optimum of (LP2) (and

hence (LP1), by duality) is at most 2 - 
\ell 1/3

81 , when f = \sansO \sansM \sansB 0
\ell \circ 
\bigvee 

\ell 1/3+log \ell , \delta = 1/4,

and X = \{ x \in \{  - 1, 1\} \ell 4/3+\ell log \ell :
\bigvee 
(x) =  - 1\ell \} . We now estimate the size of Xc.

The probability (over the uniform distribution on the inputs) of a particular \sansO \sansR gate

firing a 1 is 2 - \ell 1/3+log \ell . By a union bound, the probability of any \sansO \sansR gate firing a 1 is

at most 2 - \ell 1/3 , and hence | Xc| \leq 2n \cdot 2 - \ell 1/3 . Plugging these values into Theorem 3.1,
we obtain

sr(f \circ \sansX \sansO \sansR ) \geq 1/4

2 - 
\ell 1/3

81 + 2 - \ell 1/3 - 2
\geq 2

\ell 1/3

81  - 3.

6. Applications. In this section, we outline some applications of Theorem 1.1.

6.1. A separation of depth-2 threshold circuit classes. We are now ready
to prove Theorem 1.2, which gives us a lower bound on the size of \sansT \sansH \sansR \circ \sansM \sansA \sansJ circuits
computing Fn = \sansO \sansM \sansB 0

\ell \circ 
\bigvee 

\ell 1/3+log \ell \circ \sansX \sansO \sansR 2 and resolves an open question posed in [5,
31] by yielding an exponential separation between the circuit classes \sansT \sansH \sansR \circ \sansM \sansA \sansJ and
\sansT \sansH \sansR \circ \sansT \sansH \sansR .

Proof of Theorem 1.2. First, we show that Fn is computable by linear-size \sansT \sansH \sansR \circ 
\sansT \sansH \sansR formulas. Let n = 2\ell 4/3 + 2\ell log \ell denote the number of input bits to Fn =
\sansO \sansM \sansB 0

\ell \circ 
\bigvee 

\ell 1/3+log \ell \circ \sansX \sansO \sansR 2. By Lemma 2.9, Fn can be computed by a \sansT \sansH \sansR \circ \sansA \sansN \sansD \circ \sansX \sansO \sansR 2

formula of size 2\ell 4/3+2\ell log \ell . Hence Fn \in \sansT \sansH \sansR \circ \sansE \sansT \sansH \sansR = \sansT \sansH \sansR \circ \sansT \sansH \sansR , by Theorem 2.7.
Next, we show a lower bound on the size of any \sansT \sansH \sansR \circ \sansM \sansA \sansJ circuit computing

Fn. Suppose \sansO \sansM \sansB 0
l \circ 
\bigvee 

l1/3+log l \circ \sansX \sansO \sansR 2 could be represented by a \sansT \sansH \sansR \circ \sansM \sansA \sansJ circuit
of size s. By Lemma 2.11 and Theorem 5.1,

s
\Bigl( 
2\ell 4/3 + 2\ell log \ell 

\Bigr) 
\geq sr(f) \geq 2

\ell 1/3

81  - 3.
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Thus, s = 2\Omega (n
1/4).

6.2. Communication complexity class separations. We now show explicit
separations between certain communication complexity classes, resolving an open
question posed in [29]. This application of our main result was brought to our atten-
tion by G\"o\"os [27]. Precise definitions of communication complexity classes of interest
may be found in the appendix.

The function we use for the class separations is F = \sansO \sansM \sansB 0
\ell \circ 
\bigvee 

\ell 1/3+log \ell \circ \sansX \sansO \sansR 2.

Theorem 6.1. For a positive integer \ell , let m = \ell 1/3+log \ell . Let f = \sansO \sansM \sansB 0
\ell \circ 
\bigvee 

m :
\{  - 1, 1\} \ell m \rightarrow \{  - 1, 1\} , and let n = \ell m denote the number of input variables. Then,
for sufficiently large values of n,

\sansU \sansP \sansP (f \circ \sansX \sansO \sansR ) = \Omega 
\Bigl( 
n1/4

\Bigr) 
.

Proof. It follows from Theorems 5.1 and 2.16.

Note that Fn = \sansO \sansM \sansB \ell \circ \sansE \sansQ \ell 1/3+log \ell , where \sansO \sansM \sansB \ell outputs  - 1 iff the rightmost
bit of the input set to  - 1 occurs at an odd index.

It is not hard to see that there is an \sansM \sansA protocol for
\bigvee 

\ell \circ \sansE \sansQ \ell 1/3+log \ell of cost

polylogarithmic in \ell . Using this, and a binary search, we exhibit a \sansP \sansM \sansA upper bound
for Fn under the natural partition of the inputs in Algorithm 6.1.

Protocol 6.1 \sansP \sansM \sansA protocol for \sansO \sansM \sansB (\sansE \sansQ 1, . . . ,\sansE \sansQ \ell ).

if
\ell \bigvee 

i=1

(\sansE \sansQ i) = 1 then Output 1.

end if
start = 1
end = \ell 
mid = \lceil start+end

2 \rceil 
while start \not = end do

if
end\bigvee 

i=mid

(\sansE \sansQ i) =  - 1 then start\leftarrow mid

else if
end\bigvee 

i=mid

(\sansE \sansQ i) = 1 then end\leftarrow mid - 1

end if
end while
Output  - 1 iff start is odd.

Hence, we obtain Fn \in \sansP \sansM \sansA cc. Along with Theorem 6.1, this yields the following
result.

Theorem 6.2.

\sansP \sansM \sansA cc \nsubseteq \sansU \sansP \sansP cc.

It is known that \sansP \sansM \sansA cc \subseteq \sansS \sanstwo \sansP cc and \sansP \sansM \sansA cc \subseteq \sansB \sansP \sansP \sansN \sansP cc (see, e.g., [29] for references
for such containments and an excellent overview on the landscape of communication
complexity classes).

Thus, Theorem 6.2 yields

\sansS \sanstwo \sansP cc \nsubseteq \sansU \sansP \sansP cc and \sansB \sansP \sansP \sansN \sansP cc \nsubseteq \sansU \sansP \sansP cc.
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The first noninclusion resolves an open question posed in [29]. To the best of our
knowledge, ours is the first explicit total function to witness the second noninclusion.
We remark here that Bouland et al. [9] used a partial function to witness the same
separation.

7. An upper bound. In this section, we observe that the function Fn has sign-

rank 2O(n1/4), showing that our lower bound in Theorem 1.1 is essentially tight for
Fn.

Theorem 7.1. The function Fn has sign-rank 2O(n1/4).

Proof. As noted in the previous section, Fn is expressible as a circuit of the
form \sansT \sansH \sansR \ell \circ \sansE \sansQ \ell 1/3+log \ell . A natural unbounded-error protocol for Fn is to sample
an input to the top threshold with probability proportional to its weight and solve
the corresponding Equality deterministically. The cost associated with sampling an
input to the threshold is log \ell , and the cost of solving an Equality deterministically is
\ell 1/3+log \ell , which is at most 2\ell 1/3 for large enough values of \ell . Since n = \ell 4/3+\ell log \ell >
\ell 4/3, the cost of the unbounded-error protocol is O(n1/4). By Theorem 2.16, Fn has

sign-rank 2O(n1/4).

8. Conclusions and future directions. We exhibit the first function known
to be computable efficiently (in fact in linear size) by depth-2 threshold circuits, but
which has exponentially large sign-rank. This result solves two open problems in
one go: the first is a basic and old open problem, arising from the classical work
of Goldmann, H\r astad, and Razborov [25] from the early nineties, of determining
the power of weights in depth-2 threshold circuits. Can such circuits be efficiently
simulated by depth-2 circuits in which the bottom gates are restricted to have small
weights? Goldmann and co-authors showed that they can be if we allow only small
weights to appear at the top gate in the circuit we want to simulate. We prove that
in general, such efficient simulations are impossible. This, along with previous work,
yields the following fine structure of depth-2 threshold circuit classes:

\widehat LT 1 \subsetneq LT1 \subsetneq \widehat LT 2 = \sansM \sansA \sansJ \circ \sansT \sansH \sansR \subsetneq \sansT \sansH \sansR \circ \sansM \sansA \sansJ \subsetneq LT2\underbrace{}  \underbrace{}  
This work

\subseteq \widehat LT 3 \subseteq NP/poly.

The currently best known lower bounds against \sansT \sansH \sansR \circ \sansT \sansH \sansR circuits are subquadratic,
due to Kane and Williams [38]. Our work provides the first formal explanation of why
current techniques have failed so far to prove strong lower bounds against \sansT \sansH \sansR \circ \sansT \sansH \sansR 
circuits. It also suggests following directions along which progress can be made on
this longstanding problem:

\bullet How large can the sign-rank of a function in \sansT \sansH \sansR \circ \sansT \sansH \sansR be? We showed that

it can be as large as 2\Omega (n1/4). Is it possible that the sign-rank of all functions
in \sansT \sansH \sansR \circ \sansT \sansH \sansR is 2O(n\epsilon ) for some constant \epsilon < 1? Even an upper bound of
2o(n) is enough to show \sansI \sansP is not in \sansT \sansH \sansR \circ \sansT \sansH \sansR . On the other hand, finding
a function of sign-rank 2\Omega (n) would also be quite interesting!

\bullet Our function is just a short decision list of Equalities. While it is not hard to
show that decision lists of Equalities cannot compute7 \sansI \sansP , can we prove strong
lower bounds on the size of decision lists of exact thresholds for computing
an explicit (say, in \sansN \sansP ) function? This is a subclass of \sansT \sansH \sansR \circ \sansT \sansH \sansR . Our main
result shows that this subclass already inherits the curse of large sign-rank.

7Since they are in AC0, for instance.
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This raises the challenge of proving lower bounds on their size as a natural
next step.

On a second front, our main result shows that the communication complexity
class \sansP \sansM \sansA has functions with large sign-rank, strongly resolving an open problem
posed recently by G\"o\"os, Pitassi, and Watson [29]. This is in contrast to the known
facts that all functions in \sansP \sansN \sansP and \sansM \sansA have small sign-rank. As the sign-rank lower
bound technique remains the strongest known technique for proving lower bounds
against communication protocols (including quantum protocols), it suggests that new
techniques need to be developed for proving bounds against \sansP \sansM \sansA . Indeed, there are
specialized techniques for proving lower bounds against the class \sansP \sansN \sansP (see [37, 28]).
Can they be generalized to \sansP \sansM \sansA ? In particular, note that every function expressible
as a short decision list of exact thresholds is in \sansP \sansM \sansA . Proving lower bounds on the
length of such decision lists for computing an explicit function is also a natural first
step for proving lower bounds against \sansP \sansM \sansA communication protocols.

In conclusion, our work puts the spotlight on the basic and simple computational
model of ``decision lists of exact thresholds"" that is capable of very efficiently comput-
ing a function of large sign-rank. Proving lower bounds on the size of such decision
lists is a necessary step for proving lower bounds against both \sansT \sansH \sansR \circ \sansT \sansH \sansR circuit size
and \sansP \sansM \sansA communication cost.

Appendix A. Communication complexity classes. For any communication
model \scrC and function F : \{  - 1, 1\} n \times \{  - 1, 1\} n \rightarrow \{  - 1, 1\} , denote \scrC (F ) to be the
minimum cost of a correct protocol for F in the model \scrC . We denote by \scrC cc the class
of all functions F with \scrC (F ) at most polylogarithmic in n.

Definition A.1 (\sansN \sansP ). An \sansN \sansP protocol \Pi outputs  - 1 or 1 indicating whether or
not the input is in

\bigcup 
w\in \{  - 1,1\} k Rw, where \{ Rw : w \in \{  - 1, 1\} k\} are rectangles. The

protocol correctly computes F : \{  - 1, 1\} n \times \{  - 1, 1\} n \rightarrow \{  - 1, 1\} if for all (x, y) \in 
\{  - 1, 1\} n \times \{  - 1, 1\} n, \Pi (x, y) = F (x, y). The cost of the protocol is k.

Definition A.2 (\sansM \sansA ). An \sansM \sansA protocol is a distribution over deterministic proto-
cols \Pi that take an additional input w \in \{  - 1, 1\} k (Merlin's proof string), visible to both
Alice and Bob. The protocol correctly computes F : \{  - 1, 1\} n \times \{  - 1, 1\} n \rightarrow \{  - 1, 1\} if
it satisfies the following properties:

Completeness: If F (x, y) =  - 1, then \exists w : Pr[\Pi (x, y, w) =  - 1] \geq 2/3.

Soundness: If F (x, y) = 1, then \forall w : Pr[\Pi (x, y, w) =  - 1] \leq 1/3.

The cost of the protocol is the sum of the maximum cost of any constituent determin-
istic protocol and k.

Definition A.3 (\sansS 2\sansP ). An \sansS 2\sansP protocol can be viewed as a matrix \Pi , with rows
indexed by r \in \{  - 1, 1\} k, columns indexed by c \in \{  - 1, 1\} k, where each entry contains
a deterministic protocol. The protocol correctly computes F : \{  - 1, 1\} n \times \{  - 1, 1\} n \rightarrow 
\{  - 1, 1\} if the matrix satisfies the following properties:

If F (x, y) =  - 1, then \exists c \forall r : \Pi r,c(x, y) =  - 1,
if F (x, y) = 1, then \exists r \forall c : \Pi r,c(x, y) = 1.

The cost of the protocol is the sum of the maximum cost of any constituent determin-
istic protocol and k.
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We now define protocols where Alice and Bob have access to certain oracles.

Definition A.4 (\sansP \sansN \sansP ). A \sansP \sansN \sansP protocol \Pi is a protocol in which at each step, one
of the following actions occur:

\bullet For cost 1, Alice sends a bit to Bob.
\bullet For cost 1, Bob sends a bit to Alice.
\bullet For cost k, Alice and Bob compute the value of g(x, y), where g has an \sansN \sansP 
protocol of cost k.

The protocol correctly computes F : \{  - 1, 1\} n \times \{  - 1, 1\} n \rightarrow \{  - 1, 1\} if \Pi (x, y) =
F (x, y) for all x, y \in \{  - 1, 1\} n.

Definition A.5 (\sansP \sansM \sansA ). A \sansP \sansM \sansA protocol \Pi , is a protocol in which at each step,
one of the following actions occur:

\bullet For cost 1, Alice sends a bit to Bob.
\bullet For cost 1, Bob sends a bit to Alice.
\bullet For cost k, Alice and Bob compute the value of g(x, y), where g has an \sansM \sansA 
protocol of cost k.

The protocol correctly computes F : \{  - 1, 1\} n \times \{  - 1, 1\} n \rightarrow \{  - 1, 1\} if \Pi (x, y) =
F (x, y) for all x, y \in \{  - 1, 1\} n.

Definition A.6 (\sansB \sansP \sansP \sansN \sansP ). A \sansB \sansP \sansP \sansN \sansP protocol is a distribution over \sansP \sansN \sansP protocols
\Pi . The protocol correctly computes F : \{  - 1, 1\} n\times \{  - 1, 1\} n \rightarrow \{  - 1, 1\} if Pr[\Pi (x, y) =
F (x, y)] \geq 2/3 for all x, y \in \{  - 1, 1\} n.

Appendix B. Sign-monomial complexity lower bounds.

Definition B.1 (sign-monomial complexity). The sign-monomial complexity
of a Boolean function f : \{  - 1, 1\} n \rightarrow \{  - 1, 1\} , denoted by mon\pm (f), is the minimum
number of monomials required by a polynomial p to sign represent f on all inputs.

Remark B.2. Note that the sign-monomial complexity of a function f exactly
corresponds to the minimum size Threshold of Parity circuit computing f .

In this section, we show how upper bounding the optimum of LP1 (and LP2)
w.r.t. a function f yields sign-monomial complexity lower bounds for representing it.
This is already implied by Theorem 3.1, as a sign-rank lower bound on f \circ \sansX \sansO \sansR directly
implies a sign-monomial complexity lower bound on f . The use of Theorem 3.1, whose
proof makes use of the deep result of Forster [23], seems an overkill to just lower bound
sign-monomial complexity. In this section, we give a much more direct proof of this
fact, entirely avoiding the use of Forster's theorem. This also allows us to generalize
a classical result of Bruck [10] that gave a sufficient condition for lower bounding
complexity. One may note that our generalization is analogous to Razborov and
Sherstov's [54] generalization of Forster's theorem. Further, our generalized result,
Theorem B.4, along with Theorem 4.1, will directly imply that there are functions
in poly-size \sansT \sansH \sansR \circ \sansO \sansR circuits that cannot be computed in subexponential size by
\sansT \sansH \sansR \circ \sansX \sansO \sansR circuits. Such a result was first proved by Krause and Pudl\'ak [44], using
a different technique. Interestingly, Krause and Pudl\'ak expressed the belief that
such a separation cannot be done based on a spectral technique like that of Bruck's
theorem [10]. Our argument here shows that this belief was false.

We recall Bruck's theorem below.

Theorem B.3 ([10]). Let f : \{  - 1, 1\} n \rightarrow \{  - 1, 1\} be any Boolean function. If

maxS\subseteq [n]

\bigm| \bigm| \bigm| \^f(S)\bigm| \bigm| \bigm| \leq \epsilon , then

mon\pm (f) \geq 
1

\epsilon 
.
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The following is our generalization of Theorem B.3.

Theorem B.4. Let f : \{  - 1, 1\} n \rightarrow \{  - 1, 1\} be any function and X any subset of

\{  - 1, 1\} n. If there exists a distribution \mu on \{  - 1, 1\} n such that maxS\subseteq [n]

\bigm| \bigm| \bigm| \widehat f\mu (S)\bigm| \bigm| \bigm| \leq \epsilon 

and minx\in X \mu (x) \geq \delta , then

mon\pm (f) \geq 
\delta 

\epsilon + \delta \cdot | X
c| 

2n

.

We require the following lemma (see, for example, [50, Exercise 3.9]).

Lemma B.5 (folklore). For any function f : \{  - 1, 1\} n \rightarrow \BbbR ,

\BbbE x\in \{  - 1,1\} n [| f(x)| ] \geq max
S\subseteq [n]

\bigm| \bigm| \bigm| \widehat f(S)\bigm| \bigm| \bigm| .
Proof of Theorem B.4. Let p : \{  - 1, 1\} n \rightarrow \BbbR be any polynomial which sign rep-

resents f . By Fact 2.12,

\BbbE x[f(x)\mu (x)p(x)] =
\sum 
S\subseteq [n]

\widehat f\mu (S)\widehat p(S) \leq max
S\subseteq [n]

\bigm| \bigm| \bigm| \widehat f\mu (S)\bigm| \bigm| \bigm| \cdot max
S\subseteq [n]

| \widehat p(S)| \cdot mon(p)(B.1)

\leq \epsilon \cdot max
S\subseteq [n]

| \widehat p(S)| \cdot mon(p).

Note that

\BbbE x[f(x)\mu (x)p(x)] =
1

2n

\sum 
x\in X

f(x)\mu (x)p(x) +
1

2n

\sum 
x\in Xc

f(x)\mu (x)p(x)

\geq minx\in X \mu (x)

2n

\left[  \sum 
x\in \{  - 1,1\} n

| p(x)|  - | Xc| \cdot max
x\in Xc

| p(x)| 

\right]  
\geq \delta \cdot max

S\subseteq [n]
| \widehat p(S)|  - \delta 

2n
\cdot | Xc| \cdot max

x\in \{  - 1,1\} n
| p(x)| ,

where the first inequality holds since p sign represents f , and the last inequality uses
Lemma B.5. Combining the above and (B.1), we obtain

\epsilon \cdot max
S\subseteq [n]

| \widehat p(S)| \cdot mon(p) \geq \delta \cdot max
S\subseteq [n]

| \widehat p(S)|  - \delta 

2n
\cdot | Xc| \cdot max

x\in \{  - 1,1\} n
| p(x)| 

=\Rightarrow \epsilon \cdot mon(p) \geq \delta  - \delta 

2n
\cdot | Xc| \cdot 

maxx\in \{  - 1,1\} n | p(x)| 
maxS\subseteq [n] | \widehat p(S)| \geq \delta  - \delta 

2n
\cdot | Xc| \cdot mon(p)

=\Rightarrow mon(p) \geq \delta 

\epsilon + \delta \cdot | X
c| 

2n

.

The following theorem yields a sign-monomial complexity lower bound against a
function in \sansT \sansH \sansR \circ \sansO \sansR .

Theorem B.6. Let f = \sansO \sansM \sansB 0
\ell \circ 
\bigvee 

\ell 1/3+log \ell : \{  - 1, 1\} \ell 
4/3+\ell log \ell \rightarrow \{  - 1, 1\} . Then,

mon\pm (f) \geq 2
\ell 1/3

81  - 3.

Proof. The proof follows from Theorems B.4 and 4.1 in the same way as the proof
of Theorem 5.1 follows from Theorems 3.1 and 4.1.
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This gives us a function f on n input variables, computable by linear-size \sansT \sansH \sansR \circ \sansA \sansN \sansD 
circuits, such that for large enough n,

mon\pm (f) \geq 2\Omega (n
1/4).
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