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GENERAL INTRODUCTION AND SUMMARY

In the theory of transcendental numbers one starts with a field K
with a subfield k and one studies properties of those elements of K which
are transcendental over k., In complex transcendental number theory, the
most common case, one takes for K the field € of complex numbers and for
the subfield k its prime field, i.e. the field @ of rational numbers., Of
the various properties enjoyed by C we emphasize the following two:

(i) the valuation of € is archimedean,

(ii) the characteristic of € is zero.

In p-adic transcendental number theory the situation has changed with
respect to property (i): here one takes for K an algebraically closed,
with respect to its valuation complete field GP, which is an extension of
the field Qp of p-adic numbers. For k one takes again the prime field Q.

In this thesis we move a step further from the classical case; not
only will our field K be provided with a non-archimedean valuation, but
moreover, its characteristic will be positive.

Now new difficulties arise, which did not occur in the change from
the complex to the p-adic case., We will illustrate this by an example.

One of the most famous theorems of classical transcendental number
theory is the theorem of Gelfond and Schneider, which says that if o and B
are non-zero algebraic numbers, a # 1, B not rational, then as is trans-
cendental. This is in fact a theorem on the exponential function and its
inverse, the logarithm, for aB is defined as exp(R log a). If one sets
out to prove this theorem in the p-adic case the definition of ae presents no
difficulties. The exponential function is again defined by the power series
Z:=0 ;;7 the only difference being that in the p-adic case this series is
not convergent for all z. But in our case of positive characteristic this
definition loses its meaning and it is not at all clear what we must

8

regard as the equivalent of a™.




viii

In this thesis k will be the field Fq(X) of rational functions in one
variable over a finite field Bﬁz and K will be an algebraically closed,
complete extension of k, called ¢. L. Carlitz indicated in 1935 a function
P, which might be regarded as the equivalent of the exponential function
and L.I. Wade proved in 1941 the Gelfond-Schneider theorem for this func-

tion.

In chapter I we start with the construction of @& and a study of the
Carlitz-y-function, which we introduce in a way different from Carlitz'.
Further we define the operators Ak for linear functions and we introduce
the class of functions Jn' which may be regarded as analogues of Bessel
functions. The main section, section 5, of the first chapter is devoted
to analysis on ®. Mainly we follow the work of U. Glntzer (1966), but the
introduction of the concept of hooking-radius so fundamental in the study
of the occurrence and location of zeros, is a different one. The Maximum
Modulus Theorem and the Product Formula for Entire Functions are both
needed for the Siegel-Schneider method in chapter IV.

Chapter II gives a survey of known results on transcendence in 9.

In chapter III we introduce the concept of transcendence measure in &
and we give an analogue of P.L. Cijsouw's result on series for which a
certain gap-condition is fulfilled, Moreover, with the same method, we
generalize a result of S.M. Spencer (1952).

In chapter IV we define the class of E-functions and we prove that
if a,B € &, o # 0 and B ¢ IFq(X) and if fl’fZ”"’fn are E-functions such
that Akfv’ k € N, 1 £v £ n are polYnomials in fl'f2""'fn satisfying
certain conditions, then at least one of the 2n+l1 elements
B,fl(m),fz(a),...,fn(a),fl(uﬁ),fz(uB),...,fn(aB) is transcendental over
IFq(X). This theorem contains, among others, the Wade analogue of the

Gelfond—-Schneider theorem.




0. NOTATIONS AND PRELIMINARIES
In this thesis we adopt the following notations:

1] The empty set.

A\B The set of elements whicﬁ are contained in the set A but
not in the set B.

£f: A > B A function f which adjoins to every element of the set A

an element of the set B; A is called the domain of £f.

flV The restriction of f to a subset V of the domain of f.

gof The composition of the functions f: A >+ B and g: B + C.

N The set of natural numbers.

n° n u {0}.

7 The ring of rational integers.

[) ‘ The field of rational numbers.

R The field of real numbers.

C The field of complex numbers.

Fq The finite field of g elements, where q = pn for a certain
n e N and a prime p € W.

K* The multiplicative group formed by the non-zero elements

of the field K.
R[tl,tz,...,tn] The. ring of polynomials in the n variables tl;tz,...}tn

over a commutative ring R with identity.

K(t) The field of rational functions in t with coefficients in
a field K.
0 The end of a proof.

As usual an empty sum has to be taken equal to zero and an empty

product equal to one.

For convenience of the reader we formulate some standard notions and

theorems, used throughout this thesis.

0.1. DEFINITION. Let R be arcommutative ring with identity and let
P,Q € R[t]..Then P is called a divisor of Q, notation P|Q, if there exists
an R ¢ R[t] such that Q = PR. )

P is called irreducible if P is not a unit and has no divisors in

[t] other than units and associates of P.




P is called monic if the leading coefficient of P is the identity of
R.
P is called primitive if its coefficients have no common divisor in

R (other than units).

0.2. DEFINITION. Let K1 and K2 be fields with a common subfield k. A mono-

morphism o: K1 - K2 for which

gla) = o, o ek

is called a k-monomorphism.

0.3. THEOREM. Let R be a commutative ring with identity. Every symmetric
polynomial P from R[tl,tz,...,tn] of degree m can be written uniquely in

the form
Y c o 16.%.. .0 nooc e R
A n A
1 n 1 n

with

+ +o.. <
Al 2A2 + nAn m,

where o, ,0

1 ,...,cn are the elementary symmetric functions of tl’t2”"'tn'

2

PROOF. See e.g. VAN DER WAERDEN (1960), §29. [

0.4. COROLLARY. Let R be a commutative ring with identity. Let
P e R[tl,tz,...,tn] be a symmetric polynomial. Let 61,62,...,Bn be the

zeros of a monic polynomial from R[t]. Then
P(Bllgzl---ysn) € R.
0.5. THEOREM. Let R be a commutative ring with identity. If the polynomial

P from theorem 0.3 is homogeneous of degree k in eacht , 1 < i < n, then,
i

in the notation of theorem 0.3, we have

<
Al + AZ tooot An < k.

PROOF. See O, PERRON, Satz 69. [J
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0.6. COROLLARY. Let R be a commutative ring with identity, let Q e R[t] be
of degree N 2 1 and let 81,82,...,BN denote the zeros of Q. Put

N
Qty =a T (t-B,), AeR
. i
i=t
and
- 2
p=2a™? g8
1<i<i<N
Then D € R.
PROOF. TI (B.-B )2 is a homogeneous s etric polynomial i
= MMgi<gan PL T s ge v polynomial in

By rByrenesBy OF total degree N(N-1) and of degree 2(N-1) in By, 1 < ism

If 01,02,...,0N denote the elementary symmetric functions of 81,52,...,BN,
then it follows from the theorems 0.3 and 0.5 that
A A
2 1 N
M (8,-8,)" = e .
1€i<jEN J 17y
with C e Rand A, + A_ +...+ 2_ < 2(N-1). Since AC, ¢ R it follows
)‘1"'>‘N 1 2 N b

that D e R. O

For an introduction to finite fields we refer to I.T. ADAMSON (1964),

Ch.IV. We shall frequently use the following

0.7. PROPERTY. For every finite field ]il one has

(0.7.1) i (t-c) = t - 1;
ceF*
g
9 _
(0.7.2) c” =c, ceF_.
q
Finally we shall recall some notions and properties in algebraic ex-

tensions of a field.

0.8. DEFINITION. Let k,K be fields with k ¢ K. Then o ¢ K is called alge-
braic over k if there exists a non-trivial polynomial P ¢ k[t] such that
P(a) = 0.

If o ¢ X is not algebraic over k, then a is called transcendental

over k.
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0.9. THEOREM. Let k,K be fields, k c K and let o € K be algebraic over k.
Then there is one and (apart from an arbitrary unit factor) only one irre-
ducible polynomial P ¢ k[t] such that P(a) = 0. There is exactly one such

polynomial which is monic.
PROOF. See O. ZARISKI and P.  SAMUEL (1958), Ch.IT §2, Cor.th.1. [

0.10. DEFINITION. Let k,K be fields, k ¢ X, and let o € K be algebraic over
k. Then the degree of an irreducible polynomial P ¢ k[t] for which P(a) = 0
is called the degree of o (with respect to k).

0.11. DEFINITION. Let k be a field. Let P ¢ k[t] be given by

n n
= t + P .
P(t) an an—lt alt + ao, ai € k

The derivative P' of P is defined by

. - n-1 _ n-2
P'(t) : nant + (n 1)an_1 t R al,

where

0.12. DEFINITION. Let X,K be fields, k ¢ K and let a ¢ K be algebraic over
k of degree n. The unique, monic, irreducible polynomial P ¢ k[t] of degree
n for which P(a) = 0 is called the minimal polynomial of o over k.

An irreducible polynomial P ¢ k[t] is called separable if P' # 0. An
arbitrary polynomial P € k[t] is called separable if all its irreducible
factors are separable.

The element o ¢ K is called separable algebraic over k if the minimal
polynomial of o over k is separable.

The field K is called a (separable) algebraic extension of k .if every

element of K is (separable) algebraic over k.

0.13. THEOREM. Let k be a field of characteristic p # 0. An irreducible

polynomial P e k[t] is not separable if and only if it has the form

np
r

P(t) =a +atl+at® e ..+ at

0 1 5 n=1, a, e k, a, # 0,

a # 0.
n




PROOF. See I.T. ADAMSON (1964), Ch.I, th.5.3 or O. ZARISKI and P. SAMUEL
P. SAMUEL (1958), Ch.II §5. []

0.14. COROLLARY. Let k,K be fields of characteristic p # 0, k ¢ K. If

e
o € K is algebraic over k, then there exists an e ¢ NO such that ap is
separable algebraic over k. Moreover, for every n € WN with n > e the

element aPn is separable algebraic over K.







CHAPTER I

INTRODUCTION

1. THE FIELD ¢

Let Fq be the finite field of g elements where q is a positive power
of the prime number p. We denote the ring of polynomials with coefficients
in ]Fq by ]Fq [X] and its quotient field by JFq (X).

For all non-zero elements of I%l[X] we define the (logarithmic) non-

archimedean valuation dg by

dg E := degree of E;
furthermore we put

dg 0 := — o,

Hence for all non-zero elements E ¢ Fq[X] the valuation is a non-negative

integer.

For the elements of Fq(X) we define the valuation as follows: if

E# 0 and F # 0 are two elements of Fq[x], then

dg<§> := dg E - dg F.

.- B E' E B'
Clearly, if FEE L then dg(;) = dg(FT)-

1.1. THEOREM. The valuation dg of E& (X) determines a Hausdorff topology

on Fq(X) and for each a € Fq(X) a fundamental system of neighbourhoods

of a is given by

{(U(a,m) |'n=1,2,...1,
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where

Ule,n) = {8 e F_ (D) | dg(a-B) < - n}.

PROOF. See E. WEISS (1963), prop. 1-1-2 or E. ARTIN (1967), Ch. I th.4. [

1.2. DEFINITION. A sequence {ak}:=1 of elements of EEI(X) is said to be

convergent (in E& (X)) if an element o ¢ Fq (X) exists such that the follow-

ing condition is satisfied: for all n ¢ W there is a ko € W such that for
>

k k0

dg(a—ak) < - n.

Th {o )}
e sequence {o, }, _,

following condition: given any n € N, a k

is called a Cauchy-sequence if it satisfies the

0 € IN exists such that for each

k > ko, £ > ko

dg(ak—aﬁ) < - n.

1.3. THEOREM. Let K be a valued field. Then a unique valued field L exists
such that

(i) K is a subfield of L,
(ii) the valuation on L restricted to K coincides with the valuation on X,
(iii) every Cauchy-sequence in L is convergent,

(iv) K is dense in L.
PROOF. See E. WEISS (1963), th. 1-7-1 or E. ARTIN (1967), Ch. I §6. [

The valued field L is called the completion of the valued field K. A
valued field is called complete if it coincides with its completion, i.e.
when every Cauchy-sequence in it is convergent.

The completion of the fieldin(X) with its valuation dg will in the
sequel be denoted by F, the valuation on F will also be denoted by dg. Note
that {dg o | @ e F} = Z U {-=}.

The next step is that we go over to the algebraic closure @ of F. (For
a definition of algebraic closure, see B.L. VAN DER WAERDEN (1960), §62.)
To define a valuation on , which coincides with dg on F we first consider

finite extensions of F.

Let E be a finite extension of a field K of degree [E:XK] = n.




We shall define the norm of an element of E with respect to XK and we shall
mention some properties which we shall need in the future. For a detailed exposi-
tion we refer to the book of O. ZARISKI & P. SAMUEL, Ch. II §10.

Let w,

1772
ie {1,2,...,n} there exist aij € K such that

,...,mn be a basis for E over K, then for every a € E and

The n X n-matrix (aij)i 3 will be denoted by (a) and the n X n-unit-matrix
14

by (e). The so-called field polynomial of o
det(t(e)~(a))

is a monic polynomial of degree n in t which does not depend on the choice

of the basis. It has the form

where bi e K, i =0,1,...,n-1 and

n
bO = (~-1) " det(a).

We define the norm NE»K (a) of o € E with respect to K by

n
NE+K (o) := det(a) = (-1) bo.

Hence NE+K () is an element of K. Furthermore we have

n
NE+K (b) =b", b e K,

L (aB) = N (B), a,B € E.

mox (M) Npog

Finally, if L is a finite extension of E, then

N (B) =N . (N (8), B&ecL.
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1.4. THEOREM. Let K be a field complete with respect to a (logarithmic)
non-archimedean valuation dg and let E be a finite extension of K. Then

there exists a unique extension of the valuation dg on K to E, which will

be denoted by dgE. For all o € E we have

dg(NE* (a))
dgE(a) = e,
[E:x]

The field E is complete with respect to this valuation dgE.

PROOF. See E. WEISS (1966), th.2-2-10 or E. ARTIN (1967), Ch. I, th.7.

In view of theorem 1.4 we define de: Q-+ R u {-=} by

dgg(a) 1= dgF(a)(a).

where dgF(u) is the unique valuation of the finite extension F(a) of F,

which extends dg. Then de is a valuation of Q.

1.5. PROPERTIES OF . With Ial, the field §§ has characteristic p.

that q is a power of p.) Hence

n n n 0
(1.5.1) (u+v)p = up + vP ’ ne MW ; uve Q.

The valuation dg9 is non-archimedean. Therefore we have for all u,v ¢ @

(1.5.2) de(uV) = dgg(u) + dgg(v)

and

(1.5.3) dgg(u+v) < max (dgg(u),dgg(v)).
if de(u) * dgﬂ(v), we even have

dgg(u+v) = max (dgg(u),dgg(v)).

g

(Recall




The foliowing example shows that the valued field Q with de as its

valuation is not complete. Define the sequenceb{an}:_o by

n v v
o = z X—q /g

Since § is algebraically closed, an € . We have

_n¥l 1 0
—an) = ~q + T ne N .

dgQ(O‘n+1

Hence by (1.5.3) {an}:=0 is a Cauchy sequence in f2. Suppose that the se-

quence is convergent. Call its limit a. Then according to corollary 0.14,
there exists an e € IN, such that aqe is separable algebraic over F.

It follows from the theorem of KRASNER (see e.g. E. ARTIN (1967),
Ch. IT th.8) that for n chosen sufficiently large

e e
Fal) e Fad)

and therefore

e e e
o -0 e Fad ).,
n n

e e
Hence aq - ag is algebraic over F of degree un“ say, and

n-e
L .
c s . q© o°
From the definition of dgg we see that u dgn(a —an )} equals the valuation
of an element of F and hence

e

q°_ q®
un de(a an ) € & .

On the other hand we have

e g° n+l+e 1
agq(e o) = =g T -
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+1- . -
Thus qn 1’e un, which contradicts wy qn €.

Our final step is that we form the completion & of Q with respect to
dgg. (See theorem 1.3.) That this is the last step in the process of form-

ing algebraic closures and completions follows from
1.6. THEOREM. ® is algebraically closed.
PROOF. See E. ARTIN (1967), Ch. II, th.12. []

1.7. RECAPITULATION. Starting with Fq we have obtained a field ¢ with a

(logarithmic) non-archimedean valuation dg, i.e.
(1.7.1) dg(uv) = dg u + dgv, u,v e 9, .
(1.7.2) dg(u+v)< max (dg u,dg v), u,v € ¢,
and if dg u % dg v, then
dg{u+v) = max (dg u,dg v).
From (1.7.2) it follows that
(1.7.3) {aga | o e 8} = @ u {-=}.
The field & is algebraically closed and complete with respect to the valua-
tion dg. It contains the field Ezl(x) and the valuation dg on ¢ restricted

to Eé (X) coincides with the valuation dg on Fq(x). Furthermore & has

characteristic p; hence

n n n 0
(1.7.4) wv)? = +v¥, new, uves.

In view of the completeness of ¢ and the fact that the valuation dg is non-
archimedean, a series Z:=1 an, an € ® is convergent if and only if
limn+® dg o, = —o,

In this thesis the role played by the field ¢ can be compared with
that of € in the classical case; IzI[X] and EAZ(X) take the part of Z and
@ .respectively,
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1.8. THEOREM. The field ® is not locally compact.

PROOF. Suppose ¢ is locally compact. Then it follows from a theorem which
can be found e.g. in N. BOURBAKI (1964), Chap. VI 8§85 no. 1, prop. 2, that

the valuation of ¢ is discrete. But this contradicts (1.7.3). 0

2. THE FUNCTIONS wk AND Y

2.1. DEFINITION. We define the elements F, ,L. (k € Dp )} of IZIEX] as fol-

k'
lows

k-1 k3
Foe= 1 2 x%), kx=1,2,...;
k .

3j=0
FO =1,

k j
L = n % -x), k=1,2,0.. ;
'k .

j=1
L0 = 1.

2.2. REMARK. For k =2 1 we have the relations

k
T el
(a) Fo= (X0 -XF L,
k
(b) L o= % -xL, ..
k k-1

Furthermore, we note that for k 2 0

k
dg Fk = kq ,

L (g1,

dg Lk =)

In the following we shall see that Fk can be compared with k! in the clas-

sical case.
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2.3. DEFINITION. For k ¢ M’ the polynomial Y, ¢ ]Fq [x1[t] is defined by

abk(t) = T (t-E) .
Es]Fq[X]

dgE<k

Moreover, we put

N.B. wo(t) = t.

The polynomials wk were introduced by L. CARLITZ (1935). In the fol-

lowing we shall mention some of his results,which we shall need in this thesis.

2.4. THEOREM. (Carlitz) The polynomial ¢k, k e INO has the Ffollowing re-
presentation
k . F k-3
k J
(2.4.1) lbk(t) = Z (—-l)J —k':‘r-—-——'tq .
4=0 e |
j K3
Furthermore, the function wk has the properties:

(2.4.2) lllk(t"’u) = wk(t) + \Pk(u): t,u e @,

(2.4.3) wk(ct) cwk(t), c € Eﬁ:’ t e o,

k
(2.4.4) Y (xt) - xy (0) = T -0l (0, teo,

(2.4.5) Py (x) = F -

PROOF. For k = 0 the theorem is trivial.
Suppose the formulae are correct for k = 0,1,...,x. From the definition of

v

e+l W get

(t) = m (t-E) =

K+l dgE<k+1

(n (t-—E)> m_ T (t-cx“-E)
dgE<k cqu dgE<k

]

K
wK(t) m % ¢K(t—CX ).
cqu

From (2.4.2), (2.4.3) and (2.4.5) for k = k we have
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- K
¢K(t-CX ) = wK(t) - cFK.

Since

we have

- q-1 _ a1y _
crp (B) =¥, (2] {wK () - F_ } =

_ 49 _ a1
=9 () - F2 ¥ (t).

Now using (2.4.1) for k = k and remark 2.2a,b, we obtain formula (2.4.1) for
k = k + 1 by a straightforward computation. Using (1.6.3), the formulae
(2.4.2) and (2.4.3) for k = ¢« + 1 follow immediately from (2.4.1).

It only remains to prove (2.4.4) and (2.4.5) for k = ¥ + 1. Using
remark 2.2(a), it follows from (2.4.1) for k = ¢ + 1 that

K ; Fpy g3 K+1-3
Veug (KE) = XY (8) = ] (1) — e (X -X)t
=0 14 F .
3 K+1-3
K+l
K T o FY k-
=L 0T g
3=0 R
j k-3
K+1
= 2 -yl

Substituting t = x© in this formula gives

ka1 k+1 " k+1
CSIE S SIENC SIS

U] x ") = . 0O

k+1 +1

2.5. THEOREM. For A ¢ ]Fq [x] and k ¢ ;NO we have

lbk (a)

e F_[x].
k q

PROOF. 1If

m
A=aX + a X +...+ a + . i = e
- - X ay a; eZFq, i=0,1, /|,
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we have from formulae (2.4.2) and (2.4.3)
o i
@ = ] a ).
i=0

Hence it is sufficient to prove that

v, (X1 0
(2.5.1) — e F_[x], i,k e IN .
F q
k
First we remark that for i e No
box
(2.5.2) —— = X e ¥ [x].
FO q

Furthermore we have by the definition of wk

(2.5.3) ¥ (x) =0, keM;i=0,1,... k1.
Hence (2.5.1) is satisfied for k ¢ DP , 1 =0and i ¢ nf), k = 0.
. Suppose we have proved (2.5.1) for k € ]NO and i = 0,1,...,v-1. From
relation (2.4.4) and remark 2.2a we have for k ¢ N
v-1 v-1. g

v

v e Th e T

(2.5.4) k - x X + ( L ; ) .
k k-1

Fk F.

Now (2.5.1) for k ¢ IN, i = v follows from (2.5.4) by the induction hypo-

thesis. O

2.6. REMARK. It is easily verified that for A € IEI[X]' dg A 2 k we have
wk(A)

i

dg = (dgA—k)qk.

P
2.7. REMARK. The polynomial —E-bears some resemblance to the polynomial
(z) _ z{(z-1)..(z-k+1) k
k k!
relation (2.5.4) and the relation

in the real case; apart from theorem 2.5 we mention

- n X—E-
F

k wk(xk) dgE<k xk—E

OIS m




1.11

2.8. DEFINITICN. The Carlitz-y-function Y: & » & is defined by

J

(Note that in view of dg Fj = jg~, the sequence converges for every

t e 9.)

Let u € ® be a solution of the equation

q-1 q

(2.8.1) t =X - X.

This number u will be fixed in the sequel.

For c € Eﬁ we have cq_1 = 1, hence cu is also a solution of the equa-
q

tion above. Since (2.8.1) has exactly g-1 solutions, the complete set

*
solutions of (2.8.1) is given by {cu | c ¢ Fq]u Furthermore

.
g-1
qk
u , ,
2.9. LEMMA. The sequence { I }kel$) is convergent in

dg cu

]

PROOF. From the definition of u and remark 2.2 it follows that

k+1 k k k
L L ((xq-x)q - 1)
T T S e
k k
o (Xq_'x)
Lk qu+1—X'
and that
qk
u g
(2.9.1) dg — = —— .
Lk g-1
Hence for arbitrary j € IN we have
qk+j qk qk+\)+1 qk+v
dg(?l - %T—> < max dg(?] - i: ) = —%I-— qk(q—l).
o+ k 0<v<j kvl k+v k.

So the sequence is a Cauchy-sequence. Since ¢ is complete, it is conver-

gent. [
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2.10. DEFINITION. The element £ ¢ & is defined by
k

(2.10.1) & := limuz—— .
k> Tk
Note that it follows from (2.9.1) that dg & = E%T .

2.11. THEOREM. The function { has the following properties:

(a) for every t,v € ¢
Plt+v) = P(t) + Y{v),
(b) for every t € &, c ¢ Ea
Ylct) = cPp(t),

(c) for every t € ¢

pxe) = xpt) - 3,

©(d) for every t € @ X
g -1
~— 9 (t)
Xk —
P(EE) = lim (DT uxdx T K
F
koo k
PROOF. The properties (a) and (b) follow immediately from the definition of
Y.

(c¢) From definition 2.8 and remark 2.2a we have

3 J J
© ond ® - L o
xw) -l = ] oend o] It X
j=0 j j=1 3
o3
(=] . q q
=xe+ J -n? EE -y
. F.
j=1 3J

(d) Let t € ¢, t fixed. From the definitions 2.8 and 2.10 and property

2.11a it follows that for every N € N there exists a k, ¢ W, k_ = kO(N,tL

0] 0

such that
k
( ud
(2.11.1) dg\w(té)—w(t ———')) < -N, k > k..
Lk 0

We write




k
9 \
u —
w(t ]g:'} = Sl(t) + SZ(t)'

where
. . k+3
k i 3. 4
Sl(t) .= z (Fl) P :
3=0 j. 1.9
and k
5 5
-1
5,(8) = ] (F) P -
j=k+1 3 L]%
From (2.8.1) it follows that
j+k_
j+k q_._:.i.i
W o= uxdx 4 .
Therefore by (2.4.1) we get
k
= o SIS STE R
(2.11.2) S _(£)=(-1)"u(X*-X) 5= I S —ut o v
1 X 4=0 i J
. where .
q]+k_1 ‘ qk_1
Cxdy (x3x) It .
ak. 1= n - T ’ j=0,1,...,k.
3 197 .97
k k-3
Note that akO = 0. For j =2 1 we have from remark 2.2
' k
q—__1~1— - kv
x%-x) 9 Iy 3 x4
> T TS C e rmves ypec B Bl (i
J It V=0 x4 -39 -
k-Jj
Hence for j = 1,2,...,k we have from remark 2.2
k j+1 .
q -t g k=] k
< T - - - -
dg R Bt e (q 1) +q (1-q)
Therefore

k 4y J 3 .
(2.11.3) dg( P A ak.> < max (qj (@gt+ L - 5) + qk(l—q)>
=0 3 J 1<ysk q

q[dgt]+3 + qk(1~q).

From (2.11.2) and (2.11.3) we conclude that for k large enough
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q -1

: =—= ¢, (t)

(2.11.4) dg(Sl(t)—(—l)ku(Xq—X)q 1 —E-——) < - N.
k

From remark 2.2 we get for k > [dgt] + 3
3 Lk
dg Sz(t) < max q° (dgt-j+q dgu-dgL, )
. . k
j=zk+1

= max qj(dgt—j+ —%Iq = qk+1(dgt—k+ ~%Iﬂ.
j2k+1 a ; a

Hence for k large enough
(2.11.5) dg Sz(t) < - N.

Now it follows from (2.11.1), (2.11.4) and (2.11.5) that for k large enough

qk—l

=y, (t)
ag<w(t£)-<—1)ku<xq—x)q ' ‘%5“) <-nN. O
' k

©2.12. THEOREM. The set of zeros of Y is given by
{g | E € mq[x]y

PROOF. From property 2.11d and definition 2.3 it follows that Y(EE) = 0
for all E € ngq[x].
Now let o be a zero of ¥, o # 0. Let k1 € ]ﬁo be such that
-1 X -1
k1 < dg af < k1 + 1 if dg af > 0,
k, =0 if dg at”l < 0.

It follows from definition 2.3 that for k > k1

ag v (at™h = J  agler -m) + ) dg(ag™1-E)
(2.12.1) dgE<k, L aToeE
=c+ (k-G - L+ 7 dglag -E),
q dgE=k1
where

k
- -1 gy ,1
c :={dglag 7) - kya + q—l} q .




1.15

Let N ¢ N . According to property 2.11d and the assumption that o is a zero

of Y there exists a k, ¢ W, k. = kO(N), such that

0 0

k> k..

K
a-t wk(aibl)

dg(u(xq—x) q-1
F
k
Hence for k > k0

-1 x &
(2.12.2)  dg ¥, (@€ ) < (k-1)q - é%T" N.

The relations (2.11.1) and (2.11.2) give

Y dg(at tE) < - ¢ - N.
dgE=k1
Hence
-1
) dg(eg -E) = - =,
dgE=k1

Thus there is an E ¢ ]Fq [Xx] such that ag—l =E. [

2.13. THEOREM. The function § has the following property: for every

Me T [X]
9
dgm B N 0 ) R |
(2.13.0)  ywme) = ) 07 L— 3 (o).
j=0 i
PROOF. For M = 1 the relation is trivial. Suppose (2.13.1) is correct for
M= 1,X,...,Xm_1. Then from property 2.11c and the induction hypothesis we
get
m~1 . q m-1
m-1 LX) J m . I (X 7)Y 3
-1 -1
e = x ) (-1)7 T 0 - ] 0T T
j=0 3 j=1 Fl
J j-1
- -1 .
- m s by L N G N
= XXy + ¥ (-n3{x 2 + = )wq (£) +
=1 \ Fj a2
-1
o ™Y m
- 1™ ‘EL};“~—— ¢q (t).
m

Hence by (2.5.4) and (2.5.3) we have




m .
N I S R
PXE) = X W) + ) {(-1) — v (1),
j=1 j
which gives, with (2.5.2),
m.
m . YL (X)) j
v = ) -n? —vT .
=0 T

In view of (2.4.2), (2.4.3) and theorem 2.11a,b formula (2.13.1) follows

now for arbitrary M € IFq [x]1. O

2.14. THEOREM. The function { defines a bijection from

Iy

Ve={ted |dgt< )

onto itself.
2.15. DEFINITION. The function A: V > V is defined as the inverse of w|V.

. 2.16. THEOREM. For t € V we have
[2e]
Ar) = ) =— .

Proof of the theorems 2.14 and 2.16

(i) Let t € V. From the definition of ¥ it follows that

dg Y(t) < max qk(dgt—k) < max qk(—%I»— k) = ~%T ,
k20 k20 ¢ E

which means Y(t) € V.

(ii) Suppose tl't2 € V and w(tl) = w(tz). Then in view of theorem 2.12

there exists an E ¢ Iﬁl[xj such that

By the assumption t € V we have

1't2

- e
dg(t1 t2) < 1 °

On the other hand




dg{tl—tz) =dg E+ dg £ = dg E +

Therefore E = 0 and t, = t,. Hence ¥ is injective on V.

1 2

(iii) Finally we have to prove that for every o ¢ V there exists a B € V

such that P (B) = a.

Let @ € V. Since ¥(0) = 0 we may suppose that o # 0. Consider the

series

n
[+

i
n=0 "n

i 1 8

Since o € V\{0} there exists an € ¢ R, € > 0 such that

=2

dg o = 1 - €.
Now
e n qn+1 n
dg 3;: =51 eq - g-

n

Q-1 _ a9

g-1

q

g-1

-1

n
- gq .
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This shows that the general term goes to zero, hence the series is conver-

gent. Let B be its sum. Clearly, B € V. We shall prove that Y(B)

Define

k

w
i
} 15

ot
k=0 Tk

Remark that
- = 9. .
dg(B-8 ) o1 ~ &

and that

n+1

V(B) = v(B ) + V(BB ),

Furthermore

n qk
= &)=
V) = w(L )~k

n e WM.
o . k+3j
z (_1)3 0LCI _
= F, q]
j=0 j Lk
)v—k
v-k o’ .
qv-
Lk

O




1.18

Hence by theorem 2.4 it follows that

n v wv(l) qv
VB = ) DT ——a +y
v=0 v
where
o v-k
_ n (-1) qv
Yn = " a .
=n+ = o
v=n+1 k=0 Fv—kLk
Since wv(l) =0 for v 2 1, we have

w(sn) =0+ Y, n=1,2,...
and therefore
P(B) - a = ¢(B—Sn) + Yo! n=1,2,... .

Now we estimate dg yn:

A

dg v

k
n max [ max (qugu—(v—k)qv_k—qv_k.q.g—:l)]

v2n+1-0<k<n

n
AVA- S R . N G | —13
max [q (q—l ) q (\) n+q. Q“l :|

vzn+1 4

- Eqn+1 . E%T .

Hence for all n ¢ W we have

dg(¥(B)-u) < max(dgy(B-B ),dgy ) < (;%1 - g™t

which means

fl
i
8

dg(‘P(B)—OL) ’

i.e. (B =a. 0O

REMARK. The function A was already introduced by L. CARLITZ (1935).
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2.17. THEOREM. The function Y: & > & is surjective.

PROOF. Let v ¢ &. If dg v < E%T-it follows from theorem 2.14 that v is in

the range of Y. The proof proceeds by induction on dg v.
Let v € ¢, dg v 2= E%I-and let m ¢ IN be defined by

m + —1-s dg v <m+ E%— .

g-1

*
Suppose for all t € ¢ with dg t < m + E%T there exists a t ¢ ¢ such

that

Pty = t.

Since & is algebraically closed, & contains every solution of the equation

in t
(2.17.1)  xt - 3 = v.
For a solution t of (2.17.1) we have
dg t < dg v - 1.
Therefore
dg t <m + ~%—

*
and according to the induction hypothesis there exists a t € & with

w(t*) = t. Put

then according to theorem 2.11lc
* * * *
Yoy = pxe) = xpe) -3 =xe -T=v. DO
REMARK. It follows from work of D.R. HAYES (1974) and H.W. LENSTRA Jr.

(private communication) that the Carlitz-y-function can be compared with

the exponential function in the classical case.
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3. LINEAR FUNCTIONS AND THE A-OPERATOR

3.1. DEFINITION. Let V < ® be such that
t,2ve V=t +v eV

and
t e V,c ¢ Iﬂl = ct € V.

A function f£f: V »> ¢ is called linear on V if

(3.1.1) E(t4v) = £(£) + £(v), t,v eV
and
(3.1.2) flct) = cf(t), t € V,c € Fq.

' EXAMPLES. It follows from the theorems 2.4, 2.11 and 2.16 that the functions

P and wk are linear on ¢ and that the function A is linear on

q
2.

v={teo |dagtc<

3.2. THEOREM. ILet {an}:=0 be a sequence of elements of ®. Put

dg a
. n
R := -~ lim sup o .
n->-o
Then the series z:_o a £ converges for all t € ® with dg t < R and di-

verges for all t € @ with dg t > R.

PROOF. Assume R € R.
(i) Let t € & be such that dg t < R. Choose p ¢ R such that

-R < p < - dg t.

There exists an no e IN such that for n > ng

dg a

< p.
o [

Hence for n > ng,




dg(antn) =dg a_ +ndgt < nl+dgt).

Since from the choice of p we know that p + dg t < 0, we may conclude

that

lim dg(antn) = - &,
n-rwo
© n
This suffices to prove that zn—O an t converges.
(ii) Let t € @ be such that dg t > R and let p € R be such that

- dg t < p < - R. Then there exists an increasing sequence {nk}:_1 such that

dg any

P

and hence
. ny
dg(a_ t ) > n (p+dgt) > 0.
nk k

oo n
This means that zn=0 a t diverges.

The cases R = * « are left to the reader. a

3.3. REMARKS.

b n . .
a) A series of the form z a t, a € ® is called a power series and R

n=0 n
its radius of convergence.
b) Since % is a complete metric space, the notions of limit, continuity, dif-
ferentiability and derivative of a function are defined in the obvious

way. See J. DIEUDONNE (1969), 3.11; 3.13; 8.1.

c) If the function f: U > ¢ (Ucd) has a power series expansion 2:_0 an tn
with radius of convergence R > - «, then this expansion is unique.
€O
3.4. THEOREM. Let the function f be defined by the power series En—o a £,

an € & with radius of convergence R. Then £ is differentiable on

{t e | dg t < R} and

£'(t) = ) nat .
n=1
where na_:= X? a_. The power series Xw na tn—1 has radius of
n i=1 'n n=1 " 'n

convergence = R.
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PROOF. The proof is left to the reader. U

3.5. THEOREM. Let £ be defined by £{(t) := ).

n=0

n
a t, a
n n

€ ¢ with radius of

convergence R > — . If £ is linear on {t € & I dg t < R}, then

o k
q

[

£(©)

a .t
k=0 qk

PROOF. Denote V = {t ¢ & | dg t < R}. From relation (3.1.2) it follows that

a. = 0. Using relation (3.1.1) we conclude from the definition of differen-

0

tiability that £'(t) = a, on V. Therefore it follows from theorem 3.4 and

1
remark 3.3c that

na = 0, n=2,3,... .

Hence

o
£(t) =at+ ) a
So we have proved the relation

(3.5.1) £(t) =at+a 4. +a Lt
P pK‘—l

for K = 1.

Suppose (3.5.1) is correct for k = 1,2,...,k. Define

k
Vk:={teV p dg t < R}
and
oo .
.= J
g, () = 'Z a_ Lt tev,.
j=1 JIp
Let tl't2 € Vk and let v1 resp. v2 be solutions of
k
& -t =0, t -t =0

+
Il =~18

P, K e N




respectively.-Then
dg(v,+v,.) < pk max (dgt, ,dgt,.) < R

1727 7 1’ 2
and using (3.1.1) we

© ) k ks © k
- I ip
g, (E¥Ey) = 21 ajpk(v€ +v§ ). = jzi a; ik (V495

il

f(v1)+f(v2)—a1v -a,V

17%%2 7T fk-1™h

gk(tl) + gk(tz).

Therefore gﬂ(t) = a

k k
that P
oo ‘—1
gr(e) = ] da £,
j=t Jp
hence
a = 0, p4i.
ip
Thus
P p I jpk+1
£(t) =at+at +.+a t 4 ): a Lt .
p j=t Jp

So we have showed by induction that

w k
(3.5.1) £0) = ) a b
k=0 P

If g = p we have proved our theorem.
From relations (3.1.2) and (3.5.1) we conclude that

k

a kc(cp _1—1) = 0,
P

(3.5.2) k € DP, ce ¥ .
g
Recall that g = pn(n € W). Hence for k ¢ N there are £ ¢ ]¢), m e IWN

such that

In
=]
In
?

k = £n + m, 1

1.23

k-1

- - P _ _ P
f(v1+v2) al(v1+v2) ap(v1+v2) e apk~1(V1+V2)

on V. . On the other hand it follows from theorem 3.4
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Using relations (0.7.1) and (0.7.2), relation (3.5.2) gives

mn_y k-1
a,c M, (c-d =a kc(cP -1) = a kc(cp -1) = o0,
P deF p p
p
ke N, ce TF
q
Therefore
(3.5.3) either ¢ ¢ F or a =0, k € IN.
ph pk

If 1 <m < n, then F \E’nl + . Hence we conclude from (3.5.2) and (3.5.3)

b
that a , = 0 unless p* is a power of q. ]
P .

3.6. DEFINITION. Let V(r) c & denote the set {t | dg t < r} and let
f: V(r) - &. Then we define the functions Anf: v{(r-n) -+ &, n=20,1,2,... by

Aof = £,
AjE(E) = AE(E) := £(Xt) - X£(t),
. n-1
A F(E) = A L F(xt) - xT A £(t).
n n-1 n-1

For n = 0,1,2,... the operators An are defined above by their action on
functionsg £: V(r) > 2.

Note that A(Af) need not be equal to A £, etc.

2
3.7. THEOREM. When f£ is linear on V(r), so is Anf on Vir-n), n e WN.

PROOF. Trivial. [J

3.8. THEOREM. The following relations hold:

E RS
(3.8.1) A 2t X E 4 -0,1,....ki he W,
n F Fqn
k k~n
3" o
An g—EE—— = 0, n >%k; he NO,

n
(3.8.2) B b(t) = 0% ), n=0,1,2,...
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and
n
B0 (T
(3.8.3) & ~— =\ ) o =0k
noFy k-n
P, (t)
A i, =0, n > k.
ok

PROOF. The proof proceeds by induction on n and uses relation 2.2a, theorem

2.11c and relation (2.4.4) respectively. ]

Note: The relations (3.8.2) and (3.8.3) were already given by
L. CARLITZ (1935) in §5 and §3 respectively.

3.9. LEMMA. Let g € ®[t] be a linear polynomial of degree qn. Then for every

t,v € ® we have

. (v)

n
(3.9.1) gltv) = EO 15 Bg(t).

h

PROOF. (See also L. CARLITZ (1935), th.3.1).
For n = O the assertion is evident.
Suppose (3.9.1) has been proved for n = 0,1,...,N-1. We shall prove

it for n = N. By linearity, g(t) is necessarily of the form
N
gy = § a £ .

From definition 3.6 and relation (3.8.1) we obtain

k
N tq
(3.9.2) Mgty = ) a —, j=0,1,...,N.
J k=3 X g
k~-J

" Hence from the induction hypothesis we have for t,v ¢ &

N=1 Y, (v) o g
g(tv) = <A.g(t)—aN -} +a ———
j=0 F, J Fal/ F
J N-j N
N . (v) N, g N . (v)
= 3 A g(t) + ath (Y——— -3 ——3————> .
j=0 ®, 7 ‘Fy  j=0 F.r
J 3 N-3

It remains to prove that




N
q N Y. (v)
(3.9.3) T—= 7 24—, veo.

F = g3
N j=0 FjFN—j
Since the polynomial wj € IﬁI[X][v] is linear on ¢ of degree qJ for
N .
j =0,1,...,N, we can put va /FN in the form

N wj(V)

]

From theorem 3.8 we obtain for i = 0,%1,...,N
N i
q N Y. . (V)ng
(3.9.4) Ai(%;—) Y b, <~2—i———) .
N/ §=i I j-i 7

On the other hand

qN
(3.9.5) Ai(!——> =—~—, i=0,1,...,N.
TP
N

FI
N-i
" Since wk(l) = 0 for k > 0 and wo(l) = 1, the relations (3.9.4) and (3.9.5)

for v = 1 imply

1

b, = — i=0,1,...,N.
1 Fql
N-i
Hence (3.9.3) is proved and the induction step is completed. O

3.10. THEOREM. (Expansion Formula). Let f£: & - & be a linear function de-
fined by a power series with radius of convergence R:

o n

£e) = J aty, a eo.
n n

n=0
Let M € EEI[X] with dg M = m. Then for every t € ® with dg t + m < R we
have

Y. (M)

3
A f(t).
o F5 3

(3.10.1) £(Mt) =

| 18

5|
PROOF. Consider for n > m the linear polynomials

n k

£ () = ZO aktq ..
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For t € & with dg t < R we have
£(t) = lim £ (t).
nse O
For t € ¢ with dg t + m < R we have
Ajf(t) = lim Ajfn(t), j=1,2,...,m.
n-o
Now using lemma 3.2 with g = fn and v = M, we get
wk(M) m wk(M)

m
£(Mt) = lim £ (Mt) = lim ) AE (8) = ¥
no B e k=0 Tk

Akf(t). 0

3.11. COROLLARY (= theorem 2.13). Let M ¢ Fq[X] with dg M = m. Then for
all t e @
m Yo(M)  k
k 'k
yae) = ) -0 —— T (o).
k=0 k
PROOF. Since Y is an entire linear function (3.10.1) is valid for all t ¢ @.

Now the expression for Y(Mt) follows by using theorem 3.8 in (3.10.1). [

3.12. LEMMA. Let f: & > 0 be an entire, linear function. Then for every

ke N

x
9., _ a a_ q
3.12.1)  p £t = (4 renT + ¥ 0@ fen
PROOF. For k = 1 we have
a9ty = 2 xt) - xf%e) = (£(xt) - x2enN T + xLx ),

which proves (3.12.1) for k = 1.
Now suppose that (3.12.1) has been proved for k¥ = 1,...,k-1. Then we
have

k~-1
A3y =a L fTLxe) - x¥ A e
K k-1 k-1

k-1
= q 9 _ q
= (A _,EX)) 7 + (X X) (b _,E(Xt)) 7 +

qK—l q qK—l q
- X {(AK_lf(t)) + (X _X)(AK-zf(t)) } =
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k-1 K
-9 q q g
{a _ £(xt) - X A BT+ X7 (A F(1)

I

k-1 K=-2 k-1
ot on fan -xT s _sw)f-xd @ gen

K
g q q
(AKf(t)} +XT - (A EENTt. O

4. THE FUNCTIONS Jn

In 1960 L. CARLITZ introduced a class of functions which have formal

resemblance with classical cylinder functions.

4.1. DEFINITION. FOr n € If) the function Jn: ® > & is defined by
- qn+k
(@.1.1) 3 (6) &= kZO -1 jl——;;; i
ntk k

For n ¢ W we define the function J_n: $ > ¢ by
k

0
(4.1.2) J_ () := kEO (-1) e
- k" n+k
q—n
REMARK. Fn+k

-1
If we put F_n =0, n € W, then for all n ¢ Z the function Jn can be

is uniquely determined.

defined by formula (4.1.1).

4.2. THEOREM [ L. CARLITZ (1960), formulae (5.3), (5.9), (5.13) and (5.14)].
Tet n € Z . The function Jn as defined above is an entire, linear function,

which has the properties:

n
(1) w_®¥ = 0w,
x
(ii) BT (8) =33 (v),  k=1,2,...,
n
(iii) 30 - g @+ 3l @ =o,
(iv) Jn(th) - (an+X)Jn(Xt) + an+1Jn(t) = -3k,

PROOF. The formulae can be computed directly from the definition of Jn, using
(1.8.3). O
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4.3. REMARK. From the definition of A2 we see that (iv) can also be written

as

n

q

: I 9 =
(iva) Aan(t) - (X7 ~X )AJn(t) + Jn(t) = 0.

4.4, THEOREM. For all n € INO, k € N we have

AkJn(t) = P (I _(£),AF (),

where P, is a linear polynomial in IﬁI[X][tl,tzj of total degree q[k/zj.

k ntk-1

The valuation of the coefficients of Pk is less than q .

PROOF. For k = 1 the theorem is obvious. For k = 2 the assertion follows
immediately from remark 4.3.
Now suppose that the assertion has been proved for k = 1,2,...,k-1;x23.

Then it follows from theorem 4.2(ii) and (iii) that

AT (£) = ey (t) = 2 (t))qK—l
K n n-K n-K
n-k+1 k-1
= {x? S LN OIS N (O)
= <an-qu—1)JqK—1 (t) - (an-z en?
n-k+1 n-k-+2
k-1

i

n
q d - q
x*x¥ s 3w - g @nd

Hence by the induction hypothesis for k = k -~ 1, kK - 2 we have

n k-1
(x9 x4

fl

(4.4.1) A3 (t) )P L (I (£),AT_(£)) - PE (3 (t),AT (%))
K n k-=1""n n k=2 ' n n

and therefore

A T (t) P (J _(t),AT_(t)).
K n K n n

It follows from (4.4.1) and the induction hypothesis that the degree of PK
[k/21

is equal to g and that the valuation of the coefficients of PK is at

+ -
most qn « 1. 0
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The rest of this section will not be used in the following chapters.
The function Jn is a solution of the eguation

2 n i
£x°t) - xT+exe) + x3 e = - 2w,

with n € Z . We are interested in all solutions of this equation which are

of the form

o v
£(t) = ) avtq—, heZ,a €t a

=-h

h # 0.
It turns out that for n € Z there is essentially only one such solution
of the equation; see L. CARLITZ (1960). However, the equation above can
be slightly generalized. Recall that q is a power of p, say pm and that
the field ¢ has characteristic p. Hence for those r € @ such that rm € %,

r
the element X¥~ ¢ & is uniquely defined.

4.6. DEFINITION. Let g = pm. Let ¥ €¢ Qbesuch thatrme Z. For r > - 1 we
" define the element F € Fq[X] by

mr _mj
n & %) ifr>o0,
jeZz
O<j<x
F 1= 4
r
L 1 if -1 <r <0,
For r £ - 1 we put
mr _mj
;F—l—:= m o % ).
r JeZ
r<j<0

4.7. REMARK. For r € nf) definition 4.6 equals definition 2.1 of this

-1
thesis; furthermore Fr =0 for - ¥ € N. For q,r as in definition 4.6 we
have

pmr m
4.7.1)  F_= (¥ -0F_.

4.8. DEFINITION. Let q = pm. Let ¥ € © be such that rm ¢ Z . We define the
function Jr : &> 9 by
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- qr+k
2 (_1)k t ’ t e o.

Jr(t) = ”

k=0 otk

(The series is convergent for all t ¢ @.)

4.9. THEOREM. The function Jr from definition 4.8 has the properties:
r

. q q =
(1) I (8) - (X =X)g_(t) + 3. (£} =0,

r

X
(ii) Jr(th) - T g xe) + x +1

J_(t) = - 3He).
r r
PROOF. Analogous to the proof of theorem 4.2. []

5. ANALYSIS ON ¢

5.1. DEFINITION. et R ¢ R U {+»} and U = {t ¢ & | dg t < R}. A function

f: U > & is called analytic on U if there exists a power series z:_o aitl,

ai ¢ ® with radius of convergence 2 R such that

£ty = ] at’, teu.
i=0

If R = + « then f is called an entire function.

5.2. REMARK. Let f be analytic on U = {t ¢ & | dg t < R}. Suppose. that the

; © i : .
power series zi- ait , which represents £ on U, has radius of convergence

R. Then f has nooanalytic continuation outside U in the classical sense,
see J. DE GROOT (1942), L.I. WADE (1946). Recently PH. ROBBA (1973) and
J. TATE (1971) have given different methods for analytic continuation of
functions over a complete non-archimedean valued field. For an exposé in

the p-adic case we refer to the book of Y. AMICE (1975).

In the following chapters we shall need some results from the theory
of functions f: ¢ » &. Since there are fundamental differences between ¢
and € (® has characteristic p, the valuation of ¢ is non~archimedean, ¢ is
not locally compact), we may also expect great differences between this
theory and the classical theory of complex functions of one variable. Sur-
prisingly some fundamental classical theorems have analogues in the theory
of functions based on ¢. So we have e.g. a maximum modulus theorem and a
product formula for entire functions. (See theorem 5.16 and corollary 5.24

respectively.)
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We shali give complete proofs of thé theorems needed later on. For a
more general treatment we refer to the works of U. GUNTZER (1966),
M. LAZARD (1962) and A.F. MONNA (1970). The first results in non-archime-
dean analysis are contained in the thesis of W. SCHOBE (1930). For a dis-
cussion of SCHNIRELMAN's proof of the maximum-~modulus principle we refer
to his own work (1938) or to W.W. ADAMS (1966, appendix), who gives an ex-

position for the p-adic case.

5.3. DEFINITION. Let ®[[t]] be the set of formal power series with coeffi-
cients in ®. For each r € IR the subset Pr of ¢[[t]] is defined as follows.

Let £ e o[[t]], £(t)

Z% a,t". Then £ ¢ P_ if and only if
i=0 i r

*)

- o,

(5.3.1) lin (dg a,+ir)
iveo t

For such r we put
M (f) := max (dga,+ir).
* i20 *
Further we define

M_(£)
Hfllr = q , f e Pr'

5.4. LEMMA. Pr is a 9-Banach space with norm “-“r.

PROOF. Clearly, Pr is a vector space over ¢ and

I f+gllr < llf!lr + llgllr.

W=t B = g 3y
the proof of the completeness can be given by standard arguments in the fol-

Finally, let {f t* be a Cauchy sequence in Pr' Then

lowing steps:

(i) for each i, lim a, . =: a, exists in ¢,
ki i
ko0
© .
(ii) £, defined by £(t) := ] a.t belongs to P,
i=0

(iii) lim fk = f in the norm topology of Pr' 0

koo

o i
*) This implies that for every t € & with dg t = r the series zi=0 ait

converges.
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5.5. REMARK. From the proof of lemma 5.4 we see that {fk}:=1'
© i, . . .
fk(t) = 2i=0 akit is a convergent sequence in Pr if and only if for every

t € & with dg t £ r the sequence of elements {fk(t)};:=1 is convergent in 0.

5.6. REMARK. When f ¢ Pr' then the radius of convergence R of f is not

smaller than r.

When f € Pr' then f ¢ Pp for all p < r and for all p £ r we have

sup dg £(t) < Mp(f).
dgt=p

If there is only one i ¢ np such that
(5.6.1) dg ai + ip = Mp(f),
then we even have for all t € ¢ with dg t = p
(5.6.2) dg £(t) = Mp(f).

Those p £ r for which there exists more than one i ¢ lf) such that (5.6.1)
is valid, will play a special role in the theory, since they are connected

with the occurence and the location of the zeros of f.

o i
5.7. DEFINITION. Let r ¢ R, £ ¢ P, £(t) = Zi=h a,t”, a # 0. If for

pe R, p£r, there exist i,j =2 h, i # j, such that
+ ip = + jp =
dg a, + ip = dg a; *3e Mp(f),

then p is called a hooking-radius of f£.

5.8. LEMMA. Let r ¢ R, f € Pr, £(t) = X: aitl, a, # 0. The number of

=h
hooking-radii of £ in (-»,r] is finite.

PROOF. Because of (5.3.1) there exists an nO such that

(5.8.1) i>ng = dga; +ir < dg a, + hr.

Hence for all i > no and p £ r

.8. + i + < .
(5.8.2) dg ai ip < dg ay hp Mp(f)
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Since for i # j, h < i,J < nO there is at most one p < r with

dg ai + ip = dg a, + jp, the number of hooking-radii of f in (-»,r] is at

/no—h+1> ‘

most \ 2

5.9. REMARK. In 5.11 we shall introduce a kind of Newton polygon to describe
the behaviour of Mp(f). The hooking-radii will be the angular points of this

polygon. Note that because of (5.8.1) the indices i > n_  can be neglected in

0
arguments on Mp(f).

5.10. DEPINITION. Let r ¢ R, £ ¢ P, £(t) = Z°,° a.t’, a_ # 0. Let
e r i=h i h

Rl’RZ""’Rﬂ be the (possibly empty) sequence of hooking-radii of f in

(-»,r] in increasing order. Define

and

i, s=max {i | dga, + iR =M (D)}, k=1,2,...,L

i>h B
5.11. THEOREM. In the notation of definition 5.10 we have

(1) i < i, <...< iﬂ'

(ii) If {Rl,RZ,..., K} = @

max {i | dg a; + ip

M (£)} = min {i | dg a, +ip
izh e

i>h

]

=
o

—~
&
[

]
-

(iii) If {Rl,Rz,...,Rz} # 0:

max {i l dg a; + ip

M (£)}
i>h e

I
[m
)
in
°
A
+
[N
~
—_
N
N
ey
~

and

min {i | dg a, +ip =M (f)}
i>h e

R <p s R 1+ k=1,2,...,8-1

iK' RK <p <r.

It
A
o
<
-~

’
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PROOF. Let 1 <k < £ and h < i < i . Since

dg ai + iRk < dg aik + ikRk,

one has for p € (Rk,r]

(5.11.1) dga, +ip <dga, +i

<M (f).
. P p( )

In particular, by Ry < Rk+1 < r and for k = 0 trivially,

(5.11.2) min {i | dg a, + i =M ()} > i, k=0,1,2,...,8-1.
i>h . 1% et Rest k

It follows, by definition 5.10, that i > i for k = 0,1,...,£-1. This

k+1 k
proves (i).
By means of continuity arguments it is easily seen that assertion (ii)

and the assertions of (iii) for - = < p < R, and -~ © < p < R1 respectively

are obvious. .

Now we consider the case that there are one or more hooking-radii. Let
g > h be such that (5.8.1) is valid. From the maximality in the definition
of ik we see that

(5.11.3) dg aik + ikp > 'mi§<n (dgai+ip) , p = Rk' k=1,2,..,4L.
ko
Let 1 < k < £ and suppose that the inequality in (5.11.3) holds for all

p e (Rk,r]. Then it follows from (5.8.2) that

N . . . <
dg aik + 1kp > dg ai + ip, i > lk' Rk <p <r.

On the other hand (5.11.1) tells us that

A
al

. . < i ;
dg aik + 1kp > dg ai + ip, h<icx< lk’ Rk <p <

Hence (Rk,r] does not contain a hooking-radius of £, i.e. k = £ and iﬁ is

the unique i for which

dg a; + ip = Mp(f), R£ <p < r.
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We see that for 1 < k € £-~1 the inequality of (5.11.3) does not hold for
all p ¢ (Rk,r], i.e. there exists a p € (Rk,r] such that

(5.11.4) dga, + i p £ max (dga,+ip).
¥ i <isn *
kK70
Since both sides of this inequality are continuous functions of p, the
smallest number p for which (5.11.4) is valid is a point where the equality

holds. Since
+ ip <
dg a, ip Mp(f)

for h £ i < i, by (5.11.1) and for i > n, by (5.8.2), this point must be

k 0
the smallest hooking-radius of £ in (Rk,r], i.e. Rk+1. Moreover we have

min {i | dg a, + i =M ()} =i, k=1,...4-1.
i>h i Rk+1 Rk+1 k

Furthermore we conclude that for k = 1,...,£-1 and Rk <p < Rk+1

dg ai + 1kp > ‘mag (dgai+1pL
k 1k<1SnO

Since dg a, + ip < Mp(f) for h < i < 1

k by (5.11.1) and for i > Ny by

(5.8.2), ik is the unique i such that

dg a; + ip = Mp(f), R <p <R . 1 <k < £-1.

This completes the proof. g

The following figure illustrates the curve for Mp(f), p < r. Here

h=0,4=2, Ré'< r, i1 =1, i2 = 3. This figure also explains the term

"hooking-radius".
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[ ——

>p

5.12. COROLLARY. In the notation of definition 5.10 we have

dg a; -dg aj

k-1

(5.12.1) Rk = min —
i-i
k-1

k-1

PROOF. From theorem 5.11 we have

k=1,2,...,4L.

min {i | dga, + iR_=M_ (£)} =
i>h . Ry

Hence
dg ai - dg ai > (1—ik_1)Rk,

from which we obtain

dg a. ~-dg a.
lk-l i
(5.12.2) R S— > Rk'
k-1

Moreover it follows from theorem 5.11 that

(5.12.3) dg a, + ikRk = M_ (£)

x Re

k-1’

k=1,2,...,2.
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Now formula (5.12.1) follows from (5.12.2) and (5.12.3). 0

) i
5.13. DEFINITION. Let r ¢ R, £ ¢ P, £(t) = Zizh a,t, a #0.
For p £ r we define
(5.13.1)  A(f,p) :=max {i|dga,+ip =M (£)} - min {i]dg a +ip =M (D]
i>h e i>h * e

5.14. COROLLARY. In the notation of the definitions 5.10 and 5.13 we have

0 o AR, k=1,2,....8
d(£,p) =
if p = R . xk=1,2,...,4.

PROOF. Obvious from theorem 5.11. 0

5.15. REMARK. Let r ¢ R, f € Pr' If £ has no hooking-radii in (-=,r],
then for all t € & with dg t = p £ r we have

dg £(t) = Mp(f).

A

If R1 < R2 <ieo< Rz

t € ¢ with dg t = p £ r we have

r are the hooking-radii of £ in (-«,r], then for

(5.15.1) dg f(t) = Mp(f), p # R1’R2""’ v
and
(5.15.2) dg £(t) < Mp(f), p = Rl’RZ""'R£°

But we can prove more.

*)

5.16. THEOREM. (Maximum Modulus Principle). Let r e @ ', f ¢ Pr' Then

sup dg £(t) = sup dg £(t) = Mr(f).
dgtsr dgt=r

*
*) In view of (1.7.3) (dgt € @ for t € & ) we restrict r to Q.
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For the proof of theorem 5.16 we need two lemmas. Note that if r is
not a hooking-radius of £, then theorem 5.16 is an immediate consequence of

remark 5.15 and theorem 5.11. (Mp(f) is a monotonic function of p on (-»,rl.)

5.17. LEMMA. Let ¥ ¢ Q@ and f ¢ Pr' Then
sup dg £(t) = sup dg f£(t) = Mr(f)'
dgt<xr dgtsr

PROOF. According to lemma 5.8 f has at most a finite number of hooking-radii
in (-«,r]. Hence there is a p < r such that f has no hooking-radii in [p,r).
Since {dg t [ t € 9} = Q@ we can choose an infinite sequence of points

tv e &, v ¢ N, such that

p<dgt, <dgt, < ...

1 2

and

(5.17.1) lim dg tv = r.
Vo

If we denote pv := dg tv' v € N, then from remark 5.15 we have

dg f(tv) = Mp (£).
v

From (5.17.1) and the continuity of Mp(f) as a function of p we conclude that
lim dg f(tv) =1lim M (f) = Mr(f)'
V>0 v Py

Hence

(5.17.2) sup dg £(t) = Mr(f).
dgt<r

On the other hand we have from remark 5.15

(5.17.3) sup dg £(t) < Mr(f)'

dgt<r

Now the lemma follows from (5.17.2) and (5.17.3). 0




1.40

5.18. LEMMA. Let r ¢ R, f ¢ Pr' Then for every t

function g, defined by
g(t) = f(t+to),

is also an element of Pr'

o
PROOF. Denote f(t) = }.

in Pr by

o~

g . (t) :=
v =0
For all t ¢ ¢ with dg

dg(gv(t)-gu(t))

and therefore

t

A

t e d, dg t

i
ai(t+t0) .

<

max {dg a, + i dg(t+t0)}

u<isv

max (dgai+ir)

u<is<v

sup dg(g, (t)-g (£)) < max

dgt<r

Hence, in view of lemma 5.17,

M (g -g. ) £ max
r v “u u<i<

AV

u<igy

we have

+ir).
(dgai ir)

<

X,

0

r and § < v we have

(dgai+1r).

e ® with dg t

0

< r the

aitl and define a sequence of polynomials {gv}:_

Since f ¢ Pr,this means that {gv}:_1 is a Cauchy sequence in Pr with the

norm topology from lemma 5.4 and hence a convergent sequence with limit,

say g. In view of remark 5.5 we have for every t € ¢ with dg t

g(t) = 1lim gv(t)
V300

Proof of theorem 5.16. Let t

function g, defined by
(5.16.1) g(t) = f(t+t0),

belongs to Pr' Hence

0

Leed
T oa, (tit
i=o + 0

e o, dg tO

te d, dgt

)i

= r. According to lemma 5.18 the

<

r,

f(t+t0).

g

<

r

1
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(5.16.2) sup dg g(t) £ sup dg £(t) £ sup dg f(t).
dgt<r dgt=r dgt<r
On the .other hand it follows from lemma 5.17 and (5.16.1) that
(5.16.3) sup dg g(t) = sup dg g(t) = sup dg £(t) = Mr(f).
dgt<r dgt<r dgt<r

Now the theorem follows from (5.16.2) and (5.16.3). O

5.19. LEMMA. Let g € 6{t] be given by

n
g(t) := aO + alt +...4 ant , a0 # 0, a, #0, n>0.

Let R1 < R2 <...< RK be the hooking-radii of g in (-»,»). Then g has d(g,Rk)

zeros B € & with dg B = Rk' 1 £k € £, miltiple zeros counted according to

their multiplicity. There are no other zeros of g, i.e.
;
' d(g,R_ ) = n.
k=1 Rk

PROOF. Since ¢ is algebraically closed, g has exactly n zeros in &. Denote
them by 61,82'---,Bn-
In view of dg g(Bi) = -, it follows from remark 5.15 that

ag B, « {Rl,Rz,...,RK}, i=1,2,...,n.

Hence, if uj € Iﬂo denotes the number of zeros B with dg B = Rj’
j=1,2,...,£, then

My B My Feeet iy = 0.
From
glt) =a '21 (t-8.)

we infer that

n
(5.19.1) dg g(t) =dg a_+ ) dg(t-8,).
n i=1 1

Now take a number k from the set {1,2,...,£}. Let t € & be such that
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R < dg t < Rk+1 if k¥ # £ and Rk < dg t if k = £. Then it follows from
(5.19.1) that
£
dg g(t) = dg a_ + (U +u,+...4p )dg t + jzk+1 MRS -
Now dg g(t) = Mp(g) where p = dg t. (See (5.15.1).) Hence for k = 1,2,...,42
and p € @ such that R, <p <R, if k # £ and R <p if k = L, we have
£
(5.19.2) Mp(g) =dg a + Otk dp + j§k+1 WR, -
Taking p +>Rk + 0, it follows from (5.19.2) and the continuity of Mp'
that

£

(5.19.3) MRk(g) = dg an + (u1+u2+...+uk)Rk + jzk+1 ujRj, 1<k <Ak,

From this it follows by subtraction that for 1 < k < £

I

MRk+1(g) - MRk(g) = (ugtube o oF ) (R -Ry ).

By theorem 5.11

M (g) - M, (g) =dga, +1 - {dga, +i,R ) = i ( -R )
R ., R S i ®Tx k Rier1 R

and so, in view of Rk+1 - Rk # 0, we have

(5.19.4) Leo=ug o, ek, 1 <k < 4.

ror k = £ we have from (5.19.2) and theorem 5.11
+ i = + “ee .
dg aiz ipp = dg a + (n +u,+ +u£)p, P>Ry

Hence
(5.19.5) ip =1y + u, +.. .+ UK'

The lemma now follows immediately from (5.19.4), (5.19.5) and corollary
5.14.. O
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5.20 THEOREM. Let r € R, £ ¢ P, £(t) = [T a t', a_ # 0. Then £ has a
zero B, B e &, B# 0 withdg B =p < x if and only if p is a hooking~radius
of f.

PROOF. Suppose that p is not a hooking-radius of f. Then it follows from
(5.15.1) that dg f(t) = Mp(f) # - o for £t € ¢, dg t = p. Hence t cannot be
a zero of f.

Suppose now that Rk is a hooking-radius of £ in (-«,r]. Let {nv}:=1 be

the increasing sequence of natural numbers such that

n1 > no, where nO is defined by (5.8.1),
a #0, v=1,2,...,

\) o«
a, = 0 for k > Ny k ¢ {nv}v=1'

. s . © i, .
i.e. the a —are the non-zero coefficients in Zi a,t” with index greater
= i

h
v

than n. For v ¢ N we define
n

Voo

(5.20.1) P _(t) := ) a,t .

v . i

i=h

In view of n, > Dy it follows from the definition 5.7 of the hooking-radii

that P and f have the same set of hooking-radii R1'Rz""'3e in (-o,r].
Also the numbers ik’ k=1,2,...,£ coincide for Pv and £. We obtain from
lemma 5.19 and corollary 5.14 that Pv has just

d = dk = d(Pv'Rk) = d(f,Rk) = ik - ik—l

(v) (v) (v) | . (v) .
zZeros 81 ,82 ""'Ba in ¢ with dg Bj = Rk' j=1,2,...,4 and just

ik—l zeros B in & with dg B < R . (iO:=h.)
From
d (v)
P (t) = a m (-8, ") m (t-8)
Y v 3=t 7 ie)=0
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it follows that

4
(v) .
dg P (t) = dga + '2 dg(t—Bj ) + i R+ y dg B

v =1 PV(B)=O
; dgB>Ry
for every t € & with dg t =,Rk' From theorem 5.11, (5.19.3) and from
(5.19.4) or (5.19.5) we infer that

dg a, - dg a = 2 dg B.
1 v P (B)=0
v
dgB>R
Hence we have
d (V)

(5.20.2) dg P_(t) = ) dg(t-B; ') + c_, ted dgt=R,

v =1 j k

X is indepen-

dent of v.

) 'y . + . ’ .
where ¢, is an abbreviation for dg aik lk—l Rk’ note that ck

o
Now we construct inductively a sequence {8 } _

(VT
arbitrarily from the set {Bl ,82 ,...,Bd }. Then we take

(2) ,(2) (2}
1 rBoreeiBy

in the following way.

' We choose 61

62 from the set {8 } in such a way that

(2)

dg(B8_-B,) = min dg(B. "~B,).
21 1<9<a J !

In general, when B ,82,...,6v_ are determined, we take

V), (V) !

B\) € {61 162 :---lﬁé\))} such that
(5.20.3) ag(8 -8 _) = min dg(8{”'-8 ), v=12,3,....
1<i<d J :
Clearly
p,(B) =0, v=1,2,...,
dg B, =R, V=1,2,... .

From (5.20.3) we derive that

Mgy

d
1
dg(B -8, ) < 3 jzl dg (B -8, _,

and then from (5.20.2) with t = Bv—l
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o 1 .
dg(B -8, 4) < 3, dg P (B ) - 3, o

The polynomials Pv were constructed in such a way that

n

= v
Po8) =B ,(8) +a t 7, v=2,3,..;

hence

So we come to the conclusion that

1 1
dg(B -8 .) ——-(dga +n Rk) - —c
v Tv-1 dk dk k

and since

lim dg a + n = -
n T

because R < r, we see that {Bv}:-l is a Cauchy-sequence.

Define

B := lim Bv.
Voo

Clearly dg 8 = Rk Finally
dg £(8) = lim dg £(8 ) = lim dg(P (B ) + ¥ aiBt}
Y- Vo i>n

£(B) = 0. a0

5.21. COROLLARY (SCHOBE). An entire function f: & - & which has no zeros

in ® is a non-zero constant.

PROOF. Since £ has no zeros in & we have

- i
E(t) = Z at, a, # 0.
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From theorem 5.20 we see that f has no hooking-radii in (-w,®). Hence by

theorem 5.11(ii) we have

dg ai + ip < Mp(f) = dg a ie N, pe R.

0'
This can only hold for all ¢ € R if

dg ai = - o, i e W,

which means that £(t) = a {

o
o] i X
5.22. LEMMA. Let r ¢ R, £ ¢ P, £(t) = Zi=h a,t, a # 0. Let B # 0 be a

zero of £ with dg 8 = p £ r. Then there exists a g € Pr such that

f(t) = (£-B)g(t)
and

d(frp) = d(g:p) + 1.

PROOF. Since f ¢ Pr' dg B < r and B # 0, we can define

1 i
(5.22.1) b, = — 7 a8, j = h.
j Bj+1 i3 i

Next we show that if we put

©

(5.22.2) g(t) = ¥ bjtj,

j=h
then g € Pr' Indeed, for j = h, h+l,... we have from (5.22.1)
(5.22.3) dg b. + jp € max (dga.+ip) - p.
3 . i
i>j
Hence, as p £ r,

dg b. + jr < max (dgai+ir) -r
J i>5
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and since

lim (dg a,+ir) = -»,
i .

we conclude that g ¢ Pr' From (5.22.1), (5.22.2) and £(B) = 0 we see that

g(t) (t-8) = § bttt o ¥ sbjtj

4=h j=h

© j h“
jzh+1 (b, ;=Bb)t" - gb " = £(t).

This proves the first assertion of the lemma.

By the Maximum Modulus Principle, theorem 5.16, we have

M (£f) = sup (dg g(t)+dg(t-B)),
e dgt=p

from which it follows immediately that
M (f) <M + p.
p( p(g) p
On the other hand we derive from (5.22.3) that
M ) £M (f) - p.
p(g p( ) P

Hence

(5.22.4) Mp(g) Mp(f) - p-

From theorem 5.20 we observe that p = dg B is a hooking-radius of £,

say Rk' From theorem 5.11 we observe that

(5.22.5) max {i | dg a, + iR_=M_ (£f)} = i
i>h 17 Ry &
and
(5.22.6) min {1 | dg a, + iR =M (D)} = i *),

i>h R k-1

Hence from (5.22.1) and (5.22.5) we obtain

where i, := h.
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v
=

(5.22.7) dg b, + jR_= dg( ¥
SRR

aiBl> TR < MRk(f) TRy 32 i

and

(5.22.8) dg b, 1 + (ik--l)Rk = M_ (f) - Rk.

i~ R

Since f£(8) = 0 we can rewrite (5.22.1) as

from which it follows, using (5.22.6), that

(5.22.9) dg bj + ij < MRk(f) - Rk’ j < ik_1
and

(5.22.10) dgb, +i , R =M (£) - R.

k-1 Ry

From (5.22.7),...,(5.22.10) and corollary 5.14 we obtain

d(g,R) = a(£,R) -1. O

5.23. THEOREM (SCHOBE}. Let r ¢ R, f € Pr, £(t) = Xj;h aiti, a, # 0. For

p < r let d(£f,p) be defined by (5.13.1). If R1 < R2 <...< RK are the hook-
ing-radii of £ in (~=,r], then f has a zero of order h in 0 and d(f,Rk)

zeros B with dg B = Rk, k=1,2,...,4, with multiple zeros counted according
to their multiplicity *). These are the only zeros of f in {t ¢ & I dgt< r}.
PROOF. In view of theorem 5.20 we only have to prove that f has d(f,Rk)

zeros in {t ¢ & [ dg t = Rk}, k=1,2,...,£. From theorem 5.20 we observe
that £ has at least one zero B with dg B = Rk’ 1 £ k € L. Beccording to lemma

i o0 i .
5.22 there is a g € Pr' g(t) = zizh bit , such that

£(t) = (£t-B)g(t)

and

*)

In view of the previous lemma it is obvious what must be understood
by the order of a zero.
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a<g,Rk> = a(£,R) - 1.

If d(g;Rk)= 0, then it follows from (5.13.1) that there is only one i > h
such that

+ iR = M_ (g).
dg bi le MRk(g)
Thus Rk is not a hooking-radius of g and therefore g has no zeros in
{t | agt-= Rk}. Hence in this case f has d(f,Rk) = 1 zero in
{tee]|agt=R1I
In case d(g,Rk) > 0 it follows from (5.13.1) that Rk is a hooking-

radius of g. Then we apply the argument above with g instead of f. Now it
is obvious how we proceed and that the process stops after d(f,Rk) steps. [

5.24. COROLLARY (Product Formula for Entire Functions). Let £: ¢ > & be an
_— - .
entire function, f£(t) = zi—h aitl, ah # 0. Let R denote the set of hooking-

radii of £ in (-2,©). (R can be empty, finite or infinite,) For R € R, let

.BR,l'BR,z""'BR,d(f,R) denote the zeros of £ with valuation R. Then for
all t € & we have
h 4(£,R) N
(5.24.1) f(t) = aht n n 1- 8 .
ReR i=1 R,1i

PROOF . If £ has no zeros, the theorem is a special case, with h = 0, of
corollary 5.21. If £ has a finite number of zeros, the theorem follows
easily from lemma 5.22 and corollary 5.21.

Now we suppose that f has an infinite number of hooking-radii in
(-=,»). Let {Rk}:=1 be the increasing sequence of hooking-radii of f£. Ac-
cording to theorem 5.23 and lemma 5.22 we can define a sequence of entire

functions 9, by

n d(f,R)
(5.24.2) £(t) = ahth T (1- Z L2 ) g (t).
k=1 i=t R /i n

Clearly gn has no zeros in (—m'Rn] and we can write
(5.24.3) g (t) =1+ ) bt b . ¢ o.

From theorem 5.20 we conclude that 9, has no hooking-radii in (—w,Rn] and

therefore, by theorem 5.11,
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(5.24.4) dg b, + iR_ < O, i1,
ni n
Now let r ¢ R be arbitrary but fixed. From (5.24.3) we get

Mr(gn—l) = ?ax (dgbni+1r) < ?ax (dgbni+lR ) + @ax 1(r—Rn).
izl izl izl
Since {Rn}:_1 is an infinite, increasing sequence we infer from (5.24.4)

that

lim M _(g -1) = - =,
n-—>oo

- .
i.e. the sequence {gn}n_ in Pr is convergent to the identity function

1
1 e Pr' Hence (5.24.1) is valid for t € ¢ with dg t € r. But since r was

chosen arbitrarily we have proved (5.24.1) for all t ¢ &. O

The following corollary is equivalent to theorem 2.12, but its proof

is different.

- 5.25. COROLLARY. The function Y, given by

o« . -tqj
pe) = § ol ==, teo
j=0 i
, k k-1 , 1
has a zero of order 1 in 0 and ¢ - g zeros B € & with dg B = k + 1
k € N . Moreover, if a ¢ ® is any zero of ¥ with dg a = E%Ty then

(. £\
PE) =t T 1- £,
BeF_ [x] \ E@/

E#0

PROOF. From corollary 5.12 and definition 5.10 we have

L= 1,
*o0
-dgF +dgF .
1
s NP B
50 -1 q
i, = max {qj l -dg F. + qj. 4 -y W3} = a;
1 . 3j g-1 R
:|>O 1

d(w,Rl) =q -1,
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and inductively for k > 1

. —dng_1+dgFj 1
R I T T
jzk qa-q
. j j 1 k
i, = max {qJ ] - dg F, + qj(k+ ~:I) =M_ (P} =q;
92k : J 4 B
k k-1

d(lpI%{) =q - 9g -

According to theorem 5.23 ¥ has exactly qk - qk—1 zeros f with

- 1
dg B = k + E:T‘, k ¢ IN.

Let o be a zero of ¥, then it follows from theorem 2.11a,b,c that
w(E&) = 0 for all E € ZIFq [x3].

Now let a # O be a zero of Y such that dg o is minimal, i.e. dg a=:E:T‘
Since the number of polynomials' in I&[X] of degree less than k equals qk,
we conclude.that the set of zeros of § is exactly {Ea | E « ]iq[x]}. The

last assertion now follows from (5.24.1). [

5.26. COROLLARY. The functions Jn(ne]NO), defined in (4.1.1) by
- n+k

J (t) := Z (-1) @

k=0 Fn+kF]E

1

k+ . .
have a zero of order qn in t = 0 and have q - qk different zeros B with

dg B = n + 2k + E%Ty each of order qn.

PROOF. From corollary 5.12 and definition 5.10 we have

i =q%

o~ a7
& & ‘

_ T99(F Fy ) +4g(F ) 2
R1 = min K & =n + 2 + §:T H
k>0 q ~q
, [ n+k / aN, (.. 2a) n+k
l1 = Eig 1q ! - dg_Fn+ka /+ n+ E:T' = MRl(Jn)

+ +1
max {qn+k I qn k(—2k+ i?%) =M (Jn)} = qn
k>0 4 1

and inductively
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it

Rk' n+2k+zl_—1;

. _ ntk
i,=a .

Now it follows from theorem 5.23 that Jn has a zero of order qn int =20

+ +k—
and that Jn has qn ko qn k-1 zeros B with

2
=n + =< ;
dg B =n 2k+q—1' kel

Besides, it follows that Jn has no other zeros.

From theorem 4.2(i) we see that every zero of Jn is a zero of J_n,
moreover that every zero of Jn has multiplicity at least qn.

Let B be a zero of Jn with dg B = n + 2 + a%—. Then it follows from

1
*
the linearity of Jn that cB, ¢ ¢ Ii{ is also a zero of Jn and dg(cB) = dg B.

Hence Jn has at least g~1 different zeros B with dg B =n + 2 a%-and

1
+
multiplicity 2 qn. Since d(Jn,Rl) = qn L qn,we conclude that Jn has exact-—
ly g-1 different zeros B with dg 8 = n + 2 + —2—7 each of multiplicity qn.

g-1
k-1
Suppose we have proved that Jn has exactly qk - g different zeros

B with dg B = n + 2k + —2—7 each of multiplicity qn, k=1,2,...,x. Then

g-1
the number of different zeros B with dg B < n + 2x + E%T equals qK. Let S*
be a zero of Jn with dg B* =n + 2(k+l) + E%Iu Then for every zero B with

*
dg B < dg B* it follows, from the linearity of Jn' that CB* + S(C€Fq) is
* *
a zero of Jn and dg(cB +B8) = dg B . Hence Jn has at least (q—l)qK different

zeros B with dg B = n + 2(x+1) + E%Ty each of multiplicity = qn. Since

+ic+ +
n+k+1 n+K 1 _ qK if-

o+
d(Jn,R ) =g - g ywe conclude that Jn has exactly qK

Kk+1
ferent zeros B with dg B = n + 2(x+1) + E%T' each of multiplicity qn. O

FINAL REMARK. The supremum in the Maximum Modulus Principle (theorem 5.16)
is actually attained and is therefore a maximum. To prove this we may sup-
pose that r = 0 and that

a.th,- a # 0.
o L 0

f(t) =
i

l e~18

Let n, denote the smallest natural number such that dg a, < dg ayr i>n

(see 5.8.1). If we define

0




1.53

then

Mo(g) = Mo(f).
Now we define inductively the following sequence of elements of ?: t0 = 1;
for i = 1,2,...,nO the element ti is a solution of the equation

2o t+t, , =o.

i-1

(This is possible since & is algebraically closed.) Then

dg ti =0, 0<ic< no
and

dg(ti—tj) =0, i#4,0<1i, 3¢< n-

' The system of equations
ng .
I ati=g(t), 3=0,1,...m

i=o *J J

in ao,al,...,an is solvable and
0
dg a; < oféin dg g(tj), i= 0,1,...,n0.
_J_O

So according to theorem 5.16

Mo(g) = max dg a, £ max dg g(tj) < sup dg g(t) = Mo(g).

OSiSnO * OSanO dgt=0

* *
Hence there exists a t € ¢ with dg t = 0 such that

dg g(t") = M (g).

Since

dg(g(t*) + 2 ait*i) = dg g(t*)
i>nO

ag £(t7)

and since MO(f) = Mo(g), we have proved our assertion.







CHAPTER II

TRANSCENDENCE IN ¢

In the first section of this chapter we shall mention some properties
of elements of ¢ which are algebraic over EEI(X)' In the second section we
shall give a survey of known results on transcendence in the field ¢. For

instance, we mention analogues of the following three classical theorems:

(i) the theorem of Liouville on the approximation of algebraic numbers
by rational numbers (M. MAHLER, 1949),

(ii) the theorem on.transcendence of the values of the exponential func-
tion in non-zero algebraic points (L.I. WADE, 1941),

(iii) the Gelfond-Schneider theorem (L.I. WADE, 1946).
6. PRELIMINARIES

In this section k is always a subfield of 9.

6.1. DEFINITION, An element E ¢ IE’q [X] is called a monic element of ZIFq [x]
if E is a monic polynomial over Eé.

The elements Al'A ,...,An € EEI[X] are called relatively prime if they

2
do not have a common divisor in IﬂI[X] other than units.
Notation: (Al’AZ""'An) = 1,

The least common multiple of the n elements Bl’B2""’Bn € IﬂI[X]\{O}

is an element B ein[X] for which

. B .
(i) — ¢ ¥ [x], i=1,2,...,n,
B, q

i
(ii) dg B is minimal,
(iii) B is monic.
It follows that B is uniquely determined.

Let o € ¢ be algebraic over EE{(X) of degree n. From theorem 0.9 it

is obvious that there exists a unique, irreducible polynomial Q ¢ IZI[X][t]
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of degree n with the properties:

(1) Q(a) =0,
(ii) Q@ is a primitive polynomial over ]E‘q [xJ,

(iii) the leading coefficient of Q is monic.

6.2. DEFINITION. Let o ¢ ¢ be algebraic over ]Fq (X) of degree n. The unique,
irreducible, primitive polynomial Q € IIF‘q [xJ[t] of degree n with monic lead-
ing coefficient for which Q(a) = 0 is called the minimal polynomial of o
over :IE'q [x3..

The element o is called integral algebraic over JFq (X) or an algebraic
integer of & if the minimal polynomial of a over E}I[X] has leading coeffi~
cient 1.

N.B. In the following chapters by "minimal polynomial of a" we shall always

mean the minimal polynomial of o over IE‘q [xJ.

6.3. DEFINITION, Let o € ¢ be algebraic. Every E ¢ IFq [xI1\{0}, for which

Eo is an algebraic integer, is called a deﬁ_ominator of a.

6.4. LEMMA. (WADE 1941). Let P ¢ JF‘q (X)[t] be a polynomial of degree n = 1
(in t). Then there exists a linear polynomial Q € ]F'q [x1[t] of degree g™ (in t)
such that P divides Q.

PROOF. By the Euclidean algorithm we have

i n-1 (1) 5
6.4.1) %2 = ¥ b, £ + R (E)P(E), i=0,1,...,n,
. i=0

with R, ¢ F_(x)[t], bjfl) € F_ (X). Note that if m e ° is defined by
qm < n-1 < g™, then R, = 0 and

b =y, i=20,1,...,m.
ql

i .
Furthermore Ri has degree g - n, i =mnm+i,...,n.

.. n-1 . . . .
If we eliminate 1,t,...,t succesively in the right hand side of

(6.4.1), we obtain

n

bt + b, tl s, . .+ bntq = R(t)P(t),

0 1

where bi € ]Fq (X) and R ¢ JE‘q (x)[t]. From the elimination process it fol-

lows that not all the bi can be zero. Let
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vi:= max {i | b, # 0}
1<i<n
and let C eZFq[X]\{O} be such that Cbo,...,va e:Fq[X]. The polynomial Q,
defined by

1’1—\‘) n-v n-v 11
o(t) := (Cbo)q 2 s (va)q 2,

satisfies the conditions of the lemma. [J

6.5. LEMMA. Let o € ® be separable algebraic over k ¢ ¢ and let P ¢ klt]

be its minimal polynomial. Then the zeros of P are all different.
PROOF. See O. ZARISKI and P. SAMUEL (1958), Ch.II,§5 def.3, cor.2. [

6.6. DEFINITION. Let o € & be algebraic over k ¢ &. The different zeros of

the minimal polynomial of o are called the conjugated elements of o over k.

6.7. THEOREM. Let Oy rloreeesd € ® be separable algebraic over k < &. Then

k(al,uz,...,am) is a separable algebraic extension of k.

PROOF. See O. ZARISKI and P, SAMUEL (1958) Ch.II th.10 or I. ADAMSON,
th.13.7. 0O

6.8. THEOREM. Let a € ¢ be separable algebraic over k « & of degree n and
let o, = 0,0,,...,0_ be the conjugated elements of o over k. Then there

1 2 n
exist exactly n distinct monomorphisms oi: k()= ¢, i = 1,...,n under

which k iIs invariant. These k-monomorphisms can be given by
= i = 2,0..,0.
o,(@) =a., i=1,2, 13:1

PROOF. See O. ZARISKI and P. SAMUEL (1958), Ch.II, th.16 or I. ADAMSON,
th.15.4. [

6.9. LEMMA. Let o € ¢ be algebraic over k © & of degree n. For 8 ¢ k(a)
let P € k[t] denote the monic, irreducible polynomial with P(B) = 0, given
by

m m-1

.= +
P(t) := t b |t +...+ bt + b,
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Then

_ n n/m
M (o (B = (F1Bg

PROOF. See O. ZARISKI and P. SAMUEL, Ch.II,§10 or P.RIBENBOIM, partII, 5a. []

6.10. LEMMA. Let o ¢ & be separable algebraic over k © ¢ of degree n and

et 61,02,...,0n be the n k-monomorphisms k(o)<+ ¢®. Then for every B e k(a):

(8)

==

Ny (a)+k o (B).

j=1

PROOF. See O. ZARISKI and P. SAMUEL, Ch.II,§10 or P. RIBENBOIM, part II, 5a.[J

6.11, REMARK. Let K be a finite, separable algebraic extension of Fq (x).
Then there exists a 0 e K such that K = I}I(X)(e) (see O. ZARISKI and
P. SAMUEL Ch.II,th.19.) It follows from lemma 6.9 that for all B € K

NK—»]]F‘q (xy € Fq x) .

Moreover, if B is an algebraic integer of X, then

N

KT (X) € ¥ [xJ.

Hence, if B # 0 is an algebraic integer of X, then

0

dg (N (B)) e W~ .

K—>]E‘q (X)
In 1946 L.I. WADE proved an analogon of the classical Gelfond-Schneider
theorem. The proof of Wade's theorem starts with the construction of an
auxiliary function. This leads to the problem of solving a system of r ho-
mogeneous, linear equations in s variables (r<s) with coefficients in a
given separable algebraic extension of the groundfield EEI(X)' In the clas-
sical case we know, by Siegel's lemma (see e.g. Th. SCHNEIDER (1957},
HILFSSATZ31),thattherevis a solution with absolute value not too large.

In the following we shall give a proof of an analogue of Siegel's lemma.

6.12. LEMMA. Let m,n ¢ N with m < n. The system of m homogeneous, linear

equations in the n unknownS‘Xi, i=1,2,...,n,




n
(6.12.1) 5 . X, =0, k=1,2,...,m,
iy e '

X
where A, € Fq[ 1 and

max dg Aki < a. (a=0),

1<i<n
1<k<m

has a non-trivial solution Cl'cz""'cn with
Ci € Ek{[x], i=1,...,n,

such that

am
L -,
dg Ci n-m

PROOF. Define vy € E}I[X][tl,...,tn] by
n

yk(tln--,tn) = z Akl tir
i=1

For Xi eIFq[XJ, i=1,2,...,n, we have

(6.12.2) Yk = yk(xl,...,xn) eZFq[X],

Let £ € N be arbitrary. The "cube"

contains g lattice points (Xl,...,xn).

means an n-tuple (Xl,...,xn) of elements

these lattice points (Xl,...,Xn) we have

(6.12.3) dg Yk
1<i<n

Hence every lattice point {(Xl,...,Xn) [

< max dg A, + L<a+ 4,
i

k=1,2,...,m.

k=1,2,...,m.
{(E11~-~Ign) I El e ¢, dg El < Ie}n
(The notion of lattice point in &
Xi € IE‘q[X], i=1,...,n.) For

k=1,2,...,m.

dg X, <AL, i=1,...,n} corre-

(a+f)m

sponds, via (6.12.2), with one of the g

{(nl,---.nm) I n, €9, dgn; <at £}.

lattice points of the cube

Now let £ be the smallest number such that the number of lattice

points {(Yl,...

points {(Xl""'xn) I dg Xi < £};

L := [ﬁ%%-+ 1}.

,Ym) I dg Yi < a + £} is less than the number of lattice
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Then according to the Box Principle of Dirichlet there are at least two
1 1 2
different lattice points (C; ),...,Cé )) and (C; ),...,Céz)) which cor-
respond with the same lattice point (Y ,,...,Y ). Hence (C,,...,C ) with
(2 ! m ! n
= C, - C,
i i

C

i , i=1,2,...,n, is a solution of (6.12.1) and

(1) (2) [ am
dg Ci < max(dg Ci dg Ci ) < Ln—m + 17 .

Since Ci € ]Fq [X], we conclude

am .
< = = .
dg C; < — i=1,2,...,n. 0O
6.13. LEMMA. Let K be a finite, separable algebraic extension of degree h
of E}I(X). Then there exists a basis 81,62,...,Bh of algebraic integers of
K such that every algebraic integer § ¢ K can be written uniquely as

) h

£ = 2 a, 8., A e ]Fq[X].'

i=1

" PROOF. See for instance O. ZARISKI and P. SAMUEL (1958), Ch.V,§4,
Cor. 2. [

6.14. DEFINITION. Let o € ¢ be algebraic over Iﬁl(x) of degree n and let

O, = 0,0, ,...,0_ € & be the roots of the minimal polynomial of o. Then we
1 2 n ¥

define

d*(q) = max(dgal,dgu dgun;O).

greeer
REMARK. Let K be a finite, separable algebraic extension of Fq (X) of de-

gree h and let o,,0 ,...,oh denote the distinct Ia:(x)-monomorphisms Ker &,

1772
If P ¢ Fq[x][t] is the minimal polynomial of 8 ¢ K, then

P(o,(B)) = o.(P(B)) =0
3 ]

and

h

T (t-o,(B))

=t

is a polynomial with coefficients in Fq (X). Hence the set of zeros of P

equals the set {01(8),02(6),...,0n(8)}. Therefore in this case we have




d*(8) = max{dg o, (8),dg 0,(B),---,dg o, (8);0}.
6.15. LEMMA. If o and B are algebraic overZFq(x), then
(6.15.1)  d"(0+B) < max(d” (a),d" ()
and
(6.15.2) a*(aB) < a"(a) +a*(8).

PROOF. Let o, = a,az,...,an and 81 = 8,82,...,Bm denote the zeros of the

1
minimal polynomials of o and B, respectively. Then the coefficients of

i (t-ai—B.)
i=1,...,n J
j=1,...,m

are elements of IEZ(X). The minimal polynomial of o + B is a divisor of
- this polynomial. Hence the zeros of this minimal polynomial belong to the

set {ai+8j [ i=1,...,n; j=1,...,m}. Therefore

a*(a+B) < max(dg(a,+B,);0) < max(max(dga,,dgB.);0)
i3 o i,3 0

max (d* (a) ,d" (8)) .

A

Relation (6.15.2) is proved analogously by considering the polynomial

m (t—aiB.)- 0
i=1,...,n J
j=1,...,m

6.16. LEMMA. (WADE 1946) Let K be a finite, separable algebraic extension
of degree h ofIFq(X). Let r,s €¢ N, r < s. Then the system of r homogeneous,
linear equations in the s unknowns

S

(6.16.1) 121 o, X, =0, k=1,2,...,r,

where the o, are algebraic integers in K and
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has a non-trivial solution (51,52,...,55) in algebraic infegers Ei of K
with
cst+ar

* )
da (Ei) <o i=1,2,...,s.

Here ¢ denotes a positive constant which depends only on the field K.

PROOF. Let 61,82,...,Bh be a basis of algebraic integers of K as mentioned
in lemma 6.13. Since aki Bj' k=1,...,x;5 i=1,...,8; 3 =1,...,h are al-

gebraic integers of K, we can write

h
(6.16.2)  ay, B, = vzl Byisy By

with Akijv € ]ﬂIEX]. Now consider the rh homogeneous, linear equations in
the sh unknowns Xij' 1<is<s;1<j<h )
s

h
(6.16.3) 7y ) a
i=1 j=1

Kijv Xij =0, k=1,...,xr; v=1,...,h.

Since rh < sh and Akijv € I}I[X],we can now apply lemma 6.12. To this end
we need an upper bound for dg Akijv'

Let 01,...,0 denote the h distinct Iﬂl(x)—monomorphisms K= ¢; then

h
for 1 £k <r, 1<1i<s,1=<3j<h wehave

h
(0,8 = )

c (B), w=1,...,h.
J =1 wv

A ..
Ou kijv

Since {Bl,...,Bh} is a basis, we have

det(du(Bv))u’v # 0.

Hence we can express Akijv as a linear combination of the elements

cl(akiBj),...,ch(ukiBj) with coefficients which only depend on the field XK.

Therefore
d L. < + (B
g Akl]v . ¢y N ?a§ ; dg Gu(aklsj)
I r r
*
<c,+ maxd (o .) =c, + a,

2 k,i ki 2
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where cl,c2 are positive constants depending only on K.
According to lemma 6.12 the system (6.16.3) has a non-trivial solution
in polynomials Cij € ]2I[le i=1,..,8; j=1,...,h such that

(c2+a)rh

P —
(6.16.4)  dg C g

Now we define

h
(6.16.5) & := Y ocC.. 8., i=1,...,8.

Then the Ei are algebraic integers of K, not all zero, and from (6.16.5)

and (6.16.2) we have

s h s h
121 %i b1 T vzl 121 j§1 Prigv i3 By
X s h
But since Zi=1 Zj=1 Akijv Cij =0, k=1,...,xr; v=1,...,h,

the s~tuple (gl,...,gs) is a non-trivial solution of (6.16.1). Furthermore

it follows from (6.16.5) and (6.16.4) that

* * (a+c2)r ar+cs
< — atTs
a (Ei) < ?a§ (dg Cij+d (Bj)) S ot ey <o
r

where the positive constant ¢ depends only on K. [J
7. SUMMARY OF KNOWN RESULTS ON TRANSCENDENCE IN o

As already mentioned in chapter I, the functions ¥,A: ¢ -+ ¢ and the
quantity § € ® were introduced by L. CARLITZ in 1935. In 1941 L.I. WADE
proved the transcendence over E}I(X) of Y(a) for every non-zero algebraic
element o € &, From Y(§) = O it follows that & is transcendental over Fq(X)
and since A: {t € @ Idg t < E%I& -+ & is defined as the inverse of § we al-
so immediately see that A(a) is transcendental over E}I(X) for every non-
zero algebraic o € @ with dg a < E%T'

In the same article Wade remarked that he was not able to prove the
transcendence of
o P
z c e c.e¢ F , i=1,2,...,

o 3 Fy ! 3 a




2.10

where an infinite number of cj is non-zero and where a is an arbitrary al-
gebraic element of &. However, the transcendence in a special case, namely
for a € ]E‘q [xI\{0}, follows from the following theorem which Wade proved

in the same article.

©

7.1. THEOREM. (WADE (1941). Let the sequence {Bk}k=0 satisfy the conditions:

(i) Bke IE‘q[X], k =0,1,2,...,

(ii) infinitely many of the B, are non-zero,

k
(iii) there exist a ko e N and a sequence {ck}:_k of real numbers with
. 0
llmk—H» ck = o such that
k-1 k-1
< — -
(7.1.1) dg Bk < k{g-1)g Ck q ’ k > kO'
Then
7k
k=0 "k

" is transcendental over IE‘q,i(X) .

All proofs in Wade's article follow the same line. To illustrate this
method we shall prove theorem 7.1.

B

Proof of theorem 7.1. Suppose y = 2:_0 f‘l{— is algebraic over ]Fq (X) of de-
-tk
gree n. According to lemma 6.4, Yy is a zero of a linear polynomial £ of
degree qn:
n 3
£(t) == § a, t%, A, e F [x], 3 =L...n; By #0;
=g 3 g
J
.e. .
i qJ
n © Bk Nl Di
(7.1.2) 6= ) A, } — = 3 = .
=t 7 k=0 ¥  i=L "1
where
3
min(n,i) A.B(.I F
Ji-j 1
D, == —_— .
* j=£ Fel
i=] .

From remark 2.2(a) we see that Di € IE‘q[X].

For m = £ a "multiplier" M€ JFq [X] will be defined in such a way
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that

m Mle
I:= z 7
i=f i
and
L M Di
Q == z F '
i=m+1 i
such that

(1) I e Fq[x];
(ii) every sum of Q has valuation less than zero if m is chosen large

enough.

In our case, (7.1.2), Fm will do as such a multiplier. Using (7.1.2) we

have
(7.1.3) I+Q=0,.

From I € Fq[X] we have either dg I 2 0 or I = 0. But from {(7.1.1) we
can deduce that dg Q < 0 and in view of (7.1.3) we conclude that I = 0. It
now remains to prove that for m chosen sufficiently large this leads to a

contradiction. We have

m Fm
z FDZL:o' mZmO—l.
i=f "1
This yields
F m-1 Fm—l
+ = > -
Py L § D=0, m=zmyt
m-1 i=f “i
and hence Dm =0, m=2 m,. Recalling the definition of Dm we have
3
n Bg_.
(7.1.4) I a,=52=0, mzm,
j=£ 3 7




2.12

We proceed by induction. From remark 2.2a it follows that

q1’,+1
n q:] Fmo-/e—l
A, B> . ————— ¢ F_[xI.
j=t+1 I o) pal 4
m. =]
0
Hence by (7.1.4)
q£+1
‘e Fmo—/e"l

q
A, B e F_[x].
L mO—Z F;Z q
mo—l’.

Suppose that

k+Hl+1
g +1tl qﬂ Fﬁo—ﬂ—l
(7.1.5) 3, -1 B e -’ € JFq[xJ, k=0,1,...,k-1.
0 Fmo+;<—£
Then it follows from (7.1.4) with m = mo + k that
k+1 ‘
-1 g9
-1 Bmg+k-£ qk+17,+1
A —s—— F +
ya an mo—ﬂ—l
m_+k-£
0 L
v_l k—\)+1_1 Bq v
min (k,n-2) -1 (g mptkeoy keveleing
v 1 AL U X mta )
v=1 ¥ 0
m0+k—ﬂ-v
k+1—1 FC_[k+£+1
n-£ L~ 1 v m_~£-1
+ Z Bptv A@Q*l By +k—L-v 2+v =0,
v=min (k ,n-£)+1 ™o d
m_+k-L-v

0
which, by the induction hypothesis, yields (7.1.5) with « = k. Since

{Bk}:=1 contains infinitely many non-zero elements, we have infinitély often

k+1 m +k

g -t £ - >
o1 dg AK + q dg Bm0+k—l (k+1)q > 0,

which for large k contradicts (7.1.1). [

The transcendence of the special element zw 1 . zm Eg:i-does
k=1 yqk_yx k=1 F

not follow from theorem 7.1, but using its special character and chosing the
right multiplier, Wade proved its transcendence in theorem 4.1 of his ar-
ticle from 1941. By the same method he proved in 1943/44 the following

three transcendence results for certain elements of o.




7.2. THEOREM. For n ¢ N the element

1

n
k=0 Lk

Me~18

is transcendental over ]Fq (X).
PROOF. See WADE (1943), 84. [J

7.3. THEOREM. Let G € Iﬂl[X], g G>0and ne N, n > 1. Then

o

1

k=0 Gnk

is algebraic over ]Fq(x) if n = ps, s € W and transcendental otherwise.

PROOF. See WADE (1944), th.1. [

7.4. THEOREM. Let G ¢ ]Fq [X], dg G >0 andne¢ N, n > 1. Then

o

1

k=0 ck™

is transcendental over ZII:"q (xX).
PROOF. See WADE (1944), th.2. [}

The theorems 7.1 and 7.3 were generalized by S.M. SPENCER jr, (1952).
His proofs are based on the principle sketched in the proof of theorem 7.1.
Spencer's generalisation of th.7.1 consists of replacing the sequence
[e9] o0
{Fk}k=0 by a sequence {Gk}k=0 of elements of JFq [X] which satisfy the fol~
lowing two conditions:

G
(1) Ml e w [x1, x>0,
6 4
dg G
(ii) lim =,
ke g

See SPENCER (1952), theorenm 4.

The generalisation of theorem 7.3 reads:

7.5. THEOREM. Let the sequence {Gk}:=0 satisfy the two conditions:
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v
o

(i) Gk € JE'q [x1], k

and for some k., dg G > 0,
0 kg

QG.
(ii) X oo F [x1, k>o0.
G q
k
ret {o )7, i
e ek k=0" ek € N satisfy
(iii) e, | i1’ k 20,
e
(iv) pq kel k = 0.
e
k
Then zm —l—~is transcendental over F_(X).
k=0 Gek g
k
PROOF. See SPENCER (1952), th.7. Compare the case Gk = G and e = nk with

theorem 7.3. [J

Furthermore we mention that in the same paper by Spencer the follow-

ing result is proved.

7.6. THEOREM. Let the entire function f: & > & be given by
Leed
n
£(t) := Z bty b oeF (X

and bn # 0 for infinitely many n. Let Gn denote a denominator for

b.,b

o 1,...,bn‘of smallest valuation. Let o € ®\{0} be algebraic and dg a < O.

If there exist an increasing segquence n fMyreee of natural numbers

1

and an increasing sequence k k2,... of positive real numbers with

1'

llmi_>Oo ki'= », such that

(i) dg bv < - ki dg Gni, i=1,2,...; v 2n,,
(7.6.1)

oo

Ly ) b o’ #0, i=1,2,...,
v=%+1

then f(uo) is transcendental over Fq(X).
PROOF. See S.M. SPENCER (1952), th.l1 or section 9 of this thesis. In

Spencer's article the theorem is proved only in the case that £ is defined

on F, but the proof also works in case f is defined for all t € . []




N.B. Spencer does not mention the condition dg o < O but it is not

clear how his proof works without it.

In 1946 L.I. WADE proved an analogue of the Gelfond-Schneider theorem
using the Siegel-Schneider method. We shall formulate this theorem and
give a sketch of the proof, In 1971 and 1973 the same method was used to
obtain transcendence results for a wider class of functions. See'

J.M. GEIJSEL (1971,1973) or chapter IV.

7.7. THEOREM. (WADE 1946) et a,B ¢ &. If o # 0, dg a < &%T»and BEF (),
then at least one of the three quantities o,B,y(BA(a)) is transcendental

over F_(X).
q

PROOF. Suppose a,8 and $(Bi(a)) -are algebraic over E& (X). For some
e ¢ ™0 the elements a9%,89%,49% (BA (0)) generate a separable algebraic ex—
tension K qf ]F‘q (X) . e e e

Let T ¢ ]2I[X] be such that rad ,TBq and qu (BA(a)) are algebraic
integers of K.

The proof, that the assumption on a,8 and ¢(BA(a)) leads to a con-
tradiction, consists of three steps.
Step I: construction of an auxiliary function L with many prescribed zeros.
Step II: proof with the aid of the Maximum Modulus Theorem that I has in-
finitely many distinct zeros of a certain type.
Step ITII: Application of the Product Formula for Entire Functions from

which the desired contradiction follows.

I. The natural numbers k, £ with £ > 3k will be chosen later. Set

m := k + £ - 1. Define the entire function L: & > & by

(0®  igS
X, . 97 v e,
0 i=0 J
where the algebraic integers xij of K will be determined in such a way
that L(A+BB) = 0 for all A,B ¢ I%IEX] with dg A < m,dg B < m. The con-
dition

2 2k+m :
T "9 L(a+BB) = 0, dg A, dg B < m

on L implies a system of at most qzm linear equations in the q2(k+£)

variables Xij with integral algebraic coefficients (apply th.2.11(a),
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th.2.13 ahd th.2.5). Using that

¥ (B)
dga-1
dg 1; = (dg a-u)q" < q°°9
u
(see remark 2.6) we find that the valuation of these coefficients and al-
- . + R
so of their conjugates is less than q22 e(m+c1), where the rational con-

stant ey > 0 does not depend on k and £. According to lemma 6.16 we can

determine the Xij in such a way that not all of them are zero and that

28+e
(7.7.1) dg Xij < (m+cz)q ’

where c, > 0 is independent of k and £.

From now on we suppose that the Xij are fixed accordingly.

II.For g 2 m we define

B(u) := {A + 8B [ A,B ¢ ]Fq [X]; a and B not both zero;

dg A < u, dg B < u},

Let B := U;=m B(u). The second step now consists of proving by induc-
tion that L vanishes on B. We have constructed L such that L(t) = 0

for t € B(m). So it is sufficient to prove that
(t € B(u) = L(t) = 0) = (t € B(u+l) = L(t) = 0).

Since B ¢ IEI(XL all the A + BB are different. Hence the number of ele-
2
ments of B(u) is g L
Let t, € B(u+1)\B(u). If £ is chosen large enough, then
dg t0 <u + d*(B) < 2u. By assumption
-1
L(t) m (t-a)
aeB(u)

is an entire function. Hence we can apply the Maximum Modulus Principle

(th.5.16) and obtain

dg L(to)'— z dg(to—a) < max dg L(t) - 2u(q2u—1).
aeB(u) dgt=2u
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From the definitions of L and ¥y and inequality (7.7.1) it follows that

Lie + e q2k+e+2u,

2
(7.7.2) max dg L(t) < (2u+m+c2)q 3

dgt=2u
where ¢y > 0 is independent of k and £. Now put

n:=u-kX+1,

then n = £ and

2n+e 2k-e-2 1 4k * 2k
< - .
dg L(ty) < g {n(3—q + 2n+e) +c,toa +d (Blg }.
q
From the choice of t0 and the definitions of L and T it follows that
2n . 2k+u
rd 4 L(ty)

is an algebraic integer of K. Therefore its norm is an element of E}IEX]

with
2n. 2k+u
q g < 2n+e _ 2k-e-2 - 4k
(7.7.3) 49 N g (5 T L(ty)) < hg {ul4—g Y+ ca I
q

where ¢, > 0 and h := {X: Iﬂl(x)]. Now first choose k such that
Ll—qZk—e_2 < 0. Then take £ so large that
(i) d*(B) < £ (this was required in the calculation above),
(ii) £ > 3k (as was assumed throughout the proof),

L. 2k-e~2 2k~e-2 2k-e~2 4k
(1i1) u(4-a"" 57 smla-g ° ) = (kH-1) (4-gT T ) < - cua .

III. Now k and £ are fixed. According to the Product Formula for Entire
Functions, corollary 5.24, we have

' n -5 ©w  a-H,

L(t) = vt
aeB(u) a beR*\B(u)

%
where p € Iﬂo, Yy e &,y # 0, R" = R\{0} and R denotes the set of zeros
of L. Comparing the maximal value on {t [ dg t = 2u} and the value in

t = 0 of the last product, the Maximum Modulus Principle yields

(7.7.4) max dg I (1- -;—) 2 0.
dgt=2u beR \B (1)
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Further we write

n (a-t)}
nooa-5 -
aeBu) aeB(u)

Then it follows from (7.7.4) that

(7.7.5)  max dg L(t) = dg v + 2up + 2u(q> ~1)-(u+d* (B1) (@ F-1) .
dgt=2u

For u large enough (7.7.2) and (7.7.5) are contradictoiy. 0

In 1949 XK. MAHLER proved an analogue of the well-known theorem of
Liouville on the approximation of algebraic numbers by irrational numbers
for certain function fields. His proof also works for our field &. There-

fore we have, in our notation,

7.8. THEOREM. (MAHLER) If o € & is algebraic over Ek{(x) of degree n 2 2,
then there exists a c € R such that for all pairs P,Q € ]iq[x] with Q # 0

- we have

E& > c -ndg Q.

dg @ ~ >
g 9

PROGF. See MAHLER (1949), th.1. [

In case thercharacteristic of the function field is 0, Mahler's theorem
does not give the best possible result [see B.P. GILL (1930)]. Mahler gave
an example from which it follows that in case the ground field has charac-
teristic p, theorem 7.8 is sharpest.

7.9. THEOREM. Let o € ® be the element
P
@=L,

i=g xP*

then o is algebraic over IE{(X) of degree p = 2 and there exist an infinite
sequence of relatively prime polynomials Am,Bm € E}IEX] with Bm # 0 such
that

dg (o- gio =-pdgB,
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where lim dg Bm = =,

PROOF. See MAHLER (1949), th.2. Note that o is a root of the equation
P_pslo
t t+ 3 0. 0O

7.10. REMARK. In the same paper Mahler raised the question whether the re-
sult of theorem 7.8 still gives the best possible result for elements o of

the form

(7.10.1) o = z a Xi, mez,aiel}?‘q,
i=-m
which are algebraic over E}I(X) of degree at least 2 and at most p-1.
Recently L.E. BAUM and M.M. SWEET (1976) proved the following state~
ment:
"There exists a unique element o of the form (7.10.1) with g = 2 that
satisfies the irreducible equation

n
t2 +1 + Xt +1=0, n

v
[

For this o there exists an infinite sequence A, B ¢ Eg{[x] such that
(Am,Bm) =1, Bm # 0, lim . dg Bm = « and such that

Am n

dg (o~ E—Q = -1 - (27+1)dg Bm .
m
This contradicts an earlier assertion of J.V. ARMITAGE (1968) to the

effect that a Thue-Siegel~Roth theorem should hold for algebraic elements
in & which are not contained in a cyclic extension of ]iI(X) of degree pn
(nelN ). Armitage's assertion was earlier showed to be false by

_ C.F. OSGOOD (1975) .

Theorem 7.8 enables us to construct a new type of transcendental ele-
ments of ¢; this will be done in Chapter III.

Finally we mention that P. BUNDSCHUH in 1974 gave an analogue of
Mahler's classification of transcendental numbers in S—, T- and U-numbers
and that he introduces a notion of transcendence measure in . (See

Séminaire Delange-Pisot-Poitou 1974/75, §3.)







CHAPTER III

ON THE TRANSCENDENCE OF CERTAIN POWER
SERIES OF ALGEBRAIC ELEMENTS OF ¢

8. LIOUVILLE NUMBERS

As already mentioned in chapter IT, section 7, Mahler's analogon of the
theorem of Liouville (see th.7.8) enables one to construct transcendental

elements of &.

8.1. DEFINITION. An element n € ® is called a Liouville number if for every
m e IN0 there exist elements A ,B ¢ ¥ [Xx], with (A ,B ) =1, dgB >0

m’ m a m’ m m
- and Am/Bm # n such that

A
m
(8.1.1) dg (n - E;) < - m dg Bm.

8.2. THEOREM. Every Liouville number n € ¢ is transcendental over ]ﬂl(x).

PROOF. Suppose 1 is algebraic over E& (X) of degree n. If n = 1, then there
exist A, B ¢ ]Fq [x] with (A,B) = 1 such that n = %. For all C,D ¢ JFq [x3
%-# %—and dg D > dg B we have

(. ¢
(8.2.1) dg \n sy 2 ~-dg b -dg B 2 - 2dg D.
For m > 2 the relations (8.1.1) and (8.2.1) are contradictory.

Now suppose n = 2. According to theorem 7.8 there exists a ¢ € IR such

that for all pairs P,Q € Fq[x] with Q # 0
P
dg (n - 5) >c-ndgQ>-mdgQ

for m sufficiently large. This contradicts (8.1.1). 0
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8.3. EXAMPLES. (i) Let o ¢ & be defined by

[
J

-l
1 x7°

I3

Q
i
I~ 8

J

where cj E:Fq, cj # 0 for infinitely many j. For m ¢ IN we define

u o= max {j | c. # 0},

1<3<m J

, U oc,
A:=Xu'§:—.3‘
m . ji
j=1 X
and
u!

B =X .
m

. = = 1!
Then Am, Bm eZFq[X], (Am,Bm) 1, dg Bm u! > 0 and
dg/a— "n < - (mt1)! £ - (m+l)dg B
\ B ) m”

Hence o is a Liouville number.

(ii) Let a € ® be defined by

c

3

0F 5
4 0

where cj EZFq, cj # 0 for infinitely many j. For m ¢ IN we define

Q
i
| ~18

3

= max {j | c, # 0},
0<j<m J
U c.
3
A ==F ) -4
m u .= F
g =0 qj
and
B :=F
m qH-

u
= = gleg?
Then A s B € IzIEX], (Am,Bm) 1, dg B =q-q >0 and

A m+1
] +1
dg(u— B: ) = qm .qq <-mdg Bm'
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Hence o is a Liouville number.
9. TRANSCENDENTAL VALUES OF GAP-SERIES

In 1972 P.L. Cijsouw proved that if a certain gap-condition for a power
series S with algebraic coefficients is fullfilled, then S assumes tran-
scendental values for non-zero algebraic arguments. For details and a proof
we refer to CIJSOUW (1972), th.1.11 or CIJSOUW & TIJDEMAN (1973). In this

section we shall give an analogue of Cijsouw's theorem for the field &.

9.1. DEFINITION. Let P ¢ &[t] be given by

Then the height of the polynomial P, notation H(P), is defined as the

maximum of the valuations of the coefficients of P, i.e.

If o € ¢ is algebraic overin(X), then the height of o, notation h(a),

is defined as the height of the minimal polynomial of o over Fq[x].

In’ the next two lemmas we shall give a lower and an upper bound for

h(o) in terms of suitable characteristics of a.

9.2. LEMMA. Let o ¢ & be algebraic over Fq (X), then
(9.2.1) dg o £ h(a).

PROOF. Since h(a) = 0, we restrict ourselves to the case dg o = 0. Let

P e Fq[X][t], given by

n n-1
i= +... +
P(t) At +A t + At 4 A,

be the minimal polynomial of o. Then
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Hence, using dg o =2 0, we obtain
ndg o £ n dg o + dg An < ‘max (idga+dgAi)

0<i<n~1

(n-1)dg o + h(a),

A

from which the inequality (9.2.1) follows. O

9.3. LEMMA. Zet o be algebraic over ]iI(X) of degree n and let M be a de-

nominator for o. Then

h(a) < n(dg M + d*(a)).

PROOF. Let Q ¢ ]ﬁlfx][t],be the minimal polynomial for «, given by

: n n-1
Q(t) := Apt + An—it +...F Alt + AO.
" Let al = a,uz,...,an be the conjugates of a, then
n
Q(t) = An o (t—ai).
i=1

Now Aj/An, j =0,1,...,n-1 are the elementary symmetric polynomials in

Oy rprennsO s disregarding the sign. Hence
A, %
(9.3.1) ag A—Js max dgla, o, ...0; ) <nd (@), 3 =0,1,...,n-1.
n 1<i_<n 172 3
1<v=n-j

Since Mo is an algebraic integer, there exists a polynomial

P e ]Fq [x1[t], given by
P(t) := (Mt) + Bn_l(Mt)n_l +...+ B, (ME) + B

OI

for which P(a) = 0. Since Q is the minimal polynomial of o, P must be a

multiple (in ]al[x][t]) of Q and therefore

for some C eZFq[X], C # 0. Hence




(9.3.2) dg'An < dg An + dg C = n dg M.

Now the lemma follows from (9.3.1) and (9.3.2). 0

9.4. LEMMA. Let P1,P
height Hl’H

5 ein[X][t] be polynomials of degree N, ,N, in t and

5 respectively. If there exists an element w € ¢ such that

(9.4.1) max (ngl(w),ngz(m)) < - (N1H2+N2H1),

then P, and P, have a common zero.

1 2
PROOF. Let
Ny Nyt
Pl(t) = At ALt ook Bt Ay, AL # 0,
1 1 1
N2 N2—1
= +...+ + .
P2(t) : BNt + BN _1t Blt BO BN #0
2 2 2
-and let det R be the resultant of Pl and Pz:
AN1 A1 AO 0 0
0 A N A A
N1 ’ 1; 0 : N2 rows
0
(9.4.2) R = o ... 0. -ANl s T B AL . .
BN . B1 BO 0 0
0 B
N, B By e
N, rows
) 1
oy
[¢] 0 BN2 B1 BO

Then it is'well-known, see’&.§. VAN DER WAERbEN §30; thét'deth = 0 if and
only if P1 and P2 have a common zero. The coefficients of P1 and P2 are
elements of IIFq FX] and’ hence det R ¢ ]Fq [x], i.e. det R = 0 or dg(detg) ’2 0.
So if'wé &how that’ theiconditidn™(9.4:1) implies-dg(det'R) < 0; 'the lemma

will be proved.




. . th N +N2—i
First suppose dg w < 0. Multiply thei column of R by w and

add the result to the last column, i = 1,2,...,N1+N2-1. Then divide the
the result by

Pl(w) if dg Pl(m) 2 dg Pz(m),
P(w) :

P2(w) if dg Pl(m) < dg Pz(w).
So we obtain
(9.4.3) R = P(w)R',

where R' is a matrix that is obtained from R by replacing the last column
by a new one in which all elements have valuation at most zero. Every term
in the expansion of det R' is the product of one element of ¢ with valua-

tion at most zero, at most N, elements from the set‘{Ao,Al,...,ANl} and at

2

most N1 elements from the set {BO'BI""'BNZ}' Hence from (9.4.3) and

(9.4.1) we obtain

dg(det R) < dg P(w) + N1H2 + N2H1 < 0.

This proves the lemma in case dg w =< 0.

Now suppose dg w > 0. Define the polynomials P§ by

N _
P e) =t d b (7Y,  §=1,2.
J J
* *
< < i i ve—
Then P1 and P2 are of degree M1 < Nl' M2 < N2 and height Hl' H2 respective

ly. Since dg w > 0, we have
dg P (wY) =dg P.(w) - N, dg © < dg P. ()
. (w = (w) - N, w < . (w
g 3 g 3 3 g g 3
and therefore

L | EI |
max (ngl(m ), ngz(m )) < - (N1H2+N2H1) < - (M1H2+M2H1).

. -1 . .
Since dg(w ") < O, we have the case considered previously and we conclude
* *

that P1 and P2 have a common zero, say Y. Since AN # 0 it follows that
o 1
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-1
Yy # 0. Now vy = is a common zero of P, and P_,. []

1 2

9.5. LEMMA. Let P1 and P, be a polynomials in ®[t] of height H and H, re-
spectively. Then the product P1P2 has height H1 + H2.
PROOF. Write P, (t) = At + Sl tat+a # 0. Define b
PROOF. Write Py(t) = At + By TRy o By 7 U- Petine ny by

dg An = Hl'

1
dg An < Hl' n= 0,1,...,n1—1.
n1+n2

Define in a similar way n, for P2. Then the coefficient of t in P1P2
has degree H1 + H2. Since it is clear that in Ple no coefficients with a
degree greater than H1 + H2 occur, the lemma is proved. O

9.6. LEMMA. Let P ¢ IiI[X][t] have degree N 2 1 and height H. Let o € & be

algebraic of degree n and height h. Then either P(a) = 0 or
(9.6.1) dg P(a) 2 - (hN+nH).

PROOF. First we supppose that o is separable. Let Q denote its minimal

polynomial and let o, ,0 ,...,on be the n E}{(x)—monomorphisms Iil(x)(a)¢+ $.

1772
Hence the zeros of Q are cj(a), i=1,2,...,n. Now if (9.6.1) were not true,

we would have
max{dg P(a), dg Q(a)} = dg P(a) < - (hN+nH).

Then lemma 9.4 says that P and Q have a common zero, i.e. for some

j e {1,2,...,n}
0 =P(o,(a)) = o,(P(a))
J J

and hence P(a) = 0.
e

Now let o be non-separable. Take e € N such that ap

is separable.
If Q € 3{t], we denote by Q* the polynomial obtained from Q by raising the
coefficients of Q to the power pe. Clearly, Q and Q* are of the same
degree and H* = peH, with the obvious meaning for H and H*. Now let

e
Q€ I}I[X][t] be the minimal polynomial of «. Then Q*(ozp ) = 0. Hence the
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’ ) . *
minimal polynomial of oP® divides Q . In view of lemma 9.5 the height of
e
o does not exceed peh.
Suppose P(a) # O. Then we have

P* (aP%) # O.

e
Applying the part of the lemma already proved on P* and ap , we find that

(9.6.2)  dg P (aP%) > - (o hnenpSH).
The lemma now follows from (9.6.2) and
p° dg P(a) = dg P (P%. O

Now we are ready to prove the analogue of Cijsouw's theorem mentioned

in the beginning of this section.

" 9.7. THEOREM. Letb{ak}:_o be a sequence of non-zero algebraic elements of

®. Denote

and

dk := []Fq (3) (ao,al,...,uk): ]Fq (x) 1.

Let Mk be a denominator for uo,ul,...,ak. Finally suppose that the power

series
S(t) :=

o
where {nk}k_o is an increasing sequence of non-negative integers, has

radius of convergence R > - o,
Then, if
(n, +dgM +a )
(9.7.1) lim-—li?rfhiiiji-=
koo k+1

0,
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S(6) is transcendental over E& (X) for every non-zero algebraic 6 € & with

dg & < R.

PROOF. Let 8 # 0 be algebraic, dg 6 < R and let n denote the degree of 0.

M is a denominator of 8. Put

and

rk(S) := §5(6) -~ sk(e), k € EP -

Now S, (6) ¢ F (X)(d,.,0,,...,0 ,08) and therefore S, (8) is algebraic over
k q 0" k k ny

< . . . . _

Fq (X) of degree Sy € ndk. Denote its height by hk. Since Mk M is a de

nominator for Sk(e): we obtain from lemma 9.3 and from lemma 6.15

A

h a{ Ky 4 a¥ (s, (o))}
L, <04 dg(MkM k( 1)

IA

*
ndk{dg Mk + 0, dg M + a, + nkd (8)}.
Let P ¢ EEI[X][t] be an arbitrary but fixed polynomial of degree
N = 1 and height H. Let 81,82,...,6m be the different zeros of P in & and
suppose m > 2. Then, by the convergence of'{sk(e)}: ¢ there exists a «

= 1

such that for k > Kl

dg(sk(e)—sk+1(e)) < min dg(Bi—Bj).

1<i,5<m
i#j
Hence for k > Kl
P(5,(0)) = 0 = P(s ,(6)) # 0.

Clearly, this also holds if P has one zero of multiplicity N. Consequently

of the sequence of natural

there exists an infinite subsequence‘{kj};o_1

numbers such that

P(s (81) # 0, i=1,2,... .
]
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Now it follows from lemma 9.6 that

dg P(Sk.(e)) 2 - (hk_N+Sk H)
J J J

. *
> - ndkj{(dngj+nkjdgM+akj+nkjd (8))N + H}.

Hence
(9.7.2) dg P(Skj(e)) > - cldkj(dngj+akj+nkj)’

where oy > 0 is independent of j.
We now estimate rk(e) as follows. Choose p € R with dg 6 < p < R.

Then since

dgo,

lim sup = - R,

k>

< - pn,_ and hence

we have for k > « x

the inequality dg o

2 k

(9.7.3) dg r, (6) £ max n,(dgb-p) =n (dg6-p) .
k izk+t T kil

N N-1
= s +
P(t) = Byt + Byt  +...+ B/t + By

and suppose that rk(e) # 0. Then we may write
i i
S -
N (0) sk(e)

CP(S(8)) - P(5,(8)) = r (8) 121 B, HOENON

From (9.7.3) it follows that for k > K2 we have

dg{P(s(8)) - P(Sk(e))} < (dge-p) + H +

et

+ max dg{s™ (o) +-sl"2(e>sk(e> #4557 o).
1<i<N o k

Since for k sufficiently large

max  max dg S ' 2(8) S)(8) € (N-1) max (dgS(8),0),
1<i<N 0<j<i-1




we certainly have

k>« ,

(9.7.4) dg{r(s(8)) - P(Sk(e))} S oo, My g 3

where S, > 0 is independent of k. Clearly, this inequality also holds for

the case that rk(S) = 0. The inequalities (9.7.2) and (9.7.4) yield for

k., >k

3 3
P(S(8))-P(Sy, () (dgMy . +ay .+, )
dg P(S (Si)wi’ S'nk +1{c2 - cidk — ]
kj 3 J e 41
J
Using condition (9.7.1), we infer that there exists a K4 > Kq such that

P(5(0)) P (Sy, (0))

P(5, (0))
5

dg

< 0, kj > K

Hence for k. > «
j 4

P(5(0))-P(Sg, (8))
dg P(s(8)) = dg{P(S (G)){l + }] = dg P(S_ (8)),
kj P(Sk_(e)) kj
J
from which we conclude that P(S(6)) # 0. Since P is chosen arbitrarily, we

have proved the theorem. 0

9.8. REMARKS. (i) A power series 2 is called a gap series, when

© t
k=0 %k
llmk»m nk/nk+1 = 0. Thus we infer from the previous theorem that the sum

of the gap series

L e 0% ¢ EZF; . k=0,1,...

k=0

is transcendental over Ial(x) for every non-zero algebraic 6 from & with
dg 8 < 0.

(ii) In case R is finite, S(6) need not be transcendental for algebraic 6
=k!, o= xk!/xk. Then R = - 1, the

k k
conditions of theorem 9.7 are satisfied and we obtain

with dg 6 = R. For instance, take n

1

S(x ) = 1

1 -
¥ = A-x) .
X

| ~1 8

k=0

The following example shows that s(8) can be transcendental for an

algebraic 6 with dg 6 = R; L.I. WADE (1941) proved the transcendence of
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oo k -1 oo k -
Ek=1 (X4 -X) ", whereas x% Zk=1 (x2 -x) ! can be seen as the value for

8 = x"1 of the gap series

k! k!
® qa . d
X t
ste) = ] T
k=1 q
X* =X
with radius of cohvergence R =~ 1.
(iii) If the elements ak, k ¢ EJO belong to a fixed, separable, finite
extension of Fq(x), then the condition in theorem 9.7 can be weakened to
+
. DtdaMta,
lim —————— = 0.

ks Tkl

(iv) The element

of example 8.3 is a Liouville number, which can be seen as a certain value

of the gap series
o k'
S(t) = ) et

which converges for t € ¢ with dg t < 0. Here a = 0, dk =1, Mk = 1 for
k =1,2,... and condition (9.7.1) is satisfied. Now it follows from
theorem 9,7 that S(X—l) is transcendental.

With the method used in the proof of theorem 9.7 we can generalize

theorem 7.6 to

9.9. THEOREM. Let X be a finite, separable algebraic extension of Fq (x).

Let the entire function S: & + ¢ be given by

Let Mn denote a denominator for o _,o

0 1,...,an with minimal valuation. Let
6 € o\{0} be algebraic.

If there exists a positive, real constant c such that

(9.9.1)  d" (o) +nd*(8) <c dg M ,
n n
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0

. o
and increasing sequences {nk}k=1' n_ € W and {Ak}k=1' A € Ryhy > 0 with
limk+m Ak = © such that

(i) dg un + n dgb < - Ak dg Mnk, k = 1,2,...; n > nk,
(9.9.2)

(o]
@iy ¥ anen;éo, k=1,2,...,

=n -+
st nk 1

then S(0) is transcendental over Fq (X).

PROOF. Since S is entire, we have

dg an
(9.9.3) lim sup = -,
> n
1£ o # 0, we have
N ) M%) € F X1\ {0},
q
Put h := [K: EkI(X)] and let 01,02,...,0h denote the h EE[(X)—monomorphisms

Ke»r &. Then, using (9.9.1) and lemma 6.10, we have

=5

0 < dg NK+E€:(X) (Mnan) = . dg(cp(Mnan)) <

1

A

*
< h dg Mn + dg o + (h-1)d (an) < (h+c(h-1))dg Mn + dg a .

Hence by (9.9.3) there exists an n, such that

dg Mn

(9.9.4) oy #0, n>n. = > 1.

0 n

First we remark that we may suppose that
(9.9.5) o # 0, k=1,2,... .
"k

For suppose that (9.9.5) does not hold a priori. It may occur that we can

take subsequences
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such that not oniy (9.9.2) but also (9.9.5) holds for these subsequences.
Then we continue after the appropriate relabelling. But such subsequences
need not exist, due to the fact that for some kO

= >k .
%n 0. k 0

Then we proceed as follows. From the sequence {nk}:_l we "skip nl,nz,...,nk

and those o for which 0
o = o 4 Toeer Ty =0 0= 0.
k-1 Px-1 e k
The remaining sequence of indices we denote again by'{nk}:=1. Note that in
view of (9.9.2)(ii) this sequence {nk}:=1 is infinite. From {)\k}k=1 we take

o«
the corresporiding subsequence and call it {Ak}k=1 again. Now define
m o= max{n | oy < n < n,oo # 0}, k=1,2,... .

Then Mn is a denominator for o , in fact
k

dg M = dg Mn ’
k
in view of the minimality condition of dg Mn'

Finally

=m + =
n=m_ 1 n=n, .,
Hence (9.9.2) holds for the sequence {mk};_l, whereas moreover o # 0.
After these preliminaries we now start with the actual proof. Let
8 # 0 be algebraic of degree s and let M be a denominator for 6. Put
T

_ i
Sk(e) 1= .z aie
i=

and

- _ 0
rk(e) = S(8) Sk(e), ke N .

Then Sk(e) € K(9). Denote the height of Sk(e) by h According to lemma

K
9.3, lemma 6.15 and the inequality (9.9.4), we have
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(9.9.6) hk < cl{nk + dg Mnk},

where c1 is a positive, real constant, independent of k.

Let P ¢ Fq[x][t] be an arbitrary but fixed polynomial of degree N = 1
and height H. Let Bl'BZ""'Bm be the distinct zeros of P in ¢ and suppose

that m 2 2. From the convergence of zz_ unen it follows that for-k > k

0 1

and v € N we have

ag(s (6) - 8, (8)) < min dg(B.-B.).
k+v k 1<i,9<m i3
i#j
On the other hand we see from (9.9.2) (ii) that for every k ¢ NO there

exists a v(k) € N such that

o < dg (s (e)—Sk(e))-

k+v (k)

Hence

(9.9.7) P(sk(e)) =0=P(S (8)) # 0.

k+v (k)
Due to (9.9.2) (ii) this is also true in case P has but one zero, of order
N. Relation (9.9.7) yields the existence of a sequence {kj}§—1 such that

(9.9.8) B(S. (8)) # 0, 3=1,2,... .

J

k

Now it follows from lemma 9.6 and from {(9.9.6) that

> - -
dg P(Sk-(e)) 2 (hk.N+sk.H) > c2(nk'+dg Mn Y,

J 3 J J k.
J

where c2 > 0 is independent of j.
According to (9.9.2) (i), we have

dg rk(e) < - Ak dg Mnk.

Hence for k sufficiently large
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(9.9.10)  dg(P(S(6)) - P(5, (8))) < -

where c_, > 0 is independent of k.

3

}\k dg Mn + H + (N-1)max(dgS(6),0)
k

c3}\

x dg Mnk,

In view of (9.9.8) and the inequalities (9.9.9) and (9.9.10), we have

P(S(8))-P(Syc, (0))

P(Sk,(e))
J

dg

Using (9.9.4) and

]'.im )\k = ® ,
e J

we see that for j sufficiently large

P(S(0))~P(S, (8))
3

(6))

J

Hence P(S(8)) # 0. Since P was chosen

0

dg < 0.
; P(Sk

theorem.
10. TRANSCENDENCE MEASURES

Let o € ® be transcendental over

P € ]Fq [Xx][t] we have P(a) # 0. Since

dg M,
%
J

< - - — -
< nk. {(C3Ak, c2) o 02}’
J 3 k

3

arbitrarily, we have proved the

qu (X). Then for all non-trivial

the collection C(N,H) of all non-

trivial P e ]Fq [X1[t] with degree at most N and height at most H is finite,

we have

min
PeC (NIH)

dg P(a) > ~ o,

Hence there exists an £: W X ]NO

P e C(N,H).

10.1.

f: W X I\IO -+ R such that

dg P(a) > £(N,H)

DEFINITION. Let o ¢ ¢ be transcendental over Fq

-+ R such that dg P{a) > f£(N,H) for all

(X). A function
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for all non-trivial P e ]il[x][t] of degree at most N and height at most H,

is called a transcendence measure of o.

In this section we shall give an upper bound for the transcendence
measures of all those transcendental o € & which occur as the limit of some
sequence {aj};=1, where all the aj.lie in a fixed, finite, separable alge-
braic extension of E}I(X), see theorem 10.6, Lemma 10.2 and theorem 10.3
may be considered as analogues of well known classical results, generally

called after Siegel.

10.2. LEMMA. Tet

s
z aki xi, k=1,2,...,r,
i=]
with a., € Fq(X) be a system of r linear forms in the s variables
i
xl,xz,...,xs'and with ¥ < s. Let a € Z be such that

max dg . < a.

1<i<s akl

1<k<r
Then for all ¢ ¢ N there exist C1,C2,...,CS € ]Fq [X1, not all zero, such
that

dg C < c
i
and

s
S .
dg ('21 akici) <a+ (1-2e, k=1,2,...,r.
i=

PROOF. Let M ¢ ]Fq [X] be such that Maki € ]Fq [x1l, kx=1,2,...,r;

i=1,2,...,8.

The cube Ky := {(t;,tyrenuyty) | t,ed,dgt; <c, i=1,2,...,s} contains
qsc lattice points (Xl'xz""’xs) with Xi e:Fq[X], i=1,2,00.,8.

If for such lattice points we denote

¥, = Yk(Xi""’xs) 1= X Ma .X., k=1,2,...,r

1

I e~
~
=
=

and if m := dg M, then ¥ ¢ E}IEX] and

k
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dag Y <m+ate, k=1,2,...r.

Hence every lattice point (xl,...,xs) of K, corresponds with one of the

r (mta+c) 0
q

lattice points of the cube

,...,tr) [ ti e ¢, dg ti <m+a+ c}.

K := {(tl,tz

Now choose n € N such that

(10.2.1) c

Kiw
t
[
IA
=]
A
0]

i

We shall distribute the lattice points of the cube K over qrn "cells" in

the following way. For every E € ]Fq[x] with dg E < n we consider the set

m+a+c—-n

A :={t e d | ag(t-Bx ) <m+a+c -n}

"B

Suppose that AEl n A 5 # @, then it follows by subtraction that

B

dg(El-Ez) <0, i.e. E1 = E,. Hence the sets AE are disjoint. Furthermore

2
we note thatevery Ge ]Fq [X] with dg G < m + a + ¢ belongs to one of these

AE' Therefore every lattice point of K belongs to just one of the qrn cells

of the form

{t, vt ree.,t) | £t €A , dgE <n, k=1,2,...,r}.
1 r k k

2 Ek

From the construction above we infer that every lattice point

(Xl'XZ""'xs) of KO corresponds with a cell of K. It follows from (10.2.1)

that

nr cs
a <gq .

i.e. the number of cells in K is less than the number of lattice points in

KO. Hence there are at least two different lattice points
(1 1 (1) (2) (2) 2 .
(X1 ),Xé ),...,XS ), (X1 ,X2 ,...,X; )) in KO

same cell of K, i.e. there exist El'EZ""’Er € EEI[X] with dg E

which correspond with the

<n
k [

k=1,...,r, such that
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: (1) L) (3), _  mtatc-n ,
dg(Yk(X1 ,X2 ,...,XS ) X Ek) <m+a+c n,

k=1,2,...,x; J =1,2.

NORNC
i i
are zero, dg Ci < ¢ and

If we put Ci = , 1i=1,...,s, then Ci € ]Fq[X], not all of them

s

dg(_z ak,C.) <

s
-m +
i% m dg(.z Ma,

.C.)
i=1 i=1 ki'i

IA

a+c-n-1<a+ c(l—i). 00

10.3. THEOREM. Let K be a finite, separable extension of Fq(X) of degree

n. Let

s
L oeyyxe k=12,.00r
i=1

with aki € K be a system of r linear forms in the s variables xl,xz,...,x

and let nr < s. Let a € Z be such that

S

max d*(aki) < a.

1<i<s

1<k<r
Then for every c € N there exist C1,C2,...,Cs € JFq‘[X], not all of them
zero, such that

dg Ci < c, i=1,2,...,8

and
s s
< - —
dg (izl @C;) Sa+b+ (1- e,

where b is a non-negative constant which depends only on K. More explicitly,

if K= F_(X)(0), then we may take b = (n-1)h(8) + n(n-1)a*(8).

To prove this theorem we need two lemmas which are interesting in
themselves. Lemma 10.4 is an analogue of a lemma of N.I. FPEL'DMAN (1951;
lemma 2, p.54), which is also proved by K. MAHLER (1960) and P. CIJSOUW
(1972; lemma 2.7). Lemma 10.5 is an analogue of a result of R. GUTING

(1961; theorem 4).
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10.4. LEMMA. -Let P e ®[t] be given by

N
N N-1
P(t) = at +a, .t to..otat+ag = ay ‘ﬂ (t_gi),
i=1
>
Byra, € 0y ay #0, N2 1.
Then
N
(10.4.1) H(P) =dg a_+ ) max(dgg,,0).
N i

PROOF. Let R1'R2""'R£ be the hooking-radii of P in increasing order. Put

. From

ez —00 po= oo i <
R : r Rpy +o and define m ¢ {0,1,...,£} by Rm <0 < R 1

0
theorem 5.11 we see that

M (P) = max dg a, = dg a,
0 0<i<N + m

. and hence that

(10.4.2) H(P) = dg a, .
n

Now take a to e ® such that 0 < pO = dg t, <R

0 e Since po is not a

hooking-radius, we have
(10.4.3) dg P(t.) =M (P).
0 P
o]
Again from theorem 5.11 we see that

.4.4 P) = + i
(10 ) Mp P) dg a; 1P

0 m 0

On the other hand it is clear that
N
(10.4.5)  dg P(t)) =dg a  + ) max (dg8, ,0) + Vo,

N i=1

where v denotes the number of zeros of P with non-positive valuation. But

from lemma 5.19 and corollary 5.14 we have v = im. Combining (10.4.2),
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(10.4.3), (10.4.4) and (10.4.5) gives the desired
N
H(P) = dg ag + ) max (dg8;,0). O

i=1

10.5. LEMMA. Let Q € E}I[X][t] be separable of degree N = 1 and height H.
Let 81,82,...,BN denote the zeros of Q. Let N be an arbitrary non-empty

subset of
As={(i,3) | 1sisN 1<3<N, i<ij}.
Then
(10.5.1)  } dg(B,-B.) = - (N-1)H.
: i 73
N
PROOF. Put
N
Q(t) =a T (t-Si).
i=]
Then the discriminant of Q, defined by
2
D :=A m (B,-B.)",
1<i<i<N J

is an element of Eé_[X], see Corollary 0.6. Since Q is separable, the zeros

of Q are distinct and thus D # 0. Therefore

dg D = (2N~-2)dg A + 2 ) dg(g . -B.) = O.
1<i<j<N ]
Hence
J dg(B,-B.) = - (N-1)Ag A - ) dg(B,-B.)-
i3 AW i3

We may suppose that 81,62,...,BN are arranged in such a way that

< < <
dg 81 < dg 82 <...< dg BN. Then




¥ dg(B,-B.) < Y dg B, < ¥ max (0,dgB.)
i,ea\N  F T (q,5)eaw T (1,5)e0W J
N
< ¥ (3-1) max(0,dgB.)
3=1 )
N
< (N-1) ) max(0,dgB.) -
3=1 ’
Thus
N
7 dg(B,-B,) 2 ~ (N-1) (dgA+ ] max(0,dgB.)),
oot j=1 ’

which, by lemma 10.4, yields
dg(B8.~B.) = - (N-1)H. [
)_\EI g(8; -8,

Proof of theorem 10.3. Since K is a finite, separable extension of Fq (X),

" there exists a primitive element B ¢ K, i.e. K = E;I(X)(B). (See 0. ZARISKI
and P. SAMUEL (1958), Ch.II, §9 th.19.) We have

(10.3.1) o .= ] a .. B, g € Fg ), k=120 5= 1,2,...ps.

Let Oy r0yreee0 denote the n ﬂiz(x)—monomorphisms K<+ ¢. For every

ke {1,2,...,r} and i € {1,2,...,s} we solve the system of equations

J
dga .. < max dg ¢ (a .) + (n-1) max dg o (B”)
kij 1<v<n - voki 1<v<n v
0<j<n~1
_ ]
dg det(Ov(B ))v,j
2 %
< a+ (n-1)"da (B) - dg m (Ov(B)—Uu(B))~

1gv<ugn
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Since the roots Uv(S), v =1,...,n of the minimal polynomial of B are dis-

tinct, we have according to lemma 10.5

I dglo (B)-0 (B)) = - (n-1)h(B).
1<vy<u<n s

If we define

2 %
bO = (n~-1)h(B)+(n-1) 4 (B),
then
< + .
dg akij a bO
Now we consider the following rn linear forms in the s variables
Ky rXypee Xt
s
121 i3 Xy k=1,2,...,r5 3 =0,1,...,n-1,

It follows from lemma 10.2 that there exist Cl""’cs in Eé:[X], not all

of them zero, such that
Cc, <
dg 5 c

and

S
( s
(10.3.2) dg\izl akijci> <a+ by + (1- —e.

From (10.3.1) and (10.3.2) we obtain

S
dg( v “kici> <a+by+ (- e+ (a-1)a"(8). [
i=1

10.6. THEOREM. Let o € ¢ be transcendental over E}I(X)' Suppose that

o = limj_m0 o., where all the aj are contained in a fixed, finite, separable
algebraic extension K of I%I(X). Then a transcendence measure for & cannot
be better than - coNH + clN' where CO

which depend only on o.

,C, are suitable positive constants

1
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PROOF. We may suppose that H 2 1. Choose 6 ¢ K such that X = Fq (X) (6) and

put n := [K: F_ (X)]. Since o = lim,  a_,there exists an o, such that
g J7e ] J

(10.6.1) dg aj =dg a

and

(10.6.2) dg(a—aj) < - NH - H.

We consider the linear form

N
+ + ...t O,
XO oajxl OLJXN

in the N + 1 variables xo,xl,...,xN. If N 2 n we can apply theorem 10.3

and it follows that there exist C ,Cl,...,CN € IAL[X]’ not all zero, such

0
that

dgc < H
i

N N+1
(10.6.3) dg(CO+ujC +...+ajCN) <N max(dgaj,O) + b + (1~ —;rﬁH,

1

where b is a non-negative constant depending only on X, i.e. on a. From

(10.6.1) and (10.6.2) we infer that

N N
dg{(oc—ocj)c1 +...04+ (o —aj)CN} <

AR
o -,
J

< dg{o-a.) + max {dg p—

+ dg c\)}
1<vsN 3j

< - NH + (N-1) max(dgo,0).
Hence, using (10.6.3), we obtain
N+1

N : b
(10.6.4) dg (CytaC, +. . .o cN) < - (—;1— ~1)H + N{max(dga,0) + ﬁ}’

which proves our assertion. - [
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10.7. REMARK. All elements of & which are up till now known to be transcen-—
dental, satisfy the condition of theorem 10.6. In section 9 we already

mentioned that the element

o«
w = L
k=1 xTx

is transcendental over JFq (X). (See L.I. WADE (1941), theorem 4.1.) We see
that w ¢ F and from theorem 10.6 we infer that a transcendence measure for
w cannot be better than -NH. In 1974 P.BUNDSCHUH proved that there exist

positive constants cl,c , depending only on g, such that

2

2
dg P(w) = - clq3N - c2Nq NH

for every non-trivial P € ]E‘q [X][t] of degree at most N and height at most
H. (See Séminaire Delange-Pisot-Poitou 1974/75, §3 th.2.) Recently

© -5
p. BUNDSCHUH has also given transcendence measures for P(1) and Xk=0 Lk , 5 € IN.

11. A TRANSCENDENCE MEASURE FOR CERTAIN LIOUVILLE NUMBERS

It follows from example 8.4.1 as well as from theorem9.7 that

[+

k! *

co+zlckx ’ ckqu,ke]NO,
k=

is transcendental over IE‘q (X). In the following theorem we derive a trans-

cendence measure for these Liouville numbers.

11.1. THEOREM. Let
*
c, X ’ ce]E‘q,ks]No.

k

Then for every polynomial Q € JFq [xI[t] of degree N 2 1 and height H one

has
N-1 2
(11.1.2) dg Q(a)} > ~ 51{N +NH log 2H}.

PROOF. (i) First we suppose that Q is irreducible. Put
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k
ing to lemma 9.6 we have either Q(uk) =0 or

Then o, is algebraic overZFq(X) of degree 1 and height h(ak) = k!. Accord-

(11.1.3) dg Q(ak) 2 - (H+Nk!).

Since all ¢, in (11.1.1) are non-zero, we have

k
- = - 1
dg (o ak) (k+1) !
and
dg a = dg o = 0.
Hence

i
. o~ -0,
(11.1.4) dg(Q(a)—Q(ak)) < dg(a—ak) + H + max dg((»_ k) < - (k+1)' + H.
1<i<N %y
Now we define

(11.1.5) « := minfk ¢ N | k! > max((N-1)!,2H)}.

Then for all k 2 k such that Q(ak) # 0 it follows from (11.1.3), (11.1.4)

and the triangle-inegquality in its sharpened form that

(11.1.6) &g Q(a) = dg Q(o,) 2 ~ (HHNK!).

]

Suppose that Q(ak) 0. Since Q is irreducible and since o, is algebraic

k

of degree 1, this is only possible if N = 1, Put Q(t) = Alt + AO’ then it

follows that

o) = a —(k+1) !

)= B (oo 1 %1 ¥ '

1
) # 0.

Qo g

i.e. Q(cxk+1

Hence at least one of the numbers Q(aK) and Q(aK+1) is different from

zer¥o and so, in view of (11.1.6), we have

(11.1.7) dg O(a) = ~ (H+N(k+1)!).
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Now we give an upper bound for (x+1)! in terms of N and H. First we

suppose that
(11.1.8) (N-1)! > 2H.

Then « = N if N2 2 and «k = 2 if N = 1. Hence (11.1.7) and (11.1.8) give

(11.1.9) dg Q(a) = - (£§%11£-+‘N max((N+1)!,6)) 2 - 9NN—1.

Secondly, if
(11.1.10) (N-1)! < 2H,
we have Kk 2 3. Hence
(k+1)! < 25(k-1)! logZ(K—l)!.
It follows from (11.1.5) and (11.1.10) that
(x=1)! < 2H.
Now (11.1.7) yields
(11.1.11) dg Q(a) = ~ (H+50NH log22H) 2 - 51INH log2 2H.

Finally (11.1.2) follows from (11.1.9) and (11.1.11).
(ii) Now let Q be a reducible polynomial of degree N 2 1 and height H and
let

o

R L] Um
Q=09 2,°..-0

m

be a decomposition of Q in irreducible factors Ql'QZ""' Qm € IiI[X][t].
Denote the degree and the height of Qi by Ni and Hi respectively,
i=1,2,...,m. Remark that Ni 21, i=1,2,...,m and that

(11.1.12) N = ulNl + u2N2 +...+ umNm'
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By lemma 9.5 we have

(11.1:13) H = ulHl + u2H2 Fo.ot umHm.

From part (i) of the proof we have

N, -1
i 2
dg @, (0) 2 - 51{Nil + N;H, log28}, i=1,2,...,m;

hence
m Ni—l 5
(11.1.14) dg 9o(a) = - 51 _Z n ANy + NJH, log“2H }
i=1
m uiNi—l m 9
> - -
> - 51 .2 (u,N,) 51N _z u;H, log” 2H,.
i=1 i=1
Since
(n+m)n+m—1 > nn—l + mm—1, n,me N
and since
2 2 2 0
(n+m) log 2(n+m) 2 n log 2n + m log 2m, n,me N ,

relations (11.1.12), (11.1.13) and (11.1.14) give
dg Q(a) = - Sl{NN—1 + NH log2 2u}. [
11.2. THEOREM. The function £: N x lﬁ) + R given by
£,E) = -51{8" ' + NH log® 2}

is a transcendence measure for the element

PROOF. Obvious from the previous theorem. ]




CHAPTER 1V

ON THE TRANSCENDENCE OF CERTAIN
VALUES TAKEN BY E-FUNCTIONS

12. A GENERALISATION OF WADE'S ANALOGUE OF THE GELFOND-SCHNEIDER THEOREM

12.1. DEFINITION. A linear function f: ¢ > ¢, given by

is called an E-function if

(i) there exists a finite, separable extension K of Fq (X) such that
uk e XK, k=0,1,2,..., .
(ii) there exists a ¢ € R, ¢ > 0, such that

d*(ak) <oq, Kk =0,1,2,.0. .

The above definition of an E-function differs from the classical one,

which, in addition, contains a condition on the denominators of the coeffi-

cients ak. (See for instance Th. SCHNEIDER (1957), p.112.)

13.2. REMARKS.
(i) An E-function is an entire function.

(ii) 'The functions ¥ and Jn, n € Z, are E-functions.

(iii) Linear polynomials with separable algebraic coefficients are E-func-—

tions. (See theorem 3.5.)

(iv) If £ and g are E-functions, then

r
£+ g, A _£(rz1), 2 (r21)
are E-functions.
(v) If P is a linear polynomial with separable algebraic coefficients in

® and f is an E-function, then Pof is an E-function.




In the proof of theorem 7.7 we have given an exposition of Siegel's

method in the field ¢. We shall now use this method to prove the following

12.3. THEOREM. Let fl""’fn be E-functions, not all polynomials and none

of them identically zero. Suppose that for 1 £ v < n and r ¢ N we have
(12.3.1) Arfv(t) = er(fl(t)’fz(t)""'fn(t))
where er(tl'tz""’tn) is of the form

peeast ) = ) a 2 ¢

(12.3.2) R _(t,.t . .
vr 1°72 n 03q31+...+an5q

with

Avrjl...jn € ]Fq [x1
and for some c0 e R, cO > 0,
(12.3.3) max dg A < coqr.

: ] j vri, ...J
OSq31+q32+...+qJnSqr 71 ’n

Then, if o, € ¢, o # 0 and B ¢ Fq (X), at least one of the 2n+l elements

B, fl(u),fz(a),...,fn(u), fl(aB), fz(aS),...,fn(aB) is transcendental over
¥ (X).
q

Before giving the proof we list some special cases as corollaries.

12.4. COROLLARY. The analogue of the theorem of Gelfond-Schneider
(theorem 7.,7) .

PROOF. Take n = 1, f1 =19, B e CD\]Fq (X), OL* e ®\{0} with dg (y,* < ;%1 and

o = A(u*). From (3.8.2) we see that
r

= (o115 9
er(t) = (-1)"t* , re N.

Then it follows from the above theorem that at least one of the elements

a*, 8, w(sk(a*)) is transcendental over Iﬂl(x). 0

12.5. COROLLARY. Let & € ® be defined by (2.10.1). If B is algebraic over
Fq(X) of degree = 2, then Y(Bf) is transcendental over Fq (x).
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1
12.3 that at least one of the elements B, Y(BE), Y(&) is transcendental

PROOF. Let £, = ¥, o = £. Then, since B ¢ I}I(X), it follows from theorem

over Fq(x). From theorem 2.12 it follows that Y(§) = 0. Hence, since B is
algebraic over EEFX), we conclude that Y (Bf) is transcendental over

F_(x). 0O
q

If B € Fq(X) the opposite of the above assertion is true, as shown by

the following
12.6. LEMMA. If B ¢ Ié (X), then Y(BE) is algebraic over Fq (X).

PROOF. For B ¢ E}I[X] the assertion above is obvious from theorem 2.12.

Now put B = g , A,B ¢ IZIEX]' B # 0. Then it follows from the theorems 2.12

and 2.13 that

dgB . Y. (B) J
A\ i Y a (a
o=w(B £y =) (D)7 =y —a),
’ \ B / j=0 FJ \B /
i.e. ¢(§E> is algebraic over Fq(x). ]

12.7. COROLLARY. (GEIJSEL, 1971). Let o € @\{0}, B € ¢\E}I(X) and n e Z .
Then at least one of the five elements B,Jn(m), -Jn(dﬁ),AJn(a), AJn(aS) is

transcendental over IEI(X)'

PROOF. First we suppose that n > 0. Apply theorem 12.3 with £, = Jn and ‘!

1
f2 = AJn. According to theorem 4.4, the conditions (12.3.1), (12.3.2) and

(12.3.3) are satisfied for Arf1 for all r € W . From lemma 3.12 and theorem

4.,2(ii) we see that

r
- a9 _ q 9 _ q
Arf2 Ar Jn—l (ArJn—l) + X X)(Ar-lJn—l)
r+1 r r r
= g9 + xT x0T =a T+ T -xag .
n-1-r n-r r+1l n rn

It follows again from theorem 4.4 that the three conditions from theorem

12.3 are also satisfied for Arf . This proves the corollary for n 2 O.

2
Now let n < 0. Suppose B, Jn(a), Jn(as), AJn(a), AJn(aB) are alge-~

braic over E}I(X). Then it follows from theorem 4.2(i) that the elements

B, J_n(a), J_n(as), AJ_n(a), AJ_n(aS) are all algebraic, which we have

just shown not to be true. [J




(12.3.4) £ (t) = } o =, 1 <v<n.

Suppose B, fl(u),...,fn(a),fl(aB),...,fn(aB) are algebraic over Fq (X) .

Then, for some e ¢ W,
qe qe qe qe qe
87, £y (a),...,fn (OL),f1 (ozB),..-,fn (aB)

are separable over Fq (X). Let K beafinite, separable algebraic extension

of Fq(X) of degree h which contains all these elements and the avk'

v=1,e..,n; k=0,1,2,... . Let T ¢ I%IEX] be such that
qe e qe
8 ,Ff3 (@) ,T£) (aB), v=1,...,n
are algebraic integers of XK. The natural numbers x,A with
A > 3k

will be chosen later. Put

m:=g+ A -1
and put
n qzx—l qu-l e e
= ja gia
L(t) := ) ) ) Xigp © £, (08),

v=1 j=0 i=0

where the Xijv will be determined non-trivially and in such a way that
L(A+8B) = 0 for all A,B ¢ ]Fq [X] with dg A < m, dg B < m. Moreover the
Xijv will be algebraic integers in K such that d*(xijv) is not too large
with respect to A and k. We have
2x 2k
n g ~-1qg -1 (o igS
(12.3.5) L(A+8B) = ) 7} Y ox,. (a+88)79 £ (aavasp).
. . ijv v
v=1 j=0 i=0

By the linearity of the fv we have

fv(aA+aBB) = fv(aA) + fv(uBB).




The expansion formula (3.10.1) gives

dgA ¢ (A)
£, (o) = }
u=0 u

Aufv(a)

aﬁd hence, by condition (12.3.1),

e
fif (an) =
e .
dga ()44 e e+j e+]
g /wu \ q q J1 q Jn
¥ At . ., f (@)...f (a) .
\ P / . : YUy, ... 1 n
u=0 u In_ u 1 n

OSq]1+...+q <g

e
From this formula we see that fg (aA) lies in K, i.e. is separable. In fact

q€
it is a polynomial in f

e+dgA mt+e !
q <q .

e
(a),...,fg (o) of total degree not exceeding

By theorem 2.5 we have

wu(A)

iy X
€ q [x]
u
e e e
and hence f3 (0d) € ]Fq[x][f? (u),...,fg (a) ]J.From condition (12.3.3) and
from remark 2.6 it follows that

e
q

A dgA dgA
4 g P g 1

qe e & qe
dg fv (ad) < q {(dgh)q -Pco max (dgf (Oc),...,dgfn (a)).

Now apply the h IAZ(X)—monomorphisms of K. Then we see that
* qe mte m *, q°
(12.3.6) d (£7 (an)) <= g (m+c.) + g max 4 (£ (o)), v=1,2,...,n.
v 0 v
1=v<n
Similarly we have
* q mie m * g
(12.3.7) a (fq (aBB)) < g (m+c.) + g max 4 (fq (aB)), v=1,2,...,n.
v 0 v
1gvgn
We observe that the coefficients of the Xijv in (12.3.5) are polynomialsin
e

Bq of degree not exceeding q2k

and in

e e e e
f? (u),...,fg (o), f? (uB),...,fg (aB) of total degree not

exceeding qit2K
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with coefficients in It;[X]' Hence, since

(12.3.8) q2>\ . q2;<<1-m < q2)\+1 ,

the condition

2X+1
(12.3.9) 1% L(a+gB) = 0, AB e F _[x], dg A <m dgB<m

2 . .
implies a system of g " homogeneous, linear equations, say

_ _ 2m
L Dy ¥y =0 k=129
1L,],V

242k

in ng unknowns X,, with integral algebraic coefficients D, ,
1jv ijvk

From (12.3.5), (12.3.6) and (12.3.7) we infer that

: 2A+1 22
a*(nijvk) <g dg T + (- -1)q" m+a™ () +
+ (q2K~1)qm+e[m+co+ max {d*(fv(u)),d*(fv(as))}].

1<v<n

Using (12.3.8), this yields

2X

* +e
<
a (Dijvk) < q (2m+c1),

where ¢, is a positive constant independent of k and A. According to lemma

1
6.6 with r = qu’ s = nq2K+2X and

2A+
=g e(2m+c1),

there exist algebraic integers Xijv in X, not all zero, such that condi-
tion (12.3.9) is satisfied and such that

2A+

* e
(12.3.10) a4 (xijv) < g (m+cz),

where 02 2 0 is independent of A and k.

From now on we suppose that the Xijv are fixed accordingly.

For ¢ = m we define




B(u) := {A+ 8B | A,B ¢ Fq[X]; A and B not both zero;

dg A < u, dg B < u}.

Let B = U:_m B(u). The second step of the proof now consists of proving
that L vanishes on B. We have constructed L such that L(t) = 0 for

t € B{(m). So it is sufficient to prove that for every u = m
(teB(u) = L{t) = 0) = (teB(u+l) = L(t) = 0).

Since B ¢ Fq(X),the number of elements of B(u) is qzu—l.
Let t, € B(u+1)\B(u). If A is chosen large enough, then

dg t. < u +d(B) < 2u.

0
By the induction hypothesis and by lemma 5.22

Lty T (t-a) "t

aeB(y)

is an entire function. Hence we can apply the Maximum Modulus Principle

(th.5.16) and we obtain

2
dg L(to) - z dg(t0~a) £ sup dg L(t) - 2u(g u—1).
aeB{u) dgt=2u
Therefore

) £ sup dg L(E) - (u-a*(B)) (g2*-1).
dgt=2u

(12.3.11) dg L(tO

From the definitionof I and inequaiity (12.3.10) we see that

2
sup dg L(t) < q2A+e(m+c2) + 2uqg Ate +

dgt=2u
2k+e
+ g max sup dg fv(at).
1<vsn dgt=2u

From (12.3.4) and definition 12.1 we have




- k k
sup dg fv(at) < max (dgav +2ug +qkdga—kq )

dgt=2u k=0 k
< max qk(c(v)+2u+dga—k) < cév) qzu,
k=0
where c(v) and c;v) are positive constants independent of k and A. Hence
+
(12.3.12)  sup dg L(t) < (Quimic,)qo ' + o g oW T2kre |
2 3

dgt=2u

where ¢y = max c(v).
1<v<n
Now put

n:=uu-x + 1.

Thenn 2 A and it follows from (12.3.11) and (12.3.12) that

2n+ 2k-e-2 4 2
(12.3.13) dg Lty < a0 [u-a" 7% + o) + cq™ + a"(8)g° 1.

From the choice of tO and the definitions of I, and T it follows that

2n+1
rd L(t,)

is an algebraic integer of K and therefore its norm is an element of Eg{[x].

Since Kisa finite, separable extension of Izl(x) of degree h, we have by

lemma 6.10
h
NK+I‘ (X) (L(to)) = T Gp(L(tO)),
q p=1
where 01,...,0h are the h EEI(X)-monomorphisms K< &. Furthermore
e k.
n qZ)‘-l qu—l qej °z° < op(tg i
o (L(t)) = } ) c(X..)o(t)( 6 (a )«--—-—).
PO mgm0 amo PPV R0 g POV pa®

Analogously to the derivation of (12.3.13) we derive

2n+ 2K-e-2 4
ag o (L(t))) < q TP + e, 4 o <+ a8)a? 1.




Hence

2n+1

T ne)) <hg Heme=2

(12.3.14) dg N 2nte

F (%) {ul4—g
q

4k
) +C4q }I

where cy > 0 is independent of « and A. If k is chosen such that

4 - qZK—e—Z <0

*
and then A is chosen such that d (B) < m and such that

—e- 4
m(4_q2K e 2) . c,a K 0,

it follows from (12.3.14) that L(tO) = 0. Hence we have proved that L

vanishes on B(u+1).

Now k and A are fixed such that L vanishes on B. According to the
Product Formula for Entire Functions (Corollary 5.24), we have for every

fixed ¢ (4 = m)
L(t) = yt° T (1-2) m (1-%),
aeB ) beR \B (1)

*
where p € EJO, Y € ®*, R” = R\{0} and where R denotes the set of zeros of

L. We now apply the Maximum Modulus Principle on
m (1-5).
beR*\B (1)

Comparing the maximal value on {t € ¢ | dg t = 2u} and the value in t = 0,

the Maximum Modulus Principle (theorem 5.16) yields

(12.3.15)  sup dg T (1-5) = o.
dgt=2u beR*\B (1)

Further we write

i (a-t)
mooaf - 2Bl .
a
aeB () acB (1)

Then it follows from (12.3.15) that




4.10
2
(12.3.16) - sup dg L(t) = dg y + 2up + 2u(q '-1) +
dgt=2u

- et B)) (1)

For u large enough (12.3.12) and (12.3.16) are contradictory. [J
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SAMENVATTING

Z2ij ® een algebralsch gesloten lichaam dat niet—archimedisch gevalu-
eerd is, met betrekking tot deze valuatie gesloten is en dat het lichaam
Fq(X) der rationale funkties in &&n variabele over een eindig lichaam F
omvat.

Dit proefschrift is gewijd aan het onderzoek naar transcendentie
over IFq(X) van elementen van ®. Als een van de resultaten noemen we:

als a,8 € ®, a # O en B ¢ Ié(x) en als f,,f,,...,8) E-funkties zijn,
die aan zekere voorwaarden voldoen, dan is minstens &&n van de 2n+1 ele-
menten B,fl(a),...,fn(a),fl(aB),...,fn(as) transcendent overIFq(X).

In het eerste gedeelte van het proefschrift worden de analytische
hulpmiddelen ontwikkeld, die in het tweede gedeelte bij het transcenden-

tieonderzoek worden gebruikt.







STELLINGEN

behorende bij het proefschrift

TRANSCENDENCE IN FIELDS OF POSITIVE CHARACTERISTIC
Laten zl,zz,...,zn complexe getallen zijn met

0<z,| =1, i=1,2,...,0
1
en

0=tz | < [t-z,| < ... < ]1-z |.

Zijme Z, m 2 - 1. Stel B1,B2,...,Bn zijn polynomen met compleke
co&fficiénten van de graad respectievelijk kl,kz,...,kn. Zij
k=k, + k2 + oo F kn + n. Dan bestaat er een geheel getal

1
v ¢ [m+1,m+k] zodanig dat

v v v
+ ... 2
I?l(v)zl + Bz(\))z2 + Bn(v)zn[

x-1 \k— 1

2 1 (—————-—— min
“ 4 \8e(m+k)/

B, (0) + B . (0) + ... + B, (0 .
e | L (0) 5 (0) J(')I

J.M. Geijsel, On generalized sums of powers of complex numbers,

Math. Centre Report ZW 1968-013, Amsterdam, 1968.

In 1966 gaven P.J. Sally en M.H. Tableson met behulp van de Haarinte-
graal een representatie van complexwaardige Besselfuncties’op een lo-
kaal compact, niet-discreet, totaal onsamenhangend, niét—archimedisch
gewaardeexrd lichaam. De Carlitz-Besselfuncties Jn (gedefinieerd in

[2] en in definitie 4.1 van dit proefschrift), beschouwd op de com-
pletering van het niet-archimedisch gewaardeerde lichaam I?Pn(x), zijn
afbeeldingen van een lokaal compact lichaam in zichzelf. Voor deze

Carlitz-Besselfuncties is geen Haarintegraalrepresentatie te geven.

[1]1 P.J. Sally en M.H. Tableson, Special functions on locally
compact fields, Acta Math. 116 (1966), 279-309.
[2] ©. carlitz, Some special functions over GF(q,x),

Duke Math. J. 27 (1960), 139-158.




III. Zij K een niet-archimedisch gevalueerd lichaam van karakteristiek p

dat E‘nl omvat. De functie f: K > K wordt gegeven door de machtreeks
P
F(t) = ) a,t”, a, €K, he N ui{Cla # 0.
o i i h

Indien er een n ¢ N bestaat zodanig dat fn lineair is, d.w.z.

Fern) = £7(8) + £, t,u € K,

fn(ct) = cfn(t), ce T ,t € K,
ph

dan heeft f de vorm
b m(r+k)
£(t) = 7 b, tF , b _eX b #0,
k=0 k 0

met r € @, r 2 0, mrx ¢ Z.

IV. 2ij, met de notaties uit dit proefschrift, a ¢ &, o # 0, o geheel al-

gebraisch over EE)(X). Dan is niet noodzakelijk dg o = 0.

V. Laten myn,s,i,,i ,...,it natuurlijke getallen zijn met n 2 2, m 2 s.

1772

De gehele getallen kl'k2""’kt voldoen aan k1 > k2 > L. > kt z 0.
Als
. s
+ - =
i, i, + + i, n
en
k k2 kt m
lln + i n + ...+ itn =n ,
dan geldt
kq k ki m
. . . 2 _
11k1n + 12k2n + ...+ ltktn Z {m-s)n .

VI. Laten m,n,r natuurlijke getallen zijn met n =2 2, m 2 r-1 > 1. De gehe-
> > > >
le getallen kl'k2""'kr voldoen aan k1 = k2 Z ... 02 kr z 0.
Als
ky ky k m m-1 m-r+1




VII.

VIIL.

dan is

kq ko ky m m-1 m—r+2 m-x

n + n + ... +n <£n +n + ... +n + n .
Als

ky ko kr m m-1 m~r+1

n +n + ... +n >n +n + ... +n B
dan is

k, k, IS m m~-1 m-~xr+3 m~r+2

ne+n 4+ ...+n =n +n + ... +n + 2n ]

Apostols stelling " Een Dirichlet-karakter is dan en slechts dan pri-
mitief als al zijn Gauss-sommen separabel zijn" ([1], stelling 1),

volgt op eenvoudige wijze uit de formule

TR0 = uig) X! (-;—nﬁ\) T (X1 (zie [2], pag.148),

waarbij x' mod m' het karakter y mod m induceert.

[1] T.M. Apostol, Euler's ¢-function and separable Gauss sums,
Proc. Amer. Math. Soc., 24 (1970), 482-485.
[2] H. Davenport, Multiplicative Number Theory, Lectures in ad-

vanced mathematics, vol. 1, Chicago, 1967.

Men kan zich afvragen of het niet tot de taak van de redactie van een
wetenschappelijk tijdschrift behoort op enigerlei wijze codrdinerend
op te treden wanneer zij binnen drie maanden tijds twee artikelen
krijgt aangeboden waarin de auteurs geheel onafhankelijk van elkaar,
een zeker twintig jaar oud probleem op vrijwel dezelfde wijze oplos-

Sen.

M. Waldschmidt, Solutions du Huitiéme Probléme de Schneider,
“ Journal of Number Theory, 5_(1973), 191-202.
(received Marxch 11, 1971; revised May 3, 1971).

W. Dale Brownawell, The algebraic independence of certain numbers
related by the exponential function, Journal of Number
Theory, 6 (1974), 22-31.

(received June 1, 1971).




IX. Er bestaat kans op blijvend ocogletsel wanneer bij bewusteloosheid
contactlenzen niet tijdig worden verwijderd. Oogartsen en contact-

lensspecialisten attenderen hun cliénten hierop in onvoldoende mate.






