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V.l.l 

GENERAL INTRODUCTION AND SUMMARY 

In the theory of transcendental numbers one starts with a field K 

with a subfield k and one studies properties of those elements of K which 

are transcendental over k. In complex transcendental number theory, the 

most common case, one takes for K the field~ of complex numbers and for 

the subfield kits prime field, i.e. the field~ of rational numbers. Of 

the various properties enjoyed by~ we emphasize the following two: 

(i) the valuation of~ is archimedean, 

(ii) the characteristic of~ is zero. 

In p-adic transcendental number theory the situation has changed with 

respect to property (i): here one takes for Kan algebraically closed, 

with respect to its valuation complete field~, which is an extension of p 
the field~ of p-adic numbers. Fork one takes again the prime field~-p 

In this thesis we move a step further from the classical case; not 

only will our field K be provided with a non-archimedean valuation, but 

moreover, its characteristic will be positive. 

Now new difficulties arise, which did not occur in the change from 

the complex to the p-adic case. We will illustrate this by an example. 

One of the most famous theorems of classical transcendental number 

theory is the theorem of Gelfond and Schneider, which says that if a and S 

are non-zero algebraic numbers, a f 1, Snot rational, then aS is trans-

cendental. This is in fact a theorem on the exponential function and its 

inverse, the logarithm, for aS is defined as exp(S log a). If one sets 

out to prove this theorem in the p-adic case the definition of a 13 presents 

difficulties. The exponential function is again defined by the power series 

I:=O ~;, the only difference being that in the p-adic case this series is 

not convergent for all z. But in our case of positive characteristic this 

definition loses its meaning and it is not at all clear what we must 

regard as the equivalent of as. 

no 



In this thesis k will be the field JF (X) of rational functions in one q 
variable over a finite field JF and K will be an algebraically closed, q 
complete extension of k, called <ii. L. Carlitz indicated in 1935 a function 

~, which might be regarded as the equivalent of the exponential function 

and L.I. Wade proved in 1941 the Gelfond-Schneider theorem for this func-

tion. 

In chapter I we start with the construction of qi and a study of the 

Carlitz-~-function, which we introduce in a way different from Carlitz'. 

Further we define the operators nk for linear functions and we introduce 

the class of functions Jn, which may be regarded as analogues of Bessel 

functions. The main section, section 5, of the first chapter is devoted 

to analysis on <ii. Mainly we follow the work of u. Guntzer (1966), but the 

introduction of the concept of hooking-radius so fundamental in the study 

of the occurrence and location of zeros, is a different one. The Maximum 

Modulus Theorem and the Product Formula for Entire Functions are both 

needed for the Siegel-Schneider method in chapter IV. 

Chapter II gives a survey of known results on transcendence in <ii. 

In chapter III we introduce the concept of transcendence measure in qi 

and we give an analogue of P.L. Cijsouw's result on series for which a 

certain gap-condition is fulfilled. Moreover, with the same method, we 

generalize a result of S.M. Spencer (1952). 

In chapter IV we define the class of E-functions and we prove that 

if a,f3 E <ii, a 'IO and f3 r/. JFq(X) and if f 1 ,f2 , ... ,fn are E-functions such 

that nkfv, k E JN, 1 v n are polynomials in f 1 ,f2 , ••• ,fn satisfying 

certain conditions, then at least one of the 2n+1 elements 

f3,f 1 (a) ,f2 (a) , ••• ,fn(a),f1 (af3) ,f2 (af3) , ••• ,fn(af3) is transcendental over 

JF (X). This theorem contains, among others, the Wade analogue of the q 
Gelfond-Schneider theorem. 



0. NOTATIONS AND PRELIMINARIES 

In this thesis we adopt the following notations: 

0 
A\B 

f: A+ B 

fjv 

42 
]R 

The empty set. 

The set of elements which are contained in the set A but 

not in the set B. 

A function f which adjoins to every element of the set A 

an element of the set B; A is called the domain off. 

The restriction off to a subset V of the domain off. 

The composition of the functions f: A+ Band g: B + c. 
The set of natural numbers. 

JN u {O}. 

The ring of rational integers. 

The field of rational numbers. 

The field of real numbers. 

The field of complex numbers. 

0 .1 

<C 

JF q 
The finite field of q elements, where q 

n E JN and a prime p E JN • 

pn for a certain 

* K The multiplicative group formed by the non-zero elements 

of the field K. 

R [ t 1 , t 2 , ••• , tn] The ring of polynomials· in the n variables t 1 ; t 2 , •.. ·, tn 

over a commutative ring R with identity. 

K(t) The field of rational functions int with coefficients in 

a field K. 

The end of a proof. 

As usual an empty sum has to be taken equal to zero and an empty 

product equal to one. 

For convenience of the reader we formulate some standard notions and 

theorems, used throughout this thesis. 

0.1. DEFINITION. Let R be a:commutative ring with identity and let 

P,Q E R[t]. Then Pis called a divisor of Q, notation PjQ, if there exists 

an RE R[t] such that Q = PR. 

Pis called irreducible if Pis not a unit and has no divisors in 

R[t] other than units and associates of P. 
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Pis called manic if the leading coefficient of Pis the identity of 

R. 
Pis called primitive if its coefficients have no common divisor in 

R (other than units). 

0.2. DEFINITION. Let Kl and K2 be fields with a common subfield k. A mono-

morphism cr: K1 + K2 for which 

a(a) = a, a E k 

is called a k-monomorphism. 

0.3. THEOREM. Let R be a commutative ring with identity. Every symmetric 

polynomial P from R[t1 ,t2 , ••• ,tn] of degree m can be written uniquely in 

the form 

with 

PROOF. See e.g. VAN DER WAERDEN (1960), §29. 

0.4. COROLLARY. Let R be a commutative ring with identity. Let 

PE R[t1,t2 , ... ,tn] be a symmetric polynomial. Let s1 ,s2 , •.. ,Sn be the 

zeros of a manic polynomial from R[t]. Then 

0.5. THEOREM. Let R be a commutative ring with identity. If the polynomial 

P from theorem 0.3 is homogeneous of degree kin each t., 1 i n, then, 
l 

in the notation of theorem 0.3, we have 

PROOF. See O. PERRON, Satz 69. 0 
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0.6. COROLLARY. Let R be a commutative ring with identity, let Q E R[t] be 

of degree N 1 and let s1 ,s2 , •.. ,SN denote the zeros of Q. Put 

Q(t) 

and 

D 

Then D E R. 

N 
A TT (t-Si), 

i=1 
A E R 

(S.-S.)
2 

is a homogeneous symmetric polynomial in 
1.. J 

total degree N(N-1) and of degree 2(N-1) in Si, 1 !> i !> N. 

If a1 ,a2 , .•• ,aN denote the elementary symmetric functions of s1 ,s2 , •.• ,SN, 

then it follows from the theorems 0.3 and 0.5 that 

with C ER and Al+ A2 + •.. + AN :s; 2(N-1). Since ACT1., ER it follows 
A1•··AN 

that D E R. D 

For an introduction to finite fields we refer to I.T. ADAMSON (1964), 

Ch.IV. We shall frequently use the following 

0.7. PROPERTY. For every finite field JF one has q 

(0.7.1) TT (t-c) q-1 t - 1; 
CEJF* 

q 

(0. 7 .2) cq = c, C E ]F 
q 

Finally we shall recall some notions and properties in algebraic ex-

tensions of a field. 

0.8. DEFINITION. Let k,K be fields with kc K. Then a EK is called alge-

braic over kif there exists a non-trivial polynomial PE k[t] such that 

P(a) = 0. 

If a EK is not algebraic over k, then a is called transcendental 

over k. 
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0.9. THEOREM. Let k,K be fields, kc Kand let a EK be algebraic over k. 

Then there is one and (apart from an arbitrary unit factor) only one irre-

ducible polynomial PE k[t] such that P(a) = 0. There is exactly one such 

polynomial which is monic. 

PROOF. See 0. ZARISKI and P. SAMUEL (1958), Ch.II §2, Cor.th.1. 

0.10. DEFINITION. Let k,K be fields, kc K, and let a EK be algebraic over 

k. Then the degree of an irreducible polynomial PE k[t] for which P(a) = 0 

is called the degree of a (with respect to k). 

0.11. DEFINITION. Let k be a field. Let PE k[t] be given by 

P(t) 

The derivative P' of Pis defined by 

where 

P' (t) 

n 
na n == I 

v=1 
a . n 

a. E k. 
1. 

0.12. DEFINITION. Let k,K be fields, kc Kand let a EK be algebraic over 

k of degree n. The unique, monic, irreducible polynomial PE k[t] of degree 

n for which P(a) = 0 is called the minimal polynomial of a over k. 

An irreducible polynomial PE k[t] is called separable if P' ¥ 0. An 

arbitrary polynomial PE k[t] is called separable if all its irreducible 

factors are separable. 

The element a EK is called separable algebraic over kif the minimal 

polynomial of a over k is separable. 

The field K is called a (separable) algebraic extension of kif every 

element of K is (separable) algebraic over k. 

0.13. THEOREM. Let k be a field of characteristic pi 0. An irreducible 

polynomial PE k[t] is not separable if and only if it has the form 

P(t) t np a , n 

a ¥ 0. n 



PROOF. See I.T. ADAMSON (1964), Ch.I, th.5.3 or O. ZARISKI and P. SAMUEL 

P. SAMUEL (1958), Ch.II §5. 

0.14. COROLLARY. Let k,K be fields of characteristic p # 0, kc K. If 
0 a EK is algebraic over k, then there exists an e E :N such that a is 

separable algebraic over k. Moreover, for every n E lN with n > e the 

element aPn is separable algebraic over k. 

0.5 
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CHAPTER I 

INTRODUCTION 

1. THE FIELD<!? 

Let lF be the finite field of q elements where q is a positive power q 
of the prime number p. We denote the ring of polynomials with coefficients 

in lF by lF [X] and its quotient field by lF (X) • 
q q q 
For all non-zero elements of lF [X] we define the (logarithmic) non-q 

archimedean .valuation dg by 

dg E := degree of E; 

furthermore we put 

dg O := - 00 

Hence for all non-zero elements EE lF [X] the valuation is a non-negative q 
integer. 

For the elements of lF (X) we define the valuation as follows: if q 
E f. 0 and F f. 0 are two elements of F [X] , then q 

dg(f) := dg E - dg F. 

E E' /E) (E'\ Clearly, if F = F' , then dg\F = dg F'j" 

1.1. THEOREM. The valuation dg of lF (X) determines a Hausdorff topology q 
on lF (X) and for each a E lF (X) a fundamental system of neighbourhoods q q 
of a is given by 

{U(a,n) J n 1,2, ... }, 
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where 

U(a,n) {S E JF (X) I dg(a-S) < - n}. 
q 

PROOF. See E. WEISS (1963), prop. 1-1-2 or E. ARTIN (1967), Ch. I th.4. 0 

1.2. DEFINITION. A sequence {ak}:=l of elements of JF'q (X) is said to be 

convergent (in JF (X)) if an element a E JF (X) exists such that the follow-q q 
ing condition is satisfied: for all n E JN there is a k 0 E JN such that for 

k > k 0 

00 
The sequence {ak}k=l is called a Cauchy-sequence if it satisfies the 

following condition: given any n E JN, a k0 E JN exists such that for each 

k > ko, l > ko 

1.3. THEOREM. Let K be a valued field. Then a unique valued field L exists 

such that 

(i) K is a subfield of L, 

(ii) the valuation on L restricted to K coincides with the valuation on K, 

(iii) every Cauchy-sequence in Lis convergent, 

(iv) K is dense in L. 

PROOF. See E. WEISS (1963), th. 1-7-1 or E. ARTIN (1967), Ch. I §6. 0 

The valued field Lis called the completion of the valued field K. A 

valued field is called complete if it coincides with its completion, i.e. 

when every Cauchy-sequence in it is convergent. 

The completion of the field JF (X) with its valuation dg will in the q 
sequel be denoted by F, the valuation on F will also be denoted by dg. Note 

that {dg Ct I Ct E F} = Zl U {-00}. 

The next step is that we go over to the algebraic closure n of F. (For 

a definition of algebraic closure, see B.L. VAN DER WAERDEN (1960), §62.) 

To define a valuation on n, which coincides with dg on F we first consider 

finite extensions of F. 

Let Ebe a finite extension of a field K of degree [E:K] n. 
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we shall define the norm of an element of E with respect to Kand we shall 

mention some properties which we shall need in the future. For a detailed exposi-

tion we refer to the book of 0. ZARISKI & P. SAMUEL, Ch. II §10. 

Let w1 ,w2 , ... ,wn be a basis for E over K, then for every a EE and 

i E {1,2, ..• ,n} there exist a .. EK such that 
1.J 

aw. 
1. 

n 
I 

j=l 
a .. w .• 

1.J J 

Then x n-matrix (aijli,j will be denoted by (a) and then x n-unit-matrix 

by (e). The so-called field polynomial of a 

det(t(e)-(a)) 

is a monic polynomial of degree n int which does not depend on the choice 

of the basis. It has the form 

where b. EK, i 0,1, ... ,n-1 and 
1. 

We define the norm NE+K (a) of a EE with respect to K by 

NE+K (a) := det(a) 

Hence NE+K (a) is an element of K. Furthermore we have 

b EK, 

a,S EE. 

Finally, if Lis a finite extension of E, then 

f3 EL. 
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1.4. THEOREM. Let K be a field complete with respect to a (logarithmic) 

non-archimedean valuation dg and let Ebe a finite extension of K. Then 

there exists a unique extension of the valuation dg on K to E, which will 
be denoted by dgE. For all a EE we have 

[E:K] 

The field Eis complete with respect to this valuation dgE. 

PROOF. See E. WEISS (1966), th.2-2-1O or E. ARTIN (1967), Ch. I, th.7. 0 

In view of theorem 1.4 we define dgQ: Q IR U {-00 } by 

where dgF(a) is the unique valuation of the finite extension F(a) of F, 
which extends dg. Then dgQ is a valuation of Q. 

1.5. PROPERTIES OF Q. With JF , the field Q has characteristic p. (Recall 
q 

that q is a power of p.) Hence 

(1.5.1) n E ]NQ; u,v E Q. 

The valuation dgQ is non-archimedean. Therefore we have for all u,v E Q 

(1.5.2) 

and 

(1.5.3) 



The following example shows that the valued field Q with dgQ as its 

valuation is not complete. Define the sequence {an}:=O by 

n 
a == I 

n v=0 

Since Q is algebraically closed, an E Q. We have 

n+1 1 
-q + n+1 ' 

q 
n E 'Jtp. 

Hence by (1.5.3) {a }
00 

0 is a Cauchy sequence in Q. Suppose that these-n n= 
quence ii, convergent. Call its limit a. Then according to corollary 0.14, 

e 
there exists an e E IN, such that aq is separable algebraic over F. 

It follows from the theorem of KRASNER (see e.g. E. ARTIN (1967), 

Ch. II th.8) that for n chosen sufficiently large 

and therefore 

e 
E F(aq ). 

n 

ijence aqe - a~e is algebraic over F of degree µn, say, and 

1.5 

e e 
From the definition of dgQ we see that µn dgQ(aq -a~) equals the valuation 

of an element of F and hence 

e e 
µn dg ( a q -a q ) E :?Z • 

Q n 

On the other hand we have 
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n+l-e I . h. h d. I n-e Thus q µn' w ic contra icts µn q 

Our final step is that we form the completion w of n with respect to 

dgn. (See theorem 1.3.) That this is the last step in the process of form-

ing algebraic closures and completions follows from 

1.6. THEOREM. w is algebraically closed. 

PROOF. See E. ARTIN (1967), Ch. II, th.12. 0 

1.7. RECAPITULATION. Starting with JF we have obtained a field W with a q 
(logarithmic) non-archimedean valuation dg, i.e. 

(1.7.1) dg(uv) dg u + dgv, U,V E W, 

(1. 7 .2) dg(u+v)~ max (dg u,dg v), U,V E W, 

and if dg u * dg v, then 

dg(u+v) max (dg u,dg v). 

From (1.7.2) it follows that 

(1.7.3) {dg a. I a. E w} 92 U {-oo}. 

The field w is algebraically closed and complete with respect to the valua-

tion dg. It contains the field JF (X) and the valuation dg on w restricted q 
to JF (X) coincides with the valuation dg on JF (X). Furthermore has q q 
characteristic p; hence 

(1. 7 .4) 
n 

(u+v)p n E -~P, u,v E w. 

In view of the completeness of P and the fact that the valuation dg is non-

archimedean,a series '
00 

1 a., a. E w is convergent if and only if ln= n n 
limn_, dg a.n = - 00 

In this thesis the role played by the field P can be compared with 

that of IC in the classical case; JF [X] and JF (X) take the part of z:; and 
q q 

g) respect;i..vely. 



1.8. THEOREM. The field~ is not locally compact. 

PROOF. Suppose~ is locally compact. Then it follows from a theorem which 

can be found e.g. in N. BOURBAKI (1964), Chap. VI §5 no. 1, prop. 2, that 

the valuation of~ is discrete. But this contradicts (1.7.3). D 

2. THE FUNCTIONS Wk AND W 

0 2.1. DEFINITION. We define the elements Fk,Lk (k E lN ) of JFq[X] as fol-

lows 

k-1 k j 
Fk := Tl (Xq -xq l, 

j=O 
k 1,2, .•. 

FO := 1, 

k j 
Lk := TT (Xq -X), 

j=l 
k 1,2, ••• 

LO := 1. 

2.2. REMARK. For k :?: 1 we have the relations 

k 
(a) Fk 

q q 
(X -X)Fk-l' 

k 
(bl Lk 

q 
(X -X)Lk-l" 

Furthermore, we note that fork:?: 0 

k kq, 

q k 
dg Lk = q-l (q -1). 

1.7 

In the following we shall see that Fk can be compared with k! in the clas-

sical case. 
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2.3. DEFINITION. For k E n.P the polynomial 1/Jk E ]Fq [x][t] is defined by 

Moreover, we put 

N.B. 1/JO (t) = t. 

TT 
EEJF [X] q 
dgE<k 

(t-E). 

The polynomials 1/Jk were introduced by L. CARLITZ (1935). In the fol-

lowing we shall mention some of his results,which we shall need in this thesis. 

2.4. THEOREM. (Carlitz) The polynomial 1/Jk, k E JNO has the following re-

presentation 

Fk tqk-j 

Lqk-jF . 
j k-J 

(2.4.1) 
k 
I 

j=O 

Furthermore, the function 1/Jk has the properties: 

(2.4.2) 1/Jk(t+u) 1/Jk(t) + 1/Jk(u), t,u E 4>, 

(2.4.3) 1/Jk(ct) = cl/Jk(t), C E JF q , t E 4', 

(2.4.4) 1/Jk(Xt) Xl/Jk(t) 
qk q 

(X -X) 1/Jk-l (t), t E 4>, 

(2.4.5) 1/Jk(Xk) = Fk. 

PROOF. Fork= 0 the theorem is trivial. 

Suppose the formulae are correct fork= 0,1, .•. ,K. From the definition of 

1/JK+l we get 

TT (t-E) 
dgE<K+l 

( TT (t-E)) TT 
dgE<K CEJF* 

q 

TT (t-cXK -E) 
dgE<K 

TT 1/J (t-cXK). * K CEJF q 

From (2.4.2), (2.4.3) and (2.4.5) fork= K we have 



Since 

we have 

- K 
1/J (t-cX) 

K 

TT 
* CE:JF' q 

(t-c) 

1.9 

q-1 t - 1, 

Now using (2.4.1) fork= Kand remark 2.2a,b,we obtain formula (2.4.1) for 

k = K + 1 by a straightforward computation. Using (1.6.3), the formulae 

(2.4.2) and (2.4.3) fork= K + 1 follow immediately from (2.4.1). 

It only remains to prove (2.4.4) and (2.4.5) fork= K + 1. Using 

remark 2.2(a), it follows from (2.4.1) fork K + 1 that 

K 

I 
j=O 

K I c-1> j 
j=O 

Substituting t XK in this formula gives 

LqK+l-jF 
j K+l-j 

K+l 
(Xq -X)Fq K+l-j _____ K_tq 
LqK+1-jFq. 

j K-J 

2. 5. THEOREM. For A E :JF' [x] and k E J:JO we have q 

PROOF. If 

a. E :JF' , i 
l q 0,1, ... ,m, 
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we have from formulae (2.4.2) and (2.4.3) 

Hence it is sufficient to prove that 

(2 .5.1) i,k E nP. 

First we remark that for i € ]No 

(2.5.2) 
1/JO(Xi) i [X]. ---= X € ]F 

FO q 

Furthermore we have by the definition of 1/Jk 

(2.5.3) 0, k E lN; i = 0,1, ... ,k-1. 

Hence (2.5.1) is satisfied fork E n:P, i O and i E nP, k = 0. 

Suppose we have proved (2.5.1) fork E ]NO and i = 0,1, ... ,\J-1. From 

relation (2.4.4) and remark 2.2a we have fork E ]N 

(2.5.4) 

Now (2.5.1) fork E lN, i = v follows from (2.5.4) by the induction hypo-

thesis. D 

2.6. REMARK. It is easily verified that for A E JF [X], dg A~ k we have q 

k (dgA-k)q. 

1/Jk 
2.7. REMARK. The polynomial -F bears some resemblance to the polynomial 

--- k 
(z) z(z-1) .. (z-k+1) . h 1 f 2 · k = k! int e rea case; apart rom theorem .5 we mention 

relation (2.5.4) and the relation 

m 
TT X -E 

k dgE<k X -E 
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2.8. DEFINITION. The Carlitz-$-function defined by 

00 qj 
$(t) }: (-1) j t 

:= F. j=0 J 

(Note that in view of dg F. 
J 

jqj, the sequence converges for every 

t E ~-) 

Let u E be a solution of the equation 

(2.8.1) 

This number u will be fixed in the sequel. 

For c E ]F* we have cq-l = 1, hence cu is also a solution of the equa-
q 

tion above. Since (2.8.1) has exactly q-1 solutions, the complete set 

solutions of (2.8.1) is given by {cu I c E F* }. Furthermore q 

dg cu dg u .....!L 
q-1 

qk 
2.9. LEMMA. The sequence {½c }kE:n-f} is convergent in <P. 

PROOF. From the definition of u and remark 2.2 it follows that 

and that 

(2.9.1) dg .....!L 
q-1 

Hence for arbitrary j E lN we have 

k+j k 

dg(~ - ~):,; 
Lk+j Lk 

max 
05:v<j 

.....!L - l<q-1). q-1 

So the sequence is a Cauchy-sequence. Since~ is complete, it is conver-

gent. 0 
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2.10. DEFINITION. The elements E is defined by 

k 
uq 

s := lim --
k-- Lk 

(2 .10.1) 

Note that it follows from (2.9.1) that dg s = _5!_1 . q-

2.11. THEOREM. The function¢ has the following properties: 

(a) for every t,v E 

(b) 

¢(t+v) = ¢(t) + ¢(v), 

for every t E ~, c E JF q 

¢(ct) c¢(t), 

(c) for every t E 

¢(Xt) 

(d) for every t E 

PROOF. The properties (a) and (b) follow immediately from the definition of 

(c) From definition 2.8 and remark 2.2a we have 

I 
j=O 

Xt + I 
j=1 

(d) Lett E ~, t fixed. From the definitions 2.8 and 2.10 and property 

2.11a it follows that for every N E JN there exists a k 0 E JN, k 0 = k 0 (N,t), 

such that 

k 

(2.11.1) dg(w(ts)-¢(t ~: ) ) < - N, k > ko· 

We write 



where 

k+· 
k (-1) j qj q J 

s 1 (tl }: u 
:= --t 

Lqj F. j=0 J 
and k 

k+· 
(X> (-l)j qj q J 

s2 (tl }: u 
:= --t 

Lqj F. j=k+l J k 

From (2.8.1) it follows that 
j+k 1 

"+k q -
qJ 

= u(Xq-X) q-1 
u 

Therefore by (2.4.1) we get 

(2.11.2) 

where 

k (-1) j qj L -F- ut etk. , 
j=0 j J 

k q -1 
(Xq-X) q-l 

Lqj 
k-j 

j 0,1, ... ,k. 

Note that etkO 0. For j 1 we have from remark 2.2 

k q -1 k+v qj 
(Xq-X) q-l 

r~l (1 
xq -x \ - 1} etkj Lqj xqk+v+l_xqj / . 

v=0 
k-j 

Hence for j 1,2, ... ,k we have from remark 2.2 

k ·+1 q -1 qJ k-. k 
dg etkJ" - 1-.q - -- (q J-1) + q (1-q). q- q-1 

Therefore 

(2.11.3) ( 
k ( l)j j ) ( . k \ dg _}: ~- utq ak. max qJ (dgt+ -.SL - j) + q (1-q)} 

J=0 J J l~j~k q-l 

< [dgt]+3 k(l ) - q + q -q. 

From (2.11.2) and (2.11.3) we conclude that fork large enough 

1.13 
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(2.11.4) < - N. 

From remark 2.2 we get fork> [dgt] + 3 

max qj (dgt-j+ ----9y> 
jzk+l q-

k+l 1 q (dgt-k+ - 1). q-

Hence fork large enough 

(2.11.5) 

Now it follows from (2.11.1), (2.11.4) and (2.11.5) that fork large enough 

k 
q -1 1/J (t} 

dg(i[J(ti;)-(-l)ku(Xq-X) q-l kFk ) < - N. 0 

2.12. THEOREM. The set of zeros of 1/J is given by 

{El; I E E JF [xJ}. q 

PROOF. From property 2.11d and definition 2.3 it follows that 1/J(EI;) 0 

for all E E JF [x]. q 
Now let a be a zero of 1/J, a * 0. Let k 1 E lNO be such that 

-1 k 1 $ dg al; < k
1 

+ 1 -1 
if dg al; z 0, 

kl= 0 
-1 if dg al; < 0. 

It follows from definition 2.3 that fork> k 1 

(2.12.1) 

where 

C := 

I 
dgE<k1 

-1 dg(al; -E) + 

k c + (k-l)q 
k 

...sL_+ 
q-1 

I 
k 1$dgE<k 

-1 dg(al; -E) 

\' -1 l dg(a/; -E), 
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Let NE lN. According to property 2.lld and the assumption that a is a zero 

of w there exists a k 0 E lN, k0 = k0 (N), such that 

k 
q -1 W (al;-1) 

dg(u(Xq-X) q-l k F ) < - N, k > k
0

• 
k 

Hence fork> k
0 

(2.12.2) -1 k k 
dg Wk(al; ) < (k-l)q - .3._ - N. q-1 

The relations (2.11.1) and (2.11.2) give 

Hence 

. -1 dg(a/; -E) < - c - N. 

-1 dg(al; -E) 

-1 Thus there is an E E JF [x] such that al; = E. D q 

2.13. THEOREM. The function w has the following property: for every 
M E ]F [X] 

q 

(2 .13 .1) W(Mt) 
dgM W. (M) j 
l c-1,j wq <ti. 

j=O J 

PROOF. For M = 1 the relation is trivial. Suppose (2.13.1) is correct for 
m-1 M = 1,X, ..• ,X . Then from property 2.llc and the induction hypothesis we 

get 

m-1 
(-l)j 

W. (Xm-1) j m 
(-l)j-1 

W~ (Xm-1) j 
w<xmt) l J wq <tl J-l wq <ti X l 

j=O F. j=l q 
J Fj-1 

m-1 q m-1 
x.xm-lw(t) 

m .( W. (X ) W. l (X ) ) j 
+ l (-l)J X J + J- wq (t> + 

' F j q j=l Fj-1 

Hence by (2.5.4) and (2.5.3) we have 
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which gives, with (2.5.2), 

m 
I 

j=O 

• 1{!. (Xm) j 
(-1) J -¾::-:-- 1/Jq (t), 

J 

In view of (2.4.2), (2.4.3) and theorem 2.11a,b formula (2.13.1) follows 

now for arbitrary M E :IF [X]. D q 

2.14. THEOREM. The function 1{! defines a bijection from 

V 

onto itself. 

{t E <Ii I dgt < ___g_} q-1 

2.15. DEFINITION. The function A: V +Vis defined as the inverse of tlv . 

. 2.16. THEOREM. Fort EV we have 

t.(t) 

00 qj 
I t 

j=O Lj 

Proof of the theorems 2.14 and 2.16 

(i) Lett EV. From the definition of 1/J it follows that 

which means i{J(t) EV. 

___g_ 
q-1 , 

(ii) Suppose t 1 ,t2 EV and i{J(t1) = i{J(t2). Then in view of theorem 2.12 
there exists an E E :IF [X] such that 

q 

By the assumption t 1 ,t2 EV we have 

dg(t1-t2 ) < ___g_ 
q-1 

On the other hand 



dg E + _g_ 
q-1 

Therefore E = 0 and t 1 = t 2 • Hence$ is injective on V. 

(iii) Finally we have to prove that for every a EV there exists a SE V 

such that $(S) = a. 

Let a Ev. Since $(0) - 0 we may suppose· that a* 0. Consider the 

series 

Since a E V\{0} there exists an e: E JR, e: > 0 such that 

Now 

dg a = _g_ - e:. 
q-1 

n 
aq qn+1 n qn -1 - q n 

dg -L = -- - e:q - q. -- - e:q . n q-1 q-1 - q-1 
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This shows that the general term goes to zero, hence the series is conver-

gent. Let S be its sum. Clearly, SE V. We shall prove that $(S) = a. 

Define 

Remark that 

and that 

Furthermore 

$(S l n 

_g_ _ n+1 
q-1 e:q 

n 
I 

n E 1N. 

I 
co min(n,v) 
I I 

k=0 j=0 

(-l)v-k 

v=0 k=0 
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Hence by theorem 2.4 it follows that 

n 
I 

v=O 

1/J (1) V 
(-1) V _v __ Clq 

F 
V 

where 

Since 1/Jv(l) = 0 for v 1, we have 

n = 1,2, ... 

and therefore 

1/J{S) - Cl n = 1,2, .... 

Now we estimate dg y: . . n 

n+l + _SI_ 
- Eq q-1 

Hence for all n E JN we have 

which means 

dg(ijJ(Sl-al - oo, 

i.e. 1/J(Sl = a. D 

REMARK. The function A was already introduced by L. CARLITZ (1935). 
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2.17. THEOREM. The function ijJ: surjective. 

PROOF. Let v E ~- If dg v < __5L_ it follows from theorem 2.14 that vis in q-1 
the range of ijJ. The proof proceeds by induction on dg v. 

Let v E ~, dg v q:l and let m E IN be defined by 

m + - 1- < dg v < m + __5L_ q-1 - q-1 

1 * Suppose for all t E with dg t < m + --1 there exists at E such q-
that 

* 1/l(t ) t. 

Since~ is algebraically closed,~ contains every solution of the equation 

int 

(2.17.1) v. 

For a solution t of (2.17.1) we have 

Therefore 

dg t :<; dg v - 1. 

1 
dg t < m + q-l 

and according to the induction hypothesis there exists at* E with 

* ijJ(t) = t. Put 

* * V := Xt ; 

then according to theorem 2.11c 

* 1/l(Xt ) v. D 

REMARK. It follows from work of D.R. HAYES (1974) and H.W. LENSTRA Jr. 

(private communication) that the Carlitz-ijJ-function can be compared with 

the exponential function in the classical case. 
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3. LINEAR FUNCTIONS AND THE t-OPERATOR 

3.1. DEFINITION. Let V c P be such that 

t,v EV=> t +VE V 

and 

t E V, C E ]F q => ct E V. 

A function f: V called linear on V if 

(3 .1.1) f(t+v) f(t) + f(v), t,v EV 

and 

(3.1.2) f(ct) cf(t), t E V ,c E ]F • q 

EXAMPLES. It follows from the theorems 2.4, 2.11 and 2.16 that the functions 

wand wk are linear on P and that the function A is linear on 

V = {t E p I dg t < -5L} q-1 . 

3.2. THEOREM. Let {an}:=O be a sequence of elements of P. Put 

R := - lim sup 
n-k<> 

dg 

n 

a n 

Then the series ~
00 

a tn converges for all t E P with dg t <Rand di-ln=cO n 
verges for all t E P with dg t > R. 

PROOF. Assume R E :JR • 

(i) Let t E P be such that dg t < R. Choose p E :JR such that 

-R < p < - dg t. 

There exists an n 0 E lN such that for n > n 0 

< p. 

Hence for n > n 0 



dg an+ n dg t < n(p+dgt). 

Since from the choice of p we know that p + dg t < 0, we may conclude 

that 

lim dg(a tn) co 
n n.._ 

This suffices to prove that I:=o a tn converges. n 
(ii) Let t E q, be such that dg t >Rand let p E lR be such that 
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- dg t < p < - R. Then there exists an increasing sequence {~}==l such that 

> p, k ;:: 1 

and hence 

This means that ,co a tn diverges. ln=O n 
The cases R =±co are left to the reader. 0 

3.3. REMARKS. 

a) A series of the form ,co 0 a tn, a E <!> is called a power series and R ln= n n 
its radius of convergence. 

b) Since<!> is a complete metric space,the notions of limit, continuity, dif-

ferentiability and derivative of a function are defined in the obvious 

way. See J. DIEUDONNE (1969), 3.11; 3.13; 8.1. 

c) If the function f: U has a power series expansion ,co a tn ln=O n 
with radius of convergence R > - co, then this expansion is unique. 

3.4. THEOREM. Let the function f be defined by the power series }::=O an tn, 

an E <!> with radius of convergence R. Then f is differentiable on 

{t E <!> I dg t < R} and 

f' (t) I 
n=1 

n-1 na t n 

,n ,co n-1 
where nan.- li=l an. The power series ln=l nant has radius of 
Convergence;:: R. 
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PROOF. The proof is left to the reader. 0 

'('oo n 
3.5. THEOREM. Let f be defined by f(t) := ln=O ant, an E w with radius of 

convergence R > - 00 If f is linear on {t E w J dg t < R}, then 

"' 
f(t) I 

k=O 

PROOF. Denote V = {t E w J dg t < R}. From relation (3.1.2) it follows that 

a 0 = 0. Using relation (3.1.1) we conclude from the definition of differen-

tiability that f'(t) a 1 on V. Therefore it follows from theorem 3.4 and 

remark 3.3c that 

Hence 

i.e. 

na n 

a n 

f(t) 

o, n = 2,3, •••. 

0, p {' n, 

a. 
JP 

So we have proved the relation 

(3.5.1) f(t) a
1

t + a tp + ... + a tp 
p PK-1 

for K = 1. 

K-1 
+ I 

j=l 

Suppose (3.5.1) is correct for K = 1,2, ••• ,k. Define 

and 

k vk := {t Ev Ip dg t < R} 

00 

'(' j 
l a. kt, 

j=l JP 

Let t 1 ,t2 E Vk and let v 1 resp. v 2 be solutions of 

o, 0 

a 
• K 
JP 

• K 
tJP K E JN 
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respectively. Then 

and using (3.1.1) we find 

k-1 p p f(v1+v2 )-a1 (v1+v2 )-ap(v1+v2 ) - •.• - apk-l (v1+v2 ) 

k-1 k-1 
f(v1)+f(v2)-alvl-a2v2 - - apk-l"i -apk-1~ 

Therefore gk(t) 

that 

a k on Vk. On the other hand it follows from theorem 3.4 
p 

hence 

Thus 

a_ k 
JP 

f(t) 

I 
j=l 

o, 

·-1 ja tJ .k 
JP 

So we have showed by induction that 

(3.5.1) f(t) 

If q = p we have proved our theorem. 

. k+l 
a tJP 

. k+l 
JP 

From relations (3.1.2) and (3.5.1) we conclude that 

(3.5.2) o, 

Recall that q = pn (n E JN). Hence for k E JN there are l E 11P , m E JN 

such that 

k = ln + m, 1 :,; m :,; n. 
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Using relations (0.7.1) and (0.7.2), relation (3.5.2) gives 

Therefore 

(3 .5.3) 

a kc TT * (c-d) 
P dEJF 

pm 

either c E ]F 
pm 

or a k 
p 

0, 

kEIN,cEJF q 

k E IN. 

0, 

If 1 ,;; m < n, then ]F \JF * fll. Hence we conclude from (3.5.2) and (3.5.3) 1 pm 
that a k 

p 
0 unless p is a power of q. D 

3.6. DEFINITION. Let V(r) c denote the set {t I dg t < r} and let 

f: V(r) we define the functions 11nf: V(r-n) ~, n = 0,1,2, •.. by 

110f := f, 

111 f(t) := M(t) ·= f(Xt) - Xf(t), 

11 f(t) n 

For n = 0,1,2, ..• the operators 11n are defined above by their action on 

functions f: V(r) ~-

Note that 11(11f) need not be equal to 112 £, etc. 

3. 7. THEOREM. When f is linear on V (r) , so is 11n f on V (r-n) , n E lN . 

PROOF. Trivial. 0 

3.8. THEOREM. The following relations hold: 

h k h k 

(3. 8.1) 11 
xq tq xq tq 

0,1, ..• ,k; h JNo ---= n = E n Fqn I 

Fk k-n 
h k 

11 
xq tq 

o, n > k; h ]No I ---= E n Fk 

n 
(3.8.2) 11ni/J (t) (-l)ni/Jq (t), n 0, 1,2, ... 
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and 

(3.8.3) n 0,1, ••• ,k, 

n > k. 

PROOF. The proof proceeds by induction on n and uses relation 2.2a, theorem 

2.11c and relation (2.4.4) respectively. D 

Note: The relations (3.8.2) and (3.8.3) were already given by 

L. CARLITZ (1935) in §5 and §3 respectively. 

3.9. LEMMA. Let g E ~[t] be a linear polynomial of degree qn. Then for every 

t,v E we have 

(3.9.1) g(tv) 
n ijJ. (v) I _)_ ts .g<t>. 

j=O F j J 

PROOF. (See also L. CARLITZ (1935), th.3.1). 

For n = 0 the assertion is evident. 
Suppose (3.9.1) has been proved for n = 0,1, ••. ,N-1. We shall prove 

it for n = N. By linearity, g(t) is necessarily of the form 

k 
N tq 
l ak F 

k=O k 
g(t) 

From definition 3.6 and relation (3.8.1) we obtain 

(3.9.2) 
N 

ts.get>= I 
J k=j 

j 0, 1, ... ,N. 

Hence from the induction hypothesis we have for t,v E 

g(tv) 

N 
I 

j=O 

ijJ. (v) 
_] __ ts .g(t) 

F. J 
J 

It remains to prove that 

N N 
q (vq +at ---

N ' F N 

N 

I 
j=O 

ijJ. (v)\ 
___:_;i_ 
F Fqj} 

j N-j 
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(3.9.3) V E <!>. 
N 1/J. (v) I _J __ 

j=0 F.FqJ. 
J N-J 

Since the polynomial 1/J. E ]F [x] [ v] is linear on <I> of degree qj 
J N q 

j 0,1, ... ,N, we can put vq /FN in the form 

From theorem 3.8 we obtain for i = 0,1, ••• ,N 

(3.9.4) 
N 

I 
j=i 

i 

(
1/! .. (v))q J-1. 

b. F J • • I J-1. 

On the other hand 

N N 

(3.9.5) 11,(i:_) 
vq 

i 0,1, •.. ,N. 
1.' F Fqi 

N N-i 

for 

Since 1/Jk(l) = 0 fork> 0 and iµ0 (1) 

for v = 1 imply 

1, the relations (3.9.4) and (3.9.5) 

b. 
1. 

1 
Fqi 
N-i 

i 0,1, ..• ,N. 

Hence (3.9.3) is proved and the induction step is completed. D 

3.10. THEOREM. (Expansion Formula). Let f: <I> be a linear function de-

fined by a power series with radius of convergence R: 

f(t) I 
n=0 

a n E <!>. 

Let M E ]F [x] with dg M 
q m. Then for every t E <I> with dg t + m < R we 

have 

(3 .10.1) f(Mt) 
m 

I 
j=0 

1/!. (M) 
_J __ 11.f(t). 

Fj J 

PROOF. Consider for n > m the linear polynomials 

f (t) n 

n 
I 

k=O 
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Fort E i with dg t < R we have 

f(t) lim f (t). n 

Fort E i with dg t + m < R we have 

Now using 

Li,f(t) 
J 

lim Li.f (t), 
n-+<x> J n 

lemma 3.9 with g f n 

f(Mt) lim f (Mt) n n-+<x> 

j 

and v = 

m 
lim I 
n-+<x> k=O 

1,2, •.. ,m. 

M, we get 

ljJ (M) m ijlk (M) 
kFk Likfn (t) I -- Likf(t). 

Fk k=O 

3 .11. COROLLARY (= theorem 2 .13). Let M E lF' [X] with dg M = m. Then for q 
all t E i 

ljJ(Mt) 
m ljJ (M) k 
l (-l)k +- ipq (t). 

k=O k 

PROOF. Since ljJ is an entire linear function (3.10.1) is valid for all t E i. 

Now the expression for ljJ(Mt) follows by using theorem 3.8 in (3.10.1). D 

3.12. LEMMA. Let f: i-+ i be an entire, linear function. Then for every 
k E ]N 

(3.12.1) 

PROOF. Fork 1 we have 

which proves (3.12.1) fork= 1. 

Now suppose that (3.12.1) has been proved fork 

have 

K-1 
LiK_lfq(Xt) - Xq LiK-lfq(t) 

K-1 

1, .•. ,K-1. Then we 

(LiK_1f(Xt))q + (Xq -X) (LiK_2f(Xt))q + 

K-1 K-1 
- Xq {(LiK_lf(t))q + (Xq -X) (LiK_2f(t))q} 



1.28 

K-1 K 
{6K_lf(Xt) - xq 6K_lf(t)}q + xq (6K-lf(t))q 

K-1 K-2 K-1 
+ (Xq X){6K-2f(Xt) - xq 6K-2f(t)}q-xq (6K_lf(t))q 

K 

(6Kf(t) )q + (Xq -X) (6K_lf(t) )q. 0 

4. THE FUNCTIONS J n 

In 1960 L. CARLITZ introduced a class of functions which have formal 

resemblance with classical cylinder functions. 

4 .1. DEFINITION. For n E -:No the function J : q, q, is defined by n 

(4.1.1) 

For n E -:N 

(4.1.2) 

J (t) := n 

we define 

J (t) := -n 

-n 

I 
k=O 

the function J q, q, by 
-n 

k 
00 tq I (-l)n+k 

q-n k=O FkFn+k 

REMARK. Fq is uniquely determined. 
n+k -l 

If we put F -n = 0, n E lN , then for all n E ,z the function J n can be 

defined by formula (4.1.1). 

4.2. THEOREM [L. CARLITZ (1960), formulae (5.3), (5.9), (5.13) and (5.14)]. 

Let n E ,z • The function J n as defined above is an entire, linear function, 

which has the properties: 

(i) 
n 

{J (t) }q 
-n = (-l)n J (t), 

n 

k 
(ii) 6kJn{t) 

q 
Jn-k (t)' k 1,2, ... , 

n 
(iii) Jn+l (t) - (Xq -X)J (t) 

n + J~-1 (t) 0, 

(iv) J (X2t) 
n 

+ xqn+lJ - (Xq +X)J (Xt) (t) n n n 

PROOF. The formulae can be computed directly from the definition of Jn, using 

(1.8.3). 0 
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4.3. REMARK •. From the definition of ~2 we see that (iv) can also be written 

as 

n 
(iva) ~2Jn(t) - (Xq -Xq)~Jn(t) + J~{t) 0. 

4.4. THEOREM. For all n E nP, k E JN we have 

where Pk is a 

The valuation 

[k/2] 
linear polynomial in lFq [x][t1 ,t2 J of total degree q 

f h ff . . f . 1 h n+k-1 o t e coe icients o Pk is ess tan q 

PROOF. Fork= 1 the theorem is obvious. Fork= 2 the assertion follows 

immediately from remark 4.3. 

Now suppose that the assertion has been proved fork 

Then it follows from theorem 4.2(ii) and (iii) that 

J (t) 
K n 

n-K+1 K-1 
{(Xq -X)J 1 (t) - J. k 2 (t)}q n-K+ n- + 

1,2, ••. ,K-1;K:?:3. 

Hence by the induction hypothesis fork K - 1, K - 2 we have 

(4.4.1) J (t) 
K n 

and therefore 

J (t) 
K n 

n K-1 
(Xq -Xq )P 

1
(J (t),~J (t)) 

K- n n 

p {J (t) ,AJ (t)). 
K n n 

It follows from (4.4.1) and the induction hypothesis that the degree of PK 
[K/2] is equal to q and that the valuation of the coefficients of PK is at 

n+K-1 0 most q 
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The rest of this section will not be used in the following chapters. 

The function Jn is a solution of the equation 

2 n n+l 
f(X t) - (Xq +X)f(Xt) + Xq f(t) 

with n E :;z. We are interested in all solutions of this equation which are 

of the form 

f(t) I 
v=-h 

It turns out that for n E Z:: there is essentially only one such solution 

of the equation; see L. CARLITZ (1960). However, the equation above can 

be slightly generalized. Recall that q is a power of p, say pm and that 

the field@ has characteristic p. Hence for those r E such that rm E z:;, 

the element Xqr E@ is uniquely defined. 

4.6. DEFINITION. Let q pm. Let r E !QbBsuch that rm E z::. For r > - 1 we 

define the element F E JF [x] by r q 

For r :S. - 1 

F := r 

we put 

1 
:= 

F r 

if r > 0 , 

1 if - 1 < r 0. 

mr mj 
TT (Xp -Xp ). 

j E:;z 
r~j<O 

0 4.7. REMARK. For r E lN definition 4.6 equals definition 2.1 of this 
-1 

thesis; furthermore Fr = 0 for - r E lN. For q,r as in definition 4.6 we 

have 

(4.7.1) F r 

mr m 
(Xp -X)~_1 . 

4.8. DEFINITION. Let q 

function Jr:@+@ by 

pm. Let r E Q be such that rm E :;z . We define the 



J (t) := r I 
k=O 

t E W. 

(The series is convergent for all t E W.) 

4.9. THEOREM. The function Jr from definition 4.8 has the properties: 
r 

(i) (Xq -X)Jr(t) + J~-l (t) 0, 

(ii) (Xqr+X)J (Xt) + xqr+lJ (t) 
r r 

PROOF. Analogous to the proof of theorem 4.2. D 

5. ANALYSIS ON W 
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5.1. DEFINITION. Let RE ]R U {+00 } and U = {t E W I dg t < R}. A function 

f: U w is called analytic on U if there exists a power series I;=O aiti, 

ai E w with radius of convergence 2 R such that 

If R 

f(t) I 
i=O 

i a.t 
1 

t EU. 

+ 00 then f is called an entire function. 

5.2. REMARK. Let f be analytic on U = {t E w I dg t < R}. Suppose that the 

power series ~
00 

a.ti, which represents f on U, has radius of convergence li=O 1 

R. Then f has no analytic continuation outside U in the classical sense, 

see J. DE GROOT (1942), L.I. WADE (1946). Recently PH. ROBBA (1973) and 

J. TATE (1971) have given different methods for analytic continuation of 

functions over a complete non-archimedean valued field. For an expose in 

the p-adic case we refer to the book of Y. AMICE (1975). 

In the following chapters we shall need some results from the theory 

of functions f: w w. Since there are fundamental differences between w 
and~ (w has characteristic p, the valuation of w is non-archimedean, w is 

not locally compact), we may also expect great differences between this 

theory and the classical theory of complex functions of one variable. Sur-

prisingly some fundamental classical theorems have analogues in the theory 

of_functions based on w. So we have e.g. a maximum modulus theorem and a 

product formula for entire functions. (See theorem 5.16 and corollary 5.24 

respectively.) 
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We shall give complete proofs of the theorems needed later on. For a 

more general treatment we refer to the works of U. GUNTZER (1966), 

M. LAZARD (1962) and A.F. MONNA (1970). The first results in non-archime-

dean analysis are contained in the thesis of w. SCHOBE (1930). For a dis-

cussion of SCHNIRELMAN's proof of the maximum-modulus principle we refer 

to his own work (1938) or to W.W. ADAHS (1966, appendix), who gives an ex-

position for the p-adic case. 

5.3. DEFINITION. Let ¢[[t]] be the set of formal power series with coeffi-

cients in¢. For each r E JR the subset P of ¢[[t]] is defined as follows. r 
Let f E ¢[[t]], f(t) = I:=O aiti. Then f E Pr if and only if 

(5.3.1) lim (dg ai +ir) 
i-+<x> 

For such r we put 

M (f) r := max (dgai+ir). 
i:;;:O 

Further we define 

ilfll 
r 

f E p • r 

5.4. LEMMA. Pr is a ¢-Banach space with norm II •llr. 

PROOF. Clearly, Pr is a vector space over¢ and 

ilf+gll !lfll + llgll . r r r 

Finally, let {fk}:=l' fk(t) = I:=O akiti be a Cauchy sequence in Pr. Then 
the proof of the completeness can be given by standard arguments in the fol-

lowing steps: 

(i) for each i, lim aki =: a. exists in ¢, 
k-+<x> 1. 

00 

{ii) f, defined by f(t) I 
i belongs := a.t to 

i=O 1. 

(iii) lim fk 
k-+<x> 

fin the norm topology of Pr. D 

Pr, 

This implies that for every t E ¢ with dg t 

converges. 

00 i 
r the series' at li=O i 
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5.5. REMARK. From the proof of lemma 5.4 we see that {fk}==l' 

f (t) ,
00 

ti · t 1.·n P 1.'f and only 'f f k = li=O aki 1.s a convergen sequence r 1. or every 

t E w with dg t $ r the sequence of elements {fk(t)}==l is convergent in w. 

5.6. REMARK. When f E P, then the radius of convergence Roff is not r 
smaller than r. 

When f E P, then f E P for all p $rand for all p $ r we have r P 

sup 
dgt=p 

dg f(t) $ M (f). p 

If there is only one i E "Itp such that 

(5.6.1) 

then we even have for all t E w with dg t p 

(5.6.2) dg f(t) M (f). p 

Those p $ r for which there exists more than one i E -:NO such that (5.6.1) 

is valid, will play a special role in the theory, since they are connected 

with the occurence and the location of the zeros off. 

5. 7. DEFINITION. Let r E JR, f E Pr, f(t) = I:=h ai ti, ah -/. 0. If for 

p E JR, p $ r, there exist i,j h, i -/. j, such that 

dg a.+ jp 
J 

then pis called a hooking-radius off. 

5.8. LEMMA. Let r E JR, f E Pr, f(t) = I:=h ai ti, ah -/. 0. The number of 

hooking-radii off in (-00 ,r] is finite. 

PROOF. Because of (5.3.1) there exists an n O such that 

(5.8.1) 

Hence for all i > nO and p $ r 

(5.8.2) dg ai + ip < dg ¾+hp :<; M (f). 
p 
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Since for i # j, h s i,j s n0 there is at most one p s r with 

dg ai + ip = dg 
(no-h+l) 

most\ 2 . 

a.+ jp, the number of hooking-radii off in (-00 ,r] is at 
J 

D 

5.9. REMARK. In 5.11 we shall introduce a kind of Newton polygon to describe 

the behaviour of M (f). The hooking-radii will be the angular points of this p 
polygon. Note that because of (5.8.1) the indices i > n0 can be neglected in 

arguments on M (f). p 

loo i 5.10. DEFINITION. Let r € JR, f € P, f(t) = . h a,t , ah# 0. Let r i= i 

R1 ,R2 , .•. ,Rl be the (possibly empty) sequence of hooking-radii off in 

(-00 ,r] in increasing order. Define 

io := h 

and 

ik := max {i I dg a. + il\ = Ml\(f)}, k 1,2, •.. ,l. 
i:2:h i 

5.11. THEOREM. In the notation of definition 5.10 we have 

(i) 

max {i I dg ai + ip 
i:2:h 

max {i I dg a. + ip 
i:2:h i 

and 

min {i I dg a. + ip 
i:2:h i 

M (f)} p 

M (f)} p 

M (f)} p 

min {i I dg ai + ip 
i:2:h 

- co< p s r. 

ro• 
- 00 < p < Rl, 

ik, 1\ $ p < 1\+1' k=l,2, ..• ,l-1, 

il, Rl $ p $ r. 

io, - co < p $ Rl, 

ik, 1\ < p $ 1\+1' k 1,2, ... ,l-1, 

il, Rl < p $ r. 



PROOF. Let 1 $ k $land h $ i < ik. Since 

one has for p E (¾,r] 

(5.11.1) dg a.+ ip < dg a. + ikp $ M (f). 
l lk p 

In particular, by Rk < ¾+l $rand fork 0 trivially, 

(5.11.2) {i I dg a.+ iR+l = MR (f)} 
i k k+l 

It follows, by definition 5.10, that ik+l > ik fork 

proves (i). 

k 0,1,2, ... ,.t-1. 

0,1, .•• ,l-1. This 
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By means of continuity arguments it is easily seen that assertion (ii) 

and the assertions of (iii) for - 00 < p < R1 and - 00 < p s R1 respectively 

are obvious. 

Now we consider the case that there are one or more hooking-radii. Let 

n0 h be such that (5.8.1) is valid. From the maximality in the definition 

of ik we see that 

(5.11.3) dg a. + ikp > max (dgai+ip) , 
lk ik<iSno 

k 1,2, •. ,l. 

Let 1 s ks land suppose that the inequality in (5.11.3) holds for all 

p E (¾,r]. Then it follows from (5.8.2) that 

$ r. 

On the other hand (5.11.1) tells us that 

dg a. + ikp > dg a.+ ip, 
lk l 

Hence (¾,r] does not contain a hooking-radius off, i.e. k 

the unique i for which 

dg ai + ip M (f), p 

land il is 
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We see that for 1 s ks l-1 the inequality of (5.11.3) does not hold for 

all p E (1\:,r], i.e. there exists a p E (1\:,r] such that 

(5.11.4) 

Since both sides of this inequality are continuous functions of p, the 

smallest number p for which (5.11.4) is valid is a point where the equality 

holds. Since 

for h 0 s i < ik by (5.11.1) and for i > n 0 by (5.8.2), this point must be 

the smallest hooking-radius off in (R r] i e R Moreover we have k' ' . • k+l 

k 1, ... ,l-1. 

Furthermore we conclude that fork= 1, ... ,l-1 and 1\: < p < 1\:+l 

Since dg ai + ip < Mp(f) for h s i < ik by (5.11.1) and for i > n 0 by 

(5.8.2), ik is the unique i such that 

dg a.+ ip = M (f), 
l. p 1\: < p < 1\:+1, 1 s k s l-1. 

This completes the proof. D 

The following figure illustrates the curve for M (f), p s r. Here 
p 

h = 0, l = 2, R2 < r, i 1 = 1, i 2 = 3. This figure also explains the term 

"hooking-radius". 



+ p 

5.12. COROLLARY. In the notation of definition 5.10 we have 

(5.12.1) min 
i>ik-1 

PROOF. From theorem 5.11 we have 

Hence 

min {i I dg ai + i~ 
i~h 

from which we obtain 

(5.12 .2) 

Moreover it follows from theorem 5.11 that 

(5.12.3) 

k 1,2, •.. ,.l. 

k 1, 2, ... ,.l. 

k 1,2, ... ,l. 

1.37 
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Now formula (5.12.1) follows from (5.12.2) and (5.12.3). D 

5.13. DEFINITION. Let r E JR, f E Pr, f(t) = I;=h aiti, ah-/ 0. 

For p s r we define 

(5.13.1) d(f,p) := max {i I dg ai + ip 
i;:;:h 

M (f)} p min 
i;:;:h 

{i I dg a. +ip = M (f)}. 
1. p 

5.14. COROLLARY. In the notation of the definitions 5.10 and 5.13 we have 

r~ if p -/ 1\• k 1,2, ... ,l, 
d(f,p) 

lik-ik-1 if p = 1\• k 1,2, ••• ,l. 

PROOF. Obvious from theorem 5.11. D 

5.15. REMARK. Let r E JR, f E Pr. If f has no hooking-radii in (-00 ,r], 

then for all t E with dg t = p $ r we have 

dg f(t) = M (f). p 

If R1 < R2 < ••• < Rl $rare the hooking-radii off in (-00 ,r], then for 

t E with dg t = p s r we have 

(5 .15 .1) 

and 

(5.15.2) 

dg f(t) 

dg f(t) s 

M (f), 
p 

M (f), 
p 

But we can prove more. 

p 

5.16. THEOREM. (Maximum Modulus Principle). Let r E Q *), f E P. Then 
r 

sup dg f(t) 
dgtSr 

sup dg f(t) 
dgt=r 

* 

M (f). r 

In view of (1.7.3) (dgt E Q fort E ~) we restrict r to~-
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For the proof of theorem 5.16 we need two lemmas. Note that if r is 

not a hooking-radius off, then theorem 5.16 is an immediate consequence of 

remark·5.15 and theorem 5.11. (M (f) is a monotonic function of p on (-oo,r].) p 

5.17. LEMMA. Let r E and f E Pr. Then 

sup dg f(t) 
dgt<r 

sup dg f(t) 
dgtSr 

M (f). r 

PROOF. According to lemma 5.8 f has at most a finite number of hooking-radii 

in (-00 ,r]. Hence there is a p < r such that f has no hooking-radii in [p,r). 

Since {dg t It E ~} 

\1 E ~, V E :N , such that 

we can choose an infinite sequence of points 

and 

(5.17.1) lim dg t 
V-- V 

r. 

If we denote pv := dg tv, v E lN, then from remark 5.15 ~e have 

dg f(t) 

From (5.17.1) and the continuity of M (f) as a function of p we conclude that 
p 

Hence 

(5.17.2) 

lim dg f(t) 
v--

sup dg f(t) 
dgt<r 

lim M {f) 
v-- Pv 

M (f). r 

M (f). r 

On the other hand we have from remark 5.15 

(5.17.3) sup dg f(t) s Mr(f). 
dgtSr 

Now the lemma follows from (5.17.2) and (5.17.3). D 
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5.18. LEMMA. Let r E lR, f E Pr. Then for every t 0 E <!> with dg t 0 s r the 

function g, defined by 

g(t) 

is also an element of P. r 

t E <!>, dg t $ r, 

PROOF. Denote f(t) 

in Pr by 

~
00 

a.ti and define a sequence of polynomials {g }
00 

1 li=O i V v= 

For all t E <!> with dg ts randµ< v we have 

dg(g (t)-g (t)) $ max {dg a. + i dg(t+t
0
)} 

V µ µ<iSv i 

$ max (dgai+ir) 
µ<iSv 

and therefore 

sup dg(gv(t)-gµ(t)) s 
dgtSr 

max (dgai+ir). 
µ<iSV 

Hence, in view of lemma 5.17, we have 

M (g -g) $ r V µ max (dgai +ir) . 
µ<iSV 

Since f E P ,this means that {g }
00 

1 is a Cauchy sequence in P with the 
r v v= r 

norm topology from lemma 5.4 and hence a convergent sequence with limit, 

say g. In view of remark 5.5 we have for every t E <!> with dg t Sr 

g(t) 

Proof of theorem 5.16. Let t 0 E <!>, dg t 0 
function g, defined by 

r. According to lemma 5.18 the 

(5 .16 .1) g(t) t E <!>, dg t $ r, 

belongs to Pr. Hence 



(5.16.2) sup dg g(t):,; 
dgt<r 

sup dg f(t) :,; 
dgt=r 

sup 
dgt:O::r 

dg f(t). 

On the other hand it follows from lemma 5.17 and (5.16.1) that 

(5.16.3) sup dg g(t) 
dgt<r 

sup dg g(t) 
dgt:O::r 

sup dg f(t) 
dgt:O::r 

Now the theorem follows from (5.16.2) and (5.16.3). D 

5.19. LEMMA. Let g E ~[t] be given by 

M (fl. r 
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Let Rl < R2 < .•. < Rl be the hooking-radii of gin (-00,00). Then g has d(g,~) 

zeros SE~ with dg S = ~, 1 :0:: k:,; l, multiple zeros counted according to 

their multiplicity. There are no other zeros of g, i.e. 

l 
l d(g,~) = n. 

k=1 

PROOF. Since~ is algebraically closed, g has exactly n zeros in~- Denote 

them by S1 ,S2 , ... ,Sn. 

In view of dg g(Si) - 00 , it follows from remark 5.15 that 

i 1,2, ... ,n. 

Hence, ifµ. E JNO denotes the number of zeros O with dg S R J j' 
j = 1,2, .•. ,l, then 

From 

n 
g(t} an TT (t-Si) 

i=l 

we infer that 

(5 .19 .1) dg g(t} 
n 

dg an+ l dg(t-Si). 
i=l 

Now take a number k from the set {1,2, .•. ,l}. Lett E be such that 
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1\: < dg t < 1\:+l if k #land 1\: < dg t if k = l. Then it follows from 

(5.19.1) that 

l 
dg g(t) dg an+ (µ1+µ2+ ••. +µk)dg t + l µjRj. 

j=k+1 

Now dg g(t) = M {g) where p = dg t. (See (5.15.1).) Hence fork= 1,2, .•. ,l p 
and p E Q such that 1\: < p < 1\:+l if k #land 1\: < p if k = l, we have 

(5.19.2) M (g) = dg p 

Taking p 1\: + 0, it follows from (5.19.2) and the continuity of Mp, 

that 

(5.19.3) 

From this it follows by subtraction that for 1 k < l 

By theorem 5.11 

and so, in view of 1\:+l - 1\: # 0, we have 

(5.19.4) 1 k < L 

Fork= l we have from (5.19.2) and theorem 5.11 

Hence 

(5.19.5) 

dg a. + ioP il ,{.. 

The lemma now follows immediately from (5.19.4), (5.19.5) and corollary 

5.14. 0 
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5.20 THEOREM. Let r E JR, f E Pr' f(t) = I;=h aiti, ah ,f 0. Then f has a 

zero 8, 8 E IP, 8 ,f O with dg 8 = p r if and only if pis a hooking-radius 

off. 

PROOF. Suppose that pis not a hooking-radius off. Then it follows from 

(5.15.1) that dg f(t) = Mp(f) 'f' - 00 fort E IP, dg t = p. Hence t cannot be 

a zero off. 

Suppose now that R is a hooking-radius off in (-00 ,r]. Let {n }
00 

1 be -k V v= 
the increasing sequence of natural numbers such that 

n 1 > n
0

, where n
0 

is defined by (5.8.1), 

an ,f O, v = 1,2, .•• , 
V 

ak = O fork> n 0 , k ¢ {nv}:=l' 

i.e. the a are the non-zero coefficients in L00 

a.ti with index greater nv i=h i 

than n 0 • For v E ]N we define 

(5.20.1) p (t) 
V 

:= 

n 
V 

a.ti. I 
i=h l. 

In view of n
1 

> n
0

, it follows from the definition 5.7 of the hooking-radii 

that pv and f have the same set of hooking-radii R1 ,R2 , ..• ,Rl in (-00 ,r]. 

Also the numbers ik, k 1,2, •.. ,l coincide for Pv and f. We obtain from 

lemma 5.19 and corollary 5.14 that Pv has just 

(v) (v) (v) 
zeros 81 ,82 , ••• ,8a 

ik-l zeros 8 in IP with dg 

From 

p (t) 
V 

d 
a TT 

nv j=1 
(t-8~V)) 

J 
(t-8) 

1,2, ••• ,d and just 
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it follows that 

d 
dg(t-13!V)) dg Pv(t) dg a + I + ik-11\: + I dg 13 n J \) j=l P v ( 13) =0 

dgl3>1\: 
for every t E <!> with dg t = 1\:· From theorem 5.11, (5.19.3) and from 

(5.19.4) or (5.19.5) we infer that 

dg a. - dg a I dg 13. 
ik n P (13) =0 V 

V 

dgi3>1\: 

Hence we have 

d 
dg(t-13~v)) (5.20.2) dg PV(t) = I + ck, t E <!>, dg t 1\:• 

j=l J 

where ck is an abbreviation for dg aik + ik-l 1\:; note that ck is indepen-

dent of v. 
Now we construct inductively a sequence {13 }

00
_ 1 in the following way. 

c1i o? v- oi We choose 131 arbitrarily from the set {131 ,132 , ... ,Sd }. Then we take 
(2) (2) (2) . 13 2 from the set {131 ,13 2 , ••. ,Sd } in such a way that 

In general, when 131 ,s2 , ... ,J3v-l are determined, we take 
{ (v) (v) (V)} 13v E 131 ,132 , ..• ,13d such that 

(5.20.3) v=2,3, .... 

Clearly 

o, \) 1,2, ••. , 

\) 1, 2, .... 

From (5.20.3) we derive that 

and then from (5.20.2) with t = Sv-l 



The polynomials Pv were constructed in such a way that 

Pv-1 (t) + a 

hence 

n 
V 

n 
t V 

So we come to the conclusion that 

and since 

lim dg an + nv¾ = - 00 , 

v-+<>" V 

V 2 ,3, ..• ; 

1 - -c <\ k 

because¾~ r, we see that {Bv}:=i is a Cauchy-sequence. 

Define 

Clearly dg 8 ¾· Finally 

dg f(Bl lim dg f(B) 
v-+= 

i.e. 

f(Bl o. D 

lim dg{P (8 ) + 
V V 

v-+= 
}: 

i>n 
V 

5.21. COROLLARY An entire function f: has no zeros 

in~ is a non-zero constant. 

PROOF. Since f has no zeros in~ we have 

f{t) }: 
i=0 

i a.t 
J. 

1.45 
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From theorem 5.20 we see that f has no hooking-radii in (-ro, 00). Hence by 

theorem 5.ll(ii) we have 

iElN,PElR. 

This can only hold for all p E lR if 

i E JN, 

which means that f(t) = a 0 . D 

5.22. LEMMA. Let r E lR, f E 

zero off with dg S = p s r. 

"00 i Pr, f(t) = li=h ait, ah I 
Then there exists a g E Pr 

f(tl (t-S)g(tl 

and 

d(f,p) d(g,p) + 1. 

PROOF. Since f E P, dg S s rand SI O, we can define r 

(5.22.1) j :2'. h. 

Next we show that if we put 

(5.22.2) 

0. Let SI O be a 

such that 

then g E P. Indeed, for j r h, h+l, ..• we have from (5.22.1) 

(5.22.3) dg bJ. + jp s max (dgai+ip) - p. 
i>j 

Hence, asps r, 

dg bj + jr s max (dgai+ir) - r 
i>j 



and since 

lim (dg ai+ir) -oo, 
i-too 

we conclude that g E P From (5.22.1), (5.22.2) and f(B) r 

00 

g(t) (t-8) I - I 
j=h j=h 

I 
j=h+l 

( ) j-Bbth b. 1-Sb. t h J- J 
f(t). 

This proves the first assertion of the lemma. 

By the Maximum Modulus Principle, theorem 5.16, we have 

M (f) 
p 

sup (dg g(t)+dg(t-8)), 
dgt=p 

from which it follows immediately that 

M (f) $ M (g) + p. 
p p 

On the other hand we derive from (5.22.3) that 

M (g) $ M (f) - p. 
p p 

Hence 

(5.22.4) M (g) = M (f) - p. 
p p 
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0 we see that 

From theorem 5.20 we observe that p = dg 8 is a hooking-radius off, 

say I\· From theorem 5.11 we observe that 

(5.22.5) 

and 

(5.22.6) 

max {i I dg ai + i¾: 
i;;:h 

Hence from (5.22.1) and (5.22.5) we obtain 

where i 0 := h. 
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(5.22.7) db +J"R g j k 

and 

(5.22.8) 

Since f(B) 0 we can rewrite (5.22.1) as 

b. 
J 

j h, 

from which it follows, using (5.22.6), that 

(5.22.9) 

and 

(5.22.10) 

From (5.22.7), ... ,(5.22.10) and corollary 5.14 we obtain 

5.23. THEOREM (SCHOBE). Let r E JR, f E P, f(t) = I~ ha.ti, ah~ 0. For r l= l 
p r let d(f,p) be defined by (5.13.1). If R1 < R2 < ••• < Rl are the hook·· 

ing-radii off in (-00 ,r], then f has a zero of order h in O and d(f,¾) 

zeros B with dg B = ¾' k = 1,2, •.• ,l, with multiple zeros counted according 

to their multiplicity*)_ These are the only zeros off in {t E i I dgt~ r}. 

PROOF. In view of theorem 5.20 we only have to prove that f has d(f,¾) 

zeros in {t E i j dg t = l\}, k = 1,2, ... ,l. From theorem 5.20 we observe 

that f has at least one zero B with dg B = ¾• 1 k l. According to lemma 

5.22 there is a g E Pr' g(t) I:=h biti, such that 

and 

f(t) (t-B)g(t) 

In view of the previous lemma it is obvious what must be understood 
by the order of a zero. 
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If d(g;¾) = 0, then it follows from (5.13.1) that there is only one i h 

such that 

Thus¾ is not a hooking-radius of g and therefore g has no zeros in 

{t dg t =¾}.Hence in this case f has d(f,¾l = 1 zero in 

{t €~I dg t = ¾}. 
In case d(g,¾l > 0 it follows from (5.13.1) that¾ is a hooking-

radius of g. Then we apply the argument above with g instead off. Now it 

is obvious how we proceed and that the process stops after d(f,¾) steps. D 

5.24. COROLLARY (Product Formula for Entire Functions). Let f: an 

entire function, f(t) - t
00 

a ti a # 0. Let R denote the set of hooking-- li=h i ' h 
radii off in (-oo, 00). (R can be empty, finite or infinite.) For RE R, let 

SR,l'SR, 2 , ••• ,SR,d(f,R) denote the zeros off with valuation R. Then for 
all t E we have 

(5.24.1) f(t) 
d(f,R) ( t ) 

TT TT 1- -- • 
RER i=1 sR,i 

PROOF. If f has no zeros, the theorem is a special case, with h = 0, of 

corollary 5.21. If f has a finite number of zeros, the theorem follows 

easily from lemma 5.22 and corollary 5.21. 

Now we suppose that f has an infinite number of hooking-radii in 

(-00 , 00). Let {¾}==l be the increasing sequence of hooking-radii off. Ac-

cording to theorem 5.23 and lemma 5.22 we can define a sequence of entire 

functions gn by 

h n d(f,¾l 
(1- _t) (5.24.2) f(t) aht TT TT gn (t). 

k=1 i=l s¾ . ,1. 

Clearly gn has no zeros in (-oo,Rn] and we can write 

(5.24.3) 

From theorem 5.20 we conclude that gn has no hooking-radii in (-00 ,Rn] and 

therefore, by theorem 5.11, 
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(5.24.4) i 2 1. 

Now let r E JR be arbitrary but fixed. From (5.24.3) we get 

max (dgbni+ir) 
i21 

:,; max 
i21 

(dgb .+iR) + max i(r-R). 
ni n i2':l n 

Since {Rn}:=l is an infinite, increasing sequence we infer from (5.24.4) 

that 

lim Mr(gn-1) - oo, 
n->= 

{ }
00 p i.e. the sequence gn n=l in r is convergent to the identity function 

1 E Pr. Hence (5.24.1) is valid fort E with dg t:,; r. But since r was 

chosen arbitrarily we have proved (5.24.1) for all t E ~- D 

The following corollary is equivalent to theorem 2.12, but its proof 

is different. 

5.25. COROLLARY. The function W, given by 

00 
j 

I (-l)j 
tq 

:= 
F. j=O J 

t E 

k k-1 has a zero of order 1 in O and q - q zeros SE~ with dg 

k E JN • Moreover, if a E is any zero of w with dg a = _5L_, 
q-1 

t ( t\ 
TT \ 1- Ea) 

EEJF' [X] \ 
q 

E -f- 0 

PROOF. From corollary 5.12 and definition 5.10 we have 

io 1; 

-dgF0+dgFj 
1 1 

Rl min 
qj-1 

+ q-1 j>O 

il max {qj I - dg F. + qj. _5L_ = M <w>} q; 
j>O J q-1 Rl 

1 
S = k + q-l , 
then 



and inductively fork> 1 

-dgFk_1+dgFj 

j k-1 q -q 

k k-1 
d(W,~l = q - q 

k + _1_ 
q-1 

k q ; 

k k-1 According to theorem 5.23 W has exactly q - q zeros S with 
1 dgS=k+--1,kElN. q-

Let a be a zero of w, then it follows from theorem 2.lla,b,c that 

W(Ea) = 0 for all E E JF [X]. 
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q 
Now let a~ 0 be a zero of 

Since the number of polynomials 

W such that dg a is minimal, i.e. dg a=~-
kq-

in JF [x] of degree less than k equals q , q 
we conclude that the set of zeros of w is exactly {Ea I E E JF [x]}. The q 
last assertion now follows from (5.24.1). D 

0 5. 26. COROLLARY. The functions J n (nElN ) , defined in ( 4 .1.1) by 

J (t) := n }: 
k=O 

n+k 
(-l)k _tq __ 

·n 
Fn+kFf 

have a n k+l zero of order q int= 0 and have q k - q different zeros S with 

dg S n + 2k + ~ 1 , each of order qn. q-

PROOF. From corollary 5.12 and definition 5.10 we have 

n n 
-dg(FnF~ ) + dg(Fn+kF~ ) 

-n + 2 2 
Rl min +--n+k n q-1 k>O q -q 

( n+k I - dg(F Fqn)+(n+ 2q)1n+k MRl (Jn)} il max 1.-4 k>O n+k k q-1 

{qn+k I qn+k(-2k+ :-1} MRl (Jn)} 
n+l max q 

k>O 

and inductively 
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n + 2k + 2 
q-1 

n+k 
q 

Now it follows from theorem 5.23 that J has a zero of order qn int O 
n+k n+k-.1 n 

and that Jn has q - q zeros S with 

dg S 2 
n + 2k + q-l , 

Be~ides, it follows that Jn has no other zeros. 

From theorem 4.2(i) we see that every zero of Jn is a zero of J-n' 

moreover that every zero of J has multiplicity at least qn. 
n 2 

Let S be a zero of Jn with dg S = n + 2 + --1 . Then it follows from 
* q-

the linearity of J that cS, c E 1F is also a zero of J and dg(cS) = dg $. 
n q n 

Hence J n has at least q-1 different zeros S with dg S = n + 2 +_?__land q-
multiplicity~ qn. Since d(Jn,Rl) = n+l q - qn,we conclude 

2 ly q-1 different zeros S with dg S = n + 2 + --1 , each of 
q- k k-1 

has exactly q - q Suppose we have proved that J 

that J has exact-n 
multiplicity qn. 

different zeros 
2 n 

S with dg S = n + 2k + q-l' each of multiplicity qn, k = 1,2, •.• ,K. Then 
2 K * the number of different zeros S with dg S n + 2K + --1 equals q. Let S 

be a zero of J with dg s* = n + 2(K+l) + n 
2 q-

q-1 · Then for every zero S with 

dg S < dg s* it * * follows, from the linearity of J , that cS + S(cElF ) is 
* * n K q a zero of J n 

zeros S with 

and dg(cS +S) = dg S. Hence Jn has at least (q-l)q different 

dg S = n + 2(K+1) +~,each of multiplicity~ qn Since 
n+K+l n+K q- K+l K 

d(Jn,RK+l)=q -q ,weconcludethatJ hasexactlyq -q dif-
2 n 

ferent zeros S with dg S = n + 2(K+1) + --1 , each of multiplicity qn. D q-

FINAL REMARK. The supremum in the Maximum Modulus Principle (theorem 5.16) 

is actually attained and is therefore a maximum. To prove this we may sup-

pose that r = 0 and that 

f(t) I 
i=O 

Let n O denote the smallest natural number such that dg ai < dg a O, i > n O 
(see 5.8.1). If we define 
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then 

Now we define inductively the following sequence of elements of~= t 0 1; 

for i = 1,2, ..• ,n0 the element ti is a solution of the equation 

q 
t - t + ti-1 0. 

(T~is is possible since~ is algebraically closed.) Then 

and 

o, 

dg ( t . -t . ) = 0, 
l J 

The system of equations 

no 
\ i 
l a. t. = g (tJ.) , 

i=O l J 
j 

dg g(t.), 
J 

So according to theorem 5.16 

= max dg a. $ 

i 

max MO(g) 
0:Si:Sno 

l 0:Sj $no 

* * Hence there exists a t E with dg t 

* dg g(t) 

Since 

* dg f(t) 

dg g(t.) $ sup 
J dgt=O 

0 such that 

and since M0 (f) M0 (g), we have proved our assertion. 

dg g(t) 
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CHAPTER II 

TRANSCENDENCE IN~ 

In the first section of this chapter we shall mention some properties 

of elements of~ which are algebraic over JF (X). In the second section we q 
shall give a survey of known results on transcendence in the field~- For 

instance, we mention analogues of the following three classical theorems: 

(i) the theorem of Liouville on the approximation of algebraic numbers 

by rational numbers (M. MAHLER, 1949), 

(ii) the theorem on transcendence of the values of the exponential func-

tion in non-zero algebraic points (L. I. l'iADE, 1941) , 

(iii) the Gelfond-Schneider theorem (L.I. WADE, 1946). 

6. PRELIMINARIES 

In this section k is always a subfield of~-

6 .1. DEFINITION. An element E € JF [X] is called a monic element of JF [X] 
q q 

if Eis a monic polynomial over JF q 
The elements A1 ,A2 , ••• ,An € JF q [X] are called relatively prime if they 

do not have a common divisor in JF [X] other than units. 
q 

Notation: (A1 ,A2 , ..• ,An) = 1. 

The least common multiple of then elements B1 ,B2 , ... ,Bn € JFq [X]\{0} 

is an element B € F [x] for which 

(i) 

(ii) 

q 

~€ JF [X], i 
Bi q 
dg Bis minimal, 

1,2, ... ,n, 

(iii) Bis monic. 

It follows that Bis uniquely determined. 

Let a € be algebraic over JF (X) of degree n. From theorem 0. 9 it 
q 

is obvious that there exists a unique, irreducible polynomial Q € JF [X][t] 
q 
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of degree n with the properties: 

(i) Q(a) =QI 

(ii) Q is a primitive polynomial over JF [X] , 
q 

(iii) the leading coefficient of Q is monic. 

6.2. DEFINITION. Let a E be algebraic over JF (X) of degree n. The unique, 
q 

irreducible, primitive polynomial Q E JF [X][t] of degree n with monic lead-q 
ing coefficient for which Q(a) = 0 is called the minimal polynomial of a 

over JF [X]. q 
The element a is called integral algebraic over JF (X) or an algebraic q 

integer of~ if the minimal polynomial of a over JF [X] has leading coeffi-q 
cient 1. 

N.B. In the following chapters by "minimal polynomial of a" we shall always 

mean the minimal polynomial of a over JF [X]. q 

6.3. DEFINITION. Let a E be algebraic. Every EE JF [X]\{0}, for which 
q 

Ea is an algebraic integer, is called a denominator of a. 

6.4. LEMMA. (WADE 1941). Let P E JF (X) [t] be a polynomial of degree n 1 q 
(in t). Then there exists a linear polynomial Q E JF [X][t] of degree qn(in t) q 
such that P divides Q. 

PROOF. By the Euclidean algorithm we have 

i n-1 
(6.4.1) tq l b;i)tj + Ri(t)P(t), i 0,1, ••• ,n, 

j=O 

{i) 0 with R. E JF' (X) [t], b. E JF (X). Note that if m E 1,J is defined by 
1. q J q 

qm n-1 < q1Il+1 , then R. = 0 and 
1. 

1, i = 0,1, ••• ,m. 

i Furthermore R. has degree q - n, i = m+l, ••• ,n. 
1 n-1 If we eliminate 1,t, ••• ,t succesively in the right hand side of 

( 6 . 4 . 1 ) , we obtain 

n 
b 0t + b tq + ••• + b tq = R(t)P(t), 1 n 

where b. E JF (X) and RE JF (X)[t]. From the elimination process it fol-
1. q q 

lows that not all the bi can be zero. Let 



v· := max 
1:Si:Sn 

2.3 

{i I b. f. O} 
J_ 

and let CE JFq[X]\{0} be such that Cb0 , ..• ,Cbv E JFq[X]. The polynomial Q, 

defined by 

n-v n-v 
Q(t) := (Cb

0
)q tq + ... + 

satisfies the conditions of the lemma. D 

6.5. LEMMA. Let a E ¢ be separable algebraic over kc¢ and let PE k[t] 

be its minimal polynomial. Then the zeros of Pare all different. 

PROOF. See O. ZARISKI and P. SAMUEL (1958), Ch.II,§5 def.3, cor.2. 

6.6. DEFINITION. Let a E ¢ be algebraic over kc¢. The different zeros of 

the minimal polynomial of a are called the conjugated elements of a over k. 

6.7. THEOREM. Let a 1 ,a2 , ... ,am E ¢ be separable algebraic over kc¢. Then 

k(a1 ,a2 , •.. ,am) is a separable algebraic extension of k. 

PROOF. See 0. ZARISKI and P. SAMUEL (1958) Ch.II th.10 or I. ADAMSON, 

th.13.7. 

6.8. THEOREM. Let a E ¢ be separable algebraic over kc¢ of degree n and 

let a 1 = a,a2 , •.. ,an be the conjugated elements of a over k. Then there 

exist exactly n distinct monomorphisms cri: k{a)c..+ ¢, i = 1, ••. ,n under 

which k is invariant. These k-monomorphisms can be given by 

cr. (a) 
J_ 

i 1,2, •.• ,n. 

PROOF. See O. ZARISKI and P. SAMUEL (1958), Ch.II, th.16 or I. ADAMSON, 

th.15.4. 

6.9. LEMMA. Let a E ¢ be algebraic over kc¢ of degree n. For SE k(a) 

let PE k[t] denote the·monic, irreducible polynomial with P(S) = O, given 

by 

P(t) 
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Then 

(13) (-l)nbno/m_ Nk(a)-+k = 

PROOF. See O. ZARI SKI and P. SAMUEL, Ch. II , § 10 or P. RIBENBOIM, part II, SA. 0 

6.10. LEMMA. Let a E w be separable algebraic over kc w of degree n and 

let cr1 ,cr2 , ••• ,crn be then k-monomorphisms k(a)"-4- w. Then for every 13 E k(a): 

n 
Nk(a)-+k (13) = TT 

j=l 
cr.(13). 

J 

PROOF. See O. ZARI SKI and P. SAMUEL, Ch. II, § 10 or P. RIBENBOIM, part II, SA. 0 

6.11. REMARK. Let K be a finite, separable algebraic extension of JF {X). q 
Then there exists a 8 E K such that K = JF (X) (8) (see O. ZARISKI and q 
P. SAMUEL Ch.II,th.19.) It follows from lemma 6.9 that for all 13 EK 

(X) E ]F (X) • 
q q 

Moreover, if 13 is an algebraic integer of K, then 

NK-+JF {X) E ]F [X]. 
q q 

Hence, if 13 # 0 is an algebraic integer bf K, then 

0 
dg (NK-+JF {X) (13)) E JN • 

q 

In 1946 L.I. WADE proved an analogon of the classical Gelfond-Schneider 

theorem. The proof of Wade's theorem starts with the construction of an 

auxiliary function. This leads to the problem of solving a system of rho-

mogeneous, linear equations ins variables (r<s) with coefficients in a 

given separable algebraic extension of the groundfield JF {X). In the clas-q 
sical case we know, by Siegel's lemma (see e.g. Th. SCHNEIDER (1957), 

HILFSSATZ 331.,) , .. that there is a solution with absolute value not too large. 

In the following we shall give a proof of an analogue of Siegel's lemma. 

6.12. LEMMA. Let m,n E JN with m < n. The system of m homogeneous, linear 

equations in then unknowns Xi, i = 1,2, .•• ,n, 



(6.12.1) 

where~ E 

such that 

n 
I X. 

i=1 
]. 

lF [X] and q 

max dg ¾i 
1:<:::i:<:::n 
1:<:::k:<:::m 

C. E lF [X], ]. q 

am 
dg Ci :<::: n-m 

0, k 1,2, ••. ,m, 

$ a (a::::O), 

i 1, .•. ,n, 

k 

For xi E lF q [X], i 1,2, ••• ,n, we have 

(6.12.2) y 
k 

k 

2.5 

1,2, ••• ,m. 

1,2, •.• ,m. 

Let l EN be arbitrary. The "cube".{(s1 , •.• ,snl I si E <I>, dg si < l} 

contains qln lattice points (x1 , ••• ,Xn). (The notion of lattice point in <I>n 

means an n-tuple (X 1 , ••• ,Xn) of elements Xi E lF q [X], i = 1, ••• ,n.) For 

these lattice points (X1 , ••• ,Xn) we have 

(6.12.3) dg Yk < max dg ¾i +ls a+ l, 
1:<:::i:<:::n 

k 1,2, ... ,m. 

Hence every lattice point { (X1 , .•. ,X ) I dg X. < l, i = 1, .•. ,n} corre-
. n(a+l)m l. 

sponds, via ( 6 .12. 2 ), with one of the q lattice points of the cube 

{(n 1 , •.• ,nm) ni E <I>, dg ni <a+ l}. 
Now let l be the smallest number such that the number of lattice 

points {(Y1 , ••• ,Ym) 

points {(x1 , ..• ,Xn) 

l ·= f~ + ln-m 

dg Y. <a+ l} is less than the number of lattice 
]. 

dg X. < l}; 
]. 
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Then according to the Box Principle of Dirichlet there are at least two 
. (1) (1) (2) (2) . different lattice points (c1 , •.. ,en ) and (c1 , ••. ,en ) which cor-

respond with the same lattice point (Y1 , ..• ,Ym). Hence (C1 , ... ,Cn) with 
C ! l) C ! 2 ) , . 1 2 ' 1 t' f ( 6 12 1) and Ci i i i = , , •.. ,n, is a so U ion O •• 

dg C. max(dg ci!l) ,dg c!2)) < r~ + 1] . 
i i Ln-m 

Since C. E lF [X], we conclude 
i q 

am 
dg Ci~ n-m i 1,2, .•. ,n. D 

6.13. LEMMA. Lee K be a finice, separable algebraic excension of degree h 

of lFq (X). Then chere exiscs a basis s1,s2 , ••. ,Sh of algebraic incegers of 

K such chac every algebraic inceger ~EK can be wriccen uniquely as 

PROOF. See for instance 0. ZARISKI and P. SAMUEL (1958), Ch.V,§4, 

Cor. 2. D 

6.14. DEFINITION. Let a E 1 be algebraic over lF (X) of degree n and let 
q 

a 1 = a,a2 , .•. ,an E 1 be the roots of the minimal polynomial of a. Then we 

define 

REMARK. Let K be a finite, separable algebraic extension of F (X) of de---- q 
gree hand let cr1 ,cr2 , ... ,crh denote the distinct lFq (X)-monomorphisms K"+ 1. 

If PE F [X][t] is the minimal polynomial of SEK, then q 

and 

P(cr. (S)) 
J 

a. (P(S)) 
J 

h 
TT 

j=1 
(t-cr. (S)) 

J 

0 

is a polynomial with coefficients in lF (X). Hence the set of zeros of P 
q 

equals the set {cr1 (S),cr2 (S), ••• ,crn(S)}. Therefore in this case we have 



6 .15. LEMMA. If a and S are algebraic over JF (X), then q 

(6.15 .1) 

and 

(6.15.2) 

PROOF. Let a 1 = a,a2 , ••• ,an and s1 = S,S2 , ••• ,Sm denote the zeros of the 

minimal polynomials of a and S, respectively. Then the coefficients of 

TT 
i=1, •.. ,n 
j=1, ••. ,m 

(t-a.-S.) 
]. J 

are elements of ]F (X). The minimal polynomial of a+ Sis a divisor of q 

2.7 

this polynomial. Hence the zeros of this minimal polynomial belong to the 

set {a. +S. J i 
]. J 

1, ... ,n; j = 1, •.. ,m}. Therefore 

d*(a+S) max(dg(a.+S.);O) max(max(dga.,dgS.);O) 
i,j ]. J i,j ]. J 

* * max(d (a) ,d (S)). 

Relation (6.15.2) is proved analogously by considering the polynomial 

TT 
i=1, ••• ,n 
j=1, ••• ,m 

(t-a.S.). 
]. J 

6.16. LEMMA. (WADE 1946) Let K be a finite, separable algebraic extension 

of degree h of JF (X) • Let r, s E JN , r < s. Then the system of r homogeneous, q 
linear equations in the s unknowns 

(6.16.1) 
s 
l aki xi= o, 

i=l 
k 1,2, ••• ,r, 

where the aki are algebraic integers in Kand 
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* a:= max d (aki), 
1SiSs 
1SkSr 

has a non-trivial solution (~ 1 ,~2 , •.. ,~s) in algebraic integers ~i of K 

with 

cs+ar <---s-r i 1,2, ••• ,s. 

Here c denotes a positive constant which depends only on the field K. 

PROOF. Let f\, S2 , ••. , Sh be a basis of algebraic integers of K as mentioned 

in lemma 6.13. Since ak. S., k = 1, .•• ,r; i = 1, .•. ,s; j = 1, .•. ,h are al-
J. J 

gebraic integers of K, we can write 

(6.16.2) 

with A_ • • € JF' [X]. Now consider the rh homogeneous, linear equations in 
kJ.J\! q 

the sh unknowns Xij' 1 s; is; s; 1 s; j s; h 

s h 
(6.16.3) l l AkiJ·v x .. 

i=l j=l J.J 
0, k 1, ... ,r; v 1, ..• ,h. 

Since rh < sh and A_ • • € JF' [X ], we can now apply lemma 6. 12. To this end 
kJ.JV q 

we need an upper bound for dg A_ ••• 
kJ.J\! 

Let cr 1 , .•• , crh denote the h distinct JF' q (X) -monomorphisms K "+ <I>; then 

for 1 s; ks; r, 1 s; is; s, 1 s; j s; h we have 

1, ... ,h. 

det(cr (S )) f 0. µ v µ,v 

Hence we can express A_ •• as a linear combination of the elements 
kJ.JV . 

cr 1 (akiSj), ••• ,crh(akiSj) with coefficients which only depend on the field K. 
Therefore 
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where c
1

,c2 are positive constants depending only on K. 

According to lemma 6.12 the system (6.16.3) has a non-trivial solution 

in polynomials Cij E JFq[X], i = 1, ... ,s; j = 1, ... ,h such that 

(6.16.4) 
(c

2
+a)rh 

dg C ij < sh-rh 

Now we define 

h 
(6.16.5) := I c .. 

j=l J.J 
i 1, .•. ,s. 

Then the ~i are algebraic integers of K, not all zero, and from (6.16.5) 

and (6.16.2) we have 

h s h 

v~l i~l j~l 1\ijv cij Bv. 

But since ,s ,h A C 
li=l lj=l kijv ij o, k 1, ... ,r; V 1, ... ,h, 

the s-tuple (s 1 , •.• ,ss) is a non-trivial solution of (6.16.1). Furthermore 

it follows from (6.16.5) and (6.16.4) that 

(a+c
2
)r 

max (dg c .. +a*(B.)) < ---- + c
3 J.J J s-r i,j 

ar+cs < ---s-r 

where the positive constant c depends only on K. D 

7. SUMMARY OF KNOWN RESULTS ON TRANSCENDENCE IN¢ 

As already mentioned in chapter I, the functions and the 

quantity s E ¢ were introduced by L. CARLITZ in 1935. In 1941 L.I. WADE 

proved the transcendence over lF (X) of ¢(a) for every non-zero algebraic q 
element a E i. From ~{s) = 0 it follows 

and since A: {t E ¢ lag t < .....5L..1} + w is q-

that s is transcendental over lF (X) q 
defined as the inverse of¢ we al-

so immediately see that A(a) is transcendental over lF {X) for every non-q 
q zero algebraic a E w with dg a< q-l· 

In the same article Wade remarked that he was not able to prove the 

transcendence of 

qj 

I a j 1,2, ... , c. F. c. E ]F 

j=O J J J q 
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where an infinite number of c. is non-zero and where a is an arbitrary al-
J 

gebraic element of~- However, the transcendence in a special case, namely 

for a E JF [X]\{O}, follows from the following theorem which Wade proved q 
in the same article. 

7.1. THEOREM. (WADE (1941). Let the sequence {Bk}==O satisfy the conditions: 

(i) Bk E JFq[X], k = 0,1,2, .•. , 

(ii) infinitely many of the Bk are non-zero, 

(iii) there exist a k0 E JN and a sequence {ck}==ko of real numbers with 

such that 

(7.1.1) k-1 k-1 dg Bk$ k(q-l)q - ck q 

Then 

is transcendental over JF .{X) • 
q 

All proofs in Wade's article follow the same line. To illustrate this 

method we shall prove theorem 7.1. 

Proof of theorem 7.1. Suppose y 

gree n. According to lemma 6. 4, y ·is a 
degree qn, 

i.e. 

(7 .1.2) 

where 

n 
f(t) := I 

j=i 

n 
0 I A. 

j=i J 

D. := 
.l.. 

min(n,i) 
I 

j=i 

D. 
.l.. I 

i=f Fi 

B 

Fk is algebraic over JF (X) of de-
k q 

zero of a linear polynomial f of 

j 

From remark 2.2(a) we see that D. E JF [x] • 
.l.. q 

For m ?: i a "multiplier" Mm E JF q [X] will be defined in such a way 



that 

can be split up into two parts 

m 
I I 

i=l 

and 

Q == I 

MD. 
m i 

F. 
]. 

MD. mi 
i=m+l F. 

]. 

such that 

(i) I E JF [X] ,' 
q 

(ii) every sum of Q has valuation less than zero if mis chosen large 

enough. 

In our case, (7.1.2), Fm will do as such a multiplier. Using (7.1.2) we 

have 

(7 .1.3) I + Q o. 

2.11 

From IE JF [X] we have either dg I~ 0 or I= O. But from (7.1.1) we 
q 

can deduce that dg Q < 0 and in view of (7.1.3) we conclude that I= 0. It 

now remains to prove that form chosen sufficiently large this leads to a 

contradiction. We have 

0, 

This yields 

F m-1 Fm-l 
D + l -- D 

m Fm-1 i=l Fi i 
0, 

and hence D o, m mo. Recalling the definition of D we have m m 

n 
qJ 

B . 
(7 .1.4) I A. m-J 0, m mo. 

j=l J Fqj 
m-J 
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We proceed by induction. From remark 2.2a it follows that 

n 
I 

j=l+l 

Hence by (7.1.4) 

l 
A Bq 
l m -l 0 

Suppose that 

l-+1 
Fmo-l-1 

Fqj . 
mo-J 

E ]F [X]. 
q 

E ]F [X]. 
q 

(7.1.5) K = 0,1, ••• ,k-1. 

Then it follows from (7.1.4) with m 

qk+1_1 ql 
m0 + k that 

q-1 Bmo+k-l k+l+1 
A ----Fq + l qi m -l-1 

+ 

+ 

Fmo+k-l 0 

min(k,n-l) 
I 

v=1 

n-l 
I 

v=min(k,n-l)+l 

k+l l q -----1 
A A q-l 
l+v l 

l+v 
Bq 

m +k-l-v 0 
l+v 

Fq 
m +k-l-v 0 

0, 

which, by the induction hypothesis, yields (7.1.5) with K = k. Since 

{Bk};=l contains infinitely many non-zero elements,we have infinitely often 

k+1 1 .e_ m +k 
9...___l- dg A 0 + q dg B O - (k+1)q O 0, 

q- -{.. m
0

+k--{.. 

which for large k contradicts (7.1.1). D 
Fq ,oo 1 , 00 k-1 

The transcendence of the special element lk=l -k-- = lk=l -F- does 
Xq -X k 

not follow from theorem 7.1, but using its special character and chosing the 

right multiplier, Wade proved its transcendence in theorem 4.1 of his ar-

ticle from 1941. By the same method he proved in 1943/44 the following 

three transcendence results for certain elements oft. 



7. 2. THEOREM·. For n E N the element 

is transcendental over JF' (X) • q 

PROOF. See WADE (1943), §4. 0 

7.3. THEOREM. Let G E JF' [x], dg G > 0 and n E JN, n > 1. Then q 

is algebraic over JF (X) if n = ps, s E lN and transcendental otherwise. q 

PROOF. See WADE (1944), th.1. 0 

7. 4. THEOREM. Let G E JF' [X], dg G > 0 and n E lN , n > 1. Then q 

is transcendental over JF' (X) • q 

PROOF. See WADE (1944), th.2. 0 
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The theorems 7.1 and 7.3 were generalized by S.M. SPENCER jr, (1952). 

His proofs are based on the principle sketched in the proof of theorem 7.1. 

Spencer's generalisation of th.7.1 consists of replacing the sequence 

{Fk}==O by a sequence {Gk}==O of elements of JF'q[X] which satisfy the fol-
lowing two conditions: 

(i) 
Gk+1 

JF' [X], k ;:,, 0 --E 
Gq q 

k 

(ii) 
dg Gk 

lim -k-- = co 

k-+co q 

See SPENCER (1952), theorem 4. 

The generalisation of theorem 7.3 reads: 

7.5. THEOREM. Let the sequence {Gk}==O satisfy the two conditions: 
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(i) Gk € JFq [X], k :?: 0 

and for some kO' dg G > 
ko 

o, 

(ii) 
Gk+l 

JF [X], k :?: 0. --€ 
Gk q 

Let {ek}==O' ek € lN satisfy 

(iii) ek I ek+1' k :?: o, 

(iv) P1 ek+1 
ek 

k :?: o. 

Then lk00

=0 -
1

- is transcendental over JF (X). 
Gek q 

k 
PROOF. See SPENCER (1952), th. 7. Compare the case Gk 

theorem 7.3. D 

Furthermore we mention that in the same paper by Spencer the follow-

ing result is proved. 

7.6. THEOREM. Let the entire function f:@ be given by 

f(t) := I 
n=O 

b n 
€ JF (X) 

q 

and bn f O for infinitely many n. Let Gn denote a denominator for 

b
0

,b1 , ••• ,bn of smallest valuation. Let a€ @\{O} be algebraic and dg a$ O. 

If there exist an increasing sequence n 1 ,n2 , ••• of natural numbers 

and an increasing sequence k 1 ,k2 , ... of positive real numbers with 

lim. k. = 00 , such that 
l. l. 

f 
(i)dg b < - k. dg G , 

V 1. n. 
(7.6.1) 00 l. 

t (:ii) l b av f O, i 
v=n.+1 V 

l. 

1,2, ••. , 

then f (a) is transcendental over JF (X) • 
q 

PROOF. See S.M. SPENCER (1952), th.1 or section 9 of this thesis. In 

Spencer's article the theorem is proved only in the case that f is defined 

on P, but the proof also works in case f is defined for all t € @. D 



N.B. Spencer does not mention the condition dg a~ 0 but it is not 

clear how his proof works without it. 
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In 1946 L.I. WADE proved an analogue of the Gelfond-Schneider theorem 

using the Siegel-Schneider method. We shall formulate this theorem and 

give a sketch of the proof. In 1971 and 1973 the same method was used to 

obtain transcendence results for a wider class of functions. See 

J.M. GEIJSEL (1971,1973) or chapter IV. 

7.7. THEOREM. (WADE 1946) Let a,13 E 1>. If a -.f 0, dg a< _Ll and 13 ,I: JF (X), q- q 
then at least one of the three quantities a,13,w(SA(a)) is transcendental 

over JF (X). q 

PROOF. Suppose a, 13 and w (13;\ (a)) are algebraic over JF (X) • For some 
---0 e e e q 
e e: JN the elements aq ,Sq ,Wq (13;\ (a)) generate a separable algebraic ex-

tension K of JF (X) • q e e e 
Let r E ]F [X] be such that raq ,rsq and rll (13;\(a)) are algebraic 

q 
integers of K. 

The proof, that the assumption on a,13 and w(B;\(a)) leads to a con-

tradiction, consists of three steps. 

Step I: construction of an auxiliary function L with many prescribed zeros. 

Step II: proof with the aid of the Maximum Modulus Theorem that L has in-

finitely many distinct zeros of a certain type. 

Step III: Application of the Product Formula for Entire Functions from 

which the desired contradiction follows. 

I. The natural numbers k, l with l > 3k will be chosen later. Set 

m := k + l - 1. Define the entire function L: 1> 1> by 

g2t_l 
L(t) := l 

j=0 

2k l q -
I 

i=0 

. e 
X tJq 
ij 

. e 
wiq (\(alt), 

where the algebraic integers X .. of K will be determined in such a way 
J.J 

that L(A+i3B) = 0 for all A,B E JF [X] with dg A< m,dg B < m. The con-q 
dition 

2l 2k+m 
rq +q L(A+i3B) 0, dg A, dg B < m 

2m 1 . t· 2(k+l) on L implies a system of at most q inear equa ions in the q 

variables X .. with integral algebraic coefficients (apply th.2.11(a), 
J.J 
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th.2.13 and th.2.5). Using that 

1/J (A) 
dg _µ __ = (dg A-µ)qµ qdgA-1 

F µ 

(see remark 2.6) we find that the valuation of these coefficients and al-

so of their conjugates is less than q2l+e(m+c1), where the rational con-

stant c 1 > 0 does not depend on k and l. According to lemma 6.16 we can 

determine the X .. in such a way that not all of them are zero and that 
1.J 

(7.7.1) 2l+e dg X .. < (m+c2 )q , 
1.J 

where c 2 > 0 is independent of k and l. 
From now on we suppose that the X .. are fixed accordingly. 

1.J 

II. Forµ~ m we define 

B(µ) := {A + SB I A,B E JF [X]: A and B not both q 

dg A<µ, dg B < µ}. 

zero; 

Let B ·= U
00 

B(µ). The second step now consists of proving by induc-µ=m 
tion that L vanishes on B. We have constructed L such that L(t) = 0 

fort E B(m). So it is sufficient to prove that 

(t E B(µ) L(t) 0) (t E B(µ+l) L(t) 0). 

Since S JF (X), all the A + SB are different. Hence the number of ele-
q 2µ 

ments of B(µ) is q -1. 

Let t 0 E B ( µ+1) \B ( µ) • If l is chosen large enough, then 

* dg t 0 µ + d (S) < 2µ. By assumption 

-1 (t-a) 

is an entire function. Hence we can apply the Maximum Modulus Principle 

(th.5.16) and obtain 

dg L(to) - I dg(to-a) 
aEB(µ) 

max 
dgt=2µ 

2µ dg L(t) - 2µ(q -1). 
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From the definitions of L and 1jJ and inequality (7. 7 .1) it follows that 

(7.7.2) 
2l+e 2k+e+2µ max dg L(t) < (2µ+m+c2 )q + c 3q , 

dgt=2µ 

where c
3 

> 0 is independent of k and l. Now put 

n := µ - k + 1, 

then n;;;: land 

From the choice of t 0 and the definitions of Land r it follows that 

is an algebraic integer of K. Therefore its norm is an element of F [X] 
q 

with 

(7.7.3) 

where c 4 > 0 and h := [K: Fq (X)]. Now first choose k such that 
2k-e-2 4-q < O. Then take l so large that 

(i) 

(ii) 

(iii) 

d*(S) < l (this was required in the calculation above), 

l > 3k (as was assumed throughout the proof), 
2k-e-2 2k-e-2 2k-e-2 4k µ (4-q ) s; m(4-q ) = (k+l-1) (4-q } < - c 4q 

III. Now k and l are fixed. According to the Product Formula for Entire 

Functions, corollary 5.24, we have 

L(t) = ytp TT 
aEB(µ) 

( 1- !.i 
a 

where p E lNO, y E ~,y i 0, R* = R\{O} and R denotes the set of zeros 

of L. Comparing the maximal value on {t I dg t = 2µ} and the value in 

t = 0 of the last product, the Maximum Modulus Principle yields 

(7. 7 .4) max dg l,J 
dgt=2µ bER \B(µ) 

(1- !.i ;;;: 0 b • 
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Further.we write 

IT 
ac:B(µl 

(1- !.) 
a 

IT (a-tl 
ac:B(µl 

TT a 
ac:B(µl 

Then it follows from (7.7.4} that 

(7. 7 .5) max 
dgt=2µ 

dg L(t) 2µ * 2µ dg y + 2µp + 2µ(q -1}-(µ+d (B})(q -1). 

Forµ large enough (7.7.2) and (7.7.5) are contradictory. D 

In 1949 K. MAHLER proved an analogue of the well-known theorem of 

Liouville on the approximation of algebraic numbers by irrational numbers 

for certain function fields. His proof also works for our field t. There-

fore we have, in our notation, 

7.8. THEOREM. (MAHLER) If a Et is algebraic over F (X) of degree n 2, 
q 

then there exists a c E lR such that for all pairs P ,Q E F [X] with Q -f 0 q 
we have 

p 
dg (a - -) C - n dg Q. 

Q 

PROOF. See MAHLER (1949), th.1. 0 

In case the characteristic of the function field is 0, Mahler's theorem 

does not give the best possible result [see B.P. GILL (1930)]. Mahler gave 

an example from which it follows that in case the ground field has charac-

teristic p,theorem 7.8 is sharpest. 

7.9. THEOREM. Let a Et be the element 

then a is algebraic over F (X) of degree p 2 and there exist an infinite q 
sequence of relatively prime polynomials A ,B E F [X] with B -f 0 such m m q m 
that 



where limll\"+00 ·dg Bm = 00 • 

PROOF. See MAHLER (1949), th.2. Note that a is a root of the equation 

tp - t + = 0. 0 
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7.10. REMARK. In the same paper Mahler raised the question whether the re-

sult of theorem 7.8 still gives the best possible result for elements a of 

the form 

(7 .10.1) a = I 
i=-m 

a. 
l. 

-i 
X m E :zz I a. E ]F 

l. q 

which are algebraic over JF (X) of degree at least 2 and at most p-1. q 
Recently L.E. BAUM and M.M. SWEET (1976) proved the following state-

ment: 
"There exists. a unique element a of the form (7.10.1) with q 

satisfies the irreducible equation 

0, n ;:: 1. 

2 that 

For this a there exists an infinite sequence Am, Bm E JFq[X] such that 

(A ,B) = 1, B 0, lim dg B 00 and such that m m m m 

A 
dg(a- __!!!_) 

B m 
B " .. m 

This contradicts an earlier assertion of J.V. ARMITAGE (1968) to the 

effect that a Thue-Siegel-Roth theorem should hold for algebraic elements 

in~ which are not contained in a cyclic extension of JF (x) of degree pn q 
(nElN) • Armitage' s assertion was earlier showed to be false by 

C.F. OSGOOD (1975). 

Theorem 7.8 enables us to construct a new type of transcendental ele-

ments of~; this will be done in Chapter III. 
Finally we mention that P. BUNDSCHUH in 1974 gave an analogue of 

Mahler's classification of transcendental numbers ins-, T- and U-numbers 

and that he introduces a notion of transcendence measure in~- (See 

Seminaire Delange-Pisot-Poitou 1974/75, §3.) 





CHAPTER III 

ON THE TRANSCENDENCE OF CERTAIN POWER 
SERIES OF ALGEBRAIC ELEMENTS OF w 

8. LIOUVILLE NUMBERS 

3.1 

As already mentioned in chapter II, section 7, Mahler's analogon of the 

theorem of Liouville (see th.7.8) enables one to construct transcendental 

elements of w. 

8.1. DEFINITION. An element n E Wis called a Liouville number if for every 

m E nP there exist elements A ,B E JF [x], with (A ,B ) = 1, dg B > 0 m m q m m m 

(8.1.1) 

8.2. THEOREM. Every Liouville number n E w is transcendental over JF (X). q 

PROOF. Suppose n is algebraic over JF (X) of degree n. If n = 1, then there 
q A 

exist A, B E ]F [xJ with (A,B) = 1 
£ ;-! and 

q 
dg D > dg B we have D B 

such that n = 13. For all C,D E JF q [x] 

(8.2.1) dg (n - ~) - dg D - dg B - 2dg D. 

Form> 2 the relations (8.1.1) and (8.2.1) are contradictory. 

Now suppose n 2. According to theorem 7.8 there exists a c E JR such 

that for all pairs P,Q E JF [X] with Q ;,! 0 q 

dg (n -!) > C - n dg Q > - m dg Q 

form sufficiently large. This contradicts (8.1.1). D 
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8.3. EXAMPLES. (i) Let a E be defined by 

where c. E 
J 

and 

co c. 
a I _]_ 

xj! I 

j=1 

]F I c. I 0 for infinitely many q J 

µ ·= max 

A m 

B m 

1:s;j:s;m 

:= 
µ' X • 

µ' := X. 

{j I c. I O}, 
J 

µ c. 
I _J_ 

j=l xj ! 

j. Form E 

Then A , B E ]F [x], (A ,B ) m m q m m µ! > O and 

(m+l) ! 

Hence a is a Liouville number. 

(ii) Let a E be defined by 

co c. 
a := I _]_ 

F j=O j 
q 

(m+l)dg B . 
m 

]N we define 

where cJ. E JF , c. I O for infinitely many j. For m E nP we define q J 

µ ·= max {j I c. I o}, 
Q:s;j:s;m J 

µ c. 
A := F I _J_ 

m qµ j=O F 
qj 

and 

Then A , B E JF [x], (A ,B ) = 1, dg B m m q m m m 
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Hence a is a "Liouville number. 

9. TRANSCENDENTAL VALUES OF GAP-SERIES 

In 1972 P.L. Cijsouw proved that if a certain gap-condition for a power 

series S with algebraic coefficients is fullfilled, then S assumes tran-

scendental values for non-zero algebraic arguments. For details and a proof 

we refer to CIJSOUW (1972), th.1.11 or CIJSOUW & TIJDEMAN (1973). In this 

section we shall give an analogue of Cijsouw's theorem for the field w. 

9.1. DEFINITION. Let PE w[t] be given by 

Then the height of the polynomial P, notation H(P), is defined as the 

maximum of the valuations of the coefficients of P, i.e. 

H(P) := max dg ai. 
Q$i$n 

If a E w is algebraic over lF (X) , then the height of a, notation h ( a) , q 
is defined as the height of the minimal polynomial of a over lF [X]. q 

In"the next two lemmas we shall give a lower and an upper bound for 

h(a) in terms of suitable characteristics of a. 

9.2. LEMMA. Let a E w be algebraic over lF (X), then 
q 

(9.2.1) dg a$ h(a). 

PROOF. Since h ( a.) ;;>: 0, we restrict ourselves to the case dg a. ;;>: 0. Let 

P E lF [x][t], given by q 

be the minimal polynomial of a. Then 

n 
A Ci. n 
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Hence, using dg a~ O, we obtain 

n dg as n dg a+ dg Ans max (idga+dgAi) 
OSiSn-1 

s (n-1)dg a+ h(a), 

from which the inequality (9.2.1) follows. D 

9.3. LEMMA. Let a be algebraic over lF (X) of degree n and let M be a de-q 
nominator for a. Then 

h(a) * S n(dg M + d (a)). 

PROOF. Let Q E lF [X][t] be the minimal polynomial for a, given by q 

Q(t) 

a,a2 , ••. ,an be the conjugates of a, then 

Q(t) 
n 

A TT (t-ai). 
n i=1 

Now A./A, j = 0,1, •.• ,n-1 are the elementary symmetric polynomials in 
J n 

a 1,a2 , .•• ,an, disregarding the sign. Hence 

(9.3.1) 
A. 

dg ---2 s max dg(a. a .•.. a. ) 
An 1Si Sn 1 1 1 2 1 j 

lSv~n-j 

* s n d (a), j 0,1, .•. ,n-1. 

Since Ma is an algebraic integer, there exists a polynomial 

P E lF [x][t], given by q 

for which P(a) = 0. Since Q is the minimal polynomial of a, P must be a 

multiple (in lF [X][t]) of Q and therefore q 

for some C E lF [X], C f. 0. Hence q 
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(9.3.2) n dg M. 

Now the lemma follows from (9.3.1) and (9.3.2). D 

9.4. LEMMA. Let P1 ,P2 E lFq[X][t] be polynomials of degree N1 ,N2 int and 

height H
1 

,H
2 

respecti,,ely. If there exists an element w E IP such that 

(9.4.1) max (dgP 1 (w),dgP2 (w)) < - (N1H2+N2H1), 

then P1 and P2 have a common zero. 

PROOF. Let 

N1 N1-1 
+ ... + A1t + A0 , AN t- 0, p1 (t) := A t + AN -1t 

N1 1 1 

Nz N2-1 
B t- 0 P2 (t) := B t + B t + ... + B1t + BO, 

N2 N2-1 N2 

and let det R be the resultant of P 1 and P2: 

A 
Nl A1 AO 0 0 

0 AN Al AO 
1 N2 rows 

0 

(9.4.2) R 0 0 A 
Nl Al AO 

BN B1 BO 0 0 
2 

0 BN Bl BO 
2 N1 rows 

() 

0 0 B 
N2 Bl BO 

Then it is well-known, see e.g. VAN DER WAERDEN §30, that det R = 0 if and 

only if P1 and P2 have a common zero. The coefficients of P
1 

and P
2 

are 

elements of lF [X] and hence det R E lF [X], i.e. det R = 0 or dg(detR) ;:,c 0. 
q q 

So if we show that the condi.tion (9.4.1) implies dg(detR) < 0, the lemma 

will be proved. 
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th N1+N2-i 
First suppose dg w :<;; 0. Multiply the i column of R by w and 

add the result to the last column, i = 1,2, ..• ,N
1

+N
2
-1. Then divide the 

the result by 

if 

if 

So we obtain 

(9.4.3) R P(w)R', 

where R' is a matrix that is obtained from R by replacing the last column 

by a new one in which all elements have valuation at most zero. Every term 

in the expansion of det R' is the product of one element of~ with valua-

tion at most zero, at most N2 
most N1 elements from the set 

(9.4.1) we obtain 

elements from the set {A0 ,A1 , ••• ,~
1

} and 

{B0 ,B1 , ••• ,BN
2

}. Hence from (9.4.3) and 

This proves the lemma in case dg w :<;; 0. 
* Now suppose dg w > 0. Define the polynomials Pj by 

* * 

N, -1 
:= t J p. (t ) , 

J 
j 1,2. 

at 

Then P1 and P2 are of degree M1 :<;; N1 , M2 :<;; N2 and height H
1

, H2 respective-

ly. Since dg w > 0, we have 

* -1 dg P. (w ) 
J 

dg p. (w) - N. dg w :<;; dg p. (w) 
J J J 

and therefore 

-1 Since dg(w ) < 0,we have the case 
* * that P1 and P

2 
have a common zero, 

considered previously and we conclude 

say y. Since~ 0 it follows that 
1 
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-1 y f 0. Now y is a common zero of P1 and P2 • D 

9.5. LEMMA. Let P1 and P2 be a polynomials in ~[t] of height H1 and H2 re-

spectively. Then the product P 1P2 has height H1 + H2 • 

PROOF. Write Pl (t) 

n 

n1+n2 
Define in a similar way n 2 for P2 • Then the coefficient oft in P1P2 
has degree H1 + H2 . Since it is clear that in P1P2 no coefficients with a 

degree greater than H1 + H2 occur, the lemma is proved. D 

9.6. LEMMA. Let PE F [X][t] have degree N 1 and height H. Let a E be q 
algebraic of degree n and height h. Then either P(a) = 0 or 

(9.6.1) dg P(a) - (hN+nH). 

PROOF. First we supppose that a is separable. Let Q denote its minimal 

polynomial and let a 1 ,a2 , ••• ,<Jn be then Fq (X)-monomorphisms Fq (X) (a)c.+ ~-
Hence the zeros of Qare <J.(a), j = 1,2, ••• ,n. Now if (9.6.1) were not true, 

J 
we would have 

max{dg P(a), dg Q(a)} dg P(a) < - (hN+nH). 

Then lemma 9.4 says that P and Q have a common zero, i.e. for some 

j E {1,2, ••• ,n} 

0 P(<J. (a)) 
J 

and hence P(a) 0. 

CJ. (P (a)) 
J 

e 
Now let a be non-separable. Take e E lN such that ap is separable. 

If Q E ~[t], we denote by Q* the polynomial obtained from Q by raising the 

coefficients of Q to the power pe. Clearly, Q and Q* are of the same 
* e * degree and H pH, with the obvious meaning for Hand H. Now let 

* e Q E F [X][t] be the minimal polynomial of a. Then Q eel?) = 0. Hence the q 
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minimal polynomial of aPe divides Q*. In view of lemma 9.5 the height of 
e e rP does not exceed p h. 

Suppose P(a) i 0. Then we have 

e 
Applying the part of the lemma already proved on p* and ap we find that 

(9.6.2) 

The lemma now follows from (9.6.2) and 

Pe dg P(a) 

Now we are ready to prove the analogue of Cijsouw's theorem mentioned 

in the beginning of this section. 

9.7. THEOREM. Let {ak}==O be a sequence of non-zero algebraic elements of 

\Ii. Denote 

* max d (ail 
0:Si:Sk 

and 

Let~ be a denominator for a0 ,a1 , •.• ,ak. Finally suppose that the power 

series 

where {nk}==O is an increasing sequence of non-negative integers, has 

radius of convergence R > - 00 

Then, if 

(9.7.1) 
(nk+dg~+~)~ 

lim --------
k-+<» nk+l 

o, 
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S(0) is transcendental over JF (X) for every non-zero algebraic 0 E w with q 
dg 0 < R. 

PROOF. Let 0 i O be algebraic, dg 0 <Rand let n denote the degree of 0. 

Mis a denominator of 0. Put 

k 
z: 

i=O 

and 

k E 'JNO • 

Now Sk(0) E ]Fq (X) (a0 ,a1 , ••• ,ak,0) and therefore Sk(0) is alge~raic 

JF q (X) of degree s k s n~. Denote its height by ~. Since M k is 

nominator for Sk(0), we obtain from lemma 9.3 and from lemma 6.15 

over 

a de-

Let PE JF [X][t] be an arbitrary but fixed polynomial of degree q 
N 2 1 and height H. Let s1 ,s2 , ••• ,Sm be the different zeros of Pin wand 

suppose m 2 2. Then,by the convergence of {Sk(0)}:=r there exists a K1 
such that fork> Kl 

dg(Sk(0)-Sk+l (0)) < min dg(Si-Sj). 
1Si,jSm 

i#j 

Hence fork> Kl 

Clearly, this also holds if P has one zero of multiplicity N. Consequently 

there exists an infinite subsequence {kj};=l of the sequence of natural 

numbers such that 

j 1,2,... . 
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Now it follows from lemma 9.6 that 

dg P(Sk_(0)) - (~_N+sk_H) 
J J J 

- n~J_{(dgf\_+~_dgM+ak_+nk_d*(e))N + H}. 
J J J J 

Hence 

(9.7.2) dg P(Sk_ (0)) - cldk. (dgf\_+¾_+nk_), 
J J J J J 

where c 1 > 0 is independent of j. 

We now estimate rk(0) as follows. Choose p E JR with dg 0 < p < R. 

Then since 

dgak 
lim sup -- = - R, 

we have fork> K2 the inequality dg ak < - pnk and hence 

(9.7.3) 

Put 

P(t) 

s max ni(dg0-p) = nk+l(dg0-p). 
i~k+l 

and suppose that rk(0) f 0. Then we may write 

N sice>-s!ce> 
P(S(8)) - P(Sk(8)) = rk(8) iil Bi S(8)-Sk(8) 

From (9.7.3) it follows that fork> K2 we have 

dg{P(S(8)) - P(Sk(8))} S nk+l (dg8-p) + H + 

Since fork sufficiently large 

max max dg si-l-j(8) si(8) s (N-1) max (dgS(8),O), 
lSiSN OSjSi-1 
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we certainly.have 

(9.7.4) 

where c 2 > 0 is independent of k. Clearly, this inequality also holds for 

the case that rk(6) = 0. The inequalities (9.7.2) and (9.7.4) yield for 

kj > K3 

+1 
j 

Using condition (9.7.1),. we infer that there exists a K4 > K3 such that 

P(S(6))-P(Skj(6)) 
dg -------"'----- < 0, P(Sk (6)) 

j 

Hence for kj > K4 

[ { 
P(S(8))-P(Sk,(6)) }] 

dg P < s <el l = dg P ( sk . <el l 1 + P < s < 6 l = dg P ( sk . < el l , 
J kj J 

from which we conclude that P(S(6)) i 0. Since Pis chosen arbitrarily, we 

have proved the theorem. D 

9.8. REMARKS. (i) A power series ~
00 

akt~ is called a gap series, when lk=O 
li~_, ¾/nk+l = 0. Thus we infer from the previous theorem that the sum 

of the gap series 

k 0, 1, ... 

is transcendental over lF (X) for every non-zero algebraic 6 from~ with q 
dg 6 < 0. 

(ii) In case R is finite, S(6) need not be transcendental for algebraic 6 
k! k with dg 6 = R. For instance, take nk = k!, ak = X /X. Then R = - 1, the 

conditions of theorem 9.7 are satisfied and we obtain 

-1 
S(X ) = 

00 

1 ~-1 
l Xk = (h.Xl 

k=0 

The following examp·le shows that S (8) can be transcendental for an 

algebraic 6 with dg e = R; L.I. WADE (1941) proved the transcendence of 
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100 k -'1 q 
lk=l (Xq -X) , whereas X 

k 
I==l (Xq -X)-l can be seen as the value for 

e = x-1 of the gap series 

S(t) I 
k=l 

k! k! 
xq tq 

k 
xq -x 

with radius of convergence R = - 1. 

(iii) If the 0 elements ak, k € lN belong to a fixed, separable, finite 

extension of JF (X), then the condition in theorem 9. 7 can be weakened to q 

nk+dgl\:+ak 
lim ------ 0. 
k.._ nk+l 

(iv) The element 

e 
00 Ck 

I Ti k=1 X. 

of example 8.3 is a Liouville number, which can be seen as a certain value 

of the gap series 

S(t) 

which converges fort€~ with dg t < 0. Here¾= 0, = 1, I\:= 1 for 

k = 1,2, ... and condition (9.7.1) is satisfied. Now it follows from 

theorem 9.7 that S(X-1 ) is transcendental. 

With the method used in the proof of theorem 9.7 we can generalize 

theorem 7. 6 to 

9.9. THEOREM. Let K be a finite,separable algebraic extension of JF {X). q 
Let the entire function S: given by 

S(t) := I 
n=O 

n a t , n a n € K. 

Let Mn denote a denominator for a
0

,a1 , ••. ,an with minimal valuation. Let 

e € ~\{O} be algebraic. 

If there exists a positive, real constant c such that 

(9.9.1) 
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and increasing sequences {nk}:=l' nk € JN and {Ak}:=l' Ak € JR ,Ak > 0 with 

lill\-+co Ak = 00 such that 

{

(i)dg an+ n dg0 < -

(9.9.2) 
00 

(ii)l aen,f-.O, 
n n=nk+1 

then S(0) is transcendental over :IF (X}. q 

PROOF. Since S is entire, we have 

(9.9.3) 
dg an 

lim sup --n- = - 00 

n-+co 

If an f. 0, we have 

k 

k 

NK-+JF (X) (M a ) € :IF [X] \ {0}. 
q n n q 

1,2, ••• ;n>nk, 

1, 2, ... , 

Put h := [K: JFq (X)] and let cr 1 ,cr
2

, ••• ,crh denote the h JFq (X)-monomorphisms 

K<-+ P. Then, using (9.9.1) and lemma 6.10, we have 

h 
TT dg(cr (Ma)) $ 

p=l p n n 

$ h dg M + dg a + (h-1)d*(a) < (h+c(h-1))dg M + dg a. n n n n n 

Hence by (9.9.3) there exists an n
O 

such that 

(9.9.4) 

First we remark that we may suppose that 

(9.9.5) k 1,2,... . 

For suppose that (9.9.5) does not hold a priori. It may occur that we can 

take subsequences 

{nk.} ~=l and 
J 



3.14 

such that not only (9.9.2) but also (9.9.5) holds for these subsequences. 

Then we continue after the appropriate relabelling. But such subsequences 

need not exist, due to the fact that for some k0 

0, 

Then we proceed as follows. From the sequence {nk}==l we skip n 1 ,n2 , ••• ,nk 

and those nk for which 0 

The remaining sequence of indices we denote again by {nk}==l· Note that in 

view of (9.9.2) (ii) this sequence {nk}==l is infinite. From {Ak}==l we take 
the corresponding subsequence and call it {Ak};=l again. Now define 

:= max{n I nk-l < n < ~, a. to}, n 

Then M is a denominator for am., in fact 
nk k 

dg M = dg M , 
nk 

in view of the minimality condition of dg Mn. 

Finally 

I 
n~+1 

k 1,2,... . 

Hence (9.9.2) holds for the sequence {~}==l' whereas moreover a.mk f 0. 
After these preliminaries we now start with the actual proof. Let 

e f O be algebraic of degrees and let M be a denominator for 8. Put 

and 

I 
i=0 

0 k E JN • 

Then Sk(S) E K(S). Denote the height of Sk(S) by hk. According to lemma 

9.3, lemma 6.15 and the inequality (9.9.4), we have 
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(9.9.6) 

where c 1 is a positive, real constant, independent of k. 

Let PE F [x][t] be an arbitrary but fixed polynomial of degree N 1 
q 

and height H. Let S1 ,S2 , ... ,Sm be the distinct zeros of Pin~ and suppose 

that m 2. From the convergence of ~
00 

0 a en it follows that for·k > kl ln= n 
and v E JN we have 

dg(Sk+v(8) - Sk(8)) < min dg(Si-Sj). 
1:,:;i,j:,:;m 

ifj 
0 On the other hand we see from (9.9.2) (ii) that for every k E JN there 

exists a v (k) E JN such that 

Hence 

(9.9.7) 

Due to (9.9.2) (ii) this is also true in case P has but one zero, of order 

N. Relation (9.9.7) yields the existence of a sequence {kj};=l such that 

(9.9.8) P(Sk. (8)) f 0, 
J 

j 1, 2, .••. 

Now it follows from lemma 9.6 and from (9.9.6) that 

dg P(Sk. (0)) - (hk_N+sk_H) 
J J J 

where c 2 > 0 is independent of j. 

According to (9.9.2) (i), we have 

Hence fork sufficiently large 
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(9.9.10) 

where c 3 > 0 is independent of k. 

In view of (9.9.8) and the inequalities (9.9.9) and (9.9.10)", we have 

Using (9.9.4) and 

lim ;\ =co, 
. k. 
J-+= J 

we see that for j sufficiently large 

P(S(0))-P(Sk. (0)) 
J 

dg ------,----P(Sk. (0)) 
J 

< 0. 

Hence P(S(0)) 0. Since P was chosen arbitrarily, we have proved the 

theorem. 0 

10. TRANSCENDENCE MEASURES 

Let a E be transcendental over JF (X). Then for all non-trivial q 
P E JF [X][ t] we have P (a) 0. Since the collection C (N ,H) of all non-

q 
trivial PE JF [X][t] with degree at most N and height at most His finite, 

q 
we have 

min dg P(a) > - co. 
PEC (N,H) 

0 Hence there exists an f: lN x JN :JR such that dg P (a) > f (N ,H) for all 

p E C (N,H). 

10 .1. DEFINITION. Let a E be transcendental over F (X) • A function 

f: JN x NO :JR such that 
q 

dg P(a) :2,: f(N,H) 
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for all non-trivial PE JF [X][t] of degree at most N and height at most H, q 
is called a transcendence measure of a. 

In this section we shall give an upper bound for the transcendence 

measures of all those transcendental a E which occur as the limit of some 

sequence {aj};=l' where all the aj lie in a fixed, finite, separable alge-
braic extension of JF (X), see theorem 10.6, Lemma 10.2 and theorem 10.3 

q 
may be considered as analogues of well known classical results, generally 

called after Siegel. 

10.2. LEMMA. Let 

k 1,2, ••• ,r, 

with ak. E JF (X) be a system of r linear forms in the s variables 
1. q 

x
1

,x2 , ... ,xs and with r < s. Let a E z,; be such that 

max dg ~i s a. 
1:<,;i:<,;s 
lSkSr 

Then for all c EN there exist c1 ,c2 ,. •• ,cs E ]Fq [X], not all zero, such 

that 

and 

k 1,2, ... ,r. 

PROOF. Let M E ]F q [X] be such that Maki E JF q [X], k 

i = 1,2, ••• ,s. 

1,2, ... ,r; 

The cube K0 := {(t1,t2 , ••• ,ts) I tiE~,dgti<c, i=l,2, ••• ,s} contains 
qsc lattice points (x1 ,x2 , ••• ,Xs) with Xi E JFq[X], i = 1,2, ••• ,s. 

If for such lattice points we denote 

k 1,2, ... ,r 

and if m := dg M, then Yk E JF q [X] and 
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dg Yk < m +a+ c, k 1,2, ... ,r. 

Hence every lattice point (X1 , ••• ,Xs) of K0 corresponds with one of the 
r(m+a+c) . . q lattice points of the cube 

Now choose n E JN such that 

(10.2.1) C - 1 r 
s :,; n < C -r 

We shall distribute the lattice points of the cube Kover qrn "cells" in 

the following way. For every E E lF [X] with dg E < n we consider the set q 

I m+a+c-n AE := {t E <)) dg(t-EX ) < m + a + c - n} 

Suppose that A n A f 0, then it follows by subtraction that 
E1 E2 

dg(E 1-E2 ) < 0, i.e. E 1 = E2 • Hence the sets AE are disjoint. Furthermore 

we note that every GE lF [X] with dg G < m + a + c belongs to one of these 
q 

AE. Therefore every lattice point of K belongs to just one of the qrn cells 

of the form 

k 1,2, ... ,r}. 

From the construction above we infer that every lattice point 

(X1 ,x2 , ... ,Xs) of K0 corresponds with a cell of K. It follows from (10.2.1) 

that 

nr cs 
q < q 

i.e. the number of cells in K is less than the number of lattice points in 

K0 • Hence there are at least two different lattice points 
(1) (1) (1) (2) (2) (2) 

(x1 ,x2 , ... ,Xs ), (x1 ,x2 , ••• ,xs ) in K0 which correspond with the 

same cell of K, i.e. there exist E1 ,E2 ,. •• ,Er E lFq[X] with dg Ek< n, 

k = 1, ••• ,r, such that 
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d . (Y (X(j) x(j) x(j)) - xm+a+c-nE J < + + g k 1 , 2 , ••• , s k m a c - n, 

k 1,2, ••• ,r; j 1,2. 

If we put 1, .•• ,s, then c. € JF [X], not all of them 

are zero, 

s 
dg( l akici) 

i=l 

1. q 

s 
- m + dg( I Makici) $ 

i=l 

10.3. THEOREM. Let K be a finite, separable extension of JF (X) of degree q 
n. Let 

k 1,2, •.• ,r 

with aki EK be a system of r linear forms in the s variables x 1 ,x2 , ... ,xs 

and let nr < s. Let a€ zz: be such that 

* max d (aki) $ a. 
l$i$s 
l$k$r 

Then for every c € :IN there exist c1 ,c2 , ••• ,Cs € lF q [X], not all of them 

zero, such that 

and 

s 
dg( l akiCi) 

i=l 

i 1,2, .•. ,s 

$ a + b + ( 1- .E_) c, rn 

where bis a non-negative constant which depends only on K. More explicitly, 

if K = lF (X) (0), then we may take b = (n-1)h(0) + n(n-l)d*(e). q 

To prove this theorem we need two lemmas which are interesting in 

themselves. Lemma 10.4 is an analogue of a lemma of N.I. FEL'DMAN (1951; 

lemma 2, p.54), which is also proved by K. MAHLER (1960) and P. CIJSOUW 

(1972; lemma 2.7). Lemma 10.5 is an analogue of a result of R. GUTING 

( 1961; theorem .4 l .• 
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10.4. LEMMA. ·Let P E Ht] be given by 

P(t) 

Then 

(10.4.1) H(P) 
N 

dg aN + l max(dgSi,O). 
i=l 

N 
aN TT 

i=l 
(t-S. l, 

l. 

PROOF. Let R
1

,R2 , ••• ,R1 be the hooking-radii of Pin increasing order. Put 

RO := - 00 , Rl+l := +00 and define m E {0,1, ••. ,l} by Rm s O < Rm+l. From 

theorem 5.11 we see that 

and hence that 

(10.4.2) H(P) 

max dg ai 
OSiSN 

Now take a t 0 E w such that O < p0 := dg t 0 < Rm+l· Since p0 is not a 

hooking-radius, we have 

(10.4.3) 

Again from theorem 5.11 we see that 

(10.4.4) M (P) 
Po 

On the other hand it is clear that 

(10.4.5) 
N 

dg aN + l max(dgSi,O) + vp 0 , 
i=l 

where v denotes the number of zeros of P with non-positive valuation. But 

from lemma 5.19 and corollary 5.14 we have v = im. Combining (10.4.2), 
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H(P) 
N 

dg aN + l max(dgSi,0). 
i=l 

3.21 

10.5. LEMMA. Let Q E JF [X][t] be separable of degree N 1 and height H. q 
Let s1,s2 , .•. ,SN denote the zeros of Q. Let N be an arbitrary non-empty 

subset of 

Then 

( 10. 5 .1) 

PROOF. Put 

/',:={(i,j) I 15i5N,l5j5N,i<j}. 

l dg(Si-Sj) - (N-l)H. 
N 

N 
Q(t) A TT (t-Si). 

i=l 

Then the discriminant of Q, defined by 

D := A2N-2 TT 
l5i<j5N 

2 (S.-S .l , 
]_ J 

is an element of JF [X], see Corollary 0.6. Since Q is separable, the zeros q 
of Qare distinct and thus D 0. Therefore 

dg D (2N-2)dg A+ 2 l dg(S,-S.) 0. 
15i<j5N i J 

Hence 

l dg(S.-S.) - (N-l)dg A - I dg(S.-S.). 
N i J (',\N i J 

We may suppose that s1 ,s2 , ... ,SN are arranged in such a way that 

dg S1 5 dg S2 5 .•. 5 dg SN. Then 
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Thus 

l dg (S. -s.) :, I 
(i,j)E6\N 1 J (i,j)E6\N 

N 
:, I 

j=l 
(j-1) max(0,dgS.) 

J 

N 
:, (N-1) I max(0,dgS.). 

j=l J 

N 
l dg(S.-S.) - (N-1) (dgA+ l max(0,dgS.)), 
N i J j=l J 

max(0,dgS.) 
J 

which, by lemma 10.4, yields 

l dg(S.-S.) - (N-l)H. 
N i J 

Proof of theorem 10.3. Since K is a finite, separable extension of JP' (X), q 
there exists a primitive element SEK, i.e. K = JP' (X) (S). (See 0. ZARISKI 

q 
and P. SAMUEL (1958), Ch.II, §9 th.19.) We have 

n-1 
sj, (10.3.1) aki I akij akij E JP' (X) , k 1,2, ... ,r; i 1,2, ..• ,s. 

j=0 q 

Let a 1 , a 2 , ... , an denote the n JP' q (X) -monomorphisms K"+ 1. For every 

k E {1,2, •.. ,r} and i E {1,2, ••• ,s} we solve the system of equations 

in akij' j 
rule 

v = 1,2, .•• ,n 

0,1, ... ,n-1. Since det(o (Sj)) . f 0, we obtain from Cramer's 
\) \)I] 

max dg ov(aki) + (n-1) max 
1:,v:,n 1:,v:,n 

0:,j:,n-1 

2 * :;; a+ (n-1) d (S) - dg TT 
1:,v<µ:,n 

(a (S)-a (S)). \) _µ 
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Since the roots cr (S), v = 1, ..• ,n of the minimal polynomial of Sare dis-
v 

tinct,we have according to lemma 10.5 

dg (cr (B)-cr (B)) 
V µ <'. - (n-l)h(B). 

If we define 

2 * b0 := (n-l)h(B)+(n-1) d (B), 

then 

Now we consider the following rn linear forms in the s variables 

s 

l akij xi, 
i=1 

k 1,2, •.. ,r; j 0, 1, •.• ,n-1. 

It follows from lemma 10.2 that there exist c 1 , ... ,Cs in Fq[X], not all 

of them zero, such that 

< C 

and 

(10.3 .2) dl I ak .. c.) 5: a + bO + (1- ~)c. 
'i=l J.J J. rn 

From (10.3.1) and (10.3.2) we obtain 

d/ I \ ~)c + * akici} :s; a+ b0 + (1- (n-l)d (B). 
\i=l rn 

10.6. THEOREM. Let a E ¢ be transcendental over F (X). Suppose that q 
a= lim. a., where all the a. are contained in a fixed, finite, separable 

J-+= J J 
algebraic extension K of F (X). Then a transcendence measure for a cannot q 
be better than - c0NH + c 1N, where c0 ,c1 are suitable positive constants 

which depend only on a. 
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PROOF. We may suppose that H ;;: 1. Choose e E K such that K = JF (X) ( e) and 
q 

put n := [K: JF {X)]. Since a= lim. a.,there exists an a. such that 
q J-+= J J 

(10 .6 .1) dg a. 
J 

dg a 

and 

(10.6.2) dg(a-a.) < - NH - H. 
J 

we consider the linear form 

in the N + 1 variables x0 ,x1 , ••. ,xN. If N;;: n we can apply theorem 10.3 

and it follows that there exist c 0 ,c1 , .•• ,CN E JFq [X], not all zero, such 

that 

and such that 

(10.6.3) 

where b is a non-negative constant depending only on K, i.e. on a. From 

(10.6.1) and (10.6.2) we infer that 

dg{(a-aj)c1 + ... + (aN-a;)cN} 

dg(a-a.) + 
J 

V V 
Ct -('/) 

max {dg ___ j 
l~v~N a-aj 

< - NH+ (N-1) max(dga,0). 

Hence, using (10.6.3), we obtain 

(10.6.4) 

which proves our assertion. D 

+ dg C} 
V 
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10.7. REMARK. All elements of~ which are up till now known to be transcen-

dental, satisfy the condition of theorem 10.6. In section 9 we already 

mentioned that the element 

is transcendental over JF (X). (See L.I. WADE (1941), theorem 4.1.) We see 
q 

that w E F and from theorem 10.6 we infer that a transcendence measure for 

w cannot be better than -NH. In 1974 P.BUNDSCHUH proved that there exist 

positive constants c 1 ,c2 , depending only on q, such that 

dg P(w) 

for every non-trivial PE JF [X][t] of degree at most N and height at most 
q 

H. (See Seminaire Delange-Pisot-Poitou 1974/75, §3 th.2.) Recently 
,"' -s 

p. BUNDSCHUH has also given transcendence measures for ljJ ( 1) and l-k=O Lk , s E 

11. A TRANSCENDENCE MEASURE FOR CERTAIN LIOUVILLE NUMBERS 

It follows from example 8. 4 .1 as well as from theorem 9. 7 that 

is transcendental over JF (X). In the following theorem we derive a trans-
q 

cendence measure for these Liouville numbers. 

11.1. THEOREM. Let 

00 

(11.1.1) ' X-k! a:= co+ l ck , 
k=l 

Then for every polynomial Q E JF [x][t] of degree N 1 and height Hone q 
has 

(11.1.2) N-1 2 dg Q(a} > - 51{N +NH log 2H}. 

PROOF. (i) First we suppose that Q is irreducible. Put 

k 
x-i! a·· : ::::: co + I c. k i=l 1-

IN. 
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Then ak is algebraic over ]Fq (X) of degree 1 and height h(ak) 

ing to lemma 9.6 we have either Q(ak) = 0 or 

(11.1.3) 

Since all ck in (11.1.1) are non-zero, we have 

-(k+l) ! 

and 

dg a o. 

Hence 

k!. Accord-

(11.1.4) dg(Q(a)-Q(ak)) ,,; dg(a-ak) + H + max 
l$i$N 

$ - (k+l): + H. 

Now we define 

(11.1.5) K := min{k E JN j k! > max((N-1)!,2H)}. 

Then for all k K such that Q(ak) f O it follows from (11.1.3), (11.1.4) 

and the triangle-inequality in its sharpened form that 

(11.1.6) dg Q(a) 

Suppose that Q(ak) = 0. Since Q is irreducible and since ak is algebraic 

of degree 1, this is only possible if N = 1. Put Q ( t) = A1 t + A0 , then it 

follows that 

Hence at least one of the numbers Q(aK) and Q(aK+l) is different from 

zero and so, in view of (11.1.6), we have 

(11.1.7) dg Q(a) - (H+N(K+l)!). 



Now we give an upper bound for (K+1)! in terms of N and H. First we 

suppose that 

(11.1.8) (N-1)! > 2H. 

Then K N if N 2 and K = 2 if N 1. Hence (11.1.7) and (11.1.8) give 

(11.1.9) dg Q(o.) ( (N-1) ! \ N 1 - ,--2-- + N max((N+l)!,6) / - 9N - • 

Secondly, if 

(11.1.10) (N-1)! S 2H, 

we have K 3. Hence 

2 (K+l)! < 25(K-1)! log (K-1)!. 

It follows from (11.1.5) and (11.1.10) that 

(K-1) ! S 2H. 

Now (11.1.7) yields 

(11.1.11) dg Q(o.) 
2 2 

- (H+S0NH log 2H) - SlNH log 2H. 

Finally (11.1.2) follows from (11.1.9) and (11.1.11). 
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(ii) Now let Q be a reducible polynomial of degree N 1 and height Hand 

let 

Q 

be a decomposition of Q in irreducible factors Q 1 , Q2 , .•• , Qm E lE' q [X] [ t]. 

Denote the degree and the height of Qi by Ni and Hi respectively, 

i = 1,2, ... ,m. Remark that Ni~ 1, i = 1,2, ... ,m and that 

(11.1.12) N 
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By lemma 9.5 we have 

From part (i) of the proof we have 

hence 

N.-1 
<'. - 51{N, l. 

l. 

2 + N.H. log 2H,}, 
l. l. l. 

m N.-1 

i 

(11.1.14) dg Q(a) <'. - 51 l µi{Ni1. 
i=l 

2 + N.H. log 2H.} 
l. l. l. 

Since 

and since 

m 
<'. - 51 I 

i=l 

µ,N.-1 
(µ,N.) l. l. 

l. l. 

n,m E JN 

2 2 2 (n+m)log 2(n+m) <'. n log 2n + m log 2m, 

relations (11.1.12), (11.1.13) and (11.1.14) give 

dg Q(a) - 51{NN-l + NH log2 2H}. 

11. 2 . THEOREM. The fun ct ion f : ]N x JN O -+ JR given by 

f(N,H) N-1 2 -51{N + NH log 2H} 

is a transcendence measure for the element 

PROOF. Obvious from the previous theorem. D 

1,2, ..• ,m; 

0 n,m E N , 



CHAPTER IV 

ON THE TRANSCENDENCE OF CERTAIN 
VALUES TAKEN BYE-FUNCTIONS 

12. A GENERALISATION OF WADE'S ANALOGUE OF THE GELFOND-SCHNEIDER THEOREM 

12.1. DEFINITION. A linear function f: W + W, given by 

f{t) := 

is called an E-function if 

(i) there exists a finite,separable extension K of :IF (X) such that q 
ak EK, k = 0,1,2, .•. , 

(ii) there exists a c E JR, c > 0, such that 

k 0, 1,2, •..• 

4.1 

The above definition of an f-function differs from the classical one, 

which, in addition, contains a condition on the denominators of the coeffi-

cients ak. (See for instance Th. SCHNEIDER (1957), p.112.) 

13.2. REMARKS. 

(i) An f-function is an entire function. 

(ii) The functions 1/J and J n, n E lZ , are E-functions. 

(iii) Linear polynomials with separable algebraic coefficients are f-func-

tions. (See theorem 3.5.) 

(iv) If f and g are f-functions, then 

are f-functions. 

(v) If Pis a linear polynomial with separable algebraic coefficients in 

Wand f is an E-function, then Po£ is an E-function. 



4.2 

In the proof of theorem 7.7 we have given an exposition of Siegel's 

method in the field¢. We shall now use this method to prove the following 

12.3. THEOREM. Let f 1 , ••. ,fn be E-functions, not all polynomials and none 

of them identically zero. Suppose that for 1 v n and r E JN we have 

(12.3.1) 

(12.3.2) 

with 

/:, f (t) 
r V 

and for some c 0 E JR, c 0 > 0, 

(12.3.3) 
r max dg A . . c 0q. 

j1 j2 jn r vrJ1•••Jn 
O~q +q + •.• +q ~q 

Then, if a,S E ¢, a f. 0 and S J JF (X), at least one of the 2n+1 elements q 
S, f 1 (a),f2 (a), ... ,fn(a), f 1 (aS), f 2 (aS), ••. ,fn(aS) is transcendental over 

JF (X). 
q 

Before giving the proof we list some special cases as corollaries. 

12.4. COROLLARY. The analogue of the theorem of Gelfond-Schneider 

(theorem 7.7). 

PROOF. Taken= 1, fl= ij,, SE ¢\JFq (X), 

a= A(a*). From (3.8.2) we see that 

r E JN. 

a* E ¢\{O} with dg a*< _5Ll and q-

Then it follows from the above theorem that at least one of the elements 

a*, S, ij,(SA(a*)) is transcendental over JF (X). D 
q 

12.5. COROLLARY. Let~ E ¢ be defined by (2.10.1). If Sis algebraic over 

JF (X) of. degree 2, then ij, (S~) is transcendental over JF (X). q q 
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PROOF. Let f 1 = w, a= F,. Then, since Bi JFq (X), it follows from theorem 

12.3 that at least one of the elements B, w(BF,), w(s) is transcendental 

over JF {X). From theorem 2.12 it follows that w(F,) = 0. Hence, since Bis 
q 

algebraic over JF (X), we conclude that w(BF,) is transcendental over q 
JF (X). 0 q 

If BE JF (X) the opposite of the above assertion is true, as shown by q 
the following 

12.6. LEMMA. If B E JF (X), then w(BF,) is algebraic over JF (X). q q 

PROOF. For 6 E JF [X] the assertion above is obvious from theorem 2 .12. 
q 

Now put B = ~, A,B E JFq[X], Bf 0. Then it follows from the theorems 2.12 

and 2.13 that 

( 
A \ dgB W. (B) j / ) 

o = w B -r, 1 = I <-1ij _J_ wq ,~s, , 
, B . j=O F j \ 

i.e. w(~s) is algebraic over JF q (X) • 0 

12.7. COROLLARY. (GEIJSEL, 1971). Let a E ~\{0}, 8 E ~\JF (X) and n E Z1:. 

Then at least one of the five elements 6,J (a), n 
transcendental over JF (X). 

<'I 

q 
.Jn(a6),6Jn(a), 6Jn(aB) is 

PROOF. First we suppose that n 0. Apply theorem 12.3 with f 1 = Jn and 

f 2 = 6Jn. According to theorem 4.4, the conditions (12.3.1), (12.3.2) and 

(12.3.3) are satisfied for 6rfl for all r E N. From lemma 3.12 and theorem 

4.2(ii) we see that 

r 
6r+1 Jn + (Xq -X) 6rJn. 

It follows again from theorem 4.4 that the three conditions from theorem 

12.3 are also satisfied for 6rf2 . This proves the corollary for n 0. 

Now let n < 0. Suppose B, Jn(a), Jn(aB), 6Jn(a), 6Jn(a6) are alge-

braic over JF (X). Then it follows from theorem 4.2(i) that the elements q 
B, J_n(a), J_n(a6), 6J_n(a), 6J_n(aB) are all algebraic, which we have 

just shown not to be true. D 
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Proof of theorem 12.3. Put 

(12.3.4) f (t) 
V 

k 
00 tq 
l a.vk Fk k=O 

1 V n. 

Suppose S, f 1 (a.), ••• ,fn(a.),f1 (a.S), •.• ,fn(a.S) are algebraic over lFq (X). 

Then, for some e E JN , 

e e e e e q q q q q S ,f1 (a.), ••• ,fn (a.),f1 (a.S), ••• ,fn (a.S) 

are separable over lF (X) . Let K be a finite, separable algebraic extension 
q 

of lFq (X) of degree h which contains all these elements and the a.vk' 

v = 1, ••• ,n; k = 0,1,2, •.. Let r E lF [x] be such that q 

V = 1, ... ,n 

are algebraic integers of K. The natural numbers K,A with 

A> 3K 

will be chosen later. Put 

m := K + A - 1 

and put 

2A 

L(t) 
n qI := I 

v=1 j=O 

-1 2K l q -
I 

i=O 

where the X .. will be determined non-trivially and in such a way that 
1.JV 

L(A+SB) = 0 for all A,B € lF [X] with dg A < m, dg B < m. Moreover the q 
Xijv will be algebraic integers in K such that a*(xijv) is not too large 

with respect to A and K. We have 

n 
(12 .3 .5) L(A+SB) I 

v=1 

By the linearity of the 

f (a.A+a.SB) 
V 

f 

2A -1 2K q q 
I I 

j=O i=O 

we have 
V 

-1 e e 
xijv (A+SB) jq iq (a.A+a.SB) • 

V 
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The expansion formula (3.10.1) gives 

dgA 1/! (A) 
f (aA) = l _µ __ /J. f (a) 

V µ=0 Fµ µ V 

and hence, by condition (12.3.1), 

dgA 
I (a). 

µ=0 

e 
From this formula we see that fq (aA) lies in K, i.e. is separable. In fact 

qe V qe 
f 1 (a), ..• ,fn (a) of total degree not exceeding it is a polynomial in 

e+dgA m+e q < q 

By theorem 2.5 we have 

1/! (A) 
E ]Fq [X] 

µ 
e e e 

and hence fq (aA) E JF [X][fq
1 

(a), .•• ,fq (a)].From condition (12.3.3) and 
V q n 

from remark 2.6 it follows that 

e 
dg fq (aA) 

V 

e dgA d A dgA qe qe 
s q { (dgA)q + c 0q g }+ q max(dgf1 (a), ... ,dgfn (a)). 

Now apply the h JF (X)-monomorphisms of K. Then we see that q 

(12.3.6) max 
1SvSn 

* qe d (f (a)), 
V 

V = 1,2, ... ,n. 

Similarly we have 

(12.3.7) max 
1SvSn 

* e d (fq (aS)), v = 1,2, •.• ,n. 
V 

We observe that the coefficients of the X .. in (12.3.5) are polynomials in 
lJV 

and in 

2\ of degree not exceeding q 

e e 
q q 

f 1 (a), .•. ,fn (a), 

exceeding cf1+2 K 

of total degree not 
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with coefficients in F [X]. Hence, since q 

(12.3.8) 
2A 2K+m 2A+1 q + q :;; q 

the condition 

2A+l 
(12.3.9) fq L(A+SB) 0, A,B E F [X], dg A < m, dg B < m q 

2m implies a system of q homogeneous, linear equations, say 

o, k 
2m 

1,2, ••• ,q , 

2A+2K in nq unknowns Xijv with integral algebraic coefficients Dijvk 

From (12.3.5), (12.3.6) and (12.3.7) we infer that 

* 2A+1 2A e * d (Dijvk) :;; q dg r + (q -l)q (m+d (S)) + 

Using (12.3.8), this yields 

where c
1 

is a positive constant independent of Kand A. According to lemma 
2m 2K+2A 6 • 16 with r q , s nq and 

there exist algebraic integers Xijv in K, not all zero, such that condi-

tion (12.3.9) is satisfied and such that 

(12.3.10) 

where c
2 

0 is independent of A and K. 

From now on we suppose that the X .. are fixed accordingly. 
J..JV 

Forµ~ m we define 



B(µ) := {A + 13B I A,B E F [X]; A and B not both zero; q 

dg A<µ, dg B < µ}. 

Let B = U
00 

B(µ). The second step of the proof now consists of proving µ=m 
that L vanishes on B. We have constructed L such that L(t) = 0 for 

t E B(m). So it is sufficient to prove that for everyµ~ m 

(tEB(µ) * L(t) 0) * (tEB(µ+l) * L(t) 0). 

Since 13 i F (X), the number of elements of B(µ) is q 2µ-1. q 
Let t 0 E B(µ+l)\B(µ). If A is chosen large enough, then 

* dg t
0 

$ µ + d (13) < 2µ. 

By the induction hypothesis and by lemma 5.22 

L(t) TT 
aEB(µ) 

-1 
(t-a) 

is an entire function. Hence we can apply the Maximum Modulus Principle 

(th.5.16) and we obtain 

dg L(t0 J - I dg(t0-aJ $ 
aEB(µ) 

sup 
dgt=2µ 

2µ 
dg L(t) - 2µ(q -1). 

Therefore 

(12.3.11) dg L(t0 ) sup 
dgt=2µ 

* 2µ dgL(t) - (µ-d (t3))(q -1). 

From the definition of L and inequality (12.3.10) we see that 

2A+e 2 2A+e sup dg L(t) $ q (m+c2 ) + µq + 
dgt=2µ 

2K+e 
+ q max sup dg fv(at). 

l$v$n dgt=2µ 

From (12.3.4) and definition 12.1 we have 

4.7 
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dg f\/(a.t) 
k k k sup :;;; max (dga.vk+2µq +q dga.-kq) 

dgt=2µ k;:;:Q 

:;;; k (v) (\/) 2µ max q (c +2µ+dga.-k) :;;; c3 q 
k>-:0 

where c(v) and cjv) are positive constants independent of Kand A. Hence 

(12.3.12) 

where c 3 := 

sup dg L(t) 
dgt=2µ 

Now put 

n := µ - K + 1. 

Thenn;:;: A and it follows from (12.3.11) and (12.3.12) that 

From the choice of t 0 and the definitions of Land r it follows that 

is an algebraic integer of Kand therefore its norm is an element of JF [x]. q 
Since K is a finite, 

lemma 6.10 

separable extension of JF (X) of degree h, we have by q 

n 
I 

v=l 

h 
TT <JP (L(t0)), 

p=l 

JF (X}-monomorphisms K<-+ <I>. Furthermore q 
2A 2K e k. 

q -1 q -1 e j ( 00 e cr (tq )qj1.· l l <J (X. · ) <J (t~ ) l <J (a.\l P O 
j=O i=O p 1.J\/ p k=O P \/ Fqe 

k 

Analogously to the derivation of (12.3.13) we derive 



Hence 

(12.3.14) 
2n+l 

d N (rq L(t )) _< h q2n+e{µ( 4-q2K-e-2) + c
4

q4K}, 
g K+:JF (X) 0 

q 

where c 4 > 0 is independent of Kand\. If K is chosen such that 

2K-e-2 4 - q < 0 

and then\ is chosen such that d*(S) < m and such that 

it follows from (12.3.14) that L(t
0

) 

vanishes on B(µ+l). 

0. Hence we have proved that L 

Now Kand\ are fixed such that L vanishes on B. According to the 

Product Formula for Entire Functions (Corollary 5.24), we have for every 

fixed µ (µ 2 m) 

ytp TT (1-!) TT t L(t) (1-:i:il, 
aEB(µ) a bElf\B(µ) 

* 

4.9 

where p E :JNo 
' y E <I> ' 1<* = R\{O} and where R denotes the set of zeros of 

L. We now apply the Maximum Modulus Principle on 

Comparing the maximal value on {t E <I> I dg t = 2µ} and the value int O, 

the Maximum Modulus Principle (theorem 5.16) yields 

(12.3.15) sup dg TT (1-!) 2 0. 
dgt=2µ bER*\B(µ) b 

Further we write 

TT (a-t) 

TT (1-!) aEB(µ) 

aEB(µ) a TT a 
aEB(µ) 

Then it follows from (12.3.15) that 



4.10 

(12.3.16) · sup dg L(t) 
dgt=2µ 

2µ 
dg y + 2µp + 2µ(q -1) + 

* 2µ - (µ+d (f3))(q -1). 

Forµ large enough (12.3.12) and (12.3.16) are contradictory. D 
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dg (valuation) 
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F 
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0.2 

1.49 

1. 21 

2.1 

3.5 

0.4 

3.17 

0.3 



INDEX OF SPECIAL SYMBOLS 

Symbol: 

(Al ,A2, ••• ,An) 

0: 

dg 

* d (a) 

d(f,p) 

[E:K] 

]F 
q 

JF [xJ q 
JF (X) q 
Fk 
p-1 
-n 

F r 
F 
11£11 r 
H(P) 

h(a) 

Lk 
M (f) r 
m ,mo 

NE+K(a) 
p 

r 

q 

]R 

1\ 
R[t 1,t2 , ••• ,tnJ 
u 

;z 

defined on page: 

2.1 

0.1 

1.1, 1.6 

2.6 

1.38 

1.2 

0.1, 1.1 

1.1 

1.1 

1. 7 

1. 28 

1. 30 

1.2 

1. 32 

3.3 

3.3 

1.34 

1.28 

0.1 

1.7 

1. 32 

0.1 

1. 3 

1.32 

0.1 

1.1 

0.1 

1.34 

0.1 

1.11 

0.1 



1:,., I:, 
n 

" 
<!> 

<!>[[ t]] 

1/J 

1/Jk 
i; 

n 
¢ 

Symbol: Defined on page: 

1.24 

1.16 

1.6 

1.32 

1.11 

1.8 

1.12 

1.2 

0.1 
0 .1 



SAMENVATTING 

Zij i een algebraisch gesloten lichaam dat niet-archimedisch gevalu-

eerd is, met betrekking tot deze valuatie gesloten is en dat het lichaam 

F (X) der rationale funkties in een variabele over een eindig lichaam JF q q 
omvat. 

Dit proefschrift is gewijd aan het onderzoek naar transcendentie 

over JF (X) van elementen van i. Als een van de resultaten noemen we: q 
als a,f3 E i, a -f O en f3 r/. JFq (X) en a.ls f 1 ,f2 , ••• ,fn E-funkties zijn, 

die aan zekere voorwaarden voldoen, dan is.minstens een van de 2n+1 ele-

menten f3,f 1 (a), ••• ,fn(a),f1 (af3), ••• ,fn(af3) transcendent over JFq(X). 

In het eerste gedeelte van het proefschrift warden de analytische 

hulpmiddelen ontwikkeld, die in het tweede gedeelte bij het transcenden-

tieonderzoek warden gebruikt. 





STELLINGEN 

behorende bij het proefschrift 

TRANSCENDENCE IN FIELDS OF POSITIVE CHARACTERISTIC 

I. Laten z 1 ,z2 , •.• ,zn complexe getallen zijn met 

0< lz.l si, 
J. 

i 1,2, ... ,n. 

en 

0 s 11-z I. n 

Zij m E ;z , m ;:>: - 1. Stel B
1 

,B
2

, ... ,Bn zijn polynomen met complexe 

coefficienten van de graad respectievelijk k 1 ,k2 , •.. ,kn. Zij 

k k
1 

+ k 2 + +kn+ n. Dan bestaat er een geheel getal 

v E [m+l,m+k] zodanig dat 

1~1 (v)z~ + 
V B (v)zvl B2 (v)z
2 

+ ... + <': 
n n 

<': 
1 ( k-1 \k-l 

min 1B1 (0) + B2 (0) + + B. (0) 1. 4 ,8e(m+k)/ ... 
j=l, •.. ,n J 

J.M. Geijsel, On generalized sums of powers of complex numbers, 

Math. Centre Report ZW 1968-013, Amsterdam, 1968. 

II. In 1966 gaven P.J. Sally en M.H. Tableson met behulp van de Haarinte-

graal een representatie van complexwaardige Besselfuncties op een lo-

kaal compact, niet-discreet, totaal onsamenhangend, niet-archimedisch 

gewaardeerd lichaam. De carlitz-Besselfuncties Jn (gedefinieerd in 

[2] en in definitie 4.1 van dit proefschrift), beschouwd op qe com-

pletering van het niet-archimedisch gewaardeerde lichaam JFpn(X), zijn 

afbeeldingen van een lokaal compact lichaam in zichzelf. Voor deze 

Carlitz-Besselfuncties is geen Haarintegraalrepresentatie te geven. 

[1] P.J. Sally en M.H. Tableson, Special functions on-locally 

compact fields, Acta Math • .!..!£_ (1966), 279-309. 

[2] L. Carlitz, Some special functions over GF(q,x), 

Duke Math. J. 27 (1960), 139-158. 



III. Zij Keen niet-archimedisch gevalueerd lichaam van karakteristiek p 

dat JF omvat. De functie f: K K wordt gegeven door de machtreeks 
pm 

f(t) I 
i=h 

a. 
]. 

E K, h E :N U {0} ,ah f 0. 

Indien er een n E :N bestaat zodanig dat fn lineair is, d.w.z. 

t,u EK, 

C E lF , t E K, 
pm 

dan heeft f de vorm 

f(t) 

met r E (1, r ?: 0, mr E z;;;. 

IV. Zij, met de notaties uit dit proefschrift, a E ~, a f 0, a geheel al-

gebraisch over JFP (X). Dan is niet noodzakelijk dg a?: 0. 

V. Laten m,n,s,i 1 ,i2 , ... ,it natuurlijke getallen zijn met n?: 2, m?: s. 

De gehele getallen k 1 ,k2 , ... ,kt voldoen aan k 1 > k 2 > ... >kt?: 0. 

Als 

en 

dan geldt 

s n 

VI. Laten m,n,r natuurlijke getallen zijn met n?: 2, m?: r-1?: 1. De gehe-

le getallen k 1 ,k2 , ..• ,kr voldoen aan k 1 ?: k 2 ?: ... ?: k r 
Als 

m 
< n 

m-1 
+ n 

m-r+l 
+ ... + n 

?: 0. 



dan is 

kl k2 kr m m-1 m-r+2 m-r 
n + n + . .. + n ,, n + n + ... + n + n 

Als 

kl k2 kr m m-1 m-r+l 
n + n + ... + n > n + n + ... + n 

dan is 

kl k2 k m m-1 m-r+3 m-r+2 
r 

2c 2n n + n + ... + n n + n + ... + n + 

VII. Apostols stelling "Een Dirichlet-karakter is dan en slechts dan pri-

mitief als al zijn Gauss-sommen separabel zijn" ([1], stelling 1), 

volgt op eenvoudige wijze uit de formule 

(zie [2], pag.148), 

waarbij x• mod m• het karakter x mod m induceert. 

[1] T.M. Apostol, Euler's ~-function and separable Gauss sums, 

Proc. Amer. Math. Soc., 24 (1970), 482-485. 

[2] H. Davenport, Multiplicative Number Theory, Lectures in ad-

vanced mathematics, vol. 1, Chicago, 1967. 

VII1.Men kan zich afvragen of het niet tot de taak van de redactie van een 

wetenschappelijk tijdschrift behoort op enigerlei wijze coordinerend 

op te treden wanneer zij binnen drie maanden tijds twee artikelen 

krijgt aangeboden waarin de auteurs geheel onafhankelijk van elkaar, 

een zeker twintig jaar oud probleem op vrijwel dezelfde wijze oplos-

sen. 

M. Waldschmidt, Solutions du Huitieme Probleme de Schneider, 

Journal of Number Theory, 2_ (1973), 191-202. 

(received March 11, 1971;. revised Mci.y 3, 1971). 

W. Dale Brownawell, The algebraic independence of certain numbers 

related by the exponential function, Journal of Number 

Theory,.§_ (1974), 22-31. 

(received June 1, 1971). 



IX. Er bestaat kans op blijvend oogletsel wanneer bij bewusteloosheid 

contactlenzen niet tijdig worden verwijderd. Oogartsen en contact-

lensspecialisten attenderen hun clienten hierop in onvoldoende mate. 




