
1.  Introduction
Geomagnetic storms pose one of the most severe space weather risks to our space-borne and ground-based 
electronic instruments, such as GNSS and radio transmission systems. A geomagnetic storm can be indicated by 
several geomagnetic indices such as Kp, ap, and the disturbance storm time (Dst) index (Rostoker, 1972). These 
indices are related to the perturbation of the geomagnetic field as measured on local regions on Earth at middle, 
high, and low latitudes, respectively. Although it is now recognized that a single index is not able to capture 
and define all geospace storms (Borovsky & Shprits, 2017), they are routinely used by space weather opera-
tional agencies as proxies for geomagnetic activity (see, e.g., https://www.swpc.noaa.gov/products/geospace-ge-
omagnetic-activity-plot). Here, we focus specifically on Dst, given the large amount of literature devoted to its 
prediction, notably using data-driven and machine learning techniques (Camporeale, 2019). Dst is understood 
to be a proxy for ring current density (Liemohn et al., 2001) and it is currently defined by using quasi real-time 
geomagnetic field measurements from four equatorial ground magnetometer stations: Hermanus, Honolulu, San 
Juan and Kakioka (Sugiura & Kamei, 1991).

Most of the current models predict Dst based on solar wind parameters such as the North-South component of 
the interplanetary magnetic field (IMF) Bz (Saiz et al., 2008). Neural networks have been widely used in mode-
ling Dst empirically. Lundstedt et al. (2002) was one of the first to implement a multi-layer perception (MLP) 
neural network based on IMF Bz, solar wind density and velocity, in order to forecast Dst 1-hr in advance. Saiz 
et al.  (2008), Bala and Reiff  (2012), and Lazzús et al.  (2017) presented models to forecast Dst up to 6 hr in 
advance. A Gaussian Process model has been introduced by Chandorkar et al. (2017) and Chandorkar and Camp-
oreale (2018) and later combined with a a long short-term memory (LSTM) architecture in Gruet et al. (2018) 
to provide a probabilistic forecast up to 6 hr in advance. An ensemble learning algorithm has been used in Xu 
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Figure 1.  Time history of Dst during 1996–2010. 𝐴𝐴 𝐴𝐴 axis is date and Y axis is Dst value. The orange crosses denote peak 
values smaller than −100 nT, used for defining storm events considered in this study.

Figure 2.  An example of the selection criterion to define the time range for one storm event. The Dst peak occurs on 23 
October 1996. The nearest positive Dst values before and after the peak occur on 18 October and 03 November, respectively. 
The whole storm range is defined between 17 October 1996 and 04 November 1996 with a 24-hr buffer zone. The list of 
selected storm events can be found in Table. 1.
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et  al.  (2020). Laperre et  al.  (2020) evaluated the performance of a LSTM 
model based on a Dynamical Time Warping (DTW) method.

All the empirical models mentioned above are trained from solar wind data 
which are measured in quasi real-time by the ACE or DSCOVR satellites 
orbiting around the first Lagrangian point (L1), or alternatively using the 
NASA OMNI database (https://omniweb.gsfc.nasa.gov/). Hence, in an oper-
ational setting, their lead-time would be limited to only a few-hours ahead.

In this paper, we aim to predict Dst with a longer lead time (in the range of 
1–3 days ahead) using solar images from the Solar and Heliospheric Obser-
vatory (SoHO) as inputs. SoHO is a joint mission between the National Aero-
nautics and Space Administration (NASA) and the European Space Agency 
(ESA) and was the first space-based telescope to serve as an early warning 
system for space weather. Solar images can be observed by a suite of on-board 
instruments on SoHO (Domingo et  al.,  1995), including the Michelson 
Doppler Imager (Scherrer et al., 1995) (MDI) for the solar photosphere, the 
Extreme ultraviolet Imaging Telescope (Delaboudinière et al., 1995) (EIT) 
for the stellar atmosphere to low corona, and the Large Angle and Spectro-
metric Coronagraph (Brueckner et al., 1995) (LASCO). Although used much 
less than solar wind data for forecasting purposes, it is known that a signif-
icant correlation exists between EIT and Dst index. A semi-physical model 
called “Anemomilos” is then developed based on this relationship to predict 
Dst index in 6 days (Tobiska et al., 2013). This model became part of the US 
Space Force HASDM predictions in 2012. Upendran et al. (2020) has pointed 
out that the correlations between solar images and solar wind parameters are 
most significant during the fast solar wind.

Obviously, by setting the problem as a 1–3 days ahead forecast, we have to 
accept that we cannot achieve the accuracy seen in few 1–6 hr ahead fore-
cast models, that currently report Root Mean Square Errors of the order of 
10 nT or less. Therefore, as a first step, we set the problem as a classification 
task, aiming at forecasting the probability that Dst exceeds a certain thresh-
old (hereinafter referred to as “Dst probability”). In this study, we focus on 
strong storms having a Dst threshold of −100 nT, and aiming at producing a 
probabilistic forecast 1 day ahead of a given solar image.

In addition, although most operational applications require a deterministic Dst 
value, the predicted probabilistic Dst forecast could also be used to improve 
current space weather models, for example, for running ensemble simulations 
of mass density forecasting, which is one of the top priority for the predicta-
bility of low-Earth-orbit (LEO) satellite trajectories (Licata et al., 2020). Dst 
plays a major role in mass density modeling such as Jacchia-Bowman2008 
(JB2008) (Bowman et al., 2008). Hence, The forecast Dst probability would 
be helpful to assess the uncertainty of those models.

We train a machine learning (ML) technique called convolutional neural 
network (CNN) to forecast the probability that Dst exceeds the pre-defined 
−100  nT threshold from 1 to 3  days in advance (i.e., the prediction is in 
the form of a time series of probabilities). CNN has been recently used in 
space weather applications, for example, by Siciliano et al. (2021), Upendran 
et al. (2020), Li et al. (2020), Ruwali et al. (2020), and Park et al. (2018). By 
using the presented technique in an operational setting, a forecaster would 
have access to several predictions issued with different lead-times. Hence, 
we face a classical problem in ensemble learning, namely how to combine 
different predictions by applying different weights to different lead-times. 

No. Start time End time Min. Dst (nT)

1 2001-03-29 03:00:00 2001-04-06 15:00:00 −387

2 2001-11-03 19:00:00 2001-11-17 00:00:00 −292

3 2005-05-13 05:00:00 2005-05-22 04:00:00 −247

4 1999-10-19 23:00:00 1999-11-02 11:00:00 −237

5 2000-08-08 05:00:00 2000-08-21 07:00:00 −234

6 2001-11-22 06:00:00 2001-12-02 14:00:00 −221

7 2000-09-15 19:00:00 2000-09-26 14:00:00 −201

8 2001-10-17 10:00:00 2001-10-27 09:00:00 −187

9 2005-08-22 08:00:00 2005-09-02 03:00:00 −184

10 2002-09-01 23:00:00 2002-09-18 07:00:00 −181

11 1999-09-20 20:00:00 1999-09-28 15:00:00 −173

12 2000-11-02 04:00:00 2000-11-12 06:00:00 −159

13 2001-03-17 11:00:00 2001-03-24 14:00:00 −149

14 2003-08-15 18:00:00 2003-09-02 23:00:00 −148

15 2003-06-14 09:00:00 2003-06-28 12:00:00 −141

16 2000-02-09 07:00:00 2000-02-21 12:00:00 −135

17 2004-01-20 05:00:00 2004-02-01 05:00:00 −130

18 2004-08-28 02:00:00 2004-09-06 01:00:00 −129

19 2000-11-24 22:00:00 2000-12-05 05:00:00 −119

20 2002-05-09 11:00:00 2002-05-20 20:00:00 −110

21 2002-05-21 11:00:00 2002-06-01 20:00:00 −109

22 2002-08-16 22:00:00 2002-08-27 10:00:00 −106

23 2001-08-15 16:00:00 2001-08-21 12:00:00 −105

24 2005-01-14 21:00:00 2005-01-23 17:00:00 −103

25 2002-07-30 23:00:00 2002-08-09 03:00:00 −102

26 2002-03-21 15:00:00 2002-03-30 21:00:00 −100

27 2000-01-20 16:00:00 2000-01-29 06:00:00 −96

28 2005-01-05 14:00:00 2005-01-13 18:00:00 −93

29 2004-02-09 10:00:00 2004-02-23 20:00:00 −93

30 1999-04-14 20:00:00 1999-04-23 08:00:00 −91

31 2000-06-06 13:00:00 2000-06-15 01:00:00 −90

32 2002-01-31 00:00:00 2002-02-06 21:00:00 −86

33 1999-12-02 02:00:00 1999-12-17 07:00:00 −85

34 2003-05-07 08:00:00 2003-05-20 06:00:00 −84

35 2009-07-20 01:00:00 2009-08-01 10:00:00 −83

36 2010-03-29 23:00:00 2010-04-16 16:00:00 −81

37 2005-02-14 12:00:00 2005-02-24 09:00:00 −80

38 2000-01-09 10:00:00 2000-01-19 11:00:00 −80

39 2010-05-26 21:00:00 2010-06-10 15:00:00 −80

40 2004-03-07 13:00:00 2004-03-21 21:00:00 −78

41 2004-07-14 22:00:00 2004-07-22 18:00:00 −76

42 2001-05-05 00:00:00 2001-05-18 18:00:00 −76

43 2000-06-24 02:00:00 2000-07-02 09:00:00 −75

Table 1 
List of Selected 51 Storm Events

https://omniweb.gsfc.nasa.gov/
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In this work, we restrict to a static weighting scheme (i.e., the weights are 
learned on a training set and do not change with different inputs or solar 
wind conditions), opposite to dynamic weights (Polikar, 2012). We solve the 
ensemble problem by introducing a new, customized, complementary cumu-
lative distribution function (CCCDF) based least-squares (LS) method to find 
the optimal weights.

The paper is divided as follows. Section 2 introduces the data used for this 
study, the criterion to select storm times and the corresponding time peri-
ods covered. Section 3 describes the methodology, including the designed 
machine learning architecture, the optimization method, and the performance 
metrics for assessment. Section 4 presents the results of the developed model, 
and emphasizes the probabilistic nature of the forecast. Finally, in Section 5, 
we draw conclusions and make final remarks about future directions.

2.  Data
2.1.  Disturbance Storm Time (Dst) Index

The Dst index is available at 1-hr cadence from the NASA OMNI database. Figure 1 displays the Dst index in 
the period 1996–2010. The model is trained, validated and tested on storm events with a Dst peak smaller than 
−100 nT, shown by orange crosses. Overall, 51 such storm periods are selected for this study. In order to define 
a storm period, we look for the the nearest positive Dst values immediately before and after each peak, and then 
extend the time window by a 24-hr buffer zone to make sure that the pre-storm period and the recovery phase are 
fully included. An example is shown in Figure 2, where the Dst peak is observed on 23 October 1996. The storm 
period is defined as ranging between 17 October 1996 and 04 November 1996. With this procedure we make sure 
that the time intervals are selected in such a way that the negative Dst peaks do not always occur at the same time 
within the chosen storm-time window, hence the neural network does not simply memorize. The average period 
of selected storm events is approximately 15 days. All selected storms, sorted by peak Dst, are listed in Table 1.

As mentioned in Section 1, we would like to solve this classification task by a regression model. Hence, instead of 
a binary label set (positive/negative), a customized complementary cumulative probability distribution function 
(CCCDF) of Dst is used as a target for the CNN model. The CCCDF is shown in Figure 3, and explained briefly 
below. A cumulative distribution function (CDF) is defined as the integral of a probability density function (PDF) 
from negative infinity to 𝐴𝐴 𝐴𝐴 and the complementary CDF (CCDF) = 1 − CDF or the integral from positive infin-
ity to 𝐴𝐴 𝐴𝐴 . The CDF(𝐴𝐴 𝐴𝐴 ) is the probability that a random variable has a value less than 𝐴𝐴 𝐴𝐴 . Conversely, the CCDF(𝐴𝐴 𝐴𝐴 ) 
gives the probability that the variable under consideration is larger than 𝐴𝐴 𝐴𝐴 . The customized CCDF (CCCDF) for 
Dst = −100 nT is defined as in Equations 1 and 2. Note that CCCDF(Dst = −100) = 0.5 by construction.

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑥𝑥) =
(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑥𝑥) − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (−100))

1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (−100)
+ 0.5 for 𝑥𝑥 ≤ −100� (1)

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑥𝑥) =
(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑥𝑥) − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (−100))

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (−100)
+ 0.5 for 𝑥𝑥 𝑥 −100� (2)

2.2.  SoHO Mission

The two-hourly SoHO data sets used in this work for the period 01 May 1996 to 12 April 2011 are derived from 
the following public domain resources: the NASA Solar Data Analysis Center's (SDAC) Virtual Solar Obser-
vatory (VSO) (https://sdac.virtualsolar.org/cgi/search) and Stanford University's Joint Science Operation Center 
(JSOC) http://jsoc.stanford.edu/MDI/MDI_Magnetograms.html. All SoHO products and their details are shown 
in Table 2.

More than 20,000 SOHO images can be provided from three on-board instruments, including the Michelson 
Doppler Imager (MDI) for the solar photosphere, the Extreme ultraviolet Imaging Telescope (EIT) for the stellar 
atmosphere to low corona, and the Large Angle and Spectrometric Coronagraph (LASCO) covering the corona 

Table 1 
Continued

No. Start time End time Min. Dst (nT)

44 2002-12-17 08:00:00 2002-12-24 16:00:00 −75

45 2005-10-29 09:00:00 2005-11-04 18:00:00 −74

46 2003-01-27 13:00:00 2003-02-15 13:00:00 −74

47 2007-03-21 10:00:00 2007-03-27 00:00:00 −72

48 2002-02-26 17:00:00 2002-03-05 01:00:00 −71

49 2010-04-30 11:00:00 2010-05-12 17:00:00 −71

50 1999-10-08 01:00:00 1999-10-22 04:00:00 −67

51 2003-02-24 22:00:00 2003-03-14 15:00:00 −67

https://sdac.virtualsolar.org/cgi/search
http://jsoc.stanford.edu/MDI/MDI_Magnetograms.html
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from 1.5 to 30  Rs. Those data have fully covered Solar Cycle 23 and 24. 
Among them, MDI, EIT with a wavelength of 195 (EIT-195) and LASCO-C2 
are used as the inputs of this study.

However, the SDAC data is highly heterogeneous. Not only are there intrinsic 
differences among these SoHO products (e.g., individual cadence for each 
channel shown in Table 2), but there is also an irregular assortment of image 
file sizes and processing levels. All products require calibration before they 
can be used for the neural networks. In addition, each channel needs to be 
synchronized with a fixed cadence (i.e., 2 hr in this study). An example of the 
calibrated data are shown in Figure 4.

A pipeline has been created and published by Shneider et al. (2021) for auto-
matically downloading, cleaning and synchronizing these original images 
from SDAC and VSO. A machine-learning-ready image data set is then 
provided which is a valuable resource for the space weather community.

3.  Methodology
The goal of this study is to estimate the Dst probability 1–3 days ahead of 
the time when full-disk SoHO images are taken. For the sake of clarity we 
discuss here the algorithm for 1-day ahead prediction, with the understanding 
that all times are correspondingly shifted for 2 and 3 days ahead predictions.

3.1.  Customized Class-Balanced Convolutional Neural Networks (CB-CNN)

Several machine learning approaches can be used for a probabilistic prediction task. We have compared naive 
Bayes, MLP and CNN. Among them, CNN has yielded the most reliable and robust performance (results are not 
shown here).

CNN is a commonly used neural network architecture, widely used in computer vision (Gu et  al.,  2018), in 
solar image processing (Baso & Ramos, 2018; Dos Santos et al., 2021; Illarionov & Tlatov, 2018; Upendran 
et al., 2020), and recently in plasma and space physics applications (Hu et al., 2020; Siciliano et al., 2021). Hence, 
in this study, we have opted to use a customized class-balanced CNN. This is because of the imbalance between 
the number of positive samples (Dst <= −100 nT) and the number of negative samples (Dst > −100 nT), which 
is approximately 10% of all training samples. As a result of using a class-balanced target, the CB-CNN model 
performs better than a vanilla CNN model, when the target Dst is near the classification threshold. A brief intro-
duction of the CNN architecture and the optimization methods used in the training is listed in Table 3.

Figure 3.  Cumulative distribution function (CDF), complementary CDF 
(CCDF) and customized CCDF of Dst during storm periods. 𝐴𝐴 𝐴𝐴 axis is Dst 
index. Blue dots are CDF; Orange dots are CCDF; and green dots are CCCDF 
in this study.

Instrument Detector Observed region 𝐴𝐴 𝐴𝐴 (Å) Cadence (min) Date range

MDI MDI Full disk 6768 (Ni I) ∼96 1996.05.01–2011.04.12

EIT EIT Full disk 171 (Fe IX/X) ∼360 1996.01.01 →

EIT EIT Full disk 195 (Fe XII) ∼12 1996.01.01 →

EIT EIT Full disk 284 (Fe XV) ∼360 1996.01.01 →

EIT EIT Full disk 304 (He II) ∼360 1996.01.01 →

LASCO C2 Corona (1.5–6 Rs) Visible ∼20 1995.12.08 →

LASCO C3 Corona (3.5–30 Rs) Visible ∼20 1995.12.08 →

Note. 𝐴𝐴 𝐴𝐴 (Å) is wavelength measured in angstroms, and Rs is the Sun's radius. LASCO C1 (1.1–3 Rs) is not included in this 
work since it was only operational till 9 August 2000. MDI, Michelson Doppler Imager; EIT, Extreme ultraviolet Imaging 
Telescope; LASCO, Large Angle and Spectrometric Coronagraph.

Table 2 
Suite of SoHO Instruments Utilized
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By denoting with T the time at which the input images are taken, a multi-target CNN model is first trained to 
predict the Dst probability in the time range [T + 26, T + 48], with a time resolution of 2 hr. That is, 12 probabil-
ity values are output for each input. This means that, at any given time, we have 12 probabilities that have been 
predicted between 26 and 48 hr ahead. Note that, due to the variability of the Sun and because we are using full 
disk images, predictions with shorter time lags are not necessarily more accurate than ones with longer time lags. 
Because we eventually want to merge those predictions (with different time lags) into a unique, reliable predic-
tion, we do not use a standard loss function for binary classification (such as, e.g., binary cross-entropy), but a 
customized, class-balanced, mean square error.

In our application, a class-balanced loss function developed by Cui et al. (2019) is used to deal with the large 
imbalance between positive and negative labels. In addition to that, we want to penalize more the incorrect 
predictions that are closes to the decision boundary CCCDF = 0.5 (corresponding to the threshold Dst = −100). 
Hence, a customized weight is designed to artificially increase the cost function for the possibly ambiguous 
samples with Dst near −100 nT. The cost function is defined as:

Figure 4.  Examples of various Solar and Heliospheric Observatory (SoHO) products (a–c). Colors similar to those used on 
the NASA SoHO site have been used.
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where 𝐴𝐴 𝐴𝐴
ℎ

𝑖𝑖
 is the model prediction for ith sample with a delay hour h (delay 

hours h ranging 26, 28, …, 48 hr), 𝐴𝐴 𝑃𝑃
ℎ

𝑖𝑖
 is the corresponding target, npos and 

nneg are the number of positive and negative samples in a batch, respectively, 
and wh denotes the weight associated to each target. The detailed procedure 
of optimizing these weights will be further introduced in Section 3.3. E is a 
customized square error that penalizes samples whose Dst is near −100 nT, 
as shown in Figure 5. β is a constant term manually set to 0.9999 according 
to Cui et al. (2019).

The multi-target CNN trained using the cost function described above, can 
then be used to forecast the Dst probability from 26 to 48 hr ahead, at a 2 hr 
rate. Hence, at any given time we have (48 − 26)/2 + 1 = 12 different predic-
tions (issued between 26 and 48  hr prior). A natural question then arises 
on whether one could combine these 12 predictions in order to achieve a 

prediction that is more accurate than any individual one. In order to to that, we take a weighted average of the 12 
predictions, and we estimate the optimal (static) weights by solving a least squares (LS) problem. The details of 
the weight estimate procedure are shown in Figure 8. Figure 9 shows the learned 12 weights optimized with this 
procedure, along with their uncertainty (see the leave-one-out procedure described below).

Finally, we notice that the predicted Dst probabilities might not be well-calibrated (i.e., statistically consistent 
with observations) and that the optimal threshold for binary classification metrics might be different than the 
standard 50% probability. Hence, the threshold of probability used for metrics (see Section 3.2) is re-calibrated 
by using a receiver operating characteristic (ROC) curve. ROC curve is an important diagnostic for a probabilistic 
model that can be used to determine an optimal threshold to separate positives from negatives based on proba-
bilistic predictions. A detailed description of ROC curve can be found in Camporeale et al. (2020). An example 
ROC curve for the developed model with the CNN is shown in Figure 6. Horizontal and vertical axes denote 
false positive rate (FPR) and true positive rate (TPR), respectively. The dashed orange line shows TPR equals to 
FPR (i.e., no skill), while the blue line represents the ROC curve, obtained by defining positives and negatives 
by progressively changing the probability threshold from 0% to 100%. The red dot represents the optimal/largest 
value of True Skill Statistics, defined as the difference (TPR-FPR).

Parameter Value

Input size [3, 256, 256]

Output size 12

Layers 3

Kernel size [3, 5, 5]

Padding mode Same

Activation function [ReLU, ReLU, ReLU]

Max epochs 100

Optimization AdamW

Learning rate 0.0001

Regularization Elastic

Cost function CB-MSE

Table 3 
Parameter Selection of CNN and the Corresponding Optimization Method 
Used in Training

Figure 5.  Contour map of Equation 4. Left panel is absolute error between 𝐴𝐴 𝑃𝑃  and P; middle panel is the weight in Ei which is the second term in Equation 4; and the 
last panel is final Ei.
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3.2.  Metrics

In order to precisely assess the accuracy of a model, it is important that the performance metrics are computed on 
a test set independent from the training set (so-called hold-out data), hence making sure that the machine learning 
algorithm does actually learn meaningful patterns and does not merely memorize the training data. A “Leave one 
out” technique is adopted here. That is a K-fold cross validation taken to its logical extreme, with K equal to N, 
the number of selected storm cases. That means that the proposed model is trained on all the data except for one 
storm window and a prediction is made for that left-out storm. The procedure is repeated N times. Finally, the 
metrics are computed as averages over the N models. In this study, the top 51 storm windows in the period 01 
January 1999 to 10 April 2011 constitute each a fold. The probabilistic predictions can be transformed to binary 
labels upon defining a probability threshold. In this way we can use standard metrics for binary classification 
such as the True Skill Statistic (TSS) and Matthews Correlation Coefficient (MCC) (Camporeale et al., 2020):

TSS = TPR − FPR =
TP

TP + FN
−

FP

FP + TN
,� (5)

MCC = �� × �� − �� × ��
√

(�� + �� ) × (�� + ��) × (�� + ��) × (�� + ��)
,� (6)

where TP, FP, TN and FN denotes true positive, false positive, true negative, and false negative numbers respec-
tively. The MCC score is a reliable statistical rate that produces a high score only if the prediction obtained 
good results in all of the four confusion matrix categories (TP, FP, TN, and FN), proportionally both to the size 
of positive elements and the size of negative elements in the data set (Baldi et al., 2000). TSS is a useful metric 
that combines both types of information and should be as close as possible to 1. Those metrics have shown some 
advantages over the F1 score and accuracy in binary classification evaluation (Chicco & Jurman, 2020). More-
over, an innovative way to evaluate the model accuracy has been developed by Guastavino et al. (2021). This 
method assign different weights to FPs that anticipate the occurrence of an actual positive event (i.e., “almost 
hit”). The value-weighted MCC and TSS have been proved more appropriate for decision making processes. 
Hence, these weighted scores are also considered to assess the model accuracy.

Figure 6.  Receiver operating characteristic (ROC) curves (true positive [TP] rate vs. false positive [FP] rate). 𝐴𝐴 𝐴𝐴 and Y axes 
are FP rate and TP rate respectively. Red dots indicate the optimal points along this given ROC curve.
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3.3.  Ensemble Method

After the CNN model is developed, 12 probabilities can be predicted from the model and each SOHO image 
set. Although each prediction is per se valid, we have verified that combining those predictions yields a model 
that outperforms a single individual prediction. Here, we describe the ensemble method that, for simplicity, has 
been chosen to be a simple linear combination of the 12 probabilities so that the final probability is defined 
as 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 =

∑48

𝑖𝑖=26
𝑤𝑤𝑖𝑖𝑝𝑝𝑖𝑖 , with pi the probability of Dst exceeding the −100 nT threshold at time i. The timeline of 

predictions is depicted in Figure 7. Each horizontal bar displays the timeline during an hypothetical event. Yellow 
blocks denote the 2 hr interval during which SoHO images are taken, and used as inputs to the model. The green 
block denotes the 12 Dst probability predictions. From top to bottom, there are n samples during one event. The 
time gap between consecutive samples is 2 hr. All predicted probabilities enclosed by a red frame are considered 
as one probability cluster (i.e., a 12 × 1 vector) for a certain time epoch. The totality of clusters are used to form a 
design matrix for this event, that is, a 12 × (n − 12) matrix. Assuming we have m events, the whole design matrix 
has then size 𝐴𝐴 12 ×

∑𝑚𝑚

𝑖𝑖
(𝑛𝑛𝑖𝑖 − 12) . Equation 7 is the observation model of the ensemble method:

Figure 7.  Illustration of the ensemble procedure. Horizontal bar displays the timeline during the whole event. Yellow 
blocks denote when Solar and Heliospheric Observatory (SoHO) images are taken. Green blocks are the 12 Dst probability 
predictions as introduced from Section 3.1. The weights of those 12 predictions from each sample are consistent. From top 
to bottom, there are n samples during this event. The time shift between nearby samples is 2 hr. All predicted probabilities in 
one red frame is considered as one probability cluster (i.e., a 12 × 1 vector) for a certain time epoch.
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Figure 8.  Flowchart of modeling procedures.
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𝐿𝐿 = 𝑊𝑊 ⋅ 𝑃𝑃 𝑃� (7)

where P is the design matrix as introduced in Figure 7 (each column of P contains 12 different probabilities 
collected with different time lags):

� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�1226ℎ �1326ℎ ⋯ ��26ℎ

�1128ℎ �1228ℎ ⋯ ��−128ℎ

⋮ ⋮ ⋱ ⋮

�148ℎ �248ℎ ⋯ ��−1148ℎ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

� (8)

L denotes the ground truth (i.e., the CCCDF of Dst), and W is the sought after 
weight vector. W is initially set to a constant vector, and will be optimized by 
a least-square (LS) method:

𝑊𝑊 = [𝑤𝑤26ℎ 𝑤𝑤28ℎ ⋯ 𝑤𝑤48ℎ]� (9)

Figure 9.  Boxplot of weights of 12 ensemble predictions. Green lines are median value for each weight, and black dots are 
anomalies. The upper and lower boundary of blue lines are the maximum and minimum. The upper and lower boundary of 
blue lines are the first and third quartile within 51 storm events.

Ensemble method TSS MCC TP FP TN FN

LS 0.62 0.37 57 209 1738 21

SVR 0.15 0.18 13 37 1910 65

Constant 0.32 0.23 31 135 1812 47

Single 0.28 0.17 103 544 2097 111

TSS, True skill statistic; MCC, Matthews Correlation Coefficient; TP, true 
positive; FP, false positive; TN, true negative; FN, false negative numbers.

Table 4 
Accuracy of the Proposed Ensemble Model With LS, SVR and Constant 
Weights, Together With Single-Target CNN Model
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In this study, we develop a customized Elastic-net-aided LS method to opti-
mize the weights W, based on the elastic-net regularization scheme proposed 
by Zou and Hastiea (Zou & Hastie, 2005). The residuals are calculated as:

� = � − � ⋅�� (10)

The cost function, or so-called normal function in LS, is defined as:

𝐹𝐹 = 𝑉𝑉
𝑇𝑇
𝑄𝑄𝑄𝑄 + 𝑟𝑟1

∑
𝑊𝑊 + 𝑟𝑟2

∑
𝑊𝑊

2� (11)

The first term in F is a classic weighted cost function where V T is the trans-
pose matrix of V. The second and third terms are Elastic net regularization 
factors that linearly combines the L1 and L2 penalties of the lasso and ridge 

methods. Based on the experiments on the storms, here we set r1 = 0.05, and r2 = 0.95. Finally, Q denotes the 
“weight,” that is, diagonal matrix with positive and negative samples as defined in Equation 12.

𝑞𝑞𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎

𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝
, 𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛 =

𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
� (12)

The function F reaches a minimum when the partial derivative of F with respect to W equals zero:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −2𝑉𝑉 𝑇𝑇

𝑄𝑄𝑄𝑄 + 𝑟𝑟1 + 2𝑟𝑟2𝑊𝑊 = 0,� (13)

where 𝐴𝐴 𝐴𝐴𝐴1 is a 12 × 1 vector and 𝐴𝐴 𝐴𝐴𝐴2 is a 12 × 12 unit vector times scale r2.

or

� ��� = 1
2
�⃗1 + �⃗2�� (14)

Multiplying P TQ with Equation 10, one has

� ��� = � ��� − � ��� ⋅�� (15)

Setting Equation 14 into Equation 15, one has

1
2
�⃗1 + �⃗2� = � ��� − � ��� ⋅�� (16)

Finally,

𝑊𝑊 =
(
𝑃𝑃

𝑇𝑇
𝑄𝑄𝑄𝑄 + 𝑟𝑟2

)−1 (
𝑃𝑃

𝑇𝑇
𝑄𝑄𝑄𝑄 −

1

2
𝑟𝑟1

)
� (17)

4.  Results
In this section we show the results of our model in terms of the metrics TSS and MCC scores discussed 
in Section  3.2. It should be noted that, by using the leave-one-out technique, all metrics in this section 

are calculated based on the combination of all entries in the confusion 
matrix. The proposed ensemble approach is compared against three alter-
native approaches: support vector regression (SVR) which is a non-lin-
ear ensemble method (Awad & Khanna, 2015), a method where ensem-
ble members are simply averaged (equal weight, denoted as “Constant” 
in Table 4), and a single individual prediction 24 hr ahead (no ensemble, 
so-called “Single” in Table 4). Table 4 shows the TSS and MCC for the 
four methods. One can notice that the LS ensemble method significantly 
outperforms the single individual prediction model. Moreover, although 
SVR yields a large TNR, the FPR is also large, resulting in low values for 
both TSS and MCC.

Dst threshold TSS MCC TP FP TN FN

−50 nT 0.29 0.26 215 350 1254 206

−100 nT 0.62 0.37 57 209 1738 21

−200 nT 0.56 0.14 3 80 1940 2

TSS, True skill statistic; MCC, Matthews Correlation Coefficient; TP, true 
positive; FP, false positive; TN, true negative; FN, false negative numbers.

Table 5 
Accuracy of the Developed Model With 24 hr Ahead Predictions Based on 
Different Dst Threshold, That Is, −50, −100, and −200 nT

Forecast (Days) TSS MCC TP FP TN FN

1 0.62 0.37 57 209 1738 21

2 0.34 0.30 40 93 1807 63

3 0.27 0.17 44 248 1578 65

TSS, True skill statistic; MCC, Matthews Correlation Coefficient; TP, true 
positive; FP, false positive; TN, true negative; FN, false negative numbers.

Table 6 
Accuracy of the Developed Model With 1, 2 and 3 Days Ahead, When the 
Dst Threshold is −100 nT
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As anticipated in Section  1, the goal of this work is not just to provide 
a binary classification, but rather to estimate the probability of exceed-
ing predefined thresholds. The LS-ensemble method has been trained and 
tested for various Dst thresholds (Table 5), different forecast duration (see 
Table  6) and larger time resolution (Table  7). Table  5 demonstrates that 
the model performs best when the Dst threshold is −100 nT. Correspond-
ing TSS and MCC are 0.62 and 0.37, respectively. Both TSS and MCC 
decrease when the threshold is set to −50 nT. Although TSS performs well 
with a threshold of −200  nT, the corresponding MCC decreases signif-
icantly because of the imbalanced labels since very few “very strong” 

storms (≤−200 nT) occurred during 1999–2009. This implies that the proposed method may identify strong 
storms (≤−100 nT) better than mild storms (≤−50 nT). Table 6 shows how the performance of the model gets 
worse with a longer lead-time. From Table 7, we can see that the model trained from 2-hr samples outper-
forms the model trained from 6-hr samples. This is because a 6-hr samples traninig set is composed of fewer 
samples overall. Therefore, the model could be less robust with a larger cadence. Finally, we show in Table 8 
the modified TSS and MCC scores proposed in Guastavino et al. (2021) that further improve the accuracy of 
the method.

A statistic analysis of weights from all of the 51 sub-models is plotted in Figure 9. Green horizontal lines denote 
the mean weights from all 51 sub-models. Blue bars represent the uncertainty range between the first and the third 
quartile of the distributions, and black dots are distribution outliers. Figure 9 shows that the predictions at 24–38 
delay hours have the largest contributions to the final probability. The weights decrease with the increase of delay 
hours. It is interesting that the contribution of predictions during 42–46 delay hours are essentially negligible. The 
error bars and presence of outliers also imply that the weights vary slightly according to different storms. This 
may be improved by having more representative storm events.

4.1.  Storm Case Study

In this section we would like to investigate several typical storm cases.

The Halloween storm, caused by a CME, from 25 October 2003 to 05 November 2003 is selected for a case 
study. This is the biggest storm in the past 20 years. Figure 10 displays the 24-hr ahead Dst probabilities of 
the developed model (green line, left vertical axis) and the corresponding Dst (blue line, right vertical axis) 
during the Halloween storm. Black cross and dotted lines are the threshold of probability and Dst index, 
respectively.

The predicted probabilities can be converted to a binary format with an optimal threshold re-calibrated by training 
samples. This threshold is rescaled back to 0.5 in Figure 10. Two peaks at the midnight 29 and 30 October can 
be well captured by these predicted probabilities. The time shift between the peak of real Dst and the peak of the 
predicted probability is no more than 4 hr. This implies that those strong storm can predicted very well by the 
proposed model.

Figure 10 also indicates that the proposed model can forecast well those storms caused by CME because they 
stand out very clearly in SoHO images. However, a good portion of solar CMEs are non-Earth oriented. The 
ability of this model to identify the geo-effectiveness (or lack thereof) of non-Earth-directed CMEs is also 
assessed. Twenty of them occurring in the period 2000–2003 are selected for validation. The TSS and MCC 
of the prediction based on the developed model during those non-Earth-directed CME periods are 0.94 and 

0.46 respectively. The TP, FP, TN and FN values are 14, 50, 709, and 0. 
An example is shown in Figure  11. A strong CME occurred around 30 
July 2002, but the corresponding Dst did not reach −100 nT. The predicted 
Dst probability increases but not as significantly as for the Earth-directed 
CMEs. This suggests that the proposed model may be able to distinguish 
non-Earth-directed CMEs, and assign lower Dst probabilities to them. 
Similar plots of probabilities for all the other storm events used in this study 
are included as supplementary information.

Time resolution TSS MCC TP FP TN FN

2 0.62 0.37 57 209 1738 21

6 0.42 0.25 9 47 555 9

TSS, True skill statistic; MCC, Matthews Correlation Coefficient; TP, true 
positive; FP, false positive; TN, true negative; FN, false negative numbers.

Table 7 
Accuracy of the Developed Model With Different Time Resolution

Time res wTSS wMCC wTP wFP wTN wFN

2 0.68 0.47 67 133 1407 20

6 0.59 0.42 41 82 510 15

Table 8 
Weighted Metrics of the Developed Model With Different Time Resolution
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5.  Summary and Outlook
We have developed a LS-based class-balanced ensemble CNN model that estimates the probability of Dst exceed-
ing a given threshold 1 day ahead based on SoHO images. Fifty-one selected storm events were chosen during 
a long-span historical data set (∼16 years), between 01 May 1996 and 20 April 2011. The proposed model can 

Figure 10.  Probabilities generated from the developed model during 25 October 2003 and 05 November 2003, together with the corresponding Dst and the thresholds 
for both probabilities and Dst during this storm cases. 𝐴𝐴 𝐴𝐴 axis is Date. Left and right Y axes are probability (shown by green line) and Dst (shown by blue line) 
respectively. Cross line is when the probability equals to 0.5, and dash line is when Dst equals to −100 nT. Corresponding images used for training and prediction 
are plotted in the bottom panel. From top to bottom, they are for Michelson Doppler Imager (MDI), Extreme ultraviolet Imaging Telescope-195 and Large Angle and 
Spectrometric Coronagraph C2.
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predict the probability that Dst < −100 nT 24 hr ahead with a TSS of 0.62 and MCC of 0.37. The weighted TSS 
and MCC from Guastavino et al. (2021) are 0.68 and 0.47.

One of the crucial points of this work is that it combines a LS ensemble method with a CNN algorithm for a 
probability prediction. A customized class-balanced mean square error is developed as the cost function of the 
proposed CNN model. After the CNN model is developed, a LS method is developed to estimate the weights of 
the predictions from the proposed multi-target CNNs. Eventually a final probability value can be calculated by 

Figure 11.  Similar to Figure 10. An example during an non-Earth-direct CME during 31 July 2002 and 02 August 2002.
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the optimized weights and CNN predictions. Binary classification of each event is then determined by a threshold 
re-calibrated on the other 50 storms used for training.

We have shown that this proposed model provides good skills for predicting Dst 1-day-ahead during strong storm 
periods. The proposed model can also forecast Dst probability even within a non-Earth-direct CME period. 
This model will extend the prediction lead time of most of the current Dst empirical prediction models. The 
performance metrics that we have analyzed are the confusion matrix, TSS, MCC, and corresponding weighted 
scores from Guastavino et al. (2021). Finally, we have discussed a strong storm case from 25 October 2003 to 05 
November 2003. Dst peaks can be well captured by the developed model.

A possible weakness of this model is that the weights are static, although the time lags from different events 
should not be the same (Chandorkar et al., 2019). As a next step, we plan to take into account dynamic weights, 
for example, by applying an online/dynamic ensemble method, such as Monteleoni et  al.  (2011). Moreover, 
storms that result from CMEs or high speed streamers are based on different physical mechanisms. The former 
mostly occur during high solar activity period, while the latter are seen more often during low solar activity 
period. Including a solar activity index, such as F10.7 into consideration to first classify those samples in order to 
train the model more precisely, will be also experimented in the future.

Data Availability Statement
We thank OMNIWeb for providing the Dst data (https://omniweb.gsfc.nasa.gov/), the NASA Solar Data Anal-
ysis Center's (SDAC) Virtual Solar Observatory (VSO) (https://sdac.virtualsolar.org/cgi/search) and Stanford 
University's Joint Science Operation Center (JSOC) http://jsoc.stanford.edu/MDI/MDI_Magnetograms.html 
for SoHO images. All the results and codes have been made available as a Zenodo repository in https://doi.
org/10.5281/zenodo.6385325. Future updates can be found on https://github.com/HuanWinter/Dst_SoHO and 
https://ml-space-weather.github.io/projects.html (under construction).
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