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PREFACE 

This monograph is an investigation in infinite-dimensional topology. By 

a fake topological Hilbert space we mean a separable, metrizable space that 

shares many topological properties with ! 2 , but yet is not homeomorphic to 
it. We think of properties like: Xis an absolute retract, Xis homogeneous, 

Xx Xis homeomorphic to l 2 , every compactum in Xis a Z-set and Xis 

universal for the class of separable, metrizable spaces. Our aim is to 

construct a sequence X_ 1,x0 ,x1, ... of fake Hilbert spaces such that an 

arbitrary a-compact subspace of~ has dimension~ kif and only if it is 

strongly negligible. In other words~ has the negligibility properties of 

l 2 precisely up to dimension k inclusive. 

The standard way to obtain spaces with certain negligible subsets is 

through pseudo-boundaries. We first construct in chapter 2 a k-dimensional 
pseudo-boundary inJR.n. Employing this result we build in chapter 3 a 

k-dimensional pseudo-boundary in the Hilbert cube for every k E {-1,0,I, ... }. 
As basis for our sequence x_ 1;x0 ,x1, .•• we use a fake Hilbert space Y, which 

has been introduced by Anderson, Curtis & Van Mill [ACM]. We show in chapter 

4 that Y is homogeneous in a very strong sense and we conclude from this 
fact that~ is also a pseudo-boundary in Y. Finally, in chapter 5 the 

spaces Xk = Y\~ are analysed. 
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CHAPTER 1 

GENERAL THEORY 

I.I Preliminaries 

In this section we introduce basic concepts and we give two simple 

methods to construct autohomeomorphisms. Our notation is standard, cf. 

Engelking [El]. For information concerning infinite-dimensional topology 

s~e Bessaga & Pelczyfiski [BP2] and Chapman [CJ. We make the following 

restriction. 

All topological spaces in this treatise are assumed to be separable 

and metrizable. 

We now give a list of definitions and notations. Let X and Y be topo-

logical spaces, let Ube a collection of open subsets of X and let d be an 

admissible metric on X. 

(a) H(X) denotes the group of autohomeomorphisms of X and IX or simply I 

is the identity on X. 

(b) A continuous mapping is called a map. 

(c) The symbol X:=::i Y means that X and Y are homeomorphic spaces. 

(d) If f is a mapping from X into X and A is a subset of X then we say 

that f is supported on A if the restriction flX\A is equal to IX\A. 
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(e) Mappings f,g Y + X are U-close if for each y E Y with f(y) f g(y) 

there exists a U EU containing both f(y) and g(y) (note that we did 

not require U to cover X). Observe that if f: X +Xis U-close to I 

then f is supported on UU. 

(f) If f and g are mappings from Y into X then 

d(f,g) sup{d(f(y),g(y))ly E Y} E [O,oo]. 

(g) lR, ]N and denote the real, natural and rational numbers, respectively. 

(h) If C is an n-cell, n E JN, then 3C denotes the geometric boundary of C. 

Int C is the set C\3C. 

(i) A homotopy is a map F : Y x K + X, where K is a compact interval in lR. 

Usually, K equals the set I [0,1] and we define fort EK, 

Ft: Y + X by Ft(y) = F(y,t). Fis called limited by U if for every 

y E Y the path of y, F({y} x K), is a singleton or is contained in 

some member of U. 

(j) An isotopy Hof Xis a homotopy from Xx K into X such that the 

function H: Xx K +Xx K, defined by H(x,t) (H(x,t),t) is an 

element of H(X x K). For compact X this means that an isotopy His a 

homotopy such that each level Ht is in H(X). Occasionally, we shall 

also call Han isotopy. If E > 0 then Hi's an E:-isotopy if the 

supremum for x EX of the d-diameter of H({x} x K) is less than E. 

(k) Xis called homogeneous if for every pair x,y EX there is an 

f E H(X) with f(x) = y. 

We conclude this section with two lemmas which give frequently used 

methods to construct homeomorphisms. 



I.I.I. LEMMA: If H: Xx K +Xis an isotopy of X and a is a map from 

Y into K then the function f defined by 

f(x,y) (H(x,a(y)),y) for x EX and y E Y 

is an element of H(X x Y). 

PROOF: This is trivial. 

1.1.2. LEMMA: Let T be a tree of height w, X a topologically complete 

space and (f) Ta function from Tinto fl(X) such that for every open t tE 
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covering U of X and t ET there is an immediate successor t' oft such that 

ft' and 1 are U-close. If dis an admissible.metric on X then there is a 

branch t 0 ,t 1,t2 , ... in T such that (fti O ••• 0 ft 1 ° fto)iEJN has a 

uniform d-limit that is an element of H(X). 

Note that for compact X the condition on (ft)tET can be replaced by: 

for every£> 0 and t ET there is an immediate successor t' such that 

d(ft,,l) < £, where dis some fixed metric on X. This lemma is essentially 

due to Anderson [A2]. 

PROOF: Let d be an arbitrary admissible complete metric on X. Pick a 

t 0 in T with rank 0. Assume that a chain t 0 ,t 1, ... ,ti has been chosen. Put 

gi = fti O ••• 0 ft 1 ° fto and define the metric d' on X by: 

-I -I d'(x,y) = d(x,y) + d(gi (x),gi (y)). 

Let ti+! be an immediate successor of ti such that d'(fti+l'l) < 2-i. It is 

easily verified that the sequence (gi):=O constructed in this way has the 
~ -i ~ -I -I -i 

properties d(gi,gi+l) < 2 and d(gi ,gi+l) < 2 for i = 0,1,2, •... 
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Since dis complete the uniform limits g 

are continuous. We have for x EX: 

d(h o g(x) ,x) lim d (ho gi (x) ,x) 
i--

lim .L 2-i 0. 
i-- J=l_ 

lim gi and h 
i--

-I 
lim gi exist and 
i--

This means that hog 

le11Il1la is proved. 

I. Analogously, one may show that go h I and the 

1.2. Negligibility and pseudo-boundaries 

We introduce a triple (X,S,r) that will remain fixed throughout this 

section. Xis a topologically complete space and (S,r) satisfies the 

following conditions: 

(a) Sis a collection of closed subsets of X, 

(b) r is a subgroup of H (X) , 

(c) S is hereditary, i.e. every closed subset of a member of S is in S, 

(d) Sis invariant under the action of r, 

(e) There is an admissible metric don X such that every f E H(X) that is 

the uniform d-limit of a sequence in r belongs tor. 

For convenience we shall call an object that satisfies (a) - (e) a 

~-pair on X. Observe that for compact X condition (e) is equivalent to: r 

is closed in the compact-open topology on H(X). Let S
0 

denote the collection 

of all countable unions of members of S. 
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1.2.1. DEFINITION: A subset S of Xis called negligible if X X\S. 

The set Sis called strongly negligible if for every collection U of open 

subsets of X there is a homeomorphism f: X + X\(S n ULl) that is Ll-close to 

to I. 

Obviously, every (relatively) open subset of a strongly negligible set 

S is negligible; in particular, S itself is negligible. Every negligible 

subset of Xis an F
0
-set. This can be seen as follows. If X\S X then X\S 

is, like X, topologically complete. This implies that X\S is a G0-set in X 

and hence that Sis an F -set ([El, 4.3.24]). It is also easily verified 
0 

that a strongly negligible set is always a countable union of nowhere dense 

sets (indeed, it is a o-Z-set, see section 3,1). We give more properties of 

strong negligibility. 

1.2.2. PROPOS~TION: Every (relatively) closed subset of a strongly 

negligible set in Xis strongly negligible. 

PROOF: Let S be strongly negligible in X and let F be a closed subset 

of S. There is an open Win X with S\W = F. Consider a collection U of open 

subsets of X and select an open star refinement V of U, i.e. UV= UU = 0 

and for every VE V there is a U EU such that every V' E V that intersects 

Vis contained in U. Since Sis strongly negligible there exist homeo-

morphisms f : X + X\(S n O) and g: X + X\(S n On W) such that f is 

I -I V-close to I and g is {V n WV E V}-close to I. Then h = g O f is a 

homeomorphism from X onto X\(F n 0) which is Ll-close to I. This proves that 

Fis strongly negligible in X. 

1.2.3. THEOREM: Strong negligibility is a-additive. 
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PROOF: As remarked above every negligible set is an F
0
-set. So 

proposition 1.2.2 reduces the problem to: if (S.). ]N is a sequence of 
1- 1- E 

closed, strongly negligible subsets of X then S = i~]N Si is strongly 

negligible. 

Let s1,s2,s3 , ... be all strongly negligible, closed subsets of X and 

let Ube a collection of open subsets of X. We define o1 = UU and Oi+l = 

= O.\S. for i E JN. Select a complete metric don X and construct a complete 
]_ ]_ 

metric d 1 on o1 such that for every x,y E o1, d 1(x,y) d(x,y) and for some 

U E U, {z E o1 jd 1 (z,x) < I} c U (see [El:5.4.H]). Choose for every i E ]N 

a complete metric di+! on Oi+I such that for x,y E Oi+l'di+l(x,y) di(x,y). 

We shall construct inductively a sequence f 1,f2 ,f3 , .•. such that for every 

i EJN, fi is a homeomorphism from X onto X\(Si n Oi) that is supported on 

0 .• Since s1 is strongly negligible there is a homeomorphism 
]_ 

f 1 : X X\(S 1 n o1) that is supported on o1 and has the property 

d I (f I j O I , I) < ½. 
Suppose that fi has been constructed. It follows easily from the. 

induction hypothesis that gi = fi O ••• 0 f 1 is a homeomorphism from X onto 

and select a homeomorphism fi+I 

Oi+I and satisfies 

This completes the induction. 

X + X\(Si+l n Oi+I) that is supported on 

- u -1 I If S - iEJN Si then (gi X\(S n o1)\EJN is a sequence of maps from 

X\(S n o1) into X that satisfies: 
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and for i E lN, 

Since dis a complete metric h = lim g: 1 lx\(S n o 1) is a continuous function 
i-+oo ]_ 

from X\(S n 0 1) into X. 

Analogously, we can prove that g = ~: gi is a map from X into X, which 

is obviously supported on o 1• Let i ElN and recall that gi(X) = 

(X\0 1) u Oi+I" Since (gi+kloi+I )kElN is a Cauchy sequence with respect to the 

complete metric di+! we have that g(X) c X\0 1 u Oi+I• This means that g is 

a map from X into X\(S n o 1). Since both hand g are uniform limits we have 

that h 0 g = IX and g O h = 1 and hence that g is a homeomorphism 
X\ (S n O I) 

from X onto X\(S n 0 1). Obviously, we have that d1 (glo1,I) < I and 

g.l X\0 1 = I, which implies that g and I are U-close. 

1.2.4. COROLLARY: A subset of a strongly negligible set Sin Xis 

(strongly) negligible in X iff it is an Fa-set (in X or, equivalently; in 

SJ. 

PROOF: Use proposition 1.2.2, theorem 1.2.3 and the fact that every 

negligible set is an Fa-set. 

1.2.5. REMARK: One easily verifies that negligibility is neither 

closed hereditary nor additive (consider for instance the interval I). A 

more sophisticated counterexample is the space Y which is discussed in 

chapter 5. This space is universal for the class of separable metric spaces 

(corollary 5.3.6) and has the property that a compact subspace is 

negligible iff it has the shape of a finite space (theorems 5.5.4 and 5.5.5). 

We now come to the pseudo-boundaries. The first to study this concept 
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were Anderson [A4] and Bessaga & Pelczynski [BPI]. Their notion\of a 

pseudo-boundary was generalized to arbitrary complete metric spaces by 

Torunczyk [Tl] (these pseudo-boundaries are called skeletoids) and differ-

ently by West [W] (called absorbers here), We shall now define these 

concepts, 

1.2,6 DEFINITION: Let Ube a collection of open subsets of a space Z 

and let E c H(Z), A map his a U-push in E if there is an isotopy 

H Z x I+ Z that is limited by U and satisfies: HO = I, H1 =hand 

Ht EE for every t EI. 

1,2.7 DEFINITION: An element A of S
0 

is called an (S,r)-absorber if 

for every SES and every collection U of open subsets of X there is an 

h Er such that his U-close to I while moreover h(S n UU) c A. If we can 

always choose h in such a way that it is a U-push in r then A is an (S,r)-

absorber,..., 

1.2.8 DEFINITION: Let A1 c A2 c A3 c ••• be a sequence of elements of 

S. We call (Ai)iElN an (S,r)-skeleton ((S,r)-skeleton''') if for every open 

covering U of X, every SES and every n ElN there exist an h in 

{y E rlylA = l} that is U-close to I (a U-push h in {y E rlylA = l}) and n n 
an m E lN such that h(S) c Am. The set i~1ISI Ai E S

0 
is called an (S,r)-

skeletoid ((S,r)-skeletoid,...,). 

Examples of pseudo-boundaries in the Hilbert cube can be found in 

section'3,l, We now introduce a concept that covers both absorber and 

skeletoid, 



1,2,9 DEFINITION: Let A1 c A2 c A3 c .,. be a sequence of elements of 

S. We call (A.). ]Na strong (S,r)-skeleton (strong (S,r)-skeleton"') if 
l. l. E 

for every open covering U of X, every SES, every closed subset F of X 

with F n S =¢and every n ElN there exist an h in {y E rlylA u F = I} n 

that is U-close to (a U-push h in {y E rlylA u F n I } ) and an m E 1N 

such that h(S) c \i• The set i~]N Ai E S
0 

is called a strong (S,r)-skel-

etoid (strong (S, r)-skeletoid,... ) • 

It is obvious that every strong skeletoid is a skeletoid. With 

absorbers there is the same connexion. 

I • 2. IO PROPOSIITON: Every strong (S, r)-skeletoid ( ,... ) is an (S, r )-

apsorber ( "'). 

PROOF: We only prove the proposition for plain strong skeletoids and 

absorbers; the version with the "'is completely analogous. Let (Ai)i~JN 
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be a strong (S,r)-skeleton and put A= i~]N Ai. Assume that U is a collect-

ion of open subsets of X and that Sis an element of S. Put O = UU and 

select an admissible metric don Osuch that {U1(x)lx E O} refines U, where 

U£(x) = {y E Oid(y,x) < d for£ <CO and x E O ([El: 5,4.H]). Let s0 c s1 
c s2 c ••• be a sequence of closed subsets of S such that s0 =¢and 

co 

Sn O = i~O Si. We shall construct inductively sequences f 0 ,f 1,f2 , ••• in r 

and n0 < n 1 < n2 < ••• inlN such that for i = 1,2,3, ••• 

and 

fi is supported on O\Aui-l' 
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Put f 0 = IX and n0 =I.We shall make sure that every fi can be chosen 

arbitrarily close to I. This implies with lemma 1.1.2 that we may assume 

that there is an f E H(X) which is the uniform d '-limit of (fi O ••• 0 f 0) i ElN' 

where d' is a metric on X such that r is closed with respect to d'. So we 

may assume that f = lim fi O ••• 0 f 0 is an element of r. The other properties 
i-;.oo 

that f must satisfy follow easily. We have that f is supported on O and 

<l(fio,1) 

f(S n 0) 

:,;; 
CC> 

iE1 
00 

i~I 

d(LI0,1) < 
1. 

f(Si) = J1 

I which means that f and I are Ll-close. Moreover, 

fi O 
••• 

0 f 0 (Si) = j 1 Arri c A and we may conclude 

that A is an (S,r)-absorber. 

It remains to perform the induction. Assume that fi has been chosen. 

Let F be a closed neighbourhood of X\O such that F n fi O ••• 0 f 0 (si+I) = 0 

and in order to show that the fi+I we are about to determine can be chosen 

arbitrarily close to I let V be an open covering of X that refines 

{IntX(F)} u {Uz-i_2(x) [x E O}. Since fi 0 ••• 0 f 0 (Si+I) is a member of S 

there exist an f Er and an n. 1 > n. such that fiF u A.= I, i+ 1. .. n1. 

fi+I O fi O ••• 0 f 0 (sn+l) c ~i+I and fi+I and I are V-close, This implies 

that d(f. 1 lo,1) < 2-i-I and that f. 1 is supported on O\a .• The proof is 
1.+ 1.+ ·~1. 

completed, 

Observe that if f Er and A is for instance an (S,r)-absorber then 

f(A) is also an (S,r)-absorber. Conversely, we have the uniqueness theorem 

for absorbers: 

1.2.11 THEOREM (West [W]): If A and Bare (S,r)-absorbers (,..) then 

for every collection U of open subsets of X there is an f Er that is 

U-close to 1 (a U-push fin f) with f(A n ULl) = B n ULl. 

PROOF: Again we only prove the theorem for plain absorbers. Let A and 
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B be (S,r)-absorbers and let Ube a collection of open subsets of X. Put 

0 = UU and write A= i~lN Ai and B = i~lN Bi' where A1 = B1 = r/J and for 

i ElN, Ai,Bi ES. Select a metric don Osuch that the open I-balls of d 

form a refinement of U. We construct a sequence f 1,f2 ,f3 , ••• in r such that 

for i E lN: 

fi is supported on O, 

<l(f.Jo,1) < 2-i, 
l. 

and 

i-1 
f.j.u 1 (g. 1 (A.) u B.) = I, 

l. J= i- J J 

where gi-l = fi-l o ••• o f 1• We put f 1 = IX. 

Assume that f 1, ••• ,fi have been selected. Then gi (Ai+I) = 

fi o ••• o f 1 (Ai+I) is an element of S. It follows from the induction hypo-
i 

thesis that .U 1 J= 
(g. (A.) u B.) n O c B. Consequently, there is a SE r that 

l. J J 
is supported on O\~I (gi (Aj) u Bj) and that satisfies d(SJO,I) < 2-i-Z and 

S(g/Ai+I) n O) c B n O. Note that since S 0 gi Er, S 0 gi(A) is an (S,r)-
i 

absorber and that (.U 1(g.(A.) u B.) u S 0 g.(A. 1)) n O is contained in J= l. J J l. i+ 

S O gi (A). This implies that there is a y E r such that y is supported on 
i ~ -i-2 O\(j~I (gi(Aj) u Bj) u S 0 gi(Ai+I)), d(yjO,I) < 2 and 

y(Bi+I n O) c So gi (A) 

supported on O and has 

inclusion 

-1 
n O. Define fi+I y O S. The map fi+I is obviously 

~ -i-1 the property d(f. 1 Jo,I) < 2 • Consider the i+ 

f. I o g . (A. I n O) J.+ l. i+ 
-I 

y o S(gi (Ai+I) n O) 
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= S (g. (A. 
1

) n O) c B n o 
l. 1.+ 

and observe that y(B. n 0) c S 0 g.(A) n O, whence B. n O is conbained in 
l. l. l. 

f i + 1 ° gi (A). It is obvious that f i + 1 restricts to the identity on 
i 

J
.~1 (g.(A.) u B.). This completes the induction. 

l. J J 

Observe that every fi could have been chosen arbitrarily close to I. 

Hence, we may assume in view of lemma 1.1.2 that g = lim g. Er. We have 
i-+-00 l. 

that g is supported on O and that 

This means that g and I are U-close. The sets g(A n O) and B n O coincide 

because 

g(A n O) 

and 

-I 
i~lN go gi (Bin 0) c g(A n O). 

This proves the theorem. 

The same statement could of course have been made about strong 

skeletoids, For skeletoids a similar result can be obtained (see Bessaga & 

Petczyfiski [BP2: ch.VI prop.2,2]). We now give the obvious connexion between 

absorbers and strong negligibility. 

1.2.12 THEOREM: If A is an (S,r)-absorber and Sis an element of Scr 

then S\A is strongly negligible in X\A. 

PROOF: Let A be an (S,r)-absorber and let SE Scr. It is trivial that 

Au Sis also an (S,r)-absorber. Let Ube a collection of open subsets of 
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X\A and construct a collection Ll' of open subsets of X such that 

U = {U\AIU E Ll'}. Let f be an element of r that is Ll'-close to 1 and that 

has the property f(A n ULl') (Au S) n ULl'. Then flX\A is a homeomorphism 

from X\A onto (X\A)\((S\A) n ULl) that is U-close to 1. 

The next theorem shows that when we omit an absorber the homogeneity 

properties of the space are preserved. 

1.2.13 THEOREM: Let A be an (S,r)-absorber and let Ube a collection 

of open subsets of X. Assume that f is an element of r that is U-close to 

and that Fis a closed subset of X with the property that both F and f(F) 

are contained in X\A. Then flF can be extended to an h Er that is U-close 

t9 1 and that satisfies hlX\A E H(X\A). 

PROOF: Put O = ULl and define V ={Un f- 1 (u)lu E Ll}. Since f and 1 are 

U-close Vis an open covering of O. Since f Er, f- 1 (A) is an (S,r)-absorber. 
-1 Note that Fis disjoint from both A and f (A). Using theorem 1.2.11 we 

find a g E r that is {V\FIV E V}-close to 1, while g(A n O) = f-l (A) n O. 

Let h = f O g and note that h E r. We have the foHowing situation: 

h(A) f O g((A n 0) u (A\0)) f O g (A n O) u f o g (A\ 0) 

(A n O) u (A\O) A, 

hlF f O g IF 

and 

hlX\O 1. 

If x E O then there is a U E Ll such that {x,g(x)} c Un f- 1(U) and hence 
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{x,fo g(x)} c U. We conclude that his U-close to 1. 

1,2.14 COROLLARY: If A is an (S,r)-absorber and r is such that it makes 

X homogeneous, i.e. X = {y(x)jy Er} for any x EX, then X\A is also homo-

geneous. 

PROOF: This is trivial. 

1,2.15 REMARKS: The concepts we discussed in this section can of course 

also be defined for non-complete spaces. However, since we then do not have 

a convergence criterion like lemma 1.1.2 at our disposal this generalization 

is of limited interest. 

The concepts absorber and absorber"' (or skeletoid and skeletoid"' 

etc.) do not coincide, In section 5.3 we discuss a space xO with the 

property that f,g E H(XO) are isotopic iff f = g (remark 5.3.5). This space 

is, however, homogeneous in a very strong sense (theorem 5.3.3) which· 

implies that every countable, dense subset is a strong (Sf,H(XO))-skeletoid, 

where Sf is the collection of finite subsets of xO• 

In section 3.1 we give al-pair (S,H(Q)) on the Hilbert cube such that 

there exists an (S,H(Q))-absorber"' but no (S,H(Q))-skeletoid, 







CHAPTER 2 

FINITE D[MENSIONAL SPACES 

This chapter is devoted to the construction of k-dimensional skeletoids 

in In and JR.n. 

2.1 Tame compacta inlR.n and In 

In their papers [GSl,GS2] Geoghegan & Summerhill have introduced the 

collection We~ of "tame" ::;; k -dimensional compacta in JR.n. We shall define 

this object and discuss its properties and those of the corresponding 

collection in then-cube. Let n and k be integers with the properties n 

and O::;; k::;; n. The numbers n and k remain fixed throughout this chapter. 

We begin with some terminology. 

Let X be a subspace oflR.n. A subpolyhedron of Xis a subset of X that 

is the underlying set of a countable, locally finite simplicial complex in 

]Rn. A subset P of Xis called a tame polyhedron if there is an h E H(X) such 

that h(P) is a subpolyhedron of X. 

2.1.1 DEFINITION: We~ consists of all compact subsets S of ]Rn that 

satisfy the following property: if Pis a subpolyhedron oflR.n with dimension 

::;; n - k - I and U is a collection of open subsets of ]Rn that covers S n P 

then there exists a !,-push h in H(JRn) with h(S) n P = 0. 



!Pl~ consists of all compact subsets S of In that satisfy the following 

property: if P is a subpolyhedron of In with dim (P) :S: n- k- I and 

dim (P n clln) < n - k - I and U is a collection of open subsets of In that 

covers Sn P then there exists a U-push h in H(In) with h(S) n P = 0. 

One sees immediately that WI~ and !Pl~ are invariant under PL-homeo-

morphisms. If P is a :s: k-dimensional subpolyhedron of ]Rn (In) then by a 

n ~n general position argument we find that PE Wik (PE !Vlk). For information 

concerning PL-topology see Hudson [HJ. The following theorem has been 

obtained by Geoghegan & Summerhill [GS2]. 

2. I • 2 THEOREM: !Ill~ is invariant under the action of H (1Rn) . 

We shall see that an analogous statement can be derived for !Pl~. 

2.1.3 LEMMA: If k :s: n-2, x E 31n and f: 1Rn-l + 3In\{x} is a homeo-

n-1 n-1 ~ n morphism then for every S c 1R , S E Wik iff f ( S) E !Ill k. 

PROOF: Prove the lemma first for a PL-homeomorphism f and use then the 
n-1 invariance of !Vlk . The details are left to the reader. 

2.1.4 LEMMA: If Sis a subset of Int In then it is an element of !Pl~ 
iff it is in !Ill~. 

PROOF: This is obvious. 

'"'n ~ n 2.1.5 LEMMA: ~'k and !Vlk are hereditary. 



n PROOF: We give the proof for Wik. Let S' be a closed subset of an 

element S of WI~. Assume that P is a subpolyhedron of ]Rn with dimension 

s n - k - I and that U is a collection of open subsets of ]Rn that covers 
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S' n P. Write Pas union of two subpolyhedra P1 and P2 that satisfy P1 c UV 

and P2 n S' =¢.Leth be a {U\P2 1u E Ll}-push inH(1Rn) with h(S) n P1 = ¢. 

We have that h(S') n P 

h(S' n P2) =¢and hence the lemma is proved. 

2.1.6 PROPOSITION: lUI~ is invariant under the action of H(In). 

PROOF: Let SE lUI~, f E H(In), let P be a subpolyhedron of In with 

dim (P) s n - k - I and dim (P n ain) s n - k - 2 and let U be an open covering 

n n ~n of P n f(S) in I . We first show that f(S) n aI E lmk. If k = n- I then 
n ~n every closed subset of 31 is an element of Wik. If k < n - I then 

there is an x E 3In\S. Since lUI~ is invariant under PL-homeomorphisms we may 

' f f' L : ]Rn-J ~rn\{x} b h h" A 1 . assume t1tat ixes x. et g o ea omeomorp ism. pp ying 

lemma 2. 1.5, lemma 2.1.3, theorem 2.1.2 and again lemma 2.1.3 we find 
n ~ n -1 n n-1 -1 n successively that s n ar E lmk, g (S n ar ) E lmk , g O f(S n ar ) E 

=n-1 ( ~rn) ~n ~'k and f Sn o E lmk. 

Let V be a star refinement of U. There is a V-push h 1 in H(In) with 

h 1 o f(S n arn) n P =¢.Select an i E1N such that h 1 ° f(S) n Pc O = 

(1/i, I - 1/i)n. Put C = f-! 0 h~ 1 (Cl1n(O)) n Sand note that lemma 2.1.5 

implies that CE lUI~. Since Cc Int In we have that CE ID?~, lemma 2.1.4. 

Since h 1 ° f can be extended to an element of H(1Rn) theorem 2.1.2 implies 
m,n . ~ n that h 1 o f(C) E ~'k' By virtue of lemma 2.1.4 we have that h 1 o f(C) E lmk. 

So there is a {V n ojv E V}-push h 2 in H(In) such that h2 ° h 1 ° f(C) n P = ¢. 

This means that h2 ° h 1 is a Ll-push in H(In) with h2 o h 1 o f(S) n P = ¢. 

The following propositions are essentially due to Geoghegan & Summerhill 
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[GS2]. For the sake of completeness, we have included proofs. 

n ~n 2.1.7 PROPOSITION: Let S be an element of IDlk(IDlk), let Ube a 

collection of open subsets ofJR.n(In) and let L be a countable collection of 

tame polyhedra in JR.n(In) having dimension :;;; n - k - I (for In in addition: 

dim (UL n Hn)::;; n-k-2). Then there exists a U-push h in H(JR.n) (H(In)) 

such that h(X) n UL n UU = 0. 

PROOF: We prove the proposition forJR.n. Put O = UU and write On UL as 

countable union of tame polyhedra with dimension ::;; n - k- I: 0 n UL = . UJN T .. 
l. E l. 

Let d be a metric on Osuch that the I-balls form a refinement of U. Put 

T0 0. We shall construct inductively a sequence G0 ,G1 ,G2 , ... of isotopies: 

JR.n x I x I such that for i = 0,1,2, .•• 

G~ I, 

Gi is supported on O\~UI T. fort EI, 
t J=l J 

- i -i d(GtJ0,1)<2 fortEI 

and 

where Hi 

If every Gi is chosen close enough to I JR.n x I then H = lim Hi is an 
i-+<x> 

isotopy ofJR.n, lemma 1.1.2. It follows easily from the induction hypothesis 

that His limited by U and that H1(S) n UL n O = 0. 

Assume that Gi has been constructed. Let f E H(JR.n) be such that f(Ti) 

is a subpolyhedron ofJR.n. It is a consequence of the induction hypothesis 
i i 

that f O H1 (S) n f(j~O Tj) = 0. Since IDI~ is invariant we have that 
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f O H~ (S) E m~. Consequently, there is an isotopy F 

i 

of ]Rn such that F O I, 

Fl O f O H1 (S) n f(Ti+l) = (/J and for every t E I, Ft is supported on 

f(o\J0 Tj) and d(f-l ° Ftlf(O), f- 1 if(O)) < 2-i-l. Define the isotopy Gi+l: 

]Rn x I +]Rn x I b Gi+l = f-l o F of for t E I. It is clear that Gi+l y t t 

satisfies the induction hypothesis. 

n ~n 2.1.8 PROPOSITION: If Sis a compact element of W?k
0

(W?k
0

) then Sis an 

element of Wl~(!Ul~). 

n PROOF: Consider a compact S E W?k
0

• Write S = i ~JN Si where each Si is 

in m~ and let P be an (n - k - I )-dimensional subpolyhedron of ]Rn. Let h 1 

push s1 off P. Since m~ is invariant we have that h 1(s2) E m~. So we can 

push h 1(s2) away from P keeping h 1(s 1) fixed. Continue this process. For the 

epsilonics see the very similar proof of proposition 1.2. IO. 

Note that lemma 2.1.4, theorem 2. 1.2 and proposition 2.1.6 state·that 

(!!R~,H(JR )) and (!Ul~,H(In)) are LI-pairs. 

We now introduce a cell structure on 11 for 1 E JN. If i E {O} uJN then 

J~ is the collection of all cubes in 11 that have the form 
J. 

i where m1,m2 , ••• ,m1 are elements of {0,1, .•. ,3 -1}. Define furthermore for 

i E {O} uJN, 

{2m+ I I i K. --. m E {0,1, •.. ,3 -!}} 
i 2.3J. 

co 
and K i~O Ki. Note that K0 c K1 c K2 c ... and that the 1-fold product 

(K.) 1 is the set of centres of members of J~. Let d1 be the maximum metric 
J. J. 

onJR1 and let u1 (u1) denote the E-balls inJR1 (r1) that correspond with d1 . 
E E 
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Let P (P) be the subgroup of H(IB.n )(H(In)) that corresponds to n n 
n permutating then coordinates. We define the Menger space}\: by 

i E {0} uJN and p E (K.)k+I}. 
i 

It was proved by ~tan'ko [~]that~ is universal for the k-dimensional 

compact subsets of IB.n. The following fact has been obtained by Geoghegan & 

Summerhill [GS2]: 

n n 2.1.9 PROPOSITION:~ E W'lk. 

2.1.10 DEFINITION: If A is a countable dense subset of JR. then the 

N6beling space N~ is the set of all points inIB.n for which at most k 

coordinates are elements of A. If A is a countable dense subset of (0,1) 
n then Nk(A) is the set of all points in I for which at most k coordinates 

are in A. We put~= N~(~) and~=~(~ n (0,1)). 

2.1.11 REMARKS: We have the following alternative definitions of N~ 

= and Nk: 

and 

k+l and p E (~ n (0,1)) }. 

It is obvious that if A is countable and dense inIB. (in (0,1)) then there 

is an 
n ~n known that Nk and Nk are k-dimensional spaces, see [E2: 1.5.9]. 
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2. I. 12 THEOREM: If A is a countable dense subset of JR then 

an~= {f(S)lf E H(JRn) ands compact C N~(A)}. 

If A is a countable dense subset of (0,1) then 

PROOF: In view of 2.1.11 it suffices to prove the theorem for A 

respectively A=~ n (0,1). The inclusion 9.n~ c {f(S)lf E H(JRn) and S 

compact c N~} is a consequence of 2.1.7 and 2.1.11. For In the same argument 

applies. 

Consider now Bothe's theorem (see Bothe [Be] or [E2: 1.11.6]) that 

every compact subset S of N~ can be embedded into~ by an f E H(JRn). If 

we combine this result with 2.1.2, 2.1.5 and 2.1.9 we have proved the 

theorem for JRn. 

n ~n Let f E H(I) and let S be a compact subset of Nk. Define for every 

i EJN, Si= Sn [2-\ 1-2-i]n. If we prove that every element of 

{S. Ii E JN} u {S n FIF an (n- !)-face of In} 
]. 

is in !Ul~ then the propositions 2.1.6 and 2.1.7 imply that f(S) E !Ul~. For 

i 1N h h S n =n · every E we ave tat i c Nk and hence that Si E ~'k· This means 

that Si E !Ul~. Let F be an (n - I )-face of In and let x E 3In\F. If k n - I 

n ~n then every closed subset of ell is in 9.nk and we are done. If k < n - I 

n n-1 n select a homeomorphism h: ell \{x} +JR such that h(S n F) c Nk(~\{0,1}). 
n-1 ~n Then h(S n F) E 9.nk and hence Sn FE 9.nk. This completes the proof. 

2. I. 13 COROLLARY: Every S E 9.n~ (!Ul~) has dimension s k. 
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PROOF: dim (N~) dim(~) k, see [E2: 1.5.9]. 

=n ~n n' ~n' 2.1. 14 COROLLARY: If S E ''"k (IJJlk) and S' E IJJlk, (IDlk,) then 

n+n' ~n+n' s XS' E IDlk+k' (IDlk+k'). 

PROOF: There exists an f E H( ]Rn) and an f' E H ( ]Rn') such that 

f(S) n and f (SI) n' Consequently, one has that C Nk C Nk'. 

f X g(S X S') n n' n+n' 
C Nk X Nk' C Nk+k'. 

2.2 Skeletoids in In 

~n H n In this section we prove that (IDlk, (I ))-skeletoids exist. Our 

construction of a skeleton is based on the space~• which was introduced 

by Menger [M] and which we modify slightly. 

Consider the following collection of (n - k- I )-dimensional planes in 

oo n-k-1 Select an enumeration (Li)i=O of L such that if Li= a({p} x I ) then 

( )k+ I • • { } p E Ki . Define form E JN and i E O uJN the compact sets 

and A 
m iQO F:. It is easily seen that F: can be written as union of 

members of Jn We obviously have the following situation: i+m-1 

F! CF~ CF~ C • • • 
l l l 



and 

~n n Note that K is a countable, dense subset of (0,1) and that Nk(K) = I \UL. 

This implies in view of theorem 2.1.12 that every Ai is a member of lln~. 

"'Il Il "" 2.2.1 THEOREM: (Am)mE1N is a strong (ID'lk, H(I ))-skeleton . 

The remaining part of this section is devoted to the proof of this 

theorem. Before we start with the actual proof we introduce some pushes of 

1Rk+ I and Ik+ I . 

Let EE (0,1/3] and define ~E [Q,oo) [J,oo) by 

3E if O:,; r:,; E, 

~E(r) 
I l-3E 

3(1-E) ( 2 + -r-) if E ::; r ::; I, 

if r ;c: I. 

Note that that the function f(r) = r~E(r), r E [0, 00 ), is a PL-autohomeo-

morphism of [0, 00 ) with the property f([O,E)) [0,1/3). Using the vector 

k+l space structure of JR we define for EE (0,1/3] the homeomorphism 

k+I XE E H( ]R ) by 

k+I Note that XE is supported on U 1 (O) and satisfies 

Section 2.4 is devoted to a proof for the statement: 

25 
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Since x113 = 1:rn_k+l it is easily seen that for every EE (0,1/3], XE is a 

k+l . k+l I 2 {U 1 (0) }-push rn {y E H( JR ) dk+l (y(x) ,y(y)) 2c 3 dk+l (x,y) for 

x,y ElRk+l}. 

L {3 4 5 } ]_. {0 I 2 } (K.)k+l d f et m E , , , . . . , E , , , . • . , p E i an put or every 

X E 

m ~k+l 
It follows that wi,p is a {U½3-i(p)}-push in 

k+l I 2 k+l E {y E H(I ) dk+l(y(x),y(y)) 2c 3 dk+l(x,y) for x,y EI }, 

which satisfies 

PROOF of theorem 2.2.1: Let m be a natural number, E a positive real 

number, Fa closed subset of In and S a member of ~n 
!Vlk that misses F. Since 

In is compact it suffices to consider only one metric: d We have to find n 
a {Un(x) Ix E In}-push gin {y E H(In)lrlA u F = I} and an i E 1N such that E m 

g(S) C Ai. 

Let r be the countable subgroup of H(In) that is generated by the set 

P u {wrl x lin-k-J Ir E {3,4,5, ..• }, 1 E {0} u 1N and n ,p 

Consider the collection 
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Note that Lis contained in K. Since K is a countable set of tame polyhedra 

of dimension n - k- I there exists according to proposition 2. I. 7 a 

f (S) n UK\A 1/J. m 

Put S' = f(S) and select a j E 1N such that j > m, 3-j+) < £/2 and 

3-j+l < dn(S' ,F). Define the compactum 

C U{J E J~IJ n S' f 1/J}. 
J 

Note that C is a neighbourhood of S' that has distance greater than 3-j to 

F. 
-J'+J n n We shall construct a 3 -isotopy H: I x I+ I x I that satisfies: 

H0 !In' HtlF u Am= I fort EI and H1(S') c Aj+J" Then the function H1 ° f_ 

is the push of In we need. The isotopy H will be the limit of a sequence 

H0 ,H1 ,H2 , ••• of isotopies of In that satisfies for 1 = 0,1,2, ... 

Hi (C\UK) C\UK 

and 

The H11 s are determined inductively with as first step HO= linxI" Moreover, 

it will be shown that G1 = Hl+l O (H1)-l is a 3-l-j_isotopy such that for 

every t EI, G~ EE', where 

ylFuA I}. m 

Consider now lim H1 . Since G1 is a 3-l-j_isotopy with G~ 
1---

I the 
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1 co 
sequence (H \=o 

-J·+1 "3 -homotopy" 

is 

of 

uniformly Cauchy. 

In with HO = I. We 

So H = lim H1 exists and it is a 
1-+oo 

show that H is an isotopy. Since In 

is compact it suffices to prove that every Ht is onto and one-to-one. Let 

t EI and note that Ht is the limit of a sequence of autohomeomorphisms of 

a compactum and hence it is onto. Let x and y be two arbitrary distinct 

points in In. Select an 1 ElN such that 21-dn(x,y) > I. Since for every 

s E {O} u lN, G~ E E' we have that for z,z' E In, 

and hence that 

Since Gs is a 3-s-j_isotopy with Gs= I it follows that 
0 

d (H O (H1t)- 1,I) 3 3-j-l C 1 n+I t < 2 . onsequent y, 

and Ht (x) 'f Ht (y). It is obvious that l\ fixes F u Am. So we have proved 

-j+I n I that His a 3 -isotopy of I that satisfies H0 = I and Ht Fu Am= I for 
. . j+I t EI. The inclusions F0 

s E { 0} u lN, to 

H
1
(S') = lim Hs

1
(S') c n Fj+I 

s=O s s-+oo 

lead, together with 

Now it remains to perform the construction of the H1 's. 

Assume that H1 has been determined. Since H1 = Gl-l o ••• o GO we have 

that H! fixes Fu Am for every t EI. Consider the situation: 

S' C c, 

Hi (C\UK) C\UK 
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and 

s' n UK\A r/J m 

This implies that 

and since L1 EL c Kand L1 n Am 

Furthermore, we may derive that 

r/J we have that Hi(S') and L1 are disjoint. 

Since S' is compact there exists an r E {3,4,5, ... } such that 

Let L1 be of the form a({p} x In-k-l), where a E Pn and p E (K1)k+I. Let~ 

-1-j k+I r be a 3 -isotopy of I such that ~O = I, ~I=~ . and fort EI, ~t l+J,P 
is a member of 

I ~k+I E {y EE y is supported on u½ 3-1-j(p)}. 

Consider the product Ik+I x In-k-l = In and the projection 

TT: Ik+I x In-k-l + In-k-l. Let J be the cube in J~:~ of which pis the 

centre. Define C = TT(J x In-k-l n a- 1(C)) and F = TT(J x In-k-l n a- 1(F)). 

Since the diameter of J with respect to dk+I is 3-l-j and since dn(C,F) > 3-j 

n-k-1 we have that C and Fare disjoint. Let S : I + I be a Urysohn function 

with S(C) c {I} and S(F) c {O}. Define the isotopy 0 

k+I n-k-1 (~(x,tS(y)),y) for x EI , y EI , t EI 

1 -I 1 and put Gt = a o et O a for t E I. Since t E E it follows that G is a 
-1-j n 3 -isotopy of I such that every level is an element of 
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{y E H(In)jd (y(x),y(y)) l d (x,y) for x,y E In 
n 3 n 

Since F c In\a(J x (In-k-l\F)) and since Am c Aj c Fl+1 F{\u;3-1-j(L1) 

this implies that G1 is a 3-l-j_isotopy with each level in E'. 

Define,now Hl+l = G1 oH1 . We prove that Ht1(C\UK) = C\UK and 

Hi+l(S') c Fi::. Note that for every t EI and DE J~:~, Tt(D) = D. This 
1 . I 

implies that for each DE J~+j' G1(D) = D. Both Fi+ and C can be written 

as union of members of J~+j and hence we have that Gi(F{+ 1) F{+l and 

Gi(C) = C. Define g E H(In) by 

g a o 

The function g is a member of rand consequently we have that g(UK) UK. 

I 11 k n-k-1 We shall see that g C = G1 C. Let x EI and y EI such that 

a(x,y) E C. If x E J then y EC and S(y) = I. This implies that e1(x,y) 

r 1 (w 1 . (x),y) and hence that G1(a(x,y)) = g(a(x,y)). If xi J then +J,P 
r 1 T (x) = x = w1 . (x) for every t EI and consequently G1(a(x,y)) = t +J,P 

a(x,y) = g(a(x,y)). Now we have that Gi(C\UK) = C\UK and Hi+l(C\UK) = C\UK. 
. r ~k+l ~k+l i -1-j 

Since Wl+j,p(U½ 3-1-j/r(p)) U½ 3-1-j-J(P) and dn(H 1(S'),L1) ½3 /r we 

i = have that g O H1 (S') and U½rl-j-1 (L1) are disjoint. If we combine this with 

1 1 1 J
0

+l J
0

+l I - 11 1 I J
0

+l G1 oH1(S')cG1(F1 ) Fl ,gC-G1 C,H1(S)cCandFl+l 

j+I = F1 \U½ 3-l-j-J(L1) we find that 

Hl+I (S') 
1 

c1
0 H1 (s') C Fj+] 

I I l+i" 

This completes the proof of theorem 2.2.1. 
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2.3 Skeletoids inJRn 

Using the result of the preceeding section 2.2 we construct a 

k-dimensional skeletoid inJRn. As an application we obtain universal spaces 

in the class of strongly a-complete spaces. 

*) n n ,.., 2. 3. I THEOREM : There exists a strong ( 'i!Rk, H ( JR ) )-ske1-etoid . 

n n S { ~nl n PROOF: Consider Int I ~JR and = SE 'i!Rk Sn 31 = ©}. It is easily 

seen that it suffices to prove that there is a strong (S,H(Int In))-
...... rvn n _. 

skeletoid. Let (Ai)iElli be a strong ('i!Rk,H(I ))-skeleton, theorem 2.2.1, 

and define A! = 
l. 

strong (S,H(Int 

-i -in Ai n [2 ,1-2 ] for i Elli. We show that 

in) )-skeletoid"' ((S, H (Int In)) is a .6-pair 

(Ai) i Elli is a 

because 

('i!R~,H( JRn)) is a LI-pair). Let S ES and let Ube a collection of open sub-

sets of Int In that covers S. If i Elli then there are a j Elli and a U-push 

h in {y E H(In)h!A. = J}withh(S) c A .. Let m > j such that 
l. J 

2-m < d (h(S),3In). Then h!Int In is a U-push in {y E H(Int In)IYIA! I} n l. 

with h(S) c A!. 
J 

n n n ...... n nn Let Bk be a strong ('i!Rk,H( JR ))-skeleto1.d and put sk = JR \Bk. Note 

that since B~ is a-compacts~ is topologically complete. By the countable 

sum theorem ([E2: 3.1.8]) we have that dim (B~) = k. Geoghegan & Summerhill 

[GS2] have shown that there exist ( 'i!R~ ,H ( JRn) )-absorbers. This result 

follows from theorem 2.3.1. Moreover, theorem 1.2.11 implies that the 

absorbers constructed in [GS2] are in fact also strong skeletoids. 

*) This theorem can a1-so be found in Dijkstra [DI]. 
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2.3.2 PROPOSITION: s~ is homogeneous. 

PROOF: Apply corollary 1.2.14. 

Using theorem l.2.13 we can prove more results in this direction: s: is 

strongly locally homogeneous and hence countably dense homogeneous (see 

Anderson, Curtis & van Mill [ACM: sec.SJ). 

2.3.3 PROPOSITION (Geoghegan & Summerhill [GS2]): dim (s:) 

and every compact subset of skn is an element of IDln n-k-1 

n\ n PROOF: The set JR Nn-k-l is a countable union of k-dimensional 

su)Jpolyhedra of ]Rn and hence there is an h E H( lRn) with h(B:) 

n-k-1 

n n n n n Bk u (JR \Nn-k- 1), theorem 1.2.11. Consequently h(sk) c Nn-k-l and hence 

dim(s:) n-k-1 ([E2:1.5.1O]). 
n Let S be a compact subset of sk. Assume that Pis a k-dimensional 

subpolyhedron oflRn and that U is a collection of open subsets of ]Rn that 

covers S n P. Since P E IDln there is a U-push h in H( lRn) such that k 
n n h(Bk n UU) = (Bk u P) n UU, theorem 1.2.11. Hence, we have that h(S) n P 0. 

2. 3. 4 PROPOSITION (Geoghegan & Summerhill [GS2]): If n :,; 2k + 1 then 

every a-compact subset of s: is strongly negligible ins:. 

n . PROOF: According to proposition 2.3.3 every a-compact subset of skis 
n n an element of (IDln-k-l)a c IDlka· Theorem 1.2.12 implies that it is strongly 

negligible. 

2.3.5 DEFINITION: A space is called strongly a-complete if it is a 



countable union of closed, topologically complete subspaces. If 

1 E {O,1,2, ... , 00 } then we define the class 

V1 {xjx is a strongly a-complete space with dimension~ 1}. 
0 

A space Xis called universal for V~ if 

v! {Yjthere is an F
0
-set in X that is homeomorphic to Y}. 

33 

Note that V
00 

is simply the class of all strongly a-complete spaces. If 
0 

Xis negligible in a complete space then it is an F
0
-set and hence a 

strongly a-complete space. We shall see that V
00 

is precisely the class of 
0 

spaces that can be negligible subsets of a complete space (see theorem 

4.5. 12). 

2.3.6 DEFINITION: A closed subset Sofa space Xis called thin if for 

every collection U of open subsets of X there is an f E H(X) that is U-close 

to I and satisfies h(S n UU) n S = 0. 

Geoghegan & Summerhill [GS2] have shown that every member of 

thin inJR2k+I. This implies with proposition 2.1.8 that if S,S' E 

ID'l2k+I is 
k 

ID'l2k+I 
k 

then there is an h E H ( JR.n), which can be chosen arbitrarily close to I, 

with h(S) n S' = 0. A straightforward application of lemma 1.1.2 gives that 

if S, S' E (ID'l!k+l)
0 

then there is an h EH( JR.n) such that h(S) n S' = 0. 

2k+I . k 2.3.7 THEOREM: The space sk is universal for V
0

• Moreover, an 

arbitrary space X is an element of Vk iff it is homeomorphic t:o a (strongly) a 
2k+I negligible set: in sk 

2k+I PROOF: If Xis strongly negligible in sk then Xis negligible and 
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hence an Fa-set. Consequently, Xis strongly a-complete. 

Let XE Vk and select a compactification C of X with dimension~ k, a 
[E2: 1.7.2]. There is an embedding f of C in N!k+l (see [E2: 1.11.5]) and 

hence f(C) E l!n!k+l, 

pushed off B~k+l. So 

. 2k+l 2k+l theorem 2.1.12. Since Bk E Wlka , f(C) can be 

h f b d C . 2k+l . we may assume tat em es into sk . Write 

X = i~JN Si' where Si is a closed, topologically complete subset of X. 

Define for every i E JN, Ri = f(ClC(Si)\Si) and furthermore 

P = i~JN f(ClC(Si)) and R = i~JN Ri. For i E1N we have that Riis the 

remainder of a topologically complete space in a compactification and hence 
2k+l a a-compact space. So Risa a-compact subset of sk and consequently an 

element of lln~:+l. Using theorc>m 1.2.11 we find an h E H( lRn) such that 

h(B2k+l u 
k 

arid hence 

2k+l R) = Bk . The a-compact space h(P) 

h ( ) \ 2k+ 1 . 1 1 · . b . P Bk is strong y neg igi le in 

Si is closed in X for every i E JN, we have that 

h(P)\B2k+l 
k 

This proves the theorem. 

h(P\R) ho f (X). 

2k+l 
is an element of llnka 

2k+I . sk , theorem 1.2.12. Since 

2.3.8 REMARK: The space sb is homeomorphic tolR\~. It is easily 

verified that sb is nowhere locally compact. The assertion follows then 

from the Alexandroff & Urysohn [AU] characterization oflR\~. 

2.4 A technical lemma 

In this section we consider the functions ~E 

X E H( JR1 ) which are defined by 
E 

[0,oo) [l,oo) and 
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3E if0:s;r:,;E 

(j)E(r) if E :,; r :,; I 

if r:?: 

and 

X (x) = {/) ( llxll )X, 
E E 

where EE (0,1/3] and llxll = d1 (x,O) = max {jxilli 1,2, ••• ,1}. 

1 2.4.1 LEMMA: For every x,y E 1R we have that 

llx (x)- X (y)ji:?: -3
2 llx- yjj. E E 

PROOF: We consider four cases. 

I. If llxll :,; E or llxll :?: I and IIYII:,; E or IIYII :?: I then the 

statement is obvious. 

II. Let E:,; llxll,IIYII:,; I. For some i:,; 1 we have that llx-yjj = 

I xi - y i j. Without loss of generality we may assume that xi :?: y i and xi :?: 0. 

This implies that llxll - IIYII :,; llx-yjj = x. -y. and hence we have that 
]. ]. 

llxll - y. :?: llxll - x .. Since llxll - x. :?: 0, x. :?: Yi· and xi. :?: 0 we find that 
]. ]. ]. ]. 

x/llY II- yi):?: Y/llxll - xi). So we have that 

x. y. 
]. :?:-].-. 

llxll IIYII 

Consider now 

( ( ) xi (2 + ~) X~ x) i· - X~ Y i· 3 ( I ) 
- E llxll 
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We may conclude that 

;,, Ix (x). - X (y).I;,, ~3 llx- Yll-e: l. E: l. 

III. Let IIYII :5: e: and e: :5: llxll :5: I. Select an i :s: 1 such that llx - YII = 

lxi - Yil• We may assume that xi;,, 0. We make the following subdivision. 

(a) yi;,, xi. Since ~e: is a decreasing function we have that 

y.-x. = llx-yll <C-3
2 

llx-ylJ-
l. l. 

(b) xi;,, yi. As above we have that yJxlJ :s: xJyll and consequently, 

x. 
y. :<;-l. IIYII 

1. llxll 

Consider 

x. 
:<;-l.-E:. 

llxll 

x. 2xi ( llxll - E:) 
x~(x)i. - x (y). = _i_ + ~--

e: 1. 3llxll 3 Cl - e:) llxll 

_!_ ( e:xi _ y .) + xi ( II x II - e:) ;,, 
3e: IJxll l. 

3 (I - e:) II x II 

So the conclusion is that llx (x)- X (y)IJ ;,, ~3 llx-yll-e: E: 

IV. Let IIYII :5: and llxll ;,, I and assume that llx- YII = x. -y .. Again 
l. l. 

we consider two cases. 

(a) Ix- I ;,, I. This implies that x. ;,, I. Consider the set A = {z E JR.kl 
l. l. 

z. = I}. Obviously, there exists an a E A such that II a II = I and 
:L 



(b) 

d1 (xE(y),A) d1 (xE(y),a). In view of the results obtained above XE 

satisfies 

It is easily seen that d1 (x (y),x (x)) d1 (x (y),A) + d1 (x (x),A). E E E E 
This yields: 

Ix-I 1. 
~ 1 s I. Define x E JR by 

Note that II ;I I = I and that II x - y 11 = II';;: - y JI - We have proved that 
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llx (i)- X (y)II I3 lli-yll- Using x (x) = x and x (i) = i we find that E E E E 

llx (x)- x (y)II? llx (i)- x (y)II? -3
2 lli-yll = I3 llx-yll-E E E E 

Since we have considered all possible choices of x and y this concludes 

the proof. 





CHAPTER 3 

THE HILBERT CUBE 

3.1 Introduction 

We discuss in this section the connexion between absorbers and 

skeletoids in the Hilbert cube. Furthermore, we give examples of pseudo-

boundaries and related objects. 

The Hilbert cube will, except in section 3.2, be represented by 

where each Ji is the closed interval J = [-1,1]. Let 1ri be the projection 

Q + Ji. We use on Q the following convex metric 

p(x,y) = max Ix. - Y-1 Zi' 
i E1N i i 

where x = (xi) i EJN and y = (y i) i E JN. The open e:-balls (e: ;:,: O) in Q with 

respect top are denoted by Ue:. The symbol pis also used for the metric on 

subproducts of Q: if P e::]N then for x,y E i~P J., p(x,y) = max Ix. - y.l Zi" 
l. iEP l. l. 

If A is a subset of i~P Ji then diam A is the diameter of A with respect to 

p. If i E JN and P = {j E JNjj ;:,: i} then we define Q. = .TTP J .• 
l. J E J 

Let J: = J 0 = (-1,1) for i E JN and define the pseudo-interiors of Q 
l. 

by s = i ~JN J:. The space s is homeomorphic to the separable Hilbert space 
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l 2 , Anderson [Al]. Put O = (0,0,0, .•. ) E Q and B = Q\s. The set Bis called 

the pseudo-boundary of Q and an element f E H(Q) is called boundary 

preserving if f(B) = B or, equivalently, f(s) = s. We can write Bas the 

union U{E~ji E JN and 0 E {-1,l}}, where the E~'s are the endfaces of Q: 
l. l. 

{x E Qjx. 
l. 

8}. 

3.1.1 DEFINITION: A closed subset Sofa space Xis called a z-set in 

X if for every open covering U of X and for every map f : Q + X there is a 

map g: Q + X\S that is U-close to f. A subset A of Xis called a a-z-set in 

X if it is a countable union of Z-sets. The collections of Z-sets and 

cr-Z-sets in X are denoted by Z(X) and Z
0

(X), respectively. 

In complete spaces the following properties are easily proved (see 

[BP2: sec.V.2]): (Z(X), H(X)) is a ~-pair, if A is a closed cr-Z-set then A 

is a Z-set and every Z-set is nowhere dense. It 1.s well known that in ·q 

every Z-set is thin and that every endface and every compactum ins is a 

Z-set (see [BP2: sec.V.3]). So Bis a cr-Z-set. 

Note that since Q is compact, a closed subset S of Xis a Z-set iff 

for every£> 0 and f: Q + X there is a map g: Q + X\S with d(f,g) < £, 

where dis some fixed metric on X. The following theorem may be derived 

from Chapman [C: 19.4] and Anderson & Chapman [AC]. We obtain it as a 

direct consequence of theorem 4.3.6. 

3.1.2 THEOREM: Let Ube a collection of open subsets of Q, let A be a 

compact space and let F Ax I+ Q be a homotopy that is limited by U. If 

F0 and F 1 are embeddings of A in Q such that their images are z-sets then 

there is a U-push h in H(Q) with h ° F0 = F 1 • 



3.1.3 COROLLARY: If A and A' are Z-sets in Q and f is a homeomorphism 

from A onto A' with p(f,I) <Ethen there is a g E H(Q) such that gjA = f 

and p(g,I) < E. 

PROOF: Define the straight-line homotopy 

F(a,t) (1-t)a + tf(a) for a EA and t EI. 

Then Fis limited by U = {UE/ 2(x)lx E Q}. Applying the theorem we find a 

U-push gin H(Q) with g°F0 = F1. So p(g,I) < E and g[A = f. 

Theorem 3.1.2 has the following consequence. 

3.1.4 THEOREM: If (S,H(Q)) is a 6-pair such that Sc Z(Q) then every 

(S,H(Q))-skeletoid is a strong (S,H(Q))-skeletoia'''. 
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PROOF: Let (A.). JN be an (S,H(Q))-skeleton. Assume that SES, E. > O, 
l. l. E 

m E JN and that Fis a closed set in Q with p(F,S) > E. There are an n EJN 

and an f E H(Q) such that p(f,I) < E/2, f[A = I and f(S) c A. Define the m n 

map F: (Su Am) x I+ Q x I by 

F(a,t) ((1- t)a + tf(a),t). 

Let TI be the projection Q x I+ Q. If X = (An x I) u (S x {0,1}) then F[X 

is an embedding. Since F(X) c (An u Am u S) x I, we have that it is a Z-set 

in Q x I. According to theorem 11.2 in Chapman [CJ there exists an 

embedding F of (Su An) x I in Q x I such that F[X = F[X and 

p ( TI o F, TI ° F) < E/2. Define G = TI ° F and note that G is a homotopy from 

Su Am into Q that is limited by 

U {U (x)\(F u A )[x E Q}. 
E m 
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The functions G0 = !Sul\n and G1 = fls u Am are homeomorphisms from Su Am 

onto a Z-set in Q. According to theorem 3.1.2 there is a U-push h in H(Q) 

with h(S) = G1 (S) = f(S) c An This proves the theorem. 

3,1.5 REMARK: As a corollary to this theorem one has that every 

(S,H(Q))-skeletoid is an (S,H(Q))-absorber. There are collections Sin Q 

such that absorbers exist but no skeletoids. Let S be the collection of all 

countable Z-sets in Q, It is well known (and easily proved with theorems 

3. J.2 and J.2.11) that every countable dense subset of Q is an (S,l-l(Q))-

absorber'"". Consider a sequence A1 c A2 c A3 c in S. For every i E lN 

there exists a countable ordinal a. such that the a.-th derived set (A.)(ai) 
i i i 

is empty, see Mazurkiewicz & Sierpinski [MS]. If Sis a countable ordinal 

with S > sup {a. ji E lN} then [0,wSJ(S) f 0. Hence, the ordered space [0 wS] 
i ' ' 

which 'is of course embeddable as a Z-set in Q, cannot be embedded in any of 

the Ai's. This means that (Ai)iElN is not an (S,H(Q))-skeleton. Note that 

this idea also works in In andJRn. 

We shall now discuss some examples of skeletoids in Q, The most 

important example is B, which is a (Z(Q),1-/(Q))-skeletoid (Anderson [A4]). 

This has the consequence that every cr~compact subset of s Ri l 2 is strongly 

negligible. Another example (also due to Anderson) is 

Bfd {x E QI there is an i E lN such that for every j > i 

x. O}. 
i 

This cr-Z-set is a skeletoid for {SE Z(Q) Is is finite dimensional}. Curtis 

and van Mill [CM] have shown that every dense cr-Z-set in Q that is homeo-

morphic to the product of.~ and Cantor's discontinuum is a skeletoid for 

the collection of zero-dimensional Z-sets in Q. We shall construct this 
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skeletoid in the next section. A related concept is that of a boundary set. 

3.1.6 DEFINITION: A 0-Z-set A in Q is called a boundary set if 

Q\A l 2 . A 0-Z-set A in Q is called a deformation boundary set if there is 

a homotopy F: Q x I+ Q with F0 = I and F(Q x (0,1]) c A. 

Curtis [Cs] has shown that every deformation boundary set is a boundary 

set. Clearly, Band Bfd are deformation boundary sets. Van Mill [Ml] has 

obtained a boundary set that contains no arcs. This shows that the concepts 

boundary set and deformation boundary s.et do not coincide. Henderson & Walsh 

[HW] have given an example of a deformation boundary set containing 

(obviously) arcs but no disks. It was shown by Curtis [Cs] that every 

boundary set is infinite-dimensional, see also remark 5.4.6. 

3.2 k-dimensional skeletoids 

Using the main result of section 2.3 we build (Sk,H(Q))-skeletoids in 

the Hilbert cube, where 

Sk {s/s is a Z-set in Q with dimension$ k} 

The number k E {0,1,2, ... } remains fixed throughout this section. 

It is convenient to use a different representation for the Hilbert cube 

here. Let clR be the compactification oflR that is obtained by attaching 

two endpoints - 00 and 00 • Let d be a convex metric on clR that is bounded by 

I. The Hilbert cube Q is represented by 
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and has metric 

p (x,y) max {d(x,y)/iJi E lN}. 

Let ~i: Q c JR be the projection on the i-th coordinate. 

We construct the skeletoid. Identify for every n E lN, ]Rn with 

]Rn x {(0,0,0, .•• )} c Q. This gives us the following situation: 

]R C ]R2 C ]R3 C • • • C ]Rn C • • • C Q 

and in view of corollary 2.1.14: 

C • • • • 

Since the elements of Wc~+l are compact subsets of the pseudo-interior 

k+l s = i r]N JR with dimension ,,:; k, we have that Wik c sk for every 1 E lN. Let 

(C:1). lN be an ( Wenk' H ( lRn) )-skeleton for n = 2k+ 1 , 2k+2, .•. , theorem 2. 3. I. 
i i E 

We determine inductively functions f 1,f2 ,f3 , ••• and natural numbers 

and 

where n 1 = I and f 1 
then f.(c2k+j) is a 

J ni 

J The construction is straightforward. If j,,:; i JR2k+l" 
member of Wc~k+j, theorem 2.1.2. According to 

. . . i ( 2k+j) 2k+i+I . proposition 2.1.8 this implies that j~I fj Cni E Wik . Since 
2k+i+1 2k+i+I 2k+i+I . (C1 ) 1 ElN is an (Wik ,H( JR ))-skeleton there exist an 

f. E H( JR2k+i+I) d n. such that f. (C2k+j) c f. (C2k+i+I). 
i+I an an ni+I > i j=I J ni+! i+I ni+I 

If we define 

D. f. (C 2k+i) · for i E lN, 
i i . ni 



In order to prove that (D.)~ 1 is a skeleton we need a dimension-
1. 1.= 

theoretic lemma. 
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3.2.J DEFINITION: A map f from a metric space (X,o) into a space Y is 

called an £-mapping if for every pair x,y EX with o(x,y) £, f(x) and f(y) 

are distinct. 

3.2.2 LEMMA: If Xis a compact metric space with dimension~ k and L 

. JR2k+l+J is a linear k + 1-variety 1.n , 1 E {O} u JN, then for every € > 0 the 

. 2k+l+I . 2k+l+l sl;!t of £-mappings from X 1.nto JR \L 1.s dense in C(X, JR ) , where 

C(X,Y) is the space of continuous functions from X into Y with the compact-

open topology. 

The proof of this lemma is an easy adaptation of [E2 1.10.4 and 1.11.3]. 

*) ,.. 
3.2.3 THEOREM : (Di)i ElN is a strong (Sk,H(Q))-skeleton . 

PROOF: In view of theorem 3.1.4 it suffices to show that (Di)iElN is an 

(Sk,H(Q))-skeleton. Let€> O, m E lN and SE Sk. Since Q is compact we only 

have to prove that there are a y E H(Q) and a j E lN with y ID = 1, 
m 

y(S) c D. and p(y,J) <€.Corollary 3.1.3 reduces the problem to finding a 
J 

j E lN and an embedding f of S u 

Select an i E lN with 1/i < 

D in D. such that flD = I and p(f,1) < €. m J m 

£/2 and i > m. We shall construct a "tame" 

*) This theorem can also be found in Dijkstra [DI]. 
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. . 2k+i+J f" h f . embedding of S inJR . De ine t e unction space 

2k+i+l I K {y E C(Dm U S, ]R ) '11 2k+i+l o y(S) c (-oo,O] 

and y ID I}. 
m 

Note that K is a closed subset of the complete metric space 

(C(Dm u S, JR2k+i+l) ,d), where d = d2k+i+J. Hence, it is a Baire space. Let H 

be a closed subset of JR2k+i+l and lets> O. Define the compactum 

and the set of functions 

K(s,H) {y E Kl rlDm u ss is as-mapping such that 

CLAIM: If H = o:({p} x ]Rk+i), where a: E P2k+i+l and p E ]Rk+l, then 

K(s,H) is open and dense in K. 

PROOF: Showing that K(s,H) is open is left as an exercise to the 

reader .. Consider the density. Let y E K and c5 > 0. The set y(Ss) is 
2k+l 2k+i . contained in JR x (-00 ,0J. Select a y' in C(Ss, JR x (-00 ,0)) with 

A ( I ') I . . . . . . 2k+i + I • d d y Ss,Y < c5 2. Since His a linear k+i-variety in JR we can fin 

with lennna 3.2.2 a s-mapping s E C (Ss' ]R2k+i x (-oo,O)) with d(S,y') < 0/2 

and S(Ss) n H = Ql. Since D m 
c ]R2k+i 

X {O} the function S' = 1nm u s is a 

s-mapping from D u ss into JR2k+i x (-00 ,0] which satisfies m 
d(S',ylDm u Ss) < cS. If we apply Tietze's theorem coordinate-wise to the 

function S' - (ylD u S~) we find an extension S: D u S +JR2k+i x (-00 ,0] m s m 

with d(S,f) < cS. So Sis an element of K(s,H) and the claim is proved. 
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Consider the set L = {a({p} xlR.k+i)la E P2k+i+ 1 and p E ~k+l}. Select 

an enumeration (L.). lN of L such that for each LE L the set {jElNjL = L.} 
J J E J 

is infinite. Because K is a Baire space the set 

V I . nlN K(-,-,L.) 
J E J J 

is dense in K. It is easily seen that the set {y E Kjp(y,I) < £/2} is an 

open non-empty subset of K. Leth be an element of V n {y E Kjp(y,I) < £/2}. 

If x and y are dist.inct points in D u S then there is a j E JN such that 
m 

x,y E Dm u Sl/j and p(x,y) 1/j. Since hjDm u Sl/j is a 1/j-mapping we may 

conclude that his one-to-one and hence an embedding. Note that for every 
2k+i+1 N2k+i+I j E lN, h(Sl/j) n UL= 0 which means that h(Sl/j) cJR. \UL= k . 

Theorem 2.1.12 and propositions 2.1.5 and 2.1.8 imply that h(S), which is a 
2k+i+I . compact subset of D u .UlN h(s 11 .), is an element of 9Rk • Obviously, 

m J E J 

one has that p(h,1) < £/2 and hjD = 1. The map his the aforementioned 
m 

"tame" embedding of S. 

Consider now the sequence (D.). m· The set D is contained in 
J J E m 

2k+i+I 
D. I =f. l(C ). i+ i+ ni+I 

2k+i+1 H( JR. ) )-skeleton 

2k+i+1 • 2k+i+I Since (f. 1(C. )). lN is an (\lRk , i+ J J E 

there exist a g E H( JR.2k+i+I) and a j E lN such that 

2k+i+1 -gjAm I, g(h(S)) c fi+ 1(Cj ) and p(g,I) < £/2. Let 1 be such that 

n 1 > j and 1 > i+I. Then fi+I (cfk+i+I) is a subset of Dl+I· The embedding 

f = g O h has the following properties: 

fjD = I, m 

f(S) C Dl+I 

and 

p (f, I) < £. 

This concludes the proof. 





CHAPTER 4 

SHRUNKEN ENDFACES 

4.1 Preliminaries 

The main result of this chapter is a theorem that enables us to mani-

pulate compacta in the Hilbert cube with ambient isotopies without moving 

certain copies of Q, called "shrunken endfaces". Let us define these objects 

Let R be the set of all sequences p 1,p 2 ,p3 , ... in (0,1) such that 

lim pi = 1. We pick a (pi\ ElN in R that will remain fixed throughout 
i->= 
sections 4.1, 4.2 and 4.3. For every i ElN we define the shrunken endface 

in the i-coordinate direction by 

w. 
]_ 

Note that W. is a subset of E! and hence a Z-set in Q. Observe furthermore 
]_ ]_ 

that the Wi's are disjoint copies of Q. Ifs> 0 then there is an i ElN 

such that 1/i <sand p. > 
J 

- s for every j > i and hence there exists for 

every j > i a map S: Q + W. with p(S,l) < s. This implies that every union 
J 

of infinitely many shrunken endfaces, especially W = i~JN Wi, is both dense 

and connected. Moreover, it follows that every compact subset of Y = Q\W is 

a Z-set in Q. It is easily seen that rW defined by 

is a closed subgroup of the topological group (H(Q),p). 
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Anderson, Curtis & van Mill [ACM: sec.4] have shown that Y is homo-

. *) geneous. We shall prove the following stronger statement : 

Let Ll be a collection of open subsets of Q, A a compact space and 

F: Ax I+ Q a homotopy that is limited by U. If F0 and F 1 are embeddings 

of A in Y then there is a Ll-push h in rW with h ° F0 F 1• 

The method we use is derived from proofs given in Chapman [C: ch.II] 

for theorems of this type. Moreover, in lemma 4.2.2 we use an idea of 

Anderson, Curtis & van Mill [ACM: 4. I]. 

We conclude this section with some notations. If A is a subset of a 

space X and Vis a collection of subsets of X then the star of A with 

respect to Vis defined by 

St(A,V) U{D E VID n A# 0}. 

Furthermore, Stn(A,V), n 0,1,2, ... , is determined by 

and 

4.2 The pseudo-interior 

This section is about extending homeomorphisms between compact subsets 

of s. Consider the factorization Q = Qodd x Qeven' where 

This result is taken from Dijkstra [D2] 



and 

. TT J 
i E:1N 2i. 

Let 11odd: Q + Qodd and 11even: Q + Qeven be projections and define sodd' 

seven' Oodd and Oeven in the obvious way. 

4.2.1 LEMMA: If A is a compact subset of s then there is a boundary 

preserving f E rW such that for every x,y E f(A) with 11even(x) = 11even(y) 

we have that 11odd(x) = 11odd(y). 

PROOF: Let i be odd and m > i even. We may assume that A has the form 

.TTJN [-a.,a.] where a. E (0,1). Select a 6 such that a < o <I.Let 
JE J J J m 

lp: Jm x J + Jm be an isotopy of Jm with the following properties: 

tpl I, 

(pt is supported on (-6,6) fort E J, 

and for every y E Jm, 

diam {x E [-ai,ai]lthere is a y' E [-am,am] with 

lp (y') = y} < I 
X m 

See the next page for a picture of tp. 
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Let k be a natural number such that for every j > k, p. > cS. For j E lN let 
J 

s. J. + I be a map that satisfies J3. (I) = I and J3.([-a.,a.]) = {0}. Define 
J J J J J J 
i i for j -f m and xm Q + Q by 71. 0 X 71 • 

J m J 

where 

a(x) min {l,x.+2 max {S.(x.)jj E {1,2, ... ,k}\{m,i}}}. 
1. J J 

Since a is a continuous function which is independent of xm we have with 

lemma I.I.I that xi is a homeomorphism. Since diam J 1/m it is obvious m m 
that p(x!,I) 1/m. Furthermore, we have that x!(A) c A and for every 

endface E!, x!(E!) E:. We verify that x! e rw. 

(a) and hence a(x) This implies that i If XE: w. then x. I ]. xm (x) x. 
1. 1. 

(b) If X E: w then X I. Since tpt(I) I for every t E J this yields that m m 
i X (x) = x. m 



(c) Let x E W. with j k and j f i,m. In this case x. 
J J 

I , whence a (x) 

and x1 (x) = x. m 

(d) Assume that j > k and j f m. This means that pj > o. Since ~tis 

supported on (-o,o) we have that ~t([-p.,p.]) = [-p.,p.] and hence 
J J J J 

i X (W.) W .• 
m J J 

i So xm is a member of rW. Consider now a point z in A. Then all 

S/zj)'s vanish and hence a(z) = zi and 'llm 0 x(z) = ~(zm,zi). We have for 

every y E Jm that 

diam {z. lz EA with 11 o x 1 (z) 
i m m 

y} < 
m 

Now, let I; be a function from 1N onto { 2j - I I j E JN} such that every 

fibre is infinite. Select with lemma 1.1.2 a strictly increasing sequence 

of even numbers (m(j)). ]N such that m(j) > l;(j) and 
J E 

f ll·m I; (j) o o ,,S (I) E H(Q) ~(j) ••• ·1n(I) • 
i-+<x> 

It is obvious that f(A) c A, f is boundary preserving and that f E rW. 
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I; (j) . 
Observe that 'IT odd O f = 11odd O \n(j) = 11odd for every J E JN. Let i be an odd 

number, E > 0 and x,y E f(A) with 11even(x) = 'lleven(y), Select a j EJN such 

that l;(j) i and 1/j < E. We have the following estimate for p(xi,yi): 

p(x
1
.,y

1
.) diam {z.lz E f(A) with 11 (z) = 'IT (x)} 

i even even 

0 and the lemma is ~roved. 
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4.2.2 LEMMA: If A is a compact subset of s such that for every 

x,y EA, TTeven(x) = TTeven(y) implies that TTodd(x) = TTodd(y) then there is 

a boundary preserving h E rW with TT O h = TT and TT dd O h (A) c { 0 dd}. even even o o 

PROOF: Let A be such a set. Select for every i EJN an a. E (0,1) with 
1 

TTi(A) c (-ai,ai). Construct a continuous mapping Hi: Ji x (-ai,ai) + Ji 

that satisfies fort E (-ai,ai): H~ = I, H!(t) = 0 and H! is an element of 

H(Ji) that is supported on (-ai,ai). Let Si : Ji+ I be a map with 

0 and Si([-ai,ai]) = {!}. Select an arbitrary j inJN and consider 

A= TTeven(A) c Qeven" We have that if x,y EA and TTeven(x) = TTeven(y) then 

x2j-l = Yzj-l" Since TTevenjA A+ A is a quotient map this implies that 

there exists a continuous gj A+ (-a2j_1,a2j-l) such that 

g. 0 TT IA= TT 2 . 1 jA. Let g. : Q + (-a2 • 1,a2 . 1) be a continuous 
J even J - J even J - J -

extension of gj. Select a j EJN such that for every k > j, a2j-l < pk and 

define aj : Q + (-a2j_1,a2 j_1) by 

a. (x) 
J 

g. o TT (x) 
J even 

j 
• ki;:(l S (xk). 
k f 2j-l 

Leth. 
J 

Q + Q be determined by TTk O h j TTk if k f 2j-l and 

TTZ. I o h. (x) 
J- J 

2j-I H (x2 . 1,a.(x)). 
J- J 

Since aj is independent of x 2j-I we have that hj E H(Q). That hj is an 

element of rW follows from: 

(a) If x E w2j-I then x2j-I 

that h. (x) = x. 

2j-l I and H (x2 . 1,a. (x)) 
J- J 

1. This yields 

J 

(b) If k j and k f 2j-I then for x E Wk, Sk(xk) 

have that a.(x) = 0 and h.(x) = x. 
J J 

O. Consequently, we 



(c) Let k > j and k f Zj-1. In this case [-aZj-l'aZj-lJ c [-pk,pk]. 
2j-l 

Since Ht is supported on (-aZj-l'aZj-l) we have that hj(Wk) = Wk. 

8 8 8 It is clear that 11 ° h. = 11 and that for every E , h. (E ) = E • even J even n J n n 
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Define 

onto Q with 

h = lim h. 0 ••• 0 h1• Obviously, h is a boundary preserving map 
j--><o J 

11 o h = 11 , We show that h is one-to-one and hence a even even 

homeomorphism. Let x and y be distinct points in Q. If 11even(x) f 11even(y) 

then also h(x) f h(y). Assume therefore that 11 (x) = 11 (y) Let even even • 

i = 2j-l be a coordinate with xi f yi and define x' = hj-l O ••• 0 h 1 (x) and 

y' = h. I O ••• o h 1 (x). If ct.(x') 
J- J 

111.. o h(x) = Hi(x~ ,a. (x')) 
]. J 

a.(y') then 
J 

Hi (x . , a. (x' ) ) f 
]. J 

11i o h(y). 

and therefore h(x) f h(y). If, however, a.(x') f a.(y') then in view of 
J J 

g. o 11 (x') = g. o 11 (y') there is a k $: j with 13k(xk') f f3k(yk'). J even J even 

Consequently, xk f yk and {xk,yk} is not contained in [-ak,ak]. We can have 

the following situations: 

Since H: and H~ are supported on (-ak,ak) we may conclude in both cases 

that 11k 0 h(x) f 11k 0 h(y). So h E H(Q) and since his the limit of a 

sequence in the closed group rw we have that h E rW. 

Let x E A and i = 2j-1. If x' = hj-l O ... 0 h 1 (x) then 11i O h(x) 

11. 0 h. (x'). Since 11 (x) 1. J even 11 even (x') and xi x ! we have that 
]. 

g. o 11 (x') 
J even 

~g.011 (x) 
J even g. o 11 (x) 

J even x. 
]. 

For every k E JN, xk is an element of (-ak,ak) and since H~ is supported on 
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(-ak,ak) this implies that x' E TT (-ak,ak). Consequently, aj(x') = xi 
kdN 

and "i O h(x) Hi(xi,aj(x')) = O. So "odd o h(A) c {Oodd} and the lemma is 

proved. 

We are now ready to prove that homeomorphisms between compacta ins 

can be extended. 

4.2.3 LEMMA: If A and A' are compact subsets of sand his a homeo-

morphism from A onto A' then there is a boundary preserving fin rW with 

PROOF: Lemma 4.2.1 and 4.2.2 reduce the problem to the statement: if 

A and A' are compacta in respectively seven and sodd and his a homeomorph-

ism from A onto A' then there is an f E rW such that f(B) =Band for every 

a EA, f(a,Oodd) = (Oeven'h(a)). Define the compact subset C of s by 

C = {(a,h(a))la EA}= {(h-1(b),b)jb EA'}. 

We can apply lemma 4.2.2 to C: there is a y1 E rW with y 1(B) = B, 

rr o y 1 = rr and rr dd O y(C) c {O dd}. Analogously, there is a y2 E rW even even o o 

with y2(B) = B, "oddoy2 = "odd 
-I Y 2 ° y I E r W has the properties 

and rr O y2 (C) c {O }. Then even even 
-I y2 ° y 1 (B) = B and for every a E A, 

y2 (a,h(a)) 

Before we prove an estimated version of this lemma we give two 

technical lemmas. 
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4.2.4 LEMMA: Let Ube a collection of open subsets of sand let A be 

a comp~ct space. If f A+ sis a map and AO is a closed subset of A such 

that fJAO is an embedding and f(A\AO) c UU, then there is an embedding g of 

A into s that is U-close to f and coincides with f on A
0

• 

REMARK: This lemma is essentially Chapman [C: 8.1]. We have included a 

more elementary proof. 

PROOF: Let (Fi\ Elli and (Gi) i Elli be sequences of compact subsets of 

A\AO with the properties 

F. n G. 
1 1 

r/J for every i Elli, 

and for all distinct x and yin A\AO there is an i Elli such that x E Fi and 

y E Gi. Select for every i Elli a closed neighbourhood Vi of AO with 

Vin (Fi u Gi) = r/J. Note that f(A\Vi) has compact closure in UU. This 

enables us to select a strictly increasing sequence (mi)iElli of natural 

numbers with the property that for every x E f(A\Vi) there is a U EU such 

that u2/mi (x) c U. Observing that TTmi o f(Vi) is a compact subset of 

J;. = (-1,1) select with Tietze's extension theorem for every i Elli a 
1 

continuous g. : A+ J;. with the properties: 
1 1 

g.Jv. = TTm· o flV. 
1 1 1 1 

and 

Define the map g : A+ s by TTm· 0 g = g. for i Elli and TTL. 0 g = TT; 0 f 
L L, 

for i Elli\{mjJj Elli}. Obviously, we have that glAO = fJAO• The properties 
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of (Fi)iElN and (Gi)iE:JN imply that g is one-to-one and hence an embedding. 

Let x EA and assume that m. is the first coordinate with 
l. 

1fm, 0 f(x) firm. 0 g(x). Then x ,/_ V. and since diam .TT / = l/m1.·, we have 
l. l. l. J=mi J 

that p(f(x),g(x)) < 2/mi. Consequently, there is a U EU with 

{f(x),g(x)} c u2/m· (f(x)) c U. This means that f and g are U-close. 
l. 

The following lelilllla is folklore. 

4.2.5 LEMMA: Let (X,d) be a metric space and U a collection of open 

subsets of X. Then there is a map E : X + I such that E- 1((0,1]) UU and 

for every x EX, {y E xld(y,x) < E(x)} is contained in some member of U. 

PROOF: We may assume without loss of generality that U is locally 

finite and that dis bounded by I. Define for every U EU the map 

fU: X + I by 

Since U is locally finite the function E X + I defined by 

is continuous. It is obvious that E meets the requirements. 

We now come to the estimated extension theorem for s. 

4.2.6 THEOREM: Let Ube a collection of open subsets of Q, A a compact 

space and F: Ax I+ s a homotopy that is limited by U. If F0 and F1 are 

embeddings then there is a U-push h in {y E rwly(s) = s} with h ° F0 = F1. 



PROOF: We first introduce a notation. If a X I is continuous then 

the variable product of X and I is the space 

XX I 
a {(x,t)lx EX and t E [O,a(x)]} c Xx I. 

Let A0 be the closed subset of A that is determined by A
0 

x I= 
-I F (Q\UU). We have that FtiA0 = F0 iA0 fort EI and that U covers 
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F((A\A0 ) x I). Select an open covering V of F((A\A0 ) x I) in Q such that for 

every a E A\A0 , St4 (F({a} x I),V) is contained in some element of U. We may 

assume that every member of V has a non-empty intersection with 

CLAIM I: There exists an isotopy G: Q x Q that is limited by V 

and has the properties: Gt E rW and Gt(s) = s fort EI, G0 = 1 and 

A proof of this assertion can be found below. Since UV c UU we have 

that GtiF0 (A0 ) = I for each t EI. We may assume that A is a subset of the 

pseudo-interior of Q2 . Let n be an element of (0,1) with n < min p. and 
i ElN l. 

define a: Q2 + I by a(x) = p(x,A0),n/2. Let F: A xa I+ s be given by 

F(a,t) 

and 

It is easily verified that Fis a continuous mapping that satisfies 

F({a} x [O,a(a)J) c St(F({a} x I),V) for every a E A\A0 • Define the compact 

subset X of A xa I by 

X {(a,t) EA x Ilt a 0 or t a (a)}. 
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Since FO = F0 , F(a,a(a)) = G1 °F 1(a) for a EA and GI °F 1(A\A0) n F0 (A) r/J 

we have that FIX is an embedding. According to lemma 4.2.4 there is an 

embedding P of Ax I ins such that F and Pare V-close and FIX= PIX. Note a 

that we have for every a E A\A
0

: 

P({a} x [O,a(a)]) c St(F({a} x [O,a(a)J),V) c St2 (F({a} x I),V). 

CLAIM 2: There exists an isotopy H: Q x I+ Q that is limited by 

W = {St(i({a} x [O,a(a)]),V) la E A\A0 } and that satisfies moreover Ht c: rW 

and Ht(s) = s fort EI, HO= I and H1 °F0 = GI °F 1 • 

Define the isotopy H Q x I+ Q by 

One readily sees that H0 =I, H1 o F1 = F0 and fort E I, Ht E rW and 

H (s) = s. We shall see that His limited by {St 4(F({a} x I),V)la E A\A0 } t . 

and hence by U. Let x E Q and assume firstly that H({x} x I)= {x}. Pick an 

arbitrary t EI and let y be such that Gt(y) = x. If x E UV then there is a 

VE V with {G0 (y),Gt(y)} = {y,x} c V. Consequently, H({x} x I) is contained 

in St({x},V) and since every element of V intersects F((A\A0) x I), 

H({x} x I) c St2 (F({a} x I),V) for some a E A\A0 • If xi UV then 

G({x} x I) {x} and hence H({x} x I) = {x}. 

Consider now the second case that H({x} x I) is contained in 

St(P({a} x [O,a(a)J),V) for some a E A\A0 • If t EI then we have as above 

that there is a VE V such that {Ht(x),Ht(x)} c V. This means that 

H({x} x I) is contained in St2 (P({a} x [O,a(a)]),V) and hence that 

H({x} x I) c St4 (F({a} x I),V). 



So we may conclude that H1 is the U-push we need. It remains to prove the 

claims. 

PROOF of claim I: According to 4.2.1 and 4.2.2 there is a boundary 

preserving x in rW such that 'IT] 0 x ° F(A x I) c {O}. Let A(O) be the 

in (O,min p.). According to 
iE1N i 
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projection of x o F1 (A(O)) on Q2 and select a 8 

lemma 4.2.5 there is a map£ : Q2 + [0,8] such that s(A\A0) c (0,8] and for 

every x E Q2 , Us(x)(O,x) is contained in some element of x(V). Let 

tp: J 1 x [0,8] + J 1 be an isotopy of J 1 such that (f)O = I, tpt(O) =hand tpt 

is supported on (-t,t) fort E [0,8], Define the isotopy G: Q x I+ Q by 

The maps Gt are obviously boundary preserving and since 8 < min p. they are 
iE1N i 

elements of rw. It is easily seen that G is limited by x(V) and that 

G1({0}x (A\A0 >> misses {O} X Q2. This that X -I o Gt o X is the isotopy means 

we need. 

PROOF of claim 2: Note that since A is a subset of the pseudo-interior 

of Q2 the variable product A xa I is contained ins (write Q = Q2 x J 1). So 

Pis a homeomorphism between two compact subset of s. According to lemma 

4.2.3 there is a boundary preserving h £ rw such that for each (a,t) EA xa I 

we have that h(a,t) = P(a,t). Consider the following open covering of 

01' = {UE({a} x [O,a(a)J) la E A\A0 , £ > 0 and 
-1 UE({a} x [O,a(a)]) ch (W) for some WE W}. 

By virtue of lemma 4.2.5 there is a map o : Q2 + [O,n/2] such that 

o(A\A0) c (O,n/2] and for every x E Q2 , Uo(x)(x,a(x)) is contained in some 
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element of W'. Define the open set O = {x E Q2 io(x) > O} and construct with 

Tietze's theorem a continuous S : Q2\A0 + [0,n\2] that extends alA\A0 and 

satisfies S(x) 0 for xi O and S(x) s a(x) for x E Q2\A0 . Since a(a) = 0 

for a E A0 the function S: Q2 + [O,n/2] that is defined by S(x) = S(x) if 

xi A0 and S(x) = 0 if x E A0 , is continuous. 

Let C be the space ([0,n/2] x (0,n/2]) u {(O,O)} c 12 and construct a 

continuous function¢: J 1 x C + J 1 with the properties 

o/t r is supported on (-t,r+t) , 

and 

where we used the notation¢ (x) = ¢(x,t,r) for x E J 1 and (t,r) EC. t,r 

Just as if¢ were an isotopy we can construct an isotopy H: Q x I+ Q by 

11. 0 H ]_ t 11. if i > I and 
]_ 

11 1 o Ht (y,x) ¢(x,o(y),tS(y)) for x E J 1 and y E Q2 . 

The following properties of Hare easily verified: 

s} for t E I 

and 

(a,a(a)) for a EA. 

We prove that His limited by h- 1(W). Let (y,x) E Q2 x J 1 and select an 



s > 0 and an a E A\A0 such that 

Then o(y) ~sand hence {y} x (-o(y),a(y) + o(y)) is contained in 

U ({a} x [0,a(a)]) which is in turn a subset of an element h-J(W) of 
£ 
-I 

h (W). Recall that ~o(y),tS(y) is supported on (-o(y), tS(y) + o(y)) and 
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hence on (-o(y),a(y) + o(y)). This implies that H({(y,x)} x I)= {(y,x)} or 

that H({y,x} x I) c {y} x (-o(y),a(y) + o(y)). So we have shown that His 

limited by h-J(W). 

Let us now introduce the isotopy 

H' hoHoh-lfortEI. 
t t 

Obviously, we have that Ho= I, H~ E {y E rwly(s) = s} fort EI and that 

H' is limited by W. Hj is a W-push in rW with the property that for every 

a EA: 

-I ho HJ oh o P(a,O) = ho HJ (a,O) = 

h(a,a(a)) P(a,a(a)) F(a,a(a)) 

This proves claim 2. 

4.2.7 COROLLARY: Let A and A' be compact subsets of s. If h: A+ A' 

is a homeomorphism with p(h,l) < s then there is an h c: rW with p(h,l) < s, 

h!A =hand h(s) = s. 

PROOF: Define the map F : Ax I+ s by F(a,t) = (I - t)a + th(a). The 

straight-line homotopy Fis limited by U = {Us/ 2 (x)lx E Q}. Apply theorem 

4.2.6 to F. The U-push h we get has the properties h E rW, hjA = h, 

p(h,J) <sand h(s) = s. 
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4.3 The estimated extension theorem 

In this section we reduce our problems to compacta ins so that theorem 

4.2.6 can be applied. We prove that any compact set that is disjoint from W 

can be homeomorphed into s. We conclude the section with an observation that 

shows that Y is not quite as homogeneous as l 2 • 

4.3.1 LEMMA: Let A be a compact subset of an endface E8 such that n 

An W = 0. Then there are for each E > 0 an h E rW and an m > n such that 

h(A) n U{E~Ji < m andµ E {-1,1}} = 0, h(A) c E-I and p(h,I) < E. 
i ID 

PROOF: Let E > 0 and select an m > n with I/ID< p(A,Wn) and 1/m < E/2. 
-I We first push A into Em and then away from the endfaces in the lower 

coordinate directions. Noting that diam (Jm) = I/ID it is geometrically 

obvious that there exists an E/2-isotopy X : 8(Jn x JID) x I+ 8(Jn x JID) 

such that Xo = I, 

X J([-p ,p] X {I}) U ({-8} x J) t ID ID m I fort EI 

and 

X ({8} x J) c J x {-1}. 
I m n 

See the facing page for a picture of x1 . 



x, -
'---------"\ 

{e}xJm 

Noting that Jn x Jm is a subset of the linear spaceJR2 define the E/2-

isotopy X of J x J by xt(O) n ID 
0 and 

llxll xt(x/ llxll) if x f O and t E I. 

Observe that xt is norm preserving, i.e. llx(x) II 
Define h E H(Q) by 1Ti O h = 1Ti for i f m,n and 

llxlJ for every x. 

where 

1T i o h (x) 

a(x) = min { 1 , m . max ( { -0} u { p (x. , [ -p , p ] ) I 
J n n 

j E { 1 , ••• , m-1 } \ { n}}) }. 

It is obvious that p(h,l) < E/2. The function his a member of rW because: 

(a) Let x E W. If 0 = -] then x = -0 and xt(x ,x) = (x ,x) for every n n n m n rn 
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t EI. This means that h(x) = x. Let now 0 =I.For every if n we have 
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0. So again h(x) x. 

(b) If x E Wm then (xn,xm) E [-pm,pm] x {1}. Since this set is fixed by xt 

and xt we have that h(x) x. 

(c) Let if m,n. Since xt is norm preserving we have that 

w .. 
L 

-1 If x EA and 8 = -1 then a(x) = 1 which yields that h(x) E Em. If 

8 = I then p(x,Wn) > 1/m implies that there is a j < m such that j f n and 

p(x.,[-p ,p ]) > 1/m. Consequently, a(x) = 1 and h(x) E E-l. The conclusion 
J n n m 

is that h(A) c E-l. 
m 

Consider now B 
m 

m 
jDl Jj and the projection p : Q + 

homeomorphism¢ of 3Bm such that p(¢,1) < s/2, ¢(p(E:1)) 

B. There is a 
m 

m-1 o 
c (. TTl J.) x { -1 } 

J= J 

and for every j s m, ¢Jp(W.) = 1 (the picture gives the situation for 
J 

m = 3). 



Let¢ E H(B) be given by ;(O) = 0 and ¢(x) 
m 

Define g E H(Bm) by g(x,y) = (¢(x),y) for x E 

llxll ¢(x/ llxll ) for x f 0. 

B and y E Q • We show that m m 
g E rw. If j $; m then ; lp(W.) = ¢(p(Wi)) = 1 and hence glw. I. If j > m 

J J 

then, since ¢ is norm preserving, we have that ;([-p.,p.Jm) [ -p. 'p. Jm 
J J J J 

and g(W.) If xis an E-1 1r. o ¢ o p (x) 0 
i < m. = w .• element of then E J. for 

J J m ]_ ]_ 
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This means that (E-1) g m and U{E~li < m and µ E {-1,1}} are disjoint. Also we 
]_ 

-1 -1 and P (g, I) < e/2. is now obvious that go f is the have that g(Em) C E It m 
homeomorphism we need. 

4.3.2 LEMMA: If A is a compact subset of E6\w then there is for every n 

e > 0 an f E rW with p(f,1) < e and f(A) cs. 

f 

PROOF: Using the convergence criterion 1.1.2 we can find sequences 

im f i o • • • o f I E r W and 
]_ -,-00 

m3 < • • • in JN such that 

f. o ••• o f 1 (A) n U{E~ I j 
]_ J 

< m. 
]_ 

and 

e E {-1,1}} = 0. If we take care that for every i Elli, 

L p(f.,I) < p(f. 0 ••• 0 f 1(A), U{E~jj < m. and e E {-1,1}}) 
j=i+I J i J i 

then f(A) cs. 

4.3.3 LEMMA: If A is a compact subset of Y then for every E6 and e > 0 n 

there is an f E rW with p(f,1) < e and f(A) n E! = 0. 

PROOF: Let A be a compactum in Y, let€> 0 and put 

o = min {½p(A,Wn),e}. Define the compact set A 

According to lennna 4.3.2 there is ax E rW with p(x,I) < o/4 and x(A) cs. 

If mis a natural number such that I - p < o/4 and 1/m < o/4 then there is m 

a map h Q-->- W with p(h,I) < o/4. Note that h 0 x(A) n A= 0 and construct 
m 
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a continuous g Q-->- s such that 

p(g,1) < min {8/4,p(h O x(A),A)}. 

Since g O h O x (A) c s and g O h O x (A) n A = (il there exists by virtue of 

lemma 4.2.4 an embedding B of x(A) ins that satisfies 

;(gohlx(A),B) < min {8/4,p(g 0 h 0 x(A),A)}. 

We now have the following situation: p(B,1) < 38/4, Bis a homeomorphism 

between compact subsets of s and B O x (A) n A = 0. In view of corollary 4. 2. 7 

there is an extension BE rW of B with p(S,1) < 38/4. Consider 

f = (S O x) - 1 E r w· We have that p (f, I) < E and f (A) n A = 0. If x E f (A) 

then p(x,A) < 8 and xi A. This implies that xi Ee and the conclusion is n 

that f(A) n Ee= (il. n 

4.3.4 LEMMA: If A is a compactum in Y then for every E > 0 there 

exists an f E rW such that p(f,1) < E and f(A) cs. 

PROOF: This is a straightforward application of the convergence 

criterion, see lemma 4.3.2. 

Before we prove the main result a technical lemma. 

4.3.5 LEMMA: Let Ube a collection of open subsets of Q and let A be 

a compact space. If f is a continuous function from A into Q and A
0 

is a 

closed subset of A such that f(A\A0) c UU and f(A0) cs, then there is a 

continuous g: A-->- s that is U-close to f and that coincides with f on A0 . 

PROOF: Select for every i E ]Na compact neighbourhood Vi of A0 with 
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0 

7\ 0 f(Vi) c Ji. Let (Ei\ElN be a decreasing sequence of numbers from (O,½) 

such that for every X E f(A\Vi) there is a U E Ll with UEi(x) C u. Select 
0 

p(g. ,rr. of) for every i E JN a continuous g. : A+ J. such that < E. and 
]_ ]_ ]_ ]_ ]_ 

g.1v. =1r. 0 flv .. Let g : A+ s be defined by 7f i O g = gi for i E JN. Assume 
]_ ]_ ]_ ]_ 

that xis an element of A with f(x) 'f g(x). If i is the first coordinate 

with 7f. 0 f(x) 'f g. (x) then x I. V. and there is a U E U such that 
]_ ]_ ]_ 

UEi(f(x)) c U. Since p(f(x),g(x)) sup { p ( 7f. 0 f (x) , g. (x)) I j i} < E. we ]_ J ]_ 

have that both f(x) and g(x) are in U. This shows that f and g are U-close 

and since it is obvious that g[A0 = fiA0 , the proof is completed. 

4.3.6 THEOREM: Let Ube a collection of open subsets of Q, A a compact 

space and F : Ax I+ Q a homotopy that is limited by U. If F
0 

and F1 are 

embeddings of A in Y then there is a U-push h in r W with h ° F O = F 1 • 

PROOF: Let A0 be the closed subset of A that is determined by 

A
0 

x I= F- 1 (Q\ULl). Since F
0

(A) u F
1

(A) is a compact subset of Y there 

exists by virtue of lemma 4.3.4 an f E rW with f(F 0 (A) u F1 (A)) cs. Let F 

be the homotopy f ° F. Select an open covering V of F((A\A0) x I) in Q such 

that for every a E A\A0 , St(F({a} x I),V) is contained in some element of 

f(Ll). Note that Fo(A) u Fl(A) = Fo(A) u Fl (A) u F(Ao XI). According to 

lemma 4.3.5 there is a homotopy G: Ax I+ s that is V-close to F and that 

coincides with Fon (Ax {0,1}) u (A0 x I). Since G is also limited by 

f (Ll) we find with theorem 4. 2. 6 an f (Ll)-push g in r W such that g O G0 = G1 . 

-1 Then h = f ogof is a Ll-push in rWwith h°F0 = F1• 

4.3.7 COROLLARY: If his a homeomorphism between compacta in Y with 

p(h,1) <Ethen it has an extension h E rW such that p(h,1) < E. 
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PROOF: See corollary 4.2.7. 

The next corollary has already been introduced as theorem 3.1.2. It is 

essentially due to Anderson & Chapman [AC]. 

4.3.8 COROLLARY: Let Ube a collection of open subsets of Q, A a 

compact space and F: Ax Q a homotopy that is limited by U. If both F0 
and F 1 are embeddings such that their image is a z-set then there exists a 

U-push h in H(Q) with h ° F0 = F1. 

PROOF: According to Chapman [C: 10.2] there is an f E H(Q) with 

f (F O (A) u F 1 (A)) c s c Y. Apply theorem 4. 3. 6 to the homotopy f o F. 

As is well known theorem 4.3.6 holds also for ! 2 Ri s (cf. theorem 

4.2.6). In ! 2 we can also extend homeomorphisms between non-compact Z-sets, 

Anderson [A2]. This is not the case for Y. To show this we need the 

following lemma that we took from Anderson, Curtis & van Mill [ACM: 3.6]. 

4.3.9 LEMMA: Let B1 and B2 be o-z-sets in Q and let f : Q\B 1 Q\B2 be 

a homeomorphism. Then there exist a compact space Mand monotone maps 

Recall that a map his monotone if it is onto, closed and has the 

property that every fibre is connected or, equivalently, the pre-image under 

h of every connected set is connected. 

PROOF: Let M be the closure of the graph off in Q x Q and take for 

y 1 an Yz the restrictions to M of the projections Q x Q Q. By symmetry, 
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it suffices to prove that y 1 is monotone. Since Mis compact and Q\B 1 is 

dense in Q, y 1 is closed and onto. Let x E Q and consider the E-ball UE(x). 

Since every path in UE(x) connecting two points of U€(x)\B 1 , can be pushed 

off the o-Z-set B1 we have that U€(x)\B 1 is connected. So 

is a collection of continua that is linearly ordered by c. Since 
-I y1 ({x}) equals nC it is also a continuum. The other properties of y

1 
and 

Yz are obvious. 

Now let L1 and L2 be two copies of (O,I) that are embedded in Y as 

Z-sets such that L1 u w1 u w2 and L2 u w1 are continua. So L1 and L2 are 

paths going from w
1 

to w2 and from w1 to w1, respectively. 

4.3.10 PROPOSITION: There is no h E H(Y) that throws LI onto L2. 

PROOF: Assume that h E H(Y) has the property that h(L 1) = L2. There 

are a compact space Mand monotone maps y 1, Yz: M Q such that 

-I -J I -I I -I y I (W) = y 2 (W) and h O y I y I (Y) = y 2 y 2 (Y) . Since WI is a 

continuum and y 1 
-I 

y 2 ( y I (WI u W 2 u 

-I is monotone we have that y 1 (W1 u w2 u L1) and hence 

L1)) is a continuum. Note that y 2 (y7 1<w1 u w2 u L1)) is 

covered by the disjoint collection {L2 u w1} 

Sierpinski theorem, see section 5.2, we find 

u {W. Ii~ 2}. Applying the 
1 

-I 
that Y2<Y1 (WI u w2 u LI)) is 

-I -I contained in L2 u w1. Since y 1 (W) = y 2 (W) this means that 
-I 

y I (WI u W2) c 
-I y 2 (W 1). If we apply the same argument to the continuum 

-I y 1(y2 (W 1)) we find that -I Y1(Y 2 (W1)) = w1 u w2 which is obviously false. 
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4.4 Shifting shrunken endfaces 

In this section we prove that whatever choice we make for p ER, the 

space Y is topologically always the same. Furthermore, it is shown that 

subsets of Y that are homeomorphic to Qare negligible. In order to prove 

the first assertion we need a notation that distinguishes between 

representations of Y. 

4.4.1 NOTATION: If r E (0,1) and i E Thi then we define the shrunken 

endface W. (r) by 
1. 

-I n -I Tii ({i}) n j#i Tij ([-r,r]). 

If p = (pi\ Elli E R then W(p) = i UEThl Wi (pi); rW(p) and Yp are defined in 

the obvious way. The set Rt is given by 

t 4.4.2 LEMMA: If p ER then there is a q ER and an f E H(Q) such that 

f(Y) = Y. p q 

PROOF: Let p ER. We show that there are a q ER and an f E H(Q) such 

that for i # j, qi# qj and f(Yp) = Yq. If we have established this then 

the lemma follows by simply applying a permutation of coordinates. 

We construct inductively a sequence f 1,f2 ,f3 , ... in H(Q) and a 

sequence q 1,q2 ,q3 , ... in (O,I) such that for every i E Thi: 



and 

f. (W. (q.)) 
]_ J J 

w. (q.) 
J J 

f. (W. (p.)) = W. (p.) 
]_ J J J J 

for j < i , 

for j > i. 

In order to obtain that f = ~irn fi O ••• 0 f 1 E H (Q) we make sure that every 
]_-+oo 

fi can be chosen arbitrarily close to!. It is obvious that f and 

q = (qi) i E JN meet the requirements. 
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Put f 1 = I and q 1 = p 1 . Suppose that hi and qi have been selected. Let 

E > 0 be such that (pi+!' pi+!+ E) n {q 1 , ... ,qi} = r/J and pi+!+ E < I. 

Pick an element qi+! of (pi+!, pi+! + E) and define r E R by rj = qj for 

j s i and rj = pj for j > i. Let x E H(Q) be defined by x(x) = (x 1 , .•. ,xi, 

-xi+!' xi+Z' xi+ 3 , •.. ). Note that x(Wi+l(pi+l)) and x(Wi+l(qi+J)) are. 

subsets of Yr and that there exists a homeomorphism 

g: x(Wi+l(pi+l)) + x(Wi+/qi+l)) with p(g,l) < qi+! - pi+!" In view of 

corollary 4.3.7 there is an extension g E rW(r) of g such that 

P (g, I) < qi+] - Pi+! . Then fi+I = x O g O x has the following properties: 

f. 
1

(W.(q.)) = W.(q.) for j Si, 
i+ J J J J 

f. 1 (W.(p.)) = W.(p.) for j > i+J 
i+ J J J J 

and 

P (f. I, I) < i+ 
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This completes the induction. 

4.4.3 THEOREM: If p,q ER then there is an f E H(Q) such that 

f(Y) = Y. p q 

PROOF: In view of lemma 4.4.2 it suffices to prove the theorem for 

p,q E Rt. Let S be an element of H(J) such that for every i E 1N, S(pi) = qi 

and S(-p.) = -q .. If f = . TT]N SE H(Q) then f(Y) = Y . 
1. 1. 1. E p q 

*) t 4.4.4 LEMMA : If p ER then there is an f E H(Q) such that for every 

PROOF: Let p E Rt and construct for every i E1N a norm preserving 

Si E H(J x J) such that 

and 

IL([p2 .,p2 .J x {I}) 
1. 1. 1. 

If we define x E H(Q) by 

Let y be the homeomorphism of Q that interchanges adjacent odd and even 

*) This lemma is due to R.D. Anderson (unpublished). 



coordinates: 

Define <.p E H(Q) by 

Observe that for every i E 1N we have that <.p(W2i(Pzi-J)) = w2i(Pzi-l) and 

Since (pi\ E1N is strictly increasing there is an a. E H(J) such that for 

every i E 1N, a.(pi) = pi+) and a.(-pi) = -pi+!" If we put l/> = i ~]N a. then it 

is easily verified that f = l/> 0 <.p O y O x has the property: 
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4.4.5 THEOREM: Any subset of Y that is homeomorphic to Q is negligible. 

t PROOF: Let Y be represented by Y, where p ER, and let f E H(Q) be p 

a "shift" on the shrunken endfaces: f(Wi) = Wi+I for i E 1N. Then f-l (W1) is 

a negligible subset of Y and in view of the homeomorphism extension theorem 

4. 3. 7 this implies that every copy of Q is negligible in Y. 





CHAPTER 5 

FAKE HILBERT SPACES 

5.1 Introduction 

The study of "fake Hilbert spaces" has been inspired by Toruficzyk' s 

characterization of ! 2 • Before we state it some definitions. 

5.1.1 DEFINITION: A space Xis called an absolute retract (AR) if for 

every space Z, every map into X that is defined on a closed subset of Z can 

be extended over Z. A space Xis called an absolute neighbourhood retract 

(ANR) if for every space Zand every map f from a closed subset z0 of ·z into 

X there is a neighbourhood of z0 in Z over which f can be extended. For 

information concerning A(N)R's see Borsuk [Bl]. 

5.1.2 DEFINITION: A collection V of subsets of a space Xis discrete 

if each point of X has a neighbourhood intersecting at most one member of 

V. A space Xis said to have the strong discrete approximation property 

(SDAP) if for every admissible metric don X, every s > 0 and every map f 

from the countable free union of Hilbert cubes i flN Qi into X there is a 

map g: . (BJN Q. + X such that d(f ,g) < s and {g(Q.) Ii E lN} is discrete. 
l. E l. l. 

5.1.3 THEOREM (Toruficzyk [T2]): A topologically complete AR is homeo-

morphic to i 2 iff it has the SDAP. 
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This extremely useful characterization has now become the standard 

method for recognizing topological Hilbert spaces. In Anderson, Curtis & 

van Mill [ACM] it was shown that the SDAP cannot be relaxed by considering 

only one metric on the space. Specifically, they constructed a topologically 

complete AR space X with the following properties: 

(1) There is an admissible metric don X such that for every£> 0 and 

continuous f : i !JN Qi X there is a map g : i !JN Qi X that satis-

fies d(g,f) <£while {g(Q.)li E JN} is discrete (this is called the 
1-

weak discrete approximation property, WDAP). 

(2) Every compact subset of Xis a Z-set. 

(3) X embeds as a linearly convex subset of ! 2 • 

(4) X x X RJ l 2• 

(5) Xis homogeneous. 

(6) Every countable subset of Xis strongly negligible. 

(7) No Cantor set is negligible in X. 

Since in l 2 every cr-compact set is strongly negligible, Anderson [A3], 

property (7) shows that X f'f l 2 • The space Xis a "fake topological Hilbert 

space" since it has many of the familiar topological properties of l 2 but 

yet is not homeomorphic to it. As an "application" we get that the 

properties (I) through (6) do not characterize l 2 • It is useful to push 

this point further. Every "fake topological Hilbert space" blocks a possible 

generalization of Torunczyk's theorem. 

The aim of this chapter is to construct spaces that "approximate" l 2 

closer than the space above. We are interested in dimension theory and 
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negligibility properties and we shall obtain a characterization of dimension 

in terms of negligibility. 

Consider the space Y defined in section 4.1. Recall that we proved in 

section 3.2 that there is for every k E {0, I, 2, ... } a strong (Sk,H(Q))-

skeletoid,.. 1\ in Q, where Sk is the collection of Z-sets in Q with dimension 

,,;; k. For convenience, we put A_I = 0 and S = {!/J}. The skeletoids 1\ were -I 

constructed in the pseudo-interiors of Q which is a subset of Y (indeed, 

we may always assume this, because every cr-Z-set can be pushed into s). 

Let k E {-1,0,1, ... } and 1\ be fixed in the remaining part of this chapter. 

The space¾ is defined as 

We shall prove that¾ is a topologically complete AR, which is not 

homeomorphic to i 2 but which has the following properties*): 

(I) ¾ has the WDAP. 

(2) Every compact subset of~ is a Z-set. 

(3) ¾ embeds as linearly convex subset of i 2 • 

(5) Let Ube a collection of open subsets in¾• A a compact space and 

F: Ax I+¾ a homotopy that is limited by U. If F0 and F1 are 

embeddings then there is an h EH(¾) that is U-close to I and has 

the property h ° F 0 = F 1. Since ¾ is an AR this implies that ¾ is 

homogeneous. 

This result was established in Dijkstra & van Mill [DM]. 
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(6) If Ac¾: is o-compact, then A is strongly negligible iff dim (A)$ k 

(in particular,¾: f/J ¾:• if k # k'). 

(7) If Ac¾: is a compactum of fundamental dimension at most k, then A is 

negligible (in particular, if Cc¾: is an n-cell, then C is negligible 

and C is strongly negligible iff n $ k). 

5.2 A generalization of the Sierpinski theorem 

The aim of this section is to prove a generalization of Sierpinski's 

theorem that no continuum (i.e. a compact connected space) can be 

partitioned into countably many pairwise disjoint non-empty closed subsets, 

see Sierpinski [SJ or [El: p.440]. This generalization plays a key role in 

deciding whether a subset of¾: is strongly negligible. Since we feel that 

the result is of independent interest we have put it in a separate section. 

As usual, Sn denotes then-sphere, n E {0,1,2, ..• }. 

5.2.1 THEOREM: Let n be a nonnegative integer and X a compact space. 

If {F. j i E lN} is a closed covering of X such that for each pair of distinct 
1 

n natural numbers i and j, dim (Fin Fj) < n then every map f : F1 + S can 

be extended over X. 

The theorem is also valid outside the class of metric spaces, see 

Dijkstra [D3]. The reader is encouraged to verify that Sierpinski's theorem 

follows easily if one substitutes n = 0. 

PROOF: We shall work with the following induction hypothesis for 

n 0,1,2, ... 
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Let X be a compact space and Man AR. If {F. Ii E JN} is a closed 
l. 

covering of X such that for every i and j with if j, dim (F. n F.) < n 
l. J 

then every map f : Fl Sn X Mis extendable over X. 

Consider the case n = 0, where we have that Sn is the discrete double-

ton { -1 , I } and {F. Ii E JN} is a pairwise disjoint collection. Assume that 
l. 

the closed set A= f- 1({-J} x M) c F 1 is non-empty. Let X be the space we 

obtain from X by identifying A to a single point a and let q : X X be the 

decomposition map. If C is the component of a in X then it is a continuum 

with the following pairwise disjoint, closed covering: 

{{a},A n C} u {F. n cli;;,, 2}, 
l. 

-1 where A= f ({I} x M). According to Sierpinski we have that C {a}. Since 

Xis a compact Hausdorff space there is a clopen neighbourhood 0 of a in x 
that misses A. Because M is an AR we can find maps g 1 : q-1(0) { -1} X M 

and g2 : q -) (X\O) {I} X M such that g 1 IA= flA and g2 IA = flA. Then 

g 1 u g2 is the required extension off. 

Assume now that the induction hypothesis holds for n. Let {F. ji E JN} 
l. 

be a closed covering of X such that for if j, dim (F. n F.) n and let 
l. J 

f: X Sn+) x M be continuous. According to the countable sum theorem 

(see [E2: 3.1.8]) the set R = U{F. 
l. 

n. Select two distinct points x 1 
~1 n S \{x 1,x2} is homeomorphic to S 

n F. li,j E JN with if j} has dimension 
J 

d . n+l d h an x2 1.n S an note tat 

xJR. Using the separation theorem (see 

[E2: 4.1.13]) we find a closed covering {H1 ,H2} of X such that for 

j {J,2}, H. n f- 1({x.} x M) = 0 and 
J J 

dim(H 1 n H2 n R) < n. 

Consider the compact space X' = H1 n H2 and its closed covering 

{F. n X' Ii E JN}. Obviously, we have for i f j that 
l. 



82 

dim (F. n F. n X') $ dim (Rn X') < n. Observe that flF 1 n X' is a 
l. J 

n+l continuous mapping into (S \{x 1 ,x2}) x M, which space is homeomorphic to 

Sn x lR x M. Since lR x Mis, as product of AR's, itself an AR we may apply 

the induction hypothesis to find a continuous g: X' 

with glF 1 n X' = flF 1 n X'. Observing that Sn+l\{xj} is homeomorphic to 

lRn+I select for j E {1,2} a continuous extension 
n+I hi: Hj (S \{xj}) x M of (fiF 1 n Hj) u g. Then h = h 1 u h2 is a map 

from X into Sn+! x M which extends f and the theorem is proved. 

5.3 Some topological properties of~ 
( 

In this section we give a number of properties that Xk shares with l 2 ; 

we show that~ is a "fake Hilbert space". 

5. 3. I THEOREM: 

(I) is topologically complete. 

(2) embeds as a linearly convex set in l 2 and hence it is an AR. 

(3) has the WDAP. 

(4) Every compact subset of~ is a Z-set. 

PROOF: It is proved in Anderson, Curtis & van Mill [ACM: sec.3] that 

if A is a o-Z-set in Q such that for every£> 0 there is a map B : Q A 

with p(S,I) <£then Q\A satisfies (I) through (5). 
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We now turn to the homogeneity properties of~· Put 

skW {SC Yls is compact and dim (S) k}. 

Since every compact subset of Y is a Z-set in Q it follows that 

We have the following proposition: 

5.3.2 PROPOSITION: 1\ is a strong (SkW'rW)-skeletoid"' in Q and a strong 

(SkW'H(Y))-skeletoid"' in Y. 

PROOF: Since 1\ n W = 0, 1\ is a member of (SkW)
0

• Let S be in SkW and 

assume that U is a collection of open subsets of Q that covers S. Put 

0 = UU and select a closed neighbourhood F of Q\0 that misses S. Let 

U{_) i E JN be the skeleton that corresponds with 1\ and let n E JN. There are 

an m EJN and an isotopy Hof Q such that His limited by {IntQ(F)} u U 

Ho= I, HJ(S) CA and H [Fu A = I for every t EI. So His XI is a homo-m t n 

topy that is limited by {U\Anlu EU} and with the property that H0 1s and 

H11s are embeddings of S into Y. According to theorem 4.3.6 there is a 

{U\Anlu E U}-push h in rW with h(S) c Am. This proves that 1\ is a strong 

(SkW'rW)-skeletoid"'. Since hlY is a {Un YIU E U}-push in 

{y E H(Y)ly[An = J} we have also proved that 1\ is a strong (SkW'H(Y))-

skeletoid"'. 

5.3.3 THEOREM: Let Ube a collection of open subsets in Q, A a compact 

space and F : A X I Q a homotopy that is limited by u. If F0 and Fl are 

embeddings of A in then there is an h E rW that is U-close to I and that 

has the properties h ° FO = Fl and h[~ E H(~). 
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PROOF: According to theorem 4.3.6 there is an f E rw that is U-close 

to I and satisfies f o FO = Fl. Using theorem 1.2.13 we find an h E rw that 

extends f IF0 (A) and has the properties that it is U-close to I and 

5.3.4 COROLLARY: Let Ube a collection of open subsets of 1\_, A a 

compact space and F: Ax I+ Xk a homotopy that is limited by U. If F1 and 

F0 are embeddings then there is an h E H(1\_) that is U-close to I and has 

the property h ° F0 = F 1 . 

PROOF: This is trivial. 

5.3.5 REMARK: In view of theorem 4.3.6 it is natural to ask whether 

the homeomorphism of corollary 5.3.4 can be chosen in such a way that it is 

isotopic to the identity of Xk. This is not the case fork 0. We believe 

that fork> 0 the spaces 1\_ also behave "badly" in this respect, but ·we 

have no proof of this assertion. 

Consider an isotopy H I. We shall 

show that H1 = I for every t E I. Pick an arbitrary point X in AO and let 

(xn)n ElN be a sequence in x0 that converges to X in Q. There is a copy L of 

[O, I) in XO such that {x In E lN} C L and L u {x} RJ I (use the fact that n 
every Z-set in Q is thin). If we put D = H(L X l) then Dis a closed subset 

of x0 x I that is homeomorphic to [O, I) x I. Let K = ClQ x 1 (D)\D and let K 

be the projection of K into the first factor of the product Q x I. Then K 

and Kare continua which are contained in (Wu A0) x I and Wu A0 , 

respectively. Since A0 u W can be written as a disjoint union of compacta 

and since x EK n A0 , Sierpinski's theorem gives that Kc A0 • Now A0 is 

totally disconnected and hence K = {x}. This implies that lim Ht(xi) = x 
i-+«> 
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for every t EI and hence Ht can be extended over Y with the identity on AO• 

Since AO is dense in Y we have that Ht= I for every t EI. 

So we may conclude that if f and g are isotopic members of H(XO) then 

f g (cf. remark 1.2.15). 

5.3.6 COROLLARY: Let A be compact and f : continuous. If A' is 

a closed subset of A such that flA' is an embedding and if U is an open 

covering of~, then there is an embedding g of A in~ such that g and f 

are U-close and glA' = fjA'. 

PROOF: It is no problem to find a subset R of~ that is homeomorphic 

to s; put for instance R = {-I} x ifi2 (-1,1). Let C be a subset of R that 

is homeomorphic to f(A). Both embeddings of f(A) in~ are of course 

homo topic in Q and hence there is an h E H (~) such that h O f (A) c R. Since 

R Rl s, there is according to lemma 4.2.4 an embedding g of A in R such that 

g and h 0 fare h(Ll)-close and glA' = h 0 flA'. If g = h-J O g then g and f 

are U-close and glA' = fjA'. 

5.4 Negligibility and dimension 

In this section we shall prove the connexions that exist between 

(strong) negligibility in~ and dimension. 

5.4. I THEOREM: Every a-compact subset of~ with dimension at most k 

is strongly negligible. 

PROOF: As observed in the preceeding section,¾ is a strong 
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(SkW'H(Y))-skeletoid~. Now apply proposition 1.2.10 and theorem 1.2.12. 

We identify Sn-I and the boundary 3In for every natural number n. Let 

X be a space. A map f X In is called essential if flf- 1(Sn-l) cannot be 

extended to a map g n-1 X+S . 

5.4.2 LEMMA: Let n be a natural number with n > k. If A is a compact 

subset of~ and f: In is essential then f- 1(Int In) is not negligible 

in~-

PROOF: Let R f- 1(sn-l) and O = A\R. In view of corollary 5.3.6 we 

may assume that Ax I is a subset of~ such that Ax {0} coincides with A. 

S~ppose that O is a negligible subset of~- This implies that 

Z =(Ax I)\O can be embedded as a closed subset in~- Assume that Z is 

reembedded as a closed subset in~ and let Z be the closure of Zin Q. Put 

z* Z\Z and note that the local compactness of Ax (0,1] implies that 

z* u R is compact. Also, z* is a closed subset of Q\~ = u W. Since 

z* n is cr-compact and at most (n-1)-dimensional, we can find a sequence 

* * (Fi)iElN of compact subsets of Z n such that Z n = iUElN Fi and 

F. n F. is at most (n-2)-dimensional for all distinct i,j E JN. In addition, 
i J 

observe that z* n Wis a countable disjoint union of compacta and that 

W n = 0. Theorem 5.2.1 implies that the map g = flR can be extended to a 

map g: (z* u R) Since Sn-I is an ANR there is an open U containing 

z* u (Rx I) such that the map h, defined by 

h(x) g(x) if XE z* u R 

and 

h(x,t) f(x) if (x,t) ER XI, 
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can be extended to a continuous h U +Sn-I. Since (Ax (0,1])\U is compact 

there is an£ E (0,1] such that Ax{£} c U. Define the function 

n-1 - I n-1 n : A+ S by n(a) = h (a,£), a EA. Then nlR = f Rand n(A) c S , which 

means that f is not essential. 

5.4.3 COROLLARY: If n E 1N and n > k then there exist copies of]Rn in 

that are not negligible. 

PROOF: In is embedded in~• corollary 5.3.6, and 11n is essential. 

5.4.4 COROLLARY:~ is not homeomorphic to l 2 . 

PROOF: As remarked in section 3.1, every o-compact subset of l 2 is 

strongly negligible. 

5.4.5 COROLLARY: Xk does not admit the structure of a topologica1 

group. 

PROOF: l 2 is the only infinite dimensional topological group that is a 

complete AR (Dobrowolski & Toruficzyk [DT]). 

5.4.6 REMARK: With the method of lemma 5.4.2 and corollaries we can 

prove that if C is a compact space containing l 2 and C\l2 = .U1N F., where 
l. E l. 

the Fi's are compacta, then there is for every n E 1N an infinite set 

{i Im E1N} of natural numbers greater than n such that for every m E 1N, 
m 

N 

We sketch a proof. Define the following equivalence relation on 

{i E 1Nli > n} : m ~ 1 if there is a sequence m = i 1,i2 , ... , ij 1 in N 



88 

with dim (Fir•Fir+I) n for r = 1,2, ... , j-1. If there is an infinite 

equivalence class we are done. If every class is finite we define new 

compacta G[i] = U{Fjlj ~ i}, where [i] is the class of i EN. Note that if 

[i] f [j] then dim (G[i] n G[j]) < n. Let Ube an open, non-empty subset of 

0 2 . . . n f n+ 2\ ( n+ I ) { } which closure in C misses i~I Fi. I Z I Int I x O then we 

can embed Z as a closed subset in l 2 such that Z c U. The proof of lemma 
n 

5.4.2 shows that we cannot do this in C\(i~N G[i] u i~I Fi)= C\i~JN Fi. 

We now come to the announced characterizations of dimension in terms 

of negligibility. 

5.4.7 THEOREM: Let k f -1. For every a-compact space A, the following 

statements are equivalent: 

(1) dim (A)~ k. 

(2) There is an embedding f of A in¾: such that for every open O in A, 

f(O) is negligible in¾:· 

(3) Every embedding f of A in¾: has the property that for every open O in 

A, f(O) is negligible in¾:· 

PROOF: (I)+ (3). If dim (A)~ k then by theorem 5.4.1 f(A) is strongly 

negligible. Consequently,every relatively open subset of f(A) is negligible. 

(3) + (2). By corollary 5.3.6, ¾: is universal. 

(2) + (I). Assume that A satisfies (2) for some embedding f. 

Write A as a countable union of compacta F1,F2,F3 , .... We show that Fi 

also satisfies (2). Let i E 1N and let O be a relatively open subset of Fi. 

Choose an open O in A with On F. 
i 

O. Since A satisfies (2) there exist 

two homeomorphisms a:~+ ¾:\f(O) and 8 : Xk + ¾:\f(O\Fi). In view of the 

homeomorphism extension theorem 5.3.4 there is a y EH(¾:) with 



YO f IF. 
l 

-] I -] -I /3 ° f Fi. Then y O /3 ° a is a homeomorphism from onto 

-1 -I 
y o f3 o a(~) 

which proves the claim that Fi satisfies (2). Since Fi is compact lemma 

5.4.2 implies that no map from F. into Ik+I is essential. This means that 
l. 

dim (Fi)~ k, see [E2: 1.9.A]. According to the countable sum theorem, see 

[E2 : 3. l. 8], we have that dim (A) k. 
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5.4.8 REMARK: As for the case k = -1, we shall show in the next section 

that a space A satisfies (2) or (3) iff it is finite. 

5.4.9 LEMMA: If A is a nonempty, compact subset of Y = X_ 1 and if 

f Y Y\A is a homeomorphism then {x E Ylf(x) = x} is a z-set in Y. 

PROOF: According to lemma 4.3.9 there exist a compact space Mand 

monotone maps g,h from M onto Q with g-l (Y) = h-l (Y\A) and f o g I g-l (Y) 

= h I g - I (Y). Consider a shrunken endface W. . Since h is monotone we have that 
l. 

-] g(h (Wi)) is a continuum in W. By Sierpinski's theorem there is an a(i) EJN 
-] -] 

with g(h (Wi)) c Wa(i)" Analogously we can show that h(g (Wa(i))) c Wi. 
-1 -I 

So for every i E JN, h (Wi) = g (Wa(i)) and hence a is one-to-one. Since 

-I I g(h (A)) is a non-empty subspace of W, a(JN) fJN. Put Z = {x E Y f(x) = x}. 

Let y be a map from Q into Y and let E > 0. Since a : JN JN is one-to-one 

but not onto there exist an i E JN and a map /3 : Q Wa(i) such that 

p(/3,1) < E/2 and if a(i). Put o = ½P(Wi,Wa(i)). Since g-J(Wa(i)) = h- 1 (Wi)' 
-I 

the set O = U0 (Wa(i))\g(h (Q\U0 (Wi))) is a neighbourhood of Wa(i)" Since 

f O g I g - I (Y) = h I g - 1 (Y) the sets Z and O are disjoint. Let o' be an element 

of (0,£/2) such that U0 ,(Wa(i)) c O and construct a map n : Q s with 
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p (n, I) < o'. Then the map y' = n o 13 ° y has the properties: 

p(y',y) p(n,I) + p(13,I) < E and 

y'(Q) c n(Wa(i)) cons c Y\Z. 

This proves that Z is a Z-set in Y. 

5.4.10 THEOREM: Let A be a a-compact space. The following statements 

are equivalent: 

(I) dim (A)~ k. 

(2) There is an embedding f of A in Xk such that f(A) is strongly 

negligible in~-

(3) Every subset of~ that is homeomorphic to A is strongly negligible. 

PROOF: (I)+ (3). Apply theorem 5.4.1. 

(3) + (2). This is trivial. 

(2) + (I). Note that every relatively open subset of a strongly 

negligible set is negligible. If k f -1, apply theorem 5.4.7. Let A satisfy 

(2) fork= -1. If A is non-empty then there is an a EA such that {f(a)} 

is strongly negligible in X_ 1, proposition 1.2.2. This means that for every 

neighbourhood U of f(a) there is a homeomorphism g: x_ 1 + x_ 1\{f(a)} that 

is supported on U. Since a Z-set is always nowhere dense this contradicts 

lemma 5.4.9. So we may conclude that A= 0 and dim (A) -1. Note that we 

did not use the a-compactness of A here: the empty set is the only strongly 

negligible subset of x_ 1. 

We conclude this section with discussing a generalization of 

a-compactness, strongly a-complete spaces (cf. section 2.3). Note that 
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every negligible subset of a complete space is strongly a-complete. So 

strongly a-complete spaces are the most general type of spaces for which it 

makes sense to consider negligibility in~-

5.4.11 PROPOSITION: Every strongly a-complete space with dimensions k 

has a strongly negligible embedding in~-

PROOF: Let S be a space with dimensions k and let (Si)iElN be a 

sequence of closed, topologically complete subsets of S with S = i~lN Si. 

Select a s k-dimensional compactification C of S (see [E2: I. 7 .2]) and 

assume that C is embedded in~- Define for i E lN, Ri = ClC(Si)\Si and 

P = .UlN Clc(S.), R = .UlN R .. Since S. is closed in S we have that 
JE J JE J 1-

Ri = Clc(Si)\S and hence S = P\R. The set Riis the remainder of a 

topologically complete space in a compact space and hence a a-compact space. 

So also Risa a-compact space with dimensions k. Consequently, Ru\: is 

an (SkW'H(Y))-absorber in Y. According to the uniqueness theorem 1.2.11 

there is an f E H(Y) with f(R u \:) = \:· This means that 

f(S) = f(P)\\: c ~- The space f(P) is an element of (SkW)a and hence 

theorem 1.2.12 implies that f(S) is a strongly negligible subset of~-

We do not know whether the converse of this proposition holds. Note 

that every non-a-compact space has a nonnegligible embedding in~ (embed 

a compactification of the space in~ and observe that it is not an Fa-set). 

If we apply the argument of proposition 5.4.11 to the pseudo-boundary Bin 

Q (see also theorem 2.3.7) we find that l 2 is universal for V00
• a 

5.4.12 THEOREM: Let X be a space. The following statements are equi-

valent: 
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(I) 

(2) 

(3) 

Xis strongly a-complete. 

Xis homeomorphic to a (strongly) negligible subset of l 2 . 

Xis homeomorphic to an F -set in l 2 • 
CT 

5.5. Negligibility and shape 

In this section we shall discuss a connexion between negligibility of 

compacta in¾: and fundamental dimension. We begin by giving the definition 

of shape in the sense of Borsuk [B2]. 

Let A and A' be compacta in Q. A shape map 6 from A to A' is a sequence 

f~ Q Q, n E lN, of maps with the following property: for every 

neighbourhood V of A' there are a neighbourhood U of A and a natural number 

n such that for every m > n, f lu and f 11u are homotopic in V, i.e. there m m+ 

(gn,A,A') are two shape maps from A 

to A' we say that 6 and g are homotopic if there are for every neighbourhood 

V of A' an n E lN and a neighbourhood U of A such that f lu and g lu are m m 

homotopic in V form> n. 

The identity shape map is 7A = (IQ,A,A). If 6 = (fn,A,A') and 

g = (gn,A',A") are shape maps then their composition is the shape map 

g O 6 = (g O f ,A,A"). We say that A and A' have the same shape, notation 
n n 

Sh(A) = Sh(A'), if there exist a shape map 6 from A to A' and a shape map g 

from A' to A such that g O 6 and -6 ° g are homotopic to 7 A and 7 A, , 

respectively. One may show that this notion is independent of the given 

embeddings of A and A' in Q. 

We now state the complement theorem that is due to Chapman [C: sec.25]. 



5.5.1 THEOREM: If A and A' are z-sets in Q then Sh(A) 

Q\A RI Q\A'. 

Sh(A') iff 

5.5.2 COROLLARY: If A is a non-empty z-set in Q then A has trivial 

shape (i.e. the shape of a singleton) iff Q/A Q, where Q/A is the space 

we obtain by identifying A to a point. 

PROOF: If Q/A RI Q then Q\A RI Q\{p} for some p E Q and hence A and {p} 

have the same shape. 
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If A has trivial shape then for every p Q, Q\A RI Q\{p}. Observe that 

Q/A and Qare one-point compactifications of Q\A and Q\{p}. Since one-point 

compactifications are unique this implies that Q/A RI Q. 

We have for¾ the following analogue of Chapman's theorem. 

5.5.3 LEMMA: If A and A' are compacta in¾ with the same shape then 

there is a homeomorphism h: Q\A Q\A' with h(~) =~and h(Wi) = Wi for 

every i E lN. 

PROOF: The method is based on Chapman's proof for theorem 5.5.1. Let 

6 = (f ,A,A') and g = (g ,A' ,A) be shape maps such that 6 ° g and g O 6 are n n 

homotopic to 7A, and 7A' respectively. Since Wu~ is a cr-Z-set we may 

assume that for every n E lN both f (Q) and g (Q) are contained in X_. It is n n -K 

left as an exercise to the reader to verify this. We shall construct 

inductively a sequence x 1,x 2 ,x 3 , ... in {y E rwlY(¾) =¾}and a sequence 

o1 o2 o3 ... of open neighbourhoods of A in Q such that for every 

i E lN, xi (Oi) contains A' and there exist an n E lN and an open neighbourhood 

V of A' in Q with the property that V c xi(Oi) and IV is in xi(Oi) homotopic 
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to X• 0 g /v for every m n. The basis step of the induction is x
1 l. m I and 

Assume that Xi and Oi have been constructed and that they satisfy the 

induction hypothesis. Since 6 is a shape map and since g o 6 and 7 A are 

homotopic there exist an m > n and an open neighbourhood P of A 1.n Q such 

that P c Oi' gm O fm/P and Ip are homotopic in Oi and fm/P, fm+I /P, fm+Z/P, 

••. are all homotopic in V' = V n u2/(i+l)(A'). Since fm(A) c V' n there 

is in view of corollary 5.3.6 an embedding a of A in V' n that is in V' 

homotopic to f /A. We have that the following maps are homotopic to each 
m 

a, f / A, x. 0 g o f / A and X · / A. m 1. m m 1. 

Using theorem 5.3.3 we find a S E {y E rW/y(~) = ~} that is supported on 

X1.·(01..) and satisfies a= S 0 x./A. So S 0 x./A and f /A are homotopic in V'. 
i l. m 

Since V' is, as open subset of Q, an ANR there is an open neighbourhood 

01..+I of A in Q such that S O X· /o. 1 and f /o. 1 are homotopic in V'. We may 
l. i+ m 1.+ 

assume in addition that Oi+I c u2 /(i+l)(A) n P. Note that oi+I and 

S O xi (Oi+I) are contained in Oi and V', respectively. 

Since g is a shape map and since 6 ° g is homotopic to 7 A, there is an 

open P' in Q and an m' > m such that A' c P' c V' f o g / P' and I , are ' m' m' p 

homotopic in V' and g, /P', g, 1 /P', g, 2 /P', ... are all homotopic to 
m m + m + 

each other in Oi+l · Since S O xi O gm' (P') c S O xi (Oi+I) n there is in view 

of corollary 5.3.6 an embedding a' of A' in~ that is in S O xi (Oi+I) 

homotopic to S 0 x. 0 g ,/A'. It is easily verified that 
l. m 

a' , S o x. o g , /A', f o g , /A' , f , o g , /A' and I A' 1. m m m m m 

are homotopic in V'. Using theorem 5.3.3. we find a S' E {y E rw/y(~) = ~} 

that is supported on V' and satisfies S' 0 a' = IA,. Put hi+]= S' 0 Sand 



xi+! hi+l O xi. Since a' (A') c 13 ° xi (Oi+I) we have that 

One readily sees that Xi+! 0 gm' jA' is in Xi+! (Oi+I) homotopic to 

13' o a' IA,. Since X· 1(0. 1) is an ANR there is an open set V such that 
1.+ 1.+ 

A' C V C P' and Xi+] O gm, Iv and Iv are homotopic in Xi+] (Oi+I) • If j ;?; m' 

then gm' IP' and gjlP' are homotopic in oi+I and hence Xi+] O gjlv is in 

Xi+l(Oi+I) homotopic to IV. This completes the induction. 

Note that every hi+! is supported on xi(Oi) and is a member of 

{y E rwlY('\) ='\}·Observe furthermore that for i E 1N, Oi c UZ/i(A) and 

xi(Oi) c UZ/i(A'). If x E Q\A and i is such that 2/i < p(x,A) then Q\Oi is 

a neighbourhood of x such that xi(Q\Oi) c Q\A' and for every j > i 
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x-lQ\O. = X· IQ\O .. Consequently, if we define for x E Q\A, h(x) = ~im xi(x) 
J 1. 1. 1. 1.-+<x> 

then his a local homeomorphism from Q\A into Q\A'. Since Oi c UZ/i(A) and 

xi(Oi) c UZ/i(A') for i E 1N, his one-to-one and onto and hence a homeo-

morphism. Since for every x E Q\A there is an i E 1N such that h(x) = Xi(x) 

we have that h('\) = 1\ and h(Wj) W. for j E1N. This completes the proof. 
J 

It is natural to ask whether strong negligibility in theorem 5.4.10 

can be replaced by negligibility. The following theorem shows that that is 

not the case. If Xis compact then the fundamental dimension Fd(X) of Xis 

defined by 

Fd(X) min {nlthere is a compact Z with Sh(Z) 

and dim (Z) = n}. 

Sh(X) 

5.5.4 THEOREM: If Sis a compactum in¾ with Fd(S) k then Sis 

negligible. If Sis a compactum in Y with the shape of a finite space then 
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Sis negligible. 

PROOF: If Fd(S) k we can choose by corollary 5.3.6 a compact S' c ¾: 

such that Sh(S) = Sh(S') and dim (S') k. By lemma 5.5.3 and theorem 5.4.1 

According to theorem 4.4.5 every copy of Q is negligible in Y. Since 

Q has trivial shape lemma 5.5.3 implies that every singleton is negligible 

in Y. Consequently, every finite subset of Y is negligible. Applying once 

more lemma 5.5.3 we find that every space with the shape of a finite set 

is negligible. 

So every cube is negligible in any¾:· We can prove a partial converse 

of theorem 5.5.4. 

5.5.5 THEOREM: If Sis a negligible compactum in x
0 

then Fd(S) O. If 

S is a negligible compactum in Y then S has the shape of a finite spac·e. 

PROOF: Let k be either -1 or O and assume that Sis a negligible 

compactum in¾:· Leth be a homeomorphism from ¾:\S onto Xk. According to 

lemma 4.3.9 there exist a compact space Mand monotone maps y 1 and Yz from 
-1 M onto Q with y 1 (¾:\S) -1 I -1 I -1 Yz (Xk) and h O Y1 Y1 (¾:\S) = Yz Yz (~)- Let C 

be the collection of components of Sand define 

-1 Let CE C and consider the non-empty continuum a(C) = y 2 (y 1 (C)), which is 

a subset of¾ u W. Since¾ is a 0-compactum with dimension~ 0 

Sierpinski's theorem implies that there is a PEP with a(C) c P. Analogous-
-I ly we can prove that the continuum y 1(y2 (P)) is contained in Sand hence 



in C. So a is a function from C into P such that for every CE C, 

~ -J Consider the compact set S = y 2 (y 1 (S)), which is equal to 

I -I -I~ U{a(C) CE C} c '\_ u W. Observe that y
1 

(S) = y 2 (S). Since any union of 

infititely many shrunken endfaces is dense in Q, Scan intersect only 
1 

finitely many Wi's. Let i 1, ••• ,i1 be such that Sn W = j~J Wij. Define the 

quotient space Q of Q by identifying every Wi· to a point a. and let p be 
J J 

the natural map from Q onto Q. We show that Sand p(S) have the same shape 

(cf. Chapman [C:25.J] and Kozlowski [K]). 

It is easily verified that if Z is a Z-set in Q then p(Z) is a Z-set 

in Q. According to corollary 5.5.2 Q is homeomorphic to Q. Note that 
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Su'\_ u Wand p('\_ u W) are cr-Z-sets in Q and Q, respectively. Consequent-

ly there exist homotopies F Q x I Q and G Q x Q such that F
0 

= I, 

Go= I, F(Q x (0,1]) c Q\(S u '\_ u W) and G(Q x (O,J]) c Q\p('\_ u W). 

Observe that pjY: Y Y c Q is a homeomorphism and define for n E JN, 
-] -] 

fn = pohoFJ/n and gn = h 0 p oGJ/n" We shall prove that '1l (f ,S,p(S)) n 

and g = (g ,p(S),S) are shape maps such that o O g and g O o are homotopic to n 

7p(S) and 7S, respectively. 
-I -I ~ Let V be an open neighbourhood of Sin Q. Since y 1 (S) = y 2 (S) = 

-I -I -I y2 (p (p(S))) we have that C = p 0 y 2 (y 1 (Q\V)) is a compact set that is 

disjoint from p(S). Then there is a neighbourhood U of p(S) in Q and an 

I n E 1N such that G(U x [O,n]) n C = 0. Since p O f(V n Xk\S) = ~\C and 

G(Q x (0,1]) c we see that gnju, gn+I ju, gn+2 iu, ... are homotopic in V. 

So g is a shape map. The proof that '1l is a shape map is analogous. 

To see that g O '1l is homotopic to 7 S choose an open neighbourhood U of 

Sin Q. Select a neighbourhood V of p(S) in Q and an n 1 E 1N such that 

-I -I I h op o G((V n ~) x [0,-]) c U 
nl 
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and select subsequently a neighbourhood W of Sin Q and an n 2 > n 1 with for 

every m > n2 ,fm(W) c V and 

F(W x [0,_!_]) cu. nz 

If m > n2 then g O f I W = h - I O p - I o G / 0 f I W and h - I O p - I O f I W are m m Im m m 
-I -I I I homotopic in U. Furthermore, we have that h O p O fm W = F 1 /m W and IW 

are homotopic in U. So we may conclude that g O 6 is homo topic to 7 S. The 

proof for 6 ° g is similar. 

So we have shown that Sh(S) = Sh(p(S)). Consider first the case k = -1. 

Then~= 0 and p(S) = {a 1, ..• ,a1}. If k = 0 then~ is a zero-dimensional 

a-compactum. Here the countable sum theorem implies that 

dim (p(~) u {a 1, •.. ,a1 }) = 0. Consequently, dim (p(S)) $ 0 and the theorem 

is proved. 

We believe that the converse of theorem 5.5.4 is also true fork> 0 

but we have no proof of this. 

5.5.6 CONJECTURE: Let k 0 and let Sc~ be compact. Then Sis 

negligible iff Fd(S) $ k. 

According to theorem 5.4.10 a a-compact subset of~ is strongly 

negligible iff its dimension is at most k. So strong negligibility depends 

only on topological properties of the space itself and not on the way that 

it is embedded in Xk. This is not surprising for compact spaces since they 

have essentially only one embedding in~• cf. corollary 5.3.4. For non-

compact spaces, however, there are many non-equivalent embeddings. 

Negligibility of a a-compact space in~ is dependent on the way the space 

. b dd k 11 4 · k+I · is em e ed. Let 0. By coro ary 5 .• 3 there are copies of IR in~ 

that are not negligible. According to theorem 5.5.4 every subset of Xk that 



. . k+l . 1· .bl 1 k+l . is homeomorphic to I is neg igi e. A so the boundary of I is 

negligible because it is k-dimensional. This implies that it is possible 

k+I k+l k+I . . to embed I \aI 1'>11R in in such a way that it is negligible. 

It remains to prove remark 5.4.8. 

5.5.7 PROPOSITION: An arbitrary subspace S of Y is finite iff every 

relatively open subset of Sis negligible in Y. 

PROOF: One direction of the equivalence follows from theorem 5.5.4. 

Consider now a subspace S of Y such that every open subset of Sis 

negligible. Precisely as in theorem 5.4.7 we can prove that every compact 

subset C of Sis negligible in Y and has dimension$ 0. This implies in 

view of theorem 5.5.5 that Chas the shape of a finite set. So Chas 

finitely many components which are singletons because dim (C) $ 0. We have 

shown that every compact subset of Sis finite and hence Sis a countable, 

discrete space. If Sis finite we are done. 

We shall see that S cannot be infinite (cf. Anderson, Curtis & van 

Mill [ACM: 6.2]). Let f: Y\S + Y be a homeomorphism. According to lemma 

4.3.9 there exist a compact Mand monotone maps y 1 and Yz from M onto Q 
-I such that y (Y\S) = y 2 (Y). We construct in the usual way a one-to-one 

-I -I function a: S +JN such that for every a ES, y 1 ({a})= Yz (Wa(a)). Note 

that D = U{Wa(a)la E S} is connected if Sis infinite. Consequently, 
-I S = y 1 (y2 (D)) is connected which is obviously false. 

99 





BIBLIOGRAPHY 

[AU] ALEXANDROFF, P. and P. URYSOHN, Uber null-dimensionale 

Punktmengen, Math. Ann.~ (1928) 89-106. 

[Al] ANDERSON, R.D., Hilbert space is homeomorphic to the countable 

infinite product of lines, Bull. Amer. Math. Soc. 72 (1966) 
515-519. 

[A2] ANDERSON, R.D., On topological infinite deficiency, Mich. Math. 
J • .!!:_ (1967) 365-383. 

[A3] ANDERSON, R.D., Strongly negligible sets in Frechet manifolds, 

Bull. Amer. Math. Soc. ?J... (1969) 64-67. 

[A4] ANDERSON, R.D., On sigma-compact subsets of infinite-dimensional 

[AC] 

[ACM] 

[BPI] 

[BP2] 

spaces, unpublished manuscript. 

ANDERSON, R.D. and T.A. CHAPMAN, Extending homeomorphisms to 

Hilbert cube manifolds, Pacific J. Math. 38 (1971) 281-293. 

ANDERSON, R.D., D.W. CURTIS and J. van MILL, A fake topological 

Hilbert space, Trans. Amer. Math. Soc. 272 (1982) 311-321. 

BESSAGA, C. and A. PEtCYNSKI, The estimated extension theorem, 

homogeneous collections and their application to the 

topological classification of linear metric spaces and 

convex sets, Fund. Math. 69 (1970) 153-190. 

BESSAGA, C. and A. PEtCYNSKI, Selected topics in infinite-

dimensional topology, PWN, Warsaw, 1975. 

[Bl] BORSUK, K., Theory of retracts, PWN, Warsaw, 1967. 

[B2] BORSUK, K., Theory of shape, PWN, Warsaw, 1975. 

[Be] BOTHE, H.G., Eine Einbettung m-dimensionaler Mengen in einen 

(m+ 1)-dimensionalen absoluten Retrakt, Fund. Math. 52 
(1963) 209-224. 



102 

[CJ CHAPMAN, T.A., Lectures on Hilbert cube manifolds, CMBS Regional 
Conf. Series in Math. no.28, Amer. Math. Soc., Providence, 
R.I., 1976. 

[CM] CURTIS, D.W. and J. van MILL, Zero-dimensional countable dense 

unions of Z-sets in the Hilbert cube, to appear in Fund. 
Math. 

[Cs] CURTIS, D.W., Boundary,sets in the Hilbert cube, to appear. 

[DI] DIJKSTRA, J.J., k-dimensional skeletoids inlRn and the Hilbert 

cube, to appear in Topology Appl. 

[D2] DIJKSTRA, J.J., Shrunken endfaces and isotopies of the Hilbert 

cube, to appear. 

[D3] DIJKSTRA, J.J., A generalization of the Sierpinski theorem, to 
appear in Proc. Amer. Math. Soc. 

[DM] DIJKSTRA, J.J. and J. van MILL, Fake topological Hilbert spaces 

and characterizations of dimension in terms of negligibility, 

to appear. 

[DT] DOBROWOLSKI, T. and H. TORUNCZYK, Separable complete ANR's 

[El] 

[E2] 

[GSJ] 

[GS2] 

admitting a group structure are Hilbert manifolds, Topology 
Appl. 12 (1981) 229-235. 

ENGELKING, R., General topology, PWN, Warsaw, 1977. 

ENGELKING, R., Dimension theory, PWN, Warsaw, 1978. 

GEOGHEGAN, R. and R.R. SUMMERHILL, Concerning the shapes of 

finite-dimensional compacta, Trans. Amer. Math. Soc. 179 
(1973) 281-292. 

GEOGHEGAN, R. and R.R. SUMMERHILL, Pseudo-boundaries and pseudo-

interiors in euclidean spaces and topological manifolds, 

Trans. Amer. Math. Soc. 194 (1974) 141-165. 

[HW] HENDERSON, J.P. and J.J. WALSH, Examples of cell-like 

decompositions of the infinite dimensional manifolds cr and L, 

to appear. 



[HJ 

103 

HUDSON, J.F.P., Piecewise linear topology, University of Chicago 
lecture notes, Benjamin, New York, 1969. 

[K] KOZLOWSKI, G., Images of ANR's, unpublished manuscript. 

[MS] MAZURKIEWICZ, S. and W. SIERPINSKI, Contributions a la topologie 

[M] 

des ensembles denombrables, Fund. Math._!__ (1920) 17-27. 

MENGER, K., Allgemeine Raume und Cartesische Raume, zweite 

Mitteilung: Uber umfassendste n-dimensionale Mengen, Proc. 
Kon. Ned. Akad. Wetensch. (1926) 1125-1128. 

[Ml] MILL, J. van, A boundary set for the Hilbert cube containing no 

arcs, to appear in Fund. Math. 

[SJ SIERPINSKI, W., Un theoreme sur les continus, Tohoku Math. J. 13 
(1918) 300-303. 

~TAN'KO, M.A., Solution of Menger's problem in the class of 

compacta, Soviet Math. Dokl. __!2 (1971) 1846-1849; from: 
Dokl. Akad. Nauk SSSR 201 (1971) 1299-1302. 

[Tl] TORUNCZYK, H., Skeletonized sets in complete metric spaces and 

homeomorphisms of the Hilbert cube, Bull. Acad. Pol. Sci. 
Ser. Math.~ (1970) 119-126. 

[T2] TORUNCZYK, H., Characterizing Hilbert space topology, Fund. Math . 

[W] 

..!__!J_ (1981) 247-262. 

WEST, J.E., The ambient homeomorphy of an incomplete subspace of 

infinite-dimensional Hilbert spaces, Pacific J. Math. 34 
(1970) 257-267. 





105 

LIST OF SYMBOLS 

H(X) s, 1,2 39 

I, IX B 40 

X~Y E~ 40 
]_ 

d 2 Z(X), Z
0

(X) 40 

JR, 1N, ~, I 2 Bfd 42 

ac, Int C 2 Sk 43 

s 4 C JR 43 
0 

n 
W?k' m~ 17 C(X,Y) 44 

]~ 21 R 49 
]_ 

Ki, K 21 wi, w 49 

dl 21 y 49 

Ul ijl 21 rw 49 s' s 

Pn, p 22 Stn(A,V) 50 n 
22 (Q,s,0,11) odd 51 even, 

n N11 22 Nk, k X x a I 59 

n n 31 Wi(r) 72 Bk, sk 
Vk 33 rW(p) 72 

0 

llxll 35 y 72 p 

Q 39 Rt 72 

1T. 39 79 
]_ 

Ji, J 39 Sn 80 

P, Us 39 SkW 83 

diam A 39 1A 92 

Q. 39 Sh(A) 92 
]_ 

0 0 Fd(X) 95 Ji, J 39 



106 

SUBJECT INDEX 

(S, r )-absorber 

ANR 
AR 

boundary preserving 

boundary set 

U-close 

complement theorem 

continuum 
convergence criterion 

LI-pair 

deformation boundary set 

discrete collection 

essential 

fake topological Hilbert space 

fundamental dimension 

hereditary 

homeomorphism extension theorem, 
s 

homogeneous 

homo topic 

homotopy 

(£-) isotopy 

limited by U 

map 

£-mapping 

8 

77 

77 

40 
43 

2 

93 
80 

3 

4 

43 
77 

86 

78 
95 

4 

58,63 
40,41 

84 
69 

2 

92 
2 

2 

2 

45 



Menger space 

monotone 

negligible 
Nobeling space 

norm preserving 

pseudo-boundary, the 

pseudo-interior, the 
U-push 

a-Z-set 

SDAP 
shape (map) 

shrunken endface 
Sierpinski's theorem 

(S., r )-skeleton (-oid) 

star refinement 
strong (S,r)-skeleton(-oid) 

strongly negligible 

strongly a-complete 

subpolyhedron 

supported on 

tame polyhedron 

thin 

universal for l/k 
(J 

variable product 

WDAP 

Z-set 

22 

70 

5 

22 

65 

40 

40 

8 

40 

77 
92 

49 

80 

8 

5 

9 

5 

32 
17 

17 
33 

33 

59 

78 

40 

107 



108 

AUTHOR INDEX 

Alexandroff, P. 

Anderson, R.D. 

Bessaga, C. 

Borsuk, K. 

Bothe, H.G. 

Chapman, T.A. 

Curtis, D.W. 

Dijkstra, J.J. 

Dobrowolski, T. 

Engelking, R. 

Geoghegan, R. 

Henderson, J.P. 

Hudson, J.F.P. 

Kozlowski, G. 

Mazurkiewicz, S. 

Menger, K. 

Mill, J. van 

34,101. 

i,3,8,32,40,42,50,70, 
74,78,82,99,101. 

I ,8, 12,101. 

77,92,101. 

23,101. 

l,40,41,50,57,70,92,97, 
101,102. 

i,32,42,43,50,70,78,82, 
99,101,102. 

31,45,50,79,80,102. 

87,102. 

1,102. 

17,18,19,22,31,32,33, 
102. 

43,102. 

18,103. 

97,103. 

42,103. 

24,103. 

i,32,42,43,50,70,78,79, 
82,99, 101,102,103. 



Pelcyfiski, A. 

Sierpinski, W. 

Stan'ko, M.A. 

Summerhill, R.R. 

Toruficzyk, H. 

Urysohn, P. 

Walsh, J.J. 

West, J.E. 

1,8, 12,101. 

42,80,103. 

22,103. 

17,18,19,22,31,32,33, 

102. 

8,77,87,102,103. 

34,101. 

43,102. 

8, 10,103. 

109 





111 

SAMENVATTING 

Het hoofdresultaat van dit proefschrift is de constructie van een rij 

separabele, metriseerbare ruimten x_ 1,x0 ,x1, ..• met ender andere de volgen-

de eigenschappen: 

(I) is een absoluut retract. 

(2.) is homogeen. 

(3) x is homeomorf met de hilbertruimte 12 • 

(4) Elk compactum in~ is een Z-verzameling. 

(5) is universeel element van de klasse van separabele, metriseerbare 

ruimten. 

(6) Een willekeurige o-compacte deelruimte van~ heeft dimensie $k dan en 

slechts dan als zij sterk verwaarloosbaar is. 

Deze ruimten worden topologische schijnhilbertruimten genoemd aangezien 

(I) - (5) bekende topologische eigenschappen zijn van 12 terwijl uit (6) 
blijkt dat zij niet homeomorf zijn met 12 • Wij bereiken dit resultaat via 
de constructie van k-dimensionale pseudoranden in ]Rn (hoofdstuk 2) en de 

hilbertkubus (hoofdstuk 3). Als basis voor onze rij wordt een schijnhil-
bertruimte gebruikt die geintroduceerd is door Anderson, Curtis & Van Mill 

[ACM]. De homogeniteit van deze ruimte wordt in hoofdstuk 4 onderzocht. 
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STELLINGEN 

I De procedure voor het berekenen van de relativistische transport-
coefficienten van een ijl gas die voorgesteld wordt in [2:sec.5, 
ex.I], en die op natuurlijke wijze voortkomt uit een wiskundige 

analyse van de gelineariseerde transportvergelijking, verdient de 

voorkeur boven de gebruikelijke methode (zie [7]). 

II Elke Lebesgue meetbare relativistische sominvariant is bijna overal 
gelijk aan een functie van de vorm a+ Spµ ([3]). µ 

III Het bewijs van Grad [6] van de oplosbaarheid van de gelineariseerde 
Boltzmannvergelijking vertoont een leemte. Het non-relativistische 
analogon van stelling II brengt hier uitkomst. 

IV De gelineariseerde transportvergelijking voor een neutrinogas is 
oplosbaar en de transportcoefficienten kunnen met behulp van een 
polynomiale benadering van de oplossing bepaald warden ([2]). 

V De overdekkingsdimensie van het kwadraat van de rechte van 
Sorgenfrey is oneindig ([4]). 

VI Metriseerbaarheid van reeelcompacte ruimten is geen eerste orde 

begrip in de ring van continue functies. 

VII Er bestaat een compacte, metriseerbare ruimte met inductieve 
dimensie w + I die geen essentiele afbeelding toelaat naar 
Hendersons [8] (w + 1)-dimensionale absolute retract Jw+ 1 ([I]). 

VIII De stelling van Sierpinski [9] laat de volgende generalisatie toe. 
Zij n een niet-negatief geheel getal en zij X een compacte Hausdorff-

ruimte. Indien {Fili E :IN} een gesloten overdekking is van X zodanig 
dat voor elk paar verschillende natuurlijke getallen i en j, 
dim(F. n F.) < n, dan is elke continue afbeelding van F1 naar de 

i J 
n-sfeer Sn uit te breiden over geheel X ([5]). 
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