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PREFACE

This monograph is an investigation in infinite-dimensional topology. By
a fake topological Hilbert space we mean a separable, metrizable space that
shares many topological properties with £2, but yet is mot homecmorphic to
it. We think of properties like: X is an absolute retract, X is homogeneous,
X x X is homeomorphic to £%, every compactum in X is a Z-set and X is
universal for the class of separable, metrizable spaces. Our aim is to
construct a sequence X—I’XO’XI"" of fake Hilbert spaces such that an
arbitrary o-compact subspace of Xk has dimension < k if and only if it is
strongly negligible. In other words Xk has the negligibility properties of
£2 precisely up to dimension k inclusive.

The standard way to obtain spaces with certain negligible subsets is
through pseudo-boundaries. We first construct in chapter 2 a k-dimensional
pseudo-boundary in R". Employing this result we build in chapter 3 a
k-dimensional pseudo-boundary in the Hilbert cube for every k ¢ {-1,0,1,...}.

As basis for our sequence X_ Xl"" we use a fake Hilbert space Y, which

1%
has been introduced by Anderson, Curtis & Van Mill [ACM]. We show in chapter
4 that Y is homogeneous in a very strong sense and we conclude from this
fact that Ak is also a pseudo-boundary in Y. Finally, in chapter 5 the

spaces X, = Y‘\Ak are analysed.
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CHAPTER 1

GENERAL THEORY

1.1 Preliminaries

In this section we introduce basic concepts and we give two simple
methods to construct autohomeomorphisms. Our notation is standard, cf.
Engelking [El]. For information concerning infinite—-dimensional topology
see Bessaga & Pelczyfiski [BP2] and Chapman [C]. We make the following

restriction.

All topological spaces in this treatise are assumed to be separable

and metrizable.

We now give a list of definitions and notations. Let X and Y be topo-
logical spaces, let U be a collection of open subsets of X and let d be an

admissible metric on X.

(a) H(X) denotes the group of autohomeomorphisms of X and 1, or simply 1

X
is the identity on X.

(b) A continuous mapping is called a map.
(c) The symbol X~ Y means that X and Y are homeomorphic spaces.

(d) If f is a mapping from X into X and A is a subset of X then we say

that f is supported on A if the restriction f[X\A is equal to IX\A'




(e) Mappings f,g : Y > X are U-close if for each y ¢ Y with £(y) # g(y)
there exists a U € U containing both £(y) ‘and g(y) (note that we did
not require U to cover X). Observe that if f : X » X is U~close to 1

then f is supported on UU.

(£) 1If f and g are mappings from Y into X then

-~

d(f,g) = sup{d(£(y),g(x)) |y € ¥} € Lo,=].
(g) R, N and @ denote the real, natural and rational numbers, respectiﬁely.

(h) If C is an n-cell, n ¢ N, then 9C denotes- the geometric boundary of C.

Int C is the set C\93C.

(i) A homotopy is amap F : Y x K » X, where XK is a compact interval in .
Usually, K equals the set I = [0,1] and we define for t € K,
Ft : Y > Xby Ft(y) = F(y,t). F is called Iimited by U if for every
v ¢ Y the path of y, F({y} x K), is a singleton or is contained in

some member of U.

(j) An isotopy H of X is a homotopy from X x K into X such that the
function H : X x K > X'x K, defined by ﬁ(x,t) = (H(x,t),t) is an
element of H(X x K). For compact X this means that an isotopy H is a
homotopy such that each level Ht is in H(X). Occasionally, we shall
also call H an isotopy. If ¢ > O then H is an e-isotopy if the

supremum for x € X of the d-diameter of H({x} x K) is less than e.
(k) X is called homogeneous if for every pair x,y ¢ X there is an

f e HX) with £(x) = y.

We conclude this section with two lemmas which give frequently used

methods to construct homeomorphisms.




1.1.1. LEMMA: 7f H : X x K » X is an isotopy of X and o.1is a map from

Y into K then the function f defined by
f(x,y) = (H(x,0(y)),y) for x e Xand y ¢ Y

is an element of H(X x Y).
PROOF: This is trivial.

1.1.2. LEMMA: Let T be a tree of height w, X a topologically complete
space and (ft)teT a function from T into H(X) such that for every open
covering U of X and t € T there is an immediate successor t' of t such that
ft' and 1 are U-close. If d& is an admissible .metric on X then there is a

branch Ehstiatyseee in T such that (fti °© ... © ftl ° ftO)iGJN has a

uniform d-limit that is an element of H(X).

Note that for compact X the condition on (ft) can be replaced by:

teT

for every € > 0 and t € T there is an immediate successor t' such that
a(ft,,l) < g, where d is some fixed metric on X. This lemma is essentially

due to Anderson [A2].

PROOF: Let d be an arbitrary admissible complete metric on X. Pick a

tO in T with rank 0. Assume that a chain tO’t]""’ti has been chosen. Put

g; = fti ° ... 0© ft1 ° fto and define the metric d' on X by:

d'(,y) = dGx,y) + dlg; (0,8, G-

. . ~y < -1 .
Let ti+1 be an immediate successor of ti such that d (fti+1’1) 2 7. It 1s

easily verified that the sequence (g.)?_ constructed in this way has the
17i=0

properties a(gi,gi+l) < 27" and a(gzl,g;il) < 27" for i = 0,1,2,... .




Since d is complete the uniform limits g = 1lim g; and h = 1lim g?l exist and
ibeo i ©
are continuous. We have for x € X:

d(he g(x),x) = linm d(ho g, (),x) = lim d(ho gi(x),gglo g; () <

1> 1>

lim ,x, 2% = 0.
i 17T

This means that ho g = 1. Analogously, one may show that go h = 1 and the

lemma is proved.

1.2. Negligibility and pseudo-boundaries

We introduce a triple (X,8,I') that will remain fixed throughout this
section. X is a topologically complete space and (S,I') satisfies the

following conditions:

(a) S is a collection of closed subsets of X,

(b) T is a subgroup of H(X),

(¢) 8 is hereditary, i.e. every closed subset of a member of S is in S,
(d) S is invariant under the action of T,

(e)  There is an admissible metric d on X such that every f ¢ H(X) that is

the uniform d-limit of a sequence in I' belongs to I'.

For convenience we shall call an object that satisfies (a) - (e) a
A-pair on X. Observe that for compact X condition (e) is equivalent to: T
is closed in the compact-open topology on H(X). Let So denote the collection

of all couptable unions of members of S.




1.2.1. DEFINITION: A subset S of X is called negligible if X =~ X\S.
The set S is called strongly negligible if for every collection U of open
subsets of X there is a homeomorphism £ : X = X\(S n Ul) that is U-close to

to 1.

Obviously, every (relatively) open subset of a strongly negligible set
S is negligible; in particular, S itself is negligible. Every negligible
subset of X is an Fc—set. This can be seen as follows. If X\S = X then X\S
is, like X, topologically complete. This implies that X\S is a Gd—set in X
and hence that S is an FO~set (LE1, 4.3.247). It is also easily verified
that a strongly negligible set is always a countable union of nowhere dense
sets (indeed, it is a o-Z-set, see section 3.1). We give more properties of

strong negligibility.

1.2.2. PROPOSITION: Every (relatively) closed subset of a strongly

negligible set in X is strongly negligible.

PROOF: Let S be strongly negligible in X and let F be a closed subset
of S. There is.an open W in X with S\W = F. Consider a collection U of open
subsets of X and select an open star refinement V of U, i.e. UV =UU = 0O
and for every V ¢ V there is a U € U such that every V' ¢ V that intersects
V is contained in U. Since S is strongly negligible there exist homeo-
morphisms £ : X > X\(Sn 0) and g : X - X\(Sn 0 n W) such that f is
V-close to 1 and g is {Vn W|V e V}l-close to 1. Then h = g_lo f is a
homeomorphism from X onto X\(F n 0) which is U-close to !. This proves that

F is strongly negligible in X.

1.2.3. THEOREM: Strong negligibility is o-additive.




PROOF: As remarked above every negligible set is an Fd—set. So

proposition 1.2.2 reduces the problem to: if (Si)ie is a sequence of

N
closed, strongly negligible subsets of X then S = ig]N Si is strongly
negligible.

Let SI’SZ’S3"" be all strongly negligible, closed subsets of X and

let U be a collection of open subsets of X. We define O] = UU and Oi+1 =

= Oi\si for i € WN. Select a complete metric d on X and comstruct a complete
metric d1 on 01 such that for every x,y € 01, dl(x,y) z d(x,y) and for some
Uel, {z ¢ Olldl(z’x) < 1} ¢ U (see [El:5.4.H]). Choose for'every i el

a complete metric di+1 on Oi+1 such that for x,y € Oi+1’d

We shall construct inductively a sequence f]’fz’f3”" such that for every

iH(X,Y) 2 di(an)-
i eW, fi is a homeomorphism from X onto X\(Si n Oi) that is supported on
Oi' Since S1 is strongly negligible there is a homeomorphism

f1 : X -->-X\(S1 n 01) that is supported on O
d](f1|01,1) < %

I and has the property

Suppose that fi has been constructed. It follows easily from the.

induction hypothesis that g; = fi° R f1 is a homeomorphism from X onto

_ . . '
X\((S1 U eoo U Si) n 01) (X\Ol) U Oi+ Define the metric di+ on O by

1’ 1 i+1

ar, Goy) = d, Goy) + dlg; (g (7))

i : . n o, i
and select a homeomorphism fi+ X - X\(Sl+] 01+1) that is supported on

1

0. and satisfies
i+l

i-1

(f 1D <2”

1
di+1 i+1'oi+1’

This completes the induction.

_] .
= .U
If S P e Si then (gi IX\(S n 01))i5]N is a sequence of maps from

X\(S n 01) into X that satisfies:

ag; K\ 00,1 <




and for 1 € W,

d(g;h IX\(s n 0,87 [R\(s 0y <27

Since d is a complete metric h = lim ggllx\(s n 01) is a continuous function
1>
from X\ (S n 01) into X.
Analogously, we can prove that g = lim 8; is a map from X into X, which
100

is obviously supported on Ol' Let 1 ¢ IN and recall that gi(X) =

(X\OI) u Oi+1' Since (gi is a Cauchy sequence with respect to the

+k[0i+1)ke]N

we have that g(X) c X\O1 u 0,

{e1° This means that g is

complete metric di+1
a map from X into X\(S n 01). Since both h and g are uniform limits we have

that he g = 1X and go h = and hence that g is a homeomorphism

x\(s 0 o)
from X onto X\(8 n 01). Obviously, we have that al(g]OI,l) < 1 and

gJX\O1 = 1, which implies that g and 1 are U-close.

1.2.4, COROLLARY: A subset of a strongly negligible set S in X is
(strongly) negligible in X iff it is an FO—Set (in X or, equivalently, in

s).

PROOF: Use proposition 1.2.2, theorem 1.2,3 and the fact that every

negligible set is an Fc—set.

1.2,5. REMARK: One easily verifies that negligibility is neither
closed hereditary nor additive (consider for instance the interval I). A
more sophisticated counterexample is the space Y which is discussed in
chapter 5. This space is universal for the class of separable metric spaces
(corollary 5.3.6) and has the property that a compact subspace is

negligible iff it has the shape of a finite space (theorems 5.5.4 and 5.5.5).

We now come to the pseudo-boundaries. The first to study this concept




were Anderson [A4] and Beséaga & Petczyfiski [BP1], Their notion‘of a
pseudo~boundary was generalized to arbitrary complete metric spaces by
Toruficzyk [T1] (these pseudo-boundaries are called skeletoids) and differ-
ently by West [W] (called absorbers here). We shall now define these

concepts,

1.2.6 DEFINITION: Let U be a collection of open subsets of a space Z
and let E c H(Z). A map h is a U-push in E if there is an isotopy
H: Z x I = Z that is limited by U and satisfies : HO =1, H1 = h and
Ht € E for every t ¢ 1.

1.2.7 DEFINITION: An element A of SO is called an (S,T')-absorber if
fpr every S € 8 and every collection U of open subsets of X there is an
h € T such that h is U-close to | while moreover h(S n UU) < A, If we can
always choose h in such a way that it is a U-push in I then A is an (S,T)~-

~
absorber .

1.2.8 DEFINITTION: Let A1 c A2 c A3 € ... be a sequence of elements of
S. We call (Ai)ieIN an (S,T)-skeleton ((S,F)-skeletonm) if for every open
covering U of X, every S ¢ S and every n ¢ IN there exist an h in

{y € I’IyIAn = 1} that is U~close to | (a U-push h in {y € lelAn = 1}) and

an m € IN such that h(S) < Am. The set iU

In Ai € S0 is called an (S,T)~

skeletoid ((8,T)-skeletoid ).

Examples of pseudo-boundaries in the Hilbert cube can be found in
section 3.1. We mow introduce a concept that covers both absorber and

skeletoid,




1.,2.9 DEFINITION: Let A1 c A2 S A3 < ... be a sequence of elements of
S. We call (Ai)ialN a strong (S,T)-skeleton (strong (S,F)—skeletonﬂ ) if

for every open covering U of X, every S ¢ S, every closed subset F of X

with F n 8 = § and every n € IN there exist an h in {y ¢ FlylAn UF =1}

]

that is U-close to 1 (a U-push h in {y ¢ FlylAn UF=11) and anm e N

such that h(S) < Am. The set ig]N Ai € S0 is called a strong (S,I')-skel-

etoid (strong (S,F)—skeletoidd ).

It is obvious that every strong skeletoid is a skeletoid. With

absorbers there is the same connexion.

1.2.10 PROPOSIITON: Every strong (S,I')-skeletoid (~) is an (S,T)~-

absorber ( ~),

PROOF: We only prove the proposition for plain strong skeletoids and

absorbers; the version with the ~ is completely analogous. Let (Ai)i'e]N

be a strong (S,T)-skeleton and put A = i%]N Ai.‘Assume that U is a collect-

ion of open subsets of X and that S is an element of S, Put 0 = UU and
select an admissible metric d on O such that {Ul(x)lx € 0} refines U, where

U_(x) = {y ¢ 0|d(y,x) < ¢} for € 2 0 and x ¢ O ([El: 5.4.H]). Let Sy € S,

c S, © ... be a sequence of closed subsets of S such that S0 = ¢ and

[

Sno=_.U §;. We shall construct inductively sequences f ,f.,f.,... in T

0’71’72

and n, < n, < n, < ... in IN such that for i = 1,2,3,...
E o, 1o eeeo £0(5,) € Ay,

and

fi is supported on O\Ani—l'




Put f0 = lX and ny = 1. We shall make sure that every fi can be chosen

arbitrarily close to 1. This implies with lemma 1.1.2 that we may assume

that there is an f ¢ H(X) which is the uniform d'-limit of (fio eee© f0>ieﬂP

where d' is a metric on X such that I' is closed with respect to d'. So we

may assume that £ = lim in veco f . is an element of T'. The other properties

1>

0

that f must satisfy follow easily. We have that £ is supported on O and

A

a(f!O,l) < Lz a(f.[o,l) < 1 which means that f and 1 are U-close. Moreover,
i=1 i

It

£(S n 0) igl f(Si) = 'Ul fieow.ne fO(Si) = ig] Ap; © A and we may conclude

1=

that A is an (S,T)-absorber.

It remains to perform the induction. Assume that fi has been chosen.

Let F be a closed neighbourhood of X\O such that F n fioniiof (5, ) =90

and in order to show that the fi+ we are about to determine can be chosen

1

arbitrarily close to 1 let V be an open covering of X that refines

{IntX(F)} U {Uz—i-Z(X)IX ¢ 0}. Since fio eesof (Si+1> is a member of S

0
there exist an f ¢ I and an n..q >0y such that £|F v Ani =1,
fi+1° fio vee © f0<sn+1) c Ani+1 and fi+1 and 1 are V-close. This implies
~ —-i=-1 . .
that d(fi+1|0,1) <2 and that fi+1 is supported on O\Ani. The proof is
completed.

Observe that if f ¢ I' and A is for instance an (S,T)=-absorber then
f(A) is also an (S,T)-absorber. Conversely, we have the uniqueness theorem

for absorbers:
1.2.11 THEOREM (West [W1): If A and B are (S,T)-absorbers (") then
for every collection U of open subsets of X there is an f € T that is

U-close to 1 (a U-push £ in T') with £(A n UU) = B n UU,

PROOF: Again we only prove the theorem for plain absorbers. Let A and




B be (8,T)~absorbers and let U be a collection of open subsets of X. Put

=3 1 = U = U = =
0 = UU and write A . A; and B Y Bio where A1 B, @ and for

i e N, Ai’Bi € S. Select a metric d on O such that the open l-balls of d
form a refinement of U. We construct a sequence fl’fz’f3"" in T such that

for 1 ¢ IN:

fi is supported on O,

&(fi|o,1) <27t

fio gi—l(Ain 0) cB3n 0,

B,nOcf og. (An0)
and
£ 14! A ) =1
i hady (gi"l( J) u Bj =1,

where 81 = fi_lo eee © fl' We put fl = IX.

Assume that fl”"’fi have been selected. Then gi(Ai+l) =

fio tes © f](Ai+l) is an element of S. It follows from the induction hypo-

i
thesis that jgl (gi(Aj) U Bj) n 0 c B, Consequently, there is a B ¢ T that
i ~ -t
is supported on O\jg1 (gi(éj) U Bj) and that satisfies d(g}0,1) < 2 i-2 and
B(gi(Ai+1) no)cB ? 0. Note that since Bo g; €T, Bo gi(A) is an (S,T)~-
L . . .
absorber and that (jgl(gi(Aj) U Bj) U Bo gi(Ai+1)) n 0 is contained in

Be g.(A), This implies that there is a vy € I such that vy is supported on

i

L - -1-2

ONGYy (g5(A) U B U Bog(a;,1)), d(v]0,1) < 2 and
. -1 . -

i+l n o) c Bo gi(A) n 0. Define fi+l = vy "o B, The map fi+1 is obviously

supported on O and has the property a(fi+1IO,1) < 2_;—1. Consider the

inclusion

) S -
fio1°8; (B 0O =y oB(g (A, ) n0) =




= B(gi(AiH) no)cBnoO

and observe that Y(Bi no0)cBo gi(A) n 0, whence Bi n 0 is contained in

fi+1° gi(A). It is obvious that fi+1 restricts to the identity on

i
jgl (gi(Aj) U Bj)' This completes the induction.
Observe that every fi could have been chosen arbitrarily close to 1.

Hence, we may assume in view of lemma 1.1.2 that g = lim g; € I'. We have
1500

that g is supported on O and that

-~ °°v -1
d(filo,l) <z 2= L

d(glo,1) < Z .

1

This means that g and 1 are U-close. The sets g(A n 0) and B n O coincide

because

g(Ano0) = %IN g(Ai n o) = U:m gi(Ai NoO)cBnoO

ie

e

and

_ _ -1
BnO—.lUEINBinO—iUEJNgogi (Bino)cg(AnO).

This proves the theorem.

The same statement could of course have been made about strong
skeletoids. For skeletoids a similar result can be obtained (see Bessaga &
Petczyfiski [BP2: ch.VI prop.2.2]). We now give the obvious connexion between

absorbers and strong negligibility.

1.2.12 THEOREM: If A is an (S,T)~absorber and S is an element of Sc

then S\A is strongly negligible in X\A.

PROOF: Let A be . an (S,T)-absorber and let S € S&. It is trivial that

A u S is also an (S,T)-absorber. Let U be a collection of open subsets of




X\A and . construct a collection U' of open subsets of X such that

U= {U\AJU ¢ U'}. Let £ be an element of I' that is U'-close to 1 and that

it

has the property £(A n UU'") (A u S) nUU", Then f|X\A is a homeomorphism

from X\A onto (X\AI\((S\A) n UU) that is U-close to 1.

The next theorem shows that when we omit an absorber the homogeneity

properties of the space are preserved,

1.2,13 THEOREM: Let A be an (S,T)-absorber and let U be a collection
of open subsets of X. Assume that f is an element of T that is U-close to 1
and that F is a closed subset of X with the property that both F and f(F)
are contained in X\A. Then f|F can be extended to an h e T that is U-close

to | and that satisfies h]X\A e H(X\A).

PROOF: Put O = UU and define V = {U n f—I(U)IU e U}. Since £ and 1 are
U-close V is an open covering of O. Since f e T, f—l(A) is an (§,T)=-absorber.
Note that F is disjoint from both A and f_l(A). Using theorem 1.2.11 we
find a g € T that is {V\F|V e V}-close to 1, while g(A n 0) = £ ' (&) n O.

Let h = fo g and note that h € I'. We have the following situation:

h(A) = fog((An 0) u (A\0)) = fog(An 0) U fo g(A\OD)
= £(£71(4) n0) UAD = (An 0) U (AO) = 4,
h|F = fog|F = £|F
and
hiX\O = 1.

If x € O then there is a U ¢ U such that {x,g(x)} c U n f_l(U) and hence




14

{x,fo g(x)} © U, We conclude that h is U-close to 1.

1.2.14 COROLLARY: If A is an (S,T')-absorber and T is such that it makes
X homogeneous, i.e. X = {y(x)|y € T} for any x ¢ X, then X\A is also homo-

geneous.
PROOF: This is trivial.

1.2.15 REMARKS: The concepts we discussed in this section can of course
also be defined for non-complete spaces. However, since we then do not have
a convergence criterion like lemma !.!1.2 at our disposal this generalization
is of limited interest.

The concepts absorber and absorber (or skeletoid and skeletoid”
etc,) do not coincide., Inm section 5.3 we discuss a space XO with the
property that f,g ¢ H(XO) are isotopic iff f = g (remark 5.3.5). This space
is, however, homogeneous in a very strong sense (theorem 5.3.3) which-
implies that every countable, dense subset is a stromng (Sf,H(XO))—skeletoid,
where Sf is the collection of finite subsets of XO.

In section 3.1 we give a A-pair (S8,H(Q)) on the Hilbert cube such that

there exists an (S,H(Q))—absorberﬂ but no (§,H(Q))-skeletoid.










CHAPTER 2

FINITE DIMENSIONAL SPACES

This chapter is devoted to the construction of k~dimensional skeletoids

in I and R™.

2.1 Tame compacta in R™ and I

In their papers [GS1,G52] Geoghegan & Summerhill have introduced the
collection ﬂni of "tame" <k -dimensional compacta in R". We shall define
this object and discuss its properties and those of the corresponding.
collection in the n-cube. Let n and k be integers with the properties n = 1
and 0 < k < n. The numbers n and k remain fixed throughout this chapter.

We begin with some terminology.

Let X be a subspace of R™. A subpolyhedron of X is a subset of X that
is the underlying set of a countable, locally finite simplicial complex in
R". A subset P of X is called a tame polyhedron if there is an h ¢ H(X) such

that h(P) is a subpolyhedron of X.

2,1.1 DEFINITION: ﬂRE consists of all compact subsets S of R" that
satisfy the following property: if P is a subpolyhedron of R" with dimension
<n-k-1 and U is a collection of open subsets of R™ that covers S n P

then there exists a li~push h inf{GRn) with h(S) n P = §.




ikg consists of all compact subsets S of 1" that satisfy the following
property: if P is a subpolyhedron of 1" with dim (P) <n-k-1 and
dim (P n aln) <n-k-1 and U is a collection of open subsets of 1" that

covers S n P then there exists a U-push h in H(In) with h(S) n P = §.

One sees immediately that 2RE and ﬁkﬁ are invariant under PL-homeo-
morphisms. If P is a < k~dimensional subpolyhedron ofjmn(ln) then by a
general position argument we find that P ¢ ﬂRE (P e ﬁkﬁ). For information
concerning PL-topology see Hudson [H]. The following theorem has been

obtained by Geoghegan & Summerhill [GS2].
2.1.2 THEOREM: ﬂRE is invariant under the action off¥ORn).

We shall see that an analogous statement can be derived for ﬁﬁﬁ.

2.1.3 LEMMA: If k € n-2, x ¢ o™ and f :iRn_l - BIn\{x} is a homeo-

morphism then for every S c:m?"l, S € ﬂR;_l iff £(8) ¢ iﬁg.

PROOF: Prove the lemma first for a PL-homeomorphism f and use then the

invariance of ﬂRE‘l. The details are left to the reader.

2.1.4 LEMMA: If S is a subset of Int In then it is an element of iki

iff it is in EIRE.
PROOF: This is obvious.

2.1.5 LEMMA: ﬂRE and ikﬁ are hereditary.




PROOF: We give the proof for XRE. Let S' be a closed subset of an
element S of ﬁRE. Assume that P is a subpolyhedron of R” with dimension
< n-k-1 and that U is a collection of open subsets of R” that covers
S' n P. Write P as union of two subpolyhedra P] and P2 that satisfy P1 c UV

and P2 nS' =@. Let h be a {U\P2|U ¢ U}-push in H@®™) with h(S) n P1 =@,
We have that h(8') n P = (h(S') n Pl) u (h(8") n PZ) < (h(S8) n Pl) U

h(S8' n P,) = ¢ and hence the lemma is proved.
2
2.1.6 PROPOSITION: ﬁﬁﬁ is Invariant under the action of H(In).

PROOF: Let S ¢ ﬁﬁa, fe H(In), let P be a subpolyhedron of 1% with
dim (P) < n-k-1 and dim (P n BIn) < n-k-2 and let U be an open covering

of P n f(8) in 1". We first show that £(S) n 3T ¢ B If k = n-1 then

n
k"
every closed subset of a1" is an element of iﬁg. If k <mn =1 then

» T . & . . . .
there is an x € 31 '\S. Since M,  is invariant under PL-homeomorphisms we may

n~1

=3

+ 3I™\{x} be a homeomorphism. Applying

&

assume that f fixes x. Let g :

lemma 2.1.5, lemma 2.1.3, theorem 2.1.2 and again lemma 2.1.3 we find

n-1 -1

. 8 o £(S n 3I™) «

successively that S n 31" ¢ ikﬁ, g‘}(S narty e M

n—1 n ST
ﬂRk and £(S n 3T ) € ﬂRk.

Let U be a star refinement of U. There is a V-push h1 in H(In) with

hy e £(S n 31™) n P = §. Select an i ¢ IN such that hy o f(8) n PcO=

/i, 1 - l/i)n. Put C = f_lo h_l (C1.,(0)) n S and note that lemma 2.1.5
1 in

implies that C ¢ ﬁii. Since C ¢ Int I we have that C ¢ QRE, lemma 2.1.4.

Since hlo f can be extended to an element of HCRP) theorem 2.1.2 implies

that hlo £f(C) € HRE. By virtue of lemma 2.1.4 we have that h1“3 £(C) ¢ ﬁﬁﬁ.

So there is a {V n O]V € V}-push h, in H(In) such that h, o hlo £f(C) n P =@,

2 2
This means that hzo h1 is a U-push in H(I™ with h2° h1° f(SYy n P = §.

The following propositions are essentially due to Geoghegan & Summerhill
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[GS2]. For the sake of completeness, we have included proofs.

2.1.7 PROPOSITION: ret S be an element of ﬁUEE(EﬁEE), let U be a
collection of open subsets of IRn(In) and let L be a countable collection of
tame polyhedra in ]Rn(In) having dimension £ n~k~-1 (for 1" in addition:
dim (UL n aln) < n~k-2). Then there exists a U-push h in HR™) (H(In))

such that h(X) n UL n UU = §.

PROOF: We prove the proposition for r". Put O = UU and write O n UL as

countable union of tame polyhedra with dimension < n-k-1: 0 n UL = ilé,]N Ti'

Let d be a metric on O such that the 1-balls form a refinement of U. Put

T0 = ). We shall construct inductively a sequénce GO,GI,GZ,... of isotopies:

IRr‘l %x. I >R"™ x I such that for i = 0,1,2,...

Gl is supported on O\;gi Tj for t e I,
a(ctlo., 1) <2 fortel

and

H?(S) n Ti =g,

where Hl = Glo vo. oGO Put G0 = 1

RPx I°

then H = lim H is an
i

isotopy of IRn, lemma 1.1.2. It follows easily from the induction hypothesis

i,
If every G~ is chosen close enough to lIRnx 1
that H is limited by U and that HI(S) n UL n o= g.
Assume that G- has been constructed. Let f ¢ H(IRn) be such that f(Ti)
is a subpolyhedron of R". It is a consequence of the induction hypothesis

. i
that fo HT(S) n f(jg0 Tj) = @. Since EIRE is invariant we have that
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fo H?(S) € ﬂRE. Consequently, there is an isotopy F of R" such that FO =1,

F]O fo HT(S) n f(Ti+l) = @ and for every t e I, Ft is supported on

i 1

~i- . . i+
* 1. Define the isotopy ¢

& 5o -1
f(O\jg0 Tj) and d(f "o Ft]f(o), £ ]E()) <2

R x T >R™ xT by Gi+] = f_lo Fto f for t € I. It is clear that Gl+1

satisfies the induction hypothesis.

2.1.8 PROPOSITION: If S is a compact element of ﬁREG(ikEG) then S is an

n,&n
element of ﬂRk(ﬂRk).

PROOF: Consider a compact S ¢ ﬂREO. Write S = iU

S. where each S. is
elN i i

in ﬂRE and let P be an (n-k- 1)-dimensional subpolyhedron of R". Let h1

push S. off P. Since ﬁRE is invariant we have that hl(Sz) € ﬂRE. So we can

1
push hl(Sz) away from P keeping hl(sl) fixed. Continue this process. For the

epsilonics see the very similar proof of proposition 1.2.10.

Note that lemma 2.1.4, theorem 2.1.2 and proposition 2.1.6 state that
(ﬂRE,H(I{)) and (ﬁkE,H(In)) are A-pairs.

We now introduce a cell structure on Il for 1 eWN. If i € {0} UN then
J% is the collection of all cubes in I1 that have the form
1
=1

-1 -1
i [mj3 ,(HB +1)3 71,

where m,,m are elements of {0,1,...,31—1}. Define furthermore for

L YRR ]

ie {0} UN,
2m+1 i
K, = {2. iIm e {0,1,...,37~11}
and K = iﬁo Ki' Note that KO < K] c K2 < ... and that the 1-fold product
(Ki)l is the set of centres of members of Ji. Let d1 be the maximum metric

onIRl and let Ui(ﬁi) denote the e~balls infm}(ll) that correspond with dl'
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Let Pn(ﬁn) be the subgroup of H(Igl)(H(In)) that corresponds to

permutating the n coordinates. We define the Menger space MZ by

M = In\u{ugs_i_l(a({p} x "% 1y g e [

ie {0} UN and p ¢ (Ki)k+1}.

It was proved by Stan'ko [§] that ME is universal for the k-dimensional
compact subsets of R™. The following fact has been obtained by Geoghegan &
Summerhill [GS2]:

2.1.9 PROPOSITION: M| e W)

.1 : Mk X

2.1.10 DEFINITION: If A is a countable dense subset of R then the
NSbeling'space NE is the set of all points in R" for which at most k
coordinates are elements of A. If A is a countable dense subset of (0,1)
then ﬁE(A) is the set of all points in 1" for which at most k coordinates

. _,n ~n _ Ko
are in A. We put Nﬁ = Nk(Q) and Nk Nk(Q n (0,1)).

k

R

2.1.11 REMARKS: We have the following alternative definitions of i
and N :

.

=

Nz = RMU{a({p} xﬁmp—kul)[a € Pn and p € Qk+1}

and

N = 1M\U{a({p} x L P P and p ¢ (0 0 (0,1))
It is obvious that if A is countable and dense inR (in (0,1)) then there
is an h ¢ H(R®Y) H(I™)) such that h(NE) = NE(A) (h('ﬁE) = ﬁE(A)). 1t is

. known that NE and ﬁﬁ are k-dimensional spaces, see [E2:1.5.9].
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2.1.12 THEOREM: If A is a countable dense subset of R then
ﬂRE = {£(8)|f ¢ H(:Bp) and S compact < NE(A)}.
If A is a couptable dense subset of (0,1) then

ikﬁ = {£(S)|f ¢ H(I™) and s compact c ﬁE(A)}.

PROOF: In view of 2.1.11 it suffices to prove the theorem for A = @
respectively A = @ n (0,1). The inclusion HRE < {f(S)[f € H(iRP) and S
compact < NE} is ‘a consequence of 2.1.7 and 2.1.11. For 1" the same argument
applies.

Consider now Bothe's theorem (see Bothe [Be] or [E2: 1.11.6]) that

n
k

we combine this result with 2.1.2, 2.1.5 and 2.1.9 we have proved the

every compact subset S of N can be embedded into ME by an f € H(:m?). Iif

theorem for R".

Let £ ¢ H(I") and let S be a compact subset of ﬁi. Define for every
i e, Si =8Sn [2_1, 1-2751" 1If we prove that every element of

{Si[i e N} u {Sn F|F an (n- 1)-face of I"}

is in iﬁi then the propositions 2.1.6 and 2.1.7 imply that £(8) € ﬁhﬁ. For

every i € N we have that Si c NE and hence that Si € QRE. This means

that Si € iﬁi. Let F be an (n—- 1)-face of 1% and let x € BIn\F. If k =n-1
then every closed subset of 91" is in ﬁﬁﬂ and we are done. If k < m-1

1

select a homeomorphism h : aT™\{x} +R" " such that h(S n F) c Nn(Q\{O,l}).
k

Then h(S n F) € ﬂnz—l and hence S n F ¢ iﬁi. This completes the proof.

2.1.13 COROLLARY: Every S ¢ m> (ikn) has dimension =< k.
k k
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PROOF: dim (NE) = dim (ﬁ'ﬁ) =k, see [E2:1.5.97.

~ [
2.1.14 COROLLARY: If S ¢ ﬂRE (ﬁRE) and S' ¢ iRE, (ﬂRE,) then

n+n' ,sn+n'

1
S x 8" e ﬁRk+k' (ﬂRk+k,).

1
PROOF: There exists an f ¢ H(ZBP) and an f' ¢ H(:mp ) such that

]
£(S) < N- and £(S') < NE,. Consequently, one has that

k
' n n' n+n'
fx g(Sx8")c N x Nk' c Nk+k"

2.2 Skeletoids in I

In this section we prove that (iﬁﬁ, H(In))—skeletoids exist. Our
construction of a skeleton is based on the space ME, which was introduced
by Menger [M] and which we modify slightly.

Consider the following collection of (n=-%k- I)~dimensional planes in

L = {a({p} x In_k_l)[p € Kk+] and o € in}'

Select an enumeration (Li)z=0 of L such that if Li = a({p} x In—k_l) then

D€ (Ki)k+1. Define for m ¢e N and i ¢ {0} u N the compact sets

Fg =1,
m m, ~n
Fier = F3\Upg-in(p)
and Am = iQO F?. It is easily seen that F? can be written as union of

members of J?+ . We obviously have the following situation:

m— 1

F! c F? = F? [
1 1 i




and

A1 [ A2 c A3 < ..

Note that K is a countable, dense subset of (0,1) and that ﬁE(K) = In\UL.
This implies in view of theorem 2.1.12 that every Ai is a member of ﬁki.

2.2.1 THEOREM: (Am)m is a strong (ikﬁ, H(I™))-skeleton .

eIN

The remaining part of this section is devoted to the proof of this

theorem. Before we start with the actual proof we introduce some pushes of

mk+l Ik+1.

and

Let € ¢ (0,1/3] and define L [0,®) » [1,») by

gg if 0<r < g
1 1-3¢ .
wg(r) = { 301-¢) (2 + ) ife<rc<l,
1 if r 2 1

Note that that the function f(r) = rws(r), r ¢ [0,9), is a PL-autchomeo~

[0,1/3). Using the vector

morphism of [0,~) with the property £([0,e))

space structure ofﬁmk+1 we define for & ¢ (0,1/3] the homeomorphism

x,  HCRS) by

XE(X) =0 _(d (x,0))=%.

k+

i 1(O) and satisfies

Note that Xe is supported on U

k+1

k+1
x (U (0)) = Uy g

(0).

Section 2.4 is devoted to a proof for the statement:
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k+1 2
for x,y e R™ , d X ®)ox, () 2 3 4, (7).

Since X173 = HRk+1 it is easily seen that for every e € (0,1/3], Xg is a

k+](0)} -push in {y € H(IR [dkH(Y(X),Y(Y)) > % dpyq &sy) for

X,y eleH}
. k+1
Let m ¢ {3,4,5,...}, 1 ¢ {0,1,2,...}, p ¢ (Ki) and put for every

X € Ik+l,

60 = 137 @3 een),

It follows that ¢? . is a {ﬁ%gli(p)}-push in
9 2

L2y Kk+1

=y e HE D e, @,y () = 2 a (y) for xy ¢ T,

which satisfies

e = Tl e

PROOF of theorem 2.2.1: Let m be a natural number, & a positive real
number, F a closed subset of 1" and S a member of iki that misses F. Since
1" is compact it suffices to consider only one metric: dn' We have to find
a {ﬁz(x)lx € In}—push g in {y € H(In)]ylAm UF =1} and an i € IN such that
g(8) < 4.

Let T be the countable subgroup of H(In) that is generated by the set

Pn v {wl’P X IIn—k—llr € {3,4,5,...}, 1 ¢ {0} UN and
k+1
pe (K)

Consider the collection

= {y({p} x In_k_l)[p e K1 and vy € T},
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Note that L is contained in K. Since K is a countable set of tame polyhedra
of dimension n~k=-1 there exists according to proposition 2.1.7 a

{UZ/Z(X)]X € In}—push fin {y ¢ H(In)] Y|F u Am = 1} with

£(S) n UKNA_ = §.
m

i

Put S' = £(S) and select a j ¢ N such that j > m, 373t /2 and

373t dn(S',F). Define the compactum
C=U{J e J?IJ ns'# @l

Note that C is a neighbourhood of S' that has distance greater than 374 to
F.
-j+1 . n n s e
We shall construct a 3 -isotopy H : I x I » I x I that satisfies:

H, =1

= 1 .
0 ns Ht[F U Am 1 for t ¢ 1 and HI(S ) c A, Then the function H, o f

j+1° 1 .

is the push of 1" we need. The isotopy H will be the limit of a sequence

u0,ul,u2,... of isotopies of I" that satisfies for 1 = 0,1,2,...
1 -
H; (C\UK) = C\UK

and

1 qy j+1
H](S ) « F1 .

The Hl’s are determined inductively with as first step HO = 1

it will be shown that G1 = H1+1° (Hl)—l is a 3“1_J

Ty " Moreover,

~isotopy such that for

every t € I, Gi ¢ E', where

E' (x,y) for X,y € 1" and

It

n 2
{vy e HOD |2 (v(x),v (1) 2 5 4

Y|F u Am = 1}.

Consider now lim Hl. Since G1 is a 3_1_J—isotopy with Gé = 1 the
10
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T=O is uniformly Cauchy. So H = lim H1 exists and it is a
1>

l—homotopy" of 1" with HO = 1. We show that H is an isotopy. Since I

sequence (H¥)
ng~it
is compact it suffices to prove that every Ht is. onto and ome-to-one. Let
t e I and note that Ht is the limit of a sequence of autohomeomorphisms of
a compactum and hence it'is onto. Let x and y be two arbitrary distinct

points in 1", Select an 1 ¢ N such that Zl-dn(x,y) > 1. Since for every

n
s

s € {0} UN, Gi ¢ E' we have that for z,z' ¢ I
s Se v g 1
d (€ (2), 6 (2") 2 3 d (2,2 )

and hence that

a B, B = Gl d Gy >3

Since 6° is a 3_S_J—isotopy with GS = 1 it follows that
- - 1,-1 3 ,-i-1
dn+1(Ht° (Ht) ,1) < §~3 . Consequently,

4, (), B () > d_(H (), B () - 3.3 5 0

and Ht(x) # Ht(y). It is obvious that Ht fixes F u Am. So we have proved

that H is a 3_J+1—isotopy of I" that satisfies H. = | and Ht]F u Am = 1 for

0

t € I. The inclusions FJ+1 o FJ+1 o FJ+1 > ... lead, together with

0 1 2
S rar i+l
HI(S ) c Fo, s« {0} uN, to

Y = 14 S gt A j+l -
Hl(S )] lim HI(S ) ¢ SQO FS Aj+].
§>© £

. . . 1
Now it remains to perform the construction of the H 's,
1 G1—1c

Assume that H1 has been determined. Since H™ = «.. 0 GY we have

that Hi fixes F u Am for every t ¢ I. Consider the situation:
s' < C,

H} (C\UK) = C\UK




and-
' =
S'' n UK\Am @
This implies that

Legt
HI(S )\Am c C\UK

and since L, ¢ L <« K'and L, n Am = @ we have that H}(S') and L

1 1

Furthermore, we may derive that

1 1 l 1 1 ]
H](S ) HI(S \Am) U H](S n Am) c C.

Since S' is compact there exists an r € {3,4,5,...} such that

1, 1
dn(H](S ) Ll) > 573

1
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are disjoint.

Let L, be of the form a({p} x In_k_l), where o € ﬁn and p € (Kl)k+]. Let ¥

1

be a 3_1_J—isotopy of Ik+1 such that ¥, =

is a member of

E={ye¢ E|y is supported on ﬁ%+11_'(p)}.
33 ]

k+1 n—k-1

Consider the product I x I
. Ik+1 N In~k-—1 5 okl

centre. Define C = T(J x In-k_]

Since the diameter of J with respect to dk+
we have that 6 and F are disjoint. Let B

with 6(6) c {1} and B(ﬁ) < {0}. Define the isotopy ©

0,(x,y) = (¥(x,£8(y)),y) for x e I

= 1% and the projection

n a—](C)) and T

t

and for t € I, Wt

I . Let J be the cube in J?:; of which p is the

n e i),

is 3_1_j and since dn(C,F) > 3"j
+ I be a Urysohn function

1" x IT>1I"x Iby

1

and put Gi =006, ° a_l for t ¢ I. Since Wt ¢ E it follows that G~ is a

3_1_J—isotopy of I" such that every level is an element of




30

(r e HAM 4, (G, v () 2 5 4 Gey) for x,y € 1°

n

n-k-1

and vy is supported on a(ﬁﬁgll_j(p) x (I \F))}
2

. n n-k-1, 5 . 3 _ pim .
Since F ¢ T '\a(J x (I \F)) and since Am < AJ c F1+] Fl\U%3'1_J(Ll)
-1-j

this implies that G1 is a 3 ~isotopy with each level in E'.

Define,now H1+] = le0 Hl. We prove that Hl+1(C\UK) = C\UK and

H1+1(S') F{+i. Note that for every t ¢ I and D ¢ J
+1

G (D) = D. Both Fi and C can be written

1+ , Wt(D) = D. This

implies that for each D e Jl+ s
i+l i+l

) = ¥

as union of members of Jl+j and hence we have that G (F and

G}(C) = C. Define g ¢ H™ by
g =ao (P X 1. p=k=1) oo !
1+j,p oy :

The function g is a member of T and consequently we have that g(UK) = UK.

We shall see that g|C = G}]C. Let x € Ik and y € In-k—l such that

~

a(x,y) € C. If x¢ J then y € C and B(y) = 1. This implies that Ol(x,y) =

(w;+j p(x),y) and hence that Gl(a(x,y)) gla(x,y)). If x ¢ J then

¥V (x) = x = wr . (x) for every t ¢ I and comnsequently Gl(a(x,y)) =
t 1+3,p 1

a(x,y) = gla(x,y)). Now we have that Gl(C\UK) C\UK and H (C\UK) = C\UK.
Since w§+j p(ﬁzgll”j/r(p)) U,3 1-J_1(p) and d (H (s"),L ) 13 1-J/r we

have that go Hl(S') and U13_1_j_1(L1) are disjoint. If we combine this with
2

L I 1y _ piFl - ol 1,y j+l _
G oH (S") © G F ) =F glc G1|C, H (8") < C and Fy |
FJH\U,3 1-3- 1(L1) we find that
1+1 1., j+1
(8" = °H1(S)CF1+1.

This completes the proof of theorem 2.2.1.
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2.3 Skeletoids in R"

i

Using the result of the preceeding section 2.2 we comstruct a
k~dimensional skeletoid in IR . As an application we obtain universal spaces

in the class of strongly o-complete spaces.
*) , n n ,
2.3.1 THEOREM ’: There exists a strong (ﬂRk,H(IR ))-skeletoid .

PROOF: Consider Int I" ~R" and S = {S ¢ iki[s n 81" = @}. It is easily
seen that it suffices to prove that there is a strong (S,H(Int In))—
skeletoid . Let (Ai)ie]N be a strong (ﬁﬁz,H(In))—skeletonN, thecrem 2.2.1,
and define Ai = Ai n [2—i,l~2_i]n for 1 ¢ N. We show that (Ai)ie]N is a
strong (S,H(Int 1™))-skeletoid™ ((S,H(Int I)) is a A-pair because
(ﬂRE,H(ZRP)) is a A-pair). Let S € S and let U be a collection of open sub-~
sets of Int I that covers S. If i ¢ N then there are a j € N and a U-push
h in {y € H(In)lylAi = 1} withh(8) < Aj' Let m > j such that
2 dn(h(S),BIn). Then h[Int " is a U-push in {y ¢ H(Int In)|y|A£ =1}

with h(8) < Ag.

Let BE be a strong (ﬂRE,H(IRP))—skeletoidﬂ and put s; =IRP\BE. Note

n

that since B is o-compact s, is topologically complete. By the countable

k
sum theorem ([E2: 3.1.8]) we have that dim (BE) = k. Geoghegan & Summerhill
[GS2] have shown that there exist (ﬁRE,H(iRp))-absorbers. This result

follows from theorem 2.3.1. Moreover, theorem 1.2.11 implies that the

absorbers constructed in [GS2] are in fact also strong skeletoids.

*)

This theorem can also be found in Dijkstra [D1].
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2.3.2 PROPOSITION: sE is homogeneous.

PROOF: Apply corollary 1.2.14,

n

Using theorem 1.2.13 we can prove more results in this direction: Sy

is
strongly locally homogeneous and hence countably dense homogeneous (see

Anderson, Curtis & van Mill [ACM : sec.5]).

2.3.3 PROPOSITION (Geoghegan & Summerhill [GS21): dim (SE) =n-k-1

n . n
is an element of M .

and every compact subset of sk n-k—1

PROOF: The setﬁmp\Ng_k_l is a countable union of k-dimensional

subpolyhedra of B and hence there is an h e H(imp) with h(BE) =

n n, .n n n
B U (R \N__,_;)» theorem 1.2.11. Consequently h(s,) < N _j.; @nd hence

dim (s;‘) =n-k-1 ([E2:1.5.101).

Let S be a compact subset of SE. Assume that P is a k—dimensional™

subpolyhedron of R™ and that U is a collection of open subsets of R” that
covers S n P. Since P ¢ ﬁRE there is a U=push h in H(iRP) such that

h(BE nud) = (B§ U P) n UU, theorem 1.2.11. Hence, we have that h(S) n P = §.

2.3.4 PROPOSITION (Geoghegan & Summerhill [GS2]1): If n £ 2k+ 1 then

every o-compact subset of SE is strongly negligible in SE.

n

PROOF: According to proposition 2.3.3 every o-compact subset of Sk

is
n
)

an element of (M, ).

c ﬂREU. Theorem 1.2.12 implies that it is strongly

negligible.

2.3.5 DEFINITION: A space is called strongly o-complete if it is a
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countable union of closed, topologically complete subspaces. If

1 ¢ {0,1,2,...,»} then we define the class

Vi = {X|X is a strongly c-complete space with dimension = 1}.

A space X is called universal for Vi if

Vé = {Y|there is an F -set in X that is homeomorphic to Y}.

Note that V: is simply the class of all strongly o-complete spaces. If
X is negligible in a complete space then it is an Fg—set and hence a
strongly o-complete space. We shall see that V: is precisely the class of
spaces that can be negligible subsets of a complete space (see theorem

4.5.12).

2.3.6 DEFINITION: A closed subset S of a space X is called thin if for
every collection U of open subsets of X there is an f ¢ H(X) that is U-close

to 1 and satisfies h(S n UU) n § = @.

Geoghegan & Summerhill [GS2] have shown that every member of ﬂnik+1 is
thin in:m2k+1. This implies with proposition 2.1.8 that if §5,S' ¢ ﬂﬂik+l

then there is an h ¢ H(IRP), which can be chosen arbitrarily e¢lose to 1,

with h(S) n 8' = @#. A straightforward application of lemma 1.1.2 gives that

2k+1

if S, S' ¢ (ﬂRk )0 then there is an h ¢ H(R™) such that h(S) n S' = §.

2.3.7 THEOREM: The space s2X!

. . k
k is universal for VU. Moreover, an

arbitrary space X is an element of Vg iff it is homeomorphic to a (strongly)

+
negligible gset in Sik 1.

PROOF: If X is strongly negligible in 52k+] then X is negligible and

k
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hence an Fc—set. Consequently, X is strongly o-complete.

Let X € VS and select a compactification C of X with dimension < k,

f{k” (see [E2:1.11.5]) and

2k+1, theorem 2.1.12. Since BZk+1 ﬁR2k+1, £(C) can be

[E2:1.7.2]. There is an embedding f of C in N

hence f(C) ¢ M

k k € “%o
pushed off Bik+1. So we may assume that f embeds C into sik+1. Write
X = ig]N Si’ where Si is a closed, topologically complete subset of X.

Define for every i ¢ W, Ri = f(C1C(Si)\Si) and furthermore

P = f(C1.(S.)) and R = .U R.. For i ¢ N we have that R, is the
cH i i 1 1

ignq €N

remainder of a topologically complete space in a compactification and hence

. +
a o-compact space. So R is a o—compact subset of Sik ! and consequently an
2k+1 . . n
element of ﬂch . Using theorem 1.2.11 we find an h € H(R") such that

2k+1
By

2k+1
ik+]. The o-compact space h(P) is an element of ﬂng

and hence h(P)\BIZ{k+1 is strongly negligible in sik+1

h( uR) =B
, theorem 1.2.12. Since

Si is closed in X for every i € N, we have that

RENBH! = hE\R) = ho £(D).

This proves the theorem.

2.3.8 REMARK: The space sé is homeomorphic to R\Q. It is easily

verified that sé is nowhere locally compact. The assertion follows then

from the Alexandroff & Urysohn [AU] characterization of R\Q.

2.4 A technical lemma

In this section we consider the functions @, ¢ [0,®) » [1,®) and

Xe € H(]Rl) which are defined by
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3e if 0sr<ce
o (r) = 3(11-5)(2 + ]_rBE) ifesrc<l
1 ifrzl
and
x () = o_(|[xIDx,

where € ¢ (0,1/3] and ||x]|| = dl(x,O) = max {]xil i=1,2,...,1}.

2.4.1 LEMMA: For every X,y € IR1 we have that

e, @ = x 1= 2 ll== yll.

PROOF: We consider four cases.
I. if ||x|] < € or lIx]] = 1 and |[y]| € ¢ or ||y]l 2 1 then the

statement is obvious.

II. Let € < Hx]],”y” < 1. For some i < 1 we have that [[x-y|| =

Ixi—yi|. Without loss of generality we may assume that X, 2y, and x; 2 0.

This implies that [[x|| - |lv]] < [[x-y]] = T and hence we have that
=]l - v; x| - ;. Since ||x|| - X, 2 0, X, 2y, and X, 2 0 we find that
xi([[y || - yi) > yi(HxH - Xi)' So we have that

Xi_z Vi )

=l Ayl

Consider now

o 1-3¢ i 1-3e

— i -
X () - Xg(y)i = 3(1-5)\2+ T ) 3(1-—5)\2+ il

) =
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2 1-3¢ (% i 2
&5 =¥ 3078 T 300 ( “>2§ == -

=l Iy

We may conclude that
2
x, @ = x, I = Ix @, - x ;1 =5 ==yl

III. Let ||y]| < e and € < ||x]] s 1. Select an i < 1 such that |x- y| =

|x.

i T yil. We may assume that X, > 0. We make the following subdivision.

(a) v; 2 X - Since q)e is a decreasing function we have that

o (llyll> = o_Clix]]) and hence that ‘
Ix, @) = x DI = y; o Uyl - %, o_lx]]) =
2
vi-x% = llx-yll = 5 lIx-yll.

(b) x5 = yi- As above we have that ylan < xi”y” and consequently,

vy € — Iyl £ — .
o=l ll=ll
Consider
S g e v
X - x () = T Y 3-o) ( =l > T3¢

1 <€xi _ y) L2 xi(Hxl]-e:)
i

EAVFTRRC A TRy Y
ex, lx]| - ¢
Gy ) A S e

So the conclusion is that er(x) - XE(Y) I = % lx-vll.

Iv. Let [|y|| £ and ||x|| 2 1 and assume that {x- y|l = X TV Again
we consider two cases.

(a) [xi] > |. This implies that x; 2 1. Consider the set A = {z eIRkI

z; = 1}. Obviously, there exists an a € A such that ”a][ = 1 and




dl(xs(y),A) = dl(xe(y),a).ln view of the results obtained above Xe

satisfies

a4, 0 0)8) = 4 (7),2) 2 2 4, (,0) 2 £ 4 (7,

It is easily seen that dl(Xe(y)’Xe(X)) > dl(Xe(y)’A) + dl(Xe(X),A)-

This yields:
2
4G ox () 2 5 d; (7,8 + 4, (x (x),A) 2
2 2. _ _2 _
50,8 + 4 &,A) =5y, +x-D =5 |lx- ]l
. ~ 1
(b) ]xil < 1. Define x ¢ R™ by
Q; =min {1, max {—],xi}} for 1 < 1 < 1.

Note that H;“ = 1 and that ”X"Yll = H;'-yl[. We have proved that

37

”Xe(;) - xe(y)H > % ”;-—y[]. Using xe(x) = x and XS(E) = % we find that

I @ = x 2 lIx G- x @z 5 1F-y1l = 5 l=-vll.

Since we have considered all possible choices of x and y this concludes

the proof.







CHAPTER 3

THE HILBERT CUBE

3.1 Introduction

We discuss in this section the connexion between absorbers and
skeletoids in the Hilbert cube. Furthermore, we give examples of pseudo-—
boundaries and related objects.

The Hilbert cube will, except in section 3.2, be represented by

Q=.T_J

ielN "1’

where each Ji is the closed interval J = [-1,1]. Let ™ be the projection

Q »»Ji. We use on Q the following convex metric

D(X,Y) = TflaX |Xl - YI —Z—i—’
1elN

where x = (Xi)islN and y = (yi)i e I The open e-balls (¢ =2 0) in Q with

respect to p are denoted by Ue' The symbol p is also used for the metric on

subproducts of Q: if P @« W then for x,y ¢ iQP Ji, p(x,y) = max Ixi - y.| 5T+

. i
ieP
If A is a subset of iEP Ji then diam A is the diameter of A with respect to
. s s oo . -
p. If i e N and P = {j e M|j = i} then we define Q; ng Jj'
Let J; =J° = (-1,1) for i ¢ N and define the pseudo-interior s of Q

by s = igﬂﬂ Jz. The space s is homeomorphic to the separable Hilbert space
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£2, Anderson [Al]. Put 0 = (0,0,0,...) € Q and B = Q\s. The set B is called
the pseudo-boundary of Q and an element f ¢ H(Q) is called boundary
preserving if £(B) = B or, equivalently, f(s) = s. We can write B as the

union U{E?]i ¢ N and 6 ¢ {~1,1}}, where the E?'s*are the endfaces of Q:

Eg ={x € lei = 6}.

3.1.1 DEFINITION: A closed subset S of a space X is called a Z-set in
X if for every open covering U of X and for every map f : Q > X there is a
map g : Q > X\S that is U-close to £. A subset A of X is called a o-Z-set in
X if it is a countable union of Z-sets. The collections of Z-sets and

o-Z-sets in X are denoted by Z(X) and ZO(X), respectively.

In complete spaces the following properties are easily proved (see
[BP2: sec.V.2]): (Z(X), H(X)) is a A-pair, if A is a closed o-Z-set then A
is a Z-set and every Z-set is nowhere dense. It is well kmown that in Q
every Z~set is thin and that every endface and every compactum in s is a
Z-set (see [BP2: sec.V.3]). So B is a o-Z-set.

Note that since Q is compact, a closed subset S of X is a Z-set iff
for every € > 0 and f : Q > X there is a map g : Q - X\S with a(f,g) < g,
where d is some fixed metric on X. The following theorem may be derived
from Chapman [C: 19.4] and Anderson & Chapman [AC]l. We obtain it as a

direct consequence of theorem 4.3.6.

3.1.2 THEOREM: Let U be a collection of open subsets of Q, let A be a
compact space and let F : A x I - Q be a homotopy that is limited by U. If

FO and F1 are embeddings of A in Q such that their images are Z-sets then

there is a U-push h in H(Q) with ho FO =F,.
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3.1.3 COROLLARY: If A and A' are Z-sets in Q and f is a homeomorphism
from A onto A' with p(f,1) < € then there is a g € H(Q) such that glA = f

and S(g,l) < g,

PROOF: Define the straight-line homotopy
F(a,t) = (1-t)a + tf(a) for a ¢ A and t ¢ I.

Then F is limited by U = {Ue/Z(X)lX € Q}. Applying the theorem we find a
U-push g in H(Q) with g<>F0 = F]. So E(g;l) < ¢ and gIA = f.

Theorem 3.1.2 has the following consequence.

3.1.4 THEOREM: 1f (S,H(Q)) is a A-pair such that S < Z(Q) then every

(S,H(Q))-skeletoid is a strong (S,H(Q))—skeletoidn.

PROOF: Let (Ai)ie]N be an (S,H(Q))~skeleton. Assume that S ¢ S, ¢ > O,
m € N and that F is a closed set in Q with p(F,S) > €. There are an n ¢ IN
and an f ¢ H(Q) such that p(£f,1) < €/2, f[Am =1 and £(8) < A_. Define the

map F : (S u Am) x I >Qx1Iby
F(a,t) = ((1-t)a + tf(a),t).

Let m be the projection Q x I » Q. If X = (An x I) u (S x {0,1}) then F|X
is an embedding. Since F(X) c (An U Am U S) x I, we have that it is a Z-set
in Q x I. According to theorem 11.2 in Chapman [C] there exists an
embedding F of (Su An) x I in Q x I such that ﬁIX = F|X and

o(mo f,ﬂo F) < /2. Define G = ToF and note that G is a homotopy from

Su Am into Q that is limited by

U= {UE(X)\(F u Am)!x € Q}.
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The functions GO = ISUAm and GI = fIS U Am are homeomorphisms from S U Am
onto a Z-set in Q. According to theorem 3.1.2 there is a U-push h in H(Q)

with h(S) = GI(S) = £(8) < An. This proves the theorem.

3.1.5 REMARK: As a corollary to this theorem one has that every
(8,H(Q))~skeletoid is an (S,H(Q))-absorber. There are collections S in Q
such that absorbers exist but no skeletoids. Let S be the collection of all
countable Z-sets in Q. It is well known (and easily proved with theorems
3.1.2 and 1.2.11) that every countable dense subset of Q is an (S,H(Q))~
absorber . Consider a sequence A1 c A2 c A3 < ... in 8. For every i e W
there exists a countable ordinal a such that the ai—th derived set (Ai)(ai)
is empty, see Mazurkiewicz & Sierpifiski [MS]. If B is a countable ordinal
with B > sup {ai[i ¢ N} then [O,wB](B) # §. Hence, the ordered space [O,wB],
which is of course embeddable as a Z-set in Q, cannot be embedded in any of

the Ai's. This means that (Ai)i€ is not an (S,H(Q))-skeleton. Note that

N

this idea also works in I" and R".

We shall now discuss some examples of skeletoids in Q. The most
important example is B, which is a (Z(Q),H(Q))-skeletoid (Anderson [A41).
" This has the consequence that every o—compact subset of s & £2 jis strongly

negligible. Another example (also due to Anderson) is

de = {x ¢ Q|there is an i ¢ I such that for every j > i

This o-Z-set is a skeletoid for {S ¢ Z(Q)[S is finite dimemnsional}. Curtis
and van Mill [CM] have shown that every dense o-Z-set in Q that is homeo-
morphic to the product of @ and Cantor's discontinuum is a skeletoid for

the collection of zero—~dimensional Z-sets in Q. We shall construct this
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skeletoid in the next section. A related concept is that of a boundary set.

3.1.6 DEFINITION: A o-Z-set A in Q is called a boundary set if
Q\A = £2, A o-Z-set A in Q is called a deformation boundary set if there is

a homotopy F : Q x I » Q with Fy =1 and F(Q x (0,11) < A.

Curtis [Cs] has shown that every deformation boundary set is a boundary

set. Clearly, B and B_. are deformation boundary sets. Van Mill [M1] has

fd
obtained a boundary set that contains no arcs. This shows that the concepts
boundary set and deformation boundary set do not coincide. Henderson & Walsh
[HW] have given an example of a deformation boundary set containing

(obviously) arcs but no disks. It was shown by Curtis [Cs] that every

boundary set is infinite-dimensional, see also remark 5.4.6.

3.2 k—dimensional skeletoids

Using the main result of section 2.3 we build (Sk,H(Q))—skeletoids in

the Hilbert cube, where

S, = {s|s is a Z-set in Q with dimension < k}

The number k ¢ {0,1,2,...} remains fixed throughout this section.

It is convenient to use a different representation for the Hilbert cube
here. Let ¢ IR be the compactification of R that is obtained by attaching
two endpoints - and . Let d be a convex metric on ¢ R that is bounded by

1. The Hilbert cube Q is represented by

cR




b4

and has metric
p(x,y) = max {d(x,y)/i]i ¢ W}.

Let Tk Q » ¢ R be the projection on the i-th coordinate.
We construct the skeletoid. Identify for every n eiN,pr with

R" x {(0,0,0,...)} © Q. This gives us the following situation:

n

RcBR2 cR3c ... cR"c ... cQ

and in view of corollary 2.1.14:

. + . .
Since the elements of ﬁRi 1 are compact subsets of the pseudo-interior

s.= .. R with dimension < k, we have that ﬁﬂk+1 c S, for every 1 e WN. Let
1elN k k
(Cril)idN be an (ﬁRE,H(iRp))—skeleton for n = 2k+1, 2k+2,..., theorem 2.3.1.

We determine inductively functions f f3,... and natural numbers

1°f9e

Dyl sfg,y ... such that for every i e NN,
i
£, e HOR™

and

S 2k+i+]

. .,.1(C )
I 73 n; 1+1 nyy

where n, = I and f

- . . s s oo s
1 1 2R2k+1. The construction is straightforward. If j < 1

then fj(C§F+J) is a member of ﬂR§k+J, theorem 2.1.2. According to
1

2k+] 2k+i+1

i .
proposition 2.1.8 this implies that jgl fj(Cn. ) € ﬂRk . Since
= i

2k+i+1 . 2k+i+1

1 )1 o L8 an (Wk
2k+i+1

fi+1 e H(R ) and an n L

2k+i+1

(C JHOR ))—-skeleton there exist an

2k+i+1

. i 2k+j
> n. such that jgl f.(Cn ) fi+1( 04

J i+1
1f we define

. = £, €2y for i em,
1 1.1
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2kt < S and

then Di € ﬂRk K

D1 c D2 c D3 [N

[ee]
In order to prove that (Di)i-] is a skeleton we need a dimension-

theoretic lemma.

3.2.1 DEFINITION: A map f from a metric space (X,8) into a space Y is
called an e-mapping if for every pair x,y € X with 8(x,y) 2 &, £(x) and £(y)

are distinct.

3.2.2 LEMMA: If X is a compact metric space with dimension £ k and L

2k+1+1

is a linear k+ l-variety in R le {0} uIN, then for every € > 0 the

+1+ +1
set of e-mappings from X into?R?k L 1\L is dense in C(X,]RZk +1), where

C(X,Y) is the space of continuous functions from X into Y with the compact-

open topology.

The proof of this lemmais an easy adaptation of [E2: 1.10.4 and 1.11.3].

),

3.2.3 THEOREM* : (Di) is a strong (Sk,H(Q))—skeletonﬂ.

ielN

PROOF : in view of theorem 3.1.4 it suffices to show that (Di>ie]N is an
(Sk,H(Q))—skeleton. Let € > 0, m e N and S ¢ Sk. Since Q is compact we only
have to prove that there are a v € H(Q) and a j ¢ W with Y[Dm =1,
v(8S) ¢ Dj and E(Y,l) < g. Corollary 3.1.3 reduces the problem to finding a
j € N and an embedding £ of S u Dm in Dj such that f[Dm =1 and p(£f,1) < &.

Select an 1 € N with 1/i < ¢/2 and i > m. We shall construct a "tame"

*)

This theorem can also be found in Dijkstra [D1].
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olens
embedding of S in ]R"k+1+l. Define the function space

]R2k+1+]

K=1{ye c@_ us, )|"2k+i+1 ov(8) ¢ (-»,0]

and YIDm = 1}.

Note that K is a closed subset of the complete metric space

2k+i+l, 2 P .
(C(Dm uSsS, R t ),d), where d = d2k+i+].Hence, it is a Baire space. let H
2k+i+] .
be a closed subset of R and let & > 0. Define the compactum
S, = {x e Slo(x,D ) 2 €}

and the set of functions

K0 = {y « K| Y|Dm U S. 1is a E-mapping such that

3

Y(SE) nH= @}

k+1

CLAIM: If H = o({p} ximk+l), where o ¢ P and p e RS , then

2k+i+1

K(t¢,H) is open and dense in K.

PROOF: Showing that K(£,H) is open is left as an exercise to the

reader. Consider the density. Let vy ¢ K and § > 0. The set Y(SE) is

Zkt1 x (-»,0]. Select a y' in C(SE,IR2k+l x (=»,0)) with

a(ylsg,y') < 8/2. Since H is a linear k+i-variety inimzk+l+l we can find

2k+1

contained in R

with lemma 3.2.2 a EZ-mapping B € C(SE,IR x (-=,0)) with a(B,Y') < 6/2

and B(S,) n H = ¢. Since D c g2k

g-mapping from Dm U Sg intoimzk+l x (=<,0] which satisfies

x {0} the function B' = Ip, v B is a

&(s',ylnm U SE) < &, If we apply Tietze's theorem coordinate~wise to the

function B' - (yIDm U Sg) we find an extension B : Dm u s +CR2k+l x (~=,0]

with a(E,f) < 8. So B is an element of K(g,H) and the claim is proved.
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Consider the set L = {a({p} ximk+1)la e P and p € Qk+l}. Select

2k+i+1

an enumeration (Lj)j of L such that for each L ¢ L the set {jeMN|L = Lj}

eIN

is infinite. Because K is a Baire space the set

’ 1
D= ﬂ K'.— .
jeNW (J’LJ)

is dense in K. It is easily seen that the set {y ¢ K[S(y,l) < ¢g/2} is an
open non-empty subset of K. Let h be an element of D n {y ¢ K[p(y,1) < e/2}.
If x and y are distinct points in Dm U S then there is a j € N such that
X,y €D U Sl/j and p(x,y) =2 1/j. Since thm U Sl/j is a 1/j-mapping we may

conclude that h is one-to—-one and hence an embedding. Note that for every

2k+i+1 2k+i+1

j e N, h(SI/j) n UL = ¢ which means that h(S]/j) cR \UL = Nk .

Theorem 2.1.12 and propositions 2.1.5 and 2.1.8 imply that h(S), which is a

" . 2k+1i+1 .
compact subset of Dm u jg]N h(Sl/j), is an element of wzk . Obviously,

one has that B(h,l) < g/2 and h]Dm = 1. The map h is the aforementioned
"tame" embedding of S.

Consider now the sequence (Dj)
2k+i+1
TS|

))=-skeleton there exist a g ¢ H(R

glAm =1, g(h(s)) < fi+1(C§k+l+1) and a(g,l) < /2. Let 1 be such that
. . 2k+i+1
> j and 1 > i+1. Then fi+1(Cj

. The set Dm is contained in

2k+1+]
k ’ .

) and a j € W such that

jeN
2k+i+1

+1(Cj ))j N is an (M

2k+i+1

Di+1 = fi+1(C
2k+1+1

). Since (fi

H(R

n ) is a subset of D . The embedding

1 1+1

f = goh has the following properties:
lem= 1,
£f(8) ¢ D1+]
and

S(E,]) < €.

This concludes the proof.







CHAPTER 4

SHRUNKEN ENDFACES

4.1 Preliminaries

The main result of this chapter is a theorem that enables us to mani-
pulate compacta in the Hilbert cube with ambient isotopies without moving
certain copies of Q, called "shrunken endfaces". Let us define these objects

Let R be the set of all sequences Py sPysPgse-- in (0,1) such that
%im p; = 1. We pick a (pi)is]N in R that will remain fixed throughout
1>

sections 4.1; 4.2 and 4.3. For every i € N we define the shrunken endface

in the i-coordinate direction by

— -1 or-

Note that Wi is a subset of E; and hence a Z-set in Q. Observe furthermore
that the Wi's are disjoint copies of Q. If € > 0 then there is an i ¢ N
such that 1/i < ¢ and pj > 1 - ¢ for every j > 1 and hence there exists for
every j > 1 amap B : Q » wj with p(B,1) < €. This implies that every union
of infinitely many shrunken endfaces, especially W = i%]N Wi, is both dense

and connected. Moreover, it follows that every compact subset of Y = Q\W is

a Z-set in Q. It is easily seen that T defined by

W

Fw = {f ¢ H(Q)|for every i ¢ N, f(Wi) = Wi}

is a closed subgroup of the topological group (H@Q),p).




50

Anderson, Curtis & van Mill [ACM: sec.4] have shown that Y is homo-

geneous. We shall prove the following stronger statement*)

Let U be a collection of open subsets of Q, A a compact space and

F : Ax I= Qa homotopy that is limited by U. If F. and Fl are embeddings

0

of A in Y then there is a U-push h in FW with hoF, = Fl'

The method we use is derived from proofs given in Chapman [C: ch.II]
for theorems of this type. Moreover, in lemma 4.2.2 we use an idea of
Anderson, Curtis & van Mill [ACM: 4.117. -

We conclude this section with some notations. If A is a subset of a
space X and D is a collection of subsets of X then the star of A with

respect to D is defined by
St(A,D) = U{D ¢ D|D n A # §}.

Furthermore, Stn(A,D), n=0,1,2,..., is determined by
st%a,0) = A

and

se™1(a,0) = se(st™(A,D),0).

4.2 The pseudo-interior

This section is about extending homeomorphisms between compact subsets

of s. Consider the factorization Q = Q , where

odd ¥ Qeven

*
) This result is taken from Dijkstra [D2]
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- T
Qag = iew Y2i-1

and
= 1T
Qeven ielN J2:'L )
Let Todd * Q ~ Qodd and Toven ° Q ~ Qeven be projections and define S odd?
S aven’ Oodd and Oeven in the obvious way.

4.2.1 LEMMA: If A is a compact subset of s then there is a boundary

preserving f € T such that for every x,y ¢ f(A) with T, x) =w (v)

W ven even

we have that wodd(x) = ﬂodd(y).

PROOF: Let i be odd and m > 1 even. We may assume that A has the form

T [~a.,a.] where a. ¢ (0,1). Select a & such that a_ < § < 1. Let
JeN 31773 i m

P : Jm x J > Jm be an isotopy of Jm with the following properties:
w, =1
@, is supported on (-§,8) for t ¢ J,
@t([—am,am]) c [—am,am] for t € J

and for every y ¢ Jm’

diam {x ¢ [-a.,a,]|there is a y' ¢ [-a_,a ] with
174 m’“m

' 1
mx(y ) =y} < e

See the next page for a picture of o.
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6

J—_—— am I

- 4-a T

J m
g s
_ai ai
Ji :
(Xi ,xm) ——— (Xi,(px_(xm))
1

Let k be a natural number such that for every j > k, pj >'§. For j e N let

Bj : Jj + I be a map that satisfies Sj(l) = 1 and Bj([—aj,aj]) = {0}. Define

1]

i i
Xp P 2> Q by m.ex

; o ﬂj for j # m and

T Xi(x) @(Xm,a(x)) for x € Q,

where

a(x) = min {l,xi4-2 max {Bj(xj}lj e {1,2,...,kN\{m,1}3}.

Since o is a continuous function which is independent of x e have with

lemma 1.1.1 that ¥

i. . . . .. ‘.,
n is a homeomorphism. Since diam Jm = 1/m it is obvious

that S(X;,I) < 1/m. Furthermore, we have that X;(A) c A and for every

8

6 i, By _ . i
endface En’ Xm(En) = En. We verify that Xy € T

W
(a)' If x € Wi then X, = I and hence a(x) = 1. This implies that X;(x) = x,

(b) If x ¢ wm then x = 1. Since mt(l) = 1 for every t € J this yields that

Xi(X) = x.
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(¢) Let x ¢ Wj with j € k and j # i,m. In this case Xj = 1, whence a(x) =

and )(;1 (x) =

(d) Assume that j > k and j # m. This means that p. > 8. Since ®, is

1l

supported on (-5§,8) we have that @, ([-p 2P -1 [—pj,pj] and hence

xm(Wj) =

So x; is a member of I‘w. Consider now a point z in A. Then all

v 1 = =
Bj (Zj), s vanish and hence o(z) z; andr e x(z) (p(zm,zi). We have for

every'y € Jm that

—

. . i, .
diam {zi!z e Awith m_oyx (2) =y} < o

Now, let £ be a function from I onto {2j - 1|j e N} such that every
fibre is infinite. Select with lemma 1.1.2 a strictly increasing sequence

of even numbers (m(j))j I such that m(j) > £(j) and

£(3) £(1)
11m Xm(J) ° Xa(1) © HQ).

It is obvious that f(A) < A, f is boundary preserving and that f ¢ l"w.

. £(i) _
Observe that Todd £ Todd Xm(]) for every j e N, Let i be an odd
number, € > 0 and x,y ¢ £(A) with Treven(x) = weven(y). Select a J €N such

that £(j) = 1 and 1/j < e. We have the following estimate for p(xi,yi):

px;,yy) < diam {z ]z ¢ £A) with 7 (2) = n__ ()} <
diam {z,|z c Xig_g ero xigig(A) with ©_ . Xmé:;];(z) -

xm(j)} < diam {zilz € A with TG m(3)(z) (3)} <
T

Consequently, p(xi,yi) = 0 and the lemma is proved.
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4.2,2 LEMMA: If A is a compact subset of s such that for every

X,y € A, ﬂeven(x) = neven(y) implies that ﬂodd(x) = ﬂodd(y) then there is

a boundary preserving h e Fw withw - ° h = T even and Todd ® h(A) < {Oodd}.

PROOF: Let A be such a set. Select for every i ¢ N an a; € (0,1) with

. . i
ni(A) c ( ai,ai). Construct a continuous mapping H™ @ Ji X (—ai,ai) > Ji

that satisfies for t e (—ai,ai): Hg =1, Hz(t) = (0 and H; is an element of

H(Ji) that is supported om (—ai,ai). Let Bi : Ji -+ I be a map with
Bi(l) = 0 and Bi([—ai,ai]) = {1}. Select an arbitrary j in IN and consider

A= (A) < Q . We have that if x,y ¢ A and 7 (x)

=T (y) then
even even even even

X2j—1 = y2j—1' Since “evenlA : A > A is a quotient map this implies that

there exists a continuous g. : A > ( 1) such that

“825-1"%23-

J
g;° ﬂeven[A = nzj_llA. Let g; * Qyen ™ (—aZj—l’aZj—l) be a continuous

extension of gj. Select a F € N such that for every k > ?, a and

~

25-1 ° Px

define o i Q- (_azj—l’aZj—I) by
3
@ - 0BGy,
k# 2j-1

() = 85 Toven

Let hj : Q > Q be determined by ™ ° hj = if k # 2j-1 and

o 2§-1
“Zj—l hj(x) =H (xzj_],uj(x)).

Since aj is independent of Xy we have that hj e H(Q). That hj is an

element of Fw follows from:

(a) If x ¢ W2j—l then x

that hj(x) = x,

- 2j-1 - s
2i-1 1 and H (ij_l,aj(x)) = 1. This yields

(b) If k < ? and k # 2j-1 then for x ¢ Wk, Bk(xk) = 0. Consequently, we

have that aj(x) = 0 and hj(x) =X,
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(¢) Let k> j and k # 2j~1. In this case [_aZj—l’aZj—]] < [—pk,pk].

. 2j=1 . _ _
Since Ht is supported on ( a2j—1’a2j—1) we have that hj(Wk) = Wk.

It is clear that = oh, = ¢ and that for every Ee, h.(Ea) = Ee.
even j even n’ j'n n

Define h = 1lim h.o ... ° hl' Obviously, h is a boundary preserving map
j‘*°°

onto Q with =« oh =1 . We show that h is one—to—one and hence a
even even

homeomorphism. Let x and y be distinct points in Q. If neven(x) # ﬁeven(y)

then also h(x) # h(y). Assume therefore that “even(x) = weven(y). Let

i = 2j-1 be a coordinate with X, # v and define x' = hj—lo — h](x) and

y' = hj—lo ces© hl(x). If aj(x') = aj(y') then

T, o hGo) = Hi<x'i,aj ") = Hi<xi,aj ") #
B (50, 51)) = 1y By,

and therefore h(x) # h(y). If, however, aj(x') + uj(y') then in view of

~

g.om (x') =g.om

' , . v ' '
5° Teven 3 even(y ) there is a k < j with Bk(xk) # Bk(yk).

1 \ | 1 3 H 3 —
Consequently, Xy # Vi and {xk,yk} is not contained in [ ak,ak]. We can have

the following situations:

¥ = !
Xy and ™ ° h(y) Yy OF

(i) T ° hx)
(ii) For some t,r ¢ (-a, ,a,), 7, o h(x) = Hk(x') and w, o h(x) = Hk( ')
’ k%’ Tk £ ¥k k r K’

Since H& and HE are supported on (—ak,ak) we may conclude in both cases
that me° h(x) # ™o h(y). So h ¢ H(Q) and since h is the limit of a
sequence in the closed group Fw we have that h € Tw.

Let X € A and i = 2j-1. If x' = hj—lo cee© hl(x) then ™o hx) =

= 17,0 h.(x"), Since 7 x) == (x'") and x, = x! we have that
i 73 even even i i
~ ' = o = = = x!
gjo1Te\761t1(X ) gjo neven(x) gjo neven(x) *5 T %y

For every k ¢ W, X is an element of (—ak,ak) and since HE is supported on
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(-a, ,a, ) this implies that x' ¢ T (-a Consequently, o.(x') = x]
k7 k kelN It

o = i H ' =
and T h(x) H (xi,aj(x ) 0. So S

)

ad° h(A) < {Oodd} and the lemma is

proved,

We are now ready to prove that homeomorphisms between compacta in s

can be extended.

4,2.3 LEMMA: If A and A' are compact subsets of s and h is a homeo~

morphism from A onto A' then there is a boundary preserving f in Fw with

flA = h.

PROOF: Lemma 4.2.1 and 4.2.2 reduce the problem to the statement: if

A and A' are compacta in respectively s and s and h is a homeomorph-
) even odd

ism from A onto A' then there is an f ¢ FW such that £(B) = B and for every

a € A, f(a,0 ,h(a)). Define the compact subset C of s by

odd) = (Oeven

¢ = {(a,h(a))]a ¢ A} = ("' (b),b)|b e A'D.

We can apply lemma 4.2,2 to C: there is a Y, € T.. with YI(B> = B,

W

ey =W and ™ o y(C) ¢ {Oodd}‘ Analogously, there is a Y, € r

b
even even odd W

with YZ(B) =B, T

Y,° 1] e T, has the properties y,° v, (B) = B and for every a ¢ A,

=7 and T ven ® YZ(C) c {Oeven}' Then

odd V2 odd

Yo Y;l(a’oodd) = vpla,h(a)) = (0, p5h(a)).

(=3

Before we prove an estimated version of this lemma we give two

technical lemmas.
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4,2,4 LEMMA: Let U be a collection of open subsets of s and let A be
a compact space. If £ : A > s is a map and AO is a closed subset of A such
that f|A0 is an embedding andkf(A\AO) < UlU, then there is an embedding g of
A into s that is U-close to f and coincides with f on AO.
REMARK: This lemma is essentially Chapman [C: 8.1]. We have included a
more elementary proof.
PROOF: Let (F.).
i‘ie

and (Gi) be sequences of compact subsets of

N ielN

A\AO with the properties

txf
o
(]
[

@ for every 1 e IN,

u -
iem F1 T A\

and for all distinet x and y in A\AO there is an 1 € W such that x ¢ Fi and

y € Gi' Select for every 1 ¢ IN a closed neighbourhood Vi of AO with

Vi n (Fi U Gi) = (). Note that f(A\Vi) has compact closure in UU. This

enables us to select a strictly increasing sequence (mi)ie]N of natural
numbers with the property that for every x ¢ f(A\Vi) there is a U € U such

that U (x) < U. Observing that my,. o £(V.) is a compact subset of
g mj i

2/m;

o
Jmi = (=1,1) select with Tietze's extension theorem for every i ¢ N a

continuous g; ¢ A.—>~J;1i with the properties:
gilV; = mmy o £1V;
and
g; (V) n (g, (F) v g (6)) =g, (F) n g, (G) = 0.

Define the map g : A > s by Tmi © & = 83 for i e N and m.eg =T £

for i e]N\{mj[j € IN}. Obviously, we have that g[AO = f[AO. The properties
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of (Fi)ie]N and (Gi)ie]N imply that g is one-to-one and hence an embedding.
Let x ¢ A and assume that m, is the first coordinate with

o0 o
T, © f(x) # Tmg ° g(x). Then x ¢ A and since diam jgmi Jj = 1/mj, we have

that p(f(x),g(x)) < Z/mi. Consequently, there is a U ¢ U with

{f(x),g(x)} < Uz/m'(f(x)) < U. This means that £ and g are lU-close.
i
The following lemma is folklore.

4.2.5 LEMMA: ret (X,d) be a metric space and U a collection of open
subsets of X. Then there is a map € : X -+ 1 such that e_l((O,lj) = Ul and

for every x € X, {y € X[d(y,x) < e(x)} is contained in some member of U.

PROOF: We may assume without loss of generality that U is locally
finite and that d is bounded by 1. Define for every U ¢ U the map

fU : X > 1Iby

£, = d(x,X\0).
Since U is locally finite the function € : X » I defined by
e(x) = max {fU(x)[U e U}

is continuous. It is obvious that € meets the requirements.
We now come to the estimated .extension theorem for s.

4,2.6 THEOREM: Let U be a collection of open subsets of Q, A a compact

space and ¥ : A x I > s a homotopy that is limited by U. If FO and F] are

embeddings then there is a U-push h in {y € ley(s) = s} with htaFO = Fl'
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PROOF: We first introduce a notation. If o : X > I is continuous then

the variable product of X and I is the space
X xy I={(x,t)|x e Xand t ¢ [0,a(x)]} ¢ X x I.

Let AO be the closed subset of A that is determined by A I=

= F_I(Q\UU). We have that FtIAO = FOIA0 for £t € I and that U covers
F((A\AO) x I). Select an open covering V of F((A\AO) x I) in Q such that for
every a ¢ AXAO, st*(F({a} x I),V) is contained in some element of U. We may

assume that every member of I/ has a non-empty intersection with

F((A\A)) x I).

CLAIM 1: There exists an isotopy G : Q x I -~ Q that is 1imited by V
and has the properties: Gt € Fw and Gt(s) =s for t e I, GO = 1 and

GIO F](A\Ao) n FO(A) = @.

A proof of this assertion can be found below. Since UV < UU we have
that Gt[FO(AO) = 1 for each t ¢ I. We may assuﬁe that A is a subset of the
pseudo—interior of QZ' Let n be an element of (0,1) with n < ?i?Npi and
define o : Q2 + I by a(x) = p(x,AO)-n/Z. Let F : A Xy I~>s b;(;iven by

F(a,t) = (a) if a ¢ A\A,

C/aa) ° Fe/aca)

and

It

?(a,O) Fo(a) if a € A

0
It is easily verified that F is a continuous mapping that satisfies

F({a} x [0,0(a)]) c st (F({a} x I),V) for every a ¢ A\AO. Define the compact

subset X of A X I by

X = {(a,t) € A %, I]t =0 or t =oaa)}.
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Since §0 = FO’ F(a,a(a)) = G

we have that %]X is an embedding. According to lemma 4.2.4 there is an

° F](a) for a € A and G, o FI(A\AO) n FO(A) =0

1 1

embedding P of Ax I in s such that ¥ and P are VU~close and F[X = P|X. Note .

that we have for every a ¢ A\AO:

P({a} x [0,a(a)]) c st(F({a} x [0,a(a)]),V) < St2(F({a} x T),V).

CLAIM 2: There exists an isotopy H : Q x I - Q that is limited by
W= {st(P({a} x [O,m(a)]),V)la € A\AO} and that satisfies moreover Ht g Tw

and Ht(s) =g for t ¢ 1, HO =1 and Hlo FO = G]O Fl'

Define the isotopy g Qx I~ Q by

~ -1
Ht = (Gt) ° Ht for t e I.

One readily sees that B = 1, H oF =F_ and for t « I, ﬁt e T . and

0 1 1 0 w
H (s) = s. We shall see that H is limited by {st*(F({a} x I),V)Ia € A\AO}

t
and hence by U. Let x ¢ Q and assume firstly that H({x} x I) = {x}. Pick an
arbitrary t. ¢ I and let y be such that Gt(y) = x. If x ¢ UV then there is a
Ve V with {Go(y),Gt(y)} = {y,x} c V. Consequently, H({x} x I) is contained
in St({x},V) and since every element of V intersects F((A\AO) x 1),
H({x} x 1) c St2(F({a} x I),V) for some a « A\AO. If x ¢ UV then
G({x} x I) = {x} and hence H({x} x I) = {x}.
Consider now the second case that H({x} x I) is contained in
St(P({a} x [0,a(a)]),V) for some a ¢ A\AO. If t € I then we have as above

that there is a V € V such that {Ht(x),Ht(x)} < V., This means that

H({x} x I) is contained in St2(P({a} x [0,a(2)]1),V) and hence that

H({x} x 1) < st"(F({a} x I),V).
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So we may conclude that H, is the U-push we need. It remains to prove the

i

claims.

PROOF of claim 1: According to 4.2.1 and 4.2.2 there is a boundary

preserving ¥ in Fw such that mpexe F(A x I) < {0}. Let K(O) be the
projection of xoF (A,..) on Q, and select a 6 in (O,min p.). According to
1°7°(0) 2 P

lemma 4.2.5 there is a map € : Q2 -+ [0,8] such that E(K\KO) c (0,81 and for

every x € Q,, U (0,%) is contained in some element of x(V). Let
2 )

e(x

Q : J1 x [0,6]1 = J, be an isotopy of J, such that mo =1, wt(O) = Lt and wt

i 1

is supported on (-t,t) for t e [0,8], Define the isotopy G : Q x I > Q by

Gt(x,y) = )(x),y) for x e I, y ¢ Q2 and t € I.

te(y

The maps Gt are obviously boundary preserving and since 6 < min ps they are
1elN

elements of Tw. It is easily seen that G is limited by x(V) and that

G]({O} X (A\EO)) misses {0} x QZ’ This means that x—lo Gto x 1s the isotopy

we need.

PROOF of claim 2: Note that since A is a subset of the pseudo-interior

of Q2 the variable product A Xy I is contained in s (write Q = Q2 x J,). So

1
P is a homeomorphism between two compact subset of s. According to lemma
4.2.3 there is a boundary preserving h e Fw such that for each (a,t) e A Xy I

we have that h(a,t) = P(a,t). Consider the following open covering of

(A\AO) x, I in Q:

W = {UE({a} x [0,a(a)Da « A\AO, e > 0 and

u_({a} x [0,0(2)]) < b (W) for some W e U}.

By virtue of lemma 4.2.5 there is a map & : Q2 + [0,n/2] sué¢h that

G(A\AO) c {0,n/2] and for every x € Q2, Ué(x)(x,u(x)) is contained in some
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element of W', Define the open set 0 = {x ¢ Qzlé(x) > 0} and construct with
Tietze's theorem a continuous B : Q2\A0 ~ [0,n\2] that extends 0L|A\A0 and
satisfies B(x) = 0 for x ¢ 0 and B(xX) < a(x) for x € QZ\AO' Since afa) = 0
for a € AO the function B : Q2 + [0,n/2] that is defined by B(x) = B(x) if
x ¢ Aoyand E(x) =0 if x ¢ AO, is continuous.

Let C be the space ([0,n/2] x (0,n/21) v {(0,0)} < 12 and construct a

continuous function ¢ : J1 x C -~ J1 with the properties

v

£,r € HGD,

. is supported on (~t,r+t)
and

b (O = T,

where we used the notation wt r(x) = y(x,t,r) for x ¢ J, and (t,r) € C.

1

Just as if ¥ were an isotopy we can construct an isotopy H : Q x I >~ Q by
m.oH =7, if 1 > 1 and
S i

mye Ht(y,x) = P(x,8(y),t8(y)) for x € J1 and y € Q2.
The following properties of H are easily verified:

H =1,
H ¢ {y ¢ ley(s) =g} fort e I
and

Hl(a,O) = (a,a(a)) for a ¢ A.

We prove that H is limited by h_l(W). Let (y,x) € Q2 x J, and select an

1
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¢ > 0 and an a ¢ A\AO such that
c g,
Ué(y)(y,u(y)) Ue({a} x [0,a(a)]) € &

Then §(y) < ¢ and hence {y} x (-6(y),a(y) + 8(y)) is contained in

Ug({a} x [0,0(a)]) which is in turn a subset of an element h_l(W) of

h_](W). Recall that wé(y) B (y) is supported on (~6(y), tB(y) + 6(y)) and

hence on (-§(y),a(y) + 8(y)). This implies that H({(y,x)} x I) = {(y,x)} or

that H({y,x} x I) c {y} x (-8(y),a(y) + 8(y)). So we have shown that H is

1

limited by h wy.

Let us now introduce the isotopy
H =hoHtoh_1 for t e I.

Obviously, we have that Hé =1, Hé e {y ¢ ley(s) = s} for t ¢ I and that

H' is limited by W. H! is a W-push in T

1 with the property that for every

W

a e A:

HIoF () = hoH o hlop(a,0) = ho H, (a,0) =

h(a,o0(a))

]

P(a,0(a)) = f(a,a(a)) = GIO Fl(a).

This proves claim 2.

4.2.7 COROLLARY: Let A and A' be compact subsets of s. If h : A > A'

~

is a homeomorphism with g(h,]) < € then there is én h ¢ Fw with S(E,l) < g,

ﬁ]A = h and E(s) = g,

PROOF¥: Define the map F : A x I = s by F(a,t) = (1~t)a + th(a). The
straight-line homotopy F is limited by U = {Ue/z(x)lx € Q}. Apply theorem

4.2.6 to F. The U-push h we get has the properties herl E}A = h,

w’
5(%,1) < g and E(s) =3,
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4.3 The estimated extension theorem

In this section we reduce our problems to compacta in s so that theorem
4.2.6 can be applied. We prove that any compact set that is disjoint from W
can be homeomorphed into s. We conclude the section with an observation that

shows that Y is not quite as homogeneous as 22,

4.3.1 LEMMA: Let A be a compact subset of an endface Eg such that
AN W= 0. Then there are for each € > 0-an h ¢ Fw and an m > n such that

R(A) n U{E}|i < mand u e {-1,1}} = ¢, h(&) c E_' and §(h,1) < e.

PROOF: Let € > 0 and select anm > n with 1/m < p(A,Wn) and 1/m < /2.
We first push A into E;l and then away from the endfaces in the lower
coordinate directions. Noting that diam (Jm) = 1/m it is geometrically
obvious that there exists an s/Z;isotopy X B(Jn X Jm) x I > S(Jn X Jm)

such that Xg = 1,

xt[([~pm,pm] x {1} v ({-8} x Jm) =1 fort el
and

xl({e} x J ) eJ X {-1}.

See the facing page for a picture of X+




[ﬁn'pm]xﬁ}

\ \

{e}me XJ{G}me)

Noting that Jn X Jm is a subset of the linear space R? define the &/2~

isotopy x of Jn X Jm by Xt(O) =‘0 and
Qt(x) = x| Xt(X/||X” ) if x # 0 and t ¢ L.

Observe that it is norm preserving, i.e. [Ii(x)” = ||x]| for every x.

Define h ¢ H(Q) by ™o h = T for i # m,n and

oo hix) = Hib Xa(x)(xn’xm) for i = m,n,
where

a(x) = min {I,m.max ({-8} vu {p(xj,[-pn,pn])l

joe {1,...,m-1N\{n}D)}.

It is obvious that B(h,l) < ¢/2. The function h is a member of Fw because:

] = - = - 9 =
(a) Let x ¢ Mn. If © 1 then X 6 and Xt(xn,xm) (xn,xm) for every

65

t ¢ I. This means that h(x) = x. Let now 6 = 1., For every i # n we have
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that X, € [—pn,pn] and hence a(x) = 0. So again h(x) = x.

(b) If x ¢ W then (xn,xm) € [—pm,pm] x {1}. Since this set is fixed by X¢

and it we have that h(x) = x.

(c) Let i # m,n. Since X¢ is norm preserving we have that

- 2y = = 2 =
Xt([ pi,pi] )y =1L pi’Pi] and hence that h(wi) W, .

If x € A and 8 = -1 then a(x) = 1 which yields that h(x) ¢ E;l. if

8 = 1 then p(x,wn) > 1/m implies that there is a j < m such that j # n and
_ ~1 .
p(xj,[—pn,pn]) > 1/m. Consequently, a(x) = 1 and h(x) ¢ Em . The conclusion
is that h(A) < E;l.
m
Consider now Bm = jgl Jj and the projection p : Q » Bm. There is a
~ - m=1

homeomorphism ¢ of BBm such that p(y,1) < €/2, w(p(Eml)) c (jgl J}) x {-1}

and for every j < m, w]p(wj) = 1 (the picture gives the situation for

m = 3).

N -
O\ AN

AN

NN NN
Ny Ny

)
)

%,
Y,
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Let @ € H(Bm) be given by @(O) = 0 and @(x) = ]]x“ w(x/[[xﬂ ) for x # 0.
Define g ¢ H(Bm) by g(x,y) = (@(x),y) for x ¢ Bm and v ¢ Qm. We show that

g € Tw. If j < m then &[p(wj) = w(p(wi)) = 1 and hence gfwj =1. If i >m
then, since @ is norm preserving, we have that @([-pj,pj]m) = [—pj,pj]m
and g(wj) = wj. If x is an element of E;l then ﬁio @o p(x) € J; for i < m.
This means that g(E;I) and U{E?]i <mand u € {-1,1}} are disjoint. Also we
have that g(E;l) c E;] and p(g,1) < £/2. It is now obvious that go f is the

homeomorphism we need.

4.3.2 LEMMA: If A is a compact subset of Eg\w then there is for every

e>0anf el with p(£,1) < & and £(A) < s.

PROOF: Using the convergence criterion 1.1.2 we can find sequences

(fi)ie]N in I‘w and m < m, < m, < ... in N such that
R o R o 0.
£ = %iz fi v f1 € Fw and fi .. 0 fl(A) n U{Ejlj < my and

8 ¢ {-1,1}} = @. If we take care that for every i ¢ NN,

> ' 8.
j=§+l p(fj,l) <p(f e . .o £,(8), U{Ej]J <m; and 0 ¢ {-1,11H)

then f(A) < s.

4,3.3 LEMMA: If A is a compact subset of Y then for every Eg and £ > 0

there is an f € FW with E(f,]) < g and £(A) n Ei = @.

PROOF: Let A be a compactum in Y, let € > 0 and put
§ = min {%Q(A,Wn),e}. Define the compact set A = {x ¢ Eilp(x,A) < 8},

According to lemma 4.3.2 there is a x € ' with S(X,l) < 8/4 and x(A) < s.

W

If m is a natural number such that 1 =- P, < 8§/4 and 1/m < §/4 then there is

amap h : Q ~ Wm with E(h,l) < §/4. Note that he x(ﬁ) n A =@ and construct
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a continuous g : Q + s such that
6(g,1) < min {8/4,p(ho x(2),A)}.

Since go hoe x(g) c s and goho X(A) n A= @ there exists by virtue of

lemma 4.2.4 an embedding B of x(A) in s that satisfies
o(goh|x(R),B) < min {8/4,0(go° ho x(A),A)}.

We now have the following situation: p(B,1) < 38/4, B is a homeomorphism
between compact subsets of s and Bo x(A) n A = @. In view of corollary 4.2.7
there is an extension B « Fw of B with 5(§,1) < 38/4. Consider

£=@ox) ! ¢ Iy We have that F(£,1) < e and £(A) n A = @. If x e £(A)

then p(x,A) < & and x ¢ A. This implies that x ¢ Ei and the conclusion is

that £(A) n Eg = §.

4,3.4 LEMMA: If A is a compactum in Y then for every e > 0 there
exists an f ¢ FW such that S(f,l) < g and f(4) c s.
PROOF: This is a straightforward application of the convergence

criterion, see lemma 4.3.2.
Before we prove the main result a technical lemma.

4.3.5 LEMMA: Let U be a collection of open subsets of Q and let A be

a compact space. If f is a continuous function from A into Q and AO is a

closed subset of A such that f(A\AO) c Ul and f(AO) c s, then there is a
continuous g : A >~ s that is U-close to f and that coincides with f on AO.

PROOF: Select for every i ¢ N a compact neighbourhood Vi of AO with
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e}
™o f(Vi)'c Ji' Let (Ei)ie be a decreasing sequence of numbers from (0,1)

N
such that for every x ¢ f(A\Vi) there is a U ¢ U with Uai(x) c U. Select

o ~
for every i ¢ N a continuous g; * A > Ji such that p(gi,ﬂio f) < €5 and

gi]Vi =m0 f]Vi. Let g : A~ s be defined by Ti°8 =8y for i € IN. Assume

that x is an element of A with f(x) # g(x). If i is the first coordinate
with Moo f(x) # gi(x) then x ¢ Vi and there is a U € U such that

UEi(f(x)) c U. Since p(f(x),g(x)) < sup {p(ﬂiO f(x),gj(x))[j > i} < e; we
have that both f(x) and g(x) are in U. This shows that f and g are U-close

and since it is obvious that gIAO = f'A05 the proof is completed.

4.3.6 THEOREM: Let U be a collection of open subsets of Q, A a compact

space and F ¢+ A x I ~ Q a homotopy that is limited by U. If FO and Fl are

embeddings of A in Y then there is a U-push h in Ty with heFy =TF.

PROOF: Let AO be the closed subset of A that is determined by

AO x I = F_I(Q\UU). Since FO(A) U FI(A) is a compact subset of Y there

exists by virtue of lemma 4.3.4 an £ € T, with f(FO(A) U F](A)) < s, Let F

W
be the homotopy f o F. Select an open covering V of F((A\AO) x I) in Q such

that for every a ¢ A\AO’ st(F({a} x I),V) is contained in some element of
£(U). Note that "EO(A) v F a) = %'O(A) u EI(A) u F(A0 x I). According to
lemma 4.3.5 there is a homotopy G : A x I - s that is V~-close to F and that
coincides with F on (A x {0,1}) u (AO x I). Since G is also limited by

£f(U) we find with theorem 4.2.6 an f(U)-push g in T, such that go G, = G

W 0 17

Then h = £ 'ogof is a U-push in r, with hoF = F .

4.3.7 COROLLARY: If h is a homeomorphism between compacta in Y with

S(h,l) < € then it has an extension h € T__ such that a(ﬁ,l) < €.

W
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PROOF: See corollary 4.2.7.

The next corollary has already been introduced as theorem 3.1.2. It is

essentially due to Anderson = & Chapman [AC].

4.3.8 COROLLARY: Let U be a collection of open subsets of Q, A a
compact space and F : A x I >~ Q a homotopy that is limited by U. If both FO

and Fl are embeddings such that their image is a Z—-set then there exists a

lU-push h in H(Q) with he FO = F]'

PROOF: According to Chapman [C: 10.2] there is an £ ¢ H(Q) with
f(FO(A) U FI(A)) c s.c Y. Apply theorem 4.3.6 to the homotopy f o F.

As is well known theorem 4.3.6 holds also for £2 m~ g (cf. theorem
4.2.6). In £2 we can also extend homeomorphisms between non—-compact Z-sets,

Anderson [A2]. This is not the case for Y. To show this we need the

following lemma that we took from Anderson, Curtis & wvan Mill [ACM: 3.6].

4.3.9 LEMMA: Let B1 and B2 be 0~Z-sets in Q and let £ : Q\B] - Q\B2 be
a homeomorphism. Then there exist a compdct space M and monotone maps

-1 -1 . -1 _ -1
Yy»Yy i M > Q such that v (B)) =y, (By) and £ov [v] (Q\B)) = v,|v, (Q\B,).

Recall that a map h is monotone if it is onto, closed and has the
property that every fibre is connected or, equivalently, the pre-image under

h of every comnected set is connected.

PROOF: Let M be the closure of the graph of f in Q x Q and take for

Yy an v, the restrictions to M of the projections Q@ x Q - Q. By symmetry,
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it suffices to prove that Y4 is monotone. Since M is compact and Q\B1 is
dense in Q, Y, is closed and onto. Let x ¢ Q and consider the e-ball UE(x).
Since every path in Ue(x) connecting two points of Ue(x)\Bl’ can be pushed

off the o-Z~set B1 we have that Ue(x)\B] is connected. So

C = {ClM{(a,h(a))[a € UE(X)\B]}IE > 0}

is a collection of continua that is linearly ordered by c. Since

Y;]({x}) equals NC it is also a continuum. The other properties of v, and

Y, are obvious.

Now let L1 and L2 be two copies of (0,1) that are embedded in Y as

Z~-sets such that L1 U Wl U w2 and L2 U Wl are continua. So L1 and L2 are

paths going from W] to Wz and from W1 to Wl, respectively.

4.3.10 PROPOSITION: There is no h e H(Y) that throws L1 onto L2.

PROOF: Assume that h ¢ H(Y) has the property that h(L]) = LZ' There

are a compact space M and monotone maps Yio Yo o f M - Q such that
-1 -1 -1 _ -1 . ,
Yy W) = Yo (W) and ho YIIYI ) = YZIYZ (Y). Since W1 u W2 U L1 is a
continuum and Y, is monotone we have that Y;I(Wl U W2 u Ll) and hence

-1 . . -1 .
YZ(Y1 (W1 U w2 u L])) is a continuum. Note that YZ(Y] (W] u W2 U L])) is
covered by the disjoint collection {L2 u wl} ) {wi[i > 2}. Applying the
Sierpifiski theorem, see section 5.2, we find that YZ(Y;I(W] U W2 U Ll)) is
contained in L2 U W]. Since yIl(W) = ygl(w) this means that
YI](W} U WZ) c ygl(w]). If we apply the same argument to the continuum

y](yzl(wl)) we find that Yl(y;](wl)) =W, uW, which is obviously false.
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4.4 Shifting shrunken endfaces

In this section we prove that whatever choice we make for p € R, the
space Y is topologically always the same. Furthermore, it is shown that
subsets of Y that are homeomorphic to Q are negligible. In order to prove
the first assertion we need a notation that distinguishes between

representations of Y.

4.4.1 NOTATION: If r € (0,1) and i ¢ N then we define the shrunken

endface Wi(r) by

W (r) = 7 (i1 n A ng‘ (C-r,r]).

= . = .U .(p.)s N i i
If p (p )lE]N e R then W(p) Y Wl(pl), FW(p) and Yp are defined in

i

the obvious way. The set R¢ is given by

Rt - {p € R]pI <Py <Py < R

4.4.2 LEMMA: If p ¢ R then there is a q € R+ and an £ e H(Q) such that
£(Y =Y .
( p) q
PROOF: Let p ¢ R. We show that there are a q ¢ R and an £ ¢ H(Q) such
that for i # j, q; # 4; and f(YP) = Yq' If we have established this then
the lemma follows by simply applying a permutation of coordinates.
We construct inductively a sequence fl’fz’f3"" in H(Q) and a

sequence q;,4y,qy5- - in (0,1) such that for every i e IN:

a; ¢ {9y, -en 595 )
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fi(Wj(qj)) Wj(qj) for j < i,

It

and

fi(Wj(pj)) W (Pj) for j > i.

In order to obtain that f = lim fio .. © f] e H(Q) we make sure that every
i
fi can be chosen arbitrarily close to 1. It is obvious that f and

q = (qi)ielN meet the requirements.

Put £. = 1 and q, =P

1 Suppose that hi and q; have been selected. Let

z
e > 0 be such that (pi+1, Pt g) n {ql,...,qi} =@ and Py, tES 1.

of (p.

Pick an element 9 i+1? Pi+l

+ g) and define r ¢ R by rj = qj for

j <1 and rj = pj for j > i. Let x € f(Q) be defined by x(x) = (X]""’Xi’

)) and x(W. .(q.

-x .). Note that X(Wi+1(pi+] it 1+1)) are .

i+1? Fie2> Fie3oe
subsets of Yr and that there exists a homeomorphism

g H X(wi+1(Pi+I)) d X(wi+1(qi+1)) Wlth 9(8,1) < qi+1 - pi+1- In view Of

corollary 4.3.7 there is an extension g ¢ of g such that

Rﬂ(r)
p(g,1) < 9e1 " Piyq - Then fi+1 = x° gox has the following properties:

A
v

fi+1(wj(qj)) = Wj(qj) for j

fi”(WiH(PiH)) = Wi+1(qi+1),

fi+1(wj(pj)) = Wj(pj) for j > i+l
and

i+1’1) < 93417 Pit1
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This completes the induction.

4.4,3 THEOREM: If p,q € R then there is an f ¢ H(Q) such that
£(Y =Y .
(P) q
PROOF: In view of lemma 4.4.2 it suffices to prove the theorem for
P,q € R+. Let B be an element of H(J) such that for every i ¢ N, B(pi) = q.

1

and B(-p;) = -q;. If £ = T 8 ¢ H(Q) then f(YP) =Y.

)

4.4, 4 LEMMA®/ : 1f p € R+ then there is an f ¢ H(Q) such that for every

ieW, f(Wi(Pi)) =W. . (p:, ).

i+1 0 i+1

PROOF: Let p ¢ R¢ and construct for every i ¢ N a norm preserving

Bi e H(J x J) such that

RS S YR NP E A Sy YU EY JENR
and

Bi([pzi,pZiJ x {1}) = {-1} x [—pzi,pZi].
If we define x ¢ H(Q) by

x(x) = (BI(XI’XZ)’ 62(x3,x4), 83(X5,X6), ees)

then we have for every i ¢ W, X(WZi—](pzi—l)) = w2i—l(p2i—l) and

-1 -1
X,y (py)) = myr (=11 0 j#£&—1 " (C=py;5py; 1)

Let vy be the homeomorphism of Q that interchanges adjacent odd and even

*)

This lemma is due to R.D. Anderson (unpublished).
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coordinates:
Y(x) = (X23X11X43X35X6,X53-'0)-
Define @ € H(Q) by
Ox) = (x,, 87 (x,0x), 820 (x,,x0), 87 (x,,%,) )
1’71 2°7372 72 4’7577 73 6’777 "

Observe that for every i € N we have that w(WZi(pZi_l)) = WZi(pZi—l) and

-1, n =1 e _
Oy (=11 0 sgns Ty (DopggsPy D) = Wy (Pgy)-

Sincg (pi)ie]N is strictly increasing there is an o € f(J) such that for

every 1 ¢ W, a(pi) =D and u(—pi) = "Piiq- If we put ¢ = iTT o then it

i+l elN

is easily verified that £ = po@eo yox has the property:

f(Wi(pi)) =W (p.+1) for every i e WN.

i+ 51

4.4.5 THEOREM: Any subset of Y that is homeomorphic to Q is negligible.

PROOF: Let Y be represented by Yp, where p € R¢, and let £ ¢ H(Q) be

for i € . Then f‘l(wl) is

a "shift" on the shrunken endfaces: f(wi) = Wi+1

a negligible subset of Y and in view of the homeomorphism extension theorem

4.3.7 this implies that every copy of Q 1s negligible in Y.







CHAPTER 5

FAKE HILBERT SPACES

5.1 Introduction

The study of "fake Hilbert spaces' has been inspired by Toruficzyk's

characterization of £2. Before we state it some definitioms.

5.1.1 DEFINITION: A space X is called an absolute retract (aR) if for
every space Z, every map into X that is defined on a closed subset of Z can
be extended over Z. A space X is called an absolute neighbourhood retract
(ANR) if for every space Z and every map f from a closed subset ZO of 'Z into
X there is a neighbourhood of Z. in Z over which f can be extended. For

0

information concerning A(N)R's see Borsuk [B1].

5.1.2 DEFINITION: A collection D of subsets of a space X is discrete
if each point of X has a neighbourhood intersecting at most one member of
D. A space X is said to have the strong discrete approximation property
(spapr) if for every admissible metric d on X, every € > 0 and every map £
from the countable free union of Hilbert cubes i?EIQi into X there is a

map g: igﬂﬁ Qi -+ X such that d(f,g) < € and {g(Qi)ll ¢ N} is discrete.

5.1.3 THEOREM (Toruficzyk [T21): A topologically complete AR is homeo-

morphic to £2 iff it has the SDAP.
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This extremely useful characterization has now become the standard
method for recognizing topological Hilbert spaces. In Anderson, Curtis &
van Mill [ACM] it was shown that the SDAP cannot be relaxed by considering
only one metric on the space. Specifically, they constructed a topologically

complete AR space X with the following properties:

(1) There is an admissible metric d on X such that for every € > 0 and

continuous f : Qi =+ X there is a map g : Qi ~ X that satis-

i 9w i

fies a(g,f) < g while'{g(Qi)]i € N} is discrete (this is called the

weak discrete approximation property, WDAP).
(2) Every compact subset of X is a Z-set.
(3) X embeds as a linearly convex subset of £2.
(4) X x X= L2,
(5) X is homogeneous.
(6) Every countable subset of X is strongly negligible.
(7) No Cantor set is negligible in X.

Since in £2 every o-compact set is strongly negligible, Anderson [A31,
property (7) shows that X # £2, The space X is a "fake topological Hilbert
space" since it has many of the familiar topological properties of £2 but
yet i1s not homeomorphic to it. As an "application" we get that the
properties (1) through (6) do not characterize £2, 1t is useful to push
this point further. Every '"fake topological Hilbert space" blocks a possible
generalization of Toruficzyk's theorem.

The aim of this chapter is to construct spaces that "“approximate! £2

closer than the space above. We are interested in dimension theory and
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negligibility properties and we shall obtain a characterization of dimension
in terms of negligibility.

Consider the space Y defined in section 4.1. Recall that we proved in
section 3.2 that there is for every k ¢ {0,1,2,...} a strong (Sk,H(Q))—
skeletoid Ak in Q, where Sk is the collection of Z=-sets in Q with dimension

< k. For convenience, we put A_, = ¢ and S_, = {#}. The skeletoids A, were

1
constructed in the pseudo-interior s of Q which is a subset of Y (indeed,
we may always assume this, because every o-Z-set can be pushed into s).

Let k e'{—l,O,l,...} and Ak be fixed in the remaining part of this chapter.

The space Xk is defined as

% = T

We shall prove that Xk is a topologically complete AR, which is not
).

homeomorphic to £2 but which has the following properties*
(1) Xk has the WDAP.
(2) Every compact subset of Xk is a Z-set.

(3) Xk embeds as linearly convex subset of 22,

) X x X o~ 22

(5) Let U be a collection of open subsets in Xk’ A a compact space and

F:AxTI > X a homotopy that is limited by U. If F, and F1 are

0

embeddings then there is an h ¢ H(Xk) that is U-close to 1 and has
the property he FO = FI' Since Xk is an AR this implies that Xk is

homogeneous.

This result was established in Dijkstra & van Mill [DM].
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(6) If Ac Xk is o—compact, then A is strongly negligible iff dim (A) < k

(in particular, X, #* Xk' if k # k").

(7) If Ac Xk is a compactum of fundamental dimension at most k, then A is
negligible (in particular, if C c Xk is an n-cell, then C is negligible

and C is strongly negligible iff n < k).

5.2 A generalization of the Sierpifiski theorem

The aim of this section is to prove a generalization of Sierpifiski's
theorem that no continuum (i.e. a compact connected space) cén be
partitioned into countably many pairwise disjoint non-empty closed subsets,
see Sierpifiski [S] or [El: p.440]. This generalization plays a key role in
deciding whether a subset of Xk is strongly negligible. Since we feel that
the result is of independent interest we have put it in a separate segtion.

As usual, S” denotes the n-sphere, n ¢ {0,1,2,...}.

5.2.1 THEOREM: Let n be a nonnegative integer and X a compact space.
If'{FiIi € N} is a closed covering of X such that for each pair of distinct
natural numbers i and j, dim (Fi n Fj) < n then every map f : F] 8" can

be extended over X.

The theorem is also valid outside the class of metric spaces, see
Dijkstra [D3]. The reader is encouraged to verify that Sierpifiski's theorem

follows easily if one substitutes n = 0.

PROOF: We shall work with the following induction hypothesis for

n=0,1,2,...
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Let X be a compact space and M an AR. If‘{FiIi ¢ N} is a closed
covering of X such that for every 1 and j with i # j, dim (Fi n Fj) <n

then every map f : F1 > 8" x M is extendable over X.

Consider the case n = 0, where we have that s® is the discrete double-
ton {-1,1} and'{Fi]i € N} is a pairwise disjoint collection. Assume that
the closed set A = f_l({—l} X M) <« F1 is non-empty. Let X be the space we
obtain from X by identifying A to a single point a and let q : X > X be the
decomposition map. If C is the component of a in X then it is a continuum

with the following pairwise disjoint, closed covering:
{{a},d n Y v {F; n c|i 2 2},

where A = f_l({]} x M). According to Sierpifiski we have that C = {a}. Since
X is a compact Hausdorff space there is a clopen neighbourhood O of a in X
that misses A. Because M is an AR we can find maps g ¢ q_l(O) > {-1} x M

and g, "' (®\0) > {1} x M such that g A = £|A and g,|& = £|K. Then

|
i

g Y gy is the required extension of f.
Assume now that the induction hypothesis holds for n. Let {Fi[i e N}

be a closed covering of X such that for i # j, dim (Fi n Fj) < n and let

n+ . .
£f:X~>8 ! x M be continuous. According to the countable sum theorem

(see [E2:3.1.8]) the set R = U{Fi n Fj!i,j € N with 1 # j} has dimension

.. . . +1
< n. Select two distinct points X, and %, in gt and note that

+1 . . . .
g™ 1\{X1’X2} is homeomorphic to s™ x R. Using the separation theorem (see

[E2:4.1.13]) we find a closed covering {HI’HZ} of X such that for

e (1,2}, 8 oo f_l({xj} x M) = ¢ and

dim(Hl n H, n R) < n.

2

Consider the compact space X' = H1 n H2 and its closed covering

{Fi n X'|i ¢ W}. Obviously, we have for i # j that
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dim (Fi n Fj n X' <dim (Rn X') < n. Observe that fIFl n X' is a

. . . + . . .
continuous mapping into (s™ ]\{x],xz}) x M, which space is homeomorphic to

S" xR x M. SinceR x M is, as product of AR's, itself an AR we may apply

n+1

the induction hypothesis to find a continuous g : X' - (S \{xl,xz}) x M

with g]F1 nXx' = f]F1 n X'. Observing that Sn+1\{xj} is homeomorphic to

n+l P . .
R select for j ¢ {1,2} a continuous extension

n+1

hi : Hj - (S \{Xj}) x M of (f[F1 n Hj) U g. Thenh =h, v h2 is a map

1

1

. + . .
from X into S x M which extends f and the theorem is proved.

5.3 Some topological properties of X

In this section we give a number of properties that Xk shares with £2;

we show that Xk is a "fake Hilbert space".

5.3.1 THEOREM:
(1) Xk is topologically complete.
(2) Xk embeds as a linearly convex set in £2 and hence it is an AR.
3) X, has the WDAP.

(4) Every compact subset of Xk is a Z-set.
(5) Xk X Xk =~ Kz.

PROOF: It is proved in Anderson, Curtis & van Mill [ACM: sec.3] that
if A is a o-Z-set in Q such that for every € > O there is amap R : Q »- A

with p(8,1) < £ then Q\A satisfies (1) through (5).
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We now turn to the homogeneity properties of Xk' Put

Skw = {S c Y|S is compact and dim (S) < k}.

Since every compact subset of Y is a Z-set in Q it follows that
Sy = (5 €S snw=g

We have the following proposition:

5.3.2 PROPOSITION: Ak is a strong (S Fw)—skeletoidm in Q and a strong

kW’

(S H(Y))—skeletoidﬂ in Y.

kw’

PROOF: Since Ak nw=4g, Ak is a member of (Skw)o' Let S be in SkW and
assume that U is a collection of open subsets of Q that covers S. Put
0 = UU and select a closed neighbourhood F of Q\O that misses S. Let
i .
(Ak)ieJN be the skeleton that corresponds with Ak and let n € WN. There are
an m € N and an isotopy H of Q such that H is limited by {IntQ(F)} u U

HO =1, HI(S) < Am and HtIF U An = 1 for every t ¢ I. So H]S x I is a homo-

topy that i1s limited by {U\An[U e U} and with the property that HOIS and
HIIS are embeddings of S into Y. According to theorem 4.3.6 there is a

{U\AnlU € Ul~push h in T with h(8) < Am. This proves that Ak is a strong

W

s Pw)—skeletoidﬂ. Since h|Y is a {U n Y|U e U}~-push in

kW’

{y € H(Y)IYIAn = 1} we have also proved that Ak is a strong (S, ,H(Y))~

kW’

skeletoid .

5.3.3 THEOREM: Let U be a collection of open subsets in Q, A a compact

space and F : A x I + Q a homotopy that is limited by U. If FO and F] are

embeddings of A in Xk then there is an h ¢ Fw that is U~close to 1 and that

has the properties h(JFO = Fl and hIXk € H(Xk).
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PROOF: According to theorem 4.3.6 there is an f ¢ Fw that is U-close

to 1 and satisfies fo F0 = FI' Using theorem 1.2.13 we find an h ¢ Fw that

extends f[FO(A) and has the properties that it is lU-close to 1 and

h(A) = A .

5.3.4 COROLLARY: Let U be a collection of open subsets of Xk’ A a
compact space and F : A x 1~ Xk a homotopy that is limited by U. If F1 and
FO are embeddings then there is an h ¢ H(Xk) that is U-close to 1 and has
the property he FO = F].

PROQF: This is trivial.

5.3.5 REMARK: In view of theorem 4.3.6 it is natural to ask whether
the homeomorphism of corollary 5.3.4 can be chosen in such a way that it is
isotopic to the identity of Xk‘ This is not the case for k = 0. We believe
that for k > 0 the spaces Xk also behave "badly" in this respect, but we
have no proof of this assertion.

Consider an isotopy H : X, x I » X, x I such that H, = 1. We shall

0 0 0
show that H1 = 1 for every t ¢ I. Pick an arbitrary point x in AO and let
(Xn)ne]N be a sequence in XO that converges to x in Q. There 1is a copy L of

[0,1) in X0 such that {xn[n e N} ¢ L and L u {x} = I (use the fact that
every Z-set in Q is thin). If we put D = H(L x I) then D is a closed subset

of X, x I that is homeomorphic to [0,1) x I. Let K = C1 (D)\D and let X

0 Qx I

be the projection of K into the first factor of the product Q x I. Then K

and X are continua\ which are contained in (W u AO) X I and WU AO’

respectively. Since AO U W can be written as a.disjoint union of compacta

~

and since x ¢ K n A, Sierpifiski's theorem gives that KcA

0’ Now A, is

0’ 0
totally disconnected and hence K = {x}. This implies that lim Ht(xi) = x
i->e0
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for every t ¢ I and hence Ht can be extended over Y with the identity on AO.

Since AO is dense in Y we have that Ht = 1 for every t ¢ I.
So we may conclude that if f and g are isotopic members of H(XO) then

f =g (cf. remark 1.2.15).

5.3.6 COROLLARY: Let A be compact and £ : A »> Xk continuous. If A' is
a. closed subset of A such that f|A' is an embedding and if U is an open
cbvering of Xk’ then there is an embedding g of A in Xk such that g and £

are U-close and g|A' = £|A".

PROOF: It is no problem to find a subset R of Xk that is homeomorphic
to s; put for instance R = {-1} x iﬁZ (-1,1). Let C be a subset of R that
is homeomorphic¢ to f(A). Both embeddings of f(A) in Xk are of course
homotopic in Q and hence there is an h ¢ H(Xk) such that he £(A) < R. Since
R ~ s, there is according to lemma 4.2.4 an embedding g of A in R such that
g and ho f are h{l)-close and g|A' = ho f|A". If E = h_lo g then § and f

are U-close and g|A' = £|A'.

5.4 Negligibility and dimension

In this section we shall prove the connexions that exist between

(strong) negligibility in Xk and dimension.

5.4.1 THEOREM: Every o-compact subset of Xk with dimension at most k

is strongly negligible.

PROOF: As observed in the preceeding section, Ak is a strong
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S H(Y))—skeletoida. Now apply proposition 1.2.10 and theorem 1.2.12.

kW’

1

We identify s""" and the boundary aT" for every natural number n. Let

X be a space. Amap f : X » 1" is called essential if f|f_1(Sn_1) cannot be

extended to a map g : X - Sn—l.

5.4.2 LEMMA: Let n be a natural number with n > k. If A is a compact
subset of'Xk and £ : A~ 1" is essential then f—l(Int In) is not negligible
in Xk’

PRCOF: Let R = f_l(Sn*I) and O = A\R. In view of corollary 5.3.6 we
may assume that A x I is a subset of X, such that A x {0} coincides with A.
Suppose that O is a negligible subset of Xk' This implies that
7 = (A x I)\O can be embedded as a closed subset in Xk‘ Assume that Z is

reembedded as a closed subset in Xk and let Z be the closure of Z in Q. Put

*

N
il

7\Z and note that the local compactness of A x (0,1] implies that
Z U R is compact. Also, 7" is a closed subset of Q\Xk = Ak U W. Since

Z° n Ak is o—compact and at most (n-1)-dimensional, we can find a sequence

(F.)

171elN and

’ * *
of compact subsets of Z' n Ak such that Z n Ak = i%]N Fi

Fi n Fj is at most (n-2)-dimensional for all distinct i,j ¢ N. In addition,
observe that Z° n W is a countable disjoint union of compacta and that
Wn Ak = {}. Theorem 5.2.1 implies that the map g = f|R can be extended to a

map g : (Z* U R) > Sn—]. Since Sn_1 ig an ANR there is an open U containing

AT (R x I) such that the map h, defined by
— . *
h(x) = g(x) if x e Z UR
and

h(x,t) = f(x) if (x,t) € R x I,
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: U~ Sn_l. Since (A x (0,11)\U is compact

=

can be extended to a continuous
there is an € € (0,1] such that A x {e} ¢ U. Define the function
n:A-> Sn~1 by n(a) = h(a,e) , a € A. Then niR = f[R and n(A) c Sn*l, which

means that £ is not essential.

5.4.3 COROLLARY: 7f n ¢ W and n > k then there exist copies of R" in

Xk that are not negligible.
PROOF: I" is embedded in Xk’ corollary 5.3.6, and IIn is essential.
5.4.4 COROLLARY: X, is not homeomorphic to £2,

PROOF: As remarked in section 3.1, every c-compact subset of £2 is
strongly negligible.

5.4.5 COROLLARY: X, does not admit the structure of a topological

k

group.

PROOF: £2 is the only infinite dimensional topological group that is a

complete AR (Dobrowolski & Toruficzyk [DT]).

5.4.6 REMARK: With the method of lemma 5.4.2 and corollaries we can
prove that if C is a compact space containing £2 and C\{£2 = i%]N Fi’ where
the Fi's are compacta, then there is for every m ¢ N an infinite set
{im[m ¢ W} of natural numbers greater than n such that for every m ¢ W,
dim (Fim n Fim+1) > n.

We sketch a proof. Define the following equivalence relation on

N={ieWN|]i>n}:m~1if there is a sequence m = il’iZ""’ ij =1 in N
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with dim (F ) 2nforr=1,2,..., j-1. If there is an infinite

1r+1
equivalence class we are done. If every class is finite we define new
compacta G[i] = U{F.{j ~ i}, where [i] is the class of i ¢ N. Note that if
[i]l # [j] then dim (G[ 7N G ]) < n. Let U be an open, non-empty subset of
£2 which closure in C misses igl F.. If z = \(Int ™ ) x {0} then we

can embed Z as a closed subset in £2 such that Z c U. The proof of lemma

5.4.2 shows that we cannot do this im C\ (.U | Fi) = C\.U F..

U
ieN [1]
We now come to the announced characterizations of dimension in terms

of negligibility.

5.4.7 THEOREM: Let k # —1. For every o-compact space A, the following

statements are equivalent:
(1) dim (A) <

(2) There is an embedding f of A in Xk such that for every open O in A,

£(0) is negligible in Xk'

(3) Every embedding f of A in Xk has the property that for every open 0 in

A, £(0) is negligible in Xk'

PROOF: (1) = (3). If dim (A) < k then by theorem 5.4.1 £(A) is strongly
negligible. Consequently, every relatively open subset of f(A) is megligible.

(3) = (2). By corollary 5.3.6, Xk is universal.

(2) = (1). Assume that A satisfies (2) for some embedding f.

Write A as a countable union of compacta FI’F . We show that F.1

2,F3,...
also satisfies (2). Let i ¢ N and let O be a relatively open subset of Fi'
Choose an open 0 in A with O n Fi = 0. Since A satisfies (2) there exist

two homeomorphisms o : Xk - Xk\f(a) and B : Xk - Xk\f(a\Fi). In view of the

homeomorphism extension theorem 5.3.4 there is a v ¢ H(Xk) with




89

Yo f[Fi = B_]o f|Fi' Then Y_lo Bwlo o« is a homeomorphism from Xk onto

1

v les  earx) =y

v et E@) = v xpe!

]

° £(F, 0 )

i

Xk\f(Fi n 0) = X\£(0),

which proves the claim that Fi satisfies (2). Since Fi is compact lemma
5.4.2 implies that no map from Fi into Ik+1 is essential. This means that
dim (Fi) < k, see [E2: 1.9.A]. According to the countable sum theorem, see

[E2 : 3.1.8], we have that dim (A) < k.

5.4.8 REMARK: As for the case k = -1, we shall show in the next section

that a space A satisfies (2) or (3) iff it is finite.

5.4.9 LEMMA: If A is a nonempty, compact subset of Y = X_1 and if

f : Y > Y\A is a homeomorphism then {x € Yif(x) = x} is a Z-set in Y.

PROOF: According to lemma 4.3.9 there exist a compact space M and
monotone maps g,h from M onto Q with g—l(Y) = h_l(Y\A) and f o g]g~1(Y) =
= h]g_I(Y). Consider a shrunken endface Wi. Since h is monotone we have that
g(h_l(wi)) is a continuum in W. By Sierpifiski's theorem there is an o(i) ¢ IN
. -1 -1
with g(h (Wi)) c wa(i)' Analogously we can show that h(g (wa(i))) « Wi.

So for every i ¢ I, h_l(Wi) = g_l

(W ,..) and hence o 1s one—-to—-one. Since
a(i)
g(h—l(A)) is a non—empty subspace of W, a(@) # N. Put Z = {x ¢ Y[f(x) = x}.
Let vy be a map from Q into Y and let € > 0. Since a : N >IN is one~to—~one
but not onto there exist an i ¢ N and a map B : Q wu(i) such that
a(i)
-1 . .
the set O = Ué(wa(i))\g(h (Q\Uﬁ(wi))) is a neighbourhood of Wa

- . . o . -1 _ -l
p(B,1) < €/2 and 1 # a(i). Put § 2p(wi,wa(i)). Since g (W ) h (wi),
(i) Since

fo g]g—l(Y) = h]g_](Y) the sets Z and O are disjoint. Let 8' be an element

of (0,e/2) such that Ud'(wu(i)) c 0 and construct a map n : Q > s with
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S(n,l) < 8', Then the map y' = no Boy has the properties:

6(y',y) < p(n,1) + p(B,1) < € and
Y'(Q < ”(Wu(i)) c0nscY\Z.

This proves that Z is a Z-set in Y.

5.4.10 THEOREM: ret A be a o-compact space. The following statements

are equivalent:
(1) dim (&) < k.

(2) There is an embedding f of A in Xk such that f£(A) is strongly

negligible in Xk'

(3) Every subset of Xk that is homeomorphic to A is strongly negligible.

PROOF: (1) » (3). Apply theorem 5.4.1.

(3) » (2). This is trivial.

(2) » (1). Note that every relatively open subset of a strongly
negligible set is negligible. If k # -1, apply theorem 5.4.7. Let A satisfy
(2) for k = —-1. If A is non—-empty then there is an a ¢ A such that {f(a)}
is strongly negligible in X—l’ proposition 1.2.2. This means that for every
neighbourhood U of f(a) there is a homeomorphism g : X_1 »~X_]\{f(a)} that
is supported on U. Since a Z-set is always nowhere dense this contradicts
lemma 5.4.9. So we may conclude that A= ¢ and dim (A) = -1. Note that we
did not use the o-compactness of A here: the empty set is the only strongly
negligible subset of X~1'
We conclude this section with discussing a generalization of

o-compactness, strongly o-complete spaces (cf. section 2.3). Note that
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every negligible subset of a complete space is strongly o~complete. So
strongly o-complete spaces are the most general type of spaces for which it

makes sense to consider negligibility in Xk'

5.4.11 PROPOSITION: Every strongly o-complete space with dimension < k

has a strongly negligible embedding in Xk'

PROOF: Let S be a space with dimension < k and let (Si)i‘ﬁm be a
sequence of closed, topologically complete subsets of S with § = i%]N Si.
Select a < k-dimensional compactification C of S (see [E2:1.7.2]) and

assume that C is embedded in Xk' Define for 1 e W, Ri = ClC(Si)\Si and

U R.. Since Si is closed in S we have that

b=y C1c(sj)’ R elN

i
Ri = ClC(Si)\S and hence S = P\R. The set Ri is the remainder of a
topologically complete space in a compact space and hence a o~compact space.
So also R is a o~compact space with dimension < k. Consequently, R u Ak is

an (S, ,H(Y))-absorber in Y. According to the uniqueness theorem 1.2.11

kW’
there is an f ¢ H(Y) with £f(R u Ak) = Ak' This means that
£(8) = f(P)\Ak c Xk' The space f(P) is an element of (Skw)c and hence

theorem 1.2.12 implies that £(S) is a strongly negligible subset of Xk'

We do not know whether the converse of this proposition holds. Note
that every non-c-compact space has a nonnegligible embedding in Xk (embed
a compactification of the space in Xk and observe that it is mnot an Fa—set).
If we apply the argument of proposition 5.4.11 to the pseudo-boundary B in

Q (see also theorem 2.3.7) we find that £2 is universal for V:.

5.4.12 THEOREM: Let X be a space. The following statements are equi-

valent:
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(1) X is strongly o-complete.
(2) X is homeomorphic to a (strongly) negligible subset of £2.

(3) X is homeomorphic to an Fo—set in £2,

5.5. Negligibility and shape

In this section we shall discuss a connexion between negligibility of
compacta in Xk and fundamental dimension. We begin by giving the definition
of shape in the sense of Borsuk [B2].

Let A and A' be compacta in Q. A shape map { from A to A' is a sequence
fﬁ : Q> Q, n e N, of maps with the following property: for every
neighbourhood V of A' there are a neighbourhood U of A and a natural number
n such that for every m > n, fmIU and fm+llU are homotopic in V, i.e. there

isamap F : U x I >V with fm[U = F_ and fm+1[U =F . We write

0 1

§ = (fn,A,A'). If 4 = (fn,A,A') and g = (gn,A,A') are two shape maps from A
to A' we say that § and g are homotopic if there are for every neighbourhood
V of A' an n € N and a neighbourhood U of A such that fm[U and gm[U are
homotopic in V for m > n.

The identity shape map is 1A = (1 ,AA). If § = (fn,A,A') and

Q
g = (gn,A',A") are shape maps then their composition is the shape map

gef = (gno fn,A,A"). We say that A and A' have the same shape, notation
Sh(A) = Sh(A'), if there exist a shape map { from A to A' and a shape map g
from A' to A such that go § and f o g are homotopic to 7A and 7A"
respectively. One may show that this notion is independent of the given

embeddings of A and A' in Q.

We now state the complement theorem that is due to Chapman [C: sec.25].
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5.5.1 THEOREM: If A and A' are z-sets in Q then Sh(A) = Sh(A') iff

Q\A ~ Q\A'.

5.5.2 COROLLARY: If A is a non-empty Z-set in Q then A has trivial
shape (i.e. the shape of a singleton) iff Q/A & Q, where Q/A is the space

we obtain by identifying A to a point.

PROOF: If Q/A ~ Q then Q\A = Q\{p} for some p ¢ Q and hence A and {p}
have the same shape.

If A has trivial shape then for every p ¢ Q, Q\A ~ Q\{p}. Observe that
Q/A and Q are one-point compactifications of Q\A and Q\{p}. Since one-point

compactifications are unique this implies that Q/A = Q.

We have for Xk the following analogue of Chapman's theorem.

5.5.3 LEMMA: If A and A' are compacta in Xk with the same shape then
there is a homeomorphism h : Q\A -~ Q\A' with h(Ak) = Ak and h(Wi) = Wi for

every i ¢ W.

PROOF: The method is based on Chapman's proof for theorem 5.5.1. Let
§ = (fn,A,A') and g = (gn,A',A) be shape maps such that fog and go § are
homotopic to IA' and TA’ respectively. Since W u Ak is a o-Z-set we may
assume that for every n ¢ N both fn(Q) and gn(Q) are contained in Xk' It is
left as an exercise to the reader to verify this. We shall construct
inductively a sequence XpoXgoXgsen in {y ¢ Twly(Xk) = Xk} and a sequence
O1 =] O2 > O3 > ... of open meighbourhoods of A in Q such that for every

i'e N, x.(0,) contains A' and there exist an n € N and an open neighbourhood
iti

V of A' in Q with the property that V c Xi(oi) and 1V is in Xi(oi) homotopic
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to x;° gm[V for every m 2 n. The basis step of the induction is X; = 1 and
O1 = Q.

Assume that X; and Oi have been constructed and that they satisfy the
induction hypothesis. Since f{ is a shape map and since go § and 1A are

homotopic there exist an m > n and an open neighbourhood P of A in Q such

£ . |p,

that P c Oi’ 8y ° fm]P and IP are homotopic in Oi and fmIP, fm+1!P, 2

... are all homotopic in V' =V n U Since fm(A) cV'n Xk there

1
2/ ey A1)
is in view of corollary 5.3.6 an embedding o of A in V' n Xk that is in V'

homotopic to fmIA. We have that the following maps are homotopic to each

other in xi(Oi):
o, fm[A, X; © By fm[A and xi[A.

Using theorem 5.3.3 we find a B ¢ {y ¢ ley(Xk) = Xk} that is supported on
Xi(oi) and satisfies a = Bo Xi[A. So Bo inA and fmIA are homotopic in V'.
Since V' is, as open subset of Q, an ANR there is an open neighbourhood

0. of A in Q such that Be Xi|0i+] and fmIO. are homotopic in V'. We may

i+1 1+1

assume 1in addition that Oi+1 c UZ/(i+1)(A) n P. Note that Oi+1 and

. . ' .
Bo Xi(oi+l) are contained in Oi and V', respectively.

Since g is a shape map and since §° g is homotopic to IA' there is an
open P' in Q and an m' > m such that A" ¢ P' c V', fm,o gm,lP' and lp' are
homotopic in V' and gm,lP', gm,+1|P', gm,+2]P', ... are all homotopic to

. . . .. .
each other in Oi+1' Since B o X5 ° gm,(P ) €« Bo Xi(0i+1) n Xk there is in view
of corollary 5.3.6 an embedding o' of A' in Xk that is in Bo xi(O. )

i+1

homotopic to Bo X; ° gm,[A'. It is easily verified that
a', B°Xi°gm'|A', fm°gmv|A" fm| °gmv[A' and lAv

L. . . . ' -
are homotopic in V', Using theorem 5.3.3. we find a B' ¢ {y ¢ ley(Xk) Xk}

that is supported on V' and satisfies B'oq' = ]A" Put hi+ = B'o B and

1
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= i ' ' o
Xi41 hi+1° Xg- Since a'(A') c B Xi(oi+1) we have that

AV - Bl OOL'(A') I X -

1+1(0

).

i+1

One readily sees that Xi41° gm,[A' is in X5 (0i+1) homotopic to

+1

B'oqg' =1 Since x.,,(0...) is an ANR there is an open set V such that

AT i+1 " 7i+1

' T 1 T ~ . . . '
A" ¢ V<P’ and X341 ° gm,|V and IV are homotopic in Xi+1(0 ). If j 2 m

1+1

and hence X5y

1

' ' .
then gm,!P and gij are homotopic in Oi+ 1

° gjlv is in

(o

X ) homotopic to ]v. This completes the induction.

i+171i+1

Note that every hi+ is supported on Xi(oi) and is a member of

1
{y ¢ TW|y(Ak) = Ak}. Observe furthermore that for i ¢ N, Oi c UZ/i(A) and
Xi(oi) c U2/i(A')' If x € Q\A and i is such that 2/i < p(x,A) then Q\Oi is
a neighbourhood of x such that Xi(Q\Oi) c Q\A' and for every j > i

XJ._]Q\Oi = xi]Q\Oi. Consequently, if we define for x € Q\A, h(x) = }i: xi(x)
then h is a local homeomorphism from Q\A into Q\A'. Since Oi c U2/1(A) and
Xi(oi) c Uz/i(A') for 1 ¢ N, h is one-to-one and onto and hence a homeo-

morphism. Since for every x ¢ Q\A there is an i ¢ IN such that h(x) = Xi(x)

we have that h(Ak) = Ak and h(wj) = Wj for j ¢ N. This completes the proof.

It is matural to ask whether strong negligibility in theorem 5.4.10
can be replaced by negligibility. The following theorem shows that that is
not the case. If X is compact then the fundamental dimension Fd(X) of X is

defined by

Fd(X) = min {n[there is a compact Z with Sh(Z) = Sh(X)

and dim (Z) = n}.

5.5.4 THEOREM: If S is a compactum in Xk with Fd(S) < k then S is

negligible. If S is a compactum in Y with the shape of a finite space then
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S is negligible.

PROOF: If Fd(S) < k we can choose by corollary 5.3.6 a compact S' < Xk
such that Sh(S) = Sh(S') and dim (S') < k. By lemma 5.5.3 and theorem 5.4.1
we have that Xk\S & Xk\S' ~ Xk'

According to theorem 4.4.5 every copy of Q is negligible in Y. Since
Q has trivial shape lemma 5.5.3 implies that every singleton is negligible
in Y. Consequently, every finite subset of Y is negligible. Applving once
more lemma 5.5.3 we find that every space with the shape of a finite set

is negligible.

So every cube is negligible in any Xk' We can prove a partial converse
of theorem 5.5.4.

5.5.5 THEOREM: If S is a negligible compactum in X, then Fd(S) < 0. If

0

S is a negligible compactum in Y then S has the shape of a finite space.

PROOF: Let k be either -1 or 0 and assume that S is a negligible
compactum in Xk' Let h be a homeomorphism from Xk\S onto Xk' According to
lemma 4.3.9 there exist a compact space M and monotone maps Yy and Y, from

M onto Q with YII(Xk\S) = y;}(Xk) and ht)yllyIl(Xk\S) = YZIY;](Xk). Let C

be the collection of components of S and define
P = {Will e N} u {{a}l]a € Ak}.

Let C ¢ C and consider the non-empty continuum a(C) = yz(y;l(c)), which is
a subset of Ak U W. Since Ak is a o-compactum with dimension < 0
Sierpinski's theorem implies that there is a P ¢ P with a(C) < P. Analogous-

ly we can prove that the continuum Y](Ygl(P)) is contained in S and hence
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in C. So o is a function from C into P such that for every C ¢ C,
-1 -1
Y, (€ =y, (a(C)).
Consider the compact set § = yz(yII(S)), which is equal to

1(5). Since any union of

Ufa(C)|C e C} < Ak U W. Observe that Y;I(S) = y;
infititely many shrunken endfaces is dense in Q, S can intersect only
finitely many Wi's. Let il""’il be such that § n W = jél Wij. Define the
quotient space a of Q by identifying every wij to a point aj and let p be
the natural map from Q onto 6. We show that S and p(g) have the same shape
(cf. Chapman [C: 25.1] and Kozlowski [KI).

It is easily verified that if Z is a Z-set in Q then p(Z) is a Z-set
in 6. According to corollary 5.5.2 6 is homeomorphic to Q. Note that
Su Ak U W and p(Ak U W) are og-Z~sets in Q and 6, respectively. Consequent-—
ly there exist homotopies F : Q x I + Q and G : 6 x I +~6 such that FO =1,

Gy = 1, F(Q x (0,11) « Q\(S v A U W) and 6@ x (0,11) < a\p(Ak u W,

Observe that p]Y : Y>Yc a is a homeomorphism and define for n € I,

S B ~
fn =pohe Fl/n and g, = h p o G]/n' We shall prove that § = (fn,S,p(S))
and g = (gn,p(g),s) are shape maps such that o g and go { are homotopic to
1p(§) and TS’ respectively.

Let V be an open neighbourhood of S in Q. Since Y;I(S) = Y;l(g) =
Ygl(p—l(p(s))) we have that C = pe Yz(yIl(Q\V)) is a compact set that is
disjoint from p(g). Then there is a neighbourhood U of p(g) in 6 and an
n € N such that G(U x [O,iﬂ) nC=4@¢. Since po £(V n Xk\S) = Xk\C and
G(Q x (0,11) < Xk we see that gnlU, gn+}]U, gn+2|U, ... are homotopic in V.
So g is a shape map. The proof that § is a shape map is analogous.

To see that geo { is homotopic to IS choose an open neighbourhood U of

S in Q. Select a neighbourhood V of p(g) in 6 and an n, ¢ N such that

-1 -1 1
h op "oG((VnX)x[0,—]cU
%0 x (0,
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and select subsequently a neighbourhood W of S in Q and an n, > n, with for

every m > n fm(w) c V and

2’
FOW x [o,n‘—zj) c U.

-1 -1 -1 -1
If m > n, then 8n° fmlw =h ep o Gl/mo fm!W and h op o fmlw are

homotopic in U. Furthermore, we have that h_lo p—lo fmlw = Fl/mlw and IW
are homotopic in U. So we may conclude that geo { is homotopic to TS. The
proof for {og is similar.

So we have shown that Sh(S) = Sh(p(g)). Consider first the case k = -1.
Then Ak = @ and p(g) = {al,...,al}. If k = 0 then Ak is a zero—dimensional
o-compactum. Here the countable sum theorem implies that
dim (p(Ak) U {al,...,al}) = 0. Consequently, dim (p(g)) < 0 and the theorem
is proved.

We believe that the converse of theorem 5.5.4 is also true for k > 0

but we have no proof of this.

5.5.6 CONJECTURE: ret k 2 0 and let S c Xk be compact. Then S is

negligible iff FA(S) < k.

According to theorem 5.4.10 a o-compact subset of Xk is strongly
negligible iff its dimension is at most k. So strong negligibility depends
only on topological properties of the space itself and not on the way that
it is embedded in Xk. This is not surprising for compact spaces since they
have essentially only one embedding in Xk’ cf. corollary 5.3.4. For non-—
compact spaces, however, there are many non-equivalent embeddings.
Negligibility of a o-compact space in Xk is dependent on the way the space
is embedded. Let k > 0. By corollary 5.4.3 there are copies ofimk+] in X

that are not negligible. According to theorem 5.5.4 every subset of Xk that




is homeomorphic to Ik+1 is negligible. Also the boundary of Ik+1 is

negligible because it is k-dimensional. This implies that it is possible
to embed Ik+1\81k+1 axmk+l in Xk in such a way that it is negligible.

It remains to prove remark 5.4.8.

5.5.7 PROPOSITION: An arbitrary subspace S of Y is finite iff every

relatively open subset of S is negligible in Y.

PROOF: One direction of the equivalence follows from theorem 5.5.4.

Consider now a subspace S of Y such that every open subset of § is
negligible. Precisely as in theorem 5.4.7 we can prove that every compact
subset C of S is negligible in Y and has dimension < 0. This implies in
view of theorem 5.5.5 that C has the shape of a finite set. So C has
finitely many components which are singletons because dim (C) < 0. We have
shown that every compact subset of S is finite and hence S is a countable,
discrete space. If S is finite we are done.

We shall see that S cannot be infinite (cf. Anderson, Curtis & van
Mill [ACM: 6.2]). Let £ : Y\S »~ Y be a homeomorphism. According to lemma
4.3.9 there exist a compact M and monotone maps Y4 and Y, from M onto Q
such that Y_I(Y\S) = YZ(Y). We construct in the usual way a one—-to-one
function o : S >IN such that for every a ¢ S, y;]({a}) = Y;1<wa(a))' Note

that D = U{W

a(a)[a € S} is connected if S is infinite. Comsequently,

S = yl(y;I(D)) is connected which is obviously false.
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SAMENVATT ING

Het hoofdresultaat van dit proefschrift is de constructie van een rij

separabele, metriseerbare ruimten X  ,X ,X .. met onder andere de volgen-

-1’70’

de eigenschappen:

(D) Xk is een absoluut retract.

(2) Xk is homogeen.

3) Xk x Xk is homeomorf met de hilbertruimte £2.
(4) Elk compactum in Xk is een Z-verzameling.

(5) Xk is universeel element van de klasse van separabele, metriseerbare

ruimten.

(6) Een willekeurige o-compacte deelruimte van Xk heeft dimensie <k dan en

slechts dan als zij sterk verwaarloosbaar is.

Deze ruimten worden topologische schijnhilbertruimten genocemd aangezien
(1) - (5) bekende topologische eigenschappen zijn van £2 terwijl uit (6)
blijkt dat zij niet homeomorf zijn met £2. Wij bereiken dit resultaat via
de constructie van k—-dimensionale pseudoranden in r" (hoofdstuk 2) en de
hilbertkubus (hoofdstuk 3). Als basis voor onze rij wordt een schijnhil-
bertruimte gebruikt die geIntroduceerd is door Anderson, Curtis & Van Mill

[ACM]. De homogeniteit van deze ruimte wordt in hoofdstuk 4 onderzocht.
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II

III

v

Vi

VII

VIII

STELLINGEN

De procedure voor het berekenen van de relativistische transport-
coéfficiénten van een ijl gas die voorgesteld wordt in [2:sec.5,
ex.1], en die op natuﬁrlijke wijze voortkomt uit een wiskundige
analyse van de gelineariseerde transportvergelijking, verdient de

voorkeur boven de gebruikelijke methode (zie [71).

Elke Lebesgue meetbare relativistische sominvariant is bijna overal

gelijk aan een functie van de vorm a + Bupu (I3n.

Het bewijs van Grad [6] van de oplosbaarheid van de gelineariseerde
Boltzmannvergelijking vertoont een leemte. Het non-relativistische

analogon van stelling IT brengt hier uitkomst.

De gelineariseerde transportvergelijking voor een neutrinogas is
oplosbaar en de transportcoéfficiénten kunnen met behulp van een

polynomiale benadering van de oplossing bepaald worden ([2]).

De overdekkingsdimensie van het kwadraat van de rechte van

Sorgenfrey is oneindig ([4]).

Metriseerbaarheid van reéelcompacte ruimten is geen eerste orde

begrip in de ring van continue functies.

Er bestaat een compacte, metriseerbare ruimte met inductieve
dimensie w + 1| die geen essentiéle afbeelding toelaat naar

Hendersons [8] (w + 1)-dimensionale absolute retract Jm+]

(L11).

De stelling van Sierpifiski [9] laat de volgende generalisatie toe.
Zij n een niet-negatief geheel getal en zij X een compacte Hausdorff-
ruimte. Indien {Fi[i € N} een gesloten overdekking is van X zodanig
dat voor elk paar verschillende natuurlijke getallen 1 en j,

dim(Fi n Fj) < n, dan is elke continue afbeelding van FI naar de

n-sfeer S" uit te breiden over geheel X ([51).
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