

FAKE TOPOLOGICAL HILBERT SPACES

 AND CHARACTERIZATIONS OF DIMENSION IN TERMS OF NEGLIGIBILITYIN TERMS OF NEGLIGIBILITY

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor in de wiskunde en natuurwetenschappen aan de Universiteit van Amsterdam op gezag van de rector magnificus Dr. D.W. Bresters, hoogleraar in de faculteit der wiskunde en natuurwetenschappen; in het openbaar te verdedigen in de aula der Universiteit (tijdelijk in de Lutherse Kerk, ingang Singel 411, hoek Spui) op woensdag 16 november 1983 om 15.00 uur

door
JAN JAKOBUS DIJKSTRA
geboren te Voorschoten

Promotor: Prof. Dr. A.B. Paalman-de Miranda
Co-promotor: Dr. J. van Mill

Deze dissertatie kwam tot stand onder supervisie van de co-promotor.

First, however, she waited for a few minutes to see if she was going to shrink any further: she felt a little nervous about this; "for it might end, you know," said Alice to herself, "in my going out altogether, like a candle. I wonder what I should be like then?"

Lewis Carroll, Alice's adventures in wonderland.

Aan de nagedachtenis van mijn vader
Aan méjn moeder

PREFACE

This monograph is an investigation in infinite-dimensional topology. By a fake topological Hilbert space we mean a separable, metrizable space that shares many topological properties with ℓ^{2}, but yet is not homeomorphic to it. We think of properties like: X is an absolute retract, X is homogeneous, $X \times X$ is homeomorphic to ℓ^{2}, every compactum in X is a Z-set and X is universal for the class of separable, metrizable spaces. Our aim is to construct a sequence $X_{-1}, X_{0}, X_{1}, \ldots$ of fake Hilbert spaces such that an arbitrary σ-compact subspace of X_{k} has dimension $\leq k$ if and only if it is strongly negligible. In other words X_{k} has the negligibility properties of ℓ^{2} precisely up to dimension k inclusive.

The standard way to obtain spaces with certain negligible subsets is through pseudo-boundaries. We first construct in chapter 2 a k-dimensional pseudo-boundary in \mathbb{R}^{n}. Employing this result we build in chapter 3 a k-dimensional pseudo-boundary in the Hilbert cube for every $k \in\{-1,0,1, \ldots\}$. As basis for our sequence $X_{-1} ; X_{0}, X_{1}, \ldots$ we use a fake Hilbert space Y, which has been introduced by Anderson, Curtis \& Van Mill [ACM]. We show in chapter 4 that Y is homogeneous in a very strong sense and we conclude from this fact that A_{k} is also a pseudo-boundary in Y. Finally, in chapter 5 the spaces $X_{k}=Y \backslash A_{k}$ are analysed.
Preface i
Contents ii
CHAPTER
GENERAL THEORY
1.1 Preliminaries 1
1.2 Negligibility and pseudo-boundaries 4
CHAPTER 2
FINITE DIMENSIONAL SPACES
2.1 Tame compacta in \mathbb{R}^{n} and I^{n} 18
2.2 Skeletoids in I^{n} 24
2.3 Skeletoids in \mathbb{R}^{n} 31
2.4 A technical lemma 34
CHAPTER 3
THE HILBERT CUBE
3.1 Introduction 39
3.2 k -dimensional skeletoids 43
CHAPTER 4
SHRUNKEN ENDFACES
4.1 Preliminaries 49
4.2 The pseudo-interior 50
4.3 The estimated extension theorem 64
4.4 Shifting shrunken endfaces 72

CHAPTER 5

FAKE HILBERT SPACES

5.1 Introduction 77
5.2 A generalization of the Sierpiniski theorem 80
5.3 Some topological properties of X_{k} 82
5.4 Negligibility and dimension 85
5.5 Negligibility and shape 92
Bib1iography 101
List of symbols 105
Subject index 106
Author index 108
Samenvatting 111
Stellingen 112

CHAPTER 1

GENERAL THEORY

1.1 Preliminaries

In this section we introduce basic concepts and we give two simple methods to construct autohomeomorphisms. Our notation is standard, cf. Engelking [E1]. For information concerning infinite-dimensional topology see Bessaga \& Pełczyński [BP2] and Chapman [C]. We make the following restriction.

All topological spaces in this treatise are assumed to be separable and metrizable.

We now give a list of definitions and notations. Let X and Y be topological spaces, let U be a collection of open subsets of X and let d be an admissible metric on X.
(a) $H(X)$ denotes the group of autohomeomorphisms of X and ${ }^{1} X$ or simply 1 is the identity on X.
(b) A continuous mapping is called a map.
(c) The symbol $X \approx Y$ means that X and Y are homeomorphic spaces.
(d) If f is a mapping from X into X and A is a subset of X then we say that f is supported on A if the restriction $f \mid X \backslash A$ is equal to ${ }^{1} X \backslash A$.
(e) Mappings $f, g: Y \rightarrow X$ are U-close if for each $y \in Y$ with $f(y) \neq g(y)$ there exists a $U \in U$ containing both $f(y)$ and $g(y)$ (note that we did not require U to cover X). Observe that if $f: X \rightarrow X$ is U-close to 1 then f is supported on $U U$.
(f) If f and g are mappings from Y into X then

$$
\hat{d}(f, g)=\sup \{d(f(y), g(y)) \mid y \in Y\} \in[0, \infty]
$$

(g) \mathbb{R}, \mathbb{N} and Q denote the real, natural and rational numbers, respectively.
(h) If C is an n-cell, $n \in \mathbb{N}$, then ∂C denotes the geometric boundary of C. Int C is the set $C \backslash \partial C$.
(i) A homotopy is a map $F: Y \times K \rightarrow X$, where K is a compact interval in \mathbb{R}. Usually, K equals the set $I=[0,1]$ and we define for $t \in K$, $F_{t}: Y \rightarrow X$ by $F_{t}(y)=F(y, t) . F$ is called limited by U if for every $y \in Y$ the path of $y, F(\{y\} \times K)$, is a singleton or is contained in some member of U.
(j) An isotopy H of X is a homotopy from $X \times K$ into X such that the function $\hat{H}: X \times K \rightarrow X \times K$, defined by $\hat{H}(x, t)=(H(x, t), t)$ is an element of $H(X \times K)$. For compact X this means that an isotopy H is a homotopy such that each level H_{t} is in $H(X)$. Occasionally, we shall also call $\hat{\mathrm{H}}$ an isotopy. If $\varepsilon>0$ then H is an ε-isotopy if the supremum for $x \in X$ of the d-diameter of $H(\{x\} \times K)$ is less than ε.
(k) X is called homogeneous if for every pair $x, y \in X$ there is an $\mathrm{f} \in H(\mathrm{X})$ with $\mathrm{f}(\mathrm{x})=\mathrm{y}$.

We conclude this section with two lemmas which give frequently used methods to construct homeomorphisms.
1.1.1. LEMMA: If $\mathrm{H}: \mathrm{X} \times \mathrm{K} \rightarrow \mathrm{X}$ is an isotopy of X and α is a map from Y into K then the function f defined by

$$
\mathrm{f}(\mathrm{x}, \mathrm{y})=(\mathrm{H}(\mathrm{x}, \alpha(\mathrm{y})), \mathrm{y}) \text { for } \mathrm{x} \in \mathrm{X} \text { and } \mathrm{y} \in \mathrm{Y}
$$

is an element of $H(\mathrm{X} \times \mathrm{Y})$.

PROOF: This is trivial.
1.1.2. LEMMA: Let T be a tree of height ω, X a topologically complete space and $\left(f_{t}\right)_{t \in T}$ a function from T into $H(X)$ such that for every open covering U of X and $t \in T$ there is an immediate successor t^{\prime} of t such that f_{t}, and 1 are $(\mathrm{f}$-close. If d is an admissible metric on X then there is a branch $t_{0}, t_{1}, t_{2}, \ldots$ in T such that $\left(f_{t_{i}} \circ \ldots \circ f_{t_{1}} \circ f_{t_{0}}\right)_{i \in \mathbb{N}}$ has a uniform d-limit that is an element of $H(X)$.

Note that for compact X the condition on $\left(f_{t}\right)_{t \in T}$ can be replaced by: for every $\varepsilon>0$ and $t \in T$ there is an immediate successor t^{\prime} such that $\hat{d}\left(f_{t^{\prime}}, 1\right)<\varepsilon$, where d is some fixed metric on X. This lemma is essentially due to Anderson [A2].

PROOF: Let d be an arbitrary admissible complete metric on X. Pick a t_{0} in T with rank 0 . Assume that a chain $t_{0}, t_{1}, \ldots, t_{i}$ has been chosen. Put $g_{i}=f_{t_{i}} \circ \ldots \circ f_{t_{1}} \circ f_{t_{0}}$ and define the metric d^{\prime} on X by:

$$
d^{\prime}(x, y)=d(x, y)+d\left(g_{i}^{-1}(x), g_{i}^{-1}(y)\right)
$$

Let t_{i+1} be an immediate successor of t_{i} such that $\hat{d}^{\prime}\left(f_{t_{i+1}}, 1\right)<2^{-i}$. It is easily verified that the sequence $\left(g_{i}\right)_{i=0}^{\infty}$ constructed in this way has the properties $\hat{d}\left(g_{i}, g_{i+1}\right)<2^{-i}$ and $\hat{d}\left(g_{i}^{-1}, g_{i+1}^{-1}\right)<2^{-i}$ for $i=0,1,2, \ldots$.

Since d is complete the uniform limits $g=\lim _{i \rightarrow \infty} g_{i}$ and $h=\lim _{i \rightarrow \infty} g_{i}^{-1}$ exist and are continuous. We have for $\mathrm{X} \in \mathrm{X}$:

$$
\begin{aligned}
& d(h \circ g(x), x)=\lim _{i \rightarrow \infty} d\left(h \circ g_{i}(x), x\right)=\lim _{i \rightarrow \infty} d\left(h \circ g_{i}(x), g_{i}^{-1} \circ g_{i}(x)\right) \leq \\
& \lim _{i \rightarrow \infty} \sum_{j=i}^{\infty} 2^{-i}=0 .
\end{aligned}
$$

This means that $\mathrm{h} \circ \mathrm{g}=1$. Analogously, one may show that $\mathrm{g} \circ \mathrm{h}=1$ and the lemma is proved.

1.2. Negligibility and pseudo-boundaries

We introduce a triple (X, S, Γ) that will remain fixed throughout this section. X is a topologically complete space and (\mathcal{S}, Γ) satisfies the following conditions:
(a) S is a collection of closed subsets of X,
(b) Γ is a subgroup of $H(X)$,
(c) S is hereditary, i.e. every closed subset of a member of S is in S,
(d) S is invariant under the action of Γ,
(e) There is an admissible metric d on X such that every $f \in H(X)$ that is the uniform d-1imit of a sequence in Γ belongs to Γ.

For convenience we shall call an object that satisfies (a) - (e) a Δ-pair on X. Observe that for compact X condition (e) is equivalent to: Γ is closed in the compact-open topology on $H(X)$. Let S_{σ} denote the collection of all countable unions of members of S.
1.2.1. DEFINITION: A subset S of X is called negligible if $X \approx X \backslash S$. The set S is called strongly negligible if for every collection U of open subsets of X there is a homeomorphism $f: X \rightarrow X \backslash(S \cap U U)$ that is U-close to to 1 .

Obviously, every (relatively) open subset of a strongly negligible set S is negligible; in particular, S itself is negligible. Every negligible subset of X is an F_{σ}-set. This can be seen as follows. If $X \backslash S \approx X$ then $X \backslash S$ is, like X, topologically complete. This implies that $X \backslash S$ is a G_{δ}-set in X and hence that S is an F_{σ}-set ([E1, 4.3.24]). It is also easily verified that a strongly negligible set is always a countable union of nowhere dense sets (indeed, it is a $\sigma-Z$-set, see section 3.1). We give more properties of strong negligibility.
1.2.2. PROPOSITION: Every (relatively) closed subset of a strongly negligible set in X is strongly negligible.

PROOF: Let S be strongly negligible in X and let F be a closed subset of S. There is an open W in X with $S \backslash W=F$. Consider a collection U of open subsets of X and select an open star refinement V of U, i.e. $U V=U U=0$ and for every $V \in V$ there is a $U \in U$ such that every $V^{\prime} \in V$ that intersects V is contained in U. Since S is strongly negligible there exist homeomorphisms $f: X \rightarrow X \backslash(S \cap O)$ and $g: X \rightarrow X \backslash(S \cap 0 \cap W)$ such that f is V-close to 1 and g is $\{V \cap W \mid V \in V\}$-close to 1 . Then $h=g^{-1} \circ f$ is a homeomorphism from X onto $X \backslash(F \cap 0)$ which is U-close to 1 . This proves that F is strongly negligible in X.
1.2.3. THEOREM: Strong negligibility is σ-additive.

PROOF: As remarked above every negligible set is an F_{σ}-set. So proposition 1.2 .2 reduces the problem to: if $\left(S_{i}\right){ }_{i \in \mathbb{N}}$ is a sequence of closed, strongly negligible subsets of X then $S=\underset{i \in \mathbb{N}}{U} S_{i}$ is strongly negligible.

Let $S_{1}, S_{2}, S_{3}, \ldots$ be all strongly negligible, closed subsets of X and let U be a collection of open subsets of X. We define $O_{1}=U U$ and $O_{i+1}=$ $=O_{i} \backslash S_{i}$ for $i \in \mathbb{N}$. Select a complete metric d on X and construct a complete metric d_{1} on O_{1} such that for every $x, y \in O_{1}, d_{1}(x, y) \geq d(x, y)$ and for some $U \in U,\left\{z \in 0_{1} \mid d_{1}(z, x)<1\right\} \subset U$ (see $\left.[E 1: 5.4 . H]\right)$. Choose for every it $\in \mathbb{N}$ a complete metric d_{i+1} on 0_{i+1} such that for $x, y \in 0_{i+1}, d_{i+1}(x, y) \geq d_{i}(x, y)$. We shall construct inductively a sequence $f_{1}, f_{2}, f_{3}, \ldots$ such that for every $i \in \mathbb{N}, f_{i}$ is a homeomorphism from X onto $X \backslash\left(S_{i} \cap O_{i}\right)$ that is supported on 0_{i}. Since S_{1} is strongly neg1igible there is a homeomorphism $f_{1}: X \rightarrow X \backslash\left(S_{1} \cap O_{1}\right)$ that is supported on O_{1} and has the property $\hat{\mathrm{d}}_{1}\left(\mathrm{f}_{1} \mid 0_{1}, \mathrm{l}\right)<\frac{1}{2}$.

Suppose that f_{i} has been constructed. It follows easily from the induction hypothesis that $g_{i}=f_{i} \circ \ldots \circ f_{1}$ is a homeomorphism from X onto $X \backslash\left(\left(S_{1} \cup \ldots \cup S_{i}\right) \cap 0_{1}\right)=\left(X \backslash 0_{1}\right) \cup O_{i+1}$. Define the metric d_{i+1}^{\prime} on 0_{i+1} by

$$
d_{i+1}^{\prime}(x, y)=d_{i+1}(x, y)+d\left(g_{i}^{-1}(x), g_{i}^{-1}(y)\right)
$$

and select a homeomorphism $f_{i+1}: X \rightarrow X \backslash\left(S_{i+1} \cap O_{i+1}\right)$ that is supported on 0_{i+1} and satisfies

$$
\hat{d}_{i+1}\left(f_{i+1} \mid o_{i+1}, 1\right)<2^{-i-1}
$$

This completes the induction.
If $S=\underset{i \in \mathbb{N}}{U} S_{i}$ then $\left(g_{i}^{-1} \mid X \backslash\left(S \cap O_{1}\right)\right)_{i \in \mathbb{N}}$ is a sequence of maps from $X \backslash\left(S \cap O_{1}\right)$ into X that satisfies:

$$
\hat{\mathrm{d}}\left(\mathrm{~g}_{1}^{-1} \mid \mathrm{X} \backslash\left(\mathrm{~S} \cap \mathrm{o}_{1}\right), 1\right)<\frac{1}{2}
$$

and for $\mathrm{i} \in \mathbb{N}$,

$$
\hat{d}\left(g_{i+1}^{-1}\left|X \backslash\left(S \cap 0_{1}\right), g_{i}^{-1}\right| X \backslash\left(S \cap 0_{1}\right)\right)<2^{-i-1}
$$

Since d is a complete metric $h=\lim _{i \rightarrow \infty} g_{i}^{-1} \mid X \backslash\left(S \cap O_{1}\right)$ is a continuous function from $X \backslash\left(S \cap O_{1}\right)$ into X.

Analogously, we can prove that $g=\lim _{i \rightarrow \infty} g_{i}$ is a map from X into X, which is obviously supported on O_{1}. Let $i \in \mathbb{N}$ and recall that $g_{i}(X)=$ $\left(X \backslash 0_{1}\right) \cup 0_{i+1}$. Since $\left(g_{i+k} \mid 0_{i+1}\right)_{k \in \mathbb{N}}$ is a Cauchy sequence with respect to the complete metric d_{i+1} we have that $g(X) \subset X \backslash O_{1} \cup O_{i+1}$. This means that g is a map from X into $X \backslash\left(S \cap O_{1}\right)$. Since both h and g are uniform limits we have that $h \circ g=1_{X}$ and $g \circ h=1_{X \backslash\left(S \cap O_{1}\right)}$ and hence that g is a homeomorphism from X onto $X \backslash\left(S \cap O_{1}\right)$. Obviously, we have that $\hat{\mathrm{d}}_{1}\left(\mathrm{~g} \mid 0_{1}, 1\right)<1$ and $\mathrm{g} \mid \mathrm{X} \backslash \mathrm{O}_{1}=1$, which implies that g and 1 are $U-\mathrm{c} 1 \mathrm{ose}$.
1.2.4. COROLLARY: A subset of a strongly negligible set S in X is (strongly) negligible in X iff it is an F_{σ}-set (in X or, equivalently; in S) .

PROOF: Use proposition 1.2 .2 , theorem 1.2 .3 and the fact that every negligible set is an $F_{\sigma}-$ set.
1.2.5. REMARK: One easily verifies that neg1igibility is neither closed hereditary nor additive (consider for instance the interval I). A more sophisticated counterexample is the space Y which is discussed in chapter 5. This space is universal for the class of separable metric spaces (corollary 5.3 .6) and has the property that a compact subspace is negligible iff it has the shape of a finite space (theorems 5.5.4 and 5.5.5).

We now come to the pseudo-boundaries. The first to study this concept
were Anderson [A4] and Bessaga \& Pełczyñiski [BP1]. Their notion of a pseudo-boundary was generalized to arbitrary complete metric spaces by Toruñczyk [T1] (these pseudo-boundaries are called skeletoids) and differently by West [W] (called absorbers here). We shall now define these concepts.
1.2.6 DEFINITION: Let U be a collection of open subsets of a space Z and let $E \subset H(Z)$. A map h is a U-push in E if there is an isotopy $H: Z \times I \rightarrow Z$ that is limited by U and satisfies : $H_{0}=1, H_{1}=h$ and $H_{t} \in E$ for every $t \in I$.
1.2.7 DEFINITION: An element A of S_{σ} is called an (S, Γ)-absorber if for every $S \in S$ and every collection U of open subsets of X there is an $h \in \Gamma$ such that h is U-close to 1 while moreover $h(S \cap U U) \subset A$. If we can always choose h in such a way that it is a U-push in r then A is an $(S, \Gamma)-$ absorber ${ }^{*}$.
1.2.8 DEFINITION: Let $A_{1} \subset A_{2} \subset A_{3} \subset \ldots$ be a sequence of elements of S. We call ($\left.A_{i}\right)_{i \in \mathbb{N}}$ an (S, Γ)-skeleton ((S, Γ)-skeleton ${ }^{\text {ru }}$) if for every open covering U of X, every $S \in S$ and every $n \in \mathbb{N}$ there exist an h in $\left\{\gamma \in \Gamma|\gamma| A_{n}=1\right\}$ that is U-close to 1 (a U-push h in $\left\{\gamma \in \Gamma|\gamma| A_{n}=1\right\}$) and an $m \in \mathbb{N}$ such that $h(S) \subset A_{m}$. The set $\cup_{i \in \mathbb{N}} A_{i} \in S_{\sigma}$ is called an $(S, \Gamma)-$ skeletoid ((S, Γ)-skeletoid $\left.{ }^{\text {¹ }}\right)$.

Examples of pseudo-boundaries in the Hilbert cube can be found in section 3.1 . We now introduce a concept that covers both absorber and skeletoid.
1.2.9 DEFINITION: Let $A_{1} \subset A_{2} \subset A_{3} \subset \ldots$ be a sequence of elements of S. We call $\left(A_{i}\right)_{i \in \mathbb{N}}$ a strong (S, Γ)-skeleton (strong (S, Γ)-skeleton ${ }^{*}$) if for every open covering U of X, every $S \in S$, every closed subset F of X with $F \cap S=\emptyset$ and every $n \in \mathbb{N}$ there exist an h in $\left\{\gamma \in \Gamma|\gamma| A_{n} \cup F=1\right\}$ that is $U-c l o s e$ to 1 (a U-push h in $\left\{\gamma \in \Gamma|\gamma| A_{n} \cup F=1\right\}$) and an $m \in \mathbb{N}$ such that $h(S) \subset A_{m}$. The set $\underset{i \in \mathbb{N}}{U_{i}} A_{i} \in S_{\sigma}$ is called a strong (S, Γ)-skeletoid (strong (S, Γ)-skeletoid ${ }^{\text {(4) }}$).

It is obvious that every strong skeletoid is a skeletoid. With absorbers there is the same connexion.
1.2.10 PROPOSIITON: Every strong (S, Γ)-skeletoid (~) is an (S, Γ)absorber (~).

PROOF: We only prove the proposition for plain strong skeletoids and absorbers; the version with the \sim is completely analogous. Let ($\left.A_{i}\right)_{i \in \mathbb{N}}$ be a strong (S, Γ)-skeleton and put $A=\bigcup_{i \in \mathbb{N}} A_{i} \cdot$ Assume that U is a collection of open subsets of X and that S is an element of S. Put $O=U U$ and select an admissible metric d on 0 such that $\left\{U_{1}(x) \mid x \in 0\right\}$ refines U, where $U_{\varepsilon}(x)=\{y \in 0 \mid d(y, x)<\varepsilon\}$ for $\varepsilon \geq 0$ and $x \in 0$ ([E1:5.4.H]). Let $S_{0} \subset S_{1}$ $c S_{2} \subset \ldots$ be a sequence of closed subsets of S such that $S_{0}=\emptyset$ and $S \cap 0={ }_{i=0}^{\infty} S_{i}$. We shall construct inductively sequences $f_{0}, f_{1}, f_{2}, \ldots$ in Γ and $n_{0}<n_{1}<n_{2}<\ldots$ in \mathbb{N} such that for $i=1,2,3, \ldots$

$$
f_{i} \circ f_{i-1} \circ \ldots \circ f_{0}\left(S_{i}\right) \subset A_{n_{i}}
$$

and

$$
\mathrm{f}_{i} \text { is supported on } O \backslash A_{n_{i-1}}
$$

Put $f_{0}=1_{X}$ and $n_{0}=1$. We shall make sure that every f_{i} can be chosen arbitrarily close to 1 . This implies with lemma 1.1 .2 that we may assume that there is an $f \in H(X)$ which is the uniform d'-limit of ($\left.f_{i} \circ \ldots \circ f_{0}\right)_{i \in \mathbb{N}}$, where d^{\prime} is a metric on X such that Γ is closed with respect to \hat{d}^{\prime}. So we may assume that $f=\lim _{i \rightarrow \infty} f_{i} \circ \ldots \circ f_{0}$ is an element of Γ. The other properties that f must satisfy follow easily. We have that f is supported on 0 and $\hat{d}(f \mid 0,1) \leq \sum_{i=1}^{\infty} \hat{d}\left(f_{i} \mid 0,1\right)<1$ which means that f and 1 are $U-c 1 o s e$. Moreover, $f(S \cap 0)=\bigcup_{i=1}^{\infty} f\left(S_{i}\right)=\bigcup_{i=1}^{\infty} f_{i} \circ \ldots \circ f_{0}\left(S_{i}\right)=\stackrel{\bigcup}{U}_{i}^{\infty} A_{n_{i}} \subset A$ and we may conclude that A is an (S, Γ)-absorber.

It remains to perform the induction. Assume that f_{i} has been chosen. Let F be a closed neighbourhood of $X \backslash 0$ such that $F \cap f_{i} \circ \ldots \circ f_{0}\left(S_{i+1}\right)=\emptyset$ and in order to show that the f_{i+1} we are about to determine can be chosen arbitrarily close to 1 let V be an open covering of X that refines $\left\{\operatorname{Int}_{X}(F)\right\} \cup\left\{U_{2-i-2}(x) \mid x \in 0\right\}$. Since $f_{i}{ }^{\circ} \ldots \circ \mathrm{f}_{0}\left(S_{i+1}\right)$ is a member of S there exist an $f \in \Gamma$ and an $n_{i+1}>n_{i}$ such that $f \mid F \cup A_{n_{i}}=1$, $f_{i+1} \circ f_{i} \circ \ldots \circ f_{0}\left(S_{n+1}\right) \subset A_{n_{i+1}}$ and f_{i+1} and 1 are V-close. This implies that $\hat{d}\left(f_{i+1} \mid 0,1\right)<2^{-i-1}$ and that f_{i+1} is supported on $0 \backslash A_{n_{i}}$. The proof is completed.

Observe that if $f \in \Gamma$ and A is for instance an (S, Γ)-absorber then $f(A)$ is also an (S, Γ)-absorber. Conversely, we have the uniqueness theorem for absorbers:
1.2.11 THEOREM (West [W]): If A and B are (S, Γ)-absorbers (~) then for every collection U of open subsets of X there is an $f \in \Gamma$ that is U-close to 1 (a U-push f in Γ) with $f(A \cap U U)=B \cap U U$.

PROOF: Again we only prove the theorem for plain absorbers. Let A and
B be (S, Γ)-absorbers and let U be a collection of open subsets of X. Put $0=U U$ and write $A=\underset{i \in \mathbb{N}}{U} A_{i}$ and $B=U_{i \in \mathbb{N}} B_{i}$, where $A_{1}=B_{1}=\emptyset$ and for $i \in \mathbb{N}, A_{i}, B_{i} \in S$. Select a metric d on 0 such that the open 1 -balls of d form a refinement of U. We construct a sequence $f_{1}, f_{2}, f_{3}, \ldots$ in Γ such that for $i \in \mathbb{N}$:

$$
\begin{aligned}
& f_{i} \text { is supported on } 0, \\
& \hat{d}\left(f_{i} \mid 0,1\right)<2^{-i}, \\
& f_{i} \circ g_{i-1}\left(A_{i} \cap 0\right) \subset B \cap 0, \\
& B_{i} \cap 0 \subset f_{i} \circ g_{i-1}(A \cap 0)
\end{aligned}
$$

and

$$
\left.f_{i}\right|_{j=1} ^{i-1}\left(g_{i-1}\left(A_{j}\right) \cup B_{j}\right)=1
$$

where $g_{i-1}=f_{i-1} \circ \ldots \circ f_{1}$. We put $f_{1}=1_{X}$.
Assume that f_{1}, \ldots, f_{i} have been selected. Then $g_{i}\left(A_{i+1}\right)=$ $f_{i} \circ \ldots \circ f_{1}\left(A_{i+1}\right)$ is an element of S. It follows from the induction hypothesis that ${\underset{j}{\|}}_{\underline{U}}^{1}\left(g_{i}\left(A_{j}\right) \cup B_{j}\right) \cap O \subset B$. Consequently, there is a $\beta \in \Gamma$ that is supported on $0 \backslash_{j} \stackrel{i}{U}_{1}\left(g_{i}\left(A_{j}\right) \cup B_{j}\right)$ and that satisfies $\hat{d}(\beta \mid 0,1)<2^{-i-2}$ and $\beta\left(g_{\mathbf{i}}\left(A_{i+1}\right) \cap 0\right) \subset B \cap O$. Note that since $\beta \circ g_{i} \in \Gamma, \beta \circ g_{i}(A)$ is an $(S, r)-$ absorber and that $\left(\underset{j}{\dot{j}}{ }_{1}\left(g_{i}\left(A_{j}\right) \cup B_{j}\right) \cup \beta \circ g_{i}\left(A_{i+1}\right)\right) \cap O$ is contained in $\beta \circ g_{i}(A)$. This implies that there is a $\gamma \in \Gamma$ such that γ is supported on $0 \backslash\left(\underset{j}{\dot{\mathrm{U}}}=1\left(g_{i}\left(A_{j}\right) \cup B_{j}\right) \cup \beta \circ g_{i}\left(A_{i+1}\right)\right), \hat{d}(\gamma \mid 0,1)<2^{-i-2}$ and $\gamma\left(B_{i+1} \cap 0\right) \subset \beta \circ g_{i}(A) \cap 0$. Define $f_{i+1}=\gamma^{-1} \circ \beta$. The map f_{i+1} is obviously supported on 0 and has the property $\hat{d}\left(f_{i+1} \mid 0,1\right)<2^{-i-1}$. Consider the inclusion

$$
f_{i+1} \circ g_{i}\left(A_{i+1} \cap 0\right)=\gamma^{-1} \circ \beta\left(g_{i}\left(A_{i+1}\right) \cap 0\right)=
$$

$$
=\beta\left(g_{i}\left(A_{i+1}\right) \cap 0\right) \subset B \cap 0
$$

and observe that $\gamma\left(B_{i} \cap 0\right) \subset \beta \circ g_{i}(A) \cap O$, whence $B_{i} \cap O$ is contained in $f_{i+1} \circ \mathrm{~g}_{\mathrm{i}}(\mathrm{A})$. It is obvious that $\mathrm{f}_{\mathrm{i}+1}$ restricts to the identity on ${ }_{j=1}^{i}\left(g_{i}\left(A_{j}\right) \cup B_{j}\right)$. This completes the induction.

Observe that every f_{i} could have been chosen arbitrarily close to 1 . Hence, we may assume in view of lemma 1.1 .2 that $g=\lim _{i \rightarrow \infty} g_{i} \in \Gamma$. We have that g is supported on 0 and that

$$
\hat{d}(g \mid 0,1) \leq \sum_{i=1}^{\infty} \hat{d}\left(f_{i} \mid 0,1\right)<\sum_{i=1}^{\infty} 2^{-i}=1 .
$$

This means that g and 1 are $U-c l o s e$. The sets $g(A \cap 0)$ and $B \cap 0$ coincide because

$$
g(A \cap 0)=U_{i \in \mathbb{N}} g\left(A_{i} \cap 0\right)=U_{i \in \mathbb{N}} g_{i}\left(A_{i} \cap 0\right) \subset B \cap 0
$$

and

$$
B \cap 0=\bigcup_{i \in \mathbb{N}} B_{i} \cap 0=U_{i \in \mathbb{N}} g \circ g_{i}^{-1}\left(B_{i} \cap 0\right) \subset g(A \cap 0)
$$

This proves the theorem.

The same statement could of course have been made about strong skeletoids. For skeletoids a similar result can be obtained (see Bessaga \& Pełczyñski [BP2: ch.VI prop.2.2]). We now give the obvious connexion between absorbers and strong negligibility.
1.2.12 THEOREM: If A is an $\left(S, \Gamma\right.$)-absorber and S is an element of S_{σ} then $\mathrm{S} \backslash \mathrm{A}$ is strongly negligible in $\mathrm{X} \backslash \mathrm{A}$.

PROOF: Let A be an (S, Γ)-absorber and let $S \in S_{\sigma}$. It is trivial that A $U S$ is also an (S, Γ)-absorber. Let U be a collection of open subsets of
$X \backslash A$ and construct a collection U^{\prime} of open subsets of X such that $U=\left\{U \backslash A \mid U \in U^{\prime}\right\}$. Let f be an element of Γ that is $U^{\prime}-c l o s e$ to 1 and that has the property $f\left(A \cap U U^{\prime}\right)=(A \cup S) \cap U U^{\prime}$. Then $f \mid X \backslash A$ is a homeomorphism from $X \backslash A$ onto $(X \backslash A) \backslash((S \backslash A) \cap U U)$ that is $U-c l o s e$ to 1 .

The next theorem shows that when we omit an absorber the homogeneity properties of the space are preserved.
1.2.13 THEOREM: Let A be an (S, Γ)-absorber and let U be a collection of open subsets of X. Assume that f is an element of Γ that is U-close to 1 and that F is a closed subset of X with the property that both F and $\mathrm{f}(\mathrm{F})$ are contained in $X \backslash A$. Then $f \mid F$ can be extended to an $h \in \Gamma$ that is U-close to 1 and that satisfies $h \mid X \backslash A \in H(X \backslash A)$.

PROOF: Put $O=U U$ and define $V=\left\{U \cap f^{-1}(U) \mid U \in U\right\}$. Since f and 1 are U-close V is an open covering of 0 . Since $f \in \Gamma, f^{-1}(A)$ is an (S, Γ)-absorber. Note that F is disjoint from both A and $f^{-1}(A)$. Using theorem 1.2.11 we find a $g \in \Gamma$ that is $\{V \backslash F \mid V \in V\}$-close to 1 , while $g(A \cap O)=f^{-1}(A) \cap 0$. Let $h=f \circ g$ and note that $h \in \Gamma$. We have the following situation:

$$
\begin{aligned}
h(A) & =f \circ g((A \cap 0) \cup(A \backslash 0))=f \circ g(A \cap 0) \cup f \circ g(A \backslash 0) \\
& =f\left(f^{-1}(A) \cap 0\right) \cup A \backslash 0=(A \cap 0) \cup(A \backslash 0)=A \\
h \mid F & =f \circ g|F=f| F
\end{aligned}
$$

and

$$
h \mid x \backslash 0=1 .
$$

If $x \in O$ then there is $a U \in U$ such that $\{x, g(x)\} \subset U \cap f^{-1}(U)$ and hence
$\{x, f \circ g(x)\} \subset U$. We conclude that h is U-close to 1 .
1.2.14 COROLLARY: If A is an (S, Γ)-absorber and Γ is such that it makes X homogeneous, i.e. $\mathrm{X}=\{\gamma(\mathrm{x}) \mid \gamma \in \Gamma\}$ for any $\mathrm{x} \in \mathrm{X}$, then $\mathrm{X} \backslash \mathrm{A}$ is also homogeneous.

PROOF: This is trivial.
1.2.15 REMARKS: The concepts we discussed in this section can of course also be defined for non-complete spaces. However, since we then do not have a convergence criterion like lemma 1.1 .2 at our disposal this generalization is of limited interest.

The concepts absorber and absorber ${ }^{\boldsymbol{\sim}}$ (or skeletoid and skeletoid ${ }^{\boldsymbol{\mu}}$ etc.) do not coincide. In section 5.3 we discuss a space X_{0} with the property that $f, g \in H\left(X_{0}\right)$ are isotopic iff $f=g$ (remark 5.3.5). This space is, however, homogeneous in a very strong sense (theorem 5.3.3) which implies that every countable, dense subset is a strong ($S_{f}, H\left(X_{0}\right)$)-skeletoid, where S_{f} is the collection of finite subsets of X_{0}.

In section 3.1 we give a Δ-pair $(S, H(Q)$) on the Hilbert cube such that there exists an ($S, H(Q)$)-absorber ${ }^{\circ}$ but no ($S, H(Q)$)-skeletoid.

CHAPTER 2

FINITE DIMENSIONAL SPACES

This chapter is devoted to the construction of k-dimensional skeletoids in I^{n} and \mathbb{R}^{n}.
2.1 Tame compacta in \mathbb{R}^{n} and I^{n}

In their papers [GS1,GS2] Geoghegan \& Summerhill have introduced the collection \mathfrak{M}_{k}^{n} of "tame" $\leq k$-dimensional compacta in \mathbb{R}^{n}. We shall define this object and discuss its properties and those of the corresponding collection in the n-cube. Let n and k be integers with the properties $n \geq 1$ and $0 \leq \mathrm{k} \leq \mathrm{n}$. The numbers n and k remain fixed throughout this chapter. We begin with some terminology.

Let X be a subspace of \mathbb{R}^{n}. A subpolyhedron of X is a subset of X that is the underlying set of a countable, locally finite simplicial complex in \mathbb{R}^{n}. A subset P of X is called a tame polyhedron if there is an $h \in H(X)$ such that $h(P)$ is a subpolyhedron of X.
2.1.1 DEFINITION: \mathfrak{M}_{k}^{n} consists of all compact subsets S of \mathbb{R}^{n} that satisfy the following property: if P is a subpolyhedron of \mathbb{R}^{n} with dimension $\leq n-k-1$ and U is a collection of open subsets of \mathbb{R}^{n} that covers $S \cap P$ then there exists a (-push h in $H\left(\mathbb{R}^{n}\right)$ with $h(S) \cap P=\emptyset$.
$\widetilde{\mathfrak{M}}_{k}^{n}$ consists of all compact subsets S of I^{n} that satisfy the following property: if P is a subpolyhedron of I^{n} with $\operatorname{dim}(P) \leq n-k-1$ and $\operatorname{dim}\left(P \cap \partial I^{n}\right)<n-k-1$ and U is a collection of open subsets of I^{n} that covers $S \cap P$ then there exists a U-push h in $H\left(I^{n}\right)$ with $h(S) \cap P=\emptyset$.

One sees immediately that $\mathbb{M}_{k}^{\mathrm{n}}$ and $\tilde{\mathfrak{M}}_{k}^{\mathrm{n}}$ are invariant under PL-homeomorphisms. If P is $a \leq k$-dimensional subpolyhedron of $\mathbb{R}^{n}\left(I^{n}\right)$ then by a general position argument we find that $P \in \mathfrak{M}_{k}^{n}\left(P \in \widetilde{\mathfrak{M}}_{k}^{n}\right)$. For information concerning PL-topology see Hudson [H]. The following theorem has been obtained by Geoghegan \& Summerhill [GS2].
2.1.2 THEOREM: \mathfrak{m}_{k}^{n} is invariant under the action of $H\left(\mathbb{R}^{n}\right)$.

We shall see that an analogous statement can be derived for $\tilde{\mathfrak{M}}_{k}^{\mathrm{n}}$.
2.1.3 LEMMA: If $\mathrm{k} \leq \mathrm{n}-2, \mathrm{x} \in \partial \mathrm{I}^{\mathrm{n}}$ and $\mathrm{f}: \mathbb{R}^{\mathrm{n}-1} \rightarrow \partial \mathrm{I}^{\mathrm{n}} \backslash\{\mathrm{x}\}$ is a homeomorphism then for every $S \subset \mathbb{R}^{n-1}, S \in \mathbb{M}_{k}^{n-1}$ iff $f(S) \in \mathbb{M}_{k}^{n}$.

PROOF: Prove the lemma first for a PL-homeomorphism f and use then the invariance of \mathfrak{M}_{k}^{n-1}. The details are left to the reader.
2.1.4 LEMMA: If S is a subset of Int I^{n} then it is an element of \widetilde{M}_{k}^{n} iff it is in $\mathfrak{m}_{k}^{\mathrm{n}}$.

PROOF: This is obvious.
2.1.5 LEMMA: $\mathfrak{M}_{\mathrm{k}}^{\mathrm{n}}$ and $\tilde{\mathfrak{M}}_{\mathrm{k}}^{\mathrm{n}}$ are hereditary.

PROOF: We give the proof for $\mathfrak{m}_{k}^{\mathrm{n}}$. Let S^{\prime} be a closed subset of an element S of $\mathfrak{M}_{k}^{\mathrm{n}}$. Assume that P is a subpolyhedron of \mathbb{R}^{n} with dimension $\leq n-k-1$ and that U is a collection of open subsets of \mathbb{R}^{n} that covers $S^{\prime} \cap P$. Write P as union of two subpolyhedra P_{1} and P_{2} that satisfy $P_{1} \subset U U$ and $P_{2} \cap S^{\prime}=\emptyset$. Let h be a $\left\{U \backslash P_{2} \mid U \in U\right\}$-push in $H\left(\mathbb{R}^{n}\right)$ with $h(S) \cap P_{1}=\emptyset$. We have that $h\left(S^{\prime}\right) \cap P=\left(h\left(S^{\prime}\right) \cap P_{1}\right) \cup\left(h\left(S^{\prime}\right) \cap P_{2}\right) \subset\left(h(S) \cap P_{1}\right) U$ $h\left(S^{\prime} \cap P_{2}\right)=\emptyset$ and hence the lemma is proved.
2.1.6 PROPOSITION: $\tilde{\mathfrak{M}}_{k}^{n}$ is invariant under the action of $H\left(I^{n}\right)$.

PROOF: Let $S \in \mathbb{M}_{k}^{n}$, $f \in H\left(I^{n}\right)$, let P be a subpolyhedron of I^{n} with $\operatorname{dim}(P) \leq n-k-1$ and $\operatorname{dim}\left(P \cap \partial I^{n}\right) \leq n-k-2$ and let U be an open covering of $P \cap f(S)$ in I^{n}. We first show that $f(S) \cap \partial I^{n} \in \tilde{M}_{k}^{n}$. If $k=n-1$ then every closed subset of ∂I^{n} is an element of $\tilde{\mathscr{M}}_{k}^{n}$. If $k<n-1$ then there is an $x \in \partial I^{n} \backslash S$. Since $\widetilde{\mathfrak{M}}_{k}^{n}$ is invariant under PL-homeomorphisms we may assume that f fixes x. Let $g: \mathbb{R}^{n-1} \rightarrow \partial I^{n} \backslash\{x\}$ be a homeomorphism. Applying lemma 2.1.5, lemma 2.1.3, theorem 2.1 .2 and again 1 emma 2.1 .3 we find successively that $S \cap \partial I^{n} \in \tilde{\mathbb{R}}_{k}^{n}, g^{-1}\left(S \cap \partial I^{n}\right) \in \mathfrak{M}_{k}^{n-1}, g^{-1} \circ f\left(S \cap \partial I^{n}\right) \epsilon$ \mathbb{M}_{k}^{n-1} and $\mathrm{f}\left(\mathrm{S} \cap \partial \mathrm{I}^{\mathrm{n}}\right) \in \widetilde{M}_{k}^{\mathrm{n}}$.

Let V be a star refinement of U. There is a V-push h_{1} in $H\left(I^{n}\right)$ with $h_{1} \circ f\left(S \cap \partial I^{n}\right) \cap P=\emptyset$. Select an $i \in \mathbb{N}$ such that $h_{1} \circ f(S) \cap P \subset 0=$ $(1 / i, 1-1 / i)^{n}$. Put $C=£^{-1} \circ h_{1}^{-1}\left(C 1_{I^{n}}(0)\right) \cap S$ and note that lemma $2 \cdot 1.5$ implies that $C \in \tilde{\mathbb{M}}_{k}^{n}$. Since $C \subset$ Int I^{n} we have that $C \in \mathbb{M}_{k}^{n}$, lemma 2.1.4. Since $h_{1} \circ f$ can be extended to an element of $H\left(\mathbb{R}^{n}\right)$ theorem 2.1.2 implies that $h_{1} \circ f(C) \in \mathbb{M}_{k}^{n}$. By virtue of lemma 2.1.4 we have that $h_{1} \circ f(C) \in \tilde{\mathfrak{M}}_{k}^{n}$. So there is a $\{V \cap O \mid V \in V\}$-push h_{2} in $H\left(I^{n}\right)$ such that $h_{2} \circ h_{1} \circ f(C) \cap P=\varnothing$. This means that $h_{2} \circ h_{1}$ is a U-push in $H\left(I^{n}\right)$ with $h_{2} \circ h_{1} \circ f(S) \cap P=\emptyset$.
[GS2]. For the sake of completeness, we have included proofs.
2.1.7 PROPOSITION: Let S be an element of $\mathfrak{M}_{k}^{n}\left(\widetilde{\mathfrak{M}}_{k}^{n}\right)$, let U be a collection of open subsets of $\mathbb{R}^{n}\left(I^{n}\right)$ and let L be a countable collection of tame polyhedra in $\mathbb{R}^{\mathrm{n}}\left(\mathrm{I}^{\mathrm{n}}\right)$ having dimension $\leq \mathrm{n}-\mathrm{k}-1$ (for I^{n} in addition: $\left.\operatorname{dim}\left(U L \cap \partial \mathrm{I}^{\mathrm{n}}\right) \leq \mathrm{n}-\mathrm{k}-2\right)$. Then there exists a U-push h in $H\left(\mathbb{R}^{\mathrm{n}}\right)\left(H\left(\mathrm{I}^{\mathrm{n}}\right)\right)$ such that $h(X) \cap U L \cap U U=\emptyset$.

PROOF: We prove the proposition for \mathbb{R}^{n}. Put $0=U U$ and write $0 \cap U L$ as countable union of tame polyhedra with dimension $\leq n-k-1: 0 \cap U L=i \in \mathbb{N} T_{i}$. Let d be a metric on 0 such that the 1 -balls form a refinement of U. Put $T_{0}=\emptyset$. We shall construct inductively a sequence $G^{0}, G^{1}, G^{2}, \ldots$ of isotopies: $\mathbb{R}^{\mathrm{n}} \times \mathrm{I} \rightarrow \mathbb{R}^{\mathrm{n}} \times \mathrm{I}$ such that for $\mathrm{i}=0,1,2, \ldots$

$$
\begin{aligned}
& G_{0}^{i}=1 \\
& G_{t}^{i} \text { is supported on } 0 \backslash_{j=1}^{i} \bar{U}_{1}^{1} T_{j} \text { for } t \in I, \\
& \hat{d}\left(G_{t}^{i} \mid 0,1\right)<2^{-i} \text { for } t \in I
\end{aligned}
$$

and

$$
H_{1}^{i}(S) \cap T_{i}=\emptyset,
$$

where $H^{i}=G^{i} \circ \ldots \circ G^{0}$. Put $G^{0}=1 \mathbb{R}^{n} \times I^{\text {. }}$
If every G^{i} is chosen close enough to $1 \mathbb{R}^{n} \times I$ then $H=\lim _{i \rightarrow \infty} H^{i}$ is an isotopy of \mathbb{R}^{n}, lemma 1.1.2. It follows easily from the induction hypothesis that H is limited by U and that $H_{1}(S) \cap U L \cap 0=\varnothing$.

Assume that G^{i} has been constructed. Let $f \in H\left(\mathbb{R}^{n}\right)$ be such that $f\left(T_{i}\right)$ is a subpolyhedron of \mathbb{R}^{n}. It is a consequence of the induction hypothesis

$\mathrm{f} \circ \mathrm{H}_{1}^{i}(\mathrm{~S}) \in \mathfrak{M}_{\mathrm{k}}^{\mathrm{n}}$. Consequently, there is an isotopy F of \mathbb{R}^{n} such that $\mathrm{F}_{0}=1$, $F_{1} \circ f \circ H_{1}^{i}(S) \cap f\left(T_{i+1}\right)=\emptyset$ and for every $t \in I, F_{t}$ is supported on $f\left(0 \backslash \underset{j}{ } \stackrel{U}{U}_{=}^{U} T_{j}\right)$ and $\hat{d}\left(f^{-1} \circ F_{t}\left|f(0), f^{-1}\right| f(0)\right)<2^{-i-1}$. Define the isotopy G^{i+1} : $\mathbb{R}^{n} \times I \rightarrow \mathbb{R}^{n} \times I$ by $G_{t}^{i+1}=f^{-1} \circ F_{t}$ of for $t \in I$. It is clear that G^{i+1} satisfies the induction hypothesis.
2.1.8 PROPOSITION: If S is a compact element of $\mathfrak{M}_{\mathrm{k} \sigma}^{\mathrm{n}}\left(\tilde{\mathfrak{M}}_{\mathrm{k} \sigma}^{\mathrm{n}}\right)$ then S is an element of $\mathfrak{M}_{k}^{n}\left(\tilde{\mathfrak{R}}_{\mathrm{k}}^{\mathrm{n}}\right)$.

PROOF: Consider a compact $S \in \mathfrak{M}_{\text {k } \sigma}^{n}$. Write $S=\underset{i \in \mathbb{N}}{\bigcup_{i}} S_{i}$ where each S_{i} is in $\mathfrak{M}_{k}^{\mathrm{n}}$ and let P be an ($n-k-1$)-dimensional subpolyhedron of \mathbb{R}^{n}. Let h_{1} push S_{1} off P. Since \mathbb{M}_{k}^{n} is invariant we have that $h_{1}\left(S_{2}\right) \in \mathfrak{M}_{k}^{n}$. So we can push $h_{1}\left(S_{2}\right)$ away from P keeping $h_{1}\left(S_{1}\right)$ fixed. Continue this process. For the epsilonics see the very similar proof of proposition 1.2.10.

Note that 1 emma 2.1.4, theorem 2.1.2 and proposition 2.1.6 state that $\left(\mathfrak{N}_{k}^{\mathrm{n}}, H(\mathbb{R})\right)$ and $\left(\widetilde{\mathfrak{M}}_{\mathrm{k}}^{\mathrm{n}}, H\left(\mathrm{I}^{\mathrm{n}}\right)\right)$ are Δ-pairs.

We now introduce a cell structure on I^{1} for $I \in \mathbb{N}$. If $i \in\{0\} u \mathbb{N}$ then J_{i}^{1} is the collection of all cubes in I^{1} that have the form

$$
\prod_{j=1}^{1}\left[m_{j} 3^{-i},\left(m_{j}+1\right) 3^{-i}\right]
$$

where $m_{1}, m_{2}, \ldots, m_{1}$ are elements of $\left\{0,1, \ldots, 3^{i}-1\right\}$. Define furthermore for $i \in\{0\} \cup \mathbb{N}$,

$$
K_{i}=\left\{\left.\frac{2 m+1}{2 \cdot 3^{i}} \right\rvert\, m \in\left\{0,1, \ldots, 3^{i}-1\right\}\right\}
$$

and $K={ }_{i=0}^{\infty} K_{i}$. Note that $K_{0} \subset K_{1} \subset K_{2} \subset \ldots$ and that the 1 -fold product $\left(K_{i}\right)^{1}$ is the set of centres of members of J_{i}^{l}. Let d_{1} be the maximum metric on \mathbb{R}^{1} and let $U_{\varepsilon}^{1}\left(\tilde{U}_{\varepsilon}^{1}\right)$ denote the ε-balls in $\mathbb{R}^{1}\left(I^{1}\right)$ that correspond with d_{1}.

Let $P_{n}\left(\widetilde{P}_{n}\right)$ be the subgroup of $H\left(\mathbb{R}^{n}\right)\left(H\left(I^{n}\right)\right)$ that corresponds to permutating the n coordinates. We define the Menger space M_{k}^{n} by

$$
\begin{aligned}
M_{k}^{n}= & I^{n} \backslash U\left\{\left.U_{\frac{1}{2} 3^{-i}-1}^{n}\left(\alpha\left(\{p\} \times I^{n-k-1}\right)\right) \right\rvert\, \alpha \in \widetilde{P}_{n}\right. \\
& \left.i \in\{0\} \cup \mathbb{N} \text { and } p \in\left(K_{i}\right)^{k+1}\right\} .
\end{aligned}
$$

It was proved by Stan'ko [Š] that M_{k}^{n} is universal for the k-dimensional compact subsets of \mathbb{R}^{n}. The following fact has been obtained by Geoghegan \& Summerhil1 [GS2]:
2.1.9 PROPOSITION: $M_{k}^{n} \in \mathfrak{M}_{k}^{n}$.
2.1.10 DEFINITION: If A is a countable dense subset of \mathbb{R} then the Nöbeling space $\mathrm{N}_{\mathrm{k}}^{\mathrm{n}}$ is the set of all points in \mathbb{R}^{n} for which at most k coordinates are elements of A. If A is a countable dense subset of $(0,1)$ then $\tilde{N}_{k}^{n}(A)$ is the set of all points in I^{n} for which at most k coordinates are in A. We put $N_{k}^{n}=N_{k}^{n}(Q)$ and $\widetilde{N}_{k}^{n}=\tilde{N}_{k}^{n}(Q \cap(0,1))$.
2.1.11 REMARKS: We have the following alternative definitions of N_{k}^{n} and $\tilde{\mathrm{N}}_{\mathrm{k}}^{\mathrm{n}}$:

$$
N_{k}^{n}=\mathbb{R}^{n} \backslash U\left\{\alpha\left(\{p\} \times \mathbb{R}^{n-k-1}\right) \mid \alpha \in P_{n} \text { and } p \in Q^{k+1}\right\}
$$

and

$$
\widetilde{N}_{k}^{n}=I^{n} \backslash U\left\{\alpha\left(\{p\} \times I^{n-k-1}\right) \mid \alpha \in \widetilde{P}_{n} \text { and } p \in(Q \cap(0,1))^{k+1}\right\}
$$

It is obvious that if A is countable and dense in \mathbb{R} (in (0,1)) then there is an $h \in H\left(\mathbb{R}^{n}\right)\left(H\left(I^{n}\right)\right)$ such that $\left.h\left(N_{k}^{n}\right)=N_{k}^{n}(A)\left(\mathcal{N}_{k}^{n}\right)=\tilde{N}_{k}^{n}(A)\right)$. It is known that \mathbb{N}_{k}^{n} and \tilde{N}_{k}^{n} are k-dimensional spaces, see [E2:1.5.9].
2.1.12 THEOREM: If A is a countable dense subset of \mathbb{R} then

$$
\mathfrak{M}_{\mathrm{k}}^{\mathrm{n}}=\left\{\mathrm{f}(\mathrm{~S}) \mid \mathrm{f} \in H\left(\mathbb{R}^{\mathrm{n}}\right) \text { and } \mathrm{S} \text { compact } \subset \mathrm{N}_{\mathrm{k}}^{\mathrm{n}}(\mathrm{~A})\right\}
$$

If A is a countable dense subset of $(0,1)$ then

$$
\widetilde{\mathfrak{M}}_{\mathrm{k}}^{\mathrm{n}}=\left\{\mathrm{f}(\mathrm{~S}) \mid \mathrm{f} \in H\left(\mathrm{I}^{\mathrm{n}}\right) \text { and } \mathrm{S} \text { compact } \subset \widetilde{\mathrm{N}}_{\mathrm{k}}^{\mathrm{n}}(\mathrm{~A})\right\} .
$$

PROOF: In view of 2.1 .11 it suffices to prove the theorem for $A=Q$ respectively $A=Q \cap(0,1)$. The inclusion $\mathfrak{M}_{k}^{n} \subset\left\{f(S) \mid f \in H\left(\mathbb{R}^{n}\right)\right.$ and S compact $\left.\subset N_{k}^{n}\right\}$ is a consequence of 2.1.7 and 2.1.11. For I^{n} the same argument applies.

Consider now Bothe's theorem (see Bothe [Be] or [E2: 1.11.6]) that every compact subset S of N_{k}^{n} can be embedded into M_{k}^{n} by an $f \in H\left(\mathbb{R}^{n}\right)$. If we combine this result with $2.1 .2,2.1 .5$ and 2.1 .9 we have proved the theorem for \mathbb{R}^{n}.

Let $f \in H\left(I^{n}\right)$ and let S be a compact subset of \tilde{N}_{k}^{n}. Define for every $i \in \mathbb{N}, S_{i}=S \cap\left[2^{-i}, 1-2^{-i}\right]^{n}$. If we prove that every element of

$$
\left\{S_{i} \mid i \in \mathbb{N}\right\} \cup\left\{S \cap F \mid F \text { an }(n-1) \text {-face of } I^{n}\right\}
$$

is in $\widetilde{\mathfrak{M}}_{k}^{n}$ then the propositions 2.1 .6 and 2.1 .7 imply that $f(S) \in \widetilde{\mathfrak{M}}_{k}^{n}$. For every $i \in \mathbb{N}$ we have that $S_{i} \subset N_{k}^{n}$ and hence that $S_{i} \in \mathfrak{M}_{k}^{n}$. This means that $S_{i} \in \widetilde{\mathbb{M}}_{k}^{n}$. Let F be an $(n-1)$-face of I^{n} and let $x \in \partial I^{n} \backslash$. If $k=n-1$ then every closed subset of ∂I^{n} is in $\tilde{\mathfrak{M}}_{k}^{n}$ and we are done. If $k<n-1$ select a homeomorphism $h: \partial I^{n} \backslash\{x\} \rightarrow \mathbb{R}^{\mathrm{n}-1}$ such that $h(S \cap F) \subset N_{k}^{n}(Q \backslash\{0,1\})$. Then $h(S \cap F) \in \mathfrak{M}_{k}^{n-1}$ and hence $S \cap F \in \widetilde{M}_{k}^{n}$. This completes the proof.
2.1.13 COROLLARY: Every $S \in \mathfrak{M}_{k}^{n}\left(\tilde{\mathbb{M}}_{k}^{n}\right)$ has dimension $\leq k$.

PROOF: $\operatorname{dim}\left(N_{k}^{n}\right)=\operatorname{dim}\left(\widetilde{N}_{k}^{n}\right)=k$, see $[E 2: 1.5 .9]$.
2.1.14 COROLLARY: If $\mathrm{S} \in \mathfrak{M}_{\mathrm{k}}^{\mathrm{n}}\left(\widetilde{\mathfrak{M}}_{\mathrm{k}}^{\mathrm{n}}\right)$ and $\mathrm{S}^{\prime} \in \mathfrak{M}_{\mathrm{k}^{\prime}}^{\mathrm{n}^{\prime}}\left(\tilde{\mathfrak{M}}_{\mathrm{k}^{\prime}}^{\mathrm{n}^{\prime}}\right)$ then $S \times S^{\prime} \in \mathfrak{M}_{k+k^{\prime}}^{n+n^{\prime}}\left(\tilde{M}_{k+k^{\prime}}^{n+n^{\prime}}\right)$.

PROOF: There exists an $f \in H\left(\mathbb{R}^{n}\right)$ and an $f^{\prime} \in H\left(\mathbb{R}^{n^{\prime}}\right)$ such that $f(S) \subset N_{k}^{n}$ and $f\left(S^{\prime}\right) \subset N_{k^{\prime}}^{n^{\prime}}$. Consequently, one has that $f \times g\left(S \times S^{\prime}\right) \subset N_{k}^{n} \times N_{k^{\prime}}^{n^{\prime}} \subset N_{k+k^{\prime}}^{n+n^{\prime}}$.

2.2 Skeletoids in I^{n}

In this section we prove that $\left(\widetilde{\mathbb{M}}_{\mathrm{k}}^{\mathrm{n}}, H\left(\mathrm{I}^{\mathrm{n}}\right)\right)$-skeletoids exist. Our construction of a skeleton is based on the space M_{k}^{n}, which was introduced by Menger [M] and which we modify slightly.

Consider the following collection of ($n-k-1$)-dimensional planes in I^{n} :

$$
L=\left\{\alpha\left(\{p\} \times I^{n-k-1}\right) \mid p \in K^{k+1} \text { and } \alpha \in \widetilde{P}_{n}\right\}
$$

Select an enumeration $\left(L_{i}\right)_{i=0}^{\infty}$ of L such that if $L_{i}=\alpha\left(\{p\} \times I^{n-k-1}\right)$ then $p \in\left(K_{i}\right)^{k+1}$. Define for $m \in \mathbb{N}$ and $i \in\{0\} \cup \mathbb{N}$ the compact sets

$$
\begin{aligned}
& F_{0}^{m}=I^{m} \\
& F_{i+1}^{m}=F_{i}^{m} \backslash \tilde{U}_{\frac{1}{2} 3^{n}-i-m}^{n}\left(L_{i}\right)
\end{aligned}
$$

and $A_{m}={ }_{i=0}^{\infty} \hat{N}_{0}^{m}$. It is easily seen that F_{i}^{m} can be written as union of members of J_{i+m-1}^{n}. We obviously have the following situation:

$$
F_{i}^{1} \subset F_{i}^{2} \subset F_{i}^{3} \subset \cdots
$$

and

$$
A_{1} \subset A_{2} \subset A_{3} \subset \ldots
$$

Note that K is a countable, dense subset of $(0,1)$ and that $\tilde{N}_{k}^{n}(K)=I^{n} \backslash U L$. This implies in view of theorem 2.1.12 that every A_{i} is a member of $\tilde{\mathfrak{R}}_{k}^{n}$.

2.2.1 THEOREM: ($\left.A_{m}\right)_{m \in \mathbb{N}}$ is a strong $\left(\tilde{\mathfrak{N}}_{k}^{n}, H\left(I^{n}\right)\right)$-skeleton ${ }^{n}$.

The remaining part of this section is devoted to the proof of this theorem. Before we start with the actual proof we introduce some pushes of $\mathbb{R}^{\mathrm{k}+1}$ and $\mathrm{I}^{\mathrm{k}+1}$.

Let $\varepsilon \in(0,1 / 3]$ and define $\varphi_{\varepsilon}:[0, \infty) \rightarrow[1, \infty)$ by

$$
\varphi_{\varepsilon}(r)= \begin{cases}\frac{1}{3 \varepsilon} & \text { if } 0 \leq r \leq \varepsilon \\ \frac{1}{3(1-\varepsilon)}\left(2+\frac{1-3 \varepsilon}{r}\right) & \text { if } \varepsilon \leq r \leq 1 \\ 1 & \text { if } r \geq 1\end{cases}
$$

Note that that the function $f(r)=r \varphi_{\varepsilon}(r), r \in[0, \infty)$, is a PL-autohomeomorphism of $[0, \infty)$ with the property $f([0, \varepsilon))=[0,1 / 3)$. Using the vector space structure of \mathbb{R}^{k+1} we define for $\varepsilon \in(0,1 / 3]$ the homeomorphism $x_{\varepsilon} \in H\left(\mathbb{R}^{\mathrm{k}+1}\right)$ by

$$
x_{\varepsilon}(x)=\varphi_{\varepsilon}\left(d_{k+1}(x, 0)\right) x
$$

Note that X_{ε} is supported on $U_{1}^{k+1}(0)$ and satisfies

$$
x_{\varepsilon}\left(U_{\varepsilon}^{\mathrm{k}+1}(0)\right)=U_{1 / 3}^{\mathrm{k}+1}(0)
$$

Section 2.4 is devoted to a proof for the statement:

$$
\text { for } x, y \in \mathbb{R}^{k+1}, d_{k+1}\left(x_{\varepsilon}(x), x_{\varepsilon}(y)\right) \geq \frac{2}{3} d_{k+1}(x, y) \text {. }
$$

Since $X_{1 / 3}=\mathbb{L}_{\mathbb{R}^{k+1}}$ it is easily seen that for every $\varepsilon \in(0,1 / 3], X_{\varepsilon}$ is a $\left\{U_{1}^{k+1}(0)\right\}$-push in $\left\{\gamma \in H\left(\mathbb{R}^{k+1}\right) \left\lvert\, d_{k+1}(\gamma(x), \gamma(y)) \geq \frac{2}{3} d_{k+1}(x, y)\right.\right.$ for $\left.x, y \in \mathbb{R}^{k+1}\right\}$.

$$
\text { Let } m \in\{3,4,5, \ldots\}, i \in\{0,1,2, \ldots\}, p \in\left(K_{i}\right)^{k+1} \text { and put for every }
$$ $x \in I^{k+1}$,

$$
\psi_{i, p}^{m}(x)=p+\frac{1}{2} 3^{-i} x_{1 / m}\left(2 \cdot 3^{i}(x-p)\right)
$$

It follows that $\psi_{i, p}^{m}$ is a $\left\{\tilde{U}_{\frac{1}{2} 3^{-i}}^{k+1}(p)\right\}$-push in

$$
E=\left\{\gamma \in H\left(I^{k+1}\right) \left\lvert\, d_{k+1}(\gamma(x), \gamma(y)) \geq \frac{2}{3} d_{k+1}(x, y)\right. \text { for } x, y \in I^{k+1}\right\} \text {, }
$$

which satisfies

$$
\psi_{i, p}^{m}\left(\tilde{U}_{\frac{1}{2} 3^{-i} / m}^{k+1}(p)\right)=\tilde{U}_{\frac{1}{2} 3^{-1}-1}^{k+1}(p)
$$

PROOF of theorem 2.2.1: Let m be a natural number, ε a positive real number, F a closed subset of I^{n} and S a member of $\widetilde{\mathfrak{M}}_{k}^{n}$ that misses F. Since I^{n} is compact it suffices to consider only one metric: d_{n}. We have to find a $\left\{\tilde{U}_{\varepsilon}^{\mathrm{n}}(\mathrm{x}) \mid \mathrm{x} \in \mathrm{I}^{\mathrm{n}}\right\}$-push g in $\left\{\gamma \in H\left(\mathrm{I}^{\mathrm{n}}\right)|\gamma| A_{\mathrm{m}} \cup F=1\right\}$ and an $\mathrm{i} \in \mathbb{N}$ such that $g(S) \subset A_{i}$.

Let Γ be the countable subgroup of $H\left(I^{n}\right)$ that is generated by the set

$$
\begin{aligned}
\widetilde{P}_{\mathrm{n}} \cup & \left\{\psi_{1, \mathrm{p}}^{\mathrm{r}} \times 1_{\mathrm{I}^{\mathrm{n}-\mathrm{k}-1} \mid \mathrm{r} \in\{3,4,5, \ldots\}, 1 \in\{0\} \cup \mathbb{N} \text { and }}\right. \\
& \left.p \in\left(\mathrm{~K}_{1}\right)^{\mathrm{k}+1}\right\} .
\end{aligned}
$$

Consider the collection

$$
K=\left\{\gamma\left(\{\mathrm{p}\} \times \mathrm{I}^{\mathrm{n}-\mathrm{k}-1}\right) \mid \mathrm{p} \in \mathrm{~K}^{\mathrm{k}+1} \text { and } \gamma \in \Gamma\right\} .
$$

Note that L is contained in K. Since K is a countable set of tame polyhedra of dimension $n-k-1$ there exists according to proposition 2.1.7 a $\left\{U_{\varepsilon / 2}^{n}(x) \mid x \in I^{n}\right\}$-push f in $\left\{\gamma \in H\left(I^{n}\right)|\gamma| F \cup A_{m}=1\right\}$ with

$$
\mathrm{f}(\mathrm{~S}) \cap \cup K \backslash \mathrm{~A}_{\mathrm{m}}=\emptyset
$$

Put $S^{\prime}=f(S)$ and select $a j \in \mathbb{N}$ such that $j>m, 3^{-j+1}<\varepsilon / 2$ and $3^{-j+1}<d_{n}\left(S^{\prime}, F\right)$. Define the compactum

$$
c=U\left\{J \in J_{j}^{\mathrm{n}} \mid J \cap S^{\prime} \neq \emptyset\right\}
$$

Note that C is a neighbourhood of S^{\prime} that has distance greater than 3^{-j} to F.

We shall construct a 3^{-j+1}-isotopy $H: I^{n} \times I \rightarrow I^{n} \times I$ that satisfies: $H_{0}=1_{I n}, H_{t} \mid F \cup A_{m}=1$ for $t \in I$ and $H_{l}\left(S^{\prime}\right) \subset A_{j+1}$. Then the function $H_{1} \circ f$. is the push of I^{n} we need. The isotopy H will be the limit of a sequence $H^{0}, H^{1}, H^{2}, \ldots$ of isotopies of I^{n} that satisfies for $1=0,1,2, \ldots$

$$
H_{1}^{1}(C \backslash U K)=C \backslash U K
$$

and

$$
H_{1}^{1}\left(S^{\prime}\right) \subset F_{1}^{j+1}
$$

The $H^{1 '}$ s are determined inductively with as first step $H^{0}=I^{1}{ }^{n} \times I$. Moreover, it will be shown that $G^{1}=H^{1+1} \circ\left(H^{1}\right)^{-1}$ is a 3^{-1-j}-isotopy such that for every $t \in I, G_{t}^{1} \in E^{\prime}$, where

$$
\begin{aligned}
E^{\prime}= & \left\{\gamma \in H\left(I^{n}\right) \left\lvert\, d_{n}(\gamma(x), \gamma(y)) \geq \frac{2}{3} d_{n}(x, y)\right. \text { for } x, y \in I^{n}\right. \text { and } \\
& \left.\gamma \mid F \cup A_{m}=1\right\} .
\end{aligned}
$$

Consider now $\lim _{1 \rightarrow \infty} H^{1}$. Since G^{1} is a 3^{-1-j}-isotopy with $G_{0}^{1}=1$ the
sequence $\left(H^{1}\right)_{1=0}^{\infty}$ is uniformly Cauchy. So $H=\underset{1 \rightarrow \infty}{\lim ^{1} H^{I}}$ exists and it is a " 3^{-j+1}-homotopy" of I^{n} with $H_{0}=1$. We show that H is an isotopy. Since I^{n} is compact it suffices to prove that every H_{t} is onto and one-to-one. Let $t \in I$ and note that H_{t} is the limit of a sequence of autohomeomorphisms of a compactum and hence it is onto. Let x and y be two arbitrary distinct points in I^{n}. Select an $1 \in \mathbb{N}$ such that $2^{1} \cdot d_{n}(x, y)>1$. Since for every $s \in\{0\} \cup \mathbb{N}, G_{t}^{s} \in E^{\prime}$ we have that for $z, z^{\prime} \in I^{n}$,

$$
d_{n}\left(G_{t}^{s}(z), G_{t}^{s}\left(z^{\prime}\right)\right) \geq \frac{2}{3} d_{n}\left(z, z^{\prime}\right)
$$

and hence that

$$
d_{n}\left(H_{t}^{1}(x), H_{t}^{1}(y)\right) \geq\left(\frac{2}{3}\right)^{1} d_{n}(x, y)>3^{-1}
$$

Since G^{s} is a 3^{-s-j}-isotopy with $G_{0}^{s}=1$ it follows that $\hat{d}_{n+1}\left(H_{t} \circ\left(H_{t}^{1}\right)^{-1}, 1\right)<\frac{3}{2} 3^{-j-1}$. Consequently, $d_{n}\left(H_{t}(x), H_{t}(y)\right)>d_{n}\left(H_{t}^{1}(x), H_{t}^{1}(y)\right)-3.3^{-j-1}>0$
and $H_{t}(x) \neq H_{t}(y)$. It is obvious that H_{t} fixes $F \cup A_{m}$. So we have proved that H is a 3^{-j+1}-isotopy of I^{n} that satisfies $H_{0}=1$ and $H_{t} \mid F \cup A_{m}=1$ for $t \in I$. The inclusions $F_{0}^{j+1} \supset F_{1}^{j+1} \supset F_{2}^{j+1} \supset \ldots$ lead, together with $H_{1}^{S}\left(S^{\prime}\right) \subset \mathrm{F}_{\mathrm{S}}^{\mathrm{j}^{+1}}, \mathrm{~s} \in\{0\} \cup \mathbb{N}$, to

Now it remains to perform the construction of the $H^{1 /}$ s.
Assume that H^{1} has been determined. Since $H^{1}=G^{1-1} \circ \ldots \circ G^{0}$ we have that H_{t}^{1} fixes $F U A_{m}$ for every $t \in I$. Consider the situation:

$$
\begin{aligned}
& S^{\prime} \subset C \\
& H_{1}^{1}(C \backslash U K)=C \backslash U K
\end{aligned}
$$

and

$$
S^{\prime} \cap U K \backslash A_{\mathrm{m}}=\emptyset
$$

This implies that

$$
H_{1}^{1}\left(S^{\prime}\right) \backslash A_{m} \subset C \backslash U K
$$

and since $L_{1} \in L \subset K$ and $L_{1} \cap A_{m}=\emptyset$ we have that $H_{1}^{1}\left(S^{\prime}\right)$ and L_{1} are disjoint. Furthermore, we may derive that

$$
H_{1}^{1}\left(S^{\prime}\right) \subset H_{1}^{1}\left(S^{\prime} \backslash A_{m}\right) \cup H_{1}^{1}\left(S^{\prime} \cap A_{m}\right) \subset C
$$

Since S^{\prime} is compact there exists an $r \in\{3,4,5, \ldots\}$ such that

$$
d_{n}\left(H_{1}^{1}\left(S^{\prime}\right), L_{1}\right)>\frac{1}{2 r} 3^{-1-j}
$$

Let L_{1} be of the form $\alpha\left(\{p\} \times I^{n-k-1}\right)$, where $\alpha \in \widetilde{P}_{n}$ and $p \in\left(K_{1}\right)^{k+1}$. Let Ψ be a 3^{-1-j}-isotopy of I^{k+1} such that $\Psi_{0}=1, \Psi_{1}=\psi_{1+j, p}^{r}$ and for $t \in I$, Ψ_{t} is a member of

$$
\widehat{E}=\left\{\gamma \in E \mid \gamma \text { is supported on } \tilde{\mathrm{U}}_{\frac{1}{2} 3^{-1-j}}^{\mathrm{k}+1}(\mathrm{p})\right\}
$$

Consider the product $I^{k+1} \times I^{n-k-1}=I^{n}$ and the projection $\pi: I^{k+1} \times I^{n-k-1} \rightarrow I^{n-k-1}$. Let J be the cube in J_{1+j}^{k+1} of which p is the centre. Define $\hat{C}=\pi\left(J \times I^{n-k-1} \cap \alpha^{-1}(C)\right)$ and $\hat{F}=\pi\left(J \times I^{n-k-1} \cap \alpha^{-1}(F)\right)$. Since the diameter of J with respect to d_{k+1} is 3^{-1-j} and since $d_{n}(C, F)>3^{-j}$ we have that \hat{C} and \hat{F} are disjoint. Let $\beta: I^{n-k-1} \rightarrow I$ be a Urysohn function with $\beta(\hat{C}) \subset\{1\}$ and $\beta(\hat{F}) \subset\{0\}$. Define the isotopy $\theta: I^{n} \times I \rightarrow I^{n} \times I$ by

$$
\theta_{t}(x, y)=(\Psi(x, t \beta(y)), y) \text { for } x \in I^{k+1}, y \in I^{n-k-1}, t \in I
$$

and put $G_{t}^{1}=\alpha \circ \theta_{t} \circ \alpha^{-1}$ for $t \in I$. Since $\Psi_{t} \in \hat{E}$ it follows that G^{1} is a 3^{-1-j}-isotopy of I^{n} such that every level is an element of

$$
\begin{aligned}
& \left\{\gamma \in H\left(\mathrm{I}^{\mathrm{n}}\right) \left\lvert\, d_{\mathrm{n}}(\gamma(\mathrm{x}), \gamma(\mathrm{y})) \geq \frac{2}{3} d_{\mathrm{n}}(\mathrm{x}, \mathrm{y})\right. \text { for } \mathrm{x}, \mathrm{y} \in \mathrm{I}^{\mathrm{n}}\right. \\
& \text { and } \left.\gamma \text { is supported on } \alpha\left(\tilde{\mathrm{U}}_{\frac{1}{2} 3^{k+1}}^{\mathrm{k}+1}(\mathrm{p}) \times\left(\mathrm{I}^{\mathrm{n}-\mathrm{k}-1} \backslash \hat{F}\right)\right)\right\}
\end{aligned}
$$

Since $F \subset I^{n} \backslash \alpha\left(J \times\left(I^{n-k-1} \backslash \hat{F}\right)\right)$ and since $A_{m} \subset A_{j} \subset F_{1+1}^{j}=F_{1}^{j} \backslash \tilde{U}_{\frac{1}{2} 3^{n}}^{n}-j\left(L_{1}\right)$ this implies that G^{1} is a 3^{-1-j}-isotopy with each level in E^{\prime}.

Define now $H^{1+1}=G^{1} \circ H^{1}$. We prove that $H_{1}^{1+1}(C \backslash U K)=C \backslash U K$ and $H_{1}^{1+1}\left(S^{\prime}\right) \subset F_{1+1}^{j+1}$. Note that for every $t \in I$ and $D \in J_{1+j}^{k+1}, \Psi_{t}(D)=D$. This implies that for each $D \in J_{1+j}^{n}, G_{1}^{1}(D)=D$. Both F_{1}^{j+1} and C can be written as union of members of J_{1+j}^{n} and hence we have that $G_{1}^{1}\left(F_{1}^{j+1}\right)=F_{1}^{j+1}$ and $G_{1}^{1}(C)=C$. Define $g \in H\left(I^{n}\right)$ by

$$
\mathrm{g}=\alpha \circ\left(\psi_{1+j, p}^{\mathrm{r}} \times \mathrm{I}^{\mathrm{n}-\mathrm{k}-1}\right) \circ \alpha^{-1}
$$

The function g is a member of Γ and consequently we have that $g(U K)=U K$. We shall see that $g\left|C=G_{1}^{1}\right| C$. Let $x \in I^{k}$ and $y \in I^{n-k-1}$ such that $\alpha(x, y) \in \mathcal{C}$. If $x \in J$ then $y \in \hat{C}$ and $\beta(y)=1$. This implies that $\Theta_{1}(x, y)=$ $\left(\psi_{1+j, p}^{r}(x), y\right)$ and hence that $G_{1}^{1}(\alpha(x, y))=g(\alpha(x, y))$. If $x \notin J$ then $\Psi_{t}(x)=x=\psi_{1+j, p}^{r}(x)$ for every $t \in I$ and consequently $G_{1}^{1}(\alpha(x, y))=$ $\alpha(x, y)=g(\alpha(x, y))$. Now we have that $G_{1}^{1}(C \backslash U K)=C \backslash U K$ and $H_{1}^{1+1}(C \backslash U K)=C \backslash U K$. Since $\psi_{1+j, p}^{r}\left(\tilde{U}_{\frac{1}{2} 3^{-1-j / x}}^{k+1}(p)\right)=\tilde{U}_{\frac{1}{2} 3^{-1-j-1}}^{k+1}(p)$ and $d_{n}\left(H_{1}^{i}\left(S^{\prime}\right), L_{1}\right) \geq \frac{1}{2} 3^{-1-j} / r$ we have that $g \circ H_{1}^{i}\left(S^{\prime}\right)$ and $\tilde{U}_{\frac{1}{2}}^{n}-1-j-1\left(L_{1}\right)$ are disjoint. If we combine this with $\mathrm{G}_{1}^{1} \circ \mathrm{H}_{1}^{1}\left(\mathrm{~S}^{\prime}\right) \subset \mathrm{G}_{1}^{1}\left(\mathrm{~F}_{1}^{\mathrm{j}+1}\right)=\mathrm{F}_{1}^{\mathrm{j}+1}, \mathrm{~g}\left|\mathrm{C}=\mathrm{G}_{1}^{1}\right| \mathrm{C}, \mathrm{H}_{1}^{1}\left(\mathrm{~S}^{\prime}\right) \subset \mathrm{C}$ and $\mathrm{F}_{1+1}^{\mathrm{j}+1}=$ $F_{1}^{j+1} \backslash \tilde{U}_{\frac{1}{2} 3^{-1-j-1}}^{n}\left(L_{1}\right)$ we find that

$$
H_{1}^{1+1}\left(S^{\prime}\right)=G_{1}^{1} \circ H_{1}^{1}\left(S^{\prime}\right) \subset F_{1+1}^{j+1}
$$

This completes the proof of theorem 2.2.1.

2.3 Skeletoids in \mathbb{R}^{n}

Using the result of the preceeding section 2.2 we construct a k -dimensional skeletoid in \mathbb{R}^{n}. As an application we obtain universal spaces in the class of strongly σ-complete spaces.
2.3.1 THEOREM ${ }^{*}$: There exists a strong $\left(\mathfrak{M}_{\mathrm{k}}^{\mathrm{n}}, H\left(\mathbb{R}^{\mathrm{n}}\right)\right)$-skeletoid .

PROOF: Consider Int $I^{n} \approx \mathbb{R}^{n}$ and $S=\left\{S \in \widetilde{M}_{k}^{n} \mid S \cap \partial I^{n}=\varnothing\right\}$. It is easily seen that it suffices to prove that there is a strong ($S, H\left(\operatorname{Int} \mathrm{I}^{\mathrm{n}}\right.$)) skeletoid ${ }^{\sim}$. Let $\left(A_{i}\right)_{i \in \mathbb{N}}$ be a strong $\left(\tilde{M}_{k}^{n}, H\left(I^{n}\right)\right)$-skeleton ${ }^{\text {n }}$, theorem 2.2.1, and define $A_{i}^{\prime}=A_{i} \cap\left[2^{-i}, 1-2^{-i}\right]^{n}$ for $i \in \mathbb{N}$. We show that $\left(A_{i}^{\prime}\right)_{i \in \mathbb{N}}$ is a strong $\left(S, H\left(\operatorname{Int} \dot{I}^{n}\right)\right)$-skeletoid ${ }^{n}\left(\left(S, H\left(\operatorname{Int} I^{n}\right)\right)\right.$ is a Δ-pair because $\left(\mathfrak{M}_{k}^{\mathrm{n}}, H\left(\mathbb{R}^{\mathrm{n}}\right)\right)$ is a Δ-pair). Let $S \in S$ and let U be a collection of open subsets of Int I^{n} that covers S. If $i \in \mathbb{N}$ then there are a $j \in \mathbb{N}$ and a U-push h in $\left\{\gamma \in H\left(I^{n}\right)|\gamma| A_{i}=1\right\}$ with $h(S) \subset A_{j}$. Let $m>j$ such that $2^{-m}<d_{n}\left(h(S), \partial I^{n}\right)$. Then $h \mid$ Int I^{n} is a U-push in $\left\{\gamma \in H\left(\operatorname{Int} I^{n}\right)|\gamma| A_{i}^{\prime}=1\right\}$ with $h(S) \subset A_{j}^{\prime}$.

Let B_{k}^{n} be a strong $\left(M_{k}^{n}, H\left(\mathbb{R}^{n}\right)\right)$-skeletoid ${ }^{n}$ and put $s_{k}^{n}=\mathbb{R}^{n} \backslash B_{k}^{n}$. Note that since B_{k}^{n} is σ-compact s_{k}^{n} is topologically complete. By the countable sum theorem ([E2:3.1.8]) we have that $\operatorname{dim}\left(\mathrm{B}_{\mathrm{k}}^{\mathrm{n}}\right)=\mathrm{k}$. Geoghegan \& Summerhill [GS2] have shown that there exist $\left(\mathfrak{M}_{\mathrm{k}}^{\mathrm{n}}, H\left(\mathbb{R}^{\mathrm{n}}\right)\right)$-absorbers. This result follows from theorem 2.3.1. Moreover, theorem 1.2.11 implies that the absorbers constructed in [GS2] are in fact also strong skeletoids.
*) This theorem can also be found in Dijkstra [D1].
2.3.2 PROPOSITION: $\mathrm{s}_{\mathrm{k}}^{\mathrm{n}}$ is homogeneous.

PROOF: App1y corollary 1.2.14.

Using theorem 1.2.13 we can prove more results in this direction: s_{k}^{n} is strongly locally homogeneous and hence countably dense homogeneous (see Anderson, Curtis \& van Mill [ACM: sec.5]).
2.3.3 PROPOSITION (Geoghegan \& Summerhi11 [GS2]): $\operatorname{dim}\left(s_{k}^{n}\right)=n-k-1$ and every compact subset of $\mathrm{s}_{\mathrm{k}}^{\mathrm{n}}$ is an element of $\mathfrak{M}_{\mathrm{n}-\mathrm{k}-1}^{\mathrm{n}}$.

PROOF: The set $\mathbb{R}^{n} \backslash N_{n-k-1}^{n}$ is a countable union of k-dimensional subpolyhedra of \mathbb{R}^{n} and hence there is an $h \in H\left(\mathbb{R}^{n}\right)$ with $h\left(B_{k}^{n}\right)=$ $B_{k}^{n} \cup\left(\mathbb{R}^{n} \backslash N_{n-k-1}^{n}\right)$, theorem 1.2.11. Consequently $h\left(s_{k}^{n}\right) \subset N_{n-k-1}^{n}$ and hence $\operatorname{dim}\left(s_{k}^{n}\right)=n-k-1$ ([E2: 1.5 .10$\left.]\right)$.

Let S be a compact subset of s_{k}^{n}. Assume that P is a k-dimensional subpolyhedron of \mathbb{R}^{n} and that U is a collection of open subsets of \mathbb{R}^{n} that covers $S \cap P$. Since $P \in \mathfrak{M}_{k}^{n}$ there is a U-push h in $H\left(\mathbb{R}^{n}\right)$ such that $h\left(B_{k}^{n} \cap \cup U\right)=\left(B_{k}^{n} \cup P\right) \cap U U$, theorem 1.2.11. Hence, we have that $h(S) \cap P=\emptyset$.
2.3.4 PROPOSITION (Geoghegan \& Summerhill [GS2]): If $\mathrm{n} \leq 2 \mathrm{k}+1$ then every o-compact subset of $\mathrm{s}_{\mathrm{k}}^{\mathrm{n}}$ is strongly negligible in $\mathrm{s} \mathrm{n}_{\mathrm{k}}$.

PROOF: According to proposition 2.3.3 every σ-compact subset of s_{k}^{n} is an element of $\left(\mathfrak{M}_{n-k-1}^{n}\right)_{\sigma} \subset \mathfrak{M}_{k \sigma}^{n}$. Theorem 1.2 .12 implies that it is strong1y negligible.
2.3.5 DEFINITION: A space is called strongly σ-complete if it is a
countable union of closed, topologically complete subspaces. If $1 \in\{0,1,2, \ldots, \infty\}$ then we define the class

$$
v_{\sigma}^{1}=\{\mathrm{X} \mid \mathrm{X} \text { is a strongly } \sigma \text {-complete space with dimension } \leq 1\}
$$

A space X is called universal for V_{σ}^{1} if

$$
V_{\sigma}^{1}=\left\{Y \mid \text { there is an } F_{\sigma}-\text { set in } X \text { that is homeomorphic to } Y\right\} .
$$

Note that V_{σ}^{∞} is simply the class of all strong $1 \mathrm{y} \sigma$-complete spaces. If X is negligible in a complete space then it is an F_{σ}-set and hence a strongly σ-complete space. We shall see that V_{σ}^{∞} is precisely the class of spaces that can be negligible subsets of a complete space (see theorem 4.5.12).
2.3.6 DEFINITION: A closed subset S of a space X is called thin if for every collection U of open subsets of X there is an $f \in H(X)$ that is U-close to 1 and satisfies $h(S \cap U U) \cap S=\emptyset$.

Geoghegan \& Summerhill [GS2] have shown that every member of $\mathfrak{m}_{k}^{2 k+1}$ is thin in $\mathbb{R}^{2 \mathrm{k}+1}$. This implies with proposition 2.1 .8 that if $\mathrm{S}, \mathrm{S}^{\prime} \in \mathbb{M}_{k}^{2 \mathrm{k}+1}$ then there is an $h \in H\left(\mathbb{R}^{n}\right)$, which can be chosen arbitrarily close to 1 , with $h(S) \cap S^{\prime}=\emptyset$. A straightforward application of lemma 1.1 .2 gives that if $S, S^{\prime} \in\left(\mathfrak{M}_{k}^{2 k+1}\right)_{\sigma}$ then there is an $h \in H\left(\mathbb{R}^{n}\right)$ such that $h(S) \cap S^{\prime}=\emptyset$.
2.3.7 THEOREM: The space $\mathrm{s}_{\mathrm{k}}^{2 \mathrm{k}+1}$ is universal for V_{σ}^{k}. Moreover, an arbitrary space X is an element of V_{σ}^{k} iff it is homeomorphic to a (strongly) negligible set in $\mathrm{s}_{\mathrm{k}}^{2 \mathrm{k}+1}$.

PROOF: If X is strongly negligible in $s_{k}^{2 k+1}$ then X is negligible and
hence an F_{σ}-set. Consequently, X is strongly σ-complete.
Let $X \in V_{\sigma}^{k}$ and select a compactification C of X with dimension $\leq k$, [E2: 1.7.2]. There is an embedding f of C in $N_{k}^{2 k+1}$ (see [E2:1.11.5]) and hence $f(C) \in \mathbb{M}_{k}^{2 k+1}$, theorem 2.1.12. Since $B_{k}^{2 k+1} \in \mathfrak{M}_{k \sigma}^{2 k+1}$, $f(C)$ can be pushed off $B_{k}^{2 k+1}$. So we may assume that f embeds C into $s{ }_{k}^{2 k+1}$. Write $X=\underset{i \in \mathbb{N}}{\bigcup} S_{i}$, where S_{i} is a closed, topologically complete subset of X. Define for every $i \in \mathbb{N}, R_{i}=f\left(C_{C}\left(S_{i}\right) \backslash S_{i}\right)$ and furthermore $P=\underset{i \in \mathbb{N}}{U_{\mathbb{N}}} f\left(\mathrm{Cl}_{C}\left(S_{i}\right)\right)$ and $R=\underset{i \in \mathbb{N}}{U_{i}} R_{i}$. For $i \in \mathbb{N}$ we have that R_{i} is the remainder of a topologically complete space in a compactification and hence a σ-compact space. So R is a σ-compact subset of $s_{k}^{2 k+1}$ and consequently an element of $\mathfrak{M}_{k \sigma}^{2 k+1}$. Using theorem 1.2 .11 we find an $h \in H\left(\mathbb{R}^{n}\right)$ such that $h\left(B_{k}^{2 k+1} \cup R\right)=B_{k}^{2 k+1}$. The σ-compact space $h(P)$ is an element of $\mathfrak{M}_{k \sigma}^{2 k+1}$ and hence $h(P) \backslash B_{k}^{2 k+1}$ is strong1y neg1igible in $s_{k}^{2 k+1}$, theorem 1.2.12. Since S_{i} is closed in X for every $i \in \mathbb{N}$, we have that

$$
h(P) \backslash B_{k}^{2 k+1}=h(P \backslash R)=h \circ f(X)
$$

This proves the theorem.
2.3.8 REMARK: The space s_{0}^{1} is homeomorphic to $\mathbb{R} \backslash \mathbb{Q}$. It is easily verified that s_{0}^{1} is nowhere locally compact. The assertion follows then from the Alexandroff \& Urysohn [AU] characterization of $\mathbb{R} \backslash Q$.

2.4 A technical lemma

In this section we consider the functions $\varphi_{\varepsilon}:[0, \infty) \rightarrow[1, \infty)$ and $\chi_{\varepsilon} \in H\left(\mathbb{R}^{1}\right)$ which are defined by

$$
\varphi_{\varepsilon}(r)= \begin{cases}\frac{1}{3 \varepsilon} & \text { if } 0 \leq r \leq \varepsilon \\ \frac{1}{3(1-\varepsilon)}\left(2+\frac{1-3 \varepsilon}{r}\right) & \text { if } \varepsilon \leq r \leq 1 \\ 1 & \text { if } r \geq 1\end{cases}
$$

and

$$
x_{\varepsilon}(x)=\varphi_{\varepsilon}(\|x\|) x
$$

where $\varepsilon \in(0,1 / 3]$ and $\|x\|=d_{1}(x, 0)=\max \left\{\left|x_{i}\right| \mid i=1,2, \ldots, 1\right\}$.
2.4.1 LEMMA: For every $\mathrm{x}, \mathrm{y} \in \mathbb{R}^{1}$ we have that

$$
\left\|x_{\varepsilon}(x)-x_{\varepsilon}(y)\right\| \geq \frac{2}{3}\|x-y\|
$$

PROOF: We consider four cases.
I. If $\|x\| \leq \varepsilon$ or $\|x\| \geq 1$ and $\|y\| \leq \varepsilon$ or $\|y\| \geq 1$ then the statement is obvious.
II. Let $\varepsilon \leq\|x\|,\|y\| \leq 1$. For some $i \leq 1$ we have that $\|x-y\|=$ $\left|x_{i}-y_{i}\right|$. Without loss of generality we may assume that $x_{i} \geq y_{i}$ and $x_{i} \geq 0$. This implies that $\|x\|-\|y\| \leq\|x-y\|=x_{i}-y_{i}$ and hence we have that $\|x\|-y_{i} \geq\|x\|-x_{i}$. Since $\|x\|-x_{i} \geq 0, x_{i} \geq y_{i}$ and $x_{i} \geq 0$ we find that $x_{i}\left(\|y\|-y_{i}\right) \geq y_{i}\left(\|x\|-x_{i}\right)$. So we have that

$$
\frac{x_{i}}{\|x\|} \geq \frac{y_{i}}{\|y\|}
$$

Consider now

$$
x_{\varepsilon}(x)_{i}-x_{\varepsilon}(y)_{i}=\frac{x_{i}}{3(1-\varepsilon)}\left(2+\frac{1-3 \varepsilon}{\|x\|}\right)-\frac{y_{i}}{3(1-\varepsilon)}\left(2+\frac{1-3 \varepsilon}{\|y\|}\right)=
$$

$$
\left(x_{i}-y_{i}\right) \frac{2}{3(1-\varepsilon)}+\frac{1-3 \varepsilon}{3(1-\varepsilon)}\left(\frac{x_{i}}{\|x\|}-\frac{y_{i}}{\|y\|}\right) \geq \frac{2}{3}\|x-y\|
$$

We may conc1ude that

$$
\left\|x_{\varepsilon}(x)-x_{\varepsilon}(y)\right\| \geq\left|x_{\varepsilon}(x)_{i}-x_{\varepsilon}(y)_{i}\right| \geq \frac{2}{3}\|x-y\|
$$

III. Let $\|y\| \leq \varepsilon$ and $\varepsilon \leq\|x\| \leq 1$. Select an $i \leq 1$ such that $\|x-y\|=$ $\left|x_{i}-y_{i}\right|$. We may assume that $x_{i} \geq 0$. We make the following subdivision.
(a) $y_{i} \geq x_{i}$. Since φ_{ε} is a decreasing function we have that
$\varphi_{\varepsilon}(\|y\|) \geq \varphi_{\varepsilon}(\|x\|)$ and hence that

$$
\begin{aligned}
& \left\|x_{\varepsilon}(x)-x_{\varepsilon}(y)\right\| \geq y_{i} \varphi_{\varepsilon}(\|y\|)-x_{i} \varphi_{\varepsilon}(\|x\|) \geq \\
& y_{i}-x_{i}=\|x-y\| \geq \frac{2}{3}\|x-y\|
\end{aligned}
$$

(b) $x_{i} \geq y_{i}$. As above we have that $y_{i}\|x\| \leq x_{i}\|y\|$ and consequently,

$$
y_{i} \leq \frac{x_{i}}{\|x\|}\|y\| \leq \frac{x_{i}}{\|x\|} \varepsilon
$$

Consider

$$
\begin{aligned}
x_{\varepsilon}(x)_{i}-x_{\varepsilon}\left(y_{i}=\right. & \frac{x_{i}}{3\|x\|}+\frac{2 x_{i}}{3(1-\varepsilon)}\left(\frac{\|x\|-\varepsilon}{\|x\|}\right)-\frac{y_{i}}{3 \varepsilon}= \\
& \frac{1}{3 \varepsilon}\left(\frac{\varepsilon x_{i}}{\|x\|}-y_{i}\right)+\frac{2}{3} \frac{x_{i}(\|x\|-\varepsilon)}{(1-\varepsilon)\|x\|} \geq \\
& \frac{2}{3}\left(\frac{\varepsilon x_{i}}{\|x\|}-y_{i}\right)+\frac{2}{3} x_{i}\left(\frac{\|x\|-\varepsilon}{\|x\|}\right) \geq \frac{2}{3}\left(x_{i}-y_{i}\right) .
\end{aligned}
$$

So the conclusion is that $\left\|x_{\varepsilon}(x)-x_{\varepsilon}(y)\right\| \geq \frac{2}{3}\|x-y\|$.
IV. Let $\|y\| \leq$ and $\|x\| \geq 1$ and assume that $\|x-y\|=x_{i}-y_{i}$. Again we consider two cases.
(a) $\left|x_{i}\right| \geq 1$. This implies that $x_{i} \geq 1$. Consider the set $A=\left\{z \in \mathbb{R}^{k} \mid\right.$ $\left.z_{i}=1\right\}$. Obviously, there exists an $a \in A$ such that $\|a\|=1$ and
$d_{1}\left(X_{\varepsilon}(y), A\right)=d_{1}\left(X_{\varepsilon}(y), a\right)$. In view of the results obtained above X_{ε} satisfies

$$
d_{1}\left(x_{\varepsilon}(y), A\right)=d_{1}\left(x_{\varepsilon}(y), a\right) \geq \frac{2}{3} d_{1}(y, a) \geq \frac{2}{3} d_{1}(y, A)
$$

It is easily seen that $d_{1}\left(\chi_{\varepsilon}(y), \chi_{\varepsilon}(x)\right) \geq d_{1}\left(\chi_{\varepsilon}(y), A\right)+d_{1}\left(X_{\varepsilon}(x), A\right)$. This yields:

$$
\begin{aligned}
& d_{1}\left(x_{\varepsilon}(y), x_{\varepsilon}(x)\right) \geq \frac{2}{3} d_{1}(y, A)+d_{1}\left(x_{\varepsilon}(x), A\right) \geq \\
& \frac{2}{3}\left(d_{1}(y, A)+d_{1}(x, A)\right)=\frac{2}{3}\left(1-y_{i}+x_{i}-1\right)=\frac{2}{3}\|x-y\| .
\end{aligned}
$$

(b) $\left|x_{i}\right| \leq 1$. Define $\tilde{x} \in \mathbb{R}^{1}$ by

$$
\tilde{x}_{i}=\min \left\{1, \max \left\{-1, x_{i}\right\}\right\} \text { for } 1 \leq i \leq 1
$$

Note that $\|\tilde{x}\|=1$ and that $\|x-y\|=\|\tilde{x}-y\|$. We have proved that $\left\|x_{\varepsilon}(\tilde{x})-x_{\varepsilon}(y)\right\| \geq \frac{2}{3}\|\tilde{x}-y\|$. Using $x_{\varepsilon}(x)=x$ and $\chi_{\varepsilon}(\tilde{x})=\tilde{x}$ we find that

$$
\left\|x_{\varepsilon}(x)-x_{\varepsilon}(y)\right\| \geq\left\|x_{\varepsilon}(\tilde{x})-x_{\varepsilon}(y)\right\| \geq \frac{2}{3}\|\tilde{x}-y\|=\frac{2}{3}\|x-y\|
$$

Since we have considered all possible choices of x and y this concludes the proof.

CHAPTER 3

THE HILBERT CUBE

3.1 Introduction

We discuss in this section the connexion between absorbers and skeletoids in the Hilbert cube. Furthermore, we give examples of pseudoboundaries and related objects.

The Hilbert cube will, except in section 3.2 , be represented by

$$
Q=i \prod_{i \in \mathbb{N}} J_{i},
$$

where each J_{i} is the closed interval $J=[-1,1]$. Let π_{i} be the projection $Q \rightarrow J_{i}$. We use on Q the following convex metric

$$
\rho(x, y)=\max _{i \in \mathbb{N}}\left|x_{i}-y_{i}\right| \frac{1}{2 i},
$$

where $x=\left(x_{i}\right)_{i \in \mathbb{N}}$ and $y=\left(y_{i}\right)_{i \in \mathbb{N}}$. The open ε-balls ($\left.\varepsilon \geq 0\right)$ in Q with respect to ρ are denoted by U_{ε}. The symbol ρ is also used for the metric on subproducts of Q : if $P \in \mathbb{N}$ then for $x, y \in \prod_{i \in P} J_{i}, \rho(x, y)=\max _{i \in P}\left|x_{i}-y_{i}\right| \frac{1}{2 i}$. If A is a subset of $\underset{i \in P}{ } J_{i}$ then $\operatorname{diam} A$ is the diameter of A with respect to ρ. If $i \in \mathbb{N}$ and $P=\{j \in \mathbb{N} \mid j \geq i\}$ then we define $Q_{i}=\prod_{j \in P} J_{j}$.

Let $J_{i}^{\circ}=J^{\circ}=(-1,1)$ for $i \in \mathbb{N}$ and define the pseudo-interior s of Q by $s=\prod_{i \in \mathbb{N}} J_{i}^{\circ}$. The space s is homeomorphic to the separable Hilbert space
ℓ^{2}, Anderson [A1]. Put $0=(0,0,0, \ldots) \in Q$ and $B=Q \backslash s$. The set B is called the pseudo-boundary of Q and an element $f \in H(Q)$ is called boundary preserving if $f(B)=B$ or, equivalently, $f(s)=s$. We can write B as the union $U\left\{E_{i}^{\theta} \mid i \in \mathbb{N}\right.$ and $\left.\theta \in\{-1,1\}\right\}$, where the E_{i}^{θ} 's are the endfaces of Q :

$$
E_{i}^{\theta}=\left\{x \in Q \mid x_{i}=\theta\right\}
$$

3.1.1 DEFINITION: A closed subset S of a space X is called a z-set in X if for every open covering U of X and for every map $f: Q \rightarrow X$ there is a map $g: Q \rightarrow X \backslash S$ that is $U-c l o s e$ to f. A subset A of X is called a $\sigma-z-s e t$ in X if it is a countable union of Z-sets. The collections of Z-sets and $\sigma-Z$-sets in X are denoted by $Z(X)$ and $Z_{\sigma}(X)$, respectively.

In complete spaces the following properties are easily proved (see [BP2: sec.V.2]): $(Z(X), H(X))$ is a Δ-pair, if A is a closed σ-Z-set then A is a Z-set and every Z-set is nowhere dense. It is well known that in Q every Z -set is thin and that every endface and every compactum in s is a Z-set (see [BP2: sec.V.3]). So B is a σ-Z-set.

Note that since Q is compact, a closed subset S of X is a Z-set iff for every $\varepsilon>0$ and $f: Q \rightarrow X$ there is a map $g: Q \rightarrow X \backslash S$ with $\hat{d}(f, g)<\varepsilon$, where d is some fixed metric on X. The following theorem may be derived from Chapman [C : 19.4] and Anderson \& Chapman [AC]. We obtain it as a direct consequence of theorem 4.3.6.
3.1.2 THEOREM: Let U be a collection of open subsets of Q, let A be a compact space and let $\mathrm{F}: \mathrm{A} \times \mathrm{I} \rightarrow \mathrm{Q}$ be a homotopy that is limited by U. If F_{0} and F_{1} are embeddings of A in Q such that their images are Z-sets then there is a U-push h in $H(Q)$ with $h \circ F_{0}=F_{1}$.
3.1.3 COROLLARY: If A and A^{\prime} are z-sets in Q and f is a homeomorphism from A onto A ' with $\hat{\rho}(f, 1)<\varepsilon$ then there is a $g \in H(Q)$ such that $g \mid A=f$ and $\hat{\rho}(g, 1)<\varepsilon$.

PROOF: Define the straight-1ine homotopy

$$
F(a, t)=(1-t) a+t f(a) \text { for } a \in A \text { and } t \in I \text {. }
$$

Then F is limited by $U=\left\{U_{\varepsilon / 2}(x) \mid x \in Q\right\}$. Applying the theorem we find a U-push g in $H(Q)$ with $g \circ F_{0}=F_{1}$. So $\hat{\rho}(g, 1)<\varepsilon$ and $g \mid A=f$.

Theorem 3.1.2 has the following consequence.
3.1.4 THEOREM: If $(S, H(Q))$ is a Δ-pair such that $S \subset Z(Q)$ then every $(S, H(Q))$-skeletoid is a strong (S,H(Q))-skeletoid ${ }^{n}$.

PROOF: Let $\left(A_{i}\right)_{i \in \mathbb{N}}$ be an $(S, H(Q))$-skeleton. Assume that $S \in S, \varepsilon^{\prime}>0$, $m \in \mathbb{N}$ and that F is a closed set in Q with $\rho(F, S)>\varepsilon$. There are an $n \in \mathbb{N}$ and an $f \in H(Q)$ such that $\hat{\rho}(f, 1)<\varepsilon / 2, f \mid A_{m}=1$ and $f(S) \subset A_{n}$. Define the $\operatorname{map} F:\left(S \cup A_{m}\right) \times I \rightarrow Q \times I$ by

$$
F(a, t)=((1-t) a+t f(a), t)
$$

Let π be the projection $Q \times I \rightarrow Q$. If $X=\left(A_{n} \times I\right) U(S \times\{0,1\})$ then $F \mid X$ is an embedding. Since $F(X) \subset\left(A_{n} \cup A_{m} \cup S\right) \times I$, we have that it is a Z-set in $Q \times I$. According to theorem 11.2 in Chapman [C] there exists an embedding \widetilde{F} of $\left(S \cup A_{n}\right) \times I$ in $Q \times I$ such that $\widetilde{F}|X=F| X$ and $\hat{\rho}(\pi \circ \widetilde{F}, \pi \circ F)<\varepsilon / 2$. Define $G=\pi \circ \widetilde{F}$ and note that G is a homotopy from S U. A_{m} into Q that is limited by

$$
U=\left\{U_{\varepsilon}(x) \backslash\left(F \cup A_{m}\right) \mid x \in Q\right\} .
$$

The functions $G_{0}={ }^{1} S \cup A_{m}$ and $G_{I}=f \mid S \cup A_{m}$ are homeomorphisms from $S \cup A_{m}$ onto a Z-set in Q. According to theorem 3.1.2 there is a U-push h in $H(Q)$ with $h(S)=G_{1}(S)=f(S) \subset A_{n}$. This proves the theorem.

3.1.5 REMARK: As a corollary to this theorem one has that every

 $(S, H(Q))$-skeletoid is an $(S, H(Q))$-absorber. There are collections S in Q such that absorbers exist but no skeletoids. Let S be the collection of all countable Z -sets in Q . It is well known (and easily proved with theorems 3.1.2 and 1.2 .11) that every countable dense subset of Q is an ($S, H(Q)$)absorber . Consider a sequence $A_{1} \subset A_{2} \subset A_{3} \subset \ldots$ in S. For every $i \in \mathbb{N}$ there exists a countable ordinal α_{i} such that the α_{i}-th derived set $\left(A_{i}\right)\left(\alpha_{i}\right)$ is empty, see Mazurkiewicz \& Sierpiñiski [MS]. If β is a countable ordinal with $\beta>\sup \left\{\alpha_{i} \mid i \in \mathbb{N}\right\}$ then $\left[0, \omega^{\beta}\right]^{(\beta)} \neq \emptyset$. Hence, the ordered space $\left[0, \omega^{\beta}\right]$, which is of course embeddable as a Z-set in Q, cannot be embedded in any of the $A_{i}{ }^{\prime} s$. This means that $\left(A_{i}\right)_{i \in \mathbb{N}}$ is not an $(S, H(Q))$-skeleton. Note that this idea also works in I^{n} and \mathbb{R}^{n}.We shall now discuss some examples of skeletoids in Q. The most important example is B, which is a $(Z(Q), H(Q))$-skeletoid (Anderson [A4]). This has the consequence that every σ-compact subset of $s \approx \ell^{2}$ is strongly negligible. Another example (also due to Anderson) is

$$
\begin{gathered}
B_{f d}=\{x \in Q \mid \text { there } i s \text { an } i \in \mathbb{N} \text { such that for every } j>i \\
\left.x_{i}=0\right\}
\end{gathered}
$$

This σ-Z-set is a skeletoid for $\{S \in Z(Q) \mid S$ is finite dimensional\}. Curtis and van Mill [CM] have shown that every dense σ - Z-set in Q that is homeomorphic to the product of Q and Cantor's discontinum is a skeletoid for the collection of zero-dimensional Z-sets in Q. We shall construct this
skeletoid in the next section. A related concept is that of a boundary set.
3.1.6 DEFINITION: A $\sigma-Z-$ set A in Q is called a boundary set if $Q \backslash A \approx \ell^{2}$. A o-Z-set A in Q is called a deformation boundary set if there is a homotopy $\mathrm{F}: \mathrm{Q} \times \mathrm{I} \rightarrow \mathrm{Q}$ with $\mathrm{F}_{0}=1$ and $\mathrm{F}(\mathrm{Q} \times(0,1]) \subset \mathrm{A}$.

Curtis [Cs] has shown that every deformation boundary set is a boundary set. Clearly, B and $B_{f d}$ are deformation boundary sets. Van Mill [M1] has obtained a boundary set that contains no arcs. This shows that the concepts boundary set and deformation boundary set do not coincide. Henderson \& Walsh [HW] have given an example of a deformation boundary set containing (obviously) arcs but no disks. It was shown by Curtis [Cs] that every boundary set is infinite-dimensional, see also remark 5.4.6.

3.2 k -dimensional skeletoids

Using the main result of section 2.3 we build $\left(S_{k}, H(Q)\right)$-skeletoids in the Hilbert cube, where

$$
S_{k}=\{S \mid S \text { is a } Z \text {-set in } Q \text { with dimension } \leq k\}
$$

The number $k \in\{0,1,2, \ldots\}$ remains fixed throughout this section.
It is convenient to use a different representation for the Hilbert cube here. Let $c \mathbb{R}$ be the compactification of \mathbb{R} that is obtained by attaching two endpoints $-\infty$ and ∞. Let d be a convex metric on $c \mathbb{R}$ that is bounded by 1. The Hilbert cube Q is represented by

$$
\mathrm{i} \prod_{\mathbb{N}} \mathrm{c} \mathbb{R}
$$

and has metric

$$
\rho(x, y)=\max \{d(x, y) / i \mid i \in \mathbb{N}\}
$$

Let $\pi_{i}: Q \rightarrow c \mathbb{R}$ be the projection on the $i-t h$ coordinate.
We construct the skeletoid. Identify for every $n \in \mathbb{N}, \mathbb{R}^{n}$ with $\mathbb{R}^{\mathrm{n}} \times\{(0,0,0, \ldots)\} \subset 0$. This gives us the following situation:

$$
\mathbb{R} \subset \mathbb{R}^{2} \subset \mathbb{R}^{3} \subset \ldots \subset \mathbb{R}^{\mathrm{n}} \subset \ldots \subset \mathbb{Q}
$$

and in view of corollary 2.1.14:

$$
\mathfrak{m}_{k}^{k+1} \subset \mathfrak{m}_{k}^{k+2} \subset \mathfrak{M}_{k}^{k+3} \subset \ldots
$$

Since the elements of \mathfrak{M}_{k}^{k+1} are compact subsets of the pseudo-interior $\mathrm{s}=\mathrm{i}_{\mathrm{i} \in \mathbb{N}} \mathbb{R}$ with dimension $\leq \mathrm{k}$, we have that $\mathfrak{M}_{k}^{k+1} \subset S_{k}$ for every $\mathbb{1} \in \mathbb{N}$. Let $\left(C_{i}^{n}\right)_{i \in \mathbb{N}}$ be an $\left(\mathscr{P}_{k}^{n}, H\left(\mathbb{R}^{n}\right)\right)$-skeleton for $n=2 k+1,2 k+2, \ldots$, theorem 2.3.1. We determine inductively functions $f_{1}, f_{2}, f_{3}, \ldots$ and natural numbers $n_{1}, n_{2}, n_{3}, \ldots$ such that for every i $\in \mathbb{N}$,

$$
\mathrm{f}_{\mathbf{i}} \in H\left(\mathbb{R}^{2 \mathrm{k}+\mathrm{i}}\right)
$$

and

$$
{\underset{j}{\dot{U}}}_{\underline{j}}^{f_{j}}\left(C_{n_{i}}^{2 k+j}\right) \subset f_{i+1}\left(C_{n_{i+1}}^{2 k+i+1}\right),
$$

where $n_{1}=1$ and $f_{1}=1_{\mathbb{R}^{2 k+1}}$. The construction is straightforward. If $j \leq i$ then $f_{j}\left(C_{n_{i}}^{2 k+j}\right)$ is a member of $\mathfrak{R}_{k}^{2 k+j}$, theorem 2.1.2. According to proposition 2.1.8 this implies that ${ }_{j=1}^{i} f_{j}\left(C_{n_{i}}^{2 k+j}\right) \in \mathfrak{M}_{k}^{2 k+i+1}$. Since $\left(C_{1}^{2 k+i+1}\right)_{1 \in \mathbb{N}}$ is an $\left(\mathbb{R}_{k}^{2 k+i+1}, H\left(\mathbb{R}^{2 k+i+1}\right)\right)$-skeleton there exist an $f_{i+1} \in H\left(\mathbb{R}^{2 k+i+1}\right)$ and an $n_{i+1}>n_{i}$ such that $\dot{j}=1_{\dot{U}} f_{j}\left(C_{n_{i+1}}^{2 k+j}\right) \subset f_{i+1}\left(C_{n_{i+1}}^{2 k+i+1}\right)$. If we define

$$
D_{i}=f_{i}\left(C_{n_{i}}^{2 k+i}\right) \text { for } i \in \mathbb{N}
$$

then $D_{i} \in \mathfrak{M}_{k}^{2 k+i} \subset S_{k}$ and

$$
D_{1} \subset D_{2} \subset D_{3} \subset \ldots
$$

In order to prove that $\left(D_{i}\right)_{i=1}^{\infty}$ is a skeleton we need a dimensiontheoretic lemma.
3.2.1 DEFINITION: A map f from a metric space (X, δ) into a space Y is called an ε-mapping if for every pair $x, y \in X$ with $\delta(x, y) \geq \varepsilon, f(x)$ and $f(y)$ are distinct.
3.2.2 LEMMA: If X is a compact metric space with dimension $\leq \mathrm{k}$ and L is a linear $k+1$-variety in $\mathbb{R}^{2 k+1+1}$, $1 \in\{0\} \cup \mathbb{N}$, then for every $\varepsilon>0$ the set of ε-mappings from X into $\mathbb{R}^{2 \mathrm{k}+1+1} \backslash \mathrm{I}$ is dense in $\mathrm{C}\left(\mathrm{X}, \mathbb{R}^{2 \mathrm{k}+1+1}\right)$, where $\mathrm{C}(\mathrm{X}, \mathrm{Y})$ is the space of continuous functions from X into Y with the compactopen topology.

The proof of this lemma is an easy adaptation of [E2: 1.10.4 and 1.11.3].
3.2.3 THEOREM*) ${ }^{*}\left(D_{i}\right){ }_{i \in \mathbb{N}}$ is a strong $\left(S_{k}, H(Q)\right)$-skeleton ${ }^{\text {n }}$.

PROOF: In view of theorem 3.1 .4 it suffices to show that $\left(D_{i}\right){ }_{i \in \mathbb{N}}$ is an $\left(S_{k}, H(Q)\right)$-skeleton. Let $\varepsilon>0, m \in \mathbb{N}$ and $S \in S_{k}$. Since Q is compact we only have to prove that there are a $\gamma \in H(Q)$ and a $j \in \mathbb{N}$ with $\gamma \mid D_{m}=1$, $\gamma(S) \subset D_{j}$ and $\hat{\rho}(\gamma, 1)<\varepsilon$. Corollary 3.1 .3 reduces the problem to finding a $j \in \mathbb{N}$ and an embedding f of $S \cup D_{m}$ in D_{j} such that $\left.f\right|_{m}=1$ and $\hat{\rho}(f, l)<\varepsilon$. Select an $i \in \mathbb{N}$ with $1 / i<\varepsilon / 2$ and $i>m$. We shall construct a "tame"
*) This theorem can also be found in Dijkstra [D1].
embedding of S in $\mathbb{R}^{2 k+i+1}$. Define the function space

$$
\begin{gathered}
K=\left\{\gamma \in C\left(D_{m} \cup S, \mathbb{R}^{2 k+i+1}\right) \mid \pi_{2 k+i+1} \circ \gamma(S) \subset(-\infty, 0]\right. \\
\text { and } \left.\gamma \mid D_{m}=1\right\} .
\end{gathered}
$$

Note that K is a closed subset of the complete metric space $\left(C\left(D_{m} \cup S, \mathbb{R}^{2 k+i+1}\right), \hat{d}\right)$, where $d=d_{2 k+i+1}$. Hence, it is a Baire space. Let H be a closed subset of $\mathbb{R}^{2 k+i+1}$ and let $\xi>0$. Define the compactum

$$
S_{\xi}=\left\{x \in S \mid \rho\left(x, D_{m}\right) \geq \xi\right\}
$$

and the set of functions

$$
\begin{aligned}
K(\xi, H)= & \left\{\gamma \in K|\gamma| D_{m} \cup S_{\xi} \text { is a } \xi\right. \text {-mapping such that } \\
& \left.\gamma\left(S_{\xi}\right) \cap H=\emptyset\right\} .
\end{aligned}
$$

CLAIM: If $\mathrm{H}=\alpha\left(\{\mathrm{p}\} \times \mathbb{R}^{\mathrm{k}+\mathrm{i}}\right)$, where $\alpha \in P_{2 \mathrm{k}+\mathrm{i}+1}$ and $\mathrm{p} \in \mathbb{R}^{\mathrm{k}+1}$, then $K(\xi, H)$ is open and dense in K.

PROOF: Showing that $K(\xi, H)$ is open is left as an exercise to the reader. Consider the density. Let $\gamma \in K$ and $\delta>0$. The set $\gamma\left(S_{\xi}\right)$ is contained in $\mathbb{R}^{2 k+1} \times\left(-\infty, 02\right.$. Select a γ^{\prime} in $C\left(S_{\xi}, \mathbb{R}^{2 k+i} \times(-\infty, 0)\right)$ with $\hat{d}\left(\gamma \mid S_{\xi}, \gamma^{\prime}\right)<\delta / 2$. Since H is a linear $k+i$-variety in $\mathbb{R}^{2 k+i+1}$ we can find with lemma 3.2 .2 a ξ-mapping $\beta \in \mathbb{C}\left(S_{\xi}, \mathbb{R}^{2 k+i} \times(-\infty, 0)\right)$ with $\hat{d}\left(\beta, \gamma^{\prime}\right)<\delta / 2$ and $\beta\left(S_{\xi}\right) \cap H=\emptyset$. Since $D_{m} \subset \mathbb{R}^{2 k+i} \times\{0\}$ the function $\beta^{\prime}=1_{D_{m}} \cup \beta$ is a ξ-mapping from $D_{m} \cup S_{\xi}$ into $\mathbb{R}^{2 k+i} \times(-\infty, 0]$ which satisfies $\hat{d}\left(\beta^{\prime}, \gamma \mid D_{m} \cup S_{\xi}\right)<\delta$. If we apply Tietze's theorem coordinate-wise to the function $\beta^{\prime}-\left(\gamma \mid D_{\mathrm{m}} \cup S_{\xi}\right)$ we find an extension $\bar{\beta}: D_{m} \cup S \rightarrow \mathbb{R}^{2 k+i} \times(-\infty, 0]$ with $\hat{d}(\bar{\beta}, f)<\delta$. So $\bar{\beta}$ is an element of $K(\xi, H)$ and the claim is proved.

Consider the set $L=\left\{\alpha\left(\{p\} \times \mathbb{R}^{k+i}\right) \mid \alpha \in P_{2 k+i+1}\right.$ and $\left.p \in Q^{k+1}\right\}$. Select an enumeration $\left(L_{j}\right)_{j \in \mathbb{N}}$ of L such that for each $L \in L$ the $\operatorname{set}\left\{j \in \mathbb{N} \mid L=L_{j}\right\}$ is infinite. Because K is a Baire space the set

$$
D=\bigcap_{j \in \mathbb{N}} K\left(\frac{1}{j}, L_{j}\right)
$$

is dense in K. It is easily seen that the set $\{\gamma \in K \mid \hat{\rho}(\gamma, 1)<\varepsilon / 2\}$ is an open non-empty subset of K. Let h be an element of $D \cap\{\gamma \in K \mid \hat{\rho}(\gamma, 1)<\varepsilon / 2\}$. If x and y are distinct points in $D_{m} u S$ then there is a $j \in \mathbb{N}$ such that $x, y \in D_{m} \cup S_{1 / j}$ and $\rho(x, y) \geq 1 / j$. Since $h \mid D_{m} \cup S_{1 / j}$ is a $1 / j-$ mapping we may conclude that h is one-to-one and hence an embedding. Note that for every $j \in \mathbb{N}, h\left(S_{1 / j}\right) \cap U L=\emptyset$ which means that $h\left(S_{1 / j}\right) \subset \mathbb{R}^{2 k+i+1} \backslash U L=N_{k}^{2 k+i+1}$. Theorem 2.1.12 and propositions 2.1.5 and 2.1.8 imply that $h(S)$, which is a compact subset of $D_{m} U_{j \in \mathbb{N}} \cup h\left(S_{1 / j}\right)$, is an element of $\mathfrak{M}_{k}^{2 k+i+1}$. Obviously, one has that $\hat{\rho}(h, 1)<\varepsilon / 2$ and $h \mid D_{m}=1$. The map h is the aforementioned "tame" embedding of S .

Consider now the sequence $\left(D_{j}\right)_{j \in \mathbb{N}^{*}}$. The set D_{m} is contained in $D_{i+1}=f_{i+1}\left(C_{n_{i+1}}^{2 k+i+1}\right)$. Since $\left(f_{i+1}\left(C_{j}^{2 k+i+1}\right)\right)_{j \in \mathbb{N}}$ is an $\left(\mathfrak{m}_{k}^{2 k+i+1}\right.$, $H\left(\mathbb{R}^{2 k+i+1}\right)$)-skeleton there exist a $g \in H\left(\mathbb{R}^{2 k+i+1}\right)$ and a $j \in \mathbb{N}$ such that $g \mid A_{m}=1, g(h(S)) \subset f_{i+1}\left(C_{j}^{2 k+i+1}\right)$ and $\hat{\rho}(g, 1)<\varepsilon / 2$. Let I be such that $n_{1}>j$ and $1>i+1$. Then $f_{i+1}\left(C_{j}^{2 k+i+1}\right)$ is a subset of D_{1+1}. The embedding $\mathrm{f}=\mathrm{g} \circ \mathrm{h}$ has the following properties:

$$
\begin{aligned}
& f \mid D_{m}=1 \\
& f(S) \subset D_{1+1}
\end{aligned}
$$

and

$$
\hat{\rho}(f, 1)<\varepsilon .
$$

This concludes the proof.

CHAPTER 4

SHRUNKEN ENDFACES

4.1 Preliminaries

The main result of this chapter is a theorem that enables us to manipulate compacta in the Hilbert cube with ambient isotopies without moving certain copies of Q, called "shrunken endfaces". Let us define these objects

Let R be the set of all sequences $p_{1}, p_{2}, p_{3}, \ldots$ in $(0,1)$ such that $\lim p_{i}=1$. We pick a $\left(p_{i}\right)(\in \mathbb{N}$ in R that will remain fixed throughout $i \rightarrow \infty$ sections $4.1,4.2$ and 4.3. For every $i \in \mathbb{N}$ we define the shrunken endface in the i-coordinate direction by

$$
W_{i}=\pi_{i}^{-1}(\{1\}) \cap \prod_{j \neq i}^{\pi_{j}^{-1}}\left(\left[-p_{i}, p_{i}\right]\right) .
$$

Note that W_{i} is a subset of E_{i}^{1} and hence a Z-set in Q. Observe furthermore that the W_{i} 's are disjoint copies of Q. If $\varepsilon>0$ then there is an $i \in \mathbb{N}$ such that $1 / i<\varepsilon$ and $p_{j}>1-\varepsilon$ for every $j>i$ and hence there exists for every $\mathbf{j}>\mathbf{i}$ a map $\beta: Q \rightarrow W_{j}$ with $\hat{\rho}(\beta, 1)<\varepsilon$. This implies that every union of infinitely many shrunken endfaces, especially $W=U_{i \in \mathbb{N}} W_{i}$, is both dense and connected. Moreover, it follows that every compact subset of $Y=Q \backslash W$ is a Z-set in 0 . It is easily seen that Γ_{W} defined by

$$
\Gamma_{W}=\left\{f \in H(Q) \mid \text { for every } i \in \mathbb{N}, f\left(W_{i}\right)=W_{i}\right\}
$$

is a closed subgroup of the topological group $(H(Q), \hat{\rho})$.

Anderson, Curtis \& van Mill. [ACM : sec.4] have shown that Y is homogeneous. We shall prove the following stronger statement ${ }^{*}$):

Let U be a collection of open subsets of Q, A a compact space and $F: A \times I \rightarrow Q$ a homotopy that is limited by U. If F_{0} and F_{1} are embeddings of A in Y then there is a U push h in Γ_{W} with $h \circ F_{0}=F_{1}$.

The method we use is derived from proofs given in Chapman [C:ch.II] for theorems of this type. Moreover, in lemma 4.2.2 we use an idea of Anderson, Curtis \& van Mill [ACM : 4.1].

We conclude this section with some notations. If A is a subset of a space X and D is a collection of subsets of X then the star of A with respect to \mathcal{D} is defined by

$$
\operatorname{St}(A, \mathcal{D})=U\{D \in \mathcal{D} \mid D \cap A \neq \emptyset\} .
$$

Furthermore, $\mathrm{St}^{\mathrm{n}}(\mathrm{A}, \mathcal{D}), \mathrm{n}=0,1,2, \ldots$, is determined by

$$
\mathrm{St}^{0}(\mathrm{~A}, \mathrm{D})=\mathrm{A}
$$

and

$$
\mathrm{St}^{\mathrm{n}+1}(\mathrm{~A}, \mathcal{D})=\operatorname{St}\left(\mathrm{St}^{\mathrm{n}}(\mathrm{~A}, \mathcal{D}), D\right)
$$

4.2 The pseudo-interior

This section is about extending homeomorphisms between compact subsets of s. Consider the factorization $Q=Q_{\text {odd }} \times Q_{\text {even }}$, where

[^0]$$
Q_{\text {odd }}=\prod_{i \in \mathbb{N}} J_{2 i-1}
$$
and
$$
Q_{\text {even }}=\Pi_{i \in \mathbb{N}} J_{2 i}
$$

Let $\pi_{\text {odd }}: Q \rightarrow Q_{\text {odd }}$ and $\pi_{\text {even }}: Q \rightarrow Q_{\text {even }}$ be projections and define $s_{\text {odd }}$, $s_{\text {even }}, 0_{\text {odd }}$ and $0_{\text {even }}$ in the obvious way.
4.2.1 LEMMA: If A is a compact subset of s then there is a boundary preserving $f \in \Gamma_{W}$ such that for every $x, y \in f(A)$ with $\pi_{\text {even }}(x)=\pi_{\text {even }}(y)$ we have that $\pi_{\text {odd }}(x)=\pi_{\text {odd }}(y)$.

PROOF: Let i be odd and $m>i$ even. We may assume that A has the form $j \prod_{\mathbb{N}}\left[-a_{j}, a_{j}\right]$ where $a_{j} \in(0,1)$. Select a δ such that $a_{m}<\delta<1$. Let $\varphi: J_{m} \times J \rightarrow J_{m}$ be an isotopy of J_{m} with the following properties:

$$
\begin{aligned}
& \varphi_{1}=1, \\
& \varphi_{t} \text { is supported on }(-\delta, \delta) \text { for } t \in J, \\
& \varphi_{t}\left(\left[-a_{m}, a_{m}\right]\right) \subset\left[-a_{m}, a_{m}\right] \text { for } t \in J
\end{aligned}
$$

and for every $y \in J_{m}$,

$$
\begin{aligned}
& \operatorname{diam}\left\{x \in\left[-a_{i}, a_{i}\right] \mid \text { there is a } y^{\prime} \in\left[-a_{m}, a_{m}\right]\right. \text { with } \\
& \left.\varphi_{x}\left(y^{\prime}\right)=y\right\}<\frac{1}{m} .
\end{aligned}
$$

See the next page for a picture of φ.

Let k be a natural number such that for every $j>k, p_{j}>\delta$. For $j \in \mathbb{N}$ let $\beta_{j}: J_{j} \rightarrow I$ be a map that satisfies $\beta_{j}(1)=1$ and $\beta_{j}\left(\left[-a_{j}, a_{j}\right]\right)=\{0\}$. Define $X_{m}^{i}: Q \rightarrow Q$ by $\pi_{j} \circ X_{m}^{i}=\pi_{j}$ for $j \neq m$ and

$$
\pi_{m} \circ \chi_{m}^{i}(x)=\varphi\left(x_{m}, \alpha(x)\right) \text { for } x \in Q
$$

where

$$
\alpha(x)=\min \left\{1, x_{i}+2 \max \left\{\beta_{j}\left(x_{j}\right) \mid j \in\{1,2, \ldots, k\} \backslash\{m, i\}\right\}\right\}
$$

Since α is a continuous function which is independent of x_{m} we have with lemma 1.1.1 that X_{m}^{i} is a homeomorphism. Since diam $J_{m}=1 / \mathrm{m}$ it is obvious that $\hat{\rho}\left(x_{m}^{i}, 1\right) \leq 1 / m$. Furthermore, we have that $X_{m}^{i}(A) \subset A$ and for every endface $E_{n}^{\theta}, X_{m}^{i}\left(E_{n}^{\theta}\right)=E_{n}^{\theta}$. We verify that χ_{m}^{i} e Γ_{W}.
(a) If $x \in W_{i}$ then $x_{i}=1$ and hence $\alpha(x)=1$. This implies that $x_{m}^{i}(x)=x$.
(b) If $x \in W_{m}$ then $x_{m}=1$. Since $\varphi_{t}(1)=1$ for every $t \in J$ this yields that $X_{m}^{i}(x)=x$.
(c) Let $x \in W_{j}$ with $j \leq k$ and $j \neq i, m$. In this case $x_{j}=1$, whence $\alpha(x)=1$ and $X_{m}^{i}(x)=x$.
(d) Assume that $j>k$ and $j \neq m$. This means that $p_{j}>\delta$. Since φ_{t} is supported on $(-\delta, \delta)$ we have that $\varphi_{t}\left(\left[-p_{j}, p_{j}\right]\right)=\left[-p_{j}, p_{j}\right]$ and hence $X_{m}^{i}\left(W_{j}\right)=W_{j}$.

So X_{m}^{i} is a member of Γ_{W}. Consider now a point z in A. Then all $\beta_{j}\left(z_{j}\right)$'s vanish and hence $\alpha(z)=z_{i}$ and $\pi_{m} \circ \chi(z)=\varphi\left(z_{m}, z_{i}\right)$. We have for every $y \in J_{m}$ that

$$
\operatorname{diam}\left\{z_{i} \mid z \in A \text { with } \pi_{m} \circ X_{m}^{i}(z)=y\right\}<\frac{1}{m}
$$

Now, let ξ be a function from \mathbb{N} onto $\{2 j-1 \mid j \in \mathbb{N}\}$ such that every fibre is infinite. Select with lemma 1.1 .2 a strictly increasing sequence of even numbers $(m(j))_{j \in \mathbb{N}}$ such that $m(j)>\xi(j)$ and

$$
f=\lim _{i \rightarrow \infty} \chi_{m(j)}^{\xi(j)} \circ \ldots \circ \chi_{m(1)}^{\xi(1)} \in H(Q)
$$

It is obvious that $f(A) \subset A, f$ is boundary preserving and that $f \in \Gamma_{W}$. Observe that $\pi_{\text {odd }} \circ f=\pi_{\text {odd }} \circ \chi_{m(j)}^{\xi(j)}=\pi_{\text {odd }}$ for every $j \in \mathbb{N}$. Let i be an odd number, $\varepsilon>0$ and $x, y \in f(A)$ with $\pi_{\text {even }}(x)=\pi_{\text {even }}(y)$. Select a $j \in \mathbb{N}$ such that $\xi(j)=i$ and $1 / j<\varepsilon$. We have the following estimate for $\rho\left(x_{i}, y_{i}\right)$:

$$
\begin{aligned}
& \rho\left(x_{i}, y_{i}\right) \leq \operatorname{diam}\left\{z_{i} \mid z \in f(A) \text { with } \pi_{\text {even }}(z)=\pi_{\text {even }}(x)\right\} \leq \\
& \operatorname{diam}\left\{z_{i} \mid z \in x_{m(j-1)}^{\xi(j-1)} \circ \ldots \circ \chi_{m(1)}^{\xi(1)}(A) \text { with } \pi_{m(j)} \circ x_{m(j)}^{\xi(j)}(z)=\right. \\
& \left.=x_{m(j)}\right\} \leq \operatorname{diam}\left\{z_{i} \mid z \in A \text { with } \pi_{m(j)} \circ x_{m(j)}^{\xi(j)}(z)=x_{m(j)}\right\}< \\
& \frac{1}{m(j)} \leq \frac{1}{j}<\varepsilon .
\end{aligned}
$$

Consequently, $\rho\left(x_{i}, y_{i}\right)=0$ and the lemma is proved.
4.2.2 LEMMA: If A is a compact subset of s such that for every $x, y \in A, \pi_{\text {even }}(x)=\pi_{\text {even }}(y)$ implies that $\pi_{\text {odd }}(x)=\pi_{\text {odd }}(y)$ then there is a boundary preserving $h \in \Gamma_{W}$ with $\pi_{\text {even }} \circ \mathrm{h}=\pi_{\text {even }}$ and $\pi_{o d d} \circ h(A) \subset\{0$ odd $\}$.

PROOF: Let A be such a set. Select for every $i \in \mathbb{N}$ an $a_{i} \in(0,1)$ with $\pi_{i}(A) \subset\left(-a_{i}, a_{i}\right)$. Construct a continuous mapping $H^{i}: J_{i} \times\left(-a_{i}, a_{i}\right) \rightarrow J_{i}$ that satisfies for $t \in\left(-a_{i}, a_{i}\right): H_{0}^{i}=1, H_{t}^{i}(t)=0$ and H_{t}^{i} is an element of $H\left(J_{i}\right)$ that is supported on $\left(-a_{i}, a_{i}\right) . \operatorname{Let} \beta_{i}: J_{i} \rightarrow I$ be a map with $\beta_{i}(1)=0$ and $\beta_{i}\left(\left[-a_{i}, a_{i}\right]\right)=\{1\}$. Select an arbitrary j in \mathbb{N} and consider $\bar{A}=\pi_{\text {even }}(A) \subset Q_{\text {even }}$. We have that if $x, y \in A$ and $\pi_{\text {even }}(x)=\pi_{\text {even }}(y)$ then $x_{2 j-1}=y_{2 j-1}$. Since $\pi_{\text {even }} \mid A: A \rightarrow \bar{A}$ is a quotient map this implies that there exists a continuous $g_{j}: \bar{A} \rightarrow\left(-a_{2 j-1}, a_{2 j-1}\right)$ such that $g_{j} \circ \pi_{\text {even }}\left|A=\pi_{2 j-1}\right| A$. Let $\tilde{g}_{j}: Q_{\text {even }} \rightarrow\left(-a_{2 j-1}, a_{2 j-1}\right)$ be a continuous extension of g_{j}. Select a $\tilde{j} \in \mathbb{N}$ such that for every $k>\tilde{j}, a_{2} \tilde{j}-1<p_{k}$ and define $\alpha_{j}: Q \rightarrow\left(-a_{2 j-1}, a_{2 j-1}\right)$ by

$$
\alpha_{j}(x)=\tilde{g}_{j} \circ \pi_{\text {even }}(x) \quad \prod_{k \neq 1}^{\tilde{j}} \prod_{k-1}^{\tilde{j}} \beta\left(x_{k}\right)
$$

Let $h_{j}: Q \rightarrow Q$ be determined by $\pi_{k} \circ h_{j}=\pi_{k}$ if $k \neq 2 j-1$ and

$$
\pi_{2 j-1} \circ h_{j}(x)=H^{2 j-1}\left(x_{2 j-1}, \alpha_{j}(x)\right)
$$

Since α_{j} is independent of $x_{2 j-1}$ we have that $h_{j} \in H(Q)$. That h_{j} is an element of Γ_{W} follows from:
(a) If $x \in W_{2 j-1}$ then $x_{2 j-1}=1$ and $H^{2 j-1}\left(x_{2 j-1}, \alpha_{j}(x)\right)=1$. This yields that $h_{j}(x)=x$.
(b) If $k \leq \tilde{j}$ and $k \neq 2 j-1$ then for $x \in W_{k}, \beta_{k}\left(x_{k}\right)=0$. Consequently, we have that $\alpha_{j}(x)=0$ and $h_{j}(x)=x$.
(c) Let $k>\tilde{j}$ and $k \neq 2 j-1$. In this case $\left[-a_{2 j-1}, a_{2 j-1}\right] \subset\left[-p_{k}, p_{k}\right]$.

Since $H_{t}^{2 j-1}$ is supported on $\left(-a_{2 j-1}, a_{2 j-1}\right)$ we have that $h_{j}\left(W_{k}\right)=W_{k}$.
It is clear that $\pi_{\text {even }} \circ h_{j}=\pi_{\text {even }}$ and that for every $E_{n}^{\theta}, h_{j}\left(E_{n}^{\theta}\right)=E_{n}^{\theta}$. Define $h=\lim _{j \rightarrow \infty} h_{j} \circ \ldots \circ h_{1}$. Obviously, h is a boundary preserving map onto Q with $\pi_{\text {even }} \circ h=\pi_{\text {even }}$. We show that h is one-to-one and hence a homeomorphism. Let x and y be distinct points in Q. If $\pi_{\text {even }}(x) \neq \pi_{\text {even }}(y)$ then also $h(x) \neq h(y)$. Assume therefore that $\pi_{\text {even }}(x)=\pi_{\text {even }}(y)$. Let $i=2 j-1$ be a coordinate with $x_{i} \neq y_{i}$ and define $x^{\prime}=h_{j-1} \circ \ldots \circ h_{1}(x)$ and $y^{\prime}=h_{j-1} \circ \ldots \circ h_{l}(x)$. If $\alpha_{j}\left(x^{\prime}\right)=\alpha_{j}\left(y^{\prime}\right)$ then

$$
\begin{aligned}
& \pi_{i} \circ h(x)=H^{i}\left(x_{i}^{\prime}, \alpha_{j}\left(x^{\gamma}\right)\right)=H^{i}\left(x_{i}, \alpha_{j}\left(x^{\prime}\right)\right) \neq \\
& H^{i}\left(y_{i}, \alpha_{j}\left(y^{\prime}\right)\right)=\pi_{i} \circ h(y) .
\end{aligned}
$$

and therefore $h(x) \neq h(y)$. If, however, $\alpha_{j}\left(x^{\prime}\right) \neq \alpha_{j}\left(y^{\prime}\right)$ then in view of $\tilde{g}_{j} \circ \pi_{\text {even }}\left(x^{\prime}\right)=\tilde{g}_{j} \circ \pi_{\text {even }}\left(y^{\prime}\right)$ there is a $k \leq \tilde{j}$ with $\beta_{k}\left(x_{k}^{\prime}\right) \neq \beta_{k}\left(y_{k}^{\prime}\right)$. Consequently, $x_{k}^{\prime} \neq y_{k}^{\prime}$ and $\left\{x_{k}^{\prime}, y_{k}^{\prime}\right\}$ is not contained in $\left[-a_{k}, a_{k}\right]$. We can have the following situations:
(i) $\pi_{k} \circ h(x)=x_{k}^{\prime}$ and $\pi_{k} \circ h(y)=y_{k}^{\prime}$ or
(ii) For some $t, r \in\left(-a_{k}, a_{k}\right), \pi_{k} \circ h(x)=H_{t}^{k}\left(x_{k}^{\prime}\right)$ and $\pi_{k} \circ h(x)=H_{r}^{k}\left(y_{k}^{\prime}\right)$. Since H_{r}^{k} and H_{t}^{k} are supported on ($-a_{k}, a_{k}$) we may conclude in both cases that $\pi_{k} \circ h(x) \neq \pi_{k} \circ h(y)$. So $h \in H(Q)$ and since h is the limit of a sequence in the closed group Γ_{W} we have that $h \in \Gamma_{W}$.

Let $x \in A$ and $i=2 j-1$. If $x^{\prime}=h_{j-1} \circ \ldots \circ h_{1}(x)$ then $\pi_{i} \circ h(x)=$ $=\pi_{i} \circ h_{j}\left(x^{\prime}\right)$. Since $\pi_{\text {even }}(x)=\pi_{\text {even }}\left(x^{\prime}\right)$ and $x_{i}=x_{i}$ we have that

$$
\tilde{g}_{j} \circ \pi_{\text {even }}\left(x^{\prime}\right)=\tilde{g}_{j} \circ \pi_{\text {even }}(x)=g_{j} \circ \pi_{\text {even }}(x)=x_{i}=x_{i}^{\prime}
$$

For every $k \in \mathbb{N}, x_{k}$ is an element of $\left(-a_{k}, a_{k}\right)$ and since H_{t}^{k} is supported on
$\left(-a_{k}, a_{k}\right)$ this implies that $x^{\prime} \in \prod_{k \in \mathbb{N}}\left(-a_{k}, a_{k}\right)$. Consequently, $\alpha_{j}\left(x^{\prime}\right)=x_{i}^{\prime}$ and $\pi_{i} \circ h(x)=H^{i}\left(x_{i}^{\prime}, \alpha_{j}\left(x^{\prime}\right)\right)=0$. So $\pi_{o d d} \circ h(A) \subset\left\{0_{o d d}\right\}$ and the lemma is proved.

We are now ready to prove that homeomorphisms between compacta in s can be extended.
4.2.3 LEMMA: If A and A^{\prime} are compact subsets of s and h is a homeomorphism from A onto A^{\prime} then there is a boundary preserving f in Γ_{W} with $\mathrm{f} \mid \mathrm{A}=\mathrm{h}$.

PROOF: Lemma 4.2.1 and 4.2 .2 reduce the problem to the statement: if A and A^{\prime} are compacta in respectively $s_{\text {even }}$ and $s_{o d d}$ and h is a homeomorphism from A onto A ' then there is an $f \in \Gamma_{W}$ such that $f(B)=B$ and for every $a \in A, f\left(a, 0_{\text {odd }}\right)=\left(0_{\text {even }}, h(a)\right)$. Define the compact subset C of s by

$$
C=\{(a, h(a)) \mid a \in A\}=\left\{\left(h^{-1}(b), b\right) \mid b \in A^{\prime}\right\}
$$

We can apply lemma 4.2.2 to C : there is a $\gamma_{1} \in \Gamma_{W}$ with $\gamma_{1}(B)=B$, $\pi_{\text {even }} \circ \gamma_{1}=\pi_{\text {even }}$ and $\pi_{\text {odd }} \circ \gamma(C) \subset\left\{0{ }_{\text {odd }}\right\}$. Analogously, there is a $\gamma_{2} \in \Gamma_{W}$ with $\gamma_{2}(B)=B, \pi_{\text {odd }} \circ \gamma_{2}=\pi_{\text {odd }}$ and $\pi_{\text {even }} \circ \gamma_{2}(C) \subset\{0$ even $\}$. Then $\gamma_{2} \circ \gamma_{1}^{-1} \in \Gamma_{W}$ has the properties $\gamma_{2} \circ \gamma_{1}^{-1}(B)=B$ and for every $a \epsilon A$,

$$
\gamma_{2} \circ \gamma_{1}^{-1}\left(a, 0_{\text {odd }}\right)=\gamma_{2}(a, h(a))=\left(0_{\text {even }}, h(a)\right)
$$

Before we prove an estimated version of this lemma we give two technical lemmas.
4.2.4 LEMMA: Let U be a collection of open subsets of s and let A be a compact space. If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{s}$ is a map and A_{0} is a closed subset of A such that $f \mid A_{0}$ is an embedding and $f\left(A \backslash A_{0}\right) \in U U$, then there is an embedding g of A into s that is U-close to f and coincides with f on A_{0}.

REMARK: This lemma is essentially Chapman [C:8.1]. We have included a more elementary proof.

PROOF: Let $\left(F_{i}\right)_{i \in \mathbb{N}}$ and $\left(G_{i}\right)_{i \in \mathbb{N}}$ be sequences of compact subsets of $A \backslash A_{0}$ with the properties

$$
\begin{aligned}
& F_{i} \cap G_{i}=\emptyset \text { for every } i \in \mathbb{N}, \\
& U_{i \in \mathbb{N}} F_{i}=A \backslash A_{0}
\end{aligned}
$$

and for all distinct x and y in $A \backslash A_{0}$ there is an $i \in \mathbb{N}$ such that $x \in F_{i}$ and $y \in G_{i}$. Select for every $i \in \mathbb{N}$ a closed neighbourhood V_{i} of A_{0} with $V_{i} \cap\left(F_{i} \cup G_{i}\right)=\emptyset$. Note that $f\left(A \backslash V_{i}\right)$ has compact closure in UU. This enables us to select a strictly increasing sequence $\left(m_{i}\right){ }_{i \in \mathbb{N}}$ of natural numbers with the property that for every $x \in f\left(A \backslash V_{i}\right)$ there is $a U \in U$ such that $U_{2 / m_{i}}(x) \subset U$. Observing that $\pi_{m_{i}} \circ f\left(V_{i}\right)$ is a compact subset of $J_{\mathrm{m}_{i}}^{0}=(-1,1)$ select with Tietze's extension theorem for every $\mathbf{i} \in \mathbb{N}$ a continuous $g_{i}: A \rightarrow J_{m_{i}}^{o}$ with the properties:

$$
\mathrm{g}_{\mathrm{i}}\left|\mathrm{~V}_{\mathrm{i}}=\pi_{\mathrm{m}_{\mathrm{i}}} \circ \mathrm{f}\right| \mathrm{V}_{\mathrm{i}}
$$

and

$$
g_{i}\left(V_{i}\right) \cap\left(g_{i}\left(F_{i}\right) \cup g_{i}\left(G_{i}\right)\right)=g_{i}\left(F_{i}\right) \cap g_{i}\left(G_{i}\right)=\emptyset
$$

Define the map $g: A \rightarrow s$ by $\pi_{m_{i}} \circ g=g_{i}$ for $i \in \mathbb{N}$ and $\pi_{i} \circ g=\pi_{i} \circ f$ for $i \in \mathbb{N} \backslash\left\{\mathrm{~m}_{j} \mid j \in \mathbb{N}\right\}$. Obviously, we have that $g\left|A_{0}=f\right| A_{0}$. The properties
of $\left(F_{i}\right)_{i \in \mathbb{N}}$ and $\left(G_{i}\right)_{i \in \mathbb{N}}$ imply that g is one-to-one and hence an embedding. Let $x \in A$ and assume that m_{i} is the first coordinate with $\pi_{m_{i}} \circ f(x) \neq \pi_{m_{i}} \circ g(x)$. Then $x \notin V_{i}$ and since diam $j \prod_{m_{i}}^{\infty} J_{j}^{\circ}=1 / m_{i}$, we have that $\rho(f(x), g(x))<2 / m_{i}$. Consequently, there is a $U \in U$ with $\{f(x), g(x)\} \subset U_{2 / m_{i}}(f(x)) \subset U$. This means that f and g are $U-c$ lose.

The following lemma is folklore.
4.2.5 LEMMA: Let (X, d) be a metric space and U a collection of open subsets of X. Then there is a map $\varepsilon: X \rightarrow I$ such that $\varepsilon^{-1}((0,1])=U U$ and for every $x \in X,\{y \in X \mid d(y, x)<\varepsilon(x)\}$ is contained in some member of U.

PROOF: We may assume without loss of generality that U is locally finite and that d is bounded by 1. Define for every $U \in U$ the map $\mathrm{f}_{\mathrm{U}}: \mathrm{X} \rightarrow \mathrm{I}$ by

$$
f_{U}(x)=d(x, X \backslash U) .
$$

Since U is locally finite the function $\varepsilon: X \rightarrow I$ defined by

$$
\varepsilon(x)=\max \left\{f_{U}(x) \mid U \in U\right\}
$$

is continuous. It is obvious that ε meets the requirements.

We now come to the estimated extension theorem for s .
4.2.6 THEOREM: Let U be a collection of open subsets of Q, A a compact space and $\mathrm{F}: \mathrm{A} \times \mathrm{I} \rightarrow \mathrm{s}$ a homotopy that is limited by U. If F_{0} and F_{1} are embeddings then there is a U-push h in $\left\{\gamma \in \Gamma_{W} \mid \gamma(s)=s\right\}$ with $h \circ F_{0}=F_{1}$.

PROOF: We first introduce a notation. If $\alpha: X \rightarrow I$ is continuous then the variable product of X and I is the space

$$
X \times_{\alpha} I=\{(x, t) \mid x \in X \text { and } t \in[0, \alpha(x)]\} \subset X \times I
$$

Let A_{0} be the closed subset of A that is determined by $A_{0} \times I=$ $=F^{-1}(Q \backslash \cup U)$. We have that $F_{t}\left|A_{0}=F_{0}\right| A_{0}$ for $t \in I$ and that U covers $F\left(\left(A \backslash A_{0}\right) \times I\right)$. Select an open covering V of $F\left(\left(A \backslash A_{0}\right) \times I\right)$ in Q such that for every $a \in A \backslash A_{0}, S t^{4}(F(\{a\} x I), V)$ is contained in some element of U. We may assume that every member of V has a non-empty intersection with $F\left(\left(A \backslash A_{0}\right) \times I\right)$.

CLAIM 1: There exists an isotopy $G: Q \times I \rightarrow Q$ that is limited by V and has the properties: $G_{t} \in \Gamma_{W}$ and $G_{t}(s)=s$ for $t \in I, G_{0}=1$ and $G_{1} \circ F_{1}\left(A \backslash A_{0}\right) \cap F_{0}(A)=\emptyset$.

A proof of this assertion can be found below. Since $U V \subset U U$ we have that $G_{t} \mid F_{0}\left(A_{0}\right)=1$ for each $t \in I$. We may assume that A is a subset of the pseudo-interior of Q_{2}. Let η be an element of $(0,1)$ with $\eta<\min _{i \in \mathbb{N}} p_{i}$ and define $\alpha: Q_{2} \rightarrow I$ by $\alpha(x)=\rho\left(x, A_{0}\right) \cdot n / 2$. Let $\tilde{F}: A x_{\alpha} I \rightarrow s$ be given by

$$
\widetilde{F}(a, t)=G_{t / \alpha(a)}{ }^{\circ} F_{t / \alpha(a)}(a) \text { if } a \in A \backslash A_{0}
$$

and

$$
\widetilde{F}(a, 0)=F_{0}(a) \text { if } a \in A_{0} .
$$

It is easily verified that \tilde{F} is a continuous mapping that satisfies $\widetilde{F}(\{a\} \times[0, \alpha(a)]) \subset \operatorname{St}(F(\{a\} \times I), V)$ for every $a \in A \backslash A_{0}$. Define the compact subset X of $A x_{\alpha} I$ by

$$
X=\left\{(a, t) \in A x_{\alpha} I \mid t=0 \text { or } t=\alpha(a)\right\}
$$

Since $\widetilde{F}_{0}=F_{0}, F(a, \alpha(a))=G_{1} \circ F_{1}(a)$ for $a \in A$ and $G_{1} \circ F_{1}\left(A \backslash A_{0}\right) \cap F_{0}(A)=\emptyset$ we have that $\tilde{F} \mid X$ is an embedding. According to lemma 4.2 .4 there is an embedding P of $A x_{\alpha} I$ in s such that \widetilde{F} and P are V-close and $\widetilde{F}|X=P| X$. Note that we have for every a $\in A \backslash A_{0}$:

$$
P(\{a\} \times[0, \alpha(a)]) \subset \operatorname{St}(\tilde{F}(\{a\} \times[0, \alpha(a)]), V) \subset \operatorname{St}^{2}(F(\{a\} \times I), V) .
$$

CLAIM 2: There exists an isotopy $H: Q \times I \rightarrow Q$ that is limited by $W=\left\{\operatorname{St}(P(\{a\} \times[0, \alpha(a)]), V) \mid a \in A \backslash A_{0}\right\}$ and that satisfies moreover $H_{t} \in \Gamma_{W}$ and $H_{t}(s)=s$ for $t \in I, H_{0}=1$ and $H_{1} \circ F_{0}=G_{1} \circ F_{1}$.

Define the isotopy $\tilde{H}: Q \times I \rightarrow Q$ by

$$
\tilde{H}_{t}=\left(G_{t}\right)^{-1} \circ H_{t} \text { for } t \in I \text {. }
$$

One readily sees that $\tilde{H}_{0}=1, \tilde{H}_{1} \circ F_{1}=F_{0}$ and for $t \in I, \tilde{H}_{t} \in \Gamma_{W}$ and $\widetilde{H}_{t}(s)=s$. We shall see that \tilde{H} is limited by $\left\{S t^{4}(F(\{a\} \times I), V) \mid a \in A \backslash A_{0}\right\}$ and hence by U. Let $x \in Q$ and assume firstly that $H(\{x\} \times I)=\{x\}$. Pick an arbitrary $t \in I$ and let y be such that $G_{t}(y)=x$. If $x \in U V$ then there is a $V \in V$ with $\left\{G_{0}(y), G_{t}(y)\right\}=\{y, x\} \subset V$. Consequently, $H(\{x\} \times I)$ is contained in $\operatorname{St}(\{x\}, V)$ and since every element of V intersects $F\left(\left(A \backslash A_{0}\right) \times I\right)$, $\tilde{H}(\{x\} \times I) \subset \operatorname{St}^{2}(F(\{a\} \times I), V)$ for some $a \in A \backslash A_{0}$. If $x \notin U V$ then $G(\{x\} \times I)=\{x\}$ and hence $\tilde{H}(\{x\} \times I)=\{x\}$.

Consider now the second case that $H(\{x\} \times I)$ is contained in St $(P(\{a\} \times[0, \alpha(a)]), V)$ for some $a \in A \backslash A_{0}$. If $t \in I$ then we have as above that there is a $V \in V$ such that $\left\{\tilde{H}_{t}(x), H_{t}(x)\right\} \subset V$. This means that $\tilde{H}(\{x\} \times I)$ is contained in $\operatorname{St}^{2}(P(\{a\} \times[0, \alpha(a)]), V)$ and hence that

$$
\tilde{H}(\{x\} \times I) \subset \operatorname{St}^{4}(F(\{a\} \times I), V)
$$

So we may conclude that \tilde{H}_{1} is the U-push we need. It remains to prove the claims.

PROOF of claim 1: According to 4.2 .1 and 4.2 .2 there is a boundary preserving X in Γ_{W} such that $\pi_{1} \circ X \circ F(A \times I) \subset\{0\}$. Let $\hat{A}_{(0)}$ be the projection of $x \circ F_{1}\left(A_{(0)}\right)$ on Q_{2} and select a θ in $\left(0, \min _{i \in \mathbb{N}} p_{i}\right)$. According to lemma 4.2.5 there is a map $\varepsilon: Q_{2} \rightarrow[0, \theta]$ such that $\varepsilon\left(\hat{A} \backslash \hat{A}_{0}\right) \subset(0, \theta]$ and for every $x \in Q_{2}, U_{E(x)}(0, x)$ is contained in some element of $X(V)$. Let $\varphi: J_{1} \times[0, \theta] \rightarrow J_{1}$ be an isotopy of J_{1} such that $\varphi_{0}=1, \varphi_{t}(0)=\frac{1}{2} t$ and φ_{t} is supported on $(-t, t)$ for $t \in[0, \theta]$. Define the isotopy $G: Q \times I \rightarrow Q$ by

$$
G_{t}(x, y)=\left(\varphi_{t \varepsilon(y)}(x), y\right) \text { for } x \in I, y \in Q_{2} \text { and } t \in I
$$

The maps G_{t} are obviously boundary preserving and since $\theta<\min _{i \in \mathbb{N}} p_{i}$ they are elements of Γ_{W}. It is easily seen that G is 1 imited by $\chi(V)$ and that $G_{1}\left(\{0\} \times\left(\hat{A} \backslash \hat{A}_{0}\right)\right)$ misses $\{0\} \times Q_{2}$. This means that $X^{-1} \circ G_{t} \circ X$ is the isotopy we need.

PROOF of claim 2: Note that since A is a subset of the pseudo-interior of Q_{2} the variable product $A x_{\alpha} I$ is contained in s (write $Q=Q_{2} \times J_{1}$). So P is a homeomorphism between two compact subset of s. According to lemma 4.2.3 there is a boundary preserving $h \in \Gamma_{W}$ such that for each $(a, t) \in A X_{\alpha} I$ we have that $h(a, t)=P(a, t)$. Consider the following open covering of $\left(A \backslash A_{0}\right) \times_{\alpha} I$ in $Q:$

$$
\begin{aligned}
W^{\prime}= & \left\{U_{\varepsilon}(\{a\} \times[0, \alpha(a)]) \mid a \in A \backslash A_{0}, \varepsilon>0\right. \text { and } \\
& \left.U_{\varepsilon}(\{a\} \times[0, \alpha(a)]) \subset h^{-1}(W) \text { for some } W \in W\right\} .
\end{aligned}
$$

By virtue of lemma 4.2 .5 there is a map $\delta: Q_{2} \rightarrow[0, n / 2]$ such that
$\delta\left(A \backslash A_{0}\right) \subset(0, n / 2]$ and for every $x \in Q_{2}, U_{\delta(x)}(x, \alpha(x))$ is contained in some
element of W^{\prime}. Define the open set $O=\left\{x \in Q_{2} \mid \delta(x)>0\right\}$ and construct with Tietze's theorem a continuous $\beta: Q_{2} \backslash A_{0} \rightarrow[0, \eta \backslash 2]$ that extends $\alpha \mid A \backslash A_{0}$ and satisfies $\beta(x)=0$ for $x \notin 0$ and $\beta(x) \leq \alpha(x)$ for $x \in Q_{2} \backslash A_{0}$. since $\alpha(a)=0$ for $a \in A_{0}$ the function $\bar{\beta}: Q_{2} \rightarrow[0, n / 2]$ that is defined by $\bar{\beta}(x)=\beta(x)$ if $x \notin A_{0}$ and $\bar{\beta}(x)=0$ if $x \in A_{0}$, is continuous.

Let C be the space $([0, \eta / 2] \times(0, \eta / 2]) u\{(0,0)\} \subset I^{2}$ and construct a continuous function $\psi: J_{1} \times C \rightarrow J_{1}$ with the properties

$$
\begin{aligned}
& \psi_{t, r} \in H\left(J_{1}\right), \\
& \psi_{t, 0}=1 \\
& \psi_{t, r} \text { is supported on }(-t, r+t)
\end{aligned}
$$

and

$$
\psi_{t, r}(0)=r
$$

where we used the notation $\psi_{t, r}(x)=\psi(x, t, r)$ for $x \in J_{1}$ and $(t, r) \in C$. Just as if ψ were an isotopy we can construct an isotopy $H: Q \times I \rightarrow Q$ by $\pi_{i} \circ \mathrm{H}_{\mathrm{t}}=\pi_{i}$ if $\mathrm{i}>1$ and

$$
\pi_{1} \circ H_{t}(y, x)=\psi(x, \delta(y), t \bar{\beta}(y)) \text { for } x \in J_{1} \text { and } y \in Q_{2}
$$

The following properties of H are easily verified:

$$
\begin{aligned}
& H_{0}=1, \\
& H_{t} \in\left\{\gamma \in \Gamma_{W} \mid \gamma(s)=s\right\} \text { for } t \in I
\end{aligned}
$$

and

$$
H_{1}(a, 0)=(a, \alpha(a)) \text { for } a \in A .
$$

We prove that H is limited by $h^{-1}(W)$. Let $(y, x) \in Q_{2} \times J_{1}$ and select an
$\varepsilon>0$ and an $a \in A \backslash A_{0}$ such that

$$
U_{\delta(y)}(y, \alpha(y)) \subset U_{\varepsilon}(\{a\} \times[0, \alpha(a)]) \in w^{\prime}
$$

Then $\delta(y) \leq \varepsilon$ and hence $\{y\} \times(-\delta(y), \alpha(y)+\delta(y))$ is contained in $U_{\varepsilon}(\{a\} \times[0, \alpha(a)])$ which is in turn a subset of an element $h^{-1}(W)$ of $h^{-1}(\omega)$. Recall that $\psi_{\delta(y)}, t \bar{\beta}(y)$ is supported on $(-\delta(y), t \vec{\beta}(y)+\delta(y))$ and hence on $(-\delta(y), \alpha(y)+\delta(y))$. This implies that $H(\{(y, x)\} \times I)=\{(y, x)\}$ or that $H(\{y, x\} \times I) \subset\{y\} \times(-\delta(y), \alpha(y)+\delta(y))$. So we have shown that H is limited by $h^{-1}(\omega)$.

Let us now introduce the isotopy

$$
H_{t}^{\prime}=h \circ H_{t} \circ h^{-1} \text { for } t \in I \text {. }
$$

Obviously, we have that $H_{0}^{\prime}=1, H_{t}^{\prime} \in\left\{\gamma \in \Gamma_{W} \mid \gamma(s)=s\right\}$ for $t \in I$ and that H^{\prime} is limited by $W . H_{1}^{\prime}$ is a W-push in Γ_{W} with the property that for every $a \in A$:

$$
\begin{aligned}
& H_{1}^{\prime} \circ F_{0}(a)=h \circ H_{1} \circ h^{-1} \circ P(a, 0)=h \circ H_{1}(a, 0)= \\
& h(a, \alpha(a))=P(a, \alpha(a))=\tilde{F}(a, \alpha(a))=G_{1} \circ F_{1}(a) .
\end{aligned}
$$

This proves claim 2.
4.2.7 COROLLARY: Let A and A^{\prime} be compact subsets of s . If $\mathrm{h}: \mathrm{A} \rightarrow \mathrm{A}^{\prime}$ is a homeomorphism with $\hat{\rho}(\mathrm{h}, 1)<\varepsilon$ then there is an $\tilde{\mathrm{h}} \varepsilon \Gamma_{W}$ with $\hat{\rho}(\tilde{\mathrm{h}}, 1)<\varepsilon$, $\tilde{\mathrm{h}} \mid \mathrm{A}=\mathrm{h}$ and $\tilde{\mathrm{h}}(\mathrm{s})=\mathrm{s}$.

PROOF: Define the map $F: A \times I \rightarrow s$ by $F(a, t)=(1-t) a+t h(a)$. The straight-1ine homotopy F is limited by $U=\left\{U_{\varepsilon / 2}(x) \mid x \in Q\right\}$. Apply theorem 4.2.6 to F. The U-push \tilde{h} we get has the properties $\tilde{h} \in \Gamma_{W}, \tilde{h} \mid A=h$, $\hat{\rho}(\tilde{h}, 1)<\varepsilon$ and $\tilde{h}(s)=s$.

4.3 The estimated extension theorem

In this section we reduce our problems to compacta in so that theorem 4.2 .6 can be applied. We prove that any compact set that is disjoint from W can be homeomorphed into s. We conclude the section with an observation that shows that Y is not quite as homogeneous as ℓ^{2}.
4.3.1 LEMMA: Let A be a compact subset of an endface $\mathrm{E}_{\mathrm{n}}^{\theta}$ such that $\mathrm{A} \cap \mathrm{W}=\emptyset$. Then there are for each $\mathrm{E}>0$ an $\mathrm{h} \in \Gamma_{\mathrm{W}}$ and an $\mathrm{m}>\mathrm{n}$ such that $h(A) \cap U\left\{E_{i}^{\mu} \mid i<m\right.$ and $\left.\mu \in\{-1,1\}\right\}=\emptyset, h(A) \subset E_{m}^{-1}$ and $\hat{\rho}(h, 1)<\varepsilon$.

PROOF: Let $\varepsilon>0$ and select an $m>n$ with $1 / m<\rho\left(A, W_{n}\right)$ and $1 / m<\varepsilon / 2$. We first push A into E_{m}^{-1} and then away from the endfaces in the lower coordinate directions. Noting that $\operatorname{diam}\left(J_{m}\right)=1 / m$ it is geometrically obvious that there exists an $\varepsilon / 2$-isotopy $\chi: \partial\left(J_{n} \times J_{m}\right) \times I \rightarrow \partial\left(J_{n} \times J_{m}\right)$ such that $X_{0}=1$,

$$
x_{t} \mid\left(\left[-p_{m}, p_{m}\right] \times\{1\}\right) \cup\left(\{-\theta\} \times J_{m}\right)=1 \text { for } t \in I
$$

and

$$
x_{1}\left(\{\theta\} \times J_{m}\right) \subset J_{n} \times\{-1\}
$$

See the facing page for a picture of χ_{1}.

Noting that $J_{n} \times J_{m}$ is a subset of the linear space \mathbb{R}^{2} define the $\varepsilon / 2-$ isotopy \hat{x} of $J_{n} \times J_{m}$ by $\hat{x}_{t}(0)=0$ and

$$
\hat{x}_{t}(x)=\|x\| x_{t}(x /\|x\|) \text { if } x \neq 0 \text { and } t \in I
$$

Observe that \hat{x}_{t} is norm preserving, i.e. $\|\hat{x}(x)\|=\|x\|$ for every x. Define $h \in H(Q)$ by $\pi_{i} \circ h=\pi_{i}$ for $i \neq m, n$ and

$$
\pi_{i} \circ h(x)=\pi_{i} \circ \hat{X}_{\alpha(x)}\left(x_{n}, x_{m}\right) \text { for } i=m, n
$$

where

$$
\begin{gathered}
\alpha(x)=\min \left\{1, m \cdot \max \left(\{ - \theta \} \cup \left\{\rho\left(x_{j},\left[-p_{n}, p_{n}\right]\right) \mid\right.\right.\right. \\
j \in\{1, \ldots, m-1\} \backslash\{n\}\})\} .
\end{gathered}
$$

It is obvious that $\hat{\rho}(h, 1)<\varepsilon / 2$. The function h is a member of Γ_{W} because:
(a) Let $x \in W_{n}$. If $\theta=-1$ then $x_{n}=-\theta$ and $\hat{X}_{t}\left(x_{n}, x_{m}\right)=\left(x_{n}, x_{m}\right)$ for every $t \in I$. This means that $h(x)=x$. Let now $\theta=1$. For every $i \neq n$ we have
that $x_{i} \in\left[-p_{n}, p_{n}\right]$ and hence $\alpha(x)=0$. So again $h(x)=x$.
(b) If $x \in W_{m}$ then $\left(x_{n}, x_{m}\right) \in\left[-p_{m}, P_{m}\right] \times\{1\}$. Since this set is fixed by X_{t} and \hat{x}_{t} we have that $h(x)=x$.
(c) Let $i \neq m, n$. Since \hat{X}_{t} is norm preserving we have that

$$
x_{t}\left(\left[-p_{i}, p_{i}\right]^{2}\right)=\left[-p_{i}, p_{i}\right]^{2} \text { and hence that } h\left(W_{i}\right)=W_{i}
$$

If $x \in A$ and $\theta=-1$ then $\alpha(x)=1$ which yields that $h(x) \in E_{m}^{-1}$. If $\theta=1$ then $\rho\left(x, W_{n}\right)>1 / m$ implies that there is a $j<m$ such that $j \neq n$ and $\rho\left(x_{j},\left[-p_{n}, p_{n}\right]\right)>1 / m$. Consequently, $\alpha(x)=1$ and $h(x) \in E_{m}^{-1}$. The conclusion is that $h(A) \subset E_{m}^{-1}$.

Consider now $B_{m}=\prod_{j=1}^{m} J_{j}$ and the projection $p: Q \rightarrow B_{m}$. There is a homeomorphism ψ of ∂B_{m} such that $\hat{\rho}(\psi, 1)<\varepsilon / 2, \psi\left(p\left(E_{m}^{-1}\right)\right) \subset\left(\prod_{j=1}^{m} J_{j}^{o}\right) \times\{-1\}$ and for every $j \leq m, \psi \mid p\left(W_{j}\right)=1$ (the picture gives the situation for $m=3$).

Let $\hat{\psi} \in H\left(B_{m}\right)$ be given by $\hat{\psi}(0)=0$ and $\hat{\psi}(x)=\|x\| \psi(x /\|x\|)$ for $x \neq 0$. Define $g \in H\left(B_{m}\right)$ by $g(x, y)=(\hat{\psi}(x), y)$ for $x \in B_{m}$ and $y \in Q_{m}$. We show that $g \in \Gamma_{W}$. If $j \leq m$ then $\left.\hat{\psi}\right|_{p}\left(W_{j}\right)=\psi\left(p\left(W_{i}\right)\right)=1$ and hence $g \mid W_{j}=1$. If $j>m$ then, since $\hat{\psi}$ is norm preserving, we have that $\hat{\psi}\left(\left[-p_{j}, p_{j}\right]^{m}\right)=\left[-p_{j}, p_{j}\right]^{m}$ and $g\left(W_{j}\right)=W_{j}$. If x is an element of E_{m}^{-1} then $\pi_{i} \circ \hat{\psi} \circ p(x) \in J_{i}^{\circ}$ for $i<m$. This means that $g\left(E_{m}^{-1}\right)$ and $U\left\{E_{i}^{\mu} \mid i<m\right.$ and $\left.\mu \in\{-1, I\}\right\}$ are disjoint. Also we have that $g\left(\mathrm{E}_{\mathrm{m}}^{-1}\right) \subset \mathrm{E}_{\mathrm{m}}^{-1}$ and $\hat{\rho}(\mathrm{g}, \mathrm{l})<\varepsilon / 2$. It is now obvious that $\mathrm{g} \circ \mathrm{f}$ is the homeomorphism we need.
4.3.2 LEMMA: If A is a compact subset of $\mathrm{E}_{\mathrm{n}}^{\theta} \backslash \mathrm{W}$ then there is for every $\varepsilon>0$ an $f \in \Gamma_{W}$ with $\hat{\rho}(f, 1)<\varepsilon$ and $f(A) \subset s$.

PROOF: Using the convergence criterion 1.1 .2 we can find sequences $\left(f_{i}\right)_{i \in \mathbb{N}}$ in Γ_{W} and $m_{1}<m_{2}<m_{3}<\ldots$ in \mathbb{N} such that $f=\lim _{i \rightarrow \infty} f_{i} \circ \ldots \circ f_{1} \in \Gamma_{W}$ and $f_{i} \circ \ldots \circ f_{1}(A) \cap U\left\{E_{j}^{\theta} \mid j<m_{i}\right.$ and $\theta \in\{-1,1\}\}=\emptyset$. If we take care that for every $\mathbf{i} \in \mathbb{N}$,

$$
\sum_{j=i+1}^{\infty} \hat{\rho}\left(f_{j}, 1\right)<\rho\left(f_{i} \circ \ldots \circ f_{1}(A), U\left\{E_{j}^{\theta} \mid j<m_{i} \text { and } \theta \in\{-1,1\}\right\}\right)
$$

then $f(A) \subset s$.
4.3.3 LEMMA: If A is a compact subset of Y then for every $\mathrm{E}_{\mathrm{n}}^{\theta}$ and $\varepsilon>0$ there is an $\mathrm{f} \in \mathrm{\Gamma}_{\mathrm{W}}$ with $\hat{\rho}(\mathrm{f}, 1)<\varepsilon$ and $\mathrm{f}(\mathrm{A}) \cap \mathrm{E}_{\mathrm{n}}^{\theta}=\emptyset$.

PROOF: Let A be a compactum in Y, let $\varepsilon>0$ and put
$\delta=\min \left\{\frac{1}{2} \rho\left(A, W_{n}\right), \varepsilon\right\}$. Define the compact set $\hat{A}=\left\{x \in E_{n}^{\theta} \mid \rho(x, A) \leq \delta\right\}$. According to lemma 4.3.2 there is a $\chi \in \Gamma_{W}$ with $\hat{\rho}(\chi, 1)<\delta / 4$ and $\chi(\hat{A}) \subset$ s. If m is a natural number such that $1-p_{m}<\delta / 4$ and $1 / m<\delta / 4$ then there is a map $h: Q \rightarrow W_{m}$ with $\hat{\rho}(h, 1)<\delta / 4$. Note that $h \circ \chi(\hat{A}) \cap A=\emptyset$ and construct
a continuous $g: Q \rightarrow s$ such that

$$
\hat{\rho}(g, 1)<\min \{\delta / 4, \rho(\mathrm{~h} \circ \chi(\hat{\mathrm{~A}}), \mathrm{A})\}
$$

Since $g \circ h \circ \chi(\hat{A}) \subset s$ and $g \circ h \circ \chi(\hat{A}) \cap A=\emptyset$ there exists by virtue of lemma 4.2.4 an embedding β of $\chi(\hat{A})$ in s that satisfies

$$
\hat{\rho}(g \circ h \mid \chi(\hat{A}), \beta)<\min \{\delta / 4, \rho(g \circ h \circ \chi(\hat{A}), A)\}
$$

We now have the following situation: $\hat{\rho}(\beta, 1)<3 \delta / 4, \beta$ is a homeomorphism between compact subsets of s and $\beta \circ \gamma(A) \cap \dot{A}=\emptyset$. In view of corollary 4.2.7 there is an extension $\bar{\beta} \in \Gamma_{W}$ of β with $\hat{\rho}(\bar{\beta}, 1)<3 \delta / 4$. Consider $\mathrm{f}=(\bar{\beta} \circ \chi)^{-1} \in \Gamma_{W}$. We have that $\hat{\rho}(f, 1)<\varepsilon$ and $f(A) \cap \hat{A}=\emptyset$. If $x \in f(A)$ then $\rho(x, A)<\delta$ and $x \notin \hat{A}$. This implies that $x \notin E_{n}^{\theta}$ and the conclusion is that $f(A) \cap E_{n}^{\theta}=\emptyset$.
4.3.4 LEMMA: If A is a compactum in Y then for every $\varepsilon>0$ there exists an $\mathrm{f} \in \Gamma_{\mathrm{W}}$ such that $\hat{\rho}(\mathrm{f}, 1)<\varepsilon$ and $\mathrm{f}(\mathrm{A}) \subset \mathrm{s}$.

PROOF: This is a straightforward application of the convergence criterion, see lemma 4.3.2.

Before we prove the main result a technical lemma.
4.3.5 LEMMA: Let U be a collection of open subsets of Q and let A be a compact space. If f is a continuous function from A into Q and A_{0} is a closed subset of A such that $f\left(A \backslash A_{0}\right) \subset U U$ and $f\left(A_{0}\right) \subset s$, then there is a

PROOF: Select for every i $\in \mathbb{N}$ a compact neighbourhood V_{i} of A_{0} with
$\pi_{i} \circ f\left(V_{i}\right) \subset J_{i}^{\circ}$. Let $\left(\varepsilon_{i}\right)_{i \in \mathbb{N}}$ be a decreasing sequence of numbers from ($0, \frac{1}{2}$) such that for every $x \in f\left(A \backslash V_{i}\right)$ there is a $U \in U$ with $U_{\varepsilon_{i}}(x) \subset U$. Select for every $i \in \mathbb{N}$ a continuous $g_{i}: A \rightarrow J_{i}^{\circ}$ such that $\hat{\rho}\left(g_{i}, \pi_{i} \circ f\right)<\varepsilon_{i}$ and $g_{i}\left|V_{i}=\pi_{i} \circ f\right| V_{i}$. Let $g: A \rightarrow s$ be defined by $\pi_{i} \circ g=g_{i}$ for $i \in \mathbb{N}$. Assume that x is an element of A with $f(x) \neq g(x)$. If i is the first coordinate with $\pi_{i} \circ f(x) \neq g_{i}(x)$ then $x \notin V_{i}$ and there is a $U \in U$ such that $U_{\varepsilon_{i}}(f(x)) \subset U$. Since $\rho(f(x), g(x)) \leq \sup \left\{\rho\left(\pi_{i} \circ f(x), g_{j}(x)\right) \mid j \geq i\right\}<\varepsilon_{i}$ we have that both $f(x)$ and $g(x)$ are in U. This shows that f and g are U-close and since it is obvious that $g\left|A_{0}=f\right| A_{0}$, the proof is completed.
4.3.6 THEOREM: Let U be a collection of open subsets of Q, A a compact space and $\mathrm{F}: \mathrm{A} \times \mathrm{I} \rightarrow \mathrm{Q}$ a homotopy that is limited by U. If F_{0} and F_{1} are embeddings of A in Y then there is a $U_{-p u s h} \mathrm{~h}$ in $\mathrm{\Gamma}_{\mathrm{W}}$ with $\mathrm{h} \circ \mathrm{F}_{0}=\mathrm{F}_{1}$.

PROOF: Let A_{0} be the closed subset of A that is determined by $A_{0} \times I=F^{-1}(Q \backslash U U)$. Since $F_{0}(A) U F_{1}(A)$ is a compact subset of Y there exists by virtue of lemma 4.3 .4 an $f \in \Gamma_{W}$ with $f\left(F_{0}(A) \cup F_{1}(A)\right) c$ s. Let \widetilde{F} be the homotopy foF. Select an open covering V of $F\left(\left(A \backslash A_{0}\right) \times I\right)$ in Q such that for every a $\in A \backslash A_{0}$, $\operatorname{St}(\widetilde{F}(\{a\} \times I), V)$ is contained in some element of $f(U)$. Note that $\widetilde{F}_{0}(A) \cup \widetilde{F}_{1}(A)=\widetilde{F}_{0}(A) \cup \widetilde{F}_{1}(A) \cup \widetilde{F}\left(A_{0} \times I\right)$. According to lemma 4.3.5 there is a homotopy $G: A \times I \rightarrow s$ that is U-close to \tilde{F} and that coincides with \widetilde{F} on $(A \times\{0,1\}) \cup\left(A_{0} \times I\right)$. Since G is also limited by $f(U)$ we find with theorem 4.2 .6 an $f(U)$-push g in Γ_{W} such that $g \circ G_{0}=G_{1}$. Then $h=f^{-1} \circ g \circ f$ is a U-push in Γ_{W} with $h \circ F_{0}=F_{1}$.
4.3.7 COROLLARY: If h is a homeomorphism between compacta in Y with $\hat{\rho}(h, 1)<\varepsilon$ then it has an extension $\hat{h} \in \Gamma_{W}$ such that $\hat{\rho}(\hat{h}, 1)<\varepsilon$.

PROOF: See corollary 4.2.7.

The next corollary has already been introduced as theorem 3.1.2. It is essentially due to Anderson \& Chapman [AC].
4.3.8 COROLLARY: Let U be a collection of open subsets of Q, A a compact space and $\mathrm{F}: \mathrm{A} \times \mathrm{I} \rightarrow \mathrm{Q}$ a homotopy that is limited by U . If both F_{0} and F_{1} are embeddings such that their image is a z-set then there exists a U-push h in $H(Q)$ with $h \circ \mathrm{~F}_{0}=\mathrm{F}_{1}$.

PROOF: According to Chapman [C: 10.2] there is an $f \in H(Q)$ with $f\left(F_{0}(A) \cup F_{1}(A)\right) \subset s \subset Y$. Apply theorem 4.3.6 to the homotopy $f \circ F$.

As is well known theorem $4 \cdot 3.6$ holds also for $\ell^{2} \approx s$ (cf. theorem 4.2.6). In ℓ^{2} we can also extend homeomorphisms between non-compact Z-sets, Anderson [A2]. This is not the case for Y. To show this we need the following lemma that we took from Anderson, Curtis \& van Mill [ACM : 3.6].
4.3.9 LEMMA: Let B_{1} and B_{2} be $\sigma-\mathrm{Z}-\mathrm{sets}$ in Q and let $\mathrm{f}: \mathrm{Q} \backslash \mathrm{B}_{1} \rightarrow \mathrm{Q} \backslash \mathrm{B}_{2}$ be a homeomorphism. Then there exist a compact space M and monotone maps $\gamma_{1}, \gamma_{2}: M \rightarrow Q$ such that $\gamma_{1}^{-1}\left(B_{1}\right)=\gamma_{2}^{-1}\left(B_{2}\right)$ and $f \circ \gamma_{1}\left|\gamma_{1}^{-1}\left(Q \backslash B_{1}\right)=\gamma_{2}\right| \gamma_{2}^{-1}\left(Q \backslash B_{2}\right)$.

Recall that a map h is monotone if it is onto, closed and has the property that every fibre is connected or, equivalently, the pre-image under h of every connected set is connected.

PROOF: Let M be the closure of the graph of f in $Q \times Q$ and take for γ_{1} an γ_{2} the restrictions to M of the projections $Q \times Q \rightarrow Q$. By symmetry,
it suffices to prove that γ_{1} is monotone. Since M is compact and $Q \backslash B_{1}$ is dense in Q, γ_{1} is closed and onto. Let $x \in Q$ and consider the $\varepsilon-b a 11 U_{\varepsilon}(x)$. Since every path in $U_{\varepsilon}(x)$ connecting two points of $U_{\varepsilon}(x) \backslash B_{1}$, can be pushed off the $\sigma-Z$-set B_{1} we have that $U_{\varepsilon}(x) \backslash B_{1}$ is connected. So

$$
C=\left\{C 1_{M}\left\{(a, h(a)) \mid a \in U_{\varepsilon}(x) \backslash B_{1}\right\} \mid \varepsilon>0\right\}
$$

is a collection of continua that is linearly ordered by c. Since $\gamma_{1}^{-1}(\{x\})$ equals $\cap C$ it is also a continuum. The other properties of γ_{1} and γ_{2} are obvious.

Now let L_{1} and L_{2} be two copies of $(0,1)$ that are embedded in Y as Z-sets such that $L_{1} \cup W_{1} \cup W_{2}$ and $L_{2} \cup W_{1}$ are continua. So L_{1} and L_{2} are paths going from W_{1} to W_{2} and from W_{1} to W_{1}, respectively.
4.3.10 PROPOSITION: There is no $h \in H(Y)$ that throws L_{1} onto L_{2}.

PROOF: Assume that $h \in H(Y)$ has the property that $h\left(L_{1}\right)=L_{2}$. There are a compact space M and monotone maps $\gamma_{1}, \gamma_{2}: M \rightarrow Q$ such that $\gamma_{1}^{-1}(W)=\gamma_{2}^{-1}(W)$ and $h \circ \gamma_{1}\left|\gamma_{1}^{-1}(Y)=\gamma_{2}\right| \gamma_{2}^{-1}(Y)$. Since $W_{1} \cup W_{2} \cup L_{1}$ is a continuum and γ_{1} is monotone we have that $\gamma_{1}^{-1}\left(W_{1} \cup W_{2} \cup L_{1}\right)$ and hence $\gamma_{2}\left(\gamma_{1}^{-1}\left(W_{1} \cup W_{2} \cup L_{1}\right)\right)$ is a continuum. Note that $\gamma_{2}\left(\gamma_{1}^{-1}\left(W_{1} \cup W_{2} \cup L_{1}\right)\right)$ is covered by the disjoint collection $\left\{L_{2} \cup W_{1}\right\} \cup\left\{W_{i} \mid i \geq 2\right\}$. Applying the Sierpiński theorem, see section 5.2 , we find that $\gamma_{2}\left(\gamma_{1}^{-1}\left(W_{1} \cup W_{2} \cup L_{1}\right)\right)$ is contained in $L_{2} \cup W_{1}$. Since $\gamma_{1}^{-1}(W)=\gamma_{2}^{-1}(W)$ this means that $\gamma_{1}^{-1}\left(W_{1} \cup W_{2}\right) \subset \gamma_{2}^{-1}\left(W_{1}\right)$. If we apply the same argument to the continuum $\gamma_{1}\left(\gamma_{2}^{-1}\left(W_{1}\right)\right)$ we find that $\gamma_{1}\left(\gamma_{2}^{-1}\left(W_{1}\right)\right)=W_{1} \cup W_{2}$ which is obviously false.

4.4 Shifting shrunken endfaces

In this section we prove that whatever choice we make for $p \in R$, the space Y is topologically always the same. Furthermore, it is shown that subsets of Y that are homeomorphic to Q are negligible. In order to prove the first assertion we need a notation that distinguishes between representations of Y.
4.4.1 NOTATION: If $r \in(0,1)$ and $i \in \mathbb{N}$ then we define the shrunken endface $W_{i}(r)$ by

$$
W_{i}(r)=\pi_{i}^{-1}(\{i\}) \cap \bigcap_{j \neq i} \pi_{j}^{-1}([-r, r])
$$

If $p=\left(p_{i}\right)_{i \in \mathbb{N}} \in R$ then $W(p)=U_{i \in \mathbb{N}} W_{i}\left(p_{i}\right) ; \Gamma_{W(p)}$ and Y_{p} are defined in the obvious way. The set R^{\dagger} is given by

$$
R^{\uparrow}=\left\{p \in R \mid p_{1}<p_{2}<p_{3}<\ldots\right\}
$$

4.4.2 LEMMA: If $p \in R$ then there is a $q \in R^{\uparrow}$ and an $f^{\prime} \in H(Q)$ such that $\mathrm{f}\left(\mathrm{Y}_{\mathrm{p}}\right)=\mathrm{Y}_{\mathrm{q}}$.

PROOF: Let $p \in R$. We show that there are a $q \in R$ and an $f \in H(Q)$ such that for $i \neq j, q_{i} \neq q_{j}$ and $f\left(Y_{p}\right)=Y_{q}$. If we have established this then the lemma follows by simply applying a permutation of coordinates.

We construct inductively a sequence $f_{1}, f_{2}, f_{3}, \ldots$ in $H(Q)$ and a sequence $q_{1}, q_{2}, q_{3}, \ldots$ in $(0,1)$ such that for every i. $\in \mathbb{N}$:

$$
q_{i} \notin\left\{q_{1}, \ldots, q_{i-1}\right\}
$$

$$
\begin{aligned}
& p_{i} \leq q_{i} \\
& f_{i}\left(W_{j}\left(q_{j}\right)\right)=W_{j}\left(q_{j}\right) \text { for } j<i, \\
& f_{i}\left(W_{i}\left(p_{i}\right)\right)=W_{i}\left(q_{i}\right)
\end{aligned}
$$

and

$$
f_{i}\left(W_{j}\left(p_{j}\right)\right)=W_{j}\left(p_{j}\right) \quad \text { for } j>i
$$

In order to obtain that $f=\lim _{i \rightarrow \infty} f_{i} \circ \ldots \circ f_{1} \in H(Q)$ we make sure that every f_{i} can be chosen arbitrarily close to 1 . It is obvious that f and $q=\left(q_{i}\right)_{i \in \mathbb{N}}$ meet the requirements.

Put $f_{1}=1$ and $q_{1}=p_{1}$. Suppose that h_{i} and q_{i} have been selected. Let $\varepsilon>0$ be such that $\left(p_{i+1}, p_{i+1}+\varepsilon\right) \cap\left\{q_{1}, \ldots, q_{i}\right\}=\emptyset$ and $p_{i+1}+\varepsilon<1$. Pick an element q_{i+1} of $\left(p_{i+1}, p_{i+1}+\varepsilon\right)$ and define $r \in R$ by $r_{j}=q_{j}$ for $j \leq i$ and $r_{j}=p_{j}$ for $j>i$ Let $x \in H(Q)$ be defined by $\chi(x)=\left(x_{1}, \ldots, x_{i}\right.$, $\left.-x_{i+1}, x_{i+2}, x_{i+3}, \ldots\right)$. Note that $x\left(W_{i+1}\left(p_{i+1}\right)\right)$ and $x\left(W_{i+1}\left(q_{i+1}\right)\right)$ are subsets of Y_{r} and that there exists a homeomorphism $g: x\left(W_{i+1}\left(p_{i+1}\right)\right) \rightarrow x\left(W_{i+1}\left(q_{i+1}\right)\right)$ with $\hat{\rho}(g, 1)<q_{i+1}-p_{i+1}$. In view of corollary 4.3 .7 there is an extension $\bar{g} \in \Gamma_{W(r)}$ of g such that $\hat{\rho}(\bar{g}, 1)<q_{i+1}-p_{i+1}$. Then $f_{i+1}=x \circ \bar{g} \circ x$ has the following properties:

$$
\begin{aligned}
& f_{i+1}\left(W_{j}\left(q_{j}\right)\right)=W_{j}\left(q_{j}\right) \text { for } j \leq i, \\
& f_{i+1}\left(W_{i+1}\left(p_{i+1}\right)\right)=W_{i+1}\left(q_{i+1}\right), \\
& f_{i+1}\left(W_{j}\left(p_{j}\right)\right)=W_{j}\left(p_{j}\right) \text { for } j>i+1
\end{aligned}
$$

and

$$
\hat{\rho}\left(f_{i+1}, 1\right)<q_{i+1}-p_{i+1} .
$$

This completes the induction.

4.4.3 THEOREM: If $\mathrm{p}, \mathrm{q} \in \mathrm{R}$ then there is an $\mathrm{f} \in H(\mathrm{Q})$ such that $f\left(Y_{p}\right)=Y_{q}$.

PROOF: In view of 1emma 4.4 .2 it suffices to prove the theorem for $p, q \in R^{\uparrow}$. Let β be an element of $H(J)$ such that for every $i \in \mathbb{N}, \beta\left(p_{i}\right)=q_{i}$ and $\beta\left(-p_{\mathbf{i}}\right)=-q_{\mathbf{i}}$. If $\mathrm{f}=\mathrm{M}_{\mathbf{i}} \beta \in H(Q)$ then $f\left(\mathrm{Y}_{\mathrm{p}}\right)=\mathrm{Y}_{\mathrm{q}}$.
4.4.4 LEMMA ${ }^{*}$: If $p \in R^{\uparrow}$ then there is an $f \in H(Q)$ such that for every $i \in \mathbb{N}, f\left(W_{i}\left(p_{i}\right)\right)=W_{i+1}\left(p_{i+1}\right)$.

PROOF: Let $p \in R^{\dagger}$ and construct for every i $\in \mathbb{N}$ a norm preserving $\beta_{i} \in H(J \times J)$ such that

$$
\beta_{i}\left(\{1\} \times\left[-p_{2 i-1}, p_{2 i-1}\right]\right)=\{1\} \times\left[-p_{2 i-1}, p_{2 i-1}\right]
$$

and

$$
\beta_{i}\left(\left[p_{2 i}, p_{2 i}\right] \times\{1\}\right)=\{-1\} \times\left[-p_{2 i}, p_{2 i}\right]
$$

If we define $\chi \in H(Q)$ by

$$
x(x)=\left(\beta_{1}\left(x_{1}, x_{2}\right), \beta_{2}\left(x_{3}, x_{4}\right), \beta_{3}\left(x_{5}, x_{6}\right), \ldots\right)
$$

then we have for every $i \in \mathbb{N}, x\left(W_{2 i-1}\left(p_{2 i-1}\right)\right)=W_{2 i-1}\left(p_{2 i-1}\right)$ and

$$
x\left(W_{2 i}\left(p_{2 i}\right)\right)=\pi_{2 i-1}^{-1}(\{-1\}) n_{j \neq 2 i-1} \pi_{j}^{-1}\left(\left[-p_{2 i}, P_{2 i}\right]\right)
$$

Let γ be the homeomorphism of Q that interchanges adjacent odd and even
*) This lemma is due to R.D. Anderson (unpublished).
coordinates:

$$
\gamma(x)=\left(x_{2}, x_{1}, x_{4}, x_{3}, x_{6}, x_{5}, \ldots\right)
$$

Define $\varphi \in H(Q)$ by

$$
\varphi(x)=\left(x_{1}, \beta_{1}^{-1}\left(x_{2}, x_{3}\right), \beta_{2}^{-1}\left(x_{4}, x_{5}\right), \beta_{3}^{-1}\left(x_{6}, x_{7}\right), \ldots\right)
$$

Observe that for every $i \in \mathbb{N}$ we have that $\varphi\left(W_{2 i}\left(p_{2 i-1}\right)\right)=W_{2 i}\left(p_{2 i-1}\right)$ and

$$
\varphi\left(\pi{ }_{2 i}^{-1}(\{-1\}) \cap \underset{j \neq 2 i}{\cap} \pi_{j}^{-1}\left(\left[-p_{2 i}, p_{2 i}\right]\right)\right)=W_{2 i+1}\left(p_{2 i}\right)
$$

Since $\left(p_{i}\right)_{i \in \mathbb{N}}$ is strictly increasing there is an $\alpha \in H(J)$ such that for every $i \in \mathbb{N}, \alpha\left(p_{i}\right)=p_{i+1}$ and $\alpha\left(-p_{i}\right)=-p_{i+1}$. If we put $\psi=\prod_{i \in \mathbb{N}} \alpha$ then it is easily verified that $f=\psi \circ \varphi \circ \gamma \circ \chi$ has the property:

$$
f\left(W_{i}\left(p_{i}\right)\right)=W_{i+1}\left(p_{i+1}\right) \text { for every } i \in \mathbb{N}
$$

4.4.5 THEOREM: Any subset of Y that is homeomorphic to Q is negligible.

PROOF: Let Y be represented by Y_{p}, where $p \in R^{\uparrow}$, and let $f \in H(Q)$ be a "shift" on the shrunken endfaces: $f\left(W_{i}\right)=W_{i+1}$ for $i \in \mathbb{N}$. Then $f^{-1}\left(W_{1}\right)$ is a negligible subset of Y and in view of the homeomorphism extension theorem 4.3.7 this implies that every copy of Q is negligible in Y.

CHAPTER 5

FAKE HILBERT SPACES

5.1 Introduction

The study of "fake Hilbert spaces" has been inspired by Toruñczyk's characterization of ℓ^{2}. Before we state it some definitions.
5.1.1 DEFINITION: A space X is called an absolute retract (AR) if for every space Z, every map into X that is defined on a closed subset of Z can be extended over Z. A space X is called an absolute neighbourhood retract (ANR) if for every space Z and every map f from a closed subset Z_{0} of Z into X there is a neighbourhood of Z_{0} in Z over which f can be extended. For information concerning $A(N) R$'s see Borsuk [B1].
5.1.2 DEFINITION: A collection \mathcal{D} of subsets of a space X is discrete if each point of X has a neighbourhood intersecting at most one member of D. A space X is said to have the strong discrete approximation property (SDAP) if for every admissible metric d on X, every $\varepsilon>0$ and every map f from the countable free union of Hilbert cubes $i \oplus \underset{\in}{\oplus} Q_{i}$ into X there is a map $g: i \stackrel{\oplus}{\in} \mathbb{N} Q_{i} \rightarrow X$ such that $\hat{d}(f, g)<\varepsilon$ and $\left\{g\left(Q_{i}\right) \mid i \in \mathbb{N}\right\}$ is discrete.
5.1.3 THEOREM (Torunczyk [T2]): A topologically complete $A R$ is homeomorphic to ℓ^{2} iff it has the SDAP.

This extremely useful characterization has now become the standard method for recognizing topological Hilbert spaces. In Anderson, Curtis \& van Mill [ACM] it was shown that the SDAP cannot be relaxed by considering only one metric on the space. Specifically, they constructed a topologically complete $A R$ space X with the following properties:
(1) There is an admissible metric d on X such that for every $\varepsilon>0$ and continuous $f: i \underset{i}{\oplus} \mathbb{N} Q_{i} \rightarrow X$ there is a map $g: i \underset{\oplus}{\oplus} \mathbb{N} Q_{i} \rightarrow X$ that satisfies $\hat{d}(g, f)<\varepsilon$ while $\left\{g\left(Q_{i}\right) \mid i \in \mathbb{N}\right\}$ is discrete (this is called the weak discrete approximation property, WDAP).
(2) Every compact subset of X is a Z -set.
(3) X embeds as a linearly convex subset of ℓ^{2}.
(4) $X \times X \approx \ell^{2}$.
(5) X is homogeneous.
(6) Every countable subset of X is strongly negligible.
(7) No Cantor set is negligible in X.

Since in ℓ^{2} every σ-compact set is strongly negligible, Anderson [A3], property (7) shows that $X \not \approx \ell^{2}$. The space X is a "fake topological Hilbert space" since it has many of the familiar topological properties of ℓ^{2} but yet is not homeomorphic to it. As an "application" we get that the properties (1) through (6) do not characterize ℓ^{2}. It is useful to push this point further. Every "fake topological Hilbert space" blocks a possible generalization of Torunczyk's theorem.

The aim of this chapter is to construct spaces that "approximate" ℓ^{2} closer than the space above. We are interested in dimension theory and
negligibility properties and we shall obtain a characterization of dimension in terms of negligibility.

Consider the space Y defined in section 4.1. Recall that we proved in section 3.2 that there is for every $k \in\{0,1,2, \ldots\}$ a strong $\left(S_{k}, H(Q)\right)-$ skeletoid A_{k} in Q, where S_{k} is the collection of Z-sets in Q with dimension $\leq k$. For convenience, we put $A_{-1}=\emptyset$ and $S_{-1}=\{\emptyset\}$. The skeletoids A_{k} were constructed in the pseudo-interior s of Q which is a subset of Y (indeed, we may always assume this, because every $\sigma-Z-$ set can be pushed into s). Let $k \in\{-1,0,1, \ldots\}$ and A_{k} be fixed in the remaining part of this chapter. The space X_{k} is defined as

$$
X_{k}=Y \backslash A_{k}
$$

We shall prove that X_{k} is a topologically complete $A R$, which is not homeomorphic to ℓ^{2} but which has the following properties*):
(1) X_{k} has the WDAP.
(2) Every compact subset of X_{k} is a Z-set.
(3) X_{k} embeds as linearly convex subset of ℓ^{2}.
(4) $X_{k} \times X_{k} \approx \ell^{2}$.
(5) Let U be a collection of open subsets in X_{k}, A a compact space and $F: A \times I \rightarrow X_{k}$ a homotopy that is limited by U. If F_{0} and F_{1} are embeddings then there is an $h \in H\left(X_{k}\right)$ that is U-close to 1 and has the property $h \circ F_{0}=F_{1}$. Since X_{k} is an $A R$ this implies that X_{k} is homogeneous.
*) This result was established in Dijkstra \& van Mill [DM].
(6) If $A \subset X_{k}$ is σ-compact, then A is strongly negligible iff $\operatorname{dim}(A) \leq k$ (in particular, $X_{k} \not \approx X_{k^{\prime}}$ if $k \neq k^{\prime}$).
(7) If $A \subset X_{k}$ is a compactum of fundamental dimension at most k, then A is negligible (in particular, if $C \subset X_{k}$ is an n-cell, then C is negligible and C is strongly negligible iff $n \leq k$).

5.2 A generalization of the Sierpinski theorem

The aim of this section is to prove a generalization of Sierpinski's theorem that no continuum (i.e. a compact connected space) can be partitioned into countably many pairwise disjoint non-empty closed subsets, see Sierpinski [S] or [E1: p.440]. This generalization plays a key role in deciding whether a subset of X_{k} is strongly negligible. Since we feel that the result is of independent interest we have put it in a separate section.

As usual, S^{n} denotes the n -sphere, $\mathrm{n} \in\{0,1,2, \ldots\}$.
5.2.1 THEOREM: Let n be a nonnegative integer and X a compact space. If $\left\{\mathrm{F}_{\mathrm{i}} \mid \mathrm{i} \in \mathbb{N}\right\}$ is a closed covering of X such that for each pair of distinct natural numbers i and $j, \operatorname{dim}\left(F_{i} \cap F_{j}\right)<n$ then every map $f: F_{1} \rightarrow S^{n}$ can be extended over X .

The theorem is also valid outside the class of metric spaces, see Dijkstra [D3]. The reader is encouraged to verify that Sierpiński's theorem follows easily if one substitutes $n=0$.

PROOF: We shall work with the following induction hypothesis for $\mathrm{n}=0,1,2, \ldots$

Let X be a compact space and M an $A R$. If $\left\{F_{i} \mid i \in \mathbb{N}\right\}$ is a closed covering of X such that for every i and j with $i \neq j, \operatorname{dim}\left(F_{i} \cap F_{j}\right)<n$ then every map $f: F_{1} \rightarrow S^{n} \times M$ is extendable over X.

Consider the case $n=0$, where we have that S^{n} is the discrete double-$\operatorname{ton}\{-1,1\}$ and $\left\{F_{i} \mid i \in \mathbb{N}\right\}$ is a pairwise disjoint collection. Assume that the closed set $A=f^{-1}(\{-1\} \times M) \subset F_{1}$ is non-empty. Let \tilde{X} be the space we obtain from X by identifying A to a single point a and let $q: X \rightarrow \widetilde{X}$ be the decomposition map. If C is the component of a in \tilde{X} then it is a continuum with the following pairwise disjoint, closed covering:

$$
\{\{a\}, \hat{A} \cap C\} \cup\left\{F_{i} \cap C \mid i \geq 2\right\}
$$

where $\hat{A}=f^{-1}(\{1\} \times M)$. According to Sierpinski we have that $C=\{a\}$. Since $\tilde{\mathrm{X}}$ is a compact Hausdorff space there is a clopen neighbourhood 0 of a in \widetilde{X} that misses \hat{A}. Because M is an $A R$ we can find maps $g_{1}: q^{-1}(0) \rightarrow\{-1\} \times M$ and $g_{2}: q^{-1}(\tilde{X} \backslash 0) \rightarrow\{1\} \times M$ such that $g_{1}|A=f| A$ and $g_{2}|\hat{A}=f| \hat{A}$. Then $g_{1} \cup g_{2}$ is the required extension of f.

Assume now that the induction hypothesis holds for n. Let $\left\{\mathrm{F}_{\mathrm{i}} \mid \boldsymbol{i} \in \mathbb{N}\right\}$ be a closed covering of X such that for $i \neq j, \operatorname{dim}\left(F_{i} \cap F_{j}\right) \leq n$ and let $\mathrm{f}: X \rightarrow S^{\mathrm{n+1}} \times \mathrm{M}$ be continuous. According to the countable sum theorem (see [E2: 3.1.8]) the set $R=U\left\{F_{i} \cap F_{j} \mid i, j \in \mathbb{N}\right.$ with $\left.i \neq j\right\}$ has dimension $\leq n$. Select two distinct points x_{1} and x_{2} in $\mathrm{S}^{\mathrm{n}+1}$ and note that $S^{n+1} \backslash\left\{x_{1}, x_{2}\right\}$ is homeomorphic to $S^{n} \times \mathbb{R}$. Using the separation theorem (see [E2: 4.1.13]) we find a closed covering $\left\{\mathrm{H}_{1}, \mathrm{H}_{2}\right\}$ of X such that for $j \in\{1,2\}, H_{j} \cap f^{-1}\left(\left\{X_{j}\right\} \times M\right)=\emptyset$ and

$$
\operatorname{dim}\left(H_{1} \cap H_{2} \cap R\right)<n
$$

Consider the compact space $\mathrm{X}^{\prime}=\mathrm{H}_{1} \cap \mathrm{H}_{2}$ and its closed covering $\left\{F_{i} \cap X^{\prime} \mid i \in \mathbb{N}\right\}$. Obviously, we have for $i \neq j$ that
$\operatorname{dim}\left(F_{i} \cap F_{j} \cap X^{\prime}\right) \leq \operatorname{dim}\left(R \cap X^{\prime}\right)<n$. Observe that $f \mid F_{1} \cap X^{\prime}$ is a continuous mapping into $\left(S^{n+1} \backslash\left\{x_{1}, x_{2}\right\}\right) \times M$, which space is homeomorphic to $S^{\mathrm{I}} \times \mathbb{R} \times \mathrm{M}$. Since $\mathbb{R} \times \mathrm{M}$ is, as product of $A R^{\prime} \mathrm{s}$, itself an $A R$ we may apply the induction hypothesis to find a continuous $g: X^{\prime} \rightarrow\left(S^{n+1} \backslash\left\{x_{1}, x_{2}\right\}\right) \times M$ with $g\left|F_{1} \cap X^{\prime}=f\right| F_{1} \cap X^{\prime}$. Observing that $S^{n+1} \backslash\left\{x_{j}\right\}$ is homeomorphic to $\mathbb{R}^{\mathrm{n}+1}$ select for $\mathrm{j} \in\{1,2\}$ a continuous extension $h_{i}: H_{j} \rightarrow\left(S^{n+1} \backslash\left\{x_{j}\right\}\right) \times M$ of $\left(f \mid F_{1} \cap H_{j}\right) U g$. Then $h=h_{1} \cup h_{2}$ is a map from X into $S^{n+1} \times M$ which extends f and the theorem is proved.

5.3 Some topological properties of X_{k}

In this section we give a number of properties that X_{k} shares with ℓ^{2}; we show that X_{k} is a "fake Hilbert space".

5.3.1 THEOREM:

(1) X_{k} is topologically complete.
(2) X_{k} embeds as a linearly convex set in l^{2} and hence it is an $A R$.
(3) X_{k} has the WDAP.
(4) Every compact subset of X_{k} is a z-set.
(5) $X_{k} \times X_{k} \approx \ell_{2}$.

PROOF: It is proved in Anderson, Curtis \& van Mill [ACM: sec.3] that if A is a σ-Z-set in Q such that for every $\varepsilon>0$ there is a map $\beta: Q \rightarrow A$ with $\hat{\rho}(\beta, 1)<\varepsilon$ then $Q \backslash A$ satisfies (1) through (5).

We now turn to the homogeneity properties of X_{k}. Put

$$
S_{k W}=\{S \subset Y \mid S \text { is compact and } \operatorname{dim}(S) \leq k\}
$$

Since every compact subset of Y is a Z-set in Q it follows that

$$
S_{k W}=\left\{S \in S_{k} \mid S \cap W=\emptyset\right\}
$$

We have the following proposition:
5.3.2 PROPOSITION: A_{k} is a strong $\left(S_{k W}, \Gamma_{W}\right)$-skeletoid in Q and a strong $\left(S_{k W}, H(Y)\right)-s k e l e t o i d{ }^{\text {n }}$ in Y.

PROOF: Since $A_{k} \cap W=\emptyset, A_{k}$ is a member of $\left(S_{k W}\right)_{\sigma}$. Let S be in $S_{k W}$ and assume that U is a collection of open subsets of Q that covers S. Put $0=U U$ and select a closed neighbourhood F of $Q \backslash O$ that misses S. Let $\left(A_{k}^{i}\right)_{i \in \mathbb{N}}$ be the skeleton that corresponds with A_{k} and let $n \in \mathbb{N}$. There are an $m \in \mathbb{N}$ and an isotopy H of Q such that H is limited by $\left\{\right.$ Int $\left._{Q}(F)\right\} \cup U$ $H_{0}=1, H_{1}(S) \subset A_{m}$ and $H_{t} \mid F \cup A_{n}=1$ for every $t \in I$. So $H \mid S \times I$ is a homotopy that is limited by $\left\{U \backslash A_{n} \mid U \in U\right\}$ and with the property that $H_{0} \mid S$ and $H_{1} \mid S$ are embeddings of S into Y. According to theorem 4.3.6 there is a $\left\{U \backslash A_{n} \mid U \in U\right\}$-push h in Γ_{W} with $h(S) \subset A_{m}$. This proves that A_{k} is a strong $\left(S_{k W}, \Gamma_{W}\right)$-skeletoid ${ }^{\sim}$. Since $h \mid Y$ is a $\{U \cap Y \mid U \in U\}$-push in $\left\{\gamma \in H(Y)|\gamma| A_{n}=1\right\}$ we have also proved that A_{k} is a strong $\left(S_{k W}, H(Y)\right)$ skeletoid ${ }^{\text {n }}$.
5.3.3 THEOREM: Let U be a collection of open subsets in Q, A a compact space and $\mathrm{F}: \mathrm{A} \times \mathrm{I} \rightarrow \mathrm{Q}$ a homotopy that is limited by U. If F_{0} and F_{1} are embeddings of A in X_{k} then there is an $h \in \Gamma_{W}$ that is U-close to 1 and that has the properties $\mathrm{h} \circ \mathrm{F}_{0}=\mathrm{F}_{1}$ and $\mathrm{h} \mid \mathrm{X}_{\mathrm{k}} \in \mathrm{H}\left(\mathrm{X}_{\mathrm{k}}\right)$.

PROOF: According to theorem 4.3 .6 there is an $£ \in \Gamma_{W}$ that is U-close to 1 and satisfies $f \circ F_{0}=F_{1}$. Using theorem 1.2 .13 we find an $h \in \Gamma_{W}$ that extends $f \mid F_{0}(A)$ and has the properties that it is U-close to 1 and $h\left(A_{k}\right)=A_{k}$.
5.3.4 COROLLARY: Let U be a collection of open subsets of X_{k}, A a compact space and $\mathrm{F}: \mathrm{A} \times \mathrm{I} \rightarrow \mathrm{X}_{\mathrm{k}}$ a homotopy that is limited by U. If F_{1} and F_{0} are embeddings then there is an $\mathrm{h} \in \mathrm{H}\left(\mathrm{X}_{\mathrm{k}}\right)$ that is U-close to 1 and has the property $\mathrm{h} \circ \mathrm{F}_{0}=\mathrm{F}_{1}$.

PROOF: This is trivial.
5.3.5 REMARK: In view of theorem 4.3.6 it is natural to ask whether the homeomorphism of corollary 5.3 .4 can be chosen in such a way that it is isotopic to the identity of X_{k}. This is not the case for $k=0$. We believe that for $k>0$ the spaces X_{k} also behave " b adly" in this respect, but we have no proof of this assertion.

Consider an isotopy $H: X_{0} \times I \rightarrow X_{0} \times I$ such that $H_{0}=1$. We shall show that $H_{1}=1$ for every $t \in I$. Pick an arbitrary point x in A_{0} and let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in X_{0} that converges to x in Q. There is a copy L of $\left[0,1\right.$) in X_{0} such that $\left\{x_{n} \mid n \in \mathbb{N}\right\} \subset L$ and $L U\{x\} \approx I$ (use the fact that every Z-set in Q is thin). If we put $D=H(L \times I)$ then D is a closed subset of $X_{0} \times I$ that is homeomorphic to $[0,1) \times I$. Let $K=C I{ }_{Q \times I}(D) \backslash D$ and $1 e t \widetilde{K}$ be the projection of K into the first factor of the product $Q \times I$. Then K and \tilde{K} are continua which are contained in ($W \cup A_{0}$) $\times I$ and $W \cup A_{0}$, respectively. Since $A_{0} U W$ can be written as a disjoint union of compacta and since $x \in \widetilde{K} \cap A_{0}$, Sierpiński's theorem gives that $\widetilde{K} \subset A_{0}$. Now A_{0} is totally disconnected and hence $\widetilde{K}=\{x\}$. This implies that $\lim _{\mathrm{i} \rightarrow \infty} \mathrm{H}_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{x}$
for every $t \in I$ and hence H_{t} can be extended over Y with the identity on A_{0}. Since A_{0} is dense in Y we have that $H_{t}=1$ for every $t \in I$.

So we may conclude that if f and g are isotopic members of $H\left(X_{0}\right)$ then $\mathrm{f}=\mathrm{g}$ (cf. remark 1.2.15).
5.3.6 COROLLARY: Let A be compact and $f: A \rightarrow X_{k}$ continuous. If A^{\prime} is a closed subset of A such that $f \mid A \cdot$ is an embedding and if U is an open covering of X_{k}, then there is an embedding g of A in X_{k} such that g and f are U-close and $g\left|A^{\prime}=f\right| A^{\prime}$.

PROOF: It is no problem to find a subset R of X_{k} that is homeomorphic to s; put for instance $R=\{-1\} \times \prod_{i=1}^{\infty}(-1,1)$. Let C be a subset of R that is homeomorphic to $f(A)$. Both embeddings of $f(A)$ in X_{k} are of course homotopic in Q and hence there is an $h \in H\left(X_{k}\right)$ such that $h \circ f(A) \subset R$. Since $R \approx s$, there is according to lemma 4.2.4 an embedding g of A in R such that g and $h \circ f$ are $h(U)-c l o s e$ and $g\left|A^{\prime}=h \circ f\right| A^{\prime}$. If $\tilde{g}=h^{-1} \circ g$ then \tilde{g} and f are U-close and $\tilde{g}\left|A^{\prime}=f\right| A^{\prime}$.

5.4 Negligibility and dimension

In this section we shall prove the connexions that exist between (strong) negligibility in X_{k} and dimension.
5.4.1 THEOREM: Every σ-compact subset of X_{k} with dimension at most k is strongly negligible.

PROOF: As observed in the preceeding section, A_{k} is a strong
$\left(S_{\mathrm{kW}}, H(\mathrm{Y})\right)$-skeletoid ${ }^{\text {. }}$. Now apply proposition 1.2.10 and theorem 1.2.12.

We identify $\mathrm{S}^{\mathrm{n}-1}$ and the boundary $\partial \mathrm{I}^{\mathrm{n}}$ for every natural number n . Let X be a space. A map $f: X \rightarrow I^{n}$ is called essential if $f \mid f^{-1}\left(S^{n-1}\right)$ cannot be extended to a map $g: X \rightarrow \mathrm{~S}^{\mathrm{n}-1}$.
5.4.2 LEMMA: Let n be a natural number with $\mathrm{n}>\mathrm{k}$. If A is a compact subset of X_{k} and $f: A \rightarrow I^{n}$ is essential then $f^{-1}\left(\operatorname{Int} I^{n}\right)$ is not negligible in X_{k}.

PRCOF: Let $R=f^{-1}\left(\mathrm{~S}^{\mathrm{n}-1}\right)$ and $0=A \backslash R$. In view of corollary 5.3.6 we may assume that $A \times I$ is a subset of X_{k} such that $A \times\{0\}$ coincides with A. Suppose that 0 is a negligible subset of X_{k}. This implies that $\mathrm{Z}=(\mathrm{A} \times \mathrm{I}) \backslash 0$ can be embedded as a closed subset in X_{k}. Assume that Z is reembedded as a closed subset in X_{k} and let \bar{Z} be the closure of Z in Q. Put $Z^{*}=\bar{Z} \backslash Z$ and note that the local compactness of $A \times(0,1]$ implies that $Z^{*} \cup R$ is compact. A1so, Z^{*} is a closed subset of $Q \backslash X_{k}=A_{k} \cup W$. Since $Z^{*} \cap A_{k}$ is σ-compact and at most ($n-1$)-dimensional, we can find a sequence $\left(F_{i}\right)_{i \in \mathbb{N}}$ of compact subsets of $Z^{*} \cap A_{k}$ such that $Z^{*} \cap A_{k}=\bigcup_{i \in \mathbb{N}} F_{i}$ and $F_{i} \cap F_{j}$ is at most ($n-2$)-dimensional for all distinct $i, j \in \mathbb{N}$. In addition, observe that $\mathrm{Z}^{*} \mathrm{n} \mathrm{W}$ is a countable disjoint union of compacta and that $W \cap A_{k}=\emptyset$. Theorem 5.2.1 implies that the map $g=f \mid R$ can be extended to a map $\bar{g}:\left(Z^{*} \cup R\right) \rightarrow S^{n-1}$. Since S^{n-1} is an ANR there is an open U containing $Z^{*} \cup(R \times I)$ such that the map h, defined by

$$
h(x)=\bar{g}(x) \text { if } x \in z^{*} \cup R
$$

and

$$
h(x, t)=f(x) \text { if }(x, t) \in R \times I \text {, }
$$

can be extended to a continuous $\bar{h}: U \rightarrow S^{n-1}$. Since $(A \times(0,1]) \backslash U$ is compact there is an $\varepsilon \in(0,1]$ such that $A \times\{\varepsilon\} \subset U$. Define the function $\eta: A \rightarrow S^{n-1}$ by $\eta(a)=\bar{h}(a, \varepsilon)$, $a \in A$. Then $\eta|R=f| R$ and $\eta(A) \subset S^{n-1}$, which means that f is not essential.
5.4.3 COROLLARY: If $\mathrm{n} \in \mathbb{N}$ and $\mathrm{n}>\mathrm{k}$ then there exist copies of \mathbb{R}^{n} in X_{k} that are not negligible.

PROOF: I^{n} is embedded in X_{k}, corollary 5.3.6, and I^{n} is essential.
5.4.4 COROLLARY: X_{k} is not homeomorphic to ℓ^{2}.

PROOF: As remarked in section 3.1 , every σ-compact subset of ℓ^{2} is strongly negligible.
5.4.5 COROLLARY: X_{k} does not admit the structure of a topological group.

PROOF: ℓ^{2} is the only infinite dimensional topological group that is a complete AR (Dobrowolski \& Toruñczyk [DT]).
5.4.6 REMARK: With the method of lemma 5.4 .2 and corollaries we can prove that if C is a compact space containing ℓ^{2} and $C \backslash \ell^{2}=U_{i \in \mathbb{N}} F_{i}$, where the F_{i} 's are compacta, then there is for every $\mathrm{n} \in \mathbb{N}$ an infinite set $\left\{i_{m} \mid m \in \mathbb{N}\right\}$ of natural numbers greater than n such that for every $m \in \mathbb{N}$, $\operatorname{dim}\left(F_{i_{m}} \cap F_{i_{m+1}}\right) \geq n$.

We sketch a proof. Define the following equivalence relation on $N=\{i \in \mathbb{N} \mid i>n\}: m \sim 1$ if there is a sequence $m=i_{1}, i_{2}, \ldots, i_{j}=1$ in N
with $\operatorname{dim}\left(F_{i_{r}}, F_{i_{r+1}}\right) \geq n$ for $r=1,2, \ldots, j-1$. If there is an infinite equivalence class we are done. If every class is finite we define new compacta $G_{[i]}=U\left\{F_{j} \mid j \sim i\right\}$, where [i] is the class of $i \in N$. Note that if $[i] \neq[j]$ then $\operatorname{dim}\left(G_{[i]} \cap G_{[j]}\right)<n$. Let U be an open, non-empty subset of ℓ^{2} which closure in C misses $\mathbb{U N}_{=1}^{\mathbb{U}} F_{i}$. If $Z=I^{n+2} \backslash\left(\right.$ Int $\left.I^{n+1}\right) \times\{0\}$ then we can embed Z as a closed subset in ℓ^{2} such that $Z \subset U$. The proof of lemma 5.4.2 shows that we cannot do this in $C \backslash\left(\underset{i \in N}{\cup} G_{[i]} U \underset{i=1}{U} F_{i}\right)=C \backslash U_{i \in \mathbb{N}} F_{i}$. We now come to the announced characterizations of dimension in terms of negligibility.
5.4.7 THEOREM: Let $k \neq-1$. For every σ-compact space A, the following statements are equivalent:
(1) $\operatorname{dim}(A) \leq k$.
(2) There is an embedding f of A in X_{k} such that for every open 0 in A, $\mathrm{f}(0)$ is negligible in X_{k}.
(3) Every embedding f of A in X_{k} has the property that for every open 0 in A, $f(0)$ is negligible in X_{k}.

PROOF: (1) \rightarrow (3). If $\operatorname{dim}(A) \leq k$ then by theorem $5.4 .1 f(A)$ is strongly negligible. Consequently, every relatively open subset of $f(A)$ is negligible.
(3) \rightarrow (2). By corollary 5.3.6, X_{k} is universal.
$(2) \rightarrow(1)$. Assume that A satisfies (2) for some embedding f.
Write A as a countable union of compacta $F_{1}, F_{2}, F_{3}, \ldots$. We show that F_{i} also satisfies (2). Let $i \in \mathbb{N}$ and let 0 be a relatively open subset of F_{i}. Choose an open $\tilde{0}$ in A with $\tilde{O} \cap F_{i}=0$. Since A satisfies (2) there exist two homeomorphisms $\alpha: X_{\cdot k} \rightarrow X_{k} \backslash f(\tilde{0})$ and $B: X_{k} \rightarrow X_{k} \backslash f\left(\tilde{0} \backslash F_{i}\right)$. In view of the homeomorphism extension theorem 5.3.4 there is a $\gamma \in H\left(X_{k}\right)$ with
$\gamma \circ f\left|F_{i}=\beta^{-1} \circ f\right| F_{i}$. Then $\gamma^{-1} \circ \beta^{-1} \circ \alpha$ is a homeomorphism from X_{k} onto

$$
\begin{aligned}
\gamma^{-1} \circ \beta^{-1} \circ \alpha\left(X_{k}\right) & =\gamma^{-1} \circ \beta^{-1}\left(X_{k} \backslash f(\tilde{0})\right)=\gamma^{-1}\left(X_{k} \backslash \beta^{-1} \circ f\left(F_{i} \cap \tilde{0}\right)\right) \\
& =X_{k} \backslash f\left(F_{i} \cap \tilde{0}\right)=X_{k} \backslash f(0)
\end{aligned}
$$

which proves the claim that F_{i} satisfies (2). Since F_{i} is compact lemma 5.4.2 implies that no map from F_{i} into I^{k+1} is essential. This means that $\operatorname{dim}\left(F_{i}\right) \leq k$, see [E2: l.9.A]. According to the countable sum theorem, see [E2: 3.1.8], we have that $\operatorname{dim}(A) \leq k$.
5.4.8 REMARK: As for the case $k=-1$, we shall show in the next section that a space A satisfies (2) or (3) iff it is finite.
5.4.9 LEMMA: If A is a nonempty, compact subset of $\mathrm{Y}=\mathrm{X}_{-1}$ and if $\mathrm{f}: \mathrm{Y} \rightarrow \mathrm{Y} \backslash \mathrm{A}$ is a homeomorphism then $\{\mathrm{x} \in \mathrm{Y} \mid \mathrm{f}(\mathrm{x})=\mathrm{x}\}$ is a Z-set in Y .

PROOF: According to lemma 4.3.9 there exist a compact space M and monotone maps g, h from M onto Q with $g^{-1}(Y)=h^{-1}(Y \backslash A)$ and $f \circ g \mid g^{-1}(Y)=$ $=h \mid g^{-1}(Y)$. Consider a shrunken endface W_{i}. Since h is monotone we have that $g\left(h^{-1}\left(W_{i}\right)\right)$ is a continuum in W. By Sierpiński's theorem there is an $\alpha(i) \in \mathbb{N}$ with $g\left(h^{-1}\left(W_{i}\right)\right) \subset W_{\alpha(i)}$. Analogously we can show that $h\left(g^{-1}\left(W_{\alpha(i)}\right)\right) \subset W_{i}$. So for every $i \in \mathbb{N}, h^{-1}\left(W_{i}\right)=g^{-1}\left(W_{\alpha(i)}\right)$ and hence α is one-to-one. Since $g\left(h^{-1}(A)\right)$ is a non-empty subspace of $W, \alpha(\mathbb{N}) \neq \mathbb{N}$. Put $Z=\{x \in Y \mid f(x)=x\}$. Let γ be a map from Q into Y and let $\varepsilon>0$. Since $\alpha: \mathbb{N} \rightarrow \mathbb{N}$ is one-to-one but not onto there exist an $i \in \mathbb{N}$ and a $\operatorname{map} \beta: Q \rightarrow W_{\alpha(i)}$ such that $\hat{\rho}(\beta, 1)<\varepsilon / 2$ and $i \neq \alpha(i)$. Put $\delta=\frac{1}{2} \rho\left(W_{i}, W_{\alpha(i)}\right)$. Since $g^{-1}\left(W_{\alpha(i)}\right)=h^{-1}\left(W_{i}\right)$, the set $0=U_{\delta}\left(W_{\alpha(i)}\right) \backslash g\left(h^{-1}\left(Q \backslash U_{\delta}\left(W_{i}\right)\right)\right)$ is a neighbourhood of $W_{\alpha(i)}$. Since $f \circ g\left|g^{-1}(Y)=h\right| g^{-1}(Y)$ the sets Z and 0 are disjoint. Let δ^{\prime} be an element of $(0, \varepsilon / 2)$ such that $U_{\delta},\left(W_{\alpha(i)}\right) \subset 0$ and construct a map $\eta: Q \rightarrow s$ with
$\hat{\rho}(\eta, 1)<\delta^{\prime}$. Then the map $\gamma^{\prime}=\eta \circ \beta \circ \gamma$ has the properties:
$\hat{\rho}\left(\gamma^{\prime}, \gamma\right) \leq \hat{\rho}(n, 1)+\hat{\rho}(\beta, 1)<\varepsilon$ and

$$
\gamma^{\prime}(Q) \subset \eta\left(W_{\alpha(i)}\right) \subset 0 n s \subset Y \backslash Z .
$$

This proves that Z is a Z-set in Y.
5.4.10 THEOREM: Let A be a o-compact space. The following statements are equivalent:
(1) $\operatorname{dim}(A) \leq k$.
(2) There is an embedding f of A in X_{k} such that $f(A)$ is strongly negligible in X_{k}.
(3) Every subset of X_{k} that is homeomorphic to A is strongly negligible.

PROOF: (1) \rightarrow (3). App1y theorem 5.4.1.
(3) \rightarrow (2). This is trivial.
(2) \rightarrow (1). Note that every relatively open subset of a strongly negligible set is negligible. If $k \neq-1$, apply theorem 5.4.7. Let A satisfy (2) for $k=-1$. If A is non-empty then there is an $a \in A$ such that $\{f(a)\}$ is strongly negligible in X_{-1}, proposition 1.2 .2 . This means that for every neighbourhood U of $f(a)$ there is a homeomorphism $g: X_{-1} \rightarrow X_{-1} \backslash\{f(a)\}$ that is supported on U. Since a Z-set is always nowhere dense this contradicts lemma 5.4.9. So we may conclude that $A=\emptyset$ and $\operatorname{dim}(A)=-1$. Note that we did not use the σ-compactness of A here: the empty set is the only strongly negligible subset of X_{-1}.

We conclude this section with discussing a generalization of σ-compactness, strongly σ-complete spaces (cf. section 2.3). Note that
every negligible subset of a complete space is strongly σ-complete. So strongly σ-complete spaces are the most general type of spaces for which it makes sense to consider negligibility in X_{k}.
5.4.11 PROPOSITION: Every strongly σ-complete space with dimension $\leq \mathrm{k}$ has a strongly negligible embedding in X_{k}.

PROOF: Let S be a space with dimension $\leq k$ and let $\left(S_{i}\right)_{i \in \mathbb{N}}$ be a sequence of closed, topologically complete subsets of S with $S=i \in \mathbb{N} S_{i}$. Select $a \leq k$-dimensional compactification C of S (see [E2: 1.7.2]) and assume that C is embedded in X_{k}. Define for $i \in \mathbb{N}, R_{i}=C I_{C}\left(S_{i}\right) \backslash S_{i}$ and $P={ }_{j} U_{\mathbb{N}} C I_{C}\left(S_{j}\right), R={ }_{j \in \mathbb{N}} R_{j}$. Since S_{i} is closed in S we have that $R_{i}=C_{C}\left(S_{i}\right) \backslash S$ and hence $S=P \backslash R$. The set R_{i} is the remainder of a topologically complete space in a compact space and hence a σ-compact space. So also R is a σ-compact space with dimension $\leq k$. Consequently, $R \cup A_{k}$ is an $\left(S_{k W}, H(Y)\right)$-absorber in Y. According to the uniqueness theorem 1.2 .11 there is an $f \in H(Y)$ with $f\left(R \cup A_{k}\right)=A_{k}$. This means that $f(S)=f(P) \backslash A_{k} \subset X_{k}$. The space $f(P)$ is an element of $\left(S_{k W}\right)_{\sigma}$ and hence theorem 1.2.12 implies that $f(S)$ is a strongly negligible subset of X_{k}.

We do not know whether the converse of this proposition holds. Note that every non- σ-compact space has a nonnegligible embedding in X_{k} (embed a compactification of the space in X_{k} and observe that it is not an $F_{\sigma}-s e t$). If we apply the argument of proposition 5.4 .11 to the pseudo-boundary B in Q (see also theorem 2.3.7) we find that ℓ^{2} is universal for V_{σ}^{∞}.
5.4.12 THEOREM: Let X be a space. The following statements are equivalent:
(1) X is strongly σ-complete.
(2) X is homeomorphic to a (strongly) negligible subset of ℓ^{2}.
(3) X is homeomorphic to an F_{σ}-set in ℓ^{2}.

5.5. Negligibility and shape

In this section we shall discuss a connexion between negligibility of compacta in X_{k} and fundamental dimension. We begin by giving the definition of shape in the sense of Borsuk [B2].

Let A and A ' be compacta in Q. A shape map from A to A ' is a sequence $f_{n}: Q \rightarrow Q, n \in \mathbb{N}$, of maps with the following property: for every neighbourhood V of A ' there are a neighbourhood U of A and a natural number n such that for every $m>n, f_{m} \mid U$ and $f_{m+1} \mid U$ are homotopic in V, i.e. there is a map $F: U \times I \rightarrow V$ with $f_{m} \mid U=F_{0}$ and $f_{m+1} \mid U=F_{1}$. We write $f=\left(f_{n}, A, A^{\prime}\right)$. If $\}=\left(f_{n}, A, A^{\prime}\right)$ and $g=\left(g_{n}, A, A^{\prime}\right)$ are two shape maps from A to A^{\prime} we say that f and g are homotopic if there are for every neighbourhood V of A^{\prime} an $n \in \mathbb{N}$ and a neighbourhood U of A such that $f_{m} \mid U$ and $g_{m} \mid U$ are homotopic in V for $m>n$.

The identity shape map is $1_{A}=\left(1_{Q}, A, A\right)$. If $f=\left(f_{n}, A, A^{\prime}\right)$ and $g=\left(g_{n}, A^{\prime}, A^{\prime \prime}\right)$ are shape maps then their composition is the shape map $g \circ 6=\left(g_{n} \circ f_{n}, A, A^{\prime \prime}\right)$. We say that A and A^{\prime} have the same shape, notation $\operatorname{Sh}(A)=\operatorname{Sh}\left(A^{\prime}\right)$, if there exist a shape map 6 from A to A^{\prime} and a shape map g from A ' to A such that $g \circ f$ and $f \circ g$ are homotopic to 1_{A} and 1_{A}, , respectively. One may show that this notion is independent of the given embeddings of A and A^{\prime} in Q.

We now state the complement theorem that is due to Chapman [C: sec.25].
5.5.1 THEOREM: If A and A^{\prime} are z-sets in Q then $\operatorname{Sh}(A)=\operatorname{Sh}\left(A^{\prime}\right)$ iff $Q \backslash A \approx Q \backslash A^{\prime}$.
5.5.2 COROLLARY: If A is a non-empty z-set in Q then A has trivial shape (i.e. the shape of a singleton) iff $Q / A \approx Q$, where Q / A is the space we obtain by identifying A to a point.

PROOF: If $Q / A \approx Q$ then $Q \backslash A \approx Q \backslash\{p\}$ for some $p \in Q$ and hence A and $\{p\}$ have the same shape.

If A has trivial shape then for every $p \in Q, Q \backslash A \approx Q \backslash\{p\}$. Observe that Q / A and Q are one-point compactifications of $Q \backslash A$ and $Q \backslash\{p\}$. Since one-point compactifications are unique this implies that $Q / A \approx Q$.

We have for X_{k} the following analogue of Chapman's theorem.
5.5.3 LEMMA: If A and A^{\prime} are compacta in X_{k} with the same shape then there is a homeomorphism $h: Q \backslash A \rightarrow Q \backslash A^{\prime}$ with $h\left(A_{k}\right)=A_{k}$ and $h\left(W_{i}\right)=W_{i}$ for every $i \in \mathbb{N}$.

PROOF: The method is based on Chapman's proof for theorem 5.5.1. Let $f=\left(f_{n}, A, A^{\prime}\right)$ and $g=\left(g_{n}, A^{\prime}, A\right)$ be shape maps such that $f \circ g$ and $g \circ f$ are homotopic to 1_{A}, and 1_{A}, respectively. Since $W U A_{k}$ is a $\sigma-Z-s e t$ we may assume that for every $n \in \mathbb{N}$ both $f_{n}(Q)$ and $g_{n}(Q)$ are contained in X_{k}. It is left as an exercise to the reader to verify this. We shall construct inductively a sequence $\chi_{1}, \chi_{2}, x_{3}, \ldots$ in $\left\{\gamma \in \Gamma_{W} \mid \gamma\left(X_{k}\right)=X_{k}\right\}$ and a sequence $\mathrm{O}_{1} \supset \mathrm{O}_{2} \supset \mathrm{O}_{3} \supset \ldots$ of open neighbourhoods of A in Q such that for every i $\in \mathbb{N}, X_{i}\left(O_{i}\right)$ contains A^{\prime} and there exist an $n \in \mathbb{N}$ and an open neighbourhood V of A^{\prime} in Q with the property that $V \subset \chi_{i}\left(O_{i}\right)$ and l_{V} is in $X_{i}\left(O_{i}\right)$ homotopic
to $X_{i} \circ g_{m} \mid V$ for every $m \geq n$. The basis step of the induction is $X_{1}=1$ and $O_{1}=Q$.

Assume that χ_{i} and O_{i} have been constructed and that they satisfy the induction hypothesis. Since 6 is a shape map and since $g \circ 6$ and 1_{A} are homotopic there exist an $m>n$ and an open neighbourhood P of A in Q such that $P \subset 0_{i}, g_{m} \circ f_{m} \mid P$ and 1_{P} are homotopic in 0_{i} and $f_{m}\left|P, f_{m+1}\right| P, f_{m+2} \mid P$, ... are all homotopic in $V^{\prime}=V \cap U_{2 /(i+1)}\left(A^{\prime}\right)$. Since $f_{m}(A) \subset V^{\prime} \cap X_{k}$ there is in view of corollary 5.3 .6 an embedding α of A in $V^{\prime} \cap X_{k}$ that is in V^{\prime} homotopic to $f_{m} \mid A$. We have that the following maps are homotopic to each other in $X_{i}\left(O_{i}\right):$

$$
\alpha, f_{m}\left|A, x_{i} \circ g_{m} \circ f_{m}\right| A \text { and } x_{i} \mid A
$$

Using theorem 5.3.3 we find a $\beta \in\left\{\gamma \in \Gamma_{W} \mid \gamma\left(X_{k}\right)=X_{k}\right\}$ that is supported on $X_{i}\left(O_{i}\right)$ and satisfies $\alpha=\beta \circ X_{i} \mid A$. So $\beta \circ X_{i} \mid A$ and $f_{m} \mid A$ are homotopic in V^{\prime}. Since V^{\prime} is, as open subset of Q, an ANR there is an open neighbourhood O_{i+1} of A in Q such that $\beta \circ \chi_{i} \mid O_{i+1}$ and $f_{m} \mid O_{i+1}$ are homotopic in V^{\prime}. We may assume in addition that $O_{i+1} \subset U_{2 /(i+1)}$ (A) $\cap P$. Note that O_{i+1} and $\beta \circ X_{i}\left(0_{i+1}\right)$ are contained in O_{i} and V^{\prime}, respectively.

Since g is a shape map and since $f \circ g$ is homotopic to \mathcal{J}_{A}, there is an open P^{\prime} in Q and an $m^{\prime}>m$ such that $A^{\prime} \subset P^{\prime} \subset V^{\prime}, f_{m}, \circ g_{m}, P^{\prime}$ and l_{p}, are homotopic in V^{\prime} and $g_{m}\left|P^{\prime}, g_{m^{\prime}+1}\right| P^{\prime}, g_{m^{\prime}+2} \mid P^{\prime}, \ldots$ are all homotopic to each other in 0_{i+1}. Since $\beta \circ \chi_{i} \circ g_{m},\left(P^{\prime}\right) \subset \beta \circ \chi_{i}\left(O_{i+1}\right) \cap X_{k}$ there is in view of corollary 5.3 .6 an embedding α^{\prime} of A^{\prime} in X_{k} that is in $\beta \circ \chi_{i}\left(O_{i+1}\right)$ homotopic to $\beta \circ X_{i} \circ g_{m}, \mid A^{\prime}$. It is easily verified that

$$
\alpha^{\prime}, \beta \circ \chi_{i} \circ g_{m^{\prime}}\left|A^{\prime}, f_{m} \circ g_{m}\right| A^{\prime}, f_{m^{\prime}} \circ g_{m}, \mid A^{\prime} \text { and }{ }^{1} A^{\prime}
$$

are homotopic in V^{\prime}. Using theorem 5.3.3. we find a $\beta^{\prime} \in\left\{\gamma \in \Gamma_{W} \mid \gamma\left(X_{k}\right)=X_{k}\right\}$
that is supported on V^{\prime} and satisfies $\beta^{\prime} \circ \alpha^{\prime}=1_{A^{\prime}} \cdot \operatorname{Put} \mathrm{h}_{\mathbf{i}+1}=\beta^{\prime} \circ \beta$ and
$\chi_{i+1}=h_{i+1} \circ \chi_{i}$. Since $\alpha^{\prime}\left(A^{\prime}\right) \subset \beta \circ \chi_{i}\left(0_{i+1}\right)$ we have that

$$
A^{\prime}=\beta^{\prime} \circ \alpha^{\prime}\left(A^{\prime}\right) \subset \chi_{i+1}\left(0_{i+1}\right)
$$

One readily sees that $X_{i+1}{ }^{\circ} g_{m}, \mid A^{\prime}$ is in $X_{i+1}\left({ }^{\left(O_{i+1}\right)}\right.$) homotopic to $\beta^{\prime} \circ \alpha^{\prime}=1_{A^{\prime}}$. Since $X_{i+1}\left(0_{i+1}\right)$ is an ANR there is an open set \tilde{V} such that $A^{\prime} \subset \tilde{V} \subset P^{\prime}$ and $X_{i+1}{ }^{\circ} g_{m} \mid \widetilde{V}$ and $1 \tilde{v}$ are homotopic in $X_{i+1}\left(0_{i+1}\right)$. If $j \geq m^{\prime}$ then $g_{m} \mid P^{\prime}$ and $g_{j} \mid P^{\prime}$ are homotopic in o_{i+1} and hence $x_{i+1} \circ g_{j} \mid \tilde{v}$ is in $x_{i+1}\left(0_{i+1}\right)$ homotopic to $1 \tilde{V}$. This completes the induction.

Note that every h_{i+1} is supported on $\chi_{i}\left(O_{i}\right)$ and is a member of $\left\{\gamma \in \Gamma_{W} \mid \gamma\left(A_{k}\right)=A_{k}\right\}$. Observe furthermore that for $i \in \mathbb{N}, O_{i} \subset U_{2 / i}(A)$ and $X_{i}\left(O_{i}\right) \subset U_{2 / i}\left(A^{\prime}\right)$. If $x \in Q \backslash A$ and i is such that $2 / i<\rho(x, A)$ then $Q \backslash O_{i}$ is a neighbourhood of x such that $X_{i}\left(Q \backslash O_{i}\right) \subset Q \backslash A^{\prime}$ and for every $j>i$ $X_{j}\left|Q \backslash O_{i}=x_{i}\right| Q \backslash O_{i}$. Consequently, if we define for $x \in Q \backslash A, h(x)=\lim _{i \rightarrow \infty} X_{i}(x)$ then h is a local homeomorphism from $Q \backslash A$ into $Q \backslash A^{\prime}$. since $O_{i} \subset U_{2 / i}(A)$ and $X_{i}\left(O_{i}\right) \subset U_{2 / i}\left(A^{\prime}\right)$ for $i \in \mathbb{N}, h$ is one-to-one and onto and hence a homeomorphism. Since for every $x \in Q \backslash A$ there is an $i \in \mathbb{N}$ such that $h(x)=\chi_{i}(x)$ we have that $h\left(A_{k}\right)=A_{k}$ and $h\left(W_{j}\right)=W_{j}$ for $j \in \mathbb{N}$. This completes the proof.

It is natural to ask whether strong negligibility in theorem 5.4.10 can be replaced by negligibility. The following theorem shows that that is not the case. If X is compact then the fundamental dimension $\mathrm{Fd}(\mathrm{X})$ of X is defined by

$$
\begin{aligned}
\mathrm{Fd}(X)= & \min \{\mathrm{n} \mid \text { there is a compact } Z \text { with } \operatorname{Sh}(Z)=\operatorname{Sh}(X) \\
& \text { and } \operatorname{dim}(Z)=n\} .
\end{aligned}
$$

5.5.4 THEOREM: If S is a compactum in X_{k} with $\operatorname{Fd}(S) \leq k$ then S is negligible. If S is a compactum in Y with the shape of a finite space then

S is negligible.

PROOF: If $F d(S) \leq k$ we can choose by corollary 5.3 .6 a compact $S^{\prime}=X_{k}$ such that $\operatorname{Sh}(S)=S h\left(S^{\prime}\right)$ and $\operatorname{dim}\left(S^{\prime}\right) \leq k$. By lemma 5.5.3 and theorem 5.4.1 we have that $X_{k} \backslash S \approx X_{k} \backslash S^{\prime} \approx X_{k}$.

According to theorem 4.4 .5 every copy of Q is negligible in Y. Since Q has trivial shape lemma 5.5 implies that every singleton is negligible in Y. Consequently, every finite subset of Y is negligible. Applying once more lemma 5.5 .3 we find that every space with the shape of a finite set is negligible.

So every cube is negligible in any X_{k}. We can prove a partial converse of theorem 5.5.4.
5.5.5 THEOREM: If S is a negligible compactum in X_{0} then $\mathrm{Fd}(\mathrm{S}) \leq 0$. If S is a negligible compactum in Y then S has the shape of a finite space.

PROOF: Let k be either -1 or 0 and assume that S is a negligible compactum in X_{k}. Let h be a homeomorphism from $X_{k} \backslash S$ onto X_{k}. According to lemma 4.3.9 there exist a compact space M and monotone maps γ_{1} and γ_{2} from M onto Q with $\gamma_{1}^{-1}\left(X_{k} \backslash S\right)=\gamma_{2}^{-1}\left(X_{k}\right)$ and $h \circ \gamma_{1}\left|\gamma_{1}^{-1}\left(X_{k} \backslash S\right)=\gamma_{2}\right| \gamma_{2}^{-1}\left(X_{k}\right)$. Let \mathcal{C} be the collection of components of S and define

$$
P=\left\{W_{i} \mid \mathbf{i} \in \mathbb{N}\right\} u\left\{\{a\} \mid a \in A_{k}\right\}
$$

Let $C \in \mathcal{C}$ and consider the non-empty continuum $\alpha(C)=\gamma_{2}\left(\gamma_{1}^{-1}(C)\right)$, which is a subset of $A_{k} \cup W$. Since A_{k} is a σ-compactum with dimension ≤ 0 Sierpinski's theorem implies that there is a $P \in P$ with $\alpha(C) \subset P$. Analogous1y we can prove that the continuum $\gamma_{1}\left(\gamma_{2}^{-1}(P)\right)$ is contained in S and hence
in C. So α is a function from \mathcal{C} into P such that for every $C \in \mathcal{C}$, $\gamma_{1}^{-1}(C)=\gamma_{2}^{-1}(\alpha(C))$.

Consider the compact set $\widetilde{\mathrm{S}}=\gamma_{2}\left(\gamma_{1}^{-1}(S)\right)$, which is equal to $U\{\alpha(C) \mid C \in \mathcal{C}\} \subset A_{k} \cup W$. Observe that $\gamma_{1}^{-1}(S)=\gamma_{2}^{-1}(\tilde{S})$. Since any union of infititely many shrunken endfaces is dense in Q, \widetilde{S} can intersect only finitely many W_{i}^{\prime} 's. Let i_{1}, \ldots, i_{1} be such that $\widetilde{S} \cap W={ }_{j}{ }_{j}^{U} W_{1} W_{j}$. Define the quotient space \tilde{Q} of Q by identifying every $W_{i_{j}}$ to a point a_{j} and let p be the natural map from Q onto \tilde{Q}. We show that S and $p(\tilde{S})$ have the same shape (cf. Chapman [C:25.1] and Kozlowski [K]).

It is easily verified that if Z is a Z-set in Q then $p(Z)$ is a Z-set in \tilde{Q}. According to corollary $5.5 .2 \tilde{Q}$ is homeomorphic to Q. Note that $S \cup A_{k} \cup W$ and $p\left(A_{k} \cup W\right)$ are $\sigma-Z-$ sets in Q and \tilde{Q}, respectively. Consequent$1 y$ there exist homotopies $F: Q \times I \rightarrow Q$ and $G: \tilde{Q} \times I \rightarrow \tilde{Q}$ such that $F_{0}=1$, $G_{0}=1, F\left(Q \times(0,1 J) \subset Q \backslash\left(S \cup A_{k} \cup W\right)\right.$ and $G(\tilde{Q} \times(0,1]) \subset \widetilde{Q} \backslash p\left(A_{k} \cup W\right)$. Observe that $\mathrm{p} \mid \mathrm{Y}: \mathrm{Y} \rightarrow \mathrm{Y} \subset \tilde{\mathrm{Q}}$ is a homeomorphism and define for $\mathrm{n} \in \mathbb{N}$, $f_{n}=p \circ h \circ F_{1 / n}$ and $g_{n}=h^{-1} \circ p^{-1} \circ G_{1 / n}$. We shal1 prove that $\delta=\left(f_{n}, S, p(\tilde{S})\right)$ and $g=\left(g_{n}, p(\tilde{S}), S\right)$ are shape maps such that $f \circ g$ and $g \circ f$ are homotopic to $1_{p}(\tilde{S})$ and 1_{S}, respectively.

Let V be an open neighbourhood of S in Q. Since $\gamma_{1}^{-1}(S)=\gamma_{2}^{-1}(\widetilde{S})=$ $\gamma_{2}^{-1}\left(p^{-1}(p(S))\right)$ we have that $C=p \circ \gamma_{2}\left(\gamma_{1}^{-1}(Q \backslash V)\right)$ is a compact set that is disjoint from $p(\tilde{S})$. Then there is a neighbourhood U of $p(\tilde{S})$ in \tilde{Q} and an $n \in \mathbb{N}$ such that $G\left(U \times\left[0, \frac{1}{n}\right]\right) \cap C=\emptyset$. Since $p \circ f\left(V \cap X_{k} \backslash S\right)=X_{k} \backslash C$ and $G(\tilde{Q} \times(0,1]) \subset X_{k}$ we see that $g_{n}\left|U, g_{n+1}\right| U, g_{n+2} \mid U, \ldots$ are homotopic in V. So g is a shape map. The proof that f is a shape map is analogous.

To see that $g \circ 6$ is homotopic to 1_{S} choose an open neighbourhood U of S in Q. Select a neighbourhood V of $p(\tilde{S})$ in \tilde{Q} and an $n_{1} \in \mathbb{N}$ such that

$$
h^{-1} \circ p^{-1} \circ G\left(\left(V \cap X_{k}\right) \times\left[0, \frac{1}{n_{1}}\right]\right) \subset U
$$

and select subsequently a neighbourhood W of S in Q and an $n_{2}>n_{1}$ with for every $m>n_{2}, f_{m}(W) \subset V$ and

$$
\mathrm{F}\left(\mathrm{~W} \times\left[0, \frac{1}{\mathrm{n}_{2}}\right]\right) \subset \mathrm{U} .
$$

If $m>n_{2}$ then $g_{m} \circ f_{m}\left|W=h^{-1} \circ p^{-1} \circ G_{1 / m} \circ f_{m}\right| W$ and $h^{-1} \circ p^{-1} \circ f_{m} \mid W$ are homotopic in U. Furthermore, we have that $h^{-1} \circ p^{-1} \circ f_{m}\left|W=F_{1 / m}\right| W$ and l_{W} are homotopic in U. So we may conclude that $g \circ 6$ is homotopic to 1_{S}. The proof for $f \circ g$ is similar.

So we have shown that $\operatorname{Sh}(S)=\operatorname{Sh}(\mathrm{P}(\tilde{\mathrm{S}}))$. Consider first the case $\mathrm{k}=-1$. Then $A_{k}=\emptyset$ and $p(\tilde{S})=\left\{a_{1}, \ldots, a_{1}\right\}$. If $k=0$ then A_{k} is a zero-dimensional σ-compactum. Here the countable sum theorem implies that $\operatorname{dim}\left(p\left(A_{k}\right) \cup\left\{a_{1}, \ldots, a_{1}\right\}\right)=0$. Consequently, $\operatorname{dim}(p(\tilde{S})) \leq 0$ and the theorem is proved.

We believe that the converse of theorem 5.5 .4 is also true for $k>0$ but we have no proof of this.
5.5.6 CONJECTURE: Let $\mathrm{k} \geq 0$ and let $\mathrm{S} \subset \mathrm{X}_{\mathrm{k}}$ be compact. Then S is negligible iff $F d(S) \leq k$.

According to theorem 5.4 .10 a σ-compact subset of X_{k} is strongly negligible iff its dimension is at most k. So strong negligibility depends only on topological properties of the space itself and not on the way that it is embedded in X_{k}. This is not surprising for compact spaces since they have essentially only one embedding in X_{k}, cf. corollary 5.3.4. For noncompact spaces, however, there are many non-equivalent embeddings. Negligibility of a σ-compact space in X_{k} is dependent on the way the space is embedded. Let $k \geq 0$. By corollary $5 \cdot 4.3$ there are copies of \mathbb{R}^{k+1} in X_{k} that are not negligible. According to theorem 5.5 .4 every subset of X_{k} that
is homeomorphic to I^{k+1} is negligible. Also the boundary of I^{k+1} is negligible because it is k-dimensional. This implies that it is possible to embed $I^{k+1} \backslash \partial I^{k+1} \approx \mathbb{R}^{k+1}$ in X_{k} in such a way that it is negligible. It remains to prove remark 5.4.8.

5.5.7 PROPOSITION: An arbitrary subspace S of Y is finite iff every relatively open subset of S is negligible in Y .

PROOF: One direction of the equivalence follows from theorem 5.5.4. Consider now a subspace S of Y such that every open subset of S is negligible. Precisely as in theorem 5.4 .7 we can prove that every compact subset C of S is negligible in Y and has dimension ≤ 0. This implies in view of theorem 5.5 .5 that C has the shape of a finite set. So C has finitely many components which are singletons because dim (C) ≤ 0. We have shown that every compact subset of S is finite and hence S is a countable, discrete space. If S is finite we are done.

We shall see that S cannot be infinite (cf. Anderson, Curtis \& van Mill [ACM: 6.2]). Let $\mathrm{f}: Y \backslash S \rightarrow Y$ be a homeomorphism. According to lemma 4.3.9 there exist a compact M and monotone maps γ_{1} and γ_{2} from M onto Q such that $\gamma^{-1}(Y \backslash S)=\gamma_{2}(Y)$. We construct in the usual way a one-to-one function $\alpha: S \rightarrow \mathbb{N}$ such that for every a $\in S, \gamma_{1}^{-1}(\{a\})=\gamma_{2}^{-1}\left(W_{\alpha(a)}\right)$. Note that $D=U\left\{W_{\alpha(a)} \mid a \in S\right\}$ is connected if S is infinite. Consequently, $S=\gamma_{1}\left(\gamma_{2}^{-1}(D)\right)$ is connected which is obviously false.
[AU] ALEXANDROFF, P. and P. URYSOHN, Uber null-dimensionale Punktmengen, Math. Ann. 98 (1928) 89-106.
[Al] ANDERSON, R.D., Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 72 (1966) 515-519.
[A2] ANDERSON, R.D., On topological infinite deficiency, Mich. Math. J. 14 (1967) 365-383.
[A3] ANDERSON, R.D., Strongly negligible sets in Frëchet manifolds, Bu11. Amer. Math. Soc. 75 (1969) 64-67.
[A4] ANDERSON, R.D., On sigma-compact subsets of infinite-dimensional spaces, unpublished manuscript.
[AC] ANDERSON, R.D. and T.A. CHAPMAN, Extending homeomorphisms to Hilbert cube manifolds, Pacific J. Math. 38 (1971) 281-293.
[ACM] ANDERSON, R.D., D.W. CURTIS and J. van MILL, A fake topological Hilbert space, Trans. Amer. Math. Soc. 272 (1982) 311-321.
[BP1] BESSAGA, C. and A. PEECYNSKI, The estimated extension theorem, homogeneous collections and their application to the topological classification of linear metric spaces and convex sets, Fund. Math. 69 (1970) 153-190.
[BP2] BESSAGA, C. and A. PEECYŃSKI, selected topics in infinitedimensional topology, PWN, Warsaw, 1975.
[B1] BORSUK, K., Theory of retracts, PWN, Warsaw, 1967.
[B2] BORSUK, K., Theory of shape, PWN, Warsaw, 1975.
[Be] BOTHE, H.G., Eine Einbettung m-dimensionaler Mengen in einen (m+1)-dimensionalen absoluten Retrakt, Fund. Math. 52 (1963) 209-224.
[C] CHAPMAN, T.A., Lectures on Hilbert cube manifolds, CMBS Regional Conf. Series in Math. no. 28, Amer. Math. Soc., Providence, R.I., 1976.
[Cs] CURTIS, D.W., Boundary sets in the Hilbert cube, to appear.
[D1] DIJKSTRA, J.J., k-dimensional skeletoids in \mathbb{R}^{n} and the Hilbert cube, to appear in Topology Appl.

DIJKSTRA, J.J., Shrunken endfaces and isotopies of the Hilbert cube, to appear.
[D3] DIJKSTRA, J.J., A generalization of the Sierpinski theorem, to appear in Proc. Amer. Math. Soc.
[DM] DIJKSTRA, J.J. and J. van MILL, Fake topological Hilbert spaces and characterizations of dimension in terms of negligibility, to appear.
[DT] DOBROWOLSKI, T. and H. TORUNCZYK, Separable complete ANR's admitting a group structure are Hilbert manifolds, Topology App1. 12 (1981) 229-235.
[E1] ENGELKING, R., General topology, PWN, Warsaw, 1977.
[E2] ENGELKING, R., Dimension theory, PWN, Warsaw, 1978.
[GS1] GEOGHEGAN, R. and R.R. SUMMERHILL, Concerning the shapes of finite-dimensional compacta, Trans. Amer. Math. Soc. 179 (1973) 281-292.
[GS2] GEOGHEGAN, R. and R.R. SUMMERHILL, Pseudo-boundaries and pseudointeriors in euclidean spaces and topological manifolds, Trans. Amer. Math. Soc. 194 (1974) 141-165.

HENDERSON, J.P. and J.J. WALSH, Examples of cell-like decompositions of the infinite dimensional manifolds σ and Σ, to appear.
[H] HUDSON, J.F.P., Piecewise linear topology, University of Chicago lecture notes, Benjamin, New York, 1969.
[K] KOZLOWSKI, G., Images of ANR's, unpublished manuscript.
[MS] MAZURKIEWICZ, S. and W. SIERPINSKI, Contributions á la topologie des ensembles dēnombrables, Fund. Math. 1 (1920) 17-27.
[M] MENGER, K., Allgemeine Räume und Cartesische Räume, zweite Mitteilung: ̈̈ber umfassendste n-dimensionale Mengen, Proc. Kon. Ned. Akad. Wetensch. 29 (1926) 1125-1128.
[MI] MILL, J. van, A boundary set for the Hilbert cube containing no arcs, to appear in Fund. Math.
[S] SIERPIŃSKI, W., Un théorème sur ies continus, Tôhoku Math. J. 13 (1918) 300-303.
[S] STAN'KO, M.A., Solution of Menger's problem in the class of compacta, Soviet Math. Dokl. 12 (1971) 1846-1849; from: Dok1. Akad. Nauk SSSR 201 (1971) 1299-1302.

TORUŃCZYK, H., Skeletonized sets in complete metric spaces and homeomorphisms of the Hilbert cube, Bull. Acad. Pol. Sci. Sēr. Math. 18 (1970) 119-126.

TORUŃCZYK, H., Characterizing Hilbert space topology, Fund. Math. 111 (1981) 247-262.
[W] WEST, J.E., The ambient homeomorphy of an incomplete subspace of infinite-dimensional Hilbert spaces, Pacific J. Math. 34 (1970) 257-267.

LIST OF SYMBOLS

$H(X)$	1	s, ℓ^{2}	39		
${ }^{1,1}{ }_{X}$	1	B	40		
$\mathrm{X} \approx \mathrm{Y}$	1	E_{i}^{θ}	40		
d	2	$Z(X), Z_{\sigma}(X)$	40		
$\mathbb{R}, \mathbb{N}, \quad \mathbb{Q}, \mathrm{I}$	2	B_{fd}	42		
aC, Int C	2	S_{k}	43		
S_{σ}	4	$c \mathbb{R}$	43		
$\mathfrak{M}_{\mathrm{k}}^{\mathrm{n}}, \widetilde{\mathfrak{M}}_{\mathrm{k}}^{\mathrm{n}}$	17	$\mathrm{C}(\mathrm{X}, \mathrm{Y})$	44		
J_{i}^{1}	21	R	49		
$\mathrm{K}_{\mathrm{i}}, \mathrm{K}$	21	W_{i}, W	49		
d_{1}	21	Y	49		
$\mathrm{U}_{\varepsilon}^{1}, \tilde{\mathrm{U}}_{\varepsilon}^{1}$	21	Γ_{W}	49		
P_{n}, \widetilde{P}_{n}	22	$S t^{n}(A, D)$	50		
M_{k}^{n}	22	(Q,s,0, $)^{\text {e }}$ even, odd	51		
$\mathrm{N}_{\mathrm{k}}^{\mathrm{n}}, \tilde{N}_{\mathrm{k}}^{\mathrm{n}}$	22	$\mathrm{X} \times{ }_{\alpha}{ }^{\text {I }}$	59		
B_{k}^{n}, s_{k}^{n}	31	$W_{i}(r)$	72		
v_{σ}^{k}	33	$\Gamma_{W}(p)$	72		
$\\|x\\|$	35	Y_{p}	72		
Q	39	R^{\uparrow}	72		
${ }^{\text {i }}$	39	X_{k}	79		
$J_{i}, \mathrm{~J}$	39	s^{n}	80		
$\rho, \mathrm{U}_{\varepsilon}$	39	$S_{\text {kW }}$	83		
diam A	39	${ }^{1}$	92		
Q_{i}	39	Sh (A)	92		
$\mathrm{J}_{\mathrm{i}}^{0}, \mathrm{~J}^{\circ}$	39	Fd (X)	95		

SUBJECT INDEX

$(S$, Г)-absorber 8
ANR 77
AR 77
boundary preserving 40
boundary set 43
U-close 2
complement theorem 93
continuum 80
convergence criterion 3
Δ-pair 4
deformation boundary set 43
discrete collection 77
essential 86
fake topological Hilbert space 78
fundamental dimension 95
hereditary 4
homeomorphism extension theorem,
$\mathrm{s} \quad 58,63$
Q 40,41
$\mathrm{X}_{\mathrm{k}} \quad 84$
Y 69
homogeneous 2
homotopic 92
homotopy 2
$(\varepsilon-)$ isotopy 2
limited by U 2
map 1
$\begin{array}{ll}\varepsilon \text {-mapping } & 45\end{array}$
Menger space 22
monotone 70
negligible 5
Nöbeling space 22
norm preserving 65
pseudo-boundary, the 40
pseudo-interior, the 40
U-push 8
$\sigma-z-$ set 40
SDAP 77
shape (map) 92
shrunken endface 49
Sierpiński's theorem 80
(S, r)-skeleton(-oid) 8
star refinement 5
strong (S, Γ)-skeleton(-oid) 9
strongly negligible 5
strongly σ-complete 32
subpolyhedron 17
supported on 1
tame polyhedron 17
thin 33
universal for V_{σ}^{k} 33
variable product 59
WDAP 78
Z-set 40

AUTHOR INDEX

Alexandroff, P.
Anderson, R.D.

Bessaga, C.
Borsuk, K.
Bothe, H.G.

Chapman, T.A.

Curtis, D.W.

Dijkstra, J.J.
Dobrowolski, T.

Engelking, R.

Geoghegan, R.

Henderson, J.P.
Hudson, J.F.P.

Kozlowski, G.

Mazurkiewicz, S.
Menger, K.
Mill, J. van

34,101.
i, $3,8,32,40,42,50,70$, 74, 78, 82,99, 101.
$1,8,12,101$.
77,92,101.
23,101.
$1,40,41,50,57,70,92,97$, 101, 102 .
i,32,42,43,50,70,78,82, 99,101, 102 .
$31,45,50,79,80,102$. 87,102.

1,102.
$17,18,19,22,31,32,33$, 102.

43, 102 .
18,103.

97, 103.

42,103.
24, 103 .
i, 32, 42, 43, 50, 70, 78, 79, 82,99,101,102,103.

Pełcyñski, A.

Sierpiñski, W.
Stan'ko, M.A.
Summerhill, R.R.

Toruñczyk, H.

Urysohn, P.

Walsh, J.J.
West, J.E.
$1,8,12,101$.

42,80, 103.
22,103.
$17,18,19,22,31,32,33$, 102.

8,77,87,102,103.

34,101.

43,102.
8,10,103.

SAMENVATTING

Het hoofdresultaat van dit proefschrift is de constructie van een rij separabele, metriseerbare ruimten $X_{-1}, X_{0}, X_{1}, \ldots$ met onder andere de volgende eigenschappen:
(1) X_{k} is een absoluut retract.
(2) X_{k} is homogeen.
(3) $X_{k} \times X_{k}$ is homeomorf met de hilbertruimte ℓ^{2}.
(4) Elk compactum in X_{k} is een Z-verzameling.
(5) X_{k} is universeel element van de klasse van separabele, metriseerbare ruimten.
(6) Een willekeurige σ-compacte deelruimte van X_{k} heeft dimensie $\leq k$ dan en slechts dan als zi.j sterk verwaarloosbaar is.

Deze ruimten worden topologische schijnhilbertruimten genoemd aangezien (1) - (5) bekende topologische eigenschappen zijn van ℓ^{2} terwijl uit (6) blijkt dat zij niet homeomorf zijn met ℓ^{2}. Wij bereiken dit resultaat via de constructie van k-dimensionale pseudoranden in \mathbb{R}^{n} (hoofdstuk 2) en de hilbertkubus (hoofdstuk 3). Als basis voor onze rij wordt een schijnhilbertruimte gebruikt die geïntroduceerd is door Anderson, Curtis \& Van Mill [ACM]. De homogeniteit van deze ruimte wordt in hoofdstuk 4 onderzocht.

I

II Elke Lebesgue meetbare relativistische sominvariant is bijna overal gelijk aan een functie van de vorm $\alpha+\beta_{\mu} p^{\mu}$ ([3]).

III Het bewijs van Grad [6] van de oplosbaarheid van de gelineariseerde Boltzmannvergelijking vertoont een leemte. Het non-relativistische analogon van stelling II brengt hier uitkomst.

IV De gelineariseerde transportvergelijking voor een neutrinogas is oplosbaar en de transportcoëfficiënten kunnen met behulp van een polynomiale benadering van de oplossing bepaald worden ([2]).

V De overdekkingsdimensie van het kwadraat van de rechte van Sorgenfrey is oneindig ([4]).

VI Metriseerbaarheid van reëelcompacte ruimten is geen eerste orde begrip in de ring van continue functies.

VII Er bestaat een compacte, metriseerbare ruimte met inductieve dimensie $\omega+1$ die geen essentiële afbeelding toelaat naar Hendersons [8] ($\omega+1$)-dimensionale absolute retract $J^{\omega+1}$ ([1]).

VIII De stelling van Sierpiński [9] laat de volgende generalisatie toe. Zij n een niet-negatief geheel getal en zij X een compacte Hausdorffruimte. Indien $\left\{F_{i} \mid i \in \mathbb{N}\right\}$ een gesloten overdekking is van X zodanig dat voor elk paar verschillende natuurlijke getallen i en j, $\operatorname{dim}\left(F_{i} \cap F_{j}\right)<n$, dan is elke continue afbeelding van F_{1} naar de n-sfeer S^{n} uit te breiden over geheel X ([5]).

REFERENTIES

[1] P. BORST en J.J. DIJKSTRA, Essential mappings and transfinite dimension, verschijnt in Fund.Math.
[2] J.J. DIJKSTRA en W.A. van LEEUWEN, Mathematical aspects of relativistic kinetic theory, Physica 90A (1978) 450-486.
[3] J.J. DIJKSTRA, Mathematical aspects of relativistic kinetic theory II. The summational invariants, Proc.Kon.Ned.Akad.Wetensch.ser.B 81 (1978) 265-289.
[4] J.J. DIJKSTRA, A space with maximal discrepancy between its katetov and covering dimension, Topology App1. 12 (1981) 45-48.
[5] J.J. DIJKSTRA, A generalization of the Sierpiñski theorem, verschijnt in Proc.Amer.Math.Soc.
[6] H.GRAD, Asymptotic theory of the Boltzmann equation II, in: Third International Rarefied Gas Symposium vol. 1, ed. J.A. Laurmann (Academic Press, New York, 1963) 26-59.
[7] S.R. de GROOT, W.A. van LEEUWEN en P.H. MELTZER, Transport
coefficients of a neutrino gas, Il Nuovo Cimento 25A (1975) 229-251.
[8] D.W. HENDERSON, A lower bound for transfinite dimension, Fund.Math. 63 (1968) 167-173.
W. SIERPIŃSKI, Un thēorème sur les continus, Tôhoku Math.J. 13 (1918) 300-303.

[^0]: *) This result is taken from Dijkstra [D2]

