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Abstract. It is shown that if V ⊆ Fn×···×n
p is a subspace of d-tensors with dimension

at least tnd−1, then there is a subspace W ⊆ V of dimension at least t/(dr)− 1 whose
nonzero elements all have analytic rank Ωd,p(r). As an application, we generalize a
result of Altman on Szemerédi’s theorem with random differences.

1. Introduction

In [13], Meshulam proved the following result.

Theorem 1.1 (Meshulam). Let F be a field and let V ⊆ Mn(F) be a subspace of n × n
matrices. If dim(V) > rn, then V contains a matrix of rank at least r + 1.

Here we prove a version of this result for tensors over finite fields. Identify a d-
linear form T : Fn × · · · × Fn → F with the order-d tensor with (i1, . . . , id)-coordinate
T(ei1 , . . . , eid), where ei is the ith standard basis vector in Fn. A tensor of order d will
be referred to as a d-tensor. The notion of rank for tensors we consider is the analytic
rank, introduced by Gowers and Wolf in [8].

Definition 1.2 (Bias and analytic rank). Let d ≥ 2 and n ≥ 1 be integers. Let F be a
finite field and let χ : F → C be a nontrivial additive character. Let T ∈ Fn×···×n be
a d-tensor. Then, the bias of T is defined by1

bias(T) = Ex1,...,xd∈Fn χ
(
T(x1, . . . , xd)

)
,

and the analytic rank of T is defined by

arank(T) = − log|F| bias(T).

The bias is well-defined, since its value is independent of the choice of nontrivial
additive character and it is not hard to see that it is real and nonnegative. Moreover,
for any d ≥ 2, the analytic rank is at most n and for matrices (d = 2), the analytic rank
is the ordinary matrix rank.

Our version of Theorem 1.1 is then as follows.

The author is supported by the Gravitation grant NETWORKS-024.002.003 from the Dutch Research
Council (NWO).

1Here and elsewhere, for a finite set X, we denote Ex1,...,xk∈X f (x1, . . . , xk) =

|X|−k ∑x1∈X · · ·∑xk∈X f (x1, . . . , xk) and Prx1,...,xk∈X denotes the probability with respect to independent
uniformly distributed elements x1, . . . , xk ∈ X.
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Theorem 1.3. For every finite field F and integer d ≥ 2, there is a c ∈ (0, 1] such that the
following holds. Let n ≥ t ≥ r ≥ 1 be integers and V ⊆ Fn×···×n be a subspace of d-tensors. If
dim(V) ≥ tnd−1, then there is a subspace W ⊆ V of dimension at least t

dr − 1 such that every
nonzero element in W has analytic rank at least cr.

Theorem 1.3 gives an analogue of Theorem 1.1 asserting that if V has dimension at
least Ωd(rnd−1), then it contains a tensor of analytic rank at least ΩF,d(r). The same
statement holds for another notion of tensor rank, namely the partition rank, which
originated in [15].

Definition 1.4 (Partition rank). Let d ≥ 2 and n ≥ 1 be integers. A d-linear form
T : Fn × · · · × Fn → F has partition rank 1 if there exist integers 1 ≤ e, f ≤ d− 1 such
that e + f = d, a partition {i1, . . . , ie}, {j1, . . . , j f } of [d] and e- and f -linear forms T1, T2
(respectively) such that for any x1, . . . , xd ∈ Fn,

T(x1, . . . , xd) = T1
(
xi1 , . . . , xie

)
T2
(
xj1 , . . . , xj f

)
.

The partition rank of T is the smallest r such that T = T1 + · · ·+ Tr, where each Ti has
partition rank 1.

Partition rank is always at most n and for matrices is also equal to the usual rank.
Independently, Kazhdan and Ziegler [10] and Lovett [12] proved that prank(T) ≥
arank(T) and so Theorem 1.3 holds for the partition rank as well. This implies that the
parameters of Theorem 1.3 are close to optimal. Indeed, if U ⊆ Fn is a t-dimensional
subspace and V = Fn×···×n is the set of (d − 1)-tensors, then U ⊗ V is a (tnd−1)-
dimensional subspace of d-tensors containing only tensors of partition rank (and so
analytic rank) at most t. In the other direction, partition and analytic rank are polyno-
mially related. Independently, Milićević in [14] and Janzer in [9] proved that

(1) prank(T) ≤ O|F|,d
(

arank(T)D)
for some D ≤ 22dO(1)

. We refer to these papers for further information on bounds for
specific values of d.

1.1. Szemerédi’s theorem with random differences. We apply Theorem 1.3 to a prob-
abilistic version of Szemerédi’s theorem [16]. For ε ∈ (0, 1] and integer k ≥ 3, Sze-
merédi’s theorem asserts that any set A ⊆ Z/NZ of size at least εN contains a proper
k-term arithmetic progression (k-AP), provided N is large enough in terms of ε and k.
The setup for the probabilistic version is as follows. Given a finite abelian group G
of order N and positive integer m, let S ⊆ G be a random subset formed by sam-
pling m elements from G independently and uniformly at random. A general open
problem is to determine the smallest m such that with high probability over S, any
set A ⊆ G of size at least εN contains a proper k-AP with common difference in S.
For k = 3, it was shown by Christ [5] and Frantzikinakis, Lesigne and Wierdl [6] that
m ≥ ω(

√
N log N) suffices and for k ≥ 3, it was shown by Gopi and the author in [4]
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that m ≥ ω(N1− 1
dk/2e log N) does; see also [3]. In [7] the authors conjecture that in the

group Z/NZ, for all fixed k ≥ 3, already m ≥ ω(log N) would do. However, in [1]
Altman showed that in the finite field case, where G = Fn

p with p an odd prime, the
analogous conjecture is false for 3-APs and that m ≥ Ωp(n2) is necessary (we refer to
this paper for more information). Using Theorem 1.3, we generalize Altman’s result to
arbitrarily long APs.

Theorem 1.5. For every integer k ≥ 3 and prime p ≥ k there is a constant C such that the
following holds. If S ⊆ Fn

p is a set formed by selecting at most (n+k−2
k−1 ) − C(logp n)2nk−2

elements independently and uniformly at random, then with probability 1− o(1) there is a set
A ⊆ Fn

p of size |A| ≥ Ωk,p(pn) that contains no proper k-term arithmetic progression with
common difference in S.

In particular, for N = pn at least Ω((logp N)k−1) elements must be sampled for
Szemerédi’s theorem with random differences and k-APs over Fn

p. Showing (much)
stronger lower bounds, possibly over other groups (including non-abelian groups), is
of interest for coding theory [3]. In [1], the case k = 3 of Theorem 1.5 is proved with-
out squaring the logarithmic factor. The proof given there uses both the analytic and
algebraic characterization of matrix rank and can be generalized using the relations be-
tween analytic and partition rank. But the best-known relations (1) cause the exponent
of the logarithmic factor to blow up substantially and currently require fairly intricate
proofs. Theorem 1.3 allows one to avoid the use of partition rank altogether gives a
proof based more easily-established results.

Acknowledgements. I thank Farrokh Labib and Michael Walter for useful discussions.

2. Proof of Theorem 1.3

We use some results of Lovett [12] and corollaries thereof. Let F be a finite field.
For a d-tensor T ∈ Fn×···×n and set S ⊆ [n] := {1, . . . , n}, denote by T|S the principal
sub-tensor obtained by restricting T to S × · · · × S. It will be convenient to slightly
extend the definitions of bias and analytic rank. For finite sets S1, . . . , Sd, d-tensor
T ∈ FS1×···×Sd and non-trivial additive character χ : F→ C, define

bias(T) = E(x1,...,xd)∈FS1×···×FSd χ
(
T(x1, . . . , xd)

)
and define arank(T) as before.

Lemma 2.1 (Lovett). Let T ∈ Fn×···×n be a d-tensor and S ⊆ [n]. Then,

arank(T) ≥ arank
(
T|S
)
.

Corollary 2.2. Let T ∈ Fn×···×n be a d-tensor, let S1, . . . , Sd ⊆ [n] be sets of equal size and let
T′ ∈ FS1×···×Sd be the restriction of T to S1 × · · · × Sd. Then,

arank(T) ≥ arank(T′).
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Proof: Let π2, . . . , πd : [n] → [n] be permutations such that πi(Si) = S1. Let Q be the
d-tensor obtained by permuting the ith leg of T according to πi. Then, since analytic
rank is invariant under such permutations, it follows from Lemma 2.1 that

arank(T) = arank(Q) ≥ arank
(
Q|S1

)
= arank(T′),

where the second equality follows since Q|S1
is a permutation of T′. 2

Lemma 2.3 (Lovett). Let χ : F→ C be a nontrivial additive character. Let T ∈ Fn×···×n be a
d-tensor and let Fn = U ⊕V for two subspaces U, V. Then, for any v1, . . . , vd ∈ V,∣∣∣Eu1,...,ud∈Uχ

(
T(u1 + v1, . . . , ud + vd)

)∣∣∣ ≤ Eu1,...,ud∈Uχ
(
T(u1, . . . , ud)

)
.

Corollary 2.4. Let T ∈ Fn×···×n be a d-tensor and En = en ⊗ · · · ⊗ en be the d-tensor with
a 1 at its last coordinate and zeros elsewhere. Then, there exists a λ ∈ F such that

arank(T + λEn) ≥ arank
(
T|[n−1]

)
+ cF,d,

where

(2) cF,d = − log|F|
(

1−
( |F| − 1
|F|

)d)
.

Proof: Let U = Span(e1, . . . , en−1) and V be the line spanned by en. We consider the
average bias of the tensor T + λEn, where λ is uniformly distributed over F. This
average equals

Eλ∈FEu1,...,ud∈UEv1,...,vn∈Vχ
(
(T + λEn)(u1 + v1, . . . , ud + vd)

)
.

The character expression factors as

χ
(
T(u1 + v1, . . . , ud + vd)

)
χ(λEn(u1 + v1, . . . , ud + vd)

)
.

Writing vi = aien, then the second factor simplifies to χ(λa1 · · · ad). Hence, the average
bias of T + λEn equals

Ea∈Fd

(
Eu1,...,un∈Uχ

(
T(u1 + a1en, . . . , ud + aden)

))(
Eλχ(λa1 · · · ad)

)
.

The expectation over λ equals 1[a1 · · · ad = 0]. Hence, by Hölder’s inequality, the
average bias is at most

max
v1,...,vd∈V

∣∣∣Eu1,...,un∈Uχ
(
T(u1 + v1, . . . , ud + vd)

)∣∣∣Pra1,...,ad∈F[a1 · · · ad = 0].

The result now follows from Lemma 2.3. 2

We now prove Theorem 1.3 following similar lines as Meshulam’s proof of Theo-
rem 1.1.
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Proof of Theorem 1.3: Order [n]d lexicographically. For a d-tensor T ∈ Fn×···×n, let ρ(T)
denote its first nonzero coordinate. Let T1, . . . , Tdim(V) be a basis for V. By Gaussian

elimination (viewing the Ti as vectors in Fnd
), we can assume that the coordinates ρ(Ti)

are pairwise distinct.
Cover [n]d by the “diagonal matchings” given by{

(0, n1, . . . , nd−1) + (i, . . . , i) : i ∈ [n− max
l∈[d−1]

nl]
}

{
(n1, 0, . . . , nd−1) + (i, . . . , i) : i ∈ [n− max

l∈[d−1]
nl]
}

...{
(n1, . . . , nd−1, 0) + (i, . . . , i) : i ∈ [n− max

l∈[d−1]
nl]
}

,

for n1, . . . , nd−1 ∈ {0, . . . , n − 1}. This is a cover since the coordinate (i1, . . . , id) with
j = min{i1, . . . , id} − 1 lies in the matching whose smallest element (with respect to
the product order) is (i1 − j, . . . , ij − j). Since there are at most dnd−1 such match-
ings and dim(V) ≥ tnd−1, one of these matchings contains at least t/d of the coordi-
nates ρ(T1), . . . , ρ(Tdim(V)). Let s = bt/drc, so that rs ≤ t/d.

Relabelling if necessary, we can assume that ρ(T1), . . . , ρ(Trs) lie in the same matching
and that they are listed increasingly according to the product order, so that

(3) ρ(Ti) = (n1, . . . , nd) + ( f (i), . . . , f (i))

for some n1, . . . , nd ∈ {0, . . . , n− 1} and strictly increasing function f : [rs] → [n]. For
each i ∈ [rs], let Qi ∈ Frs×···×rs be tensor given by

Qi(i1, . . . , id) = Ti
(
(n1, . . . , nd) + ( f (i1), . . . , f (id))

)
.

Then, Qi is a sub-tensor of Ti obtained from its restriction to the rectangle (n1, . . . , nd) +
(im( f ))d. Moreover, it follows from (3) that ρ(Qi) = (i, . . . , i), which in turn implies
that the restriction (Qi)|[i] is nonzero only on coordinate (i, . . . , i).

Partition [rs] into s consecutive intervals I1, . . . , Is of length r each. We claim that for
each j ∈ [s], there is an Rj ∈ Span(Qi : i ∈ Ij) such arank

(
(Rj)|Ij

)
≥ cF,dr, for cF,d as

in (2). We prove the claim for j = 1. To this end, we show by induction on i ∈ [r] that
Span(Q1, . . . , Qi) contains a tensor R whose restriction R|[i] to [i]× · · · × [i] has analytic
rank at least icF,d. For i = 1, the claim follows since Q1(1, . . . , 1) = a for some a ∈ F∗

and the bias of the 1× · · · × 1 tensor a equals

Ex1,...,xd∈Fχ(ax1 · · · xd) = Prx2,...,xd∈F[x2 · · · xn = 0]

= 1−
( |F| − 1
|F|

)d−1

≤ |F|−cF,d .
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Assume the claim for i ∈ [r− 1] and let R ∈ Span(Q1, . . . , Qi) be such that arank(R|[i]) ≥
icF,d. Since the restriction of (Qi+1)|[i+1] is nonzero only on coordinate (i + 1, . . . , i + 1),
it is a nonzero multiple of Ei+1. Hence, by Corollary 2.4, there is a λ ∈ F such that

arank
(
(R + λQi+1)|[i+1]

)
≥ arank(R|[i]) + cF,d ≥ (i + 1)cF,d,

which proves the claim. For j > 1 the claim is proved similarly, using induction on i ∈
[r] to show that Span(Qjr+1, . . . , Qjr+i) contains a tensor R such that arank(R|{jr+1,...,jr+i}) ≥
icF,d.

For j ∈ [s], let T∗j ∈ Span(Ti : i ∈ Ij) be the tensor whose restriction to (n1, . . . , nd) +

(im( f ))d equals Rj. Let W = Span(T∗1 , . . . , T∗s ). We claim that the space W meets
the criteria of Theorem 1.3. Since the sets Ij are pairwise disjoint and the tensors
T1, . . . , Tdim(V) linearly independent, it follows that dim(W) ≥ s ≥ t

dr − 1. Let λ ∈
Fs \ {0} and let j ∈ [s] be its first nonzero coordinate. It follows from Corollary 2.2
and Lemma 2.1 that

arank(λ1T∗1 + · · ·+ λsT∗s ) ≥ arank(λ1R1 + · · ·+ λsRs)

≥ arank
(
(λ1R1 + · · ·+ λsRs)|Ij

)
= arank

(
λj(Rj)|Ij

)
≥ cF,dr,

where in the third line we used that λk = 0 for all k ∈ [j− 1] and (Rk)|Ij
= 0 for all

k ∈ {j + 1, . . . , s}, which holds since the restriction of Qi to Ij is the zero tensor for all
i > j. Hence, every nonzero element of W has analytic rank at least cF,dr. 2

3. Proof of Theorem 1.5

For positive integer d and x ∈ Fn, denote ϕd(x) = x ⊗ · · · ⊗ x (d times). Then, for
any d-tensor T ∈ Fn×···×n, we have T(x, . . . , x) = 〈T, ϕd(x)〉, where 〈·, ·〉 is the standard
inner product. Theorem 1.5 follows from the following two lemmas, the first of which
is proved in [1] and the second of which we prove below.

Lemma 3.1 (Altman). Let k ≥ 3 be an integer and p ≥ k be a prime number. Let S ⊆ Fn
p be

such that the set ϕk−1(S) is linearly independent. Then, there exists a nonzero (k− 1)-tensor
T ∈ Fn×···×n

p such that the set {x ∈ Fn
p : 〈T, ϕk−1(x)〉 = 0} contains no k-term arithmetic

progressions with common difference in S.

Lemma 3.2. For every integer d ≥ 2 and prime p ≥ d + 1, there is a C ∈ (0, ∞) such
that the following holds. Let m = (n+d−1

d ) and let s ≤ m − C(logp m)2nd−1 be an inte-
ger. Let x1, . . . , xs be independent and uniformly distributed random vectors from Fn

p. Then,
ϕd(x1), . . . , ϕd(xs) are linearly independent with probability 1− o(1).

Theorem 1.5 now follows from Lemma 3.2 with d = k− 1 and the Chevalley–Warning
theorem [11, Chapter 6], which implies that the set from Lemma 3.1 has size Ωk,p(pn).



SUBSPACES OF TENSORS WITH HIGH ANALYTIC RANK 7

Lemma 3.2 follows from the following proposition, which in turn follows from The-
orem 1.3. A d-tensor is symmetric if it is invariant under permutations of its legs. Let
Symn

d(Fp) be the (n+d−1
d )-dimensional subspace of symmetric d-tensors. Note that if

p > d, then 〈·, ·〉 is non-degenerate on Symn
d(Fp) since if T is an element of this space

with a nonzero (i1, . . . , id)-coordinate, then by symmetry of T and the fact that d! 6≡ 0
(mod p), we have

〈
T, ∑

π∈Sd

eiπ(1)
⊗ · · · ⊗ eiπ(d)

〉
= ∑

π∈Sd

〈T, eiπ(1)
⊗ · · · ⊗ eiπ(d)

〉 = d!Ti1,...,id 6= 0.

Proposition 3.3. For every integer d ≥ 2 and prime p ≥ d + 1, there is a C ∈ (0, ∞) such
that the following holds. Let t > 0 and U ⊆ Symn

d(Fp) be a subspace of co-dimension at least
C4dt2nd−1. Then,

Prx∈Fn
p [ϕd(x) ∈ U] ≤ 2

p2t .

Proof: Let V = U⊥ ⊆ Symn
d(Fp). Then, since 〈·, ·〉 is non-degenerate, U = V⊥ and

dim(V) ≥ C4dt2nd−1. Moreover, if C is large enough in terms of d and p, then it follows
from Theorem 1.3 that there is a subspace W ⊆ V of dimension m ≥ 2dt such that each
nonzero element of W has analytic rank at least r ≥ 2dt. Hence, for ω = e2πi/p, we have

Prx∈Fn
p [ϕd(x) ∈ U] = Prx∈Fn

p [ϕd(x) ∈ V⊥]

≤ Prx∈Fn
p [ϕd(x) ∈W⊥]

= Ex∈Fn
pET∈Wω〈ϕ(x),T〉

≤
(

ET∈W bias(T)
) 1

2d−1

≤
( 1

pm +
pm − 1

pm
1
pr

) 1
2d−1

≤ 2
p2t ,

where the third line follows from [1, Lemma 3.5] and the fourth line follows from [8,
Lemma 3.2] and Jensen’s inequality. 2

A similar inequality to the one stated in Proposition 3.3 was proved in [2] over Fn
2 .

There, the full space of tensors is considered and the random element is of the form
x1 ⊗ · · · ⊗ xd, where the xi are independent and uniformly distributed. Similar to [1,
Lemma 3.4] we can now prove Lemma 3.2 .
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Proof of Lemma 3.2: The probability that ϕd(x1), . . . , ϕd(xs) are linearly independent is
at least

Pr[x1 6= 0]
s

∏
i=2

Pr
[
ϕd(xi) 6∈ Span

(
ϕd(x1), . . . , ϕd(xi−1)

)]
≥
(

1− max
U⊆Symn

d(Fp)
Prx∈Fn

p [ϕd(x) ∈ U]
)s

,

where the maximum is taken over (s− 1)-dimensional subspaces. Setting t = logp m
and using that s ≤ m, Proposition 3.3 then shows that this bounded from below by
(1− 2

m2 )
s ≥ 1−O(1/m) ≥ 1− o(1). 2
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