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Abstract

We give bounds on the additive gap between the value of a random integer
program maxcTx,Ax≤ b,x ∈ {0,1}n with m constraints and that of its linear pro-
gramming relaxation for a range of distributions on (A,b,c). Dyer and Frieze
(MOR ’89) and Borst et al (IPCO ’21) respectively, showed that for random pack-
ing and Gaussian IPs, where the entries of A,c are independently distributed ac-
cording to either the uniform distribution on [0,1] or the Gaussian distribution
N (0,1), the integrality gap is bounded by Om(s log2 n/n) with probability at least
1− 1/n− e−Ωm(s) for s ≥ 1. In this paper, we extend these results to the case
where A is discretely distributed (e.g., entries {−1,0,1}), and to the case where
the columns of A have a logconcave distribution. Second, we improve the success
probability from constant, for fixed s and m, to 1−1/poly(n). Using a connection
between integrality gaps and Branch-and-Bound due to Dey, Dubey, and Molinaro
(SODA ’21), our gap results imply that Branch-and-Bound is polynomial for these
IPs.

Our main technical contribution and the key for achieving the above results is
a new discrepancy theoretic theorem which gives general conditions for when a
target t is equal or very close to a {0,1} combination of the columns of a random
matrix A. Compared to prior results, our theorem handles a much wider range of
distributions on A, both continuous and discrete, and achieves success probability
exponentially close to 1, as opposed to the constant probability shown in earlier
results. We prove this lemma using a Fourier analytic approach, building on the
work of Hoberg and Rothvoss (SODA ’19) and Franks and Saks (RSA ’20), who
studied similar questions for {−1,1} combinations.
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1 Introduction
Consider an integer program (IP) in n variables and a fixed number m of constraints of
the form:

valIP(A,b,c) := max
x

cTx

s.t. Ax≤ b, x ∈ {0,1}n (Primal IP)

In practice, one can observe that a key factor controlling our ability to solve IPs is
the tightness of the linear programming (LP) relaxation. A natural way to measure
tightness is the size of the gap

IPGAP(A,b,c) := valLP(A,b,c)−valIP(A,b,c),

where valLP(A,b,c) relaxes x ∈ {0,1}n to x ∈ [0,1]n.

Complexity of Branch-and-Bound. Recently, Dey, Dubey, and Molinaro [1] gave
theoretical support for this observation, in the context of solving random packing IPs
via Branch-and-Bound. We state a generalization of their result due to [2] to the case
of random logconcave IPs below:

Theorem 1 ([1, 2]). Let n ≥ Ω(m), b ∈ Rm, and
(

c
A

)
∈ R(m+1)×n be a matrix whose

columns are independent logconcave random vectors with identity covariance. Then,
for G≥ 0, with probability at least 1−PrA,c[IPGAP(A,b,c)≥G]−1/poly(n), the best
bound first Branch-and-Bound algorithm applied to (Primal IP) produces a tree of size
at most nO(m)e2

√
2nG.

Note that the class of logconcave distributions is quite rich and includes, for ex-
ample, the uniform distribution on any convex body. From the above, we see that
probabilistic bounds for the integrality gap of random logconcave integer programs
immediately imply corresponding bounds for the complexity of Branch-and-Bound.
This directly motivates the question: which classes of distributions admit small inte-
grality gaps? Furthermore, given that realistic IPs often have discrete coefficients, to
what extent do the above results extend to discrete distributions?

Gap Bounds. For models directly captured by the above theorem, suitable integrality
have been proven for random packing [3, 4, 5] and Gaussian IPs [6], where the entries
of (A,c) are either independent uniform [0,1] or N (0,1). For random packing IPs,
when the entries of b ∈ n(0,1/2)m, Dyer and Frieze [3] proved that IPGAP(A,b,c) ≤
2O(m) log2(n)/n with probability at least 1−1/poly(n)−2−poly(m). For Gaussian IPs,
when ‖b−‖2 ≤ n/10, Borst et al [6] proved that IPGAP(A,b,c) ≤ poly(m) log2(n)/n
with probability at least 1−1/poly(n)−2−poly(m). For these models, the results imply
that Branch-and-Bound is polynomial for fixed m with reasonable probability.

Strong gap bounds have also been proven for random instances of combinatorial
optimization problems, though this has not translated into good upper bounds on the
size of Branch-and-Bound trees. In particular, Frieze and Sorkin [7] showed that the
cycle cover relaxation for the asymmetric TSP has an expected O(log2 n/n) additive
integrality gap, where the edge weights are chosen uniformly from [0,1] for a complete
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digraph on n vertices. Very recently however, Frieze [8] showed that any Branch-and-
Bound tree using the cycle cover relaxation to prune nodes1 will have expected size
Ω(2nα

), for some 0 < α < 1/20. Interestingly, the number of variables in ATSP is
n(n− 1), and thus a non-rigorous extrapolation from Theorem 1 may suggest a non-
trivial nO(

√
n) upper bound on the tree size of ATSP with good probability. Proving such

a sub-exponential upper bound for a Branch-and-Bound algorithm for random ATSP
remains an interesting open problem.

To explain the difficulties in extending the gap bounds for random packing and
Gaussian IPs, we outline the high level strategy for obtaining these bounds. The basic
strategy is to bound the gap by suitably rounding an optimal basic primal solution x∗

and dual solution u∗ to the LP relaxation (for possibly a slightly perturbed right hand
side b) to a nearly optimal solution to the IP. To do this, one first rounds down the at
most m fractional components of x∗ to get x′ (note that m is fixed). Afterwards, one
selects a small subset of variables T ⊆ {i : x∗i = 0}, |T |= Om(logn), with tiny reduced
costs, namely i ∈ [n] with |ci− u∗ai| = Om(logn/n). This subset is carefully chosen
such that flipping the contained variables from 0 to 1 allows us to ”fix” the slacks, i.e.,
such that Ax∗ ≈ A(x′+ 1T ) (in particular, to ensure feasibility). A crucial property in
both cases is that x∗ has at least Ω(n) zeros and that the corresponding columns of A are
independent subject to having negative reduced cost (see Lemma 22 and Lemma 23).
This ensures that one has a large universe of independent columns to choose from
when constructing T . To extend these results to more general distributions, at least
with respect to the constraint matrix A, a major difficulty was the lack of a general
enough condition that ensures the existence of a scheme to properly fix the slacks.

The Discrepancy Problem. Stated abstractly, it is a very natural discrepancy theo-
retic problem: given a target t (e.g., the difference in the slack vectors) and a random
matrix A with “nicely” distributed independent columns, when can we ensure, with
high probability, that t is equal or very close to a {0,1} combination of the columns
of A? The answer given in [6, Lemma 1], improving upon [3, Lemma 3.4], required
rather strict conditions on the entries of A, namely that they be independent, mean zero
with unit variance, absolutely continuous random variables of bounded density which
“converge quickly enough” to a Gaussian when averaged. Furthermore, for the targets
t in the “range” of A, the probability of successfully hitting t was only Θ(1).

As our main technical contribution, which yields the key ingredient for extending
the IP gap bounds, we give a much more general and powerful discrepancy theoretic
lemma. We state it below, restricted to the relevant slightly simplified cases for our
applications (see Theorem 8 for the general result).

Theorem 2 (Linear Discrepancy Theorem for Random Matrices).

• Discrete case: Let A ∈ Zm×n̄, n̄ ≥ poly(m), where Ai j is distributed uniformly
and independently on {a,a+ 1, . . . ,a+ k} with k > 1. Take p ∈ [0,1] such that
p≤ s

100m5 , for some small constant s> 0, and p4 =ω(m3

n̄ ). Then with probability
at least 1− e−Ω(pn̄), ∀t ∈ Zm satisfying ‖t− n̄p(a+ k/2)1m‖2 ≤ skp

√
mn̄, ∃x ∈

{0,1}n̄ with ‖x‖1 = Θ(pn̄) such that Ax = t.

1The cycle cover relaxation is in fact integral but its solutions are not feasible (i.e., they may be a union
of many disjoint directed cycles). Branch-and-Bound must therefore branch on variables that are integral in
the current relaxation, which is somewhat non-standard.
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• Continuous case: Let A = (a1, . . . ,an̄) ∈ Rm×n̄, n̄ ≥ poly(m), where a1, . . . ,an̄
are independent, logconcave random vectors with E[ai] = µ and Cov(ai) = Im,
∀i ∈ [n̄], and ‖µ‖ = O(em). Take p ∈ [0,1] such that p ≤ s

100m5 , for some small

constant s > 0, and p4 = ω(m3

n̄ ). Then, with probability at least 1− e−Ω(pn̄),
∀t ∈Rm satisfying ‖t− n̄pµ‖2 ≤ sp

√
mn̄, there ∃x ∈ {0,1}n̄, ‖x‖1 = Θ(pn̄) such

that ‖t−Ax‖2 ≤ e−Ω(pn̄/m).

In the intended use case above, n̄ will roughly be O(poly(m) logn) and p= 1/poly(m),
which will correspond to the very cheap 0-columns that we can pick T from. The cor-
responding success probability will now be 1− n−poly(m) as opposed to Θ(1), which
will allow us to get much better tail-bounds for the gap.

Generalized Gap Bounds and Their Application. Using the above, we obtain a
substantial generalization of the Gaussian gap result of Borst et al [6], which we state
below.

Theorem 3 (Centered IPs). For m ≥ 1, n ≥ poly(m), b ∈ Rm with ‖b−‖2 ≤ O(n), if c
has i.i.d. N (0,1) entries and the columns of A are independent isotropic, logconcave
random vectors whose support is contained in a ball of radius O(

√
logn+

√
m), then

Pr
(
IPGAP(A,b,c)≥ poly(m)(logn)2

n

)
≤ n−poly(m).

Furthermore, the same result holds if the entries of A are distributed independently and
uniformly in {0,±1, . . . ,±k} and b ∈ Zm with ‖b−‖2 ≤ O(kn), for any fixed k ≥ 1.

In this result b− refers to the vector with b−i = min(bi,0). We also obtain a discrete
variant of the random packing IP gap bound of [3].

Theorem 4 (Discrete Packing IPs). For m≥ 1, k≥ 3, β ∈ (0,1/4), n≥ poly(m)exp(Ω(1/β )),
b ∈ ((knβ ,kn(1/2−β ))∩Z)m, if c has i.i.d. exponential entries and the entries of A
are independent and uniform in {1, . . . ,k}, then

Pr
(
IPGAP(A,b,c)≥ exp(O(1/β ))poly(m)(logn)2

n

)
≤ n−poly(m).

As a corollary of these gap bounds, we derive the following complexity bound for
Branch-and-Bound.

Corollary 1. With probability 1−1/poly(n), the best-bound first Branch-and-Bound
algorithm applied to (Primal IP) produces a tree of size at most npoly(m) in the Centered
IP model of Theorem 3 and of size nexp(O(1/β ))poly(m) in the Discrete Packing IP model
from Theorem 4.

We note that, in the discrete case, the last result does not follow directly from
Theorem 1, which requires the constraint matrix to have a logconcave distribution.
Using the specific properties of these random instances, namely that the optimal dual
solutions have small norm and the logconcavity of the objective, we show how to adapt
the counting argument in the proof of Theorem 1 to derive the corresponding result
(see Section 5 for the proof).

Compared to prior work, the above results give the first gap bounds and Branch-
and-Bound complexity guarantees in the random centered and packing IP models where
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the constraint matrix A is discrete. We see this as stepping stone towards analyzing
more realistic random IPs. We also generalize the gap bounds in the centered case to
the setting where the columns of A are independent isotropic logconcave with bounded
support, which shows that the gap bound is universal in a limited sense. We recall that a
random vector X ∈ Rm is isotropic if E[X ] = 0 (mean zero) and E[XXT] = Im (identity
covariance). A similar logconcave extension can also be proved in the packing setting,
but we omit it for the sake of concision.

As a second technical improvement, our bounds hold with high probability in n
as opposed to a probability depending on m. As these bounds are most interesting in
the regime where m is constant (note that m = 1 in the packing case is the knapsack
problem), the result can be viewed as a significant asymptotic improvement. This is
made possible by the substantially improved probability of success in our discrepancy
theorem.

On a more conceptual level, our results build a stronger bridge between (linear)
discrepancy theorems for random matrices and additive gap bounds for random integer
programs, which we hope will lead to further exploration. The use of discrepancy the-
oretic tools in the related context of approximation algorithms has already proven very
fruitful. In particular, the best known O(logn) additive approximation for bin-packing,
due Hoberg and Rothvoss [9], crucially relies on tools from discrepancy theory.

We now comment in more detail on the specific requirements of the gap theorems.
Firstly, in the discrete case, we require the right-hand side b to be integral as it would
be impossible to cancel a non-integral errors in the slack when rounding. Note that this
is essentially without loss of generality, since replacing b by bbc does not cut off any
integer solutions when A is integral. While A can be discrete, we do not expect that the
objective c can be made discrete without greatly increasing the gap bound. In particular,
it seems unlikely that the reduced costs could be as small as in the continuous setting.
Lastly, in the centered setting, we require the norm bound on the support of the columns
of A to ensure that the errors in the slacks we need to repair are not too large. In the pure
Gaussian setting, this condition already holds with probability 1− 1/poly(n), which
recovers the result from [6].

In the packing setting, a non-trivial difference with [3] is that we require exponen-
tially distributed objective coefficients, i.e., with density e−x, x≥ 0, instead of uniform
[0,1]. This makes the reduced cost filtering we need much milder, allowing us to
control the conditional distribution of columns indexed by the 0 coordinates of x∗ more
easily. This also makes the integrality gap scale with exp(O(1/β )) instead of O(1/β )m.

As a final remark, we note that, in the discrete case for both the packing and cen-
tered setting, we require the entries to be uniformly distributed on an integer interval
of size at least 3. We do not know how to prove the same result for intervals of size
2 (e.g., uniform on {−1,1} or {0,1}), though this may be an artifact of our analysis.
In the packing setting, a natural question is whether the gap result still holds when the
entries of A are independent Bernoulli’s with probability p ∈ (0,1).

Techniques. Given the discrepancy theorem, the proof of the gap bounds mirrors the
proofs in [3, 6], though with non-trivial technical adaptations as well as some simpli-
fications. In particular, earlier proofs required repeated trials on disjoint columns of A
to find a suitable subset T . Because of the exponentially small probability of failure
in the discrepancy theorem, this is no longer needed and in fact now only hurts the
analysis. That is, using all the small reduced cost columns together in the theorem both
exponentially decreases the probability of failure and increases the size of the targets
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one can hit.
To prove the discrepancy theorem, we rely on a Fourier analytic approach, which

is completely different from the second-moment counting based proofs in [3, 6]. Let
A ∈ Rn×m be our random matrix with columns having mean µ ∈ Rm, and let 0 < p <
1/poly(m) be a parameter. Our strategy is to directly analyze the probability mass
function of the random variable Y = AX , where X1, . . . ,Xn are i.i.d. Bernoulli’s with
probability p. Restricting attention to the discrete case, where Y ∈ Zn, we show that
Pr[Y = t]� 0 for t ∈ Zn when ‖npµ− t‖ is a most a

√
p factors times the average de-

viation of AX around EX [AX ] (the extra
√

p term is likely an artifact of our proof and
is 1/poly(m) in all our applications), where the average deviation is EX [‖∑

n
i=1(Xi−

p)Ai‖2]1/2 =
√

p(1− p)∑
n
i=1 ‖Ai‖2

2. This is done by applying the Fourier inversion
formula, showing that the Fourier coefficients are close enough to Gaussian and inte-
grating (see Section 3 for an overview).

Our approach here is in fact heavily inspired by the works of Hoberg and Rothvoss [10]
and Franks and Saks [11] which analyzed {−1,1} discrepancy of random matrices.
In the above notation, they analyzed the probability mass function Y ′ = AX ′, where
X ′1, . . . ,X

′
n are uniform {−1,1}. While sharing many similarities, these models have

non-trivial qualitative differences. In the {−1,1} model Y ′ must use every column
of A, and hence parity considerations play a significant role in determining which t’s
have positive probability (this is not issue in our model). In constrast, we must con-
tend with the “drift” of X , namely that E[X ] = p1n. In particular, it is intuitive that
‖t−npµ‖ being small is not sufficient for Pr[Y = t] 6= 0 if EX [AX ] = pA1n is far from
EA,X [AX ] = npµ . Indeed, pA1n is quite poorly concentrated around its mean, yielding
concentration in terms of m (which is constant) instead of n, recalling that we aim for
failure probability e−Ω(pn).

To illustrate the problem with an example, if A has standard Gaussian N (0,1)
entries, then pA1n is distributed as N (0, p2nIm). Furthermore, the average devi-

ation
√

p(1− p)∑
n
i=1 ‖Ai‖2

2 of AX is O(
√

pnm) with probability 1− e−Ω(n) over A
by standard concentration estimates. Since the means are all zero, we wish to be
able to hit all targets close enough to the origin. However, by similar Gaussian tail-
bounds ‖pA1n‖2 ≥Cp

√
mn with probability 2−O(C2m). Assuming p = 1/poly(m) and

C = Θ(1/
√

p), the drift pA1n induced by this event – which occurs with probability
depending only on m – overwhelms the average deviation

√
pmn of AX , which makes

the probability that Y = AX is close to origin too small for standard Fourier analytic
estimates to pick up on.

To deal with this, we first carefully subsample a set S ⊆ [n] of columns from A,
whose sum is close to the mean, and then generate Y from these subsampled columns.
To construct S, we iterate through the columns one by one, adding Ai to S if 〈∑ j∈S(A j−
µ),Ai−µ〉 ≤ 0 and ‖Ai−µ‖ ≤ 2E[‖Ai−µ‖2

2]
1/2. This subsampling deterministically

ensures that ‖∑i∈S(Ai − µ)‖2 ≤ 2
√

∑i∈SE[‖Ai−µ‖2
2], suitably biasing the sum to-

wards the mean. For the distributions we work with, it is easy to show that |S|= Ω(n)
with probability 1− e−Ω(n), so we always have a constant fraction of the columns to
work with. Note that this subsampling crucially uses our flexibility to drop columns of
A, a distinguishing feature of {0,1} combinations versus {−1,1} combinations. The
subsampling process causes dependencies among the columns, but, fortunately, they
are manageable enough to allow the Fourier analytic estimates to go through.
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Organization The preliminaries to our results can be found in Section 2. Section 3
contains the proof of the discrepancy result, Theorem 2, and the bounds on the inte-
grality gap, given in Theorems 3 and 4, are proven in Section 4. Section 5 is devoted
to the proof of Corollary 1. Finally, in Section 6 we prove several anti-concentration
results required by our method.

2 Preliminaries
We begin this section by introducing some notation, to be used throughout the paper.
If (x1, . . . ,xm) ∈ Rm and p≥ 1, the p-norm is defined by,

‖x‖p :=

(
m

∑
i=1
|xi|p

) 1
p

.

When p = 2, i.e. the Euclidean norm, we will sometimes omit the subscript, so ‖x‖=
‖x‖2. We interpret p = ∞ in the limiting sense,

‖x‖∞ := max
1≤i≤n

|xi|.

We denote the positive part of x as, x+ := (max(x1,0), . . . ,max(xm,0)) and the negative
part x− := −(max(−x1,0), . . . ,max(−xm,0)). The all-ones vector is denoted 1m :=
(1, . . . ,1). We will sometimes omit the subscript, when the dimension is clear from the
context. If S is a subset of indices, we will write 1S for a vector such that (1S))i = 1 if
i∈ S and 0 otherwise. If a and b are quantities that depend on the problem’s parameters
we will write a = O(b) (resp. a = Ω(b)) to mean a ≤ Cb, (resp. a ≥ CB) for some
numerical constant C > 0. We also write a� b or a = o(b) (resp. a� b or a = ω(b))
to mean lim

a→∞

a
b = 0 (resp. lim

a→∞

b
a = 0 ). The identity matrix in Rm is denoted by Im.

2.1 Fourier analysis
Our main tool for proving the discrepancy result is Fourier analysis and we review here
the necessary details. Fix X ∼ D , a random vector in Rm. The Fourier transform of
X (sometimes also called the characteristic function) is the complex-valued function
defined by X̂(θ) := E[exp(2πi〈X ,θ〉)].

To understand the natural domain for θ , we first define

domain(D) := {v ∈ Rm : 〈v,w〉 ∈ Z, ∀w ∈ support(D)}, (1)

which leads to the fundamental domain in Fourier space (where we suppress the de-
pendence on D),

V := {θ ∈ Rm : ‖θ‖ ≤ inf
06=w∈domain(D)

‖θ −w‖}. (2)

Observe that if D is absolutely continuous with respect to the Lebesgue measure,
then domain(D) = V = Rm and if support(D) ⊂ Zm, for domain(D) = Zm, and V =
[− 1

2 ,
1
2 ]

m. Those are the two cases on which we focus.
The connection between X and its Fourier transform comes from the Fourier inver-

sion formula [12, Theorem 1.20]:
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Theorem 5 (Fourier inversion formula). For λ ∈ support(D):

Pr[X = λ ] =
∫

θ∈V
X̂(θ)exp(−2πi〈θ ,λ 〉)dθ

If X is absolutely continuous, we interpret Pr[X = λ ] as the density of X at λ .

Another desirable property of the Fourier transform is that it is particularly amenable
to convolutions (this is clear from the exponential representation but see [12, Theorem
3.18]).

Theorem 6 (Multiplication-convolution theorem). Let X and Y be two independent
random vectors. Then,

̂(X +Y )(θ) = X̂(θ)Ŷ (θ).

2.2 Probability Distributions
Let X ∈Rm be a random vector distributed according to a probability measure ν on Rm.
We will use fX to refer to the probability density function of X . We define the mean
Mean(ν) := E[X ] ∈ Rm and covariance matrix by Cov(ν) := Cov(X) := E[XXT]−
E[X ]E[X ]T � 0. If X ∈R is a real random variable, we use the notation Var[X ] to write
the variance instead of Cov(X). We say that X , or its law ν , is isotropic if and E[X ] = 0
and Cov(X) = Im.

Proposition 1. Let X ∈ Rn satisfy E[X ] = 0. Then E[X+] = E[|X |]/2.

Proof. Note that 0 = E[X ] = E[X+−X−]⇒ E[X+] = E[X−]. Thus, E[|X |] = E[X+]+
E[X−] = 2E[X+], as needed.

Let X1, . . . ,Xn be independent {0,1} random variables with µ = E[∑n
i=1 Xi]. Then,

the Chernoff bound gives [13, Corollary 1.10],

Pr[
n

∑
i=1

Xi ≤ µ(1− ε)]≤ e−
ε2µ

2 ,ε ∈ [0,1]. (3)

Pr[
n

∑
i=1

Xi ≥ µ(1+ ε)]≤ e−
ε2µ

3 ,ε ∈ [0,1].

A more refined version is given by Azuma’s inequality which allows the random vari-
ables to admit some mild dependencies. Let X1, . . . ,Xn be {0,1} random variables with
µ = ∑

n
i=1E[Xi|X1, . . . ,Xi−1]. Then,

Pr[
n

∑
i=1

Xi ≥ (1+ ε)µ]≤ e−
ε2µ2

2n ,ε ∈ [0,1]. (4)

To see this bound, apply [13, Theorem 1.10.30] to the martingale Si :=
i

∑
j=1

X j−E[X j|X1, . . . ,X j−1].

Lemma 1. If the density function fX of X is bounded from above by M, then:

Var(X)≥ 1
12M2 .
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Proof. If we want to minimize Var(X) =
∫

∞

−∞
t2 fX (t)dt under the conditions fX ≤ M

and E[X ] = 0, then the the unique minimizer is fx = M ·1[− 1
2M , 1

2M ]. We then see,

Var(X) =
∫ 1

2M

− 1
2M

t2 ·Mdt =
[

1
3

M · t3
] 1

2M

1
−2M

=
1

12M2

2.3 Gaussian and Sub-Gaussian Random Variables
If µ ∈ Rm and Σ� 0 is an m×m positive-definite matrix, we denote by N (µ,Σ), the
law of the Gaussian with mean µ and covariance Σ. The probability density function
of N (µ,Σ) is given by 1√

2π
m det(Σ)1/2 e−

1
2 (x−µ)TΣ−1(x−µ), ∀x ∈ Rn.

The following is a basic concentration fact for the norm of the standard Gaussian
(see [14, Lemma 1], for example).

Lemma 2. Let G∼N (0, Im) and let x≥ 7m. Then,

Pr
(
‖G‖2 ≥ x

)
≤ e−

x
3 .

A random variable Y ∈ R is σ -sub-Gaussian if for all λ ∈ R, we have

E[eλY ]≤ eσ2λ 2/2. (5)

A standard normal random variable X ∼ N (0,1) is 1-sub-Gaussian. If variables
Y1, . . . ,Yk ∈R are independent and respectively σi-sub-Gaussian, i ∈ [k], then ∑

k
i=1 Yi is√

∑
k
i=1 σ2

i -sub-Gaussian.
For a σ -sub-Gaussian random variable Y ∈R we have the following standard tailbound
[15, Proposition 2.5.2]:

max{Pr[Y ≤−σs],Pr[Y ≥ σs]} ≤ e−
s2
2 ,s≥ 0. (6)

The following standard lemma shows that bounded random variables are sub-Gaussian.

Lemma 3. Let X ∈ [−1,1] be a mean-zero random variable. Then X is 1-sub-Gaussian.

Proof. Let ϕ(x) := eλx for λ ∈R. By convexity of ϕ , note that for x ∈ [−1,1], ϕ(x)≤
1−x

2 ϕ(−1)+ 1+x
2 ϕ(1). Therefore,

E[ϕ(X)]≤ E[
1−X

2
ϕ(−1)+

1+X
2

ϕ(1)] =
1
2
(ϕ(−1)+ϕ(1)) =

1
2
(e−λ + eλ )

=
∞

∑
i=0

λ 2i

(2i)!
≤

∞

∑
i=0

(λ 2/2)i

i!
= eλ 2/2, as needed.

We also need the following fact about truncated sub-Gaussian random variables,
which is a slight generalization of [2, Lemma 7]:

Lemma 4. Let X ∈ R be 1-sub-Gaussian. Then E[X+] ≤ 1/2 and X+ −E[X+] is√
2-sub-Gaussian.

Proof. Since X is 1-sub-Gaussian, note that E[X ] = 0 and that E[X2] ≤ 1. Therefore,
by Proposition 1, we have µ :=E[X+] =E[|X |]/2≤E[X2]1/2/2≤ 1/2 by Hölder.

√
2-

sub-gaussianity of X+−µ now follows verbatim from the proof of [2, Lemma 5] using
that µ2 ≤ 1/3 and replacing Gaussian by sub-Gaussian.

9



2.3.1 Logconcave Measures

If a measure ν has a density that is a logconcave function, we call ν logconcave.
Logconcave distributions have many useful analytical properties. In particular, the
marginals of logconcave random vectors are also logconcave.

Theorem 7 ([16]). Let X ∈Rd be a logconcave random vector. Then, for any surjective
linear transformation T : Rd → Rk, T X is a logconcave random vector.

The following gives a (essentially tight) bound on the maximum density of any one
dimensional logconcave R in terms of the variance.

Lemma 5 ([17, Lemma 5.5]). Let X ∈ R be a logconcave variable. Then its density
function is upper bounded by 1√

Var[X ]
.

The above has an important consequence. If X ∈ Rn is logconcave and isotropic,
then for any vector v ∈ Rn \ {0}, the random variable vTX has maximum density at
most 1/

√
Var[vTX ] = 1/‖v‖2, where we have used vTX is logconcave.

By a result of Grünbaum, the mean of logconcave measure is also an approximate
median. In particular, any halfspace containing the mean has measure at least 1/e. We
will use the following generalization of this result.

Lemma 6 ([18]). Let X ∈Rn be a logconcave measure with mean E[X ] = µ . Then for
any θ ∈ Sn−1 and t ∈ R, Pr[θTX ≥ θTµ− t]≥ 1/e−|t|.

We shall require the fact that logconcave random variables satisfy the following
comparison inequality.

Lemma 7 ([19]). Let X ∈ R+ logconcave with E[X ] = µ and let Z have density e−x

(exponential distribution), x≥ 0. Then, for any convex function ϕ :R+→R, E[ϕ(X)]≤
E[ϕ(µZ)]. In particular,

1. E[X2]≤ 2µ2.

2. E[eλX ]≤ 1
1−λ µ

, λ < 1/µ .

Lemma 8. For X ∈ R mean-zero and logconcave, we have E[X2]≤ eE[|X |]2.

Proof. Let Xl :=−X |X ≤ 0, pl = Pr[X ≤ 0] and Xr :=Xr |X ≥ 0, pr = Pr[X ≥ 0]. Note
that Xl ,Xr are both non-negative logconcave random variables and that pl , pr ≥ 1/e by
Lemma 6. By Proposition 1, pl E[Xl ] = E[X−] = E[|X |]/2 = E[X+] = pr E[Xr]. We
now see that

E[X2] = pl E[X2
l ]+ pr E[X2

r ] ≤︸︷︷︸
Lemma 7

2(pl E[Xl ]
2 + pr E[Xr]

2) = E[|X |](E[Xl ]+E[Xr])≤ eE[|X |]2.

We will also require the following concentration inequality for sums of non-negative
logconcave random variables.

Lemma 9. Let X1, . . . ,Xn ∈R+ be independent non-negative logconcave random vari-
ables with mean µ . Then, the following holds:

1. Pr[∑n
i=1 Xi ≥ (1+ ε)µn]≤ e−n(ε−ln(1+ε)) ≤ e

−n( ε2

2(1+ε)2
)
, ε > 0.

10



2. Pr[∑n
i=1 Xi ≤ (1− ε)µn]≤ e−n(− ln(1−ε)+ε) = e−n(∑∞

j=2 ε j/ j), ε ∈ [0,1].

Proof. By homogeneity, we assume wlog that µ = 1.
Proof of 1. Let λ := ε

1+ε
. Then,

Pr[
n

∑
i=1

Xi≥ (1+ε)n] ≤︸︷︷︸
Markov

E[eλ ∑
n
i=1 Xi ]e−λ (1+ε)n ≤︸︷︷︸

Lemma 7

(
1

1−λ
)ne−λ (1+ε)n = e−n(ε−ln(1+ε)).

Proof of 2. Let λ := ε

1−ε
. Then,

Pr[
n

∑
i=1

Xi≤ (1−ε)n] ≤︸︷︷︸
Markov

E[e−λ ∑
n
i=1 Xi ]eλ (1−ε)n ≤︸︷︷︸

Lemma 7

(
1

1+λ
)ne−λ (1+ε)n = e−n(− ln(1−ε)−ε).

Finally, we will require concentration of truncated sums.

Lemma 10. Let X1, . . . ,Xn ∈ R be i.i.d. mean zero logconcave random variables with
E[X+

1 ] = α . Then, for ε ∈ [0,1/2], we have that

1. Pr[∑n
i=1 X+

i ≥ (1+ ε)2nα]≤ e−
nε2
3e + e−

nε2
2e(1+ε) .

2. Pr[∑n
i=1 X+

i ≤ (1− ε)2nα]≤ e−
nε2
2e + e−

n(1−ε)ε2
2e .

Proof. Define X ′1, . . . ,X
′
n ∈ R+ to be i.i.d. copies of X1 | X1 ≥ 0 and let p = Pr[X1 ≥

0], where 1− 1/e ≥ p ≥ 1/e (Lemma 6). Let C = ∑
n
i=1 1[Xi ≥ 0], which a binomial

distribution with parameters n and p. Since X1, . . . ,Xn are i.i.d., ∑
n
i=1 X+

i has the same
law as ∑

C
i=1 X ′i . Therefore, by (3) and Lemma 9, we have that

Pr[
C

∑
i=1

X ′i ≥ (1+ ε)2nα]≤ Pr[C ≥ d(1+ ε)pne]+Pr[
b(1+ε)pnc

∑
i=1

X ′i ≥ (1+ ε)2nα]

≤ e−
npε2

3 + e
− (1+ε)npε2

2(1+ε)2 ≤ e−
nε2
3e + e−

nε2
e(1+ε) ,

and

Pr[
C

∑
i=1

X ′i ≤ (1− ε)2nα]≤ Pr[C ≤ b(1− ε)pnc]+Pr[
d(1−ε)pne

∑
i=1

X ′i ≤ (1− ε)2nα]

≤ e−
npε2

2 + e−
np(1−ε)ε2

2 ≤ e−
nε2
2e + e−

n(1−ε)ε2
2e .

2.4 Khinchine Inequality
Lemma 11. Let X1, . . . ,Xn ∈ R be independent mean zero random variables satis-
fying E[X4

i ] ≤ 3E[X2
i ]

2 < ∞, ∀i. Then, for any scalars a1, . . . ,an ∈ R, we have that√
1
3 E[|∑i aiXi|4]≤ E[|∑i aiXi|2]≤ 3E[|∑i aiXi|]2.
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Proof. Letting Z := |∑i aiXi| ≥ 0, we wish to show
√
E[Z4] ≤ E[Z2] ≤ 3E[Z]2. We

first show that E[Z4]≤ 3E[Z2]2, proving the first part of our claim:

E[Z4] = ∑
i, j,k,l

aia jakal E[XiX jXkXl ] = ∑
i

a4
i E[X4

i ]+∑
i6= j

3a2
i a2

j E[X2
i ]E[X2

j ]

= ∑
i

a4
i (E[X4

i ]−3E[X2
i ]

2︸ ︷︷ ︸
≤0

)+∑
i, j

3a2
i a2

j E[X2
i ]E[X2

j ]≤ 3(∑
i

a2
i E[X2

i ])
2 = 3E[Z2]2.

As a consequence, we have

E[Z2] = E[Z2/3(Z4)1/3] ≤︸︷︷︸
Hölder

E[Z]2/3E[Z4]1/3 ≤︸︷︷︸
E[Z4]≤3E[Z2]2

31/3E[Z]2/3E[Z2]2/3,

which, after rearranging, gives E[|∑i aiXi|2]≤ 3E[|∑i aiXi|]2.

2.4.1 Discrete Random Variables

Here we list some of the moments of (DSU) for reference.

Proposition 2 (Discrete Symmetric Moments). For k ≥ 1, let U be uniformly dis-
tributed on {0,±1/k, . . . ,±1}. Then, E[U2] = k+1

3k ≥ 1/3, E[U4] = (k+1)(3k2+3k−1)
15k3 and

E[U4]/E[U2]2 = 9(3k2+3k−1)
15(k+1)k ≤ 2.

2.5 Combinatorics
Theorems 3 and 4 rely on some properties of the optimal dual solution, that hold with
high probability. We prove these by taking the union bound over all vectors in {0,1}n

that contain at most αn zeroes. By applying the following lemma, we are able to upper
bound the number of these vectors by exp(H(α)n) where H is the entropy function
defined as H(x) =−x log(x)− (1− x) log(1− x).

Lemma 12 ([20, Theorem 3.1]). For all α ≤ 1
2 and all n,

bαnc

∑
i=0

(
n
i

)
≤ exp(H(α)n).

3 Discrepancy
In this section we describe our main discrepancy results. Let A ∈ Rn×m be a random
matrix, whose columns are i.i.d. and sampled from a distribution D on Rm. We denote
µ = Mean(D), Σ = Cov(D), and σ2 := ‖Σ‖op, where ‖ · ‖op stands for the operator
norm.

Before stating the result, let us introduce some notation. We first describe the type
of distributions captured by our result, which are those which have a non-negligible
mass on each half-space passing through its mean.

Definition 1 (admissible distributions). A probability distribution D on Rm, with mean
µ , is called admissible if, for any ν ∈ Rm,

Pr
X∼D

(〈X ,ν〉 ≥ 〈µ,ν〉)≥ 1
4e2 .

12



Remark 1. The constant 1
4e2 in the definition is somewhat arbitrary and could be

relaxed to any smaller constant. It is immediately clear that any distribution which is
symmetric around its mean is admissible. Moreover, Grünbaum’s inequality in Lemma
6 shows that logconcave measures are admissible.

Given an admissible distribution, the main idea will be to choose S⊆ [n] randomly
with Pr[i ∈ S] = p for p ≤ 1

poly(m) , independently for all i ∈ [n] and to show that with
high probability over A and positive probability over S, A1S is close to a target vector
λ . Thus, let us define the random vector D := A1S.

To understand the distribution of D we will consider its Fourier transform, which
we denote by D̂(θ) := E[exp(2πi〈D,θ〉)], and use V and domain(D) to denote its
fundamental domains, as in (1) and (2). With this notation, the result is:

Theorem 8. Suppose D is an admissible distribution that satisfies the property (anti-concentration)
in Definition 2 below, with constant κ > 0, and let p ∈ [0,1]. Assume,

• p≤ κ4

1000m5 and p� m
3
4

(
‖µ‖
σ

+1
)− 3

2
n−

1
4 .

• κ = Ω(1).

• n = Ω(poly(m)).

• σ
√m

κ
+‖µ‖ ≤ e

κn
80 and

(
1+ ‖µ‖

2

σ2

) 1
m ≤

κ3 exp
(

κ3

3·802 pm3

)
50000m2 .

Then, when domain(D) = Rm, for all λ ∈ Rm with ‖λ − pnµ‖ ≤ σ p
√

mn, with prob-
ability 1− e−Ω(pn), there is a set S of size |S| ∈ [ 1

2 pn, 3
2 pn] such that ‖A1S − λ‖ ≤

n4 exp(−κ3 pn
m ) . Moreover, if domain(D) = Zm, the same result holds, and we can

choose S, such that A1S = λ .

Remark 2. The statement of the theorem contains several assumptions, which may
seem complicated. In essence, those are technical assumptions that express the rela-
tionships between the different parameters and are required in order to make the proof
work. Note that most of the assumptions can be satisfied by making n larger or p
smaller (or both). Hence, not much generality is lost by making these assumptions.

Recall Fourier’s inversion formula (Theorem 5 in Section 2). In light of the formula,
it will be enough to show that the integral in Theorem 5 is positive for appropriate λ ,
for most choices of A. In this case we will get that Pr [D = λ ] > 0, which implies the
existence of an appropriate subset of columns. At a very high level, we will show that
most of the mass lies next to the origin and that the integrand has an exponential decay
far from the origin. This will be achieved by the following sequence of steps:

1. Our first step will be to subsample the columns of A. This will result in appropri-
ate concentration bounds, that improve as n increases, irregardless of the value
of m (Lemma 14).

2. We then show that with high probability arg(D̂(θ)) ∈ [− 1
8 π, 1

8 π] for all θ with

‖θ‖=O( poly(m)
σ
√

n ). This will allow to establish that the real part of D̂(θ)exp(−2πi〈θ ,λ 〉)
is large when ‖λ − pnµ‖‖θ‖ is small (Lemma 16).
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3. Next, we show that
∫

‖θ‖≤r
|D̂(θ)|dθ is large for some r = O( poly(m)

σ
√

n ). In combi-

nation with Lemma 16, we shall conclude that
∫

‖θ‖≤r
D̂(θ)exp(−2πi〈θ ,λ 〉)dθ is

large (Lemma 18).

4. Finally, we will show that for ‖θ‖ ≥ r, |D̂(θ)| is rapidly decreasing. So the
integral over these θ can only have a small negative contribution (Lemma 19).

The first bottleneck is Step 1, which will change the distribution and effective size
of the random matrix A. Below we show that admissible distributions maintain many
desirable properties after our subsampling procedure. The second bottleneck is Step 4.
To establish a rapid enough decay of the Fourier spectrum we require that D satisfy the
following anti-concentration type property.

Definition 2 (anti-concentration). We say the measure D is anti-concentrated if there
exists a constant κ > 0, such that for any ν ∈ Rm and any θ ∈V ,

Pr
X∼D

[
d(θTX ,Z)≥ κ min(1,‖θ‖∞σ) | 〈ν ,X〉 ≤ 〈ν ,µ〉

]
≥ κ, (anti-concentration)

where d(θTX ,Z) := inf
z∈Z
|θTX− z|.

Since we are working in the Fourier domain, it is natural to require that 〈θ ,X〉 be
bounded away from integer points. Otherwise, 〈θ ,D〉 could be close to an integer point
with high probability, which would make |D̂(θ)| large. There is an extra component in
the definition which says that the anti concentration continues to hold after conditioning
on an arbitrary half-space, passing through the mean. As will become apparent soon,
this is a consequence of the subsampling scheme, from Step 1, and could be an artifact
of the proof. From now on, we work under the assumption that D is anti-concentrated
with some absolute constant κ > 0.

Let us just note that the (anti-concentration) property is not vacuous. In fact Theo-
rem 2 is a direct consequence of the following lemma (see the proof in Section 6) and
Theorem 8 (note that by Remark 1, both cases are admissible).

Lemma 13. Suppose that for X = (X1, . . . ,Xm)∼D , one of the following holds,

1. X is logconcave and isotropic.

2. Xi are i.i.d. uniformly on an integer interval {a,a+1, . . . ,a+ k}, with k > 1.

Then, D satisfies (anti-concentration) with a universal constant κ > 0.

Step 1 - subsampling: We will generate a sub-matrix of A by selecting a subset of the
columns. This will ensure that the norm of the columns is bounded, as well as that the
norm of their sum is small. Suppose that the columns of A satisfy (anti-concentration)
with κ > 0, for i = 1, . . . ,n we define random variables Yi ∈ {0,1}:

Pr[Yk+1 = 1|A1,Y1, . . .Ak,Yk] =


1 if 〈∑k

j=1 Yj (A j−µ) ,Ak+1−µ〉< 0 and ‖Ak+1−µ‖ ≤ 10σ
√m

κ

1
2 if 〈∑k

j=1 Yj (A j−µ) ,Ak+1−µ〉= 0 and ‖Ak+1−µ‖ ≤ 10σ
√m

κ

0 else

We then select all columns of A for which Yi = 1. For now, let A′i have the law of column
Ai, conditional on being selected, and denote the selected set SA = {i ∈ [n]|Yi = 1}.
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Lemma 14. Suppose that D satisfies (anti-concentration) with κ > 0 and that it is an
admissible distribution, in the sense of Definition 1. Then, if n� m2

κ
:

1.

‖A′i−µ‖ ≤ 10σ

√
m
κ
. (norm concentration)

2. With probability 1− e−Ω(n), |SA| ≥ n
8 ,

∑
i∈SA

(Ai−µ)(Ai−µ)T 4 2nσ
2Im, and (matrix concentration)

∥∥∥∥∥∑
i∈SA

Ai−µ

∥∥∥∥∥
2

≤ 2nmσ
2. (concentration)

3. Pr
(
d(θTA′i,Z)≥ κ min(1,‖θ‖∞σ) |A1Y1, ...,Ai−1Yi−1

)
≥ κ

2 , for every θ ∈V , and
i ∈ [n′].

Proof . The first claim is immediate since we have conditioned the columns on the
event {‖Ai−µ‖≤ 10σ

√m
κ
}. For (matrix concentration), let Zi

law
= Ai|

(
‖Ai−µ‖ ≤ 10σ

√m
κ

)
and note,

∑
i∈SA

(Ai−µ)(Ai−µ)T =
n

∑
i=1

Yi(Zi−µ)(Zi−µ)T ≤
n

∑
i=1

(Zi−µ)(Zi−µ)T.

As the random vectors {Zi−µ}n
i=1 are mutually independent and (Zi−µ)(Zi−µ)T �

10σ
√m

κ
Im almost surely, (matrix concentration) follows from the matrix Bernstein in-

equality [21, Theorem 1.6.2].
For (concentration), since 〈∑i−1

j=1 Yj(A j−µ),Ai−µ〉 ≤ 0,∥∥∥∥∥∑
i∈SA

Ai−µ

∥∥∥∥∥
2

≤ ∑
1∈SA

‖Ai−µ‖2 = Tr

(
n

∑
i∈SA

(Ai−µ)(Ai−µ)T

)
≤ 2nTr

(
σ

2Im
)
,

where the last inequality is monotonicity of the trace. Also, recalling that Σ � σ2Id ,
the fact that with high probability |SA| ≥ n

8 follows from Azuma’s inequality. Indeed,
for fixed i ∈ [n], by Chebyshev’s inequality,

Pr
(
‖Ai−µ‖> 10σ

√
m
κ

)
≤

κ E
[
‖Ai−µ‖2

]
100σ2m

=
κ Tr(Σ)
100σ2m

≤ κ

100
.

If D is admissible, then, since Ai is independent from {Yj,A j}i−1
j=1, by definition,

Pr

(
〈

i−1

∑
j=1

Yj(A j−µ),Ai−µ〉 ≤ 0

)
≥ 1

4e2 .

Taken together, the above displays imply

Pr(Yi = 1|A1, . . . ,Ai−1) = Ω(1).
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Applying Azuma’s inequality, as in (4), we get

Pr
(
|SA| ≥

n
8

)
= 1− e−Ω(n).

Finally, we address the (anti-concentration) property. For fixed i ∈ [n′], let us define
ν = ∑

i−1
j=1 A jYj. So,

Pr
(
d(θTA′i,Z)≥ κ min(1,‖θ‖∞σ) |A1Y1, ...,Ai−1Yi−1

)
= Pr

(
d(θTAi,Z)≥ κ min(1,‖θ‖∞σ) |〈ν ,Ai−µ〉 ≤ 0 and ‖Ai−µ‖ ≤ 10σ

√
m
κ

)
≥ Pr

(
d(θTAi,Z)≥ κ min(1,‖θ‖∞σ) |〈ν ,Ai−µ〉 ≤ 0

)
− κ

100
≥ κ

2
.

Here, the last inequality follows from Definition 2, while the first inequality is a union
bound on the anti-concentration event and {‖Ai−µ‖ ≤ 10σ

√m
κ
}.

In light of the lemma, in the sequel, all computations will be made conditioned on
the high-probability event defined by Lemma 14 and we will only consider the selected
columns. Thus, with a slight abuse of notation, from now on the random variables D,
D̂, Ai, etc. will only be considered with respect to the selected columns. In particular,
we will write n for |SA|.

Step II - bounding the argument: We will now show that for small θ , the argument
of D̂(θ) is close to 2πnp〈θ ,µ〉. Before proceeding, we introduce an auxiliary parame-
ter β = 1

80p
√

m , which will bound the region in which we control D̂(θ). We record here
some facts, which will be useful later on:

Lemma 15. Under the assumptions of Theorem 8, if β = 1
80p
√

m , then for large enough
n,

1√
24π2 p

≤ β ≤ 1
80p
√

m

β
3 ≤

√
n

50000p
min

((
‖µ‖
σ

+1
)−3

,
(

κ

m

) 3
2

)

Proof . Since p ≤ κ4

1000m5 , we immediately get the first set of inequalities. For the
second inequality, the assumptions in Theorem 8 ensure,

√
n

50000p

(
κ

m

) 3
2 ≥ c

√
n

pm
3
2
= 80cp2√nβ

3 ≥ β
3,

√
n

50000p

(
‖µ‖
σ

+1
)−3

= cp2m
3
2
√

n
(
‖µ‖
σ

+1
)−3

β
3 ≥ β

3

for some small constant c > 0, and the inequality follows, for large n, since p �

m
3
4

(
‖µ‖
σ

+1
)− 3

2
n−

1
4 .
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The main observation in this step, is that, when we fix the columns {A j}n
j=1, a

Taylor approximation implies the bound,∣∣∣∣∣ n

∑
j=1

arg(ES[exp(1i∈S2πiA j)])−2πnp〈θ ,µ〉

∣∣∣∣∣≤ 2π p

∣∣∣∣∣ n

∑
j=1
〈θ ,A j〉−n〈θ ,µ〉

∣∣∣∣∣+50p
n

∑
j=1

∣∣〈θ ,A j〉
∣∣3 .

The term on the LHS controls arg(D̂(θ)) and the two terms on the RHS can be bounded
with (concentration) and (norm concentration) respectively. We then prove:

Lemma 16. With probability 1− e−Ω(n) over A, for all ‖θ‖ ≤ β

σ
√

n ,

|arg(D̂(θ))−2πnp〈θ ,µ〉| ≤ 4π pβ
√

m+
5000((m/κ)

3
2 +‖µ‖3/σ3)β 3 p√

n
.

Proof . Let f (x)= arg(p ·exp(2πi ·x)+(1− p)) and observe that f (x)= arctan
(

psin(2πx)
pcos(2πx)+(1−p)

)
.

A calculation shows f (0) = 0, f ′(0) = 2π p and f ′′(0) = 0. Hence, we set g(x) =
f (x)−2π px and, with a second-order Taylor approximation of f (x) around x = 0, we
see that for every x≥ 0 there is some x′ ∈ [0,x] such that

g(x) =
d3 f
dx3 (x

′)x′3.

Another calculation shows that, as long as p ≤ 0.1, we have d3 f
dx3 (x′) ≤ 50p and hence

|g(x)| ≤ 50|x|3 p. Now, note,

arg(E[exp(1 j∈S2πix)]) = arg(p · exp(2πi · x)+(1− p)) = f (x).

Now,

∣∣arg(D̂(θ))−2πnp〈θ ,µ〉
∣∣= ∣∣∣∣∣arg(

n

∏
j=1

E[exp(1 j∈S2πi〈θ ,A j〉)])−2πnp〈θ ,µ〉

∣∣∣∣∣
=

∣∣∣∣∣ n

∑
j=1

arg(exp(1 j∈S2πi〈θ ,A j〉))−2πnp〈θ ,µ〉

∣∣∣∣∣
=

∣∣∣∣∣ n

∑
j=1

f (〈θ ,A j〉)−2πnp〈θ ,µ〉

∣∣∣∣∣ ,
where we understand | · | as referring to distance on the circle. The Taylor approxima-
tion given above shows that, when ‖θ‖ ≤ β

σ
√

n , we can bound this distance (where now
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the bound will be expressed as a distance between real numbers),∣∣∣∣∣ n

∑
j=1

f (〈θ ,A j〉)−2πnp〈θ ,µ〉

∣∣∣∣∣≤ 2π p

∣∣∣∣∣ n

∑
j=1
〈θ ,A j〉−n〈θ ,µ〉

∣∣∣∣∣+50p
n

∑
j=1

∣∣〈θ ,A j〉
∣∣3

≤ 2π p

∣∣∣∣∣
〈

θ ,
n

∑
j=1

(A j−µ)

〉∣∣∣∣∣+50p‖θ‖3
n

∑
j=1
‖A j‖3

2

≤ 2π p‖θ‖

∥∥∥∥∥ n

∑
j=1

(A j−µ)

∥∥∥∥∥+50p‖θ‖3n
(

10σ
√

m/κ +‖µ‖
)3

≤ 4π pβ

√
mσ2

σ2 +
50(10σ

√
m/κ +‖µ‖)3β 3 p
σ3√n

= 4π pβ
√

m+
50
(

10
√

m/κ + ‖µ‖
σ

)3
β 3 p

√
n

,

where the third inequality follows from (norm concentration) and the penultimate in-
equality being a consequence of (concentration).

The following corollary is now immediate.

Corollary 2. With probability 1− e−Ω(n), for all ‖θ‖ ≤ β

σ
√

n ,

|arg(D̂(θ))−2πnp〈θ ,µ〉| ≤ 1
8

π.

Proof. Lemma 15 implies pβ ≤ 1
80
√

m , β 3 p
(
‖µ‖
σ

+1
)3
≤

√
n

50000 and, β 3 p(m/κ)
3
2 ≤

√
n

50000 . Thus,

4π pβ
√

m+
50
(

10
√

m/κ + ‖µ‖
σ

)3
β 3 p

√
n

≤ 1
8

π,

and the Corollary follows from Lemma 16.

Step III - bounding the integral from below, near the origin: Next, we prove that
the modulus of D̂ is bounded, near the origin.

Lemma 17. The following holds,∫
‖θ‖≤ β

σ
√

n

|D̂(θ)|dθ ≥
(

1
200π3nmp

)m
2 1

σm−1 (σ2 +‖µ‖2)
1
2
.

Proof . We have:

|D̂(θ)|=
n

∏
j=1
|E[exp(2πi〈θ ,A j〉)]|=

n

∏
j=1
|(1− p) ·1+ pexp(2πi〈θ ,A j〉)|

=
n

∏
j=1

√
(1− p+ pcos(2π〈θ ,A j〉))2 + p2 sin(2π〈θ ,A j〉)2

≥
n

∏
j=1

(1− p+ pcos(2π〈θ ,A j〉))≥ exp(−6π
2 p

n

∑
i=1
〈θ ,Ai〉2).
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Here the last inequality follows, as long as p≤ 0.01, from the elementary inequal-
ities,

cos(x)≥ 1− x2

ln(1− x)≥−3
2

x when |x| ≤ 1
2
.

Indeed, it’s enough to consider 〈θ ,A j〉 ∈ [−1,1], for which,

ln(1− p+ pcos(2π〈θ ,A j〉))≥ ln
(
1− p4π

2〈θ ,A j〉2
)
≥−6π

2 p〈θ ,A j〉2.

Hence, by applying the (matrix concentration) property to the obtained bound, we get,

|D̂(θ)| ≥ exp

(
−12π

2 p

(
n〈θ ,µ〉2 +

n

∑
i=1
〈θ ,Ai−µ〉2

))
≥ exp

(
−24π

2np
(
〈θ ,µ〉2 +σ

2
θθ

T
))

≥ exp
(
−24π

2
θ
(
µ
T

µ +σ
2Im
)

θ
Tnp

)
.

Let Y ∼N
(

0, 1
48π2np (µ

Tµ +σ2Im)
−1
)

, then,∫
‖θ‖≤ β

σ
√

n

|D̂(θ)|dθ ≥
∫
‖θ‖≤ β

σ
√

n

exp
(
−24π

2
θ
(
µ
T

µ +σ
2Im
)

θ
Tnp

)
dθ

=
1√

det(96π3np(µTµ +σ2Im))
Pr
(
‖Y‖ ≤ β

σ
√

n

)
=

1

(96π3np)
m
2 (‖µ‖2 +σ2)

1
2 σm−1

Pr
(
‖Y‖ ≤ β

σ
√

n

)
. (7)

By Chebyshev’s inequality,

Pr
(
‖Y‖ ≥ β

σ
√

n

)
≤ σ2n

β 2 Tr
(

1
48π2np

(µT
µ +σ

2Im)
−1
)
≤ m

48π2 pβ 2 ≤
1
2
,

where in the last inequality, we have used β = 1
80p
√

m and p≤ 1
m5 . The proof concludes

by plugging this estimate into (7).

To handle the integral in Theorem 5, we note that for small enough λ , as dictated
by Theorem 8, by Corollary 2,

|arg(D̂(θ)exp(2πi〈θ ,λ 〉))| ≤ |arg(D̂(θ))−2πnp〈θ ,µ〉|+|arg(exp(2πi〈θ ,λ− pnµ〉))| ≤ 1
4

π,

whenever ‖θ‖ ≤ β

σ
√

n (recall β = 1
80p
√

m ). For a complex number z, we have ℜ(z) =
cos(arg(z))|z|. Thus, the previous lemma implies,

Lemma 18. Let λ ∈ Rm with ‖λ − pnµ‖ ≤ σ p
√

mn. Then, for ‖θ‖ ≤ β

σ
√

n ,

ℜ
[
D̂(θ)exp(−2πi〈θ ,λ 〉)

]
≥ 0,

and

ℜ

[∫
‖θ‖≤ β

σ
√

n

D̂(θ)exp(−2πi〈θ ,λ 〉)dθ

]
≥ cos

(
π

4

)( 1
200π3nmp

)m
2 1

σm−1 (σ2 +‖µ‖2)
1
2
.
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Step IV - exponential decay of the Fourier spectrum: To show that the Fourier
spectrum decays rapidly we employ an ε-net argument over a very large box. As
mentioned above, the main difficulty comes from the fact that, a-priori, 〈θ ,D〉 can be
close to an integer, irregardless of of the value ‖θ‖. Our anti-concentration assumption
allows us to avoid this. Specifically Item 3 in Lemma 14 implies that for any given θ

in a dense enough net, we can expect many columns to satisfy that 〈θ ,Ai〉 is far from
any integer point. Formally, we prove:

Lemma 19. Assume that σ
√m

κ
+ ‖µ‖ ≤ e

κn
80 . Then, with probability 1− e−Ω(n), as

long as n is large enough, we have

|D̂(θ)| ≤ exp
(
− 1

80
κ

3n(1− p)pπ
2 min

(
1,‖θ‖2

∞σ
2)) ,

for
θ ∈ Ṽ ,

where V is the fundamental domain, as in (2), and

Ṽ :=
[
−e

κ3 pn
80m

1
4n2 ,e

κ3 pn
80m

1
4n2

]m

∩V.

Proof . Let N be an ε-net of Ṽ for ε = 1
2n2
(

σ
√

m/κ+‖µ‖
) . Standard arguments show

that, under the assumption σ
√m

κ
+‖µ‖≤ e

κn
80 , one can take |N| ≤

(
σ
√m

κ
+‖µ‖

)
e

κ
80 n≤

e
κ
40 n, when n is large enough. For θ ∈ N, define

ϕ(θ) =
κ

4
min(1,‖θ‖∞σ) and E(θ) = { j : d(〈θ ,A j〉,Z)≥ ϕ(θ)}.

If we fix θ and set Xi := 1i∈E(θ) then |E(θ)|=
n
∑

i=1
Xi. The statement of Item 3 in Lemma

14 is E [Xi|X1, . . . ,Xi−1]≥ κ

2 . Applying Azuma’s inequality (4), we get:

Pr
[
|E(θ)| ≤ κ

4
n
]
≤ exp

(
−κ

8
n
)
.

In this case, by the union bound,

P
(
∃θ ∈ N : |E(θ)| ≤ κ

4
n
)
≤ e−

κ

16 n.

If j ∈ E(θ), since ϕ(θ)≤ 1
4 , we have:

ES[|exp(1 j∈S ·2πi〈θ ,A j〉)|] =
√
(1− p+ pcos(2π〈θ ,A j〉))2 + p2 sin(2π〈θ ,A j〉)2

=
√

1+2p2−2p+2(1− p)pcos(2π〈θ ,A j〉)

≤
√

1+2p2−2p+2(1− p)pcos(2πϕ(θ))

≤
√

1−2(1− p)p(2πϕ(θ))2/5

≤ 1− (1− p)p(2πϕ(θ))2/5

≤ 1− 4
5
(1− p)pπ

2 κ2

16
min

(
1,‖θ‖2

∞σ
2) .
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Observe that
∣∣ES[exp(1 j∈S2πix)]

∣∣ = √(1− p+ pcos(2πx))2 + p2 sin(2πx)2 is 4π p-
Lipschitz in x, as long as p ≤ 1

4 . Take an arbitrary θ ∈ Ṽ and let θ ′ be the closest
point in N. Recall that max

i
‖Ai‖ ≤ 10σ

√m
κ
+ ‖µ‖, which follows from eq. (norm

concentration). So, by our choice of ε and with the Cauchy-Schwartz inequality,

|〈θ −θ
′,A j〉| ≤

1
2n2 .

Thus:

|D̂(θ)|=
n

∏
j=1

∣∣ES[exp(1 j∈S2πi〈θ ,A j〉)]
∣∣

≤ ∏
j∈E(θ ′)

(∣∣ES[exp(1 j∈S2πi〈θ ′,A j〉)]
∣∣+4π p|〈θ −θ

′,A j〉|
)

≤ ∏
j∈E(θ ′)

(
1− 4

5
(1− p)pπ

2 κ2

16
min

(
1,‖θ ′‖2

∞σ
2)+4π p|〈θ −θ

′,A j〉|
)

≤ exp

(
−4

5
(1− p)pπ

2 κ2

16
|E(θ ′)|min

(
1,‖θ ′‖2

∞σ
2)+4π p

n

∑
j=1
|〈θ −θ

′,A j〉|

)

≤ e
2π
n exp

(
−1

5
κ3

16
n(1− p)pπ

2 min
(
1,‖θ ′‖2

∞σ
2))

≤ e
2π
n exp

(
−1

5
κ3

16
n(1− p)pπ

2 min
(
1,(1− ε)2‖θ‖2

∞σ
2))

≤ exp
(
− 1

80
κ

3n(1− p)pπ
2 min

(
1,‖θ‖2

∞σ
2)) ,

where the last inequality holds for large enough n.

By properly integrating the inequality, we have thus obtained:

Lemma 20. The following inequality holds:

∫
B

|D̂(θ)|dθ ≤
(

1
pσ2nm20

)m
2
+ exp

(
−κ3 pn

80

)
,

where

B =

{
‖θ‖∞ < e

κ3 pn
80m

1
4n2

}
∩
{
‖θ‖ ≥ β

σ
√

n

}
.

Proof . From Lemma 19, when p < 0.1, and σ‖θ‖∞ ≤ σ‖θ‖ ≤
√

m, we have

|D(θ)| ≤ exp
(
−κ3 pnσ2‖θ‖2

10m

)
.
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Now, if Y ∼N (0, Im) and n≥ 100m6:∫
√

m≥‖θ‖≥ β

σ
√

n

|D(θ)|dθ ≤
∫

‖θ‖≥ β

σ
√

n

exp
(
−κ3 pnσ2‖θ‖2

10m

)
dθ

≤
(

5m
κ3 pnσ2

)m
2
P

(
‖Y‖ ≥ β

σ
√

n

√
κ3 pnσ2

5m

)

=

(
5m

κ3 pnσ2

)m
2
P
(
‖Y‖2 ≥ β

2 κ3 p
5m

)
=

(
5m

κ3 pnσ2

)m
2
P
(
‖Y‖2 ≥ κ3

802 pm2

)

where the last equality holds since β = 1
80p
√

m . By Lemma 2,

P
(
‖Y‖2 ≥ κ3

802 pm2

)
≤ exp

(
− κ3

3 ·802 pm2

)
.

Hence, ∫
√

m
4 ≥‖θ‖≥β/

√
n
|D(θ)|dθ ≤

5mexp
(
− κ3

3·802 pm3

)
κ3 pσ2n


m
2

.

Furthermore, for all θ ∈

[
− e

κ3 pn
80m

4n2 , e
κ3 pn
80m

4n2

]m

with ‖θ‖∞σ ≥ 1, Lemma 19 also implies,

|D(θ)| ≤ exp
(
−κ3 pn

40m

)
.

So: ∫
e

κ3 pn
80m
4n2 ≥‖θ‖∞≥

1
4

|D(θ)|dθ ≤ exp
(

κ3 pn
80m

)m

· exp
(
−κ3 pn

40

)
= exp

(
−κ3 pn

80

)
.

Summing the previous two inequalities yields the result.
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Proving Theorem 8: If the support of D is contained in Zm, then Lemma 18 and
Lemma 20 are enough to prove the discrete case in Theorem 8.

Proof of Theorem 8 when domain(D) = Zm. We begin by noting that the assumption

on
(

1+ ‖µ‖
2

σ2

) 1
m

ensures,

κ3 exp
(

κ3

3·802 pm3

)
5m

≥ 500π
3m
(

1+
‖µ‖2

σ2

) 1
m

(8)

Let B be defined as in Lemma 20. Then, for n large enough, by plugging (8) into
Lemma 20 we get,

∫
B

|D(θ)|dθ ≤ 0.2

 1

200π3nmpσ2
(

1+ ‖µ‖
2

σ2

) 1
m


m
2

. (9)

Moreover, by Lemma 18,

ℜ

[∫
‖θ‖≤ β

σ
√

n

D̂(θ)exp(−2πi〈θ ,λ 〉)dθ

]
≥ cos

(
π

4

)( 1
200π3nmp

)m
2 1

σm−1 (σ2 +‖µ‖2)
1
2

= cos
(

π

4

) 1

200π3nmpσ2
(

1+ ‖µ‖
2

σ2

) 1
m


m
2

(10)

So,

Pr[D = λ ] = ℜ

[∫
θ∈[− 1

2 ,
1
2 ]

m
D̂(θ)exp(−2πi〈θ ,λ 〉)dθ

]
≥ℜ

[∫
‖θ‖≤ β

σ
√

n

D̂(θ)exp(−2πi〈θ ,λ 〉)dθ

]
−
∫

θ∈[− 1
2 ,

1
2 ]

m∩B
|D̂(θ)|dθ

≥ 1
2

 1

200π3nmpσ2
(

1+ ‖µ‖
2

σ2

) 1
m


m
2

.

Finally, using the multiplicative Chernoff bound we can see that:

Pr[|S| /∈ [0.5pn,1.5pn]] = Pr
[
||S|−E[|S|]| ≥ 1

2
E[|S|]]

]
≤ 2exp(−pn/12).

Since n ≥ poly(m), for large enough n we have Pr[D = λ ] > 2exp(−pn/12), which
implies the existence of a suitable S with |S| ∈ [0.5pn,1.5pn] and A1S = λ .

The proof of the continuous case requires an extra step to control the Fourier trans-
form outside the domain of Lemma 20. To deal with continuous distributions, we
define R∼N (0,γIm) for γ to be determined later and H = D+R. If fH is the density
of H, we will show that, for appropriate λ , fH(λ ) is positive, from which it will follow
that with high probability there exists a suitable set S such that ‖A1S−λ‖ is small.
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Proof of Theorem 8 when domain(D) = Rm. The main difference from the discrete case
is that now, by the multiplication-convolution theorem (Theorem 6), we have Ĥ(θ) =

D̂(θ) · R̂(θ) = e−
‖θ‖2γ

2 D̂(θ). So, if θ0 := exp
(

κ3 pn
80m

)
1
n2 , the estimates in (9) and (10)

imply,

ℜ

 ∫
[−θ0,θ0]m

Ĥ(θ)exp(−2πi〈θ ,λ 〉)dθ


≥ e−

β2γ

σ2n ℜ

[∫
‖θ‖≤ β

σ
√

n

D̂(θ)exp(−2πi〈θ ,λ 〉)dθ

]
−
∫

B
|D̂(θ)|dθ

≥ 1
4

 1

200π3nmpσ2
(

1+ ‖µ‖
2

σ2

) 1
m


m
2

,

where the last inequality holds as long as n is large enough and supposing γ < 1. Thus,
to complete the proof it is enough to choose γ such that,

∫
‖θ‖∞≥θ0

|Ĥ(θ)|dθ ≤ 1
8

 1

200π3nmpσ2
(

1+ ‖µ‖
2

σ2

) 1
m


m
2

. (11)

Towards finding an appropriate γ , let Y stand for the standard Gaussian in Rm, and
compute, ∫

‖θ‖∞≥θ0

|Ĥ(θ)|dθ ≤
∫

‖θ‖≥θ0

e
−γ‖θ‖2

2 dθ

=

(
2π

γ

)m
2

Pr
(
‖Y‖2 ≥ γθ

2
0
)

≤
(

2π

γ

)m
2

e−
γθ2

0
3 ,

where the last inequality is Lemma 2. Let us choose now

γ = exp
(
−κ

3 pn
40m

)
n3 =

n
θ 2

0
,

for which (11) holds, as long as n is large enough. Also, γ < 1 as required earlier and
γθ 2

0 ≥ 7m, as required by Lemma 2. If fH(λ ) is the density of H at λ , Theorem 5 along
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with (11) give,

fH(λ ) = ℜ

∫
Rm

Ĥ(θ)exp(−2πi〈θ ,λ 〉)dθ


≥ℜ

 ∫
‖θ‖∞≤θ0

Ĥ(θ)exp(−2πi〈θ ,λ 〉)dθ

− ∫
‖θ‖∞>θ0

|Ĥ(θ)|dθ

≥ 1
8

 1

200π3nmpσ2
(

1+ ‖µ‖
2

σ2

) 1
m


m
2

> 0.

Now, recall that H = D+R, where R ∼N (0,γIm). So, when n is large, by applying
Lemma 2 again,

Pr(‖R‖ ≥
√

γn)≤ e−
n
3 ≤ 1

2
fH(λ ).

We conclude that with probability 1− e−Ω(n) over A, there exists some T ⊂ [n] and
some v ∈ Rm, with ‖v‖ ≤ exp

(
−κ3 pn

40m

)
n4, such that

A1T − v = λ ,

Or, in other words, ‖A1T −λ‖ = ‖v‖ ≤ exp
(
− κ3 pn

40m2

)
n4. Finally, we finish, as in the

proof of the discrete case, with the multiplicative Chernoff bound:

Pr[|S| /∈ [0.5pn,1.5pn]] = Pr
[
||S|−E[|S|]| ≥ 1

2
E[|S|]]

]
≤ 2exp(−pn/12).

Assume m6 = O(n). So, for large enough n we have Pr[D = λ ] > 2exp(−pn/12),
which implies the existence of a suitable S with |S| ∈ [0.5pn,1.5pn] and A1S = λ .
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4 Integrality Gap Bounds

4.1 Linear Programs and their Duals
We begin with the basic linear programs relevant to this work. We will examine the
integrality gap with respect to primal LP defined as follows:

valLP(A,b,c) := max
x

valc(x) = cTx

s.t. Ax≤ b,x ∈ [0,1]n, (Primal LP)

This LP has the corresponding dual linear program, which we can express in the fol-
lowing convenient form:

val∗LP(A,b,c) := min
u

val∗b(u) = bTu+
∥∥∥(c−ATu

)+∥∥∥
1

s.t. u≥ 0. (Dual LP)

By strong duality, assuming (Primal LP) is bounded and feasible, we have that valLP(A,b,c)=
val∗LP(A,b,c).

For any primal solution x and dual solution u to the above pair of programs, we will
make heavy use of the standard formula for the primal-dual gap:

val∗b(u)−valc(x) = bTu+
∥∥∥(c−ATu

)+∥∥∥
1
− cTx

= (b−Ax)Tu+
(
〈x,(ATu− c)+〉+ 〈1n− x,(c−ATu)+〉

)
.

(Gap Formula)

In the sequel, we will let x∗ denote the optimal solution to Primal LP and u∗ denote
the optimal solution to Dual LP. For all the LP distributions we work with, the objective
c is continuously distributed (either Gaussian or exponentially distributed), from which
it can be verified that conditioned on the feasibility of Primal LP (which depends only
on A and b) both x∗ and u∗ are uniquely defined almost surely. Moreover, if i ∈ [n], we
shall use A.,i to refer to the ith column of A and extend this definition to other matrices
as well.

Once the optimal solution is found for Primal LP, one can round its fractional
coordinates to an integral vector. While the rounded vector may not be a feasible
solution, we shall use the fact that, as long as the A.,i are sufficiently bounded, it cannot
be very far from a feasible solution.

Lemma 21 ([6, Lemma 7]). There exists x′ ∈ {0,1}n, such that,

‖A(x∗− x′)‖ ≤
√

m ·max
i∈[n]
‖A.,i‖.

For the optimal solution x∗, define,

N0 := {i ∈ [n]|x∗i = 0},and N1 := {i ∈ [n]|x∗i = 1}. (12)

Let W be the matrix with columns W·,i =
[
ci A·,i

]T. The distribution of the columns
of W with indices in N0 plays an important role in the proofs of Theorems 3 and 4. The
following lemma essentially says that conditioning on the set N0 and on the values of
the non-0-columns preserves the mutual independence of the 0-columns. The condi-
tional distribution of the the 0-columns is also identified. The reader is referred to [6,
Lemma 5] for the proof.
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Lemma 22. Let N ⊂ [n]. Conditional on N0 = N and on the values of sub-matrix
W·,[n]\N , x∗ and u∗ are almost surely well defined. Moreover, if i ∈ N, then W·,i is
independent from W·,N\{i} and the conditional law W·,i | i ∈ N is the same as W·,i |
u∗TA·,i− ci > 0.

4.2 The Gap Bound for Centered IPs
In this subsection we will prove Theorem 3. In the setting of Theorem 3, the objective
c ∈ Rm has independent standard Gaussian entries, and the m× n constraint matrix
A has independent columns which are distributed as either one of the following two
possibilities:

• (LI) Isotropic logconcave distributions with support bounded by O(
√

logn +√
m).

• (DSU) Vectors with independent entries, uniform on a discrete symmetric inter-
val of size k ≥ 3.

To simplify the notation in the discrete case, we divide the constraint matrix A
and the right hand side b by k (which clearly does not restrict generality). Thus, in
the discrete case (DSU), we will assume that entries of A are uniformly distributed
in {0,±1/k, . . . ,±1} and that the right hand side b ∈ Zm/k satisfies ‖b−‖2 ≤ O(n).
In this way, the discrete case is usefully viewed as a discrete approximation of the
continuous setting where the entries of A are uniformly distributed in [−1,1] (note that
the covariance matrix of each column here is Im/3, and thus essentially isotropic).

With the above setup, our goal is to show that IPGAP(A,b,c) = O( poly(m)(logn)2

n )

with probability 1−n−poly(m).

4.2.1 Properties of the Optimal Solutions

To obtain the gap bound, we will need to show |N0|=Ω(n) and that u∗, the optimal dual
solution, has small norm. This is given by the following lemma, which is a technical
adaptation of [6, Lemma 4].

Lemma 23. For A ∈ Rm×n, n ≥ 105m, distributed as (LI) or (DSU), c ∼ N (0, Im),
‖b−‖ ≤ n

12
√

2
with probability at least 1− e−Ω(n), we have ‖u∗‖ ≤ 32 and |N0| ≥ n

105 .

To prove this, we need two key lemmas. The first lemma will provide a good
approximation for the value of any dual solution.

Lemma 24. Let WT := (c,AT) where c ∼N (0, In) and A ∈ Rm×n is distributed as
(LI) or (DSU). Then, for n = Ω(m), we have that

Pr
[
∃v ∈ Sm : ‖(vTW )+‖1 /∈

[
n

12
,

3n
4

]]
≤ e−Ω(n).

Proof . Fix v ∈ Sm. We wish to understand Pr
[
‖(vTW )+‖1 /∈ [ n

8 ,
5n
8 ]
]
. Let i ∈ [n], we

first claim
1
6
≤ E

[
(vTW )+i

]
≤ 1

2
. (13)
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To see the right inequality, by Proposition 1, E
[
(vTW )+i

]
= 1

2 E
[
|vTW |+i

]
. Now ob-

serve that every entry has variance at most 1, so with Jensen’s inequality

E
[
(vTW )+i

]
=

1
2
E
[
|vTW |+i

]
≤ 1

2

√
Var(|vTW |+i )≤

1
2
.

For the left inequality, if the columns of W are isotropic log-concave (recall that the
standard Gaussian is also log-concave) Lemma 8 to get,

1
6
≤ 1

2
√

e
≤ 1

2
E
[
|vTW |+i

]
= E

[
(vTW )+i

]
.

If the columns of W are discrete, by Proposition 2 every entry satisfies, Var(Wi j)≥ 1
3 .

Hence, Var
(
(vTW )i

)
≥ 1

3 . Moreover, Proposition 2 also implies, E[W 4
ji] ≤ 3E[W 2

ji]
2.

So, by Khinchine’s inequality in Lemma 11,

1
6
≤
√

Var((vTW )i)

2
√

3
≤ 1

2
E
[
|vTW |+i

]
= E

[
(vTW )+i

]
.

Now, having established (13), we can bound Pr
[
‖(vTW )+‖1 /∈ [ n

8 ,
5n
8 ]
]
. In the log-

concave case, Lemma 10 immediately gives,

Pr
[
‖(vTW )+‖1 /∈ [

n
8
,

5n
8
]

]
≤ e−Ω(n).

In the discrete case, by Lemma 3, every entry of W is 1-sub-Gaussian, and Lemma 4
shows that (vTW )+i −E

[
(vTW )+i

]
-is
√

2-sub-Gaussian. After summing the coordi-
nates we get that ‖(vTW )+‖1−E

[
‖(vTW )+‖1

]
-is
√

2n-sub-Gaussian. Applying (6),
we can thus conclude a corresponding probability bound, as in the previous display.

We now turn to consider the entire sphere. Fix ε to be a small constant and let
Nε ⊂ Sm−1 be an ε-net. It is standard to show that one may take |Nε | ≤

( 3
ε

)m
. Hence,

by applying a union bound,

Pr
(
∃v ∈ Nε : ‖(vTW )+‖1 /∈

[
n
8
,

5n
8

])
≤
(

3
ε

)m

e−Ω(n) ≤ e−Ω(n),

where the last inequality holds when n = Ω(m).
Let us denote by E the event considered above and for u ∈ Sm−1 let ũ ∈ Nε , with

‖u− ũ‖2 ≤ ε . Under E, we have,

max
u∈Sm−1

‖(uTW )+‖1 ≤ min
v∈Nε

‖(vTW )+‖1 +‖((u− ũ)TW )+‖1

≤ 5
8

n+ ε max
u∈Sm−1

‖(uTW )+‖1,

which is equivalent to,

max
u∈Sm−1

‖(uTW )+‖1 ≤
5

8(1− ε)
n.

On the other hand,

min
u∈Sm−1

‖(uTW )+‖1 ≥ min
v∈Nε

‖(vTW )+‖1−‖((u− ũ)TW )−‖1

≥ n
8
− ε max

u∈Sm−1
‖(uTW )+‖1

≥ n
8
− ε

5
8(1− ε)

n.
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Choose now ε = 5
212 to conclude,

n
12
≤ min

u∈Sm−1
‖(uTW )+‖1 ≤ max

u∈Sm−1
‖(uTW )+‖1 ≤

3n
4
.

The second lemma will imply that any LP solution with large support must have
small objective value.

Lemma 25. Let c∼N (0, In). Then, for every α ∈ [0,2
√

log(2)],

Pr
[

max
x∈{0,1}n, ‖x‖1≥βn

cTx≥ αn
]
≤ e

−α2n
2 ,

where β ∈ [1/2,1] is such that H(β )≤ α2

4 , where H(p)=−p log p−(1− p) log(1− p),
p ∈ [0,1], is base e entropy.

Proof . For any x ∈ {0,1}n, cTx∼N (0,‖x‖2
2) and thus, by (6),

Pr
(
cTx≥ αn

)
≤ e
− α2n2

2‖x‖22 ≤ e−
α2n

2 .

We now apply a union bound,

Pr
(

max
x∈{0,1}n, ‖x‖1≥βn

cTx≥ αn
)
≤ |{x ∈ {0,1}n, ‖x‖1 ≥ βn}|e−

α2n
2 ≤ eH(β )ne−

α2n
2 ≤ e−

α2n
4 .

We now have the ingredients to prove the main lemma.

Proof of Lemma 23. For the proof, we will consider the extended matrix WT :=(c,AT).
We begin by showing that, for the optimal solution, cTx∗ is large. Let u≥ 0 be any dual
solution. Then, under the complement of the event defined in Lemma 24 for W , using
(Dual LP),

val∗b(u) = bTu+‖(c−ATu)+‖1 ≥−‖b−‖‖u‖+‖((1,−u)TW )+‖1

≥−‖b−‖‖u‖+
√

1+‖u‖2 n
12
≥ n

12

(
−‖u‖√

2
+
√

1+‖u‖2

)
≥ n

12
√

2
. (14)

The second inequality is the lower bound in Lemma 24 and the last inequality follows
since the function

√
1+ t2− t√

2
is minimized at t = 1. A lower bound on cTx∗ follows

by noting,
cTx∗ = valc(x∗) = val∗b(u∗).

We now prove that ‖u∗‖ cannot be too large. Again, under the complement of the
event in Lemma 24, but using the upper bound this time,

3n
4
≥ ‖((1,0)TW )+‖1 = ‖c+‖1 = val∗b(0)≥ val∗b(u∗)

≥ n
12

(
−‖u

∗‖√
2

+
√

1+‖u∗‖2

)
≥ n

12

(
1− 1√

2

)
‖u∗‖,
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where in the third inequality we have applied (14) to v∗. Thus, rearranging we get
‖u∗‖2≤ 9

√
2√

2−1
≤ 32. Finally, we show that the optimal solution has many 0 coordinates.

Since x∗ has at most m fractional coordinates,

|{i ∈ [n] | x∗i = 0}| ≥ n−m−|{i ∈ [n] | x∗i = 1}| .

Since, by assumption, n≥ 105m, to finish the proof it will suffice to show |{i ∈ [n] | x∗i = 1}|≤(
1− 2

105

)
n. Define x̄ by,

x̄i :=


x∗i if x∗i ∈ {0,1}
1 if x∗i /∈ {0,1} and ci ≥ 0
0 if x∗i /∈ {0,1} and ci < 0

.

Letting α = 1
12
√

2
and β = 1− 2

105 , a calculation reveals that H(β )≤ 1
4α2 . By (14), we

have
cTx̄≥ cTx∗ ≥ αn,

and by conditioning on the complement of the event in Lemma 25 with β and α as
above,

βn≥ |{i ∈ [n] | x̄i = 1}| ≥ |{i ∈ [n] | x∗i = 1}| .

The proof concludes by applying the union bound to the events in Lemmas 25 and
24.

4.2.2 Conditional Distribution of 0-columns of IP

Let B be a random variable with the same distribution as the columns of A. By
Lemma 13, B satisfies (anti-concentration) with constant κ ≤ 1. Define C :=

√
150‖u∗‖√

κ
.

We first show that the anti-concentration property is unaffected if we condition B on a
strip of width 2C.

Lemma 26. Let B′ have the law of B, conditioned on |u∗TB| ≤C. Then,

1. Pr[|u∗TB| ≤C]≥ 1− κ

150 .

2. We have 1
10 Im 4 Cov(B′)4 2Im.

3. If B is (DSU), then B′ is symmetric and anti-concentrated with parameter κ/2.

4. If B is (LI), B′ is logconcave.

Proof. Let E = {a ∈Rm : |u∗Ta| ≤C}. From Chebyshev’s inequality, and since distri-
butions we consider satisfy Cov(B)� Im,

Pr(B ∈ E)≥ 1−
E
[
(u∗TB)2

]
C2 ≥ 1− ‖u

∗‖2

C2 ≥ 1− κ

150
,

which is the first claim.
If w ∈ Rm, then

E
[
|wTB′|2

]
=

E
[
|wTB|21E

]
Pr(B ∈ E)

≤ 2E
[
|wTB′|2

]
≤ 2‖w‖2.
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In the (DSU) case, to lower bound Cov(B′), we note that by Proposition 2, E[W 4
ji] ≤

3E[W 2
ji]

2. As a consequence, Lemma 11 implies
√

E[|wTB|4]≤
√

3E[|wTB|2]. By the

Cauchy-Schwarz inequality, E[|wTB ·1B/∈E |2]≤
√

E[|wTB|4] ·E[14
B/∈E ]≤

√
3Pr[B /∈ E]E[|wTB|2]≤√

κ

50‖w‖
2. By Proposition 2 we have E[|wTB|2]≥ 1

3‖w‖
2. So:

E[|wTB′|2] = E[|wTB|2]−E[|wTB|2 ·1B/∈E ]

Pr[B ∈ E]
≥

1
3‖w‖

2−
√

κ

50‖w‖
2·

1− κ

50
≥ 1

10
‖w‖2,

proving the second claim for the (DSU) case.
In the (LI) case, 〈w,B〉 is logconcave. By Lemma 5, f〈B,v〉 ≤ 1√

Var〈B,v〉
= 1. So,

f〈v,B′〉 ≤ 1
1−1/150 f〈B,v〉 =

150
149 . Now, Lemma 1 implies that Var(〈B′′,v〉)≥ 1

13 .
Now, if B is (DSU), it is symmetric, and because conditioning on a symmetric

set preserves symmetry, so is B′. Consequently, in this case, E[B′] = 0. Now set
σ ′ :=

√
‖Cov(B′)‖op ≤

√
2. For the third claim, let I(θ) = {a ∈ Rm : d(θTa,Z) ≥

κ

2 min(1,σ ′‖θ‖∞)}. Choose an arbitrary ν ∈ Rn. By the symmetry of B′ we have:

Pr
[
B′ ∈ I(θ) | 〈B,ν〉 ≤ 0

]
=

Pr [B ∈ I(θ)∩E | 〈B,ν〉 ≤ 0]
Pr[B ∈ E | 〈B,ν〉 ≤ 0]

≥ Pr [B ∈ I(θ) | 〈B,ν〉 ≤ 0]−2Pr [B /∈ E]≥ κ

2
.

The last inequality follows from (anti-concentration),

Pr [B ∈ I(θ) | 〈B,ν〉 ≤ 0]≥ Pr
[
d(θTB,Z)≥ κ

2
min

(
1,σ ′‖θ‖∞

)
| 〈B,ν〉 ≤ 0

]
≥ κ.

This shows anti-concentration when B is (DSU).
If B is (LI), then so is B′ because it is a restriction to a convex set, proving the last

claim.

In the proof of Theorem 3, we work with the columns of A that have negative
reduced cost. We show that we can convert their distribution into the distribution of B′,
by using rejection sampling.

Lemma 27. We can apply rejection sampling to (ci,A·,i)T|u∗A·,i−ci ≥ 0, such that we
have Law(A·,i|acceptance) = Law(B′) and for all accepted entries u∗A·,i− ci ∈ [0,δ ]
with the probability of acceptance at least Ω(δ ), when δ = O(1) and κ = Ω(1).

Proof . Let M = δ exp(− 1
2 (C + δ )2). Let N ∼N (0,1) be an independent variable.

We sample for B = A·,i by accepting with probability:

Pr[acceptance|B,ci] =

{
M

Pr[u∗TB−N∈[0,δ ]|u∗TB−N≥0] if |u∗TB| ≤C∧u∗TB− ci ∈ [0,δ ]

0 else

If |u∗TB| ≤C, then,

Pr[u∗TB−N ∈ [0,δ ] | u∗TB−N ≥ 0]≥ Pr[u∗TB−N ∈ [0,δ ]]≥ δ exp(−1
2
(C+δ )2).
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Thus, the acceptance probability is at most 1, which makes the sampling procedure
well-defined.

Now we will prove that Pr[acceptance] = Ω(1):

Pr[acceptance] =
∫

y∈Rm
Pr[u∗TB− ci ∈ [0,δ ]]Pr[acceptance|B = y,u∗Ty− ci ∈ [0,δ ]]dy

=
∫

y:|u∗Ty|≤C
fB(y)M

Pr[u∗Ty− ci ∈ [0,δ ]]
Pr[u∗Ty−N ∈ [0,δ ]]

dy

= M Pr[|u∗TB| ≤C]≥ 1
2

M ≥ δ exp(−2C2).

For the last inequality we assumed that δ ≤C. Since C =
√

2‖u∗‖√
κ

, by Lemma 23 and

the fact that κ = Ω(1), we get, Pr[acceptance]≥ δ exp
(
− 212

κ

)
= Ω(δ ).

Let B̄ := B|acceptance. Now, for all y with |u∗TB| ≤C:

fB̄(y) =
Pr[acceptance|B = y,u∗Ty− ci ∈ [0,δ ]] · fB(y) ·Pr[u∗Ty− ci ∈ [0,δ ]|u∗Ty− ci ≥ 0]

Pr[acceptance]

=
fB(y)M

Pr[acceptance]

For all other y, we have fB̄(y) = 0. Hence, fB̄ ∝ fB′ and therefore Law(B̄) = Law(B′).
Note that while our notation here assumes that B, B′ and B̄ have continuous distribu-
tions, the same argument holds for discrete distributions.

When the columns of A are continuously distributed, we have to be more careful,
because the distribution that we obtain from rejection sampling is not necessarily sym-
metric. As a result, B will not necessarily be mean-zero. We apply another step of
rejection sampling to handle this case.

Lemma 28. If B′ is logconcave, then using rejection sampling on B′ with acceptance
probability at least Ω(1), we can get a distribution B′′ such that:

1. E[B′′] = 0.

2. Cov(B′′)< 1
768 Im.

3. The law of B′′ is an admissible distribution, in the sense of Definition 1.

4. B′′ satisfies (anti-concentration) with an Ω(1) constant.

Proof . Let µ ′ := E[B′]. By Hölder’s inequality, we have any unit vector v ∈ Rm,

E
[
〈B′,v〉

]
=

E[〈B,v〉 ·1|u∗TB|≤C]

Pr[|u∗TB| ≤C]
=−

E[〈B,v〉 ·1|u∗TB|>C]

Pr[|u∗TB| ≤C]
≤
√
E[〈B,v〉2]

√
Pr[|〈B,u∗〉|>C]

Pr[|u∗TB| ≤C]

≤

√
1

150

1−1/150
≤ 1

12

where the second equality follows since B is isotropic and from

E[〈B,v〉 ·1|u∗TB|≤C]+E[〈B,v〉 ·1|u∗TB|>C] = E[〈B,v〉] = 0.
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Recall C ≥
√

150‖u∗‖. Hence, the concentration bound in [17, Lemma 5.7], coupled
with the fact that B is isotropic, gives,

√
E[〈B,v〉2]

√
Pr[|〈B,u∗〉|>C]

Pr[|u∗TB| ≤C]
≤

√
Pr
[
|〈B, u∗

‖u∗‖ 〉|>
√

150
]

Pr[|u∗TB| ≤C]
≤ 2e−5 ≤ 1

12
.

So,

‖µ ′‖= sup
v∈Rm,‖v‖=1

E
[
〈B′,b〉

]
≤ 1

12
.

Define a convex subset of Rm by

M :=
{
E[ f (B′)B′]

1/4
: f ∈ L∞(Rm,R), 0≤ f (x)≤ 1 for every x ∈ Rm and E[ f (B′)] =

1
4

}
,

and consider an arbitrary halfspace H that contains −µ ′. By Lemma 6 we have,

Pr[B′ ∈ H]≥ Pr[B ∈ H]−Pr[|u∗TB|>C]≥ 1
e
− 1

12
− 1

150
=

1
4
.

Therefore, there exists S⊆H with Pr[B′ ∈ S] = 1
4 . Then, E[1S(B′)] = 1

4 and, E[B′ | B′ ∈
S] = E[ 1S(B′)B′

1/4 ] ∈M, which implies that M∩H 6= /0. Because this holds for any H with
−µ ′ ∈ H, by the convexity of M we have −µ ′ ∈ M. Indeed, suppose not, then there
is a hyperplane passing at −µ ′ which separates it from M, which cannot happen. We
conclude that there exists f : Rm→ R, with ‖ f‖∞ ≤ 1, such that E[ f (B′)B′]

1/4 =−µ ′. Let

g(x) = f (x)+4
5 .

We will perform rejection sampling with Pr[acceptance|B′] = g(B′). Note that,
since 0≤ f (B′)≤ 1, this probability is well defined. Call the resulting distribution B′′.

The probability of acceptance is E[g(B′)] =
1
4+4

5 ≥ 1
2 . We have E[B′′] = E[g(B′)B′]

E[g(B′)] =
E[ f (B′)B′]+4E[B′]

5E[g(B′)] = −4µ ′+4µ ′

5E[g(B′)] = 0, proving the first stated property.
For every halfspace H containing the origin, by the Grünbaum inequality, Pr[B ∈

H] ≥ 1
e . So Pr[B′ ∈ H] ≥ Pr[B ∈ H]−Pr[|u∗TB| > C] ≥ 1

e −
1

150 ≥
1
4 . Because fB′′ =

g· fB′
Pr[acceptance] ≥ g · fB′ ≥ 4

5 fB′ , we have Pr[B′′ ∈ H] ≥ 4
5 · Pr[B′ ∈ H] ≥ 1

5 ≥
1

4e2 . This
proves that B′′ has an admissible distribution.

For all unit vectors v ∈ Rm we have:

f〈v,B′′〉(x)≤
f〈v,B′〉(x)

Pr[acceptance]
≤ 2 f〈v,B′〉(x).

This implies Var(〈v,B′′〉)4 2Var(〈v,B′〉)4 2Im. Because Cov(B′)≥ 1
10 Im and the fact

that 〈B′,v〉 is logconcave, by Lemma 5, f〈B′,v〉 ≤ 1√
Var〈B′,v〉

≤ 4. Hence, f〈v,B′′〉 ≤

2 · f〈v,B′〉 ≤ 768. Now, Lemma 1 implies that Var(〈B′′,v〉) ≥ 1
768 . Hence 1

768 Im 4
Cov(B′) 4 2Im. Now by Lemma 34 anti-concentration holds with a constant parame-
ter.

4.2.3 Proof of Theorem 3

Proof of Theorem 3. Consider the optimal solutions x∗ and u∗ to respectively (Primal LP)
and (Dual LP). We condition on the event |N0| ≥ n/105 and ‖u∗‖2 ≤ 32, where N0 :=
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{i ∈ [n] : x∗i = 0}. By Lemma 23, this event occurs with probability at least 1− e−Ω(n).
Subject to this, we further condition on the exact values of x∗, u∗. We will show that
for every such conditioning, the integrality is gap is small with high probability over
the randomness of AN0 .

Set δ := poly(m) logn
n , where the polynomial factor is the same one as dictated by

Theorem 8. We now show that we can construct a large subset Z ⊆ N0, such that
the reduced costs of the variables indexed by Z are small and the columns A·,i, i ∈ Z,
are independent and satisfy the necessary conditions in order to apply Theorem 8 to
round x∗ to a near optimal solution. By Lemma 22, first note that (ci,A,̇i), i ∈ N0 are
independent and distributed according to u∗TA·,i− ci > 0.

By Lemma 27, using rejection sampling we can sample a set Z ⊆ N0, such that
Law(A·,i|i ∈ Z) = Law(B′), Pr[i ∈ Z|i ∈ N0] = Ω(δ ) and such that u∗TA·,i− ci ∈ [0,δ ]
for all i ∈ Z. If columns of A have a discrete symmetric distribution (DSU), then
E[B′] = 0. Moreover, by Lemma 26, the distribution of B′ is admissible (since it is
symmetric), as per Definition 1, and satisfies the (anti-concentration) property with
parameter κ =Ω(1). In the logconcave case, (LI), we apply a second round of rejection
sampling to Z, as described in Lemma 28, which achieves that the law of A·,i, i ∈ Z, is
that of B′′, which also admissible, anti-concentrated with parameter κ = Ω(1), and
satisfies E[B′′] = 0. Furthermore, this second step of rejection sampling only decreases
the probability that i ∈ Z by at most a constant factor.

In both cases, we see that E[Z]≥Ω(δ |N0|) = Ω(poly(m) logn). Thus, by the Cher-
noff bound (3), |Z| ≥Ω(poly(m) logn) with probability at 1−n−poly(m). We now con-
dition on the exact set Z ⊆ N0 subject to this size lower bound. Note that A·,i, i ∈ Z,
are independent admissible, anti-concentrated with parameter κ =Ω(1) and mean-zero
random vectors.

Set p = ε·κ4

1000m5 , where ε > 0 is chosen small enough to have κ3 exp
(

κ3

3·802 pm3

)
≥

50000m2. We consider the rounded vector x′, from Lemma 21, and define the target,
t := A(x∗− x′)−n4 exp(−pκ3|Z|/m)1m in (LI) setting and t := bkA(x∗− x′)c/k in the
(DSU) setting. We will now apply Theorem 8 to obtain a set T ⊆ Z such that ‖∑i∈T Ai−
t‖2 ≤ n4 exp(−κ3 p|Z|/m) in the (LI) setting or ∑i∈T Ai = t in the (DSU) setting. This
will help us both fix the slack introduced by the rounding as well as enforce that the
resulting solution to be feasible.

We now invoke Lemma 21, which coupled with |Z|p = Ω(poly(m) log(n)) and
the fact max

i∈[n]
‖A·,i‖ = O(

√
log(n)+

√
m), shows that, as long as the polynomial in the

degree of δ is large enough,

‖t‖ ≤ ‖A(x∗− x′)‖+m(n4 exp(−κ
3 p|Z|/m)+1)

≤ O(
√

m logn+m) = o(p
√
|Z|m).

Thus, for large n, Theorem 8 applies to the matrix A·,Z and t in the (LI) setting and
the matrix kA·,Z ,kt in the (DSU) setting. Thus, with probability 1− e−Ω(p|Z|) = 1−
n−poly(m) there exists a set T ⊆Z such that |T | ≤ 3

2 p|Z|, and ‖∑i∈T Ai−t‖≤ 32n4 exp(−κ3 p|Z|/m)
in the (LI) setting and ∑i∈T Ai = t in the (DSU) setting.

Now we let x′′ = x′+1T . We now show that

Ax′′ ≤ b and u∗T(b−Ax′′)≤ 1/poly(n). (15)

Firstly, in the (DSU) setting, we have

Ax′′ = Ax′+ bk(Ax∗−Ax′)c/k ≤ Ax∗ ≤ b,
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so x′′ is a feasible integer solution. Take j ∈ [m] such that u∗j > 0. By complementary
slackness we have that (Ax∗) j = b j ∈ Z/k. Since A ∈ Zm×n/k and x′ ∈ Zn, we have
that Ax′ ∈ Zm/k. In particular,

(Ax′′) j =(Ax′) j+bk(Ax∗−Ax′) jc/k=(Ax′) j+bk(b j−Ax′) jc/k=(Ax′) j+k(b j−Ax′) j/k= b j.

We conclude that u∗T(b−Ax′′) = 0 as needed.
In the (LI) setting, we first note that

‖Ax′′− (Ax∗−n4 exp(−κ
3 p|Z|/m)1m)‖= ‖∑

i∈T
Ai− t‖ ≤ n4 exp(−κ

3 p|Z|/m).

So, we must have Ax′′ ≤ Ax∗ ≤ b, and hence x′′ is a feasible. Furthermore, by comple-
mentary slackness

u∗T(b−Ax′′) = u∗T(Ax∗−Ax′′)≤ ‖u∗‖‖Ax∗−Ax′′‖ ≤ 32(‖Ax∗− t‖+‖t−Ax′′‖)
≤ 32(m+1)n4 exp(−κ

3 p|Z|/m)≤ 1/poly(n).

To conclude, we use x′′ to bound the integrality gap with the (Gap Formula) applied
to x′′ and u∗:

IPGAP(A,b,c) = u∗T(b−Ax′′)+

(
n

∑
i=1

x′′i (A
Tu∗− c)+i +(1− x′′i )(c−ATu∗)+i

)
= u∗T(b−Ax′′)+ ∑

i∈T
(ATu∗− c)i (by complementary slackness)

≤ 1/poly(n)+ |T | ·δ (by (15) and T ⊆ Z)

≤ O
(

poly(m) log(n)2

n

)
.

4.3 The Gap Bound for Packing IPs
In this section we will prove Theorem 4. Here, the objective c ∈ Rm has independent
entries that are exponentially distributed with parameter λ = 1. The m× n constraint
matrix A has independent columns which are distributed with (DU) independent entries
which are uniform on the interval {1, . . . ,k}, k ≥ 3.

As in the centered case, we divide the constraint matrix A and the right hand side
b by k. So, we will assume that the entries of A are uniformly distributed in { 1

k , . . . ,1}
and that the right hand side b lies in ((nβ ,n(1/2−β ))∩ Z

k )
m. This way, we can see

this setting as a discrete approximation of the continuous setting where the entries of A
are uniformly distributed in [0,1], like in [3].

We want to show IPGAP(A,b,c)≤ exp(O(1/β ))poly(m)(logn)2

n with probability at least
1− n−poly(m). We will do this by first solving a slightly modified version of the LP-
relaxation. We choose a b′< b. Now we let x∗ be the minimizer of (Primal LP), where b
is replaced by b′ and let u∗ be the optimal solution to the corresponding (Dual LP). We
round down the solution, setting x′i := bx∗i c. Note that ‖A(x∗−x′)‖≤∑i:x∗i ∈(0,1) ‖A·,i‖≤
m
√

m.
Similar to the proof of Theorem 3, our proof proceeds by flipping x′i to 1 for a

subset of indices for which x∗i = 0. By duality, these are columns with A·,i− ci ≥ 0. To
be able to apply Theorem 2, we convert the conditional distribution of the columns of
A back into their original distribution using rejection sampling:
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Lemma 29. Using rejection sampling on (ci,A·,i) | u∗TA·,i−ci ≥ 0, with an acceptance
probability of at least 2

3 δ exp(−‖u∗‖1) as long as δ ≤max( 1
k ,

1
m )‖u

∗‖1, we can make
sure that the accepted columns satisfy u∗TA·,i−ci ∈ [0,δ ] and that A·,i, conditioned on
acceptance, is distributed uniformly on { 1

k , . . . ,1}∩ [
1

3m ,1].

Proof . Let B=A·,i, set M = δ exp(−‖u∗‖1), and define the sampling procedure which
accepts with probability:

Pr[acceptance | B = y,ci = x] =

{
M

Prci [u
∗Ty−ci∈[0,δ ]|u∗Ty−ci≥0] if u∗Ty− x ∈ [0,δ ]∧ y ∈ [ 1

3m ,1]
m

0 else

For y ∈ { 1
k , . . . ,1}

m∧ [ 1
3m ,1] and δ ≤max( 1

k ,
1

3m )‖u
∗‖1, then u∗Ty−δ ≥ 0. Because ci

is exponentially distributed with parameter λ = 1, we have:

Prci [u
∗Ty− ci ∈ [0,δ ] | u∗Ty− ci ≥ 0] = Prci [ci ∈ [u∗Ty−δ ,u∗Ty] | ci ≤ u∗Ty]

≥ Prci [ci ∈ [u∗Ty−δ ,u∗Ty]]≥ δ exp(−u∗Ty)

≥ δ exp(−‖u∗‖1) = M.

Hence, the conditional acceptance probability always lies in [0,1], so the sampling
procedure is well defined.

Because, Pr[y ∈ [ 1
3m ,1]

m]≥ (1− 1
3m )

m ≥ 2
3 , we have:

Pr[acceptance] = EB,ci [Pr[acceptance | B,ci] | u∗TB− ci ≥ 0]

= EB

[
M Prci

[
u∗TB− ci ∈ [0,δ ] | u∗Ty− ci ≥ 0

]
1y∈[ 1

3m ,1]m

Prci [u∗TB− ci ∈ [0,δ ] | u∗Ty− ci ≥ 0]

]

= M ·Pr[y ∈ [
1

3m
,1]m]≥ 2

3
M.

Call the law of B conditioned on acceptance B′. For y ∈ { 1
k , . . . ,1}

m∩ [ 1
3m ,1]

m with
u∗Ty− ci ∈ [0,δ ] we have:

Pr[B′ = y] =
Pr[B = y]Eci [Pr[acceptance | B = y,ci] | u∗T− ci ≥ 0]

Pr[acceptance]

=
Pr[B = y]M Pr[u∗Ty− ci ∈ [0,δ ] | u∗Ty− ci ≥ 0]

Pr[acceptance]Pr[u∗Ty− ci ∈ [0,δ ] | u∗Ty− ci ≥ 0]
= Pr[B = y | y ∈ [

1
3m

,1]m].

So the distribution of B′ is equal to that of B.

In the previous lemma, both the acceptance probability and the maximal size of
δ depend on ‖u∗‖1. To prevent this from affecting the proof, we will show that with
high probability Ω(β 4)≤ ‖u∗‖1 ≤O( 1

β
). Because our proof of Theorem 4 will rely on

flipping the columns for which x∗i = 0, we will also show that with high probability the
number of these columns is at least proportional to n.

Lemma 30. Consider the packing setting, with β ∈ (0,1/4) and b′ ∈ ((nβ/2,n(1/2−
β ))∩ 1

kZ)
m. Then, with probability at least 1− e−Ω(β 2n), we have Ω(β 4) ≤ ‖u∗‖1 ≤

O( 1
β
) and |N0| ≥Ω(β 4n).
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Proof . Note that the distribution of the ci’s is exponential and therefore logconcave
with E[ci] = 1. By Lemma 9 we now see that with probability 1− e−Ω(n), we have
3n≥ ∑

n
i=1 ci and consequently,

3n≥
n

∑
i=1

ci = cT1n ≥ valLP(x∗) = val∗(u∗)≥
m

∑
i=1

b′iu
∗
i ≥

n ·β
2
‖u∗‖1.

Hence, we have ‖u∗‖1 ≤ 6
β

, with high probability.

For the second claim, let H : (0, 1
2 ]→ (0,− log( 1

2 )] be defined with H(x)=−x logx−
(1− x) log(1− x). Set α := min( 1

2 β ,H−1( 1
8 β 2)). As H(x)≤ 2

√
x, we have H−1(x)≥

x2

4 and hence α ≥ 1
256 β 4. Let x∈{0,1}n and suppose that K := |{i : xi = 1}|≥ (1−α)n.

By first using b1≤ ( 1
2−β )n, and E[(Ax)1] =

K
2 , and then applying Hoeffding’s inequal-

ity we see,

Pr
[
(Ax)1 ≤ b′1

]
≤ Pr

[
(Ax)1 ≤

1−β

2
n
]
= Pr

[
(Ax)1−

1−α

2
n≤−β −α

2
n
]

≤ Pr
[
(Ax)1−

K
2
≤−β −α

2
n
]
= Pr

[
(Ax)1−E[(Ax)1]≤−

β −α

2
n
]

≤ exp
(
−(β −α)2n

)
≤ exp

(
−1

4
β

2n
)

.

Let S = {x ∈ {0,1}n : |{i : xi = 1}| ≥ (1− α)n}. Note that by Lemma 12, |S| ≤
∑
bαnc
i=0

(n
i

)
≤ exp(H(α)n). Taking the union bound over all x ∈ S, we see that

Pr[∃x ∈ S : (Ax)′1 ≤ b′1]≤ |S|exp(−1
4

β
2n)≤ exp(H(α)n− 1

4
β

2n)≤ exp(−1
8

β
2n).

So, with probability at least 1− e−Ω(β 2n) all feasible values x ∈ {0,1}n have |{i : xi =
0}| ≥ αn and in particular |N0| ≥ αn≥ 1

256 β 4n.
At the same time, observe that when i ∈ N0, we must have ci− u∗TA·,i ≤ 0, so in

particular ‖u∗‖1 ≥ ci. We have Pr[ci ≤ log( 1
1−α/2 )] ≤ 1− exp(− log( 1

1−α/2 )) =
1
2 α .

By the Chernoff bound (3) this implies that with probability at least 1− exp(−Ω(n))
we have |{i ∈ [n] : ci ≤ log( 1

1−α/2 )}| ≤
3
4 αn. If this event holds and at the same time

we have |N0| ≥ αn, then this implies ‖u∗‖1 ≥ log( 1
1−α/2 ) because otherwise N0 ⊆ {i ∈

[n] : ci ≤ log( 1
1−α/2 )}, contradicting the bounds on their size. So, we can conclude that

with high probability we have ‖u∗‖1 ≥ log( 1
1−α/2 )≥− log(1−2−8β 4)≥ 2−8β 4.

Proof of Theorem 4. Let r = d 106m12 log(n)
s2 e, where s is the constant given in Theorem 2.

Let µ =
k+d k

3m e
2k = E[U ], where U ∼ Uniform({ 1

k , . . . ,1}∩ [
1

3m ,1]). Now we define

γ =
sr

1000m5 µ and b′ = b− γ1. (16)

Let x∗ and u∗ be the optimal solutions of (Primal LP) and (Dual LP) where b is re-
placed by b′. We will assume that β 4

C1
≤ ‖u∗‖1 ≤ C1

β
and |N0| ≥ C2 · β 4 · n, for some

constants C1,C2. By Lemma 30 this happens probability 1− e−Ω(β 2n). Subject to this,
we condition on the exact values of x∗, u∗.
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Let δ := 3exp(C1/β )r
C2β 4n . Note that by our assumption that n ≥ poly(m)exp(Ω(1/β )),

we may assume that δ ≤ β 4/(C1m) ≤ ‖u
∗‖1

3m . Thus, by Lemma 29 we can sample a
set Z ⊆ N0 such that for Law(A·,i|i ∈ Z) = Uniform(({ 1

k , . . . ,1}∩ [
1

3m ,1])
m) and that

Pr[i ∈ Z|i ∈ N0] = exp(−‖u∗‖1). Noting that E[|Z|] = 2r, by Chernoff’s inequality (3),
with probability at least 1−n−poly(m), we have |Z| ≥ r. Now we restrict Z to its first s
elements, to get |Z|= r. Observe that E[A·,i|i ∈ Z] = µ1.

We consider the target vector t ∈ Rm, defined by:

ti :=

{
bi− (Ax′)i : u∗i > 0
bγc : otherwise

,

which satisfies (b−Ax′− t)Tu∗ = 0. Our next step will be to apply Theorem 2 on
kA·,Z ∈ Zm×r and kt ∈ Zm with parameter p = γ

µr =
s

100m5 , to get a set T ⊆ Z such that

∑i∈T Ai = t. Note that we have chosen γ and r to have p4 = ω(m3

r ).
To verify that t is indeed covered by Theorem 2, we first note that by Lemma 22 the

columns kA·,i for i∈Z are independent with entries uniformly distributed in {dk/me, . . . ,k}.
We now show that t is sufficiently close to the mean |Z|pµ:

‖t−|Z|pµ|‖= ‖t− γ1‖=
√

∑
j:u∗j>0

(b j− (Ax′) j)2 + |{ j : u∗j = 0}|(γ−bγc)2

≤
√

∑
j:u∗j>0

(A(x∗− x′) j)2 + |{ j : u∗j = 0}| ≤
√

∑
j:u∗j>0

‖x∗− x′‖2
1 + |{ j : u∗j = 0}|

≤ m1.5 ≤ s
1000m5

√
rm = p

√
|Z|m.

As a result, with probability 1− exp(−p|Z|) ≥ 1−n−poly(m) there exists a set T ⊆ Z,
such that ∑i∈T Ai = t.

Let x′′ = x′+1T . Noting that x′ was obtained from x∗, for i with u∗i = 0 we have

(Ax′′)i = (Ax′)i + ti ≤ b′i + γ = bi.

For, i with u∗i > 0 we have:

(Ax′′)i = (Ax′)i + ti = bi,

which means that x′′ is a feasible solution to the integer program.
Using (Gap Formula) for x′′ and u∗, we now get:

IPGAP(A,b,c) = valLP(A,b,c)−valIP(A,b,c)≤ val∗b(u
∗)−valc(x′′)

= bTu∗+
n

∑
i=1

(c−ATu∗)+i − cTx′′

= (b−Ax′′)Tu∗+

(
n

∑
i=1

x′′i (A
Tu∗− c)+i +(1− x′′i )(c−ATu∗)+i

)
= (b−Ax′− t)Tu∗+ ∑

i∈T
(ATu∗− c)i (by complementary slackness)

= ∑
i∈T

(ATu∗− c)i ( since (b−Ax′− t)Tu∗ = 0)

≤ δ |T | ≤ (exp(C1/β )poly(m) logn)2

n
. (by Lemma 29)
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5 The Size of the Branch-and-Bound Tree
In this section, we prove Corollary 1 in the discrete setting. This will follow by adapting
the proof of Theorem 1 from [2].

The first ingredient is the key theorem from [22, Theorem 3], which relates the
Branch-and-Bound tree size to the size of a certain knapsack.

Theorem 9. Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn. Then, the best bound first Branch-and-
Bound algorithm applied to Primal IP with data A,b,c produces a tree of size

2n · |{x ∈ {0,1}n :
n

∑
i=1

xi|(ATu∗− c)i| ≤ IPGAP(A,b,c)}|+1, (17)

where u∗ is an optimal solution to (Dual LP).

Given the above, we must show how to upper bound the size of the knapsack in (17)
in the setting of Corollary 1. Namely, when the entries of c ∈ Rn are either standard
Gaussian or exponential and the entries of A are discrete.

For this purpose, we will require the following bound on the size on random knap-
sack polytopes.

Lemma 31 ([2, Lemma 11]). Let ω1, . . . ,ωn ∈ R be independent continuous random
variables with maximum density at most 1. Then, for any G≥ 0, we have

E[|{x ∈ {0,1}n :
n

∑
i=1

xi|ωi| ≤ G}|]≤ e2
√

2nG.

To get a bound on (17), we will use the above lemma for G being an upper bound
on IPGAP(A,b,c), using a union bound over all dual solutions of suitably bounded
norm. In particular, we will require an upper bound on the norm of u∗. We note that
the proof of Theorem 1 in [2] did not require a bound on the norm of the dual solu-
tion. In the logconcave setting, one could get around needing such a bound by using
the anti-concentration properties of the columns of the objective extended constraint
matrix WT := (c,AT). In the present setting, we will only be able to rely on the anti-
concentration properties of the objective c.

In both the centered and packing case, the coefficients of c ∈ Rn are independent
and have maximum density at most 1. In particular, for any u ∈ Rm, the entries of
(ATu− c) are also independent and have maximum density 1. By applying an appro-
priate union bound (e.g., see the proof of [2, Lemma 16]), one can derive the following
bound over a family of knapsacks:

Lemma 32. Let c ∈Rn have independent coordinates with maximum density at most 1
and let A ∈ [−1,1]m×n have independent entries. Then, for any n≥m,R≥ 2,G≥ 1/n,
we have that

Pr[ max
‖u‖2≤R

|{x ∈ {0,1}n :
n

∑
i=1

xi|(ATu− c)i| ≤ G}| ≥ (nR)Θ(m)e2
√

2nG]≤ n−Ω(m).

Proof. Let K(u,G) := {x ∈ {0,1}n : ∑
n
i=1 xi|(AT u− c)i| ≤ G}. For i ∈ [n], let Ni be

an ε-net of {u ∈ Rm : ‖u‖2 ≤ R} for ε = 1
n3 . Note that we can choose N with |N| =

O(Rmn3m).
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Lemma 31 implies that for any u ∈ N′, E[|K(u,G)|] ≤ e2
√

2nG. So, by the Markov
bound, we see:

Pr[|K(u,G)| ≥ nm|N|e2
√

2nG]≤ 1
nm|N|

.

Taking the union bound over all u′ ∈ N, we see:

Pr[∃u′ ∈ N : |K(u,G)| ≥ nm|N|e2
√

2nG]≤ |N| 1
nm|N|

= n−m

Now suppose that the event is true. Then for each u with ‖u‖ ≤ R there will be a u′ ∈N
with ‖u−u′‖ ≤ ε . This implies that for all x ∈ K(u,G) we have:

n

∑
i=1

xi|(ATu′− c)i| ≤
n

∑
i=1

(
xi|(ATu− c)i|+ xi|(AT(u′−u))i|

)
≤

n

∑
i=1

xi|(ATu− c)i|+‖AT(u′−u)‖1

≤
n

∑
i=1

xi|(ATu− c)i|+
√

mnε ≤ G+
1
n
.

So:

Pr[∃u′ ∈ N : |K(u,G+
1
n
)| ≥ nm|N|e2

√
2nG]≤ n−m.

Setting G′ := G− 1
n , we see:

Pr[∃u′ ∈ N : |K(u,G′)| ≥ nm|N|e2
√

2nG′+2]≤ n−m.

This proves the lemma because nm|N|e2
√

2nG′+2 ≤ (nR)Θ(m)e2
√

2nG′ .

We now have all the required ingredients to prove the bound on Branch-and-Bound
trees in the discrete case.

Proof of Corollary 1. As in section 4, in both the discrete centered and packing case,
we divide the constraint matrix A by k. Thus, the entries of A are either uniform in
{0,±1/k,±2/k, . . . ,1} in the centered case or in {1/k,2/k, . . . ,1} in the packing case,
and hence all contained in [−1,1].

Let K = {x ∈ {0,1}n : ∑
n
i=1 xi|(ATu∗− c)i| ≤ IPGAP(A,b,c)}. By Theorem 9, to

bound the size of the Branch-and-Bound tree, it suffices to prove a high probability
upper bound on |K|.

In the centered case, by Theorem 3 we have that IPGAP(A,b,c) is at most G :=
poly(m)(logn)2/n with probability 1− n−poly(m), by Lemma 23 that ‖u∗‖ ≤ R := 32
with probability 1− e−Ω(n). Applying Lemma 32 with G,R together with the union
bound, we conclude that |K| ≤ npoly(m) with probability 1−n−Ω(m), as needed.

In the packing case, by Theorem 4 the integrality gap IPGAP(A,b,c) is upper
bound by G := exp(O(1/β ))poly(m)(logn)2/n with probability 1−n−poly(m), and by
Lemma 30 we have that ‖u∗‖2 ≤ ‖u∗‖1 ≤ R := O(1/β ) with probability 1− e−Ω(n).
Applying Lemma 32 with G,R together with the union bound, we conclude that |K| ≤
nexp(O(1/β ))poly(m) with probability 1−n−Ω(m), as needed.
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6 Anti-Concentration Results
Throughout this section we use the notation,

d(x,Z) := min
z∈Z
|x− z|.

Our goal in this section is to prove that Definition 2 is valid for a large family of
distributions and essentially prove Lemma 13.

Distributions with bounded densities: We begin with the following simple 1-dimensional
lemma.

Lemma 33. Let X be a random variable with E [X ] = µ and Var(X) = σ2. Suppose
that X has a density ρ , which satisfies,

ρ(x)≤ C
σ
,

for some C > 0. Then, for every ε > 0, then for δ = ε2

12C ,

Pr(d(X ,Z)≥ δ min(1,σ))≥ 1− ε.

Proof. By Chebyshev’s inequality Pr
(
|X−µ| ≥ 2

ε
σ
)
≤ ε2

4 . Define σ ′=min(1,σ) and
note that if Z+[−δσ ′,δσ ′] :=

⋂
z∈Z

[z−δσ ′,z+δσ ′], then, for any δ > 0,

Pr
(

X ∈
[

µ− 2
ε

σ ,µ +
2
ε

σ

]⋂(
Z+

[
−δσ

′,δσ
′]))≤ ∑

z∈Z,|z−µ|< 2
ε

σ

z+δσ ′∫
z−δσ ′

ρ(x)dx.

If σ ≥ 1, since ρ(x)≤ C
σ

,

∑
z∈Z,|z−µ|< 2

ε
σ

z+δ∫
z−δ

ρ(x)dx≤ 6
ε

σ ·2δ · C
σ
.

We now choose δ = ε2

12C , so the right hand side becomes smaller than ε

2 , and

Pr(d(X ,Z)≥ δ min(1,σ))

≥ Pr
(
|X−µ|< ε

2
σ

)
−Pr

(
X ∈ [µ−δ ,µ +δ ]

⋂
(Z+[−δ ,δ ])

)
≥ 1− ε2

4
− ε

2
> 1− ε.

If σ < 1, then σ ′ = σ and

∑
z∈Z,|z−µ|< 2

ε
σ

z+δσ∫
z−δσ

ρ(x)dx≤ 6
ε
·2δσ · C

σ
.

We then arrive at the same conclusion.

We now prove our anti-concentration result measures with an appropriate density
bound.
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Lemma 34. Let X be a random vector in Rm with Σ := Cov(X). For θ ∈ Rm let ρθ

stand for the density of 〈X ,θ〉. Assume that there is a constant C > 1, satisfying the
following three conditions:

• For every θ ∈ Rm, x ∈ R, ρθ (x)≤ C√
Var(〈X ,θ〉)

.

• For every ν ∈ Rm, Pr(〈ν ,X〉 ≤ 〈ν ,µ〉)≥ 1
C .

• ‖Σ‖op‖Σ−1‖op ≤C.

Then, for any θ ,ν ∈ Rm,

Pr
[

d(θTX ,Z)≥ 1
48C3 min(1,‖θ‖∞σ) | 〈ν ,X〉 ≤ 〈ν ,µ〉

]
≥ 1

2C
,

where σ := ‖Σ‖op. In other words, X satisfies (anti-concentration) with constant 1
48C3.5 .

Before proving the result, we just note that by Lemmas 6 and 5, Lemma 34 applies
to isotropic logconcave distributions and hence proves the first half of Lemma 13.

Proof. Let us denote η2 := Var(θTX) and observe

‖θ‖2

‖Σ−1‖op
≤ η

2 ≤ ‖θ‖2‖Σ‖op.

With this in mind, we will actually show the seemingly stronger result,

Pr
[
d(θTX ,Z)≥ κ

C
min(1,σ) | 〈ν ,X〉 ≤ 〈ν ,µ〉

]
≥ κ

C
.

However, since the class of measures considered by the lemma is preserved under
rotations this is an actual equivalent statement.

By assumption, η

σ‖θ‖ ≥
1√
C

, and if we choose ε = 1
2C in Lemma 33, then

Pr
[

d(θTX ,Z)≥ δ√
C

min(1,‖θ‖σ)

]
≥ 1− 1

2C
,

where δ = 1
48C3 To complete the proof, by assumption ν ,

Pr(〈ν ,X〉 ≤ 〈ν ,µ〉)≥ 1
C
.

Thus, with a union bound

Pr
[

d(θTX ,Z)≥ δ√
C

min(1,‖θ‖∞σ) | 〈ν ,X〉 ≤ 〈ν ,µ〉
]

=
Pr
[
d(θTX ,Z)≥ δ√

C
min(1,‖θ‖∞σ) and 〈ν ,X〉 ≤ 〈ν ,µ〉

]
Pr(〈ν ,X〉 ≤ 〈ν ,µ〉)

≥ Pr
[

d(θTX ,Z)≥ δ√
C

min(1,‖θ‖∞σ)

]
+Pr(〈ν ,X〉 ≤ 〈ν ,µ〉)−1

≥
(

1
2C

+1− 1
C

)
+

1
C
−1≥ 1

2C
.

42



Discrete distributions: We now prove anti-concentration results for discrete distri-
butions supported on Zm. Our first result pertains to random variables which are uni-
form on intervals of length at least 3.

Lemma 35. Let X = (X1, . . . ,Xm) be a random vector in Rm, such that {Xi}m
i=1 are

i.i.d. uniformly on {a,a+ 1, . . . ,a+ k}, for some a,k ∈ N, with k > 1. Set µ = E[X1]
and σ =

√
Var(X1). Then, for every θ ∈ [− 1

2 ,
1
2 ]

m, and every ν ∈ Rm,

Pr
(

d(θTX ,Z)≥ 1
10

min(‖θ‖∞σ ,1) | 〈ν ,X〉 ≤ 〈ν ,µ1〉
)
≥ 1

40
.

In other words, X satisfies (anti-concentration) with constant 1
40 .

Proof. Observe that, as X is symmetric around its mean,

Pr
(

d(θTX ,Z)≥ 1
10

min(‖θ‖∞σ ,1) | 〈ν ,X〉 ≤ 〈ν ,µ1〉
)

=
Pr
(
d(θTX ,Z)≥ 1

10 min(‖θ‖∞σ ,1) and 〈ν ,X〉 ≤ 〈ν ,µ1〉
)

Pr(〈ν ,X〉 ≤ 〈ν ,µ1〉)

≥ Pr
(

d(θTX ,Z)≥ 1
10

min(‖θ‖∞σ ,1) and 〈ν ,X〉 ≤ 〈ν ,µ1〉
)
,

With no loss of generality, let us assume |θm|= ‖θ‖∞ and consider the event,

E =

{
m−1

∑
i=1

νiXi ≤ µ

m−1

∑
i=1

νi and νmXm ≤ µνm

}
.

Clearly, E ⊂{〈ν ,X〉≤ 〈ν ,µ1〉}, and by symmetry and independence, Pr(E)≥ 1
4 . With

the previous display,

Pr
(

d(θTX ,Z)≥ 1
10

min(‖θ‖∞σ ,1) | 〈ν ,X〉 ≤ 〈ν ,µ〉
)

≥ Pr
(

d(θTX ,Z)≥ 1
10

min(‖θ‖∞σ ,1) , X ∈ E
)

=
1
4

Pr
(

d(θTX ,Z)≥ 1
10

min(‖θ‖∞σ ,1) | X ∈ E
)
.

Now, denote r :=
m−1
∑

i=1
θiXi, and rewrite,

d(θTX ,Z) = d(θmXm,(Z− r)).

We observe that under the conditioning on E, depending on sign(νm), θmXm is either
uniform on {θma,θm(a+ 1) . . .θmbµc}, or on {θmdµe . . .θm(a+ k)}. We are then in-
terested in the size of the set

F = {θm · x : d(θmx,(Z− r))≥ 1
10

min(θmσ ,1) and x ∈ support(Xm|E)}.

Since |θm| ≤ 1
2 , σ =

√
k2+2k

12 and |Support(Xm|E)| ≥ d k+1
2 e, it is not hard to see that,

as long as k ≥ 2,
|F |

|Support(Xm|E)|
≥ 1

10
. (18)
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This can be done by inspecting the trajectory aθm + {0,θm,2θm, ...,d k+1
2 eθm} mod 1

and noting that at most a 9
10 fraction of the set {0,θm,2θm, ...,d k+1

2 eθm} mod 1 can
occupy any interval of length 1

5 min(θmσ ,1).
Indeed, let I be such an interval. If σm > 1

5 min(θmσ ,1), then it cannot be the case
that for some j, both jθm,( j+1)θm ∈ I+Z. On the other hand, if θm ≤ 1

5 min(θmσ ,1),
then if, for some j, jθm ∈ I, necessarily, ( j+min(σ

5 ,
1

5θm
)θm /∈ I and (18) follows since

min(σ

5 ,
1

5θm
)≤ 4

5 k. Thus, by invoking the law of total probability on all possible values
of r,

Pr
(

d(θTX ,Z)≥ 1
10

min(θmσ ,1) | X ∈ E
)
≥ |F |
|Support(Xm|E)|

≥ 1
10

.
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[16] A Prékopa. “Logarithmic concave measures with application to stochastic pro-
gramming”. In: Acta Scientiarum Mathematicarum 32 (1971), pp. 301–316.

[17] L Lovász and S Vempala. “The geometry of logconcave functions and sampling
algorithms”. In: Random Structures & Algorithms 30.3 (2007), pp. 307–358.

[18] D Bertsimas and S Vempala. “Solving Convex Programs by Random Walks”. In:
Journal of the ACM 51.4 (July 2004), pp. 540–556. DOI: 10.1145/1008731.
1008733.

[19] M Fradelizi. “Hyperplane sections of convex bodies in isotropic position”. In:
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