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Abstract—Denial of Service (DoS) attacks and their distributed
variant (DDoS) are major digital threats in today’s cyberspace.
Defense mechanisms such as Intrusion Detection Systems aim at
finding these and other malicious activities in network traffic.
They predominantly use signature-based approaches to effectively
detect intrusions. Unfortunately, constructing a database with
signatures is very time-consuming and this approach can only
find previously seen variants. Machine learning algorithms are
known to be effective tools in detecting intrusions, but it has not
been studied if they are also able to detect unseen variants. In this
research, we study to what extent supervised learning algorithms
are able to detect novel variants of application layer (D)DoS
attacks. To be more precise, we focus on detecting HTTP attacks
targeting a web server. The contributions of this research are as
follows: we provide a procedure to create intrusion detection
datasets combining information from the transport, network,
and application layer to be directly used for machine learning
purposes. We show that specific (D)DoS variants are successfully
detected by binary classifiers learned to distinguish benign entries
from another (D)DoS attack. Despite this result, we demonstrate
that the performance of a classifier trained on detecting variant
A and tested on finding variant B is not necessarily similar to
its performance when trained on B and tested on A. At last, we
show that using more types of (D)DoS attacks in the training set
does not necessarily lead to a higher detection rate of unseen
variants. Thus, selecting the right combination of a machine
learning model with a (small) set of intrusions included in the
training data can result in a higher novel intrusion detection
rate.

Keywords—Machine learning; intrusion detection; anomaly de-
tection; closed-world assumption.

I. INTRODUCTION

In our increasingly digitized world, network security has
become more challenging as the Internet is used for virtually
all information operations, such as storage and retrieval. The
rat race between attackers and defenders is perpetual as new
tools and techniques are continuously developed to attack
web servers containing this information. Significant threat
types for these servers are Denial-of-Service (DoS) attacks
and their distributed variant (DDoS). Tremendous problems
for organizations and individuals arise when legitimate users
cannot access data due to these attacks. Modern (D)DoS

attacks are designed to mimic legitimate user behavior and
target vulnerabilities in application-layer protocols, such as
the Hypertext Transfer Protocol (HTTP). This mix makes
detecting them a challenging and complex task.

Defenders often use an Intrusion Detection System (IDS) to
perform the task of detecting intrusions. An IDS can be viewed
as the burglar alarm of the cybersecurity field [1]. It monitors
network traffic and aims to detect malicious activities. Gen-
erally speaking, the two mainly used methodology classes by
these systems are signature-based and anomaly-based [2]. A
signature-based detector compares observed network events
against patterns that correspond to known threats. In contrast,
anomaly-based detectors search for malicious traffic by con-
structing a notion of normal behavior and flags activities which
do not conform to this notion. Where signature-based is time-
consuming but effective, anomaly-based often suffers from a
high false-positive rate. Within anomaly detection methods,
Machine Learning (ML) algorithms are getting more attention
as they might overcome this problem.

The thought of using ML algorithms to detect intrusions
is not new. Various studies are performed on using ML
for detecting intrusions. Unfortunately, there is a striking
imbalance between the extensive amount of research on ML-
based anomaly detection techniques for intrusion detection
and the rather clear lack of operational deployments [3]. ML
algorithms are highly flexible and adaptive methods to find
patterns in big stacks of data [4], but they seemed better at this
task rather than discovering meaningful outliers [3]. Modern
(D)DoS attacks are often occurring in large quantities and thus
do not entirely conform to the premise that patterns cannot be
found for these outliers. Therefore, using ML for the task of
detecting these attacks should be appropriate.

There appear two issues when looking at anomaly-based
ML research in intrusion detection [5][6]. Firstly, the per-
formance of most of these methods is measured on outdated
datasets [7]. This makes it hard to estimate the performance
of these methods on modern network traffic. A major issue is
that the composition of benign and malicious traffic in these
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datasets does not represent modern real-time environments.
Also, there used to be a lack of representative publicly avail-
able intrusion detection datasets, but this lack was noticed by
the cyberdefense community and recently they have generated
more intrusion datasets [8]. Still, the available datasets are
often limited to features extracted from the transport and
network layer, but lack application layer features. Thus, not all
attainable features are extracted in these datasets. Secondly, it
is not examined how supervised learning methods perform in
detecting novel variants of known attacks. The performance of
these methods is measured in either a closed-world assump-
tion, training, and test classes are the same, or an open-world
assumption with unrelated attacks. However, it is not tested
how the methods perform in an open-world setting with novel
variants.

The aim of this paper is to study to what extent ML
models are accurately able to detect novel variants of known
cyberattacks. To be more precise, we use supervised binary
classifiers to learn from a dataset containing benign and a set
of (D)DoS attacks and we evaluate them on their ability to
detect unseen variants of these attacks. We examine how the
selected classifiers perform when using only a single (D)DoS
variant in the training dataset on this task. Afterward, we study
the effect of combining (D)DoS variants in the training phase
on the performance of classifiers detecting unseen variants.
Furthermore, we give a procedure to transform raw network
traffic data into ML usable datasets containing information
from the network, transport, and application layer. The code
of this procedure is publicly available [9].

The main contributions can be summarized as follows:
Firstly, we show that ML classifiers are to a great extent able
to detect known (D)DoS attacks in a closed world setting.
Secondly, we show that there are situations where these
classifiers are able to detect a novel variant when they are
trained to detect a different variant. This is however not a two-
way street: learning to detect attack A and being able to also
detect attack B does not imply that it is vice versa. Thirdly, we
show that training on imbalanced data has an adverse effect
on the evaluation performance of some ML classifiers. Finally,
we demonstrate that it is not necessary to use many (D)DoS
variants to detect a novel attack. Sometimes a few known
attacks can already lead to the highest detection rate.

The organization of this paper is as follows. Section II gives
a literature overview regarding detecting novel intrusions with
ML. Section III states which datasets are selected for this
research. Section IV describes how these datasets are modified
into ML applicable datasets and states metadata about them.
In addition, a set of ML models used for conducting the
experiments are given in this section. Section V outlines the
conducted experiments. Section VI shows the results of the
conducted experiments. Finally, we conclude and summarize
in Section VII.

II. RELATED WORK

Detection of novel attacks with supervised learning tech-
niques has been studied before in the context of Transfer

Learning (TL). TL is an ML paradigm where a model trained
on one task is used as a starting point for another task.
[10] introduces a feature-based TL approach to find novel
cyberattacks by mapping source and target dataset in an
optimized feature representation. This approach is however
very dependent on a similarity parameter and the dimensions
of the new feature space. Therefore, [11] extended this method
by proposing another approach to automatically find a rela-
tionship between the novel and known attacks. Both of these
approaches are tested on an outdated dataset and it does not
contain variants of a single cyberattack. In our research, we
are interested in the detection of novel variants rather than
novel variants. In [12], a Convolutional Neural Network is
used to detect novel attacks also in a TL setup, but it is not
studied if learning one specific attack affects the detection
of another novel variant. The experiments conducted in our
research resemble the experiments performed in [13]. In their
research, an intrusion detection method is introduced which
transfers knowledge between networks by combining unrelated
attacks to train on. More recent work focuses on applying
Deep Neural Networks in the context of TL for intrusion
detection tasks [14].

III. DATASETS

It is stated that a perfect intrusion detection dataset should
at least be up-to-date, correctly labeled, publicly available,
contain real network traffic with all kinds of attacks and
normal user behavior, and spans over a long time [8]. The
main reasons for a lack of appropriate datasets satisfying
these properties are privacy concerns regarding recording real-
world network traffic and labeling being very time-consuming.
However, researchers have been able to generate synthetic
or anonymized datasets which satisfy some of these ideal
properties. It is therefore recommended to test methodologies
on multiple datasets instead of only one [3]. In this research,
we focus on the detection of (D)DoS attacks and for that
reason have selected the CIC-IDS-2017 [15] and the CIC-
IDS-2018 [16] datasets created by the Canadian Institute for
Cybersecurity (CIC). These popular datasets fulfill properties
such as being correctly labeled, publicly available, up-to-date,
and containing (D)DoS variants.

IV. METHODOLOGY

We discuss the procedure to convert raw network traffic
into usable intrusion detection datasets containing information
from the network, transport, and application layer for ML
purposes. The converted and extracted features are described
in detail so it is clear which features are included. Furthermore,
we provide metadata describing the final datasets. At last, the
classification models and their set of considered hyperparam-
eters are given for detecting novel variants.

A. Feature Extraction

The selected datasets are provided by the CIC in two
formats: a set of raw network traffic (pcap) files and a set of
files containing extracted features by a network analysis tool
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called CICFlowMeter [17]. These features mainly describe
network and transport protocol activities, but there are no
features describing application activities. As this study focuses
on detecting application layer (D)DoS variants, it is desirable
to have a dataset also containing application layer features.
Therefore, we start with the raw internet traffic format and
have selected a feature extraction tool matching this require-
ment.

The feature extraction tool used in this study is the open-
source network traffic analyzer called Zeek (formerly Bro)
[18]. Zeek is a passive standalone IDS and derives an extensive
set of logs describing network activity. These logs include
an exhaustive record for all sessions seen on the wire, but
also application layer documentation. Zeek was also used as
a feature extraction tool for the creation of other popular
network intrusion detection datasets, e.g., DARPA98 [19] from
the Defense Advanced Research Projects Agency (DARPA)
and the UNSW-NB15 [20] from the University of New South
Wales (UNSW). It has a good track record in creating intrusion
detection datasets and therefore an appropriate tool.

Zeek generates by default a large set of log files, but not
all of them are required for this research. We limit ourselves
to the Transmission Control Protocol (TCP) entries given in
the connection logs (conn.log), describing network and
transport layer activity, and HTTP interactions given in HTTP
logs (http.log). These log files include entries showing
malicious (D)DoS activities. The entries in the connection
log files are transport-layer sessions, while the HTTP log file
consists of entry logs showing conversations between a client
and a web server. Entries between these logs are unilaterally
linked as each HTTP entry is assigned to a single connection
entry. Malicious activities that are not (D)DoS attacks are
excluded as we only focus on these attacks.

B. Feature Engineering

We describe how the extracted features are converted into
ML admissible features. This section states the additional cre-
ated features, which features are replaced for better extraction
of patterns, and how categorical features are smartly one-hot-
encoded. We start with describing the feature engineering steps
in the connection log file and afterward do the same for the
HTTP log file.

a) Connection log: Zeek counts the number of packets
and bytes transferred in each connection. Table I shows
additional created features from these counters. A higher
level statistic called the Producer-Consumer Ratio (PCR)
[21] shows the ratio between sending and receiving packets
between the hosts. In a TCP connection, an originator host is
an uploader if a PCR is close to 1.0 and purely a downloader
if it is close to -1.0.

The feature conn_state constructed by Zeek refers to
the state with which a TCP connection was ended. This
state is determined by registering flags exchanged during the
communication between hosts. Looking only at the end of
a connection implies that the establishment and termination
of the connection are merged. Preliminary results showed

TABLE I. NETWORK LAYER ENGINEERED FEATURES.

Feature Description Type

orig bpp orig bytes
orig packets Float

resp bpp resp bytes
resp packets Float

PCR orig bytes−resp bytes
orig bytes+resp bytes Float

that classifiers were more able to find patterns in (D)DoS
traffic when differentiating between the establishment of a
connection and the termination of it. On this note, we replaced
the conn_state feature with features describing both ends
of a connection. The 3-Way Handshake is the correct way
to establish a TCP connection before data is allowed to be
sent. This procedure is however not always correctly executed
and incorrect establishments can indicate misuse. Hosts can
terminate TCP connections gracefully, or not. A graceful
termination occurs when both hosts send a packet with a final
(FIN) flag. When a host sends a packet containing a reset
(RST) flag, it will abruptly end a TCP connection, which is
very common in practice. If neither is the case, connections
are in theory still open. In Table II, we distinguish different
establishment and termination scenarios by looking at the
exchanged flags between the hosts. Each of these scenarios is
included in the data as a binary feature. Other Zeek connection
log flags ([d, t, g, w]) are one-hot-encoded for both originator
and responder.

TABLE II. TCP CONNECTION ESTABLISHMENT AND TERMINATION
SCENARIOS.

Feature Description

S0 No SYN packet is observed
S1 Merely a connection attempt (SYN), but no reply
REJ1 A connection attempt but replied with a RST packet.
S2 A connection attempt followed by SYN-ACK, but no final ACK
REJ2O Scenario S2 but originator sends RST packet
REJ2R Scenario S2 but responder sends RST packet
S3 Connection is established according to the 3-way handshake
WEIRD A connection attempt but none of the above cases were observed

OPEN A connection was established, but no FIN or RST flag is observed
TERM Connection gracefully terminated by originator and receive
CLSO Originator sends a FIN flag but receiver did not respond
CLSR Receiver sends a FIN flag but originator did not respond
RSTO Originator abruptly ends connection by sending an RST flag
RSTR Receiver abruptly ends connection by sending an RST flag

b) HTTP log: Communication in this protocol starts with
a client sending a request message to a web server and this
server will, hopefully, reply with a response message. Both
message types consist of a start-line, zero or more header
fields, an empty line indicating the end of the header fields, and
possibly a message-body. The start-line of a request message,
called the request-line, contains three components: a method
(command), a path on which to apply this command, and an
HTTP version indicating the version a client wants to use.
Hosts must agree on the HTTP version to use before they
continue talking. If they did not agree on the HTTP version,
a “-1” is imputed to distinguish it from other versions.

The feature method, showing the command given in the
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request message, is a feature showing the one-word com-
mand given in the request-line. Common used commands
are {GET, HEAD, POST, PUT, DELETE, CONNECT, OP-
TIONS, TRACE, PATCH}, but other commands also exist.
This categorical feature is one-hot-encoded to one of those
common commands to limit the number of options. In case an
uncommon command is given, it will be assigned to a feature
called method_other, while if no command is given at all,
it is assigned to method_-.

A web server applies a method on the URI (Uniform
Resource Identifier) stated in a request line. This URI can
be parsed in different components by a library called urllib
[22]. Figure 1 gives an example of how this tool splits
a URL (Uniform Resource Locator) into four components.
We extracted descriptive statistics from each component by
counting the number of special characters (not letters or
digits), the number of characters, and the number of unique
characters. A typical URI constitutes three components: a
path, a query, and a fragment. Statistics are extracted for
each of those components. For example, one extracted feature
called URI_path_len describes the length of the path of a
URI. In addition, Zeek extracts host (only netloc) and the
referrer (all components) and these descriptive statistics
are also extracted for these features.

Figure 1. Example URL showing the four components parsed by urllib and
the component coverage of extracted features by Zeek.

Web servers process received request messages and reply
to them with a response message. In the status line of this
message is the agreed HTTP version stated and a response
code if the web server is able to process the request. The
response codes are grouped by their first digit. So, for example,
the error code 404 is assigned to the 4xx code. Furthermore, it
is registered what type of data ({application, audio, example,
font, image, model, text, video}) is sent by the web server
to the client or vice versa. This info is one-hot-encoded in a
similar manner as the method for both directions.

C. Final Dataset

The log files are merged into a single dataset after feature
engineering them. The resulting dataset consists of HTTP
interactions, while in contrast, the datasets provided by the
CIC consist of connection flows. Connection log features are
added to the HTTP entry features to combine application, net-
work, and transport layer features. This merge gives a dataset
with a total of 103 features. The CIC-IDS-2017 consists
of 524,698 instances and the CIC-IDS-2018 has 9,595,037
instances. Table III shows the distribution of the labels of the
entries. The benign/malicious ratio is approximately balanced
for both datasets. However, if we differentiate between (D)DoS
attacks, we observe that there is a clear imbalance between the

malicious classes. For example, the Hulk (HTTP Unbearable
Load King) attack generated a lot more HTTP entries in
comparison to a Slowloris or GoldenEye.

TABLE III. CLASS DISTRIBUTION OVER THE HTTP ENTRIES.

CIC-IDS-2017 CIC-IDS-2018

Class (D)DoS Amount Percentage Amount Percentage

Benign - 258,197 49.209% 6,252,950 65.169%
Botnet DDoS 736 00.140% 142,925 01.490%
GoldenEye DoS 7,908 01.507% 27,345 00.285%
HOIC DDoS 0 00.000% 1,074,379 11.197%
Hulk DoS 158,513 30.210% 1,803,160 18.793%
LOIC DDoS 95,683 18.236% 289,328 03.015%
SlowHTTPTest DoS 1,416 00.270% 0 00.000%
Slowloris DoS 2,245 00.428% 4,950 00.052%

D. Models

Four ML algorithms are selected for our classification
problem: Decision Tree (DT), Random Forest (RF), K-Nearest
Neighbors (KNN), and Gaussian Naive Bayes (GNB). A grid
search approach is performed to find the optimal hyperpa-
rameters for these algorithms. Table IV shows the considered
parameters for each model. The optimal set of parameters for
each model will be used on the test dataset by selecting the
highest F1 score achieved on a validation set. As there was
a limited amount of computational time, the hyperparameter
space of computationally expensive models like KNN is
smaller than simpler models like DT.

TABLE IV. HYPERPARAMETERS OPTIONS FOR THE SELECTED
CLASSIFIERS.

Model Scikit Parameter Options

GNB var smoothing 1e-200
DT criterion [Gini , Entropy]

splitter [Best, Random]
class weight [None, Balanced]
max features [Auto, None, Sqrt, log2]

RF criterion [Gini, Entropy]
class weight [None, Balanced]
max features Auto
n estimators [10, 50, 100, 250]

KNN n neighbors 5
algorithm [Ball Tree, KD Tree]

V. EXPERIMENTAL SETUP

In this section, we describe the experiments conducted in
this research. First, the three experiments to tackle the research
aim are described. Afterward, the evaluation metric to measure
the performance of an ML classifier is given.

A. Proposed approach

It is common practice in ML to split a dataset into two
non-overlapping sets: a training set and a test set. To get a
proper estimation of the performance of a classifier on the
task at hand, the train-test split should be performed multiple
times. In our experiments, we have performed multiple hold-
out-cross validation splits with each split an 80/20 split in
a random manner. Before splitting the data, all redundant
features (features with only 0 values) are removed as these
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features do not contain any new information. Each split is
performed in a stratified manner to maintain the class distri-
bution (Table III). In the training set, a validation set (20%) is
randomly selected to obtain the best hyperparameters for each
model. The classifiers are tested on these datasets in three
different experimental setups:

1) Detecting Known Attacks: Firstly, we study to what
extent the selected classifiers are able to detect known attacks
in a closed-world assumption. To test this, the training data
and the evaluation data will contain the same two classes:
Benign and one attack. For example, in one setup we train on
Benign against Hulk and test on the same two classes. This
gives insights into the upper bound to what extent our models
could achieve if we would have known about the attack.

2) Detecting Novel Variants: Secondly, we examine to what
degree classifiers are able to detect a novel variant when the
training dataset only contains benign traffic and one different
variant. For example, we train on Benign against Hulk entries
and evaluate the trained model on a test set containing Benign
and LOIC (Low Orbit Ion Cannon). The labels of the attacks
in the train and test set are both converted to a new label
named Malicious so that the task is still a binary classification
problem. This experiment shows how similar the training
attack is to the test attack.

3) Class Importance to Detect Novel Variants: Finally, we
study what we call class importance: does learning on a
combination of multiple attacks help identify novel variants.
We look at combinations of (D)DoS attacks in the training
set and test the trained model on detecting a novel attack. For
example, we train on Benign and a combination of attacks such
as LOIC and Hulk entries and test on a dataset containing
Benign and a different novel attack such as SlowHTTPTest.
To make this a binary classification problem, the attacks are
again mapped to the Malicious class. This experiment shows
if combining cyberattacks in the training set helps to detect
novel variants. Also, it can be tested if adding certain classes
in the training set impacts the detection of novel variants.

B. Evaluation Metrics

In our classification task, the positive class represents ma-
licious instances while the negative class represents benign
entries. The considered evaluation metric to test the selected
classifiers is the F1 score, which is the harmonic mean between
recall and precision. Recall shows the ratio intrusions the
classifiers were successfully able to detect, while precision
gives the ratio between the true positives and the number
of positively predicted instances. For (D)DoS attacks aiming
to exhaust a resource, it is better to have a low false alarm
rate than a high recall as it is not necessary to block all
malicious traffic. We simply want to prevent the resource from
being overloaded and prevent blocking legit HTTP requests.
This makes the task at hand different in contrast to detecting
intrusions in general as there the cost of a false negative
is higher. Still, optimizing only precision is not desirable.
Therefore, the F1 score is an appropriate middle ground as
it optimizes the harmonic mean of those metrics. When data

is imbalanced, this score is more suitable than accuracy as it
corrects for this imbalance.

VI. EXPERIMENTAL RESULTS

In this section, we show the results of the three experiments
performed in this research. First, we discuss the results of
a dataset with a closed-world assumption. Secondly, this
assumption is relaxed and we look at the performance of
models in detecting known and novel attacks. At last, we
discuss the results of classifiers trained on a set of attacks
to detect a novel attack. The results of the experiments are
gathered by testing the classifiers on 20 different train-test
sets for the CIC-IDS-2017 and 10 different for the CIC-IDS-
2018. Furthermore, as the CIC-IDS-2018 is very large and
there was limited computational time, a subset of the data
was used for parameter tuning. We have selected randomly
10% of the training data for hyperparameter search for the
DT and RF model for the CIC-IDS-2018. Randomly 1% was
selected for hyperparameter search of the KNN model and
the same percentage was randomly selected from the training
data to evaluate the model. For the CIC-IDS-2017, no subset
sampling was required.

A. Detecting Known Attacks

In this experiment, the classes included in the learning
dataset are the same as the test dataset. Table V shows the
average F1 scores if classifiers are tested on the task of
detecting known attacks. Each row in this table shows the
attack used in the training, as well as in the testing set. It can
be observed that in almost all scenarios the considered models
are able to learn the relevant characteristics of the considered
attacks. One exemption is the GNB model learning and testing
on the SlowHTTPTest attack. This model obtained a sufficient
recall (0.997), but an inferior score on its precision (0.154).
Even though the model is able to detect most malicious
instances, there are many false positives leading to a lower
precision.

TABLE V. F1 SCORES OF CLASSIFIERS DETECTING KNOWN INTRUSIONS.

CIC-IDS-2017 GNB DT RF KNN

Attack Mean Std Mean Std Mean Std Mean Std

Botnet 1.0000 0.0000 0.9971 0.0046 0.9998 0.0008 0.9909 0.0076
GoldenEye 0.9972 0.0010 0.9997 0.0002 1.0000 0.0000 0.9983 0.0006
Hulk 0.9990 0.0002 0.9999 0.0000 1.0000 0.0000 0.9999 0.0000
LOIC 0.9999 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
SlowHTTPTest 0.2339 0.2065 0.9955 0.0042 0.9956 0.0031 0.9874 0.0046
Slowloris 0.9013 0.0078 0.9976 0.0016 0.9969 0.0023 0.9929 0.0035

CIC-IDS-2018

Botnet 0.9998 0.0001 1.0000 0.0000 1.0000 0.0000 0.9974 0.0011
GoldenEye 0.9919 0.0006 0.9843 0.0010 0.9914 0.0004 0.9536 0.0051
HOIC 0.9964 0.0001 0.9964 0.0001 0.9964 0.0001 0.9961 0.0002
Hulk 0.9999 0.0000 1.0000 0.0000 1.0000 0.0000 0.9997 0.0000
LOIC - HTTP 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
Slowloris 0.9876 0.0018 0.9982 0.0012 0.9986 0.0007 0.9586 0.0054

B. Detecting Novel Attacks with One Attack Learned

Let us relax the closed-world assumption: What if our
trained algorithm sees a variant of the learned attack? Figure 2
shows the average F1 scores achieved by the classifiers in
this experiment. The diagonal of this matrix shows the F1

29Copyright (c) IARIA, 2022.     ISBN:  978-1-68558-017-9

IARIA Congress 2022 : The 2022 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications



scores of the closed-world assumption, also obtainable from
Table V, while numbers outside this diagonal are the scores of
detecting novel attacks. It can be observed in the open-world
setting that Botnet attacks are hard to detect in this setting,
neither can it easily be used to detect other variants. However,
there are situations where classifiers are able to detect novel
variants. This is, however, not symmetrical: learning attack A
and finding attack B does not mean it works also the other
way around.

Figure 2. Average F1 scores for the CIC-IDS-2017 dataset tested using 20
different train-test settings.

The same approach is applied to the CIC-IDS-2018 dataset.
Figure 3 shows the results of the same experimental setup
performed on the CIC-IDS-2018. Similar results are observ-
able on the diagonal: ML algorithms are indeed able to detect
attacks it has trained on. In these results, it is less apparent
that learning one (D)DoS attack leads to the model being able
to detect another attack. Only a few combinations of train and
test attacks are successful. For example, learning the HOIC
(High Orbit Ion Cannon) with the KNN model results in high
scores for testing on the LOIC and the Hulk. Results showed
that classifiers such as DT and RF were not able to learn
sufficiently from the training data as a striking class imbalance
between benign and the attack led to low performance. Still,
the same observation as in the CIC-IDS-2017 is apparent:
when training on attack A and being able to detect B, it does
not imply it works the other way around.

Figure 3. Average F1 scores for the CIC-IDS-2018 dataset tested using 10
different train-test settings.

C. Learning on a Set of Variants to Detect a Novel Variant

In our last experiment, we look at combining attacks in
the learning phase to detect a novel variant. The objective
here is to find a set of attacks leading to the highest novel
attack detection performance. Table VI shows the results of
the classifiers using a set of attacks to learn from on and the
corresponding combination of attacks that led to the highest
performance. Despite the fact that models can use more attacks
to detect a novel variant, it is not necessarily the case that this
yields the highest detection rate: even a few attacks are enough
to obtain the highest performance. It can be observed that for
the CIC-IDS-2017 the KNN model is dominantly getting the
highest average F1 scores, while for the CIC-IDS-2018 it is
the GNB model. In neither case does the RF model outperform
other models, as bold indicated performances show the highest,
which is unexpected as this model outperforms other models
in detecting known attacks. For the CIC-IDS-2017 dataset,
the Hulk attack is almost always used to obtain the highest
scores with the least number of attacks required. The strong
imbalance affects the learning process of the DT and the RF,
similar as in experiment 2. These models could have been
improved by downsampling benign entries so that the training
classes are balanced.
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TABLE VI. HIGHEST OBTAINED F1 SCORE FOR EACH MODEL BY
TRAINING THEM ON MULTIPLE INTRUSIONS TO DETECT A NOVEL ATTACK.

CIC-IDS-2017 DT GNB KNN RF Train Set Opt Model

Botnet 0.460 0.291 0.000 0.000 {Hulk, LOIC, Slowloris}
GoldenEye 0.664 0.476 0.821 0.782 {Hulk}
Hulk 0.870 0.986 0.997 0.833 {GoldenEye, LOIC}
LOIC 0.949 0.998 0.999 0.999 {Hulk}
SlowHTTPTest 0.240 0.181 0.399 0.100 {Hulk, Slowloris}
Slowloris 0.878 0.860 0.601 0.874 {Bot, Eye, Hulk, HTTP}

CIC-IDS-2018 DT GNB KNN RF Train Set Opt Model

Botnet 0.000 0.000 0.000 0.000 -
GoldenEye 0.290 0.862 0.773 0.100 {LOIC, Hulk, Slowloris}
HOIC 0.000 0.853 0.500 0.000 {LOIC, Hulk}
Hulk 0.899 0.999 0.997 0.986 {GoldenEye, Slowloris}
LOIC 0.100 0.288 0.985 0.000 {HOIC}
Slowloris 0.539 0.922 0.837 0.000 {GoldenEye}

VII. CONCLUSION

This research provides a procedure to construct intrusion
detection datasets combining multiple layers with the tool
Zeek. Zeek generates a bunch of extensive log files and two
of them are selected to create a machine learning admissible
dataset for the detection of (D)DoS attacks. This procedure
to create such a dataset is not limited to only these protocols
but can be extended to also combining other protocols, such
as TCP with the File Transfer Protocol (FTP). The aim of
this research was to test to what extent ML classifiers are
able to detect novel variants of known intrusions. A set of
classifiers were applied in three different experimental setups
and we studied their ability to detect (D)DoS variants. The
focus of this research was to study the detection of variants
of (D)DoS intrusions, but the same analysis can be performed
on variants of another cyberattack. It has been shown in the
first experiment that ML classifiers are to a great extent able
to detect known (D)DoS attacks in a closed world setting.
Finding patterns in large datasets is a typical task for ML
algorithms. In the second experiment, it is observed that there
are scenarios in which classifiers are able to detect a novel
variant when trained on a different (D)DoS variant. Detecting
novel variants is however not a two-way street: learning to
detect attack A and being able to also detect attack B does not
have the property that it is vice versa. The third experiment
showed that it is not necessary to use many (D)DoS variants
to detect a novel attack. Sometimes a few known attacks can
already lead to the highest detection rate. For the last two
experiments, it is observed that when the training data is very
imbalanced, DT and RF are inferior in detecting novel attacks
in an open-world assumption. GNB seems better at detecting
novel attacks when this is the case.

To sum up, this research shows that ML algorithms can
detect (D)DoS cyberattacks almost as well as signature-based
approaches, but also have the capability to detect novel vari-
ants. Selecting the right combination of an ML model with
a (small) set of intrusions included in the training data can
result in a higher novel intrusion detection rate.
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