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ABSTRACT
We study an inverse scattering problem for the Helmholtz equation on the whole line. The goal of this paper is to obtain a
Gelfand–Levitan–Marchenko (GLM)-type equation for the Jost solution that corresponds to the 1D Helmholtz differential operator.
We assume for simplicity that the refraction index is of compact support. Using the asymptotic behavior of the Jost solutions with
respect to the wave-number, we derive a generalized Povzner–Levitan representation in the space of tempered distributions. Then, we
apply the Fourier transform on the scattering relation that describes the solutions of the Helmholtz scattering problem and we derive
a generalized GLM equation. Finally, we discuss the possible application of this new generalized GLM equation to the inverse medium
problem.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0096920

I. INTRODUCTION
The so-called inverse medium problem appears in many applications, where one aims to reconstruct unknown coefficients of a (partial)

differential equation from traces of its solution. This way, one can study materials and internal structures of media that are not directly
accessible. In geophysics, for example, a well-known inverse problem is the estimation of the medium parameters of a subsurface domain
from seismic measurements; see, for example, Ref. 1. Similar inverse problems can also be found in ultrasound and ultrasonic non-destructive
testing; see, for example, Ref. 2. The governing equation in these applications is a variable coefficient wave equation, and the measurements
consist of boundary traces of the wavefield for a number of frequencies. A variety of methods for solving the resulting inverse medium problem
have been developed over the previous decades. We roughly divide these methods into two classes. On the one end of the spectrum, one can
find “modern” variational formulations (that are often solved iteratively), such as full waveform inversion; see, for example, Ref. 3. On the
other end, one can find classical inverse scattering methods; see, for example, Refs. 1 and 4. Recently, classical results from inverse scattering
have found renewed interest in the geophysical community and hybrid methods have been proposed.5,6

In this paper, we revisit one such classical method based on the Gelfand–Levitan–Marchenko (GLM) equation. In particular, we focus
on the derivation of a GLM equation corresponding to the scattering problem for the Helmholtz equation with the following form:

{− d2

dx2 + k2n(x)}y(k, x) = k2y(k, x), x ∈ R, (1)

y(k, ⋅) = yi(k, ⋅) + ys(k, ⋅), (2)

yi(k, x) = e−ıkx, x ∈ R, and asymptotic boundary conditions
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lim
x→±∞{

dys(k, x)
dx

∓ ıkys(k, x)} = 0. (3)

Originally, the GLM equation is a fundamental relation that can be used to solve the Schrödinger inverse scattering problem on the line.7
It relates scattering data (reflection measurements) to the so-called Jost solutions of the Schrödinger operator (plane wave-like, right or left
propagating solutions). It is also well known that the Helmholtz equation can be transformed to the Schrödinger equation using the travel
time coordinate transform. Therefore, by changing the setting, it is sufficient to just focus on the study of the transformed system governed
by the Schrödinger equation; see, for example, Refs. 8–10. This equivalence allows us to use a wealth of mathematical tools available from the
Schrödinger scattering theory, including, of course, the GLM equation.

One advantage of this approach is that the path leading from the measurements (scattering data) to the parameter of the differential
operator involves linear steps (as opposed to full waveform inversion, for example). Although this approach is known for very long time, it is
only limited to the 1D case. In higher-dimensional media, it is impossible to transform the Helmholtz equation to the Schrödinger equation.
The only exception to this is when the medium is laterally stratified; see, e.g., Ref. 11. This creates the need for the development of a GLM
framework that avoids the use of a transformation to the Schrödinger setting. The first step toward developing this new inversion method is
given as the 1D case in this paper.

The following basic observation is the starting point of our analysis. Let u+ be the Jost solution of the Helmholtz equation [Eq. (1)].
Contrary to the Schrödinger case, the function of the wave number

k↦ ∣e−ıkxu+(k, x) − 1∣

might not have a growing behavior that allows for the use of the classical Paley–Wiener theory, but still grows in a controlled way as ∣k∣ grows.
This allows us to use a distributional setting, which also permits the definition of the Fourier transform.

Our main contributions are as follows:

● The extension of the so-called Povzner–Levitan representation to Jost solutions of the Helmholtz scattering problem.
● The derivation of a generalized GLM equation for the Helmholtz problem in the space of tempered distributions.

This paper is organized as follows. In Sec. II, we formulate the direct scattering problem and we review basic properties of the solutions of the
forward problem. Then follows Sec. III that contains the main result of the paper and breaks down its proof in multiple lemmas. We continue
with Sec. IV where we propose a practical way for solving the inverse medium problem using the main result, and we conclude this paper in
Sec. V.

II. PRELIMINARIES
In this section, we present some well-known results regarding the forward scattering problem for the Helmholtz equation on the line.

In Subsection II A, we formulate the forward scattering problem and we give the definition of Jost solutions of the Helmholtz equation.
In Subsection II B, we recall some fundamental properties of the solutions of the forward scattering problem and we define reflection and
transmission coefficients.

A. Forward scattering problem
We consider the forward scattering problem for the 1D Helmholtz operator on the real line described in Eqs. (1)–(3). We assume that

the real valued coefficient, n, is sufficiently smooth, having a compact support in the form

supp(n) = (0, b), (4)

for some b > 0, and that 1 − n > 0. In addition, the incident wave field is a plane wave [incoming from the right (+∞)], yi(k, x) = e−ıkx, x ∈ R.
Working the same way as in Ref. 7, we reduce the Helmholtz differential equation to the following Volterra integral equations.

Proposition II.1. The solutions of the integral equations,

u(x) = eıkx − ∫
∞

x
k sin(k(x − t))n(t)u(t)dt, (5)

u(x) = e−ıkx + ∫
x

−∞
k sin(k(x − t))n(t)u(t)dt, (6)

satisfy the Helmholtz differential equation (1). The solutions of these integral equations are the Jost solutions of the Helmholtz equation. In
addition, the following asymptotic behavior holds true for the unique solution of (5), say u+(k, ⋅). For k ∈ R, we get
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∣u+(k, x) − eıkx∣ ≤ c(k, n) k2

1 + ∣k∣ (1 +max{−x, 0})∫
∞

x
(1 + ∣t∣)∣n(t)∣dt (7)

and

∣∂xu+(k, x) − ıkeıkx∣ ≤ c(k, n) k2

1 + ∣k∣∫
∞

x
(1 + ∣t∣)∣n(t)∣dt.

We get similar asymptotic behavior for the left-going Jost solution, u−, which solves Eq. (6).

We obtain the above result working the same way as in Ref. 7 (Chap. 4) for the scattering potential Q ∶= k2n. In addition, c(k, n) grows
faster than an exponential function as a function of k. Finally, we define the Fourier transform as

f̂ (t) = (ℱ f )(t) = 1
π∫R

f (k)e2ıktdk, t ∈ R,

f (k) = (ℱ −1 f̂ )(k) = ∫
R

f̂ (t)e−2ıktdt, k ∈ R,

for f ∈ S(R) (Schwartz functions).

B. Basic properties of the solutions of the forward problem
In this subsection, we present essential properties of the Jost solutions and, in turn, of the solutions of the forward problem. Again, the

next result is classic and we refer to Ref. 7 for its proof.

Proposition II.2. Let k ∈ R/{0} and f , g ∈ H2
loc(R) be solutions to the Helmholtz differential equation. Then, the Wronskian of the two

solutions W( f , g) is constant. In particular, we get for the Jost solutions,

W(u+(k, ⋅), u+(−k, ⋅)) = −2ık

and
W(u−(k, ⋅), u−(−k, ⋅)) = 2ık.

Remark II.1. Since the solution space for the Helmholtz differential equation is two-dimensional, we obtain that

u−(k, x) = a+k u+(k, x) + b+k u+(−k, x) (8)

and
u+(k, x) = a−k u−(k, x) + b−k u−(−k, x) (9)

for x ∈ R. This implies that

2ık =W(u−(k, ⋅), u−(−k, ⋅)) =W(a+k u+(k, ⋅) + b+k u+(−k, ⋅), a+−ku+(−k, ⋅) + b+−ku+(k, ⋅)) ⇒ 1 = ∣b+k ∣2 − ∣a+k ∣2. (10)

Remark II.2. For k ∈ R/{0}, we define reflection and transmission coefficients as

T(k) = 1
b+k

(11)

and

R+(k) = a+k
b+k

, (12)

respectively. The + superscript in the reflection coefficient denotes reflection caused by an incoming plane wave from the right. Similarly, we can
define R−; see Figs. 1 and 2 (assuming k > 0 to make sense of “right” and “left”). The transmission coefficient is the same regardless of right or left
sides of incidence. This is known as transmission reciprocity; see Ref. 12. Therefore, using (10), we obtain the conservation of energy,
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FIG. 1. y i
= e−ik⋅ enters from +∞ and creates reflection and transmission responses R+, T , respectively.

FIG. 2. y i
= eik⋅ enters from −∞ and creates reflection and transmission responses R−, T , respectively.

∣T(k)∣2 + ∣R±(k)∣2 = 1, k ∈ R/{0}. (13)

Now, similar to the Schrödinger equation case, the solution of forward problems, (1)–(3), for k ∈ R/{0} can be decomposed as

y(k, x) = T(k)u−(k, x) = u+(−k, x) + R+(k)u+(k, x) (14)

for x ∈ R. Finally, we get the following relations for k ∈ R/{0}:

R+(k) = k
2ı∫R

n(x)y(k, x)e−ıkxdx (15)

and

T(k) = 1 + k
2ı∫R

n(x)y(k, x)eıkxdx. (16)

III. MAIN RESULT
In this section, we present our main finding, which is a generalized Gelfand–Levitan–Marchenko equation for the 1D Helmholtz scatter-

ing problem. The difference between our finding and the classical Gelfand–Levitan–Marchenko equation for the 1D Schrodinger scattering
is the mathematical setting. In the latter case, we are working in an L2-setting due to the sufficiently regular asymptotic behavior of the
Schrödinger–Jost solution as a function of the wave-number. In our Helmholtz case, we have a “less regular” asymptotic behavior that requires
the use of tempered distributions to do calculations. The following theorem is the main result of this paper.

Theorem III.1. Let the Jost solution, u+, of the Helmholtz problem. Also let an x ∈ R be fixed, and define

v+(k, x) ∶= e−ıkxu+(k, x).

There exists a unique kernel B+x ∈ S ′(R) such that

v+(k, x) = 1 + πℱB+x (k), k ∈ R. (17)
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This kernel can be decomposed as

B+x = B+,Lp

x + B+,E ′
x (18)

with B+,Lp

x ∈ ∩∞p=1Lp(R) and B+,E ′
x ∈ E ′(R). Furthermore, the following GLM-like relation holds true in S ′(R):

B+x + K+(x + ⋅) + K+(x + ⋅) ⋆ B+x = ℱ {k↦ T(k)v−(k, x) − 1}, (19)

with ⋆ denoting the correlation and

K+ = ℱR+ ∈ L2(R). (20)

Remark III.1. It is clear that relation (19) has exactly the same form as in the Schrödinger case. In Sec. IV, we will discuss the use of this
GLM-type relation. We can derive a similar GLM expression for B− using K− = ℱR−.

We will break down the Proof of Theorem III.1 in multiple lemmas. At the end of Sec. III, we will combine the results with the proof of
the main theorem.

A. Generalized Povzner–Levitan representation
Similar to the Schrödinger equation case, in this section, we obtain a generalized Povzner–Levitan representation for the right going

Jost solution of the Helmholtz equation. The major difference between the Schrödinger and Helmholtz cases is that in the latter equation
case, we must work in a distributional setting. We show that the Jost solutions u±(⋅, x) behave “nicely” at infinity as a function of k. How-
ever, before elaborating more on our theory, for the sake of completeness, we show how one can transform the Helmholtz equation to the
Schrodinger equation using the travel-time transform. We only use the equivalence between Helmholtz and Schrödinger problems to show
the Povzner–Levitan representation and to show regularity properties of the kernel and the scattering data. It is important to note that the
travel-time transformation is the mean to show the generalized Povzner–Levitan representation. Obviously, this particular writing for Jost
solutions holds true independently of how one shows it. However, possibly, the simplest way to prove it is the one we follow.

We define the new travel-time variable as

z(x) = ∫
x

0

√
m(y)dy, x ∈ R, (21)

with m = 1 − n > 0. The scattering potential, q, only depends on m, and it is defined similarly as in the acoustic case; see Refs. 9 and 10 In
addition, q is compactly supported on [0, z(b)]; see, e.g., Ref. 13. The new equation now is given by

{− d2

dz2 + q(z)}f (k, z) = k2f (k, z), z ∈ R. (22)

Assuming that u solves the Helmholtz differential equation, f is connected with u via the formula

f (k, z(x)) = θ(x)u(k, x) (23)

with θ(x) = (m(x))1/4. The following result follows.

Proposition III.1. Let the Jost solutions be u±(k, ⋅) of (1) and f ±(k, ⋅) of (22). We get that

f +(k, z(x)) = θ(x)eık(Ib−b)u+(k, x), x ∈ R, (24)

and

f −(k, z(x)) = θ(x)u−(k, x), x ∈ R, (25)

with Ib = ∫ b
0

√
m(y)dy.

Proof. Let the Jost solution of the Helmholtz equation be u+(k, ⋅) with

u+(k, x) = eıkx, x > b.
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We want to show that the Jost solutions of Eqs. (1) and (22), respectively, are related. By relation (23), we get that u+(k, ⋅) is related to a
solution f (k, ⋅) of the Schrödinger equation with f (k, z(x)) = θ(x)u+(k, x), x ∈ R. This gives

f (k, z(x)) = eıkx, x > b (z(x) > z(b)). (26)

Keep in mind that θ(x) = 1 if x > b. Now, for x > b, we also get

z(x) = ∫
b

0

√
m(y)dy + ∫

x

b
dy = Ib + (x − b).

Combining the above equation, (26) gives

f (k, z(x))eık(Ib−b) = eıkxeık(Ib−b) = eıkz(x), x > b.

Therefore, eık(Ib−b)f (k, ⋅) solves the Schrödinger equation and behaves as a plane wave when z > z(b). Now, since the solution space of the
Schrödinger equation is spanned by the Jost solutions f +(k, ⋅), f +(−k, ⋅), we get

eık(Ib−b)f (k, z) = a1f +(k, z) + b1f +(−k, z), z ∈ R⇒ eık(Ib−b)f (k, z) = a1eıkz + b1e−ıkz , z > z(b). (27)

Therefore, a1 = 1 and b1 = 0. Thus,

eık(Ib−b)f (k, z) = f +(k, z), z ∈ R. (28)

Similarly, for the left propagating Jost solution, we get

u−(k, x) = e−ıkx, x < 0. (29)

Since z = x, θ(x) = 1 for x < 0, we obtain that g = θu− solves the Schrödinger equation, and for x < 0,

e−ıkx = e−ıkz = g(k, z) ⇒ (30)

g(k, z) = f −(k, z(x)) = θ(x)u−(k, x), x ∈ R. (31)

◻

Remark III.2. In view of relations (24) and (25), the Jost solutions u±(⋅, x) are continuous as functions of k; see Ref. 7 (Corollary 4.1.4,
Theorem 4.1.8). We can also define complex analytic extensions of the Jost solutions.

Using the above results, we show the following distributional Povnzer–Levitan representation for the right-going Jost solution, u+, of the
Helmholtz equation. Before proceeding to the result, we remind the reader a basic result from the theory of distributions.

Lemma III.1. Let a function f ∈ L1
loc(R;C) such that ∣ f (x)∣ = O(1 + ∣x∣), ∣x∣ → ∞. Then, the map S(R) ∋ ϕ↦ ∫R f (x)ϕ(x)dx defines an

element of S ′(R).

Proof. See Ref. 14 (p. 105). ◻

Lemma III.2. Let x ∈ R be fixed. Then, there exists a tempered distribution V+x = V+(x, ⋅) such that

R ∋ k↦ v+(k, x) = 1 +ℱ −1V+x (k) is in𝒮 ′(R) (32)

as an L1
loc(R) function that defines distribution through integration.

Proof. Let x be fixed and k ∈ R. We can change the spatial variable using relation (21). Since
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f +(k, z) = θ(x)eık(Ib−b)u+(k, x), x ∈ R, (33)

we set θ̃ = θeik(Ib−b) and we obtain

∣u+(k, x) − eıkx∣ = ∣ f
+(k, z)
θ̃(x)

− eıkx∣ ≤ (34)

∣ f
+(k, z)
θ̃(x)

− eıkz

θ̃(x)
∣ + ∣ eıkz

θ̃(x)
− eıkx∣ ≤ (35)

1
∣θ(x)∣ ∣ f

+(k, z) − eikz ∣ + 1 + 1
∣θ(x)∣ . (36)

Now, we know that for k ∈ R, the Jost solution of the Schrödinger problem has the following behavior:

∣ f +(k, z) − eıkz ∣ ≤ C(q)(1 +max{−z, 0})
1 + ∣k∣ ∫

∞

z
(1 + ∣z∣)q(z)dz. (37)

See Ref. 7 (Chap. 4). Therefore, for fixed x, the map
R ∋ k↦ ∣u+(k, x) − eıkx∣ (38)

behaves asymptotically at most as a constant A ∈ R. Similarly,

R ∋ k↦ ∣u+(k, x)e−ıkx − 1∣ (39)

behaves at most as a constant; therefore, it defines a tempered distribution as a locally integrable function.
Now, since the Fourier transform is a homeomorphism,

ℱ : S
′(R) → S

′(R),

and, similarly,
ℱ −1 : S

′(R) → S
′(R)

is also a homeomorphism (onto), there exists a tempered distribution V+(x, ⋅) ∈ S ′(R) such that

R ∋ k↦ u+(k, x)e−ıkx = 1 +ℱ −1V+x (k) in𝒮 ′(R). (40)

◻

Corollary III.1. Let x ∈ R be fixed. The function
R ∋ k↦ u±(k, x)e∓ıkx (41)

defines a tempered distribution as a locally integrable function.

Remark III.3. In the Schrödinger equation case, it is well known that the Fourier kernel of the Povzner–Levitan representation is supported
in R>0. In Subsection III B, we will clarify what the support of V+(x, ⋅) is.

Remark III.4. We can also write
R ∋ k↦ v+(k, x) = 1 + πℱB+x (42)

with B+x =ℛV+x ,
ℛϕ(x) = ϕ(−x), x ∈ R,

for ϕ ∈ S(R). Obviously, we have a similar writing for v−.

B. Properties of the GLM kernel and the scattering data
Essentially, we can consider the quantities involved in the GLM equation only as distributions. However, the equivalence between

Schrödinger and Helmholtz equations in 1D naturally lets us to “gain more regularity” for the scattering data and the kernel B+x . Our GLM
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equation would still hold, but it would be given in a more abstract form than its current compact writing (19). Following the classical method
of associating the Helmholtz equation with the Schrödinger equation, we obtain that the associated Schrödinger scattering problem is

{− d2

dz2 + q(z)}f (k, z) = k2f (k, z), (43)

f (k, z) = e−ıkz + f s(k, z), (44)

lim
z→±∞{

d
dz

f s(k, z) ∓ ıkf s(k, z)} = 0. (45)

Remark III.5. Take a solution, say u, of the Helmholtz scattering problem. Define

f̃ = θu. (46)

f̃ now solves the Schrödinger equation as we have discussed, and we would like to see how f̃ compares with the solution of the Schrödinger
scattering problem. First, observe that

f̃ (k, z) = θ(x)u(k, x) = θ(x){u+(−k, x) + R+(k)u+(k, x)} (47)

θ(x){ eık(Ib−b)

θ(x) f +(−k, z) + R+(k) e−ık(Ib−b)

θ(x) f +(k, z)}, (48)

x ∈ R. This gives
f̃ (k, z)e−ık(Ib−b) = f +(−k, z) + R+(k)e−2ık(Ib−b)f +(k, z). (49)

Similarly,
f̃ (k, z) = T(k)u−(k, x)θ(x) = T(k)f −(k, z). (50)

Therefore,
f̃ (k, z)e−ık(Ib−b) ∼ e−ıkz + R+(k)e−2ık(Ib−b)eıkz , z →∞,

and
f̃ (k, z)e−ık(Ib−b) ∼ e−ık(Ib−b)T(k)e−ıkz , z → −∞.

Since f̃ (k, z)e−ık(Ib−b) − e−ıkz , z ∈ R, is radiating [i.e., satisfies (45)] and since solutions of the scattering problem are unique, we obtain that

R̃+(k) = R+(k)e−2ık(Ib−b) and T̃(k) = T(k)e−ık(Ib−b),

where R̃+ and T̃ are the reflection and transmission coefficients of the Schrödinger scattering problem, respectively.

The previous remark leads to the following proposition.

Proposition III.2. The following relations hold true:

∣R+(k)∣ = ∣R̃+(k)∣, ∀k ∈ R/{0}, (51)

∣T(k)∣ = ∣T̃(k)∣, ∀k ∈ R/{0}. (52)

We also get the following.

Corollary III.2. K+ = ℱR+ is a well-defined L2(R)-element.
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Proof. For the Schrödinger equation case, the reflection coefficient is an element of L2(R); see Ref. 7. Since the absolute values of R+ and
R̃+ coincide, we get the result. ◻

Lemma III.3. Let x ∈ R. Then, V+x ∈ S ′(R) is a distribution that consists of a singular part and an Lp-part. The same holds for B+x .

Proof. Let x ∈ R. We get for k ∈ R,

e−ıkxu+(k, x) = 1 +ℱ −1V+x (k) (53)

and
e−ıkz(x)f +(k, z(x)) = 1 +ℱ −1Ṽ+z(x)(k), (54)

using the classical Paley–Wiener theory to the solution of the Jost solution f +; see Ref. 7. Now, we use relation (24) and we get

e−ıkz(x)θ(x)eık(Ib−b)u+(k, x) = 1 +ℱ −1Ṽ+z(x)(k) ⇒ e−ıkz(x)θ(x)eık(Ib−b)eıkx(1 +ℱ −1V+x (k)) = 1 +ℱ −1Ṽ+z(x)(k).

We define λ = (λ(x) =)z(x) − x − Ib + b. Thus,

θ(x)e−ıkλ + θ(x)e−ıkλℱ −1V+x (k) = 1 +ℱ −1Ṽ+z(x)(k) ⇒ (55)

θ(x)e−ıkλℱ −1V+x (k) = −θ(x)e−ıkλ + 1 +ℱ −1Ṽ+z(x)(k) ⇒ (56)

ℱ −1V+x (k) = −1 + eıkλ

θ(x) +
eıkλ

θ(x)ℱ
−1Ṽ+z(x)(k). (57)

Now, since Ṽ+z(x) ∈ Lp(R) for every p ∈ [1,∞] and since the Fourier transforms of complex exponential functions are Dirac-delta distribu-
tions, we obtain the result. ◻

Remark III.6. We can identify the support of V+x in view of relation (57). Moreover, (57) gives a full description of the singularities of the
kernel V+x .

C. Proof of Theorem III.1
In this subsection, we combine our findings and give the proof of our main result.

Proof of Theorem III.1. Let x ∈ R. The scattering identity that describes the solutions of the forward problem reads

y(k, x) = T(k)u−(k, x) = u+(−k, x) + R+(k)u+(k, x),

k ∈ R/{0}. As mentioned before, we set v±(k, x) = e∓ıkxu±(k, x) and we take

T(k)v−(k, x) = v+(−k, x) + R+(k)e2ıkxv+(k, x), k ∈ R/{0}. (58)

We can view relation (58) in S ′(R) since v±(⋅, x) ∈ S ′(R) (Corollary III.1) and ∣T∣, ∣R+∣ < 1. We get ∀ψ ∈ S(R),

⟨ℱ {k↦ T(k)v−(k, x)},ψ⟩ = ⟨ℱ {k↦ v+(−k, x)},ψ⟩ + ⟨ℱ {k↦ R+(k)e2ıkxv+(k, x)},ψ⟩ (59)

(with the sense that we transform the distributions that are defined through integration). Using relation (32), we get

R ∋ k↦ v+(−k, x) = 1 + (ℱ −1V+x )(−k) = 1 + (ℛℱ −1V+x )(k). (60)

Therefore, we obtain

⟨ℱ {k↦ T(k)v−(k, x) − 1},ψ⟩ = ⟨ℱℛℱ −1V+x ,ψ⟩ + ⟨ℱ {k↦ R+(k)e2ıkx,ψ ⟩ + ⟨ℱ {k↦ R+(k)e2ıkx(ℱ −1V+x )(k)},ψ⟩. (61)
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Now, for ϕ ∈ S(R),

⟨ℱℛℱ −1V+x ,ϕ⟩ = ⟨ℛℱ −1V+x ,ℱϕ⟩ = ⟨ℱ −1V+x ,ℛℱϕ⟩ = ⟨ℱ −1V+x ,ℱℛϕ⟩ = ⟨ℱℱ −1V+x ,ℛϕ⟩ (62)

= ⟨ℛV+x ,ϕ⟩. (63)

Therefore, we have for the first term of (61) that
ℱℛℱ −1V+x =ℛV+x in S

′(R). (64)

Now, observe that R+ = ℱ −1(K+) and ℱ −1δ−x = k↦ e2ıkx. We take for ψ ∈ S(R),

⟨ℱ {k↦ R+(k)e2ıkx},ψ⟩ = ⟨ℱ {ℱ −1K+ℱ −1δ−x},ψ⟩ (65)

⟨ℱℱ −1(K+∗δ−x),ψ⟩ = ⟨K+(x + ⋅),ψ⟩. (66)

Now, since V+x = V+,E ′
x + V+,Lp

x , the convolution of V+x and the shifted scattering data K+(x + ⋅) ∈ L2(R)make sense and we obtain

k↦ R+(k)e2ıkx(ℱ −1V+x )(k) = ℱ −1(K+(x + ⋅))ℱ −1(V+x ) = ℱ −1(K+(x + ⋅)∗V+x ).

Combining the above, we get

ℱ {k↦ R+(k)e2ıkx(ℱ −1V+x )(k)} = K+(x + ⋅)∗V+x = K+(x + ⋅) ⋆ℛV+x , (67)

where for tempered distributions, we define f ⋆ g = f∗ℛ g. Now, putting all of our findings together, we get that

ℛV+x + K+(x + ⋅) + K+(x + ⋅) ⋆ℛV+x = ℱ {k↦ T(k)v−(k, x) − 1} (68)

or, equivalently,
B+x + K+(x + ⋅) + K+(x + ⋅) ⋆ B+x = ℱ {k↦ T(k)v−(k, x) − 1}. (69)

◻

IV. INVERSION
In this section, we use some of our theoretical findings to propose a practical method for solving the inverse medium problem. The

right-hand side of the GLM equation [Eq. (19)] depends on unknown quantities, assuming that we only consider one-sided reflection mea-
surements. To get around this obstacle, we will need to consider two sided data, namely, R+, R−, T, for all frequencies. Using them, we can
form a coupled system for the GLM kernels B+, B− of the right and left going Jost solutions, respectively. After obtaining the Jost solutions,
then either using Eqs. (5) and (6) or the equation error method,15 we can obtain the coefficient of the Helmholtz operator.

First, observe that we can write T(k) = 1 + τ(k), k ∈ R/{0}, with τ(k) = k
2ı∫Rn(x)y(k, x)eıkxdx. τ is also well defined. Now, for fixed

x ∈ R, we have that
u−(k, x)eıkx = 1 +ℱ −1V−x (k), k ∈ R. (70)

Considering this, we can compute the right-hand side of the GLM equation as

rhs = ℱ {(1 + τ)(1 +ℱ −1V−x ) − 1}. (71)

The argument of the Fourier transform is (1 + τ)(1 +ℱ −1V−x ) − 1 = 1 + τ +ℱ −1V−x + τℱ −1V−x − 1 = τ +ℱ −1V−x + τℱ −1V−x . Therefore,

ℱ {τ + τℱ −1V−x +ℱ −1V−x } = L + L∗V−x + V−x = L + L ⋆ B−x +ℛB−x (72)

with B−x =ℛV−x and L = ℱ τ. We can set up an auxiliary scattering problem of the following form. We consider an incident wave traveling
from −∞ to +∞ of the form ui(k, x) = eıkx, x ∈ R. The scattering identity of this problem is

u−(−k, x) + R−(k)u−(k, x) = T(k)u+(k, x). (73)
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As mentioned before, we compute

u−(−k, x)e−ıkx + R−(k)u−(k, x)e−ıkxeıkxe−ıkx = T(k)u+(k, x)e−ıkx ⇐⇒ (74)

v−(−k, x) + R−(k)v−(k, x)e−2ıkx = T(k)v+(k, x) ⇐⇒ (75)

ℱ −1V−x (−k) + R−(k)e−2ıkx + R−(k)e−2ıkxℱ −1V−x (k) = T(k)v+(k, x) − 1. (76)

Now, we compute the Fourier transform to obtain

ℛV−x + K−(−x + ⋅) + K−(−x + ⋅)∗V−x = ℱ {T(k)v+(k, x) − 1}. (77)

Therefore, we get the GLM equation,

B−x + K−(−x + ⋅) + K−(−x + ⋅) ⋆ B−x = ℱ {k↦ T(k)v+(k, x) − 1} (78)

with ℛV−x = B−x . Similarly as before, we obtain

ℱ {k↦ T(k)v+(k, x) − 1} = L + L ⋆ B−x +ℛB−x . (79)

Combining our findings, we are left with a system of two equations and two unknowns, B−x , B+x ,

B+x + K+(x + ⋅) + K+(x + ⋅) ⋆ B+x = L + L ⋆ B−x +ℛB−x , (80)

B−x + K−(−x + ⋅) + K−(−x + ⋅) ⋆ B−x = L + L ⋆ B+x +ℛB+x . (81)

Assuming the knowledge of discrete K+, K−, and L, we can solve for the GLM kernels B+x and B−x . The solution of the system can be found
using a conventional least-squares solver; see Ref. 8. Once we know B+x , we also know u+ [relation (17)]. Thus, we can solve for n in (5).
Alternatively, we can use the equation error method, see Ref. 15, to obtain n since u+ also obeys the Helmholtz equation.

Remark IV.1. The coupled system of (80) and (81) yields the exact solutions B±x , assuming K± and L. Although one could consider only one
sided reflection data and solve only (80) [or (81)] by approximating its right-hand side with zero, for example, for a discussion and comparison
of the use of one sided vs two sided data for the computational solution of an inverse problem for estimating a diffusion potential from boundary
measurements, we refer to Ref. 16.

V. DISCUSSION AND CONCLUSIONS
We have revisited the classical 1D Helmholtz scattering problem, and we have derived a generalized Gelfand–Levitan–Marchenko equa-

tion in the space of tempered distributions. In particular, we showed that the Jost solution of the Helmholtz equation minus a plane wave
grows in a controlled way as the wave number grows. This allows us to consider a distributional framework where we derived a generalized
version of the Gelfand–Levitan–Marchenko equation. We finally discussed a way to solve the inverse medium-problem using two-sided data,
whereas one-sided should theoretically suffice. In the future, we will seek an explanation on why this is the case.

Recently, GLM-like methods have received renewed attention, especially in the area of seismic imaging, although the most significant
limitation of GLM-like approaches for the Helmholtz equation is the difficulty in extending them in higher dimensional media. Without
assuming symmetry to the medium (e.g., laterally stratified), we cannot transform the Helmholtz equation to the Schrödinger equation. With
our new point of view, we believe that we have made a first step toward a possible extension of this particular GLM method to 2D and 3D
Helmholtz scattering problems using the least amount of a priori assumptions.
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APPENDIX: CALCULATIONS WITH DISTRIBUTIONS AND SCHWARTZ FUNCTIONS

In this part, we recall certain properties of distributions that we used above,

1
2π∫R

eiωtdω = δ(t) ⇐⇒ 1
2π∫R

e2ikt2dk = 1
π∫R

e2iktdk = δ(t). (A1)

According to our notation,

ℱ (1)(t) = δ(t). (A2)

Similarly,
1
π∫R

e2ikte2ikgdk = 1
π∫R

e2ik(t+g)dk = δ(t + g). (A3)

Therefore,

ℱ (e2ikg) = δ(t + g). (A4)

Similarly,
1
π∫R

e2ikteikgdk = 1
π∫R

e2ik(t+ g
2 )dk = 1

π∫R
eik(2t+g)dk = 2

2π∫R
eik(2t+g)dk = 2δ(2t + g). (A5)

Therefore,

ℱ (eikg) = 2δ(2t + g) = δ(t + g
2
). (A6)

Another important property is

(δa ∗ f )(t) = f (t − a) (A7)

for f ∈ L2(R) with δa(t) = δ(t − a). In addition, previously, using the ℛ (reflection) operator, we exchanged between the convolution and
the correlation of distributions. Assuming a function b ∈ S(R), we get

(K(x + ⋅) ∗ b)(t) = ∫
R

K(x + z)b(t − z)dz. (A8)

Now, we set ζ = −t + z and obtain z = t + ζ. We get

(K(x + ⋅) ∗ b)(t) = ∫
R

K(x + t + ζ)b(−ζ)dζ = (K(x + ⋅) ⋆ℛ b)(t). (A9)

For tempered distributions, we define

⟨ℛ f ,ϕ⟩ = ⟨ f ,ℛϕ⟩.

See Ref. 17 (p. 334). In addition, ℛ 2 = I since

⟨ f ,ϕ⟩ = ⟨ f ,ℛ 2ϕ⟩ = ⟨ℛ f ,ℛϕ⟩= ⟨ℛ 2f ,ϕ⟩. (A10)

Finally, ℱ and ℛ commute since
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ℛℱϕ(t) = 1
π∫R

ϕ(k)e−iktdk = 1
π∫R

ϕ(−k)eiktdk = ℱ (ℛϕ)(t), (A11)

and this gives
⟨ℱℛ f ,ϕ⟩ = ⟨ℛ f ,ℱϕ⟩ = ⟨ f ,ℛℱϕ⟩ = ⟨ f ,ℱℛϕ⟩ = ⟨ℱ f ,ℛϕ⟩ = ⟨ℛℱ f ,ϕ⟩. (A12)
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