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Abstract
We consider the task of spectral estimation of local quantum Hamiltonians. The spectral
estimation is performed by estimating the oscillation frequencies or decay rates of signals
representing the time evolution of states. We present a classical Monte Carlo (MC) scheme which
efficiently estimates an imaginary-time, decaying signal for stoquastic (i.e. sign-problem-free) local
Hamiltonians. The decay rates in this signal correspond to Hamiltonian eigenvalues (with
associated eigenstates present in an input state) and can be extracted using a classical signal
processing method like ESPRIT. We compare the efficiency of this MC scheme to its quantum
counterpart in which one extracts eigenvalues of a general local Hamiltonian from a real-time,
oscillatory signal obtained through quantum phase estimation circuits, again using the ESPRIT
method. We prove that the ESPRIT method can resolve S = poly(n) eigenvalues, assuming a
1/poly(n) gap between them, with poly(n) quantum and classical effort through the quantum
phase estimation (QPE) circuits, assuming efficient preparation of the input state. We prove that
our MC scheme plus the ESPRIT method can resolve S = O(1) eigenvalues, assuming a 1/poly(n)
gap between them, with poly(n) purely classical effort for stoquastic Hamiltonians, requiring some
access structure to the input state. However, we also show that under these assumptions, i.e.
S = O(1) eigenvalues, assuming a 1/poly(n) gap between them and some access structure to the
input state, one can achieve this with poly(n) purely classical effort for general local Hamiltonians.
These results thus quantify some opportunities and limitations of MC methods for spectral
estimation of Hamiltonians. We numerically compare the MC eigenvalue estimation scheme (for
stoquastic Hamiltonians) and the quantum-phase-estimation-based eigenvalue estimation scheme
by implementing them for an archetypal stoquastic Hamiltonian system: the transverse field Ising
chain.
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1. Introduction

In general, it is a computationally intractable task to obtain, by classical or quantum means, the eigenvalues
of a Hamiltonian H associated with a many-body quantum system. However, more restricted tasks related to
estimating the spectrum of H can be executed on a quantum computer by means of quantum phase
estimation (QPE) algorithms [31, 32, 38, 43], using the ability to simulate the real-time dynamics e−iHt/�

efficiently on a quantum computer via Trotterization [27].
Classical alternatives are provided by quantum Monte Carlo (MC) methods [11, 16]. The efficiency of

quantum MC methods when used to simulate many-body systems is generally limited by the sign problem.
This can cause the variance of the estimator in the MC algorithm to grow exponentially in the system size n,
necessitating an exponential number of runs of the MC algorithm.

A (ubiquitous) class of Hamiltonians that is sign-problem-free has been formalized under the name
stoquastic Hamiltonians [6]. Roughly speaking, a (real-valued) Hamiltonian is stoquastic (in a particular
basis B) if its off-diagonal elements are non-positive: 〈x|H|y〉 � 0, for x �= y (with |x〉, |y〉 being elements of
B). As a consequence, its associated Gibbs density matrix e−τH is an element-wise non-negative matrix (for
τ ∈ R+). This property makes it particularly suitable for MC sampling as complexity results [1, 6, 23] and
various algorithmic results [4, 5, 9, 10] have demonstrated.

Since stoquastic Hamiltonians are sign-problem-free, it is of interest to see if one can indeed prove that
(part of its) spectrum can be efficiently estimated through classical MC methods. Conversely, can quantum
algorithms, even for stoquastic Hamiltonians, provide an advantage over MC algorithms in carrying out this
task? In this work, we address these questions by making a direct comparison between the task of estimating
the spectral content of a stoquastic local Hamiltonian in an input state via a quantum circuit versus via a
classical MC scheme. In addition, we investigate to what extent this task can be efficiently carried out
classically for a general local Hamiltonian.

Central in our study is, first of all, the real-time signal

gR(k) = 〈Φ|e−iHkΔt |Φ〉 =
2n∑

j=1

∣∣〈ψj|Φ〉
∣∣2(e−iEjΔt

)k
, (1)

for k = 0, 1 . . . , K and where |Φ〉 is some pre-specified n-qubit input state. The estimation of gR(k) for
various k is a crucial step in the QPE algorithm. In what follows we will fix Δt so that the eigenstates |ψ j〉
with nonzero or substantial overlap |〈ψ j|Φ〉|2 > 0, showing up in the signal, have the property that
EjΔt ∈ [0, 2π). Thus, from now on, we assume that these Ej are shifted and rescaled to lie in [0, 2π). We will
assume that there are at most S eigenvectors with nonzero |〈ψ j|Φ〉|2, where S is desired to be poly(n) or less
for overall efficiency. Identifying a state |Φ〉 which has non-zero overlap on only a few (S = poly(n) or
S = O(1)) eigenstates and which obeys the assumptions in the following theorems is not so simple, and can
be considered one of the bottlenecks in using QPE or other MC methods to determine spectral information
of the Hamiltonian.

Besides the real-time signal, one can define the imaginary-time signal

gI(k) = 〈Φ|e−Hk|Φ〉 =
2n∑

j=1

∣∣〈ψj|Φ〉
∣∣2(e−Ej

)k
, (2)

where again we can assume that Ej ∈ [0, 2π). We will prove, for local stoquastic Hamiltonians, that the
quantum cost of estimating gR(k) and the classical MC cost of estimating gI(k) within error ε are
approximately identical, although the assumptions on our knowledge/preparation costs of |Φ〉 are slightly
different in the two cases. We present the MC scheme that estimates the signal in equation (2) in section 2.
We stress that this MC scheme does not rely on the Metropolis–Hastings algorithm.
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The two statements are as follows (the proof of these statements is given in section 2):

Theorem 1.1. For a local Hamiltonian acting on n qubits, one can estimate gR(k) in equation (1) with
probability at least 1 − δ with sampling error ε and Trotter error εtrot (and total error εtot = ε+ εtrot), using
quantum circuits acting on n + 1 qubits, where the depth of the quantum circuit scales as

O
(
k1+o(1)

)
O
(
ε−o(1)

trot

)
× poly(n) and the number of times one executes the circuit is Θ(ε−2 log(4δ−1)), under

the assumption that |Φ〉 is a state of n qubits which can be generated by a poly(n)-size quantum circuit. Hence to
obtain gR(k) for k = 0, . . . , K, with error at most εtot = ε+ εtrot for all k, with probability 1 − δ requires using
quantum circuits for k = 0, . . . , K, each acting on n + 1 qubits, where the depth of the quantum circuit scales as

O
(
k1+o(1)

)
O
(
ε−o(1)

trot

)
× poly(n) and each circuit is repeated Θ(ε−2

[
log(4δ−1) + log(K)

]
) times.

Theorem 1.2. For a local stoquastic Hamiltonian acting on n qubits, one can estimate gI(k) in equation (2)
with probability at least 1 − δ with total error εtot = ε+ εtrot, using a classical MC algorithm on n-bit strings

where the depth of the algorithm scales as O
(

k1+o(1)
)
O
(
ε−o(1)

trot

)
× poly(n) and the number of times one runs

the algorithm is Θ(ε−2 log(δ−1)), under the assumption that |Φ〉 =
∑2n

x=1Φ(x)|x〉 is a normalized state of n
qubits such that (1) Φ(y)

Φ(x) can be efficiently (poly(n)) calculated for a given x and y and (2) we can efficiently

draw samples from the probability distribution P(x) = |Φ(x)|2. Hence to obtain gI(k) for all k = 0, . . . , K, with
error at most εtot for each k, with probability 1 − δ requires using a classical MC algorithm on n-bit strings for

k = 0, . . . , K, where the depth of each algorithm scales as O
(
k1+o(1)

)
O
(
ε−o(1)

trot

)
× poly(n) and the number of

times one runs the algorithm (for each k) is Θ(ε−2
[
log(δ−1) + log(K)

]
).

We then ask, given knowledge of either the real-time signal gR(k) or imaginary-time signal gI(k), what
can be learnt about those eigenvalues Ej, whose associated eigenstates have nonzero overlap with the input
state |Φ〉? The signals gI(k) and gR(k) respectively correspond to a probabilistic sum of decaying components
and a sum of oscillating components with decay rates and oscillation frequencies Ej as a function of discrete
‘time’ k = 0, . . . , K. Hence a method which extracts those decay and oscillation rates from knowing gI(k) or
gR(k) at various k is needed. A method of choice which has already been used in quantum information
theory is the matrix pencil method [22, 35, 37] (with equivalent methods known as ESPRIT and MUSIC).
This method has been used for processing randomized benchmarking data [19, 33], QPE [32], spectral
tomography of superoperators [18], for processing experimental time-series data to identify Hamiltonian
parameters [17] or generally in processing discretely-sampled decaying Ramsey signals. In this work, we
employ specifically the ESPRIT method and investigate its ability to extract the Ej’s from the signals in
equations (1) and (2). More details on the ESPRIT method are given in section 3 and the algorithm
implementing the ESPRIT method is given explicitly in algorithm 2.

Using this method, it is known that if either gR(k) or gI(k) is known exactly for k = 0, . . . , K where
K + 1 � 2S, one can learn those eigenvalues Ej and probabilities |〈ψ j|Φ〉|2 exactly. However, in the presence
of sampling and Trotter noise, the resolving power also depends on the gap between the eigenvalues Ej, the
number S of eigenvalues and whether we extract them from an oscillating or decaying signal. Our work is
thus focused on understanding whether there are fundamental advantages in learning gR(k) with noise
versus learning gI(k) with noise, as this quantifies the benefit of a quantum algorithm versus a classical
algorithm for spectral estimation of (stoquastic) Hamiltonians.

Not surprisingly, there are drawbacks to processing data from the imaginary-time evolution. As the
signal decays exponentially, k cannot be chosen too large otherwise the signal becomes smaller than the
noise. Our goal is to quantify this precisely and show that, at least theoretically, a regime exists in which the
MC method may be competitive.

The first statement we make can be viewed as a summary of previous work, namely it combines lemma
2.1 via theorem 1.1 (which state the computational effort of estimating the real-time evolution signal up to a
given error and with a given confidence) and the performance of the ESPRIT method in theorem 3.1 (which
gives an error bound for the eigenvalue estimates obtained from application of the ESPRIT method to the
real-time evolution signal) in the presence of a gap:

Theorem 1.3. Given a local Hamiltonian on n qubits. Let the number of eigenvectors supported in some
(efficient-to-prepare) input state |Φ〉 be S = p1(n) (with p1(n) some polynomial in n), and each occurs with
nonzero probability at least 1/poly(n). Furthermore, assume that the S eigenvalues {Ei} with Ei ∈ [0, 2π)are
sufficiently well-separated, i.e. at least by a gap Δ � C/K with constant C and K = Θ(p1(n)). Then using
Hadamard test (QPE) quantum circuits plus signal post-processing via ESPRIT, each requiring a poly(n) effort,
one can resolve the eigenvalues {Ej} with distance d({Ei}, {Ẽj}) (defined in equation (32)) at most 1/poly(n).

For local stoquastic Hamiltonians the combination of lemma 2.3 via theorem 1.2 (which state the
computational effort of estimating the imaginary-time evolution signal up to a given error and with a given
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confidence) and the performance of the ESPRIT method in theorem 3.2 (which gives an error bound for the
eigenvalue estimates obtained from application of the ESPRIT method to the imaginary-time evolution
signal) in the presence of a gap leads to:

Theorem 1.4. Given a local stoquastic Hamiltonian on n qubits. Let the number of eigenvectors supported in
some efficient-to-sample (i.e. with poly(n) effort) input state |Φ〉 be S = O(1), and each occurs with nonzero
probability at least 1/poly(n). In addition, assume that for a fixed x, y it is efficient to compute Φ(y)

Φ(x) .
Furthermore, assume that the S eigenvalues {Ei}, Ei ∈ [0, 2π) are sufficiently well-separated, i.e. at least by
Δ � 1/poly(n) with some poly(n). Then using a MC algorithm plus signal post-processing via ESPRIT, each
requiring (some) poly(n) effort, one can resolve the eigenvalues {Ej} with distance d({Ei}, {Ẽj}) at most
1/poly(n).

Theorem 1.4 immediately begs the question whether such a result could hold for general local
Hamiltonians as well: the assumptions that there are only S = O(1) eigenstates in the initial state, as well as
the assumption of efficient access to the initial state appear rather strong. To address this question, we define
another real-valued, decaying signal as

gD(k) = 〈Φ|
(
I − H/2π

)k|Φ〉 =
2n∑

j=1

∣∣〈ψj|Φ〉
∣∣2(1 − Ej/2π

)k
. (3)

If S = O(1) and if gD(k) can be estimated with some accuracy for k = 1, . . . , K = O(1), we can also apply
the ESPRIT method to extract these S eigenvalues. We note that this requires that the eigenvalues Ej are
bounded away from 2π. Hence if we use gD(k) we assume that we have shifted and rescaled the eigenvalues
so that, say, the Ej’s lie in [0, π].

One can prove that for general local Hamiltonians, assuming S = O(1) eigenvalues in |Φ〉, one can
estimate gD(k) with ε accuracy, under an assumption about the access to |Φ〉 which is identical to the MC
case for stoquastic Hamiltonians (theorem 1.4). In fact, this result shows that theorem 1.4 is not particular to
local stoquastic Hamiltonians at all, if we only care about ‘nominally poly(n)’ algorithms. However, the
computational cost of estimating gD(k) for general local Hamiltonians is significantly higher in practice
compared to the MC method for stoquastic Hamiltonians. The result expressed in lemma 2.4 can be viewed
as ‘dequantization’ as it is similar in spirit to the singular value transformation (SVT) tool (theorem 3 in
[13]). Theorem 3 in [13] is used to construct an algorithm that estimates the ground state energy of a
Hamiltonian to O(1) (in n) precision, given an initial state with only some constant overlap with the ground
state.

Applying the ESPRIT analysis to lemma 2.4, we will obtain the following theorem:

Theorem 1.5. Given a local Hamiltonian on n qubits. Let the number of eigenvectors supported in some
efficient-to-sample (poly(n) effort) input state |Φ〉 be S = O(1), and each occurs with nonzero probability at
least 1/poly(n). In addition, assume that for a fixed x, y it is efficient to compute Φ(y)

Φ(x) . Furthermore, assume that
the S eigenvalues {Ei}, Ei ∈ [0,π] are sufficiently well-separated, i.e. at least by Δ � 1/poly(n) with some
poly(n). Then using lemma 2.4 plus signal post-processing via ESPRIT, each requiring (some) poly(n) classical
effort, one can resolve the eigenvalues {Ej} with distance d({Ei}, {Ẽj}) at most 1/poly(n).

In [13], it was additionally shown that estimating the smallest eigenvalue of a local Hamiltonian (with
some restrictions on its locality) with inverse polynomial precision, even when provided that the guiding
(input) state (which is a state with access structure similar to the one considered in this work) has close to a
constant (1/2 − Ω(1/poly(n))) overlap with the ground state, is BQP-complete. Improving on this result,
the authors of [7] have shown that this problem is BQP-complete even when the overlap of the guiding state
with the ground state is 1 − Ω(1/poly(n)) (a result which was also obtained in [14]) and that equivalent
results hold for the task of estimating excited state eigenvalues of the Hamiltonian. As also mentioned in [7],
the ability to classically estimate S = O(1) eigenvalues up to inverse polynomial error (provided an at least
inverse polynomial spectral gap)—as described in theorems 1.4 and 1.5—thus depends strongly on the
number of eigenvectors supported in the input state being only S = O(1). Note that in theorems 1.4 and 1.5
we furthermore require that the S = O(1) eigenvalues are separated by an at least 1/poly(n) gap.

To investigate practical aspects of the MC scheme for stoquastic Hamiltonians and compare it to the
quantum scheme, we numerically study the one-dimensional Ising chain in a transverse field g [36] in a
proof-of-principle setting. We numerically study, amongst several other aspects, the recovery of the
ground-state and first-excited-state eigenvalues in the (g > 1)-regime from the signals gR(k) and gI(k) (in
the presence of sampling noise and Trotter error) using the ESPRIT method.

An overview of the paper is as follows. In section 2, we review the Hadamard or overlap quantum
subroutine (lemma 2.1) and we present the MC algorithm (lemma 2.3) for stoquastic Hamiltonians with its

4
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proof, as well as stating a straightforward lemma 2.4 on ‘dequantization’. Section 3 reviews the ESPRIT
method and has an extensive appendix D in which we prove the performance of the ESPRIT method for
imaginary-time decaying signals using many lemmas also needed in the real-time signal case. The arguments
for theorem 1.5 are presented in section 3 as well. In section 4, we numerically compare the quantum scheme
and the MC scheme (for stoquastic Hamiltonians) for determining part of the spectrum of a transverse field
Ising chain. In section 5, we discuss our work and propose some directions for future study. Several
appendices give additional background information and details.

We note that very extensive literature exists on the MC power method [16] in which one applies a
sequences of steps which gradually project an initial input state onto the ground state. In this method, unlike
in our MC scheme of lemma 2.3, one renormalizes the state after each iteration, so that the signal does not
die out. In our approach, we do not renormalize, but study the decay rates themselves. In terms of other
previous work, we note that in [4] the ground state energy of a stoquastic Hamiltonian was efficiently
estimated by means of a projector MC scheme, under an additional ‘guiding state’ promise. In [30] the
authors consider the implementation of the imaginary-time evolution exp(−τH) on a quantum computer in
order to prepare a ground state of any local Hamiltonian. Note that our goal is not to prepare any ground or
excited state but rather only learn some eigenvalues.

In the remainder of this section, we will review a few definitions which are used in this paper.

Definition 1. Stoquastic Hamiltonians. A (real-valued) Hamiltonian H is (globally) stoquastic [6] in a basis
B if all its off-diagonal elements are non-positive: 〈x|H|y〉 � 0, for x �= y (and states |x〉, |y〉 being elements
of basis B).

In this work, we are interested in Hamiltonians that are local and stoquastic:

Definition 2. Local Hamiltonians. A Hamiltonian H associated with a system consisting of n degrees of
freedom (e.g. spins/qubits) is local if it admits a decomposition into a set of Hermitian operators {Hi}—i.e.∑N

i Hi —such that each Hi acts non-trivially on O(1) (not growing with n) degrees of freedom of the system.

We denote the maximum number of degrees of freedom on which each Hi acts non-trivially (i.e. its
locality) by k and note that the number of terms in a local Hamiltonian is N = O(nk).

For local Hamiltonians there is a slightly stronger notion of stoquasticity, called termwise stoquasticity,
which can differ from the definition of stoquasticity given above, see [6, 23].

Definition 3. Termwise stoquastic Hamiltonians. A (real-valued) k-local Hamiltonian H is m-termwise
stoquastic in a basis B if it admits a decomposition into (real-valued) m(�k)-local terms {Ha} such that
each Ha is stoquastic: ∀ a, 〈x|Ha|y〉 � 0, for x �= y (and states |x〉, |y〉 being elements of basis B).

Most many-body Hamiltonians considered in physics which are stoquastic are O(1)-termwise stoquastic.
The results in this paper apply to both termwise stoquastic as well as globally stoquastic Hamiltonians (using
some small adaptions employing results in [23]), and we will refer to them simply as ‘stoquastic’. For a
matrix X we will use the operator or spectral norm ‖X‖ =

√
λmax(X†X) = σmax(X), where σmax (X) is the

largest singular value of X. We also refer to the Frobenius norm ‖X‖F =
√

Tr(X†X) and the induced −∞
norm ‖X‖∞ = maxi

∑
j|Xij|. For an m × n matrix X, we use ‖X‖ � √

m‖X‖∞ and ‖X‖ � ‖X‖F.

2. Quantum scheme versus Monte Carlo scheme for spectral estimation

In this section we show how to estimate gR(k) on a quantum computer, and gI(k) for stoquastic
Hamiltonians via a MC algorithm, as well as how to estimate gD(k) inefficiently (in k) via a classical
algorithm for general local Hamiltonians.

Lemma 2.1 states a well-known quantum subroutine, namely the Hadamard or overlap test, while a new
result, a MC version of the routine, is proved in lemma 2.3. After these lemmas, the proofs of theorems 1.1
and 1.2 are given. Then we give lemma 2.4 for general local Hamiltonians, using similar tools as in lemma
2.3.

We note that the overlap test is used in versions of QPE which do not aim at preparing an energy
eigenstate of the Hamiltonian, but rather only learn the spectral content in its input state, as in references
[26, 32, 38]. Here we basically follow this approach for the real-time quantum evolution, which can in
addition be randomized to save on implementation costs, see [44].

Lemma 2.1. (Hadamard or overlap test). Let F ≡ 〈Φ|G1G2 . . .GL|Φ〉, where:

(a) |Φ〉 =
∑2n

x=1Φ(x)|x〉 is a state of n qubits which can be generated by a poly(n)-size quantum circuit.

(b) Each Gl is a k-local unitary matrix.

5
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Figure 1. Basic circuit with a single ancillary qubit and an n-qubit register (initialized in state |Φ〉).

F can be estimated within error ε with probability at least 1 − δ with a quantum circuit with
Θ(ε−2 log(4δ−1)) ×

[
Θ(L) + poly(n)

]
single and two-qubit gates.

Proof. Figure 1 depicts the quantum circuit which is used. It involves an n-qubit register and a single
ancillary qubit. The state of the composite system can be tracked through the circuit and the final state can
be found to be (where R(θ) ≡ e−iθZ/2):

1

2

((
e−iθ/2I + eiθ/2G1G2 . . .GL

)
|0〉a ⊗ |Φ〉+

(
e−iθ/2I − eiθ/2G1G2 . . .GL

)
|1〉a ⊗ |Φ〉

)
. (4)

A Z-measurement is now performed on the ancillary qubit, measuring either |0〉 or |1〉 with associated
outcomes resp. m = 0 or m = 1. The probability to measure state |0〉 (m = 0) on the ancillary qubit after
application of the depicted gates is then given by:

Pr
(
m = 0|θ

)
=

1

2
+

1

4

(
eiθ〈Φ|G1G2 . . .GL|Φ〉+ e−iθ

(
〈Φ|G1G2 . . .GL|Φ〉

)∗)

=

⎧⎪⎨
⎪⎩

1

2
+

1

2
Re
(
〈Φ|G1G2 . . .GL|Φ〉

)
, for θ = 0,

1

2
− 1

2
Im
(
〈Φ|G1G2 . . .GL|Φ〉

)
, for θ =

π

2
.

(5)

In the final expression, we have restricted ourselves to θ = 0 and θ = π
2 , which are the θ values of interest.

Suppose that for θ = 0 and θ = π/2, the quantum circuits are repeated |Σ| times to obtain a set 2|Σ| of

independent realizations of the ancillary-qubit state to be measured and let
∣∣Σθ=0

0

∣∣ and
∣∣∣Σθ=π/2

0

∣∣∣ be the

number of times the ancilla measurement returns 0 so that

F̃ =

(
2

∣∣Σθ=0
0

∣∣
|Σ| − 1

)
− i

⎛
⎝2

∣∣∣Σθ=π/2
0

∣∣∣
|Σ| − 1

⎞
⎠ (6)

is our (unbiased) estimator, i.e. E(F̃(t)) = F(t). Then by means of the Chernoff bound we have

Pr
(∣∣∣F̃ − F

∣∣∣ � ε
)
� Pr

(∣∣∣Re(F̃ − F)
∣∣∣ � ε/

√
2
)

Pr
(∣∣∣Im(F̃ − F)

∣∣∣ � ε/
√

2
)

=
(

1 − Pr
(∣∣∣Re(F̃ − F)

∣∣∣ � ε/
√

2
))(

1 − Pr
(∣∣∣Im(F̃ − F)

∣∣∣ � ε/
√

2
))

�
[
max
(
0,
(
1 − 2 exp(−|Σ|ε2/4)

))]2
� 1 − 4 exp

(
−|Σ|ε2/4

)
= 1 − δ,

(7)

where the number of samples is chosen as |Σ| = Θ(ε−2 log(4δ−1)). �

Next, we will consider a classical MC version of the quantum routine given above. The key result here is
lemma 2.3. However, before we can state it, we collect a few facts about matrices Gi which will be useful in
the proof of lemma 2.3. The matrices Gi that we will consider now can be seen as analogous to the (unitary)
local real-time propagation operators Gi considered earlier in lemma 2.1, but are now local imaginary-time
propagation operators. The Gi are no longer unitary but, for local stoquastic Hamiltonians, are elementwise
nonnegative. They are of the form Gi = e−ai/M kHi , where ai/M is a positive parameter set by the

6
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Trotterization scheme and k = 0, 1, . . . , K denotes imaginary-time coordinate. We have the following
proposition on further properties of these operators:

Proposition 2.2. Let Gi = e−ai/M kHi , where Hi is a stoquastic Hermitian matrix (a term in H =
∑

i Hi) which
acts nontrivially on some subset of O(1) qubits. Let the smallest eigenvalue of Hi be 0, i.e. λmin (Hi) = 0. We
have:

• The matrix Gi is an elementwise nonnegative and positive definite matrix, with eigenvalues in the interval
(0, 1], acting nontrivially only on the same O(1) qubits as Hi.

• If Gi is reducible, then we can write Gi = ⊕Bi
b=1Gb

i with Bi irreducible sub-matrices Gb
i . The set of bit string

basis states on which the irreducible sub-matrix Gb
i acts is denoted by Sb

i , where ∪bSb
i ⊆ {0, 1}n.

• From the Perron–Frobenius theorem (theorem 8.4.4 in [20]) it follows that for each nonnegative and
irreducible sub-matrix there exists a unique and strictly positive eigenstate associated with its largest
eigenvalue, i.e.

|φb
i 〉 =

∑
x∈Sb

i

φb
i (x)|x〉, Gb

i |φb
i 〉 = λb

i |φb
i 〉, (8)

where φb
i (x) > 0, ∀ x ∈ Sb

i . Since the spectrum of Gi is the union of spectra of the submatrices Gb
i , the

spectrum of each Gb
i also lies in the interval (0, 1] and one of the blocks b will contain the largest eigenvalue

of Gi equal to 1. In case Gi is irreducible itself, there is a largest nonnegative eigenvector as in equation (8)
which has support φi(x) > 0 for all x. In this case, the corresponding eigenvalue will be λi = 1.

• Naturally, since Gi acts nontrivially only on a subset of O(1) qubits (and acts as I on other qubits) one can
efficiently compute the blocks Gb

i , its largest eigenvalue λb
i and associated eigenstate |φb

i 〉 in each block b.

We prove the following:

Lemma 2.3. Let F ≡ 〈Φ|G1G2 . . .GL|Φ〉, where:

(a) |Φ〉 =
∑2n

x=1Φ(x)|x〉 is a normalized state of n qubits where Φ(x) ∈ C (∀ x) and
∑

x|Φ(x)|2 = 1. We
assume that (1) Φ(y)

Φ(x) can be efficiently (poly(n)) calculated for a given x and y and (2) we can efficiently

draw samples from the probability distribution P(x) = |Φ(x)|2.

(b) Each Gl = Gl is a k-local, positive-definite, (elementwise) nonnegative matrix with eigenvalues in (0, 1].

F can be estimated within error ε with probability at least 1 − δ with a classical MC algorithm with runtime
Θ(ε−2 log(δ−1)) × poly(n) ×Θ(L).

Proof. The proof of lemma 2.3 consists of two steps: to construct an estimator for F(τ) and to show that
the error of this estimator can be bounded according to the lemma.

We rewrite the quantity of interest F as follows (where L − 1 complete sets of basis states are inserted in
between the Gl operators in the final equality):

F =
∑

x0,x1,...,xL

|Φ(x0)|2 Φ(xL)

Φ(x0)
〈x0|G1|x1〉〈x1|G2|x2〉 . . . 〈xL−1|GL|xL〉, (9)

where we have set |x〉 = |x0〉 and |y〉 = |xL〉. F thus corresponds to the sum of an exponential number of
products of (non-negative) matrix elements of G1, . . . , GL, weighted by amplitudes in the state |Φ〉.
Evidently, only terms for which all the matrix elements in the product are non-zero contribute to the sum.

We now consider the string of basis states |x0〉, . . . , |xL〉 and associate with each step |xl−1〉 to |xl〉 in this
string a probability

Pl(xl−1 → xl) =
1

λb
l

〈xl−1|Gl|xl〉
φb

l (xl)

φb
l (xl−1)

, (10)

where b labels the sub-block in Gl = ⊕bGb
l which contains the strings xl−1 and xl. Here φb

l (x) ≡ 〈xl−1|φb
l 〉

with |φb
l 〉 defined in proposition 2.2.

The probability distribution Pl is thus non-negative as λb
l ∈ (0, 1], Gl is element-wise non-negative and

φb
l (xl) > 0 and φb

l (xl−1) > 0. It can be shown to be normalized:

∑
xl

Pl(xl−1 → xl) =
∑

xl

1

λb
l

〈xl−1|Gl|xl〉
φb

l (xl)

φb
l (xl−1)

=
∑
xl∈Sb

l

1

λb
l

〈xl−1|Gb
l |xl〉

φb
l (xl)

φb
l (xl−1)

=
1

φb
l (xl−1)

1

λb
l

〈xl−1|Gb
l |φb

l 〉 =
1

φb
l (xl−1)

1

λb
l

〈xl−1|λb
l |φb

l 〉 =
〈xl−1|φb

l 〉
φb

l (xl−1)
= 1. (11)

7
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We use Pl(xl−1 → xl) to rewrite F(τ) as:

F(τ) =
∑

x0,x1,...,xL

|Φ(x0)|2P1(x0 → x1)P2(x1 → x2) . . .PL(xL−1 → xL)︸ ︷︷ ︸
≡Π(x).

× Φ(xL)

Φ(x0)

L∏
l=1

λb(l)
l

φb(l)
l (xl−1)

φb(l)
l (xl)︸ ︷︷ ︸

≡R(x).

, (12)

where x ≡ (x0, x1, . . . , xL) and we have defined the quantities Π(x) and R(x). Since |Φ(x0)|2 and each Pl are
probability distributions, Π(x) is a probability distribution as well, i.e.

∑
x0,x1,...,xL

Π(x) =
∑

x0

(
|Φ(x0)|2

∑
x1

(
P1(x0 → x1) . . .

∑
xL

(PL(xL−1 → xL)) . . .

))
= 1. (13)

Clearly, one can sample from Π(x) by first sampling from |Φ(x0)|2, then sampling from P1(x0 → x1) to
generate x1 etc until xL.

By thus sampling from the probability distribution Π(x) and obtaining a mean estimator for F(τ) using
the samples R(x), we can estimate F(τ). We note that F(τ) = E(R(x)). Since R(x) ∈ C, a mean estimator
over a finite number of samples will generally be complex-valued. Since F(τ) ∈ R, we will instead obtain a
mean estimator using samples Re(R(x)). The mean estimator that we shall use to estimate F(τ) is the
median-of-means estimator [28]. Using a set Σ of samples {x} (distributed according to Π(x)), the
median-of-means estimator is defined as follows: divide the set Σ into q subsets s1, . . . , sq of size
approximately |Σ|/q. Calculate the empirical mean of Re(R(x)) over the samples in each subset:
fj = 1

|sj |
∑

x∈sj
Re(R(x)) for j ∈ {1, . . . , q} (each f j is an unbiased estimator of F(τ)). Now the

median-of-means estimator is given by the median of these empirical means: F̂ = M(f1, . . . , fq). See
appendix C for more details.

The algorithm that efficiently produces F̂ = M(f1, . . . , fq) is explicitly given in algorithm 1 below. Note
that when Φ(x0) is small for some x0, the probability of drawing this x0, |Φ(x0)|2, is very small, but the ratio
Φ(xL)
Φ(x0) in the estimator could get very large.

Algorithm 1 thus efficiently provides an estimate of F(τ) (albeit biased). To complete the proof, we will
show that the variance of Re(R(x)) ∈ R can be bounded which in turn is used to bound the number of
samples to get an estimate close to the mean, leading to lemma 2.3.

For a complex random variable Z = R(x), E(Z) ≡ E(Re(Z)) + iE(Im(Z)) and Var(Z) = Var(Re(Z)) +
Var(Im(Z))) � Var(Re(Z)). Hence we can bound the variance of random variable Re(R(x)) by bounding
the variance of the random variable R(x). This variance is given by:

Var(R(x)) = E

(
|R(x)|2

)
− |E(R(x))|2︸ ︷︷ ︸

=|F(τ)|2=F(τ)2 .

� E

(
|R(x)|2

)
, (14)

where the inequality holds because F 2 � 0 (since F ∈ R). To obtain an upper bound on the variance, we
shall investigate this expression in more detail:

E

(
|R(x)|2

)
=
∑

x

Π(x)|R(x)|2

=
∑

x

|Φ(xL)|2〈x0|G1|x1〉〈x1|G2|x2〉 . . . 〈xL−1|GL|xL〉
L∏

l=1

λb(l)
l

φb(l)
l (xl−1)

φb(l)
l (xl)

=
∑

x

|Φ(xL)|2Q1(x0, x1)Q2(x1, x2) . . .QL(xL−1, xL),

(15)

where in the last equality we defined the non-negative quantity Ql(x, y) ≡ 〈x|Gl|y〉λb(l)
l

φb(l)
l (x)

φb(l)
l (y)

. Exploiting the

Hermiticity of Gb
l , Ql(x, y) can be shown to have the following property:

∑
x

Ql(x, y) =
∑

x

〈x|Gl|y〉λb
l

φb
l (x)

φb
l (y)

=
∑
x∈Sb

l

〈x|Gb
l |y〉λb

l

φb
l (x)

φb
l (y)

=
(
λb

l

)2 〈φb
l |y〉

φb
l (y)

=
(
λb

l

)2 � 1. (16)

Ql(x, y) thus satisfies 0 � Ql(x, y) � 1, ∀ x, y and ∀ l ∈ {1, 2, . . . , L}. By consecutively exploiting the
property in equation (16) for all Ql’s and the normalization property of state |Φ〉 in the expression in
equation (15), we obtain

Var(R(x)) � E

(
|R(x)|2

)
� 1. ⇒ Var(Re(R(x))) � 1. (17)

8
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Algorithm 1. Efficiently obtaining a median-of-means estimate of F(τ ) through sampling of the probability distribution Π(x).

If we take the number of samples |Σ|, and divide them into q subsets s1, . . . , sq of size approximately

|Σ|/q, then (by means of Chebyshev’s inequality) each f j obeys |fj −F| �
√

Var(Re(R(x)))
√

4q/|Σ| �√
4q/|Σ| with probability at least 3/4. Using Hoeffding’s inequality and the definition of the mean, one can

show that (see appendix C):

Pr
(∣∣∣F̂ − F

∣∣∣ �√4q/|Σ|
)
� 1 − e−q/8. (18)

Hence F can be estimated with error ε with probability at least 1 − δ (with q = 8 log(δ−1)) for
|Σ| = Θ(log(δ−1)ε−2), where obtaining each sample takes a number of operations that scales linearly in L
and poly(n). This completes the proof of lemma 2.3. �

Remark. Note that if one would have chosen the empirical mean F̃ = 1
|Σ|
∑

x∈Σ Re(R(x)) as a mean
estimator for F (instead of the median-of-means estimator), then using equation (17) and Chebyshev’s
inequality, we obtain:

Pr
(∣∣∣F̃ − F

∣∣∣ � ε
)
� 1 − Var(Re(F̃))

ε2
� 1 − 1

|Σ|ε2
. (19)

Hence F can be estimated using F̃ with error ε with probability at least 1 − δ, for |Σ| = Θ(δ−1ε−2). Using
the median-of-means estimator thus provides an exponential improvement in the required scaling of |Σ|
with δ−1. Note that if we could upper and lower bound the range of Re(R(x)) by some constants, then we
could have used a Chernoff–Hoeffding bound for the empirical mean F̃ which gives the aforementioned
(exponentially) better dependence of the run-time of the algorithm with δ−1 (as in lemma 2.1 where we do
use a Chernoff–Hoeffding bound).

Remark. Note that the lemma also applies to estimating 〈x|G1G2 . . . GL|x′〉 (with 1/poly(n) accuracy) as
one simply starts the process at x0 = x and R(x) is only nonzero when one arrives at xL = x′. Similarly, one
can estimate 〈Φ1|G1G2 . . . GL|Φ2〉 with 1/poly(n) accuracy, assuming one can sample from |Φ1(x)|2 (or
|Φ2(x)|2) and compute for a given x and y, the ratio Φ2(y)

Φ1(x) . In addition, one can extend the lemma to the case
where the local propagation operators Gl are not Hermitian, but are still nonnegative matrices, see
appendix B.

We stress that lemma 2.3 provides an efficient classical algorithm provided that: for a given x, y ∈ {0, 1}n,
one can efficiently determine Φ(y)

Φ(x) and the state |Φ〉 is such that one can efficiently draw samples from

P(x) = |Φ(x)|2. In many practical settings, |Φ〉 is such that one can define a function f : {0, 1}n → C which
takes as input the n-bit string x, and efficiently outputs the corresponding coefficient Φ(x). This is e.g. the
case for (matrix) product states or for other ansatz classes of states. Then, given x and y, the fraction Φ(y)

Φ(x) can
be efficiently obtained. Note that under this assumption one can set-up a MC scheme based on the
Metropolis algorithm to sample from |Φ(x)|2, although this scheme is only a heuristic strategy and its
efficient convergence would have to be proved. A good class of states to which both lemmas 2.3 and 2.1 apply
are of course product states. Note that even when running the overlap test is too costly (as quantum circuits
are noisy), but preparing the state |Φ〉 is feasible, one could use this preparation to sample from |Φ(x)|2 for

9
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the application of the MC method. Of course the requirement of being able to compute Φ(y)
Φ(x) remains. For

the transverse field Ising model, an example of a |Φ〉 which obeys these conditions will be given in section 4.
Proof of theorems 1.1 and 1.2. We require the Trotterization of e−ikH resp. e−kH into a string of local

propagation operators Gi which are unitary (in lemma 2.1) resp. Hermitian and non-negative (in lemma
2.3). This non-unique decomposition of e−ikH and e−kH into an ordered string of local propagation
operators depends on the Trotterization scheme and is discussed in appendix A (and more extensively in
[8]). The Trotterization gives an error εtrot (in addition to the sampling error ε in lemmas 2.1 and 2.3) and
the number of local propagation operators (for each sample) L in lemmas 2.1 and 2.3 will be

L = poly(n)O
(
Υk1+1/pε

−1/p
trot

)
(for real time) and L = poly(n)O

(
Υk1+1/pε

−1/p
trot

)
(for imaginary time,

provided that M � 4τΥ
(∑

γ‖Hγ‖
)

, where M is the Trotter variable). Υ denotes the number of stages in the

Trotterization scheme of order p, and typically scales exponentially in p (but p is chosen a constant). For
given order p = O(1) of the Trotterization scheme, L in lemma 2.3 thus scales with the length of the time
interval over which the system is simulated as k1+o(1) and k1+o(1), and with the imposed Trotter error as
ε−o(1)

trot . Then, if we wish to estimate gR(k) and gI(k) at multiple k = 0, . . . , K, we use that the probability that
all K estimates are up to uncertainty ε equals unity minus the probability that at least one of the estimates is
beyond ε (which, by the union bound, is at most Kδ).

Finally, before we move on to extracting eigenenergy estimates from the (real-time and imaginary-time)
signals using the ESPRIT method, we prove the lemma related to the signal gD(k) in equation (3).

Lemma 2.4. Let gD(k) be defined as in equation (3) for a local n-qubit Hamiltonian H, with Ej in [0,π], and
assume that (1) one can efficiently (i.e. with poly(n) effort) sample from |Φ(x)|2, and (2) given x and y, one can
compute Φ(y)/Φ(x) efficiently. Then, gD(k) can be classically estimated within error ε with probability at least
1 − δ with [poly(n)]k ×Θ(ε−2 log(δ−1)) classical computational effort.

Proof. By definition of gD(k), we can write

gD(k) =
∑
x,y

|Φ(x)|2 Φ(y)

Φ(x)
〈x|(I − H/2π)k|y〉. (20)

To estimate gD(k), one first draws an x from P(x) = |Φ(x)|2, and then one collects all y which are obtained
after the application of (I − H/2π)k to 〈x|. Each application of I − H/2π maps the input string onto at most
poly(n) new output strings, hence one obtains at most [poly(n)]k such y’s after k applications. Let
x = (xk = y, xk−1, . . . , x1, x0 = x) be a particular path of strings and let

R(x) ≡
∑
y

Φ(y)

Φ(x)
〈x|(I − H/2π)k|y〉

=
∑

x1,...,xk−1,y

Φ(y)

Φ(x)
〈x|I − H/2π|x1〉〈x1|I − H/2π|x2〉 . . . 〈xk−1|I − H/2π|y〉, (21)

so that gD(k) =
∑

x|Φ(x)|2 R(x). For each x that is sampled from P(x), one thus computes and outputs
Re(R(x)) by summing over the contributions from all paths x that start at string x. As in lemma 2.3, we
need to establish how many samples |Σ| we need to draw from P(x) to obtain gD(k) within error ε with
probability at least 1 − δ. This analysis depends on the variance of the complex variable R(x) through
equation (14), requiring us to upper bound

E
(
|R(x)|2

)
=
∑

x

|Φ(x)|2
⎛
⎝∑

y

Φ∗(y)

Φ∗(x)
〈y|(I − H/2π)k|x〉

⎞
⎠
⎛
⎝∑

y′

Φ(y′)

Φ(x)
〈x|(I − H/2π)k|y′〉

⎞
⎠

=
∑

x

〈Φ|(I − H/2π)k|x〉〈x|(I − H/2π)k|Φ〉

= 〈Φ|(I − H/2π)2k|Φ〉 � 1, (22)

where in the final line we have used that the eigenvalues of H lie in [0,π]. As in the proof of lemma 2.3, this
establishes that Var(Re(R(x))) � 1. Then we can use the median-of-means estimator as in the proof of
lemma 2.3 and appendix C to establish that with probability at least 1 − δ, gD(k) can be estimated with error
at most ε, taking |Σ| = Θ(ε−2 log(δ−1)) samples from P(x) = |Φ(x)|2, and with [poly(n)]k computational
effort per sample. �

10
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It is important to note that unlike in lemma 2.3, here we only sample x and compute the rest as the
estimator R(x), while in lemma 2.3 we sample the whole path of length L. This is why the computational
effort in lemma 2.3 is efficient (linear) in L and thus polynomial in k, while in lemma 2.4 the computational
effort is exponential in k. This is thus the difference between the stoquastic Hamiltonian case versus the
general Hamiltonian case. Note also that one can take each Gi in lemma 2.3 to be G = I − H/2π in
principle, as it obeys condition (b) when H is stoquastic.

We note that in [13] the sampling-access assumption is formulated slightly differently, that is, one gets
access to Φ(x) for a given x, which can be stronger than only knowing the ratio Φ(x)/Φ(y) for a given
x and y. In addition, reference [13] allows an additional error in the sampling access whereas we gloss over
this here and assume perfect sampling-access (similar to the exact assumptions in the other lemmas).

3. Classically processing the signal: the ESPRIT method

We turn to discussing the ESPRIT method [25] which is a method like the matrix pencil method [21, 22, 37]
for processing a signal as in equations (1) and (2) consisting of S components. Indeed, suppose a set of
values for the signal g(k),

g(k) =
S∑

j=1

cjz
k
j , (23)

where |zj| � 1, for k ∈ {0, 1, . . . , K}, K even. The goal is to determine the zj and the coefficients cj > 05

using g(k) for sufficiently many k. In case of the real-time signal gR(k), we have zj ≡ e−iEj , in case of a
purely-decaying imaginary-time signal gI(k), we have zj ≡ e−Ej ∈ (e−2π , 1] and for the purely-decaying
signal gD(k) we have zj ≡

(
1 − Ej/(2π)

)
∈ [ 1

2 , 1].
Due to sampling and Trotter noise, one is effectively given a noisy signal y(k) (for k ∈ {0, 1, . . . , K}),

which is related to the original signal g(k) by:

y(k) := g(k) + η(k) =
S∑

j=1

cjz
k
j + η(k), (24)

where η(k) denotes e.g. the sampling and Trotter noise, and we have |η(k)| � εtot in theorems 1.1 and 1.2
with high probability.

It is well-known that for a noiseless signal (η(k) = 0), the zj’s and the cj’s can be resolved perfectly via
ESPRIT and the matrix pencil method if we take K + 1 � 2S. Importantly, this result does not depend on
whether the signal is oscillatory or decaying. For illustration, figure 2 depicts the results of application of the
matrix pencil method to a noiseless signal. We consider separately a decaying signal and an oscillating signal,
and for both cases we depict respectively the estimates of the decay rates and oscillation frequencies as a
function of K. When K + 1 � 2S, the eigenvalues are indeed resolved both for the decaying and the
oscillating signal. When K + 1 < 2S, the eigenvalues are not resolved. We will see however, that in the
presence of noise a decaying or oscillatory signal fares very differently.

Let us consider in more detail the task of obtaining the zj’s from the signal y(k) in equation (24). The key
object of study here is the Hankel matrix H(y) :=H(g) + H(η), containing all K data points of the noisy
signal y(k) and a positive integer ‘matrix pencil’ parameter L:

H(y) =

⎛
⎜⎜⎜⎝

y(0) y(1) . . . y(K − L)
y(1) y(2) . . . y(K − L + 1)

...
...

...
y(L) y(L + 1) . . . y(K)

⎞
⎟⎟⎟⎠

(L+1)×(K−L+1)

=

S∑
j=1

cj

⎛
⎜⎜⎜⎝

1 zj . . . zK−L
j

zj z2
j . . . zK−L+1

j
...

...
...

zL
j zL+1

j . . . zK
j

⎞
⎟⎟⎟⎠+ H(η), (25)

5 Here we focus on determining the z j , but given the z j one can determine the c j as well and methods for analyzing the performance also
exist for this [29].
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Figure 2. Estimates of the decay rates (of a decaying signal) and oscillation frequencies (of an oscillating signal) as a function of
K. The estimates are obtained from applying the matrix pencil method [21, 22, 37] to the noiseless signals g(k) =

∑S
j=1cjzk

j ,

where zj = e−Ej (in the case of the decaying signal) and zj = e−iEj (in the case of the oscillating signal) for k = 0, 1, . . . , K where
Ej ∈ [0, 2π). All cj’s are set equal to 1/S and the Ej’s have been randomly produced. The eigenvalues are recovered for
K + 1 � 2S.

where H(η) is purely due to the noise and has norm ‖H(η)‖. We can decompose the Hankel matrix H(g) of
the noiseless signal in terms of Vandermonde matrices VL:

H(g) =
S∑

j=1

cj

⎛
⎜⎜⎜⎝

1 zj . . . zK−L
j

zj z2
j . . . zK−L+1

j
...

...
...

zL
j zL+1

j . . . zK
j

⎞
⎟⎟⎟⎠

(L+1)×(K−L+1)

= VLCVT
K−L, (26)

where
C ≡ diag(c1, c2, . . . , cS), (27)

and VL is

VL =

⎛
⎜⎜⎜⎝

1 1 . . . 1
z1 z2 . . . zS

...
...

...
zL

1 zL
2 . . . zL

S

⎞
⎟⎟⎟⎠

(L+1)×S

. (28)

In general, methods such as ESPRIT (see the ESPRIT algorithm 2) rely on the parameter L and for
convenience we will keep it general in some of the analysis (specifically in appendix D). Our results will,
however, focus on the choice L = K/2. For L = K/2, we have

H(y) =

⎛
⎜⎜⎜⎝

y(0) y(1) . . . y(K/2)
y(1) y(2) . . . y(K/2 + 1)

...
...

...
y(K/2) y(K/2 + 1) . . . y(K)

⎞
⎟⎟⎟⎠

(K/2+1)×(K/2+1)

(29)

and
H(g) = VK/2CVT

K/2 ∈ C
(K/2+1)×(K/2+1). (30)

Making contact with error bounds in the previous section, we see that (for L = K/2)

∀ k, η(k) � εtot ⇒ ‖H(η)‖ = σmax(H(η)) � ‖H(η)‖F � Kεtot. (31)

From the ‘Vandermonde decomposition’ in equation (26) of the Hankel matrix encoding a real-time or
imaginary-time signal, one can develop numerical algorithms to extract the decay rates zi. One such

12
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Algorithm 2. ESPRIT algorithm.

Data: Time signal y, number of decay rates or oscillation frequencies S
Result: List z̃1, . . . , z̃S

K ← length(y); /∗ We will assume K is even for simplicity ∗/
L ← K/2; /∗ Not the most general choice, however it works well in practice ∗/
H(y) ← Hankel matrix built from y;
Ũ , Σ̃, W̃ ← SVD(H(y)); /∗ Make sure Σ̃ is decreasingly ordered ∗/
ŨS ← First S columns of Ũ ; /∗ Remember Ũ is a(L + 1) × (L + 1)unitary matrix ∗/
Ũ0 ← First L rows of ŨS;
Ũ1 ← Last L rows of ŨS;
Ψ̃← Ũ+

0 Ũ1; /∗ Make S × S signal matrix Ψ̃,+denotes Moore-Penrose inverse ∗/
z̃1, . . . , z̃S ← eigenvalues of signal matrix Ψ̃

algorithm is ESPRIT (given in algorithm 2), which specifically exploits the relation between the
Vandermonde decomposition of H(y) and its singular value decomposition.

We will see that this algorithm comes with recovery guarantees on the parameters z1, . . . , zS, in both the
real-time and imaginary-time signal case, provided the noise vector η is small enough. The strength of these
guarantees differs significantly between the two types of signal, and we will discuss them separately in the
next sections. From the z̃j’s we can then (for both the real-time and imaginary-time signal) extract Ẽj’s,
which denote the S estimates for {Ei ∈ [0, 2π)}S

i=1 returned by the classical post-processing algorithm. The
error in the energy estimates is set as the optimal matching distance [3]

d({Ei}, {Ẽj}) =
1

2π
min

π∈PermS
max

j
|Ẽπ(j) − Ej|, (32)

i.e. the returned list is optimally matched with the actual eigenvalues and the error is set by the largest
mismatch.

3.1. Real-time (oscillatory) signal
In this section we discuss the performance of ESPRIT on real-time (oscillatory) signals. This performance
has been well studied in the signal processing literature. Here, we will follow the analysis of [25], which
provides theorem 3.1 relating ‖H(η)‖ in equation (31) and the energy matching error defined in
equation (32).

The performance of ESPRIT in the oscillatory signal case relies on lower bounding the smallest nonzero
singular value of the Vandermonde matrix VL=K/2 in equation (28), (or similarly upperbounding the
condition number κ(VK/2) = σmax (VK/2)/σmin (VK/2)). The smallest nonzero singular value of the
Vandermonde matrix VK/2 will depend on K, S and the location of the poles zj. For the real-time signal, the
zj lie on the unit circle whereas for the imaginary-time signal the zj lie in the interval (e−2π , 1]. Let the
minimal gap between the Ei be defined as

Δ =
1

2π
min
j�=k

|Ej − Ek|. (33)

It has been proved [29] for zj = e−iEj that

Δ � C

K
⇒ σ2

min(VK/2) � C − 1

C
K , (34)

for some constant C > 1. Note that if there are S eigenvalues Ej ∈ [0, 2π) in the signal, it is clear that the
minimal gap Δ � 1/S, hence one should at least take K � CS. Based on this bound, theorem 4 in [25] says:

Theorem 3.1. ([25]). Let (g + η)(k) be a real-time signal with k = 0, . . . , K, and with g(k) =
∑S

i=1cizk
i ,

ci > 0∀ i, cmin = mini ci and η(k) a small noise vector. Let zj = e−iEj with j = 1, . . . , S and Ej ∈ [0, 2π) ∀ j, and
K � 2C/Δ for some constant C > 2 with gap Δ, and K + 1 � 2S. If

‖H(η)‖ � cminKh1(S, C, K), (35)

with

h1(S, C, K) =
C − 1

8
√

2SC

√
1 − 2CS

(C − 1)K
, (36)

then the ESPRIT algorithm outputs energy estimates {Ẽj} with distance

d({Ei}), {Ẽj}) � ‖H(η)‖c−1
minK−1h2(S, C, K), (37)
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with

h2(S, C, K) = 40
√

2S2

(
C

C − 1

)3/2(
1 − 2CS

(C − 1)K

)−1

. (38)

By equation (31) we have ‖H(η)‖ � Kεtot and if we choose K ∼ S, εtot can be chosen sufficiently small,
inversely polynomial with S, such that at least equation (35) holds. Then d({Ei}), {Ẽj}) will be Θ(‖H(η)‖S),
hence decreasing like S2εtot.

If we combine this theorem with the quantum results of theorem 1.1, then we obtain theorem 1.3. These
results thus form the theoretical underpinning of the ideas and numerical work in [32] in which QPE was
replaced by the repeated execution of a circuit applying controlled-Uk (conditioned on an ancilla qubit state)
which gets Trotterized to the overlap test circuit in figure 1.

Remark. It is noteworthy that even when the eigenvalues Ej are not well-separated but occur in ‘clumps’,
results exist [25] which bound the performance of ESPRIT.

3.2. Imaginary-time (decaying) signal
Let us now discuss what information can be extracted from the imaginary-time signal in the presence of
sampling and Trotter noise and compare this to the known theorem 3.1 for the real-time signal.

In appendix D we discuss in detail the recovery guarantees for ESPRIT for imaginary-time signals. This
analysis is an adaptation of the work done in [25] for real-time signals, with the only true novelty being
lemma D.7. However, since no rigorous analysis for imaginary-time signals exists in the literature we go
through all the steps in considerable detail. The analysis will again depend on the condition number of the
Vandermonde matrix VL=K/2 in equation (28).

This condition number is much worse behaved, i.e. much larger, in case the zi’s all lie on the real
axis—which is the case for the imaginary-time signal—but bounds on this condition number do exist [2].
Based on the work of Gautschi [12], we derive our own upper bounds on this condition number, which are
asymptotically sub-optimal but have a clearer dependence on the choice of K and the given S than previous
bounds in [2]. We then use the gap Δ to fill in the upper bound.

In analogy to theorem 3.1, we then obtain the following:

Theorem 3.2. Let (g + η)(k) be an imaginary-time decaying signal with k = 0, . . . , K, and with
g(k) =

∑S
i=1cizk

i , ci > 0, ∀ i, cmin = mini ci, and η(k) a small noise vector. Let zi = e−Ei with Ei ∈ [0, 2π) and
given eigenvalue gap Δ < 1 in equation (33), and {Ẽi} the energy estimates of ESPRIT with L = K/2. Let
K + 1 � 2S, K even and K = TS for some positive integer T. If we have

‖H(η)‖ � cmin√
K

g1(S,Δ), (39)

with

g1(S,Δ) =
1

32S2
(e−2ππΔ)3(S−1), (40)

then
d({Ẽi}, {Ej}) � ‖H(η)‖c−1

minK
√

Kg2(S,Δ), (41)

with
g2(S,Δ) = e2π640

√
2S5.5(e−2ππΔ)−5(S−1). (42)

Since the dependence on S is exponential in equation (41), one cannot make the distance d({Ẽi}, {Ej})
small when the number of eigenvalues S = poly(n), no matter what the gap. This is a crucial difference with
the oscillatory real-time case. However, for S = O(1), with sufficient, poly(n), effort one can make ‖H(η)‖
sufficiently small to obey equation (39) and then reduce the error on the found eigenvalues to 1/poly(n).
This assumes that the gap between the O(1) rescaled eigenvalues present in the initial state is at least
1/poly(n) (and not exponentially small in n).

Furthermore, given that ‖H(η)‖ should decrease at least as ∼1/
√

K through equation (39) but the upper
bound in equation (41) scales as ‖H(η)‖K3/2, one obtains the optimal bound by choosing the minimal K,
namely K = 2S, so that L = K/2 = S. In this case the Vandermonde matrix VL−1 = VS−1 is square6. This
expresses the intuitive fact that increasing K will not help beyond a point, as for larger K the signal simply
dies out. This is unlike the oscillatory case of theorem 3.1 in which the optimal K is required to grow with
1/Δ. Here the bound does not require that K grows with 1/Δ, so there is no ‘super-resolution’. We note that
the upper bounds may have a sub-optimal dependence on K and S, which is due to the proof techniques.

6 Hence, strictly speaking lemma D.11 is not much of a help.
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Practically (roughly) speaking, whenever the condition number of the Vandermonde matrix VL=K/2 grows
by choosing a larger K, choosing that larger K can be beneficial.

For the other decaying signal (gD(k)), a rather small change from zi = exp(−Ei) to zi = 1 − Ei/2π gives:

Theorem 3.3. Let (g + η)(k) be a decaying signal with k = 0, . . . , K, and with g(k) =
∑S

i=1cizk
i , ci > 0, ∀ i,

cmin = mini ci, and η(k) a small noise vector. Let zi = 1 − Ei/2π with Ei ∈ [0,π] and given eigenvalue gap
Δ < 1 in equation (33), and {Ẽi} the energy estimates of ESPRIT with L = K/2. Let K + 1 � 2S, K even and
K = TS for some positive integer T. If we have

‖H(η)‖ � cmin√
K

g̃1(S,Δ), (43)

with

g̃1(S,Δ) =
1

32S2
Δ3(S−1), (44)

then
d({Ẽi}, {Ej}) � ‖H(η)‖c−1

minK
√

Kg̃2(S,Δ), (45)

with
g̃2(S,Δ) = 640

√
2S5.5Δ−5(S−1). (46)

Now to argue theorem 1.5 from theorem 3.3, we simply choose the minimal K = 2S, and since S = O(1),
it implies that the classical algorithm which estimates gD(k) for k = 0, . . . , K(= O(1)) within error ε using
lemma 2.4 requires poly(n) effort.

4. Spectral estimation for a transverse-field Ising chain

In this section, we numerically investigate the methods described thus far by applying them to an archetypal
stoquastic Hamiltonian: the transverse field Ising chain. This system has been extensively studied [36] and
will serve as a proof-of-principle test. The system consists of qubits on a one-dimensional lattice, which
interact via an Ising interaction and are exposed to an external magnetic field in the transverse direction. The
Hamiltonian associated with this system is:

H = −J

(∑
i

ZiZi+1 + g
∑

i

Xi

)
, (47)

where X, Y, Z denote the Pauli matrices, J > 0 (for a ferromagnetic interaction) and g � 0, so that H is
term-wise stoquastic in the standard basis. We take the field to be pointing in the x-direction without loss of
generality7.

The system exhibits an abrupt change in the ground state of the system as a function of g at g = 1 (for
n →∞). On either side of the phase transition, one has:

• Strong-coupling limit (g � 1). In this limit, the Hamiltonian is dominated by the magnetic field
terms and the ground state is given by |ψ0〉 ≈ |+〉⊗n. The p-particle excitations correspond to states
|−〉q1 |−〉q2 . . . |−〉qp

∏
i�=q1,q2,...,qp

|+〉i, i.e., the ground state with spin flips at p sites q1, . . . , qp along the

chain. These p-particle excited states are
(

n
p

)
-fold degenerate.

• Weak-coupling limit (g � 1). In this limit, the Hamiltonian is dominated by the Ising interaction
terms and the (degenerate) ground state is given by either |ψ0〉 ≈ |0〉⊗n or |ψ0〉 ≈ |1〉⊗n (ferromagnetic
phase). The excitations w.r.t. the ground state correspond to domain walls separating ferromagnetic
regions of opposite spin.

To run the MC scheme described in lemma 2.3, the imaginary-time propagation operator e−kH must be
decomposed (by means of Trotterization) in terms of the local propagation operators e−alk/MHi (where al and
M are set by the Trotterization scheme)8. The local propagation operators acting on a subset of two qubits on

7 The Hamiltonian can be transformed to H̃ = UHU† by the unitary transformation U =
⊗

i exp
(

iθZi
2

)
, which alters the direction of

the field in the transverse plane while preserving the spectrum.
8 We note that the numerical results presented in this section are obtained using a first-order Trotter decomposition.
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the chain are given by:

e−k̃Hi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sinh(λk̃)√
1 + g2

+ cosh(λk̃) 0
g sinh(λk̃)√

1 + g2
0

0
− sinh(λk̃)√

1 + g2
+ cosh(λk̃) 0

g sinh(λk̃)√
1 + g2

g sinh(λk̃)√
1 + g2

0
− sinh(λk̃)√

1 + g2
+ cosh(λk̃) 0

0
g sinh(λk̃)√

1 + g2
0

sinh(λk̃)√
1 + g2

+ cosh(λk̃)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (48)

where λ = J
√

1 + g2 and k̃ = alk/M. This operator is element-wise non-negative and can be efficiently
brought to bock-diagonal form (with each block being irreducible).

Since the choice of |Φ〉 directly governs which eigenvalues can be obtained from the real-time and
imaginary-time evolution signals, it is a point of particular importance. In addition, the ability of
ESPRIT to extract eigenvalues from the imaginary-time and real-time signals depends very strongly on the
spectral gap between the eigenvalues in the signal. We consider a state |Φ〉 which has considerable overlap
with the ground state and the (n-fold degenerate) first excited state in the (g > 1)-regime. Since the gap
between their associated eigenvalues increases monotonically as a function of g in this regime, this
allows us to present the aforementioned gap dependence numerically. We shall call the state |Φoptimal〉
since in the (g � 1)-regime it optimally overlaps with the eigenstates of interest, i.e. |〈+⊗n|ψp=0〉|2 =∑n

q=1|〈+⊗n|ψp=1,q〉|2 = 1
2 . This state is given by:

|Φoptimal〉 =
1√
2

⎛
⎜⎜⎜⎜⎜⎝

n∏
i=1

|+〉i︸ ︷︷ ︸
|ψp=0〉

+

n∑
q=1

1√
n
|−〉q

∏
i�=q

|+〉i

︸ ︷︷ ︸
|ψp=1,q〉

⎞
⎟⎟⎟⎟⎟⎠

=
1

2(n+1)/2

n∑
q=1

⎛
⎝((1

n
+

1√
n

)
|0〉q +

(
1

n
− 1√

n

)
|1〉q

) ∑
x∈{0,1}n−1

|x〉

⎞
⎠,

(49)

where
∑

x∈{0,1}n−1 |x〉 denotes an equal superposition of (n − 1)-bit strings that exclude the bit in register q.

We note that for |Φoptimal〉, one can efficiently obtain Φ(y)
Φ(x) for a given x, y ∈ {0, 1}n and one can

efficiently sample from |Φ(x)|2: from equation (49), one can infer a function Φ(x) ({0, 1}n → R) that
(efficiently) gives the coefficient of the state |Φoptimal〉 associated with an n-bit string x: Φ(x) = 1/2(n+1)/2((

1
n + 1√

n

)(
n − |x|

)
+
(

1
n − 1√

n

)
|x|
)

, so Φ(x) only depends on the Hamming weight |x| of bit string x, i.e.

the quantity Φ(y)
Φ(x) can be efficiently determined. Furthermore, since Φ(x) only depends on n and |x|, the

distribution |Φ(x)|2 also depends solely on these quantities. This implies that one can indeed efficiently
sample from this distribution: first, one draws a Hamming weight |x| from the distribution
|Φ(x)|2 = |Φ(|x|)|2. Then, given |x|, one constructs at random an n-bit string with this Hamming weight.
This latter step can be efficiently implemented by starting from some n-bit string with Hamming weight |x|
(such as {1}|x|{0}n−|x|) and then applying a random permutation.

4.1. Numerical method and results
We briefly discuss the details of the numerical analysis that is used to obtain the results presented in this
section. We use the MC and quantum algorithms (where the latter is inefficiently implemented on a classical
computer), which are presented in section 2 and summarized in theorems 1.2 and 1.1, to obtain resp. the
imaginary-time and real-time evolution signals for the transverse-field Ising chain. We note that here we
estimate the imaginary-time evolution signal using the empirical mean estimator, instead of the
(asymptotically superior) median-of-means estimator. Having obtained these signals, we obtain estimates of
the eigenvalues using the filtered ESPRIT method: this method corresponds to algorithm 2 in combination
with an additional filtering step. This additional step is required since in principle the number of
components in the signal S is not known a priori in the current setting. Therefore, we construct the matrix
ŨS (in algorithm 2) by taking the first S columns of Ũ , where S is now the number of singular values in the
SVD of the Hankel matrix H(y) that exceed TFσmax. TF denotes what we call a truncation factor, and σmax

denotes the largest singular value of H(y). In this way, the number of components in the signal emerges from
the analysis of its Hankel matrix, rather than being a quantity that is known beforehand. By implementing
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Figure 3. The evolution of the states |+〉⊗n (in (a)–(c), for which the ground state is the dominant component in the signal) and
|Φoptimal〉 (in (d)–(f), for which the ground state and first excited state are the dominant components in the signal) for n = 7 and
g = 4 in imaginary time (in (a) and (d)) and in real time (in (b), (c), (e) and (f)). The signals in (a) and (d) are obtained
through the MC scheme of theorem 1.2. The signals in (b), (c), (e) and (f) are obtained through the quantum algorithm of
theorem 1.1 (which is inefficiently implemented on a classical computer). The Trotter variable is taken to be M = 100 and |Σ| is
set to be 4200.

the remainder of algorithm 2 as usual, we obtain estimates of the zj’s. From these estimates of the zj’s, we
obtain the spectral estimates Ẽj for the quantum algorithm and for the MC algorithm.

Note that this approach of including a filtering step—which often resembles more closely the practically
encountered scenario when running the algorithms from lemmas 2.1 and 2.3—differs from that considered
in theorems 3.1 and 3.2, where the number of components S in signals is known beforehand. Here, S is a
quantity emerging in the analysis and it can even generally occur that components of the signal with very
small coefficients—corresponding to eigenstates with very small overlap with |Φ〉—are filtered out.

In the results presented in this section, note that the real-time and imaginary-time increments have been
chosen such that all Ej that are present in the signals lie in [0, 2π). This does not mean that the whole
spectrum of the Hamiltonian lies in [0, 2π), as the majority of its eigenvalues will not be present in the
signals.

We note that for the quantum algorithm, the parameters {zj} have unit norm. However, due to finite
sampling, one determines a noisy version of the signal gR(k), resulting in estimated eigenvalues of the
Trotterized unitary having norms that slightly deviate from unity. To ensure that the estimates Ẽj are
real-valued, we take them to be the real parts of i log(z̃j).

The code that is used to obtain the numerical results presented in this work can be found at [41].
In figure 3, the MC signals 〈Φ|e−kH|Φ〉 and the real and imaginary parts of the quantum algorithm

signals 〈Φ|e−ikH|Φ〉 for |Φ〉 = |+〉⊗n and |Φoptimal〉 are depicted.
The upper three figures correspond to |Φ〉 = |+〉⊗n. For this choice of |Φ〉, the signals are clearly

dominated by a single eigenvalue (the ground state eigenvalue): the MC signal decays with a single decay rate
and the quantum algorithm signals oscillate with a single frequency. For the quantum algorithm signals,
there are also higher-frequency components visible (due to |+〉⊗n not having overlap with only the ground
state).

For the lower three figures, we take |Φ〉 = |Φoptimal〉. For this choice of |Φ〉, there are two eigenvalues
present in the signals (the ground state and first excited state eigenvalues). For the MC signal, the excited
state eigenvalue can be seen to die out within a few units of time, after which only the ground state
component is left. The quantum algorithm signals can be seen to be composed of a high-frequency
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Figure 4. Spectral estimates of the ferromagnetic Ising chain in a transverse field (for n = 7) obtained through analysis of the
evolution of |Φoptimal〉. Plots (a) and (b) depict the spectral estimates (together with the true spectrum) obtained through the
quantum algorithm and the MC algorithm for |Σ| = 4200 and M = 100 for several values of K. Plots (c) and (d) and plots (e)
and (f) depict the relative error of the spectral estimates—i.e. |Ẽj − Ej|/Ej —for the resp. ground state and excited state
eigenvalues at g = 4, for M = 400 and as a function of |Σ|. The truncation factor is taken to be TF = 0.02 throughout. The
scaling of the error of the ground-state eigenvalue estimates is similar for both methods, while the error for excited-state
eigenvalue is larger for the MC algorithm than for the quantum algorithm. The excited-state eigenvalue estimates also converge
more quickly as a function of K for the quantum algorithm.

(excited-state) component superposed on the ground-state component, where the excited-state component
now obviously does not die out.

We now consider the spectral estimates that are obtained by applying ESPRIT to the evolution signals
that are produced by the quantum algorithm (from theorem 1.1) and MC algorithm (from theorem 1.2). In
particular, we determine both time evolution signals at a given total number of measurement points in
real/imaginary time. We then determine the spectral estimates from both signals for increasing K, by
including step-by-step more of the total number of measurement points in the analysis9. The truncation
factor TF is taken to be equal to 0.02 throughout.

The top two plots in figure 4 depict, for a given |Σ|, the eigenvalue estimates as a function of g and for
several values of K. For both the quantum algorithm and MC algorithm estimates, it is clear that a smaller
spectral gap indeed requires a larger K for the eigenvalues to be obtained accurately. Furthermore, for a given
|Σ| and K, it is clear that the error of the estimate for the excited-state eigenvalue obtained from the
imaginary-time signal is larger than that obtained from the real-time signal. We conclude furthermore that,

9 For K = 2; k = 0, 1, 2. For K = 4; k = 0, 1, 2, 3, 4 etc.
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in line with theorems 3.1 and 3.2, increasing K beyond a certain threshold does not necessarily reduce the
error of the eigenvalue estimates.

It is apparent that as one approaches the g = 1 point, more higher-lying eigenvalues emerge from the
ESPRIT analysis. This is especially true for the quantum algorithm (note that for the MC signal, the larger
the eigenvalues are, the quicker the associated components in the signal die out). The appearance of these
higher-lying eigenvalues can be attributed to the fact that (for finite n) the state |Φoptimal〉 starts to have
significant overlap with states other than the two lowest-energy eigenstates in this regime.

The middle two and bottom two plots in figure 4 depict the relative error of the spectral estimates—i.e.
|Ẽj − Ej|/Ej —for resp. the ground-state eigenvalue and excited-state eigenvalue (at fixed g = 4). We consider
a range of values for |Σ|. For the ground-state eigenvalue, the scaling of the relative errors as a function of
|Σ| is similar for the quantum algorithm and the MC algorithm. Clearly, the relative errors of the
excited-state eigenvalue estimates for the quantum algorithm are smaller than those for the MC algorithm.

We have also implemented the matrix pencil method in [18, 21] to estimate the eigenvalues from the
real-time and imaginary-time signals. The only significant difference that was found between the estimates
obtained through the ESPRIT method and through this matrix pencil method is that—in the
(K < 2S)-regime—the matrix pencil method outputs estimates which resemble an average of the
eigenvalues in the signal (as can be seen in figure 2 in a noiseless setting), while this is not the case generally
for the ESPRIT method.

5. Discussion

We have considered the problem of obtaining (some) eigenvalues of local stoquastic—i.e.
sign-problem-free—Hamiltonians and general local Hamiltonians H by means of tracking the evolution of
the system state, differentiating between the evolution of the system state in real time and imaginary time. In
both cases, we examine the use of the matrix pencil ESPRIT method in extracting eigenvalues of H from the
state evolution signal. The real-time (oscillating) evolution signal is obtained through running quantum
circuits, while the imaginary-time (decaying) signal for local stoquastic Hamiltonians is obtained through a
MC scheme (developed in this work) that is implemented in a computationally tractable manner classically.
Another type of decaying evolution signal—from which the ESPRIT method can extract eigenvalues of
H—is obtained through a classical method for general local Hamiltonians that is similar in spirit to
‘dequantization’.

We have invoked some known performance bounds of the ESPRIT method for the real-time signal and
applied and extended bounds for the imaginary-time signal. Our bounds suggest that the ESPRIT method
(or matrix pencil methods more generally) performs—not surprisingly—worse in extracting (multiple)
eigenvalues from an imaginary-time decaying (MC algorithm) signal than from a real-time oscillating
(quantum algorithm) signal in the presence of noise. However, we show that if the input state contains
S = O(1) eigenstates and the spectral gap is at least 1/poly(n), and the right access to the input state is
available, the associated eigenvalues can be resolved efficiently (with poly(n) classical effort) for local
stoquastic as well as for general local Hamiltonians. Even though for S = O(1), the classical effort for
stoquastic as well as general Hamiltonians is poly(n), the ‘brute-force’ algorithm for general Hamiltonians
(in lemma 2.4) incurs an exponential cost in k in estimating the signal gD(k), while for stoquastic
Hamiltonians the cost is polynomial in k. Despite this difference in cost, the error bounds for the eigenvalue
estimates obtained here through analysis of the ESPRIT method applied to a decaying signal (gD(k) or gI(k))
suggests that letting k grow as some function of n will generally not help.

Even though our results show that for these Hamiltonians, for an input state supported on S = O(1)
eigenvalues (separated by an at least 1/poly(n) gap), these eigenvalues can be estimated with poly(n) classical
effort, it remains to be better understood how practical this MC method for stoquastic Hamiltonians or the
‘dequantization’ method in lemma 2.4 are. The upper bounds for the errors on the eigenvalue estimates in
theorem 3.2 grow rather fast with S (and the computational effort grows fast with k in lemma 2.4 for general
local Hamiltonians), and it is not clear how much one can improve, say, the ESPRIT bounds.

Indeed, it would be interesting to show that the current bounds of ESPRIT for the imaginary-time
decaying signal cannot be improved upon. There are definitely known negative results on the condition
number of Vandermonde matrices [34], but there might be signal extraction algorithms that have better
practical performance on decaying signals, or have looser requirements (such as the requirement that all data
is evenly spaced). However, we suspect that the difficulty gap we observe between real-time and
imaginary-time signal is universal. One possible way to argue this is through the Cramer–Rao bound (which
has been analysed for real-time signals [40] but not for imaginary-time signals), which is a question we leave
for further research.
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In terms of numerical results, we find that: for a given spectral gap and sample size, the ability to
distinguish between two eigenvalues indeed depends on the number of measurement points K at which the
real-time and imaginary-time evolution signals are evaluated. The MC algorithm for stoquastic
Hamiltonians and the quantum algorithm (in combination with the ESPRIT method) lead to a similar
scaling of the relative error of the ground-state eigenvalue as a function of the sample size. However, for an
excited-state eigenvalue, the quantum algorithm leads to significantly smaller relative errors than the MC
algorithm. More extensive numerical studies, also of models other than the transverse-field Ising chain, may
shed further light on whether the MC + ESPRIT method is useful in practice. For frustrated stoquastic
Hamiltonians, even the smallest eigenvalue may lead to a fast decaying signal, requiring small sampling error
and Trotter error in practice.

As for other directions of further research, one can ask whether a hybrid approach in which
imaginary-time data from an error-free MC algorithm can strengthen the use of real-time data from a
quantum algorithm obtained from a noisy quantum circuit. This approach requires combining the data
where the poles/nodes zj = e−iEj on the unit circle each have a partner pole z′j = e−Ej (or z′j = I − Ej/2π) on

the real axis. If the effect of noise can be modeled zj = e−iEj → eiEj−γ [32], then the imaginary-time data may
help in extracting the values for Ej. It may also be of interest to consider the case of sampling k for both the
quantum circuit and MC method at random (instead of picking k = 0, 1, . . . , K). Another direction of
further research is the following. Suppose the input state has overlap with S (here not necessarily O(1))
eigenstates of the Hamiltonian, one could assess how well the ESPRIT methods succeeds in extracting e.g.
the ground-state eigenvalue by filtering out all other components in the real-time or imaginary-time
evolution signals. Another rather different direction of further research is the estimation of low-lying
eigenvalues of Laplacian matrices of graphs (which relate to the connectivity of the graph), where we note
that Laplacian matrices are stoquastic.
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Appendix A. Trotterization

Suppose H =
∑N

i=1Hi (where N = O(poly(n))) represents a k-local Hamiltonian of a quantum system.
{Hi}N

i=1 is generally a set of non-commuting terms but can be divided into subsets, such that within each
subset all terms commute. For a given set {Hi}N

i=1, we denote the minimum possible number of these
subsets by Γ. This number of subsets is at most N and equals 1 in the trivial case where all Hi’s commute
with each other. The Hamiltonian H can thus be decomposed as H =

∑Γ
γ=1Hγ , where all Hγ do not

commute with each other, but the terms of which each individual Hγ is composed do commute. Choosing a
decomposition into the minimum number of subsets brings about an additional advantage of
parallelizability when implementing the evolution of the systems in imaginary or real time.

The following lemma (adaptation from [8]) upper bounds the errors of implementing imaginary-time
and real-time state evolution through a first-order Trotter decomposition.

Lemma A.1. First-order Trotter decomposition. Given a k-local Hamiltonian H =
∑N

i Hi. Furthermore,
suppose the set {Hi}N

i=1 can be divided into a minimum of Γ subsets {Hγ}Γγ=1, such that within each

individual subset all Hi’s commute. Then the quantities

∣∣∣∣〈Φ|e−itH |Φ〉 − 〈Φ|
(∏

γe−it Hγ/M
)M

|Φ〉
∣∣∣∣ and
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Figure A1. Absolute Trotter error (imposed on the signal estimate) as a function of the Trotter variable M for the
imaginary-time and real-time signals. The noisy (|Σ| = 200) and Trotterized versions of 〈Φ|e−τH|Φ〉 and 〈Φ|e−itH|Φ〉 for a
ferromagnetic Ising chain in a transverse field (for g = 4 and n = 8) are evaluated at τ = t = 3 and several values of M. The
Trotterization schemes are first-order N-term and first-order Γ(= 2)-term schemes. The associated error bounds are included in
matching colors.

∣∣∣∣〈Φ|e−τH |Φ〉 − 〈Φ|
(∏

γ e−τHγ/M
)M

|Φ〉
∣∣∣∣ (where |Φ〉 is a normalized state and t, τ ∈ R+) are bounded as

follows:

∣∣∣∣∣∣〈Φ|e−itH |Φ〉 − 〈Φ|
(∏

γ

e−itHγ/M

)M

|Φ〉

∣∣∣∣∣∣ �
Γ−1∑
γ′=1

∑
γ>γ′

‖[Hγ′ , Hγ]‖ t2

2M
, (A.1a)

∣∣∣∣∣∣〈Φ|e−τH |Φ〉 − 〈Φ|
(∏

γ

e−τHγ/M

)M

|Φ〉

∣∣∣∣∣∣ � 3 e2
Γ−1∑
γ′=1

∑
γ>γ′

‖[Hγ′ , Hγ]‖ τ 2

2M
, (A.1b)

where the second inequality holds provided that
∣∣∣∣e−τH/M

∣∣∣∣ � 1,
∣∣∣∣e−τHγ/M

∣∣∣∣ � 1 (∀ γ) and
τ
(∑

γ‖Hγ‖
)

M � 1,
and M denotes the Trotter variable.

To obtain a better scaling of the errors as a function of the Trotter variable M, one can employ
higher-order Trotter decompositions. We denote the pth-order approximants of e−itH/M and
e−τH/M by TM(p, t) and TM(p, τ), respectively. We denote

∣∣〈Φ|e−itH |Φ〉 − 〈Φ|TM(p, t)M|Φ〉
∣∣ and

|〈Φ|e−τH |Φ〉 − 〈Φ|TM(p, τ)M|Φ〉| by εtrot. In [8], it was shown that, for general p, εtrot is upper bounded as
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follows:

εtrot � O
(
αtp+1/Mp

)
, for real-time evolution, (A.2a)

εtrot � O
(
ατ p+1/Mp

)
, for imaginary-time evolution, (A.2b)

where α =
∑Γ

γ1,γ2,...,γp+1=1‖[Hγp+1 , . . . , [Hγ2 , Hγ1 ] . . .]‖ (α1/p is typically poly(n)) and equation (A.2b)

holds provided that 4τΥ
(∑

γ‖Hγ‖
)
/M � 1 (where Υ corresponds to the number of stages of the Trotter

decomposition and typically scales exponentially in p)10. In [42], a widely used scheme is discussed for
constructing pth-order approximants.

It is important to consider the total number of k-local propagation operators L required to simulate
e−itH and e−τH (for a given order p and Trotter variable M). For the scheme in [42], the number of these
k-local propagation operators required to be implemented for the simulation of e−itH and e−τH for p > 1 is

L = 2MN5
p
2 −1 (and for p = 1 is MN). If one wishes to obtain a given εtrot, the number of k-local

propagation operators into which the evolutions are decomposed scales as L = poly(n)O
(
Υt1+1/pε

−1/p
trot

)
(for real time) and L = poly(n)O

(
Υτ 1+1/pε

−1/p
trot

)
(for imaginary time). We thus conclude that for large p

(i.e. high-order decompositions), L scales approximately linearly in the evolution time of the system under
consideration (for real-time and imaginary-time evolution).

In figure A1, we have depicted the absolute error of noisy MC (imaginary-time) and QPE (real-time)
signals at fixed τ = t as a function of M, obtained through first-order N-term and Γ(= 2)-term
Trotterization schemes. We have included the first-order Trotter error bounds. We note that the apparent
drastic increase in noise magnitude as a function of M is primarily due to the fact that the absolute error
decreases as a function of M and is plotted on a logarithmic scale.

Appendix B. Extension to non-Hermitian propagation operators

In this Appendix we prove the following lemma, extending lemma 2.3:

Lemma B.1. Let F ≡ 〈Φ|G1G2 . . .GL|Φ〉, where:

(a) |Φ〉 =
∑2n

x=1Φ(x)|x〉 is a normalized state of n qubits where Φ(x) ∈ C (∀ x) and
∑

x|Φ(x)|2 = 1. We
assume that (1) Φ(y)

Φ(x) can be efficiently (poly(n)) calculated for a given x and y and (2) we can efficiently

draw samples from the probability distribution P(x) = |Φ(x)|2.

(b) Each Gl is a k-local (possibly non-Hermitian) element-wise nonnegative matrix with singular values in
(0, 1].

F can be estimated within error ε with probability at least 1 − δ with a classical MC algorithm with runtime
poly(n) ×Θ(ε−2δ−1) × Θ(L).

Proof. In addition to the n-qubit register, we exploit a single ancillary qubit. The matrices Gl are still
element-wise non-negative. The state |a〉 denotes the state of the single ancillary qubit. By making use of the
single ancillary qubit, the propagation operators can be symmetrized as follows:

Fl ≡

⎧⎨
⎩

Gl ⊗ |0〉〈1|+ G†
l ⊗ |1〉〈0|, if l is odd

Gl ⊗ |1〉〈0|+ G†
l ⊗ |0〉〈1|, if l is even.

(B.1)

In this form, Fl (the ‘new’ propagation operator) is element-wise non-negative, k + 1-local and Hermitian
and hence one can apply lemma 2.3 to 〈Φ|F1F2 . . . FL|Φ〉, provided that its eigenvalues lie in (0, 1]. The
eigenvalues λ of Fl (for l odd) can be found by solving:

det

(
−λ𝟙 Gl

G†
l −λ𝟙

)
= det

(
λ2𝟙− GlG

†
l

)
= det

(
GlG

†
l − λ2𝟙

)
= 0, (B.2)

where we have used that G(†)
l commutes with 𝟙 and that G(†)

l is of even dimensionality. The eigenvalues of

the Hermitian and positive semi-definite matrix GlG
†
l are thus equal to λ2. Since the singular values of Gl

are equal to the square root of the eigenvalues of GlG
†
l , the eigenvalues of Fl will lie in (0, 1] if the singular

values of Gl lie in (0, 1]. This can be similarly shown for l even and this statement thus holds for all l.

10 In the remainder of this discussion it is assumed that this condition is satisfied.
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What is left to prove is that estimating the signal for the string of Fl’s is equivalent to estimating the
signal for the string of Gl’s. Specifically, we want to prove the following identity: G1G2 . . . GL =

〈0|F1F2 . . . FL|L mod 2〉, for L ∈ Z+. This is done below by means of induction.

• For L = 1:
〈0|F1|1〉 = 〈0|

(
G1 ⊗ |0〉〈1|+ G†

1 ⊗ |1〉〈0|
)
|1〉

= G1〈0|0〉〈1|1〉+ G†
1〈0|1〉〈0|1〉

= G1,

(B.3)

• Assuming G1G2 . . . GL = 〈0|F1F2 . . . FL|L mod 2〉 holds for L, it holds for L + 1 as well:
Making use of the definition in equation (B.1), we write FL+1 as follows:

FL+1 = GL+1 ⊗ |L mod 2〉〈L + 1 mod 2|+ G†
L+1 ⊗ |L + 1 mod 2〉〈L mod 2|. (B.4)

The quantity of interest—in the case of the length of the operator string being L + 1—can now be
rewritten as follows:

〈0|F1F2 . . . FLFL+1|L + 1mod2〉 = 〈0|F1F2 . . . FL|L mod2〉GL+1 = G1G2 . . .GLGL+1, (B.5)

which finishes the proof.

�

Appendix C. Median-of-means estimator

The MC scheme described in section 2 produces a set of |Σ| samples {x} which are distributed according to
Π(x). For each sample, Re(R(x)) can be evaluated and subsequently an estimate of F can be obtained.
Only the first and second moments of the random variable Re(R(x)) can be upper bounded in general.
Therefore, if one would use the empirical mean Re(F̃) = 1

|Σ|
∑

x∈Σ Re(R(x)) as a mean estimator for F ,

then the best achievable scaling of |Σ| such that

Pr
(∣∣∣Re(F̃) −F

∣∣∣ � ε
)
� 1 − δ, (C.1)

is |Σ| = Θ(ε−2δ−1) (by means of Chebyshev’s inequality).
Taking the median-of-means estimator [28] as estimator (instead of the empirical mean), one can

obtain a more convenient scaling of |Σ| w.r.t. δ (despite the fact that only the first two moments of
Re(R(x)) can be upper bounded). The median-of-means estimator can be constructed as follows: partition
the set of MC samples Σ into q groups s1, . . . , sq of size approximately |Σ|/q. One then computes the
empirical mean of Re(R(x)) over the samples in each group separately (giving q unbiased estimators of F)
and takes the median of these empirical means. We denote the empirical mean for each group by
fj =

1
|sj |
∑

x∈sj
Re(R(x)) (for j ∈ {1, . . . , q}) and denote the median of these empirical means by

F̂ = M(f1, . . . , fq). The estimator F̂ is the median-of-means estimator.
We define the median of q real numbers a1, . . . , aq as M(a1, . . . , aq) = ai with ai such that

|{ j : aj � ai}| � q/2 ∧ |{ j : aj � ai}| � q/2, (C.2)

where we take the smallest i if multiple is obey this condition.
{Re(R(x))} are i.i.d. random variables with mean F and variance Var(Re(R(x))) � 1. Let q and |Σ|/q

be positive integers, then

Pr
(∣∣∣F̂ − F

∣∣∣ �√4q/|Σ|
)
� 1 − e−q/8. (C.3)

So for q = 8 log(δ−1) and |Σ| = 4qε−2 = 32 log(δ−1)ε−2, we have:

Pr
(∣∣∣F̂ − F

∣∣∣ � ε
)
� 1 − δ. (C.4)

Note that the estimator F̂ = M(f1, . . . , fq) depends explicitly on the confidence since q scales with δ. Given
that indeed q = Θ

(
log(δ−1)

)
, the number of samples required to obtain equation (C.4) is

|Σ| = Θ(log(δ−1)ε−2) (which is an exponentially better scaling w.r.t. δ compared to that for the empirical
mean estimator).

To see why equation (C.3) is true, see [28], note that one can apply Chebyshev’s inequality to each of the

empirical means f j: with probability at least 3/4, we have
∣∣fj −F

∣∣ �√4q/|Σ|. If
∣∣∣F̂ − F

∣∣∣ �√4q/|Σ|,
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then, by definition of F̂ , at least q/2 of the empirical means f j satisfy
∣∣fj −F

∣∣ �√4q/|Σ|. Hence the

probability that
∣∣∣F̂ − F

∣∣∣ �√4q/|Σ| is upper bounded by the probability that a binomially distributed

random variable with q draws and success probability 1/4 exceeds q/2:

Pr
(∣∣∣F̂ − F

∣∣∣ �√4q/|Σ|
)
� Pr

(
Bin(q, 1/4) � q/2

)
= Pr

(
Bin(q, 1/4) − E

(
Bin(q, 1/4)

)
� q/4

)
� e−q/8,

(C.5)
where we have used E

(
Bin(q, 1/4)

)
= q/4 and Hoeffding’s inequality.

Appendix D. Performance of ESPRIT on the imaginary-time (decaying) signal

In this section we prove a series of lemmas that characterize the behaviour of the ESPRIT algorithm
(algorithm 2) on an imaginary-time signal obtained with finite error. They are direct generalisations of the
work done in [25], which leads up to theorem 3.1 for oscillatory signals, to signals composed of real
exponential decays. We will see that the guarantees on the algorithm will be substantially weaker in this
case. The end goal of this section is theorem 3.2 in the main text.

The argument decomposes roughly into two halves. In the first half we argue that the behaviour of
ESPRIT is controlled by the smallest non-zero singular value of the Vandermonde matrix VL. In the second
half we argue that this smallest nonzero singular value can be controlled in terms of a gap condition on the
energy eigenvalues of the imaginary-time signal.

We start by proving a short result on the smallest nonzero singular values of products of matrices.

Lemma D.1. Let the smallest nonzero singular value of a matrix X be σmin (X). For any matrix, X we have
σmin(X) := ‖X+‖−1, where X+ is the Moore–Penrose pseudo-inverse of X, i.e. through the SVD, we have
σ−1

min(X) = ‖X+‖, where ‖X‖ is the operator norm (the largest singular value). Let A, B be (non-square)
matrices such that (AB)+ = B+A+. Then we have that

σmin(AB) � σmin(A)σmin(B). (D.1)

Proof. By sub-multiplicativity of the operator norm, we have that

σmin(AB) =
(∥∥(AB)+

∥∥)−1
=
(∥∥B+A+

∥∥)−1 �
(∥∥B+

∥∥∥∥A+
∥∥)−1

= σmin(B)σmin(A). (D.2)

�

We note that the product property on the Moore–Penrose pseudo-inverse does not hold for all matrices
(unlike for the regular inverse). We will make use of the following sufficient condition:

Lemma D.2. ([15]). Let A, B be matrices and let A have full column rank, and B have full row rank. Then we
have (AB)+ = B+A+.

Next, we argue that a small perturbation in the imaginary-time signal does not impact the space
spanned by the first S left singular vectors of the Hankel matrix H(g) too strongly, see the ESPRIT algorithm
2. It is a compressed version of lemmas 4 and 5 in [25] (which are formulated for real-time signals only, but
hold more generally). To state this lemma we need to consider a freedom of choice in US and ŨS with ŨS as
defined in the ESPRIT algorithm 2 and US its noise-free version. It is possible that US and ŨS are far apart
as operators, even if the spaces they span are close together.

We solve this by not considering US proper, but rather a rotated version of US. As we will see, this
rotation will not impact the actual output of ESPRIT which are the eigenvalues of the signal matrix Ψ̃. The
rotated version of US is given through the S × S unitary operator (O2O1)†, which is defined via the singular
value decomposition of U†

S ŨS, i.e.
O1U†

S ŨSO2 = D, (D.3)

with IS � D � 0 and D diagonal. The diagonal elements of the matrix D are cosines of the so-called
canonical angles. We note that this internal rotation is performed implicitly in [25], whereas we have chosen
to make it explicit at all times.

Lemma D.3. Let (g + η)(k) be an imaginary-time signal with g(k) =
∑S

i=1cizk
i and η(k) a small noise vector.

Consider the associated Hankel matrices H(g) and H(g + η), with singular value decompositions H(g) = UΣW
and H(g + η) = ŨΣ̃W̃, and label the matrix of the first S columns of U (resp. Ũ) as US (resp. ŨS). Finally, let
O1U†

SŨSO2 = D with IS � D � 0 be the singular value decomposition of U†
SŨS. If

‖H(η)‖ � σmin(H(g))/2, (D.4)
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then ∥∥US(O2O1)† − ŨS

∥∥ � 2
√

2S‖H(η)‖
σmin(H(g))

. (D.5)

Proof. First, we can observe that indeed IS � D as
∥∥∥O1U†

SŨSO2

∥∥∥ � ‖O1‖
∥∥∥U†

S

∥∥∥ ∥∥ŨS

∥∥ ‖O2‖ � 1.

The proof follows from Wedin’s sinΘ theorem for perturbations of singular subspaces as well as Weyl’s
perturbation theorem for singular values, see e.g. [3, 39]. From this latter theorem we know that
|σi(H(g + η)) − σi(H(g))| � ‖H(η)‖ � σmin(H(g))/2 where σi is the ith singular value (in order and some
singular values can be zero). Let σmin (H(g + η)) > 0 be the kth singular value, and thus

σmin(H(g + η)) � σk(H(g)) − σmin(H(g))/2 � σmin(H(g))/2, (D.6)

where the last inequality holds as σk(H(g)) > 0 and hence is at least σmin (H(g)). Hence we can use Wedin’s
theorem on singular values (theorem 3.4 in [24], setting δ = α = σmin (H(g))/2) to conclude that

∥∥(U⊥
S )†ŨS

∥∥ � 2‖H(η)‖
σmin(H(g))

, (D.7)

where U⊥
S is the matrix formed from the L + 1 − S other (besides US) columns of the noiseless U. To

connect this to US(O2O1)† − ŨS we can make the following long calculation:∥∥US(O2O1)† − ŨS

∥∥ � ∥∥US(O2O1)† − ŨS

∥∥
F

=
[

tr(US(O2O1)†(O2O1)U†
S ) + tr(ŨSŨ†

S)

− tr
(

(US(O2O1)†Ũ†
S + ŨS(O2O1)U†

S)
)]1/2

=
[

tr(USU†
S ) + tr(ŨSŨ†

S) − 2 tr(D)
]1/2

�
[

2 tr(ŨSŨ†
S) − 2 tr

(
DD†)]1/2

=
√

2
[

tr(ŨSŨ†
S) − tr

(
(O1U†

SŨSO2)(O1U†
SŨSO2)†

)]1/2

=
√

2
[

tr(ŨSŨ†
S) − tr

(
U†

S ŨSŨ†
SUS

)]1/2

=
√

2
[

tr(ŨSŨ†
S) − tr

(
USU†

S ŨSŨ†
S

)]1/2

=
√

2
[

tr
(

ŨSŨ†
S

)
− tr(ŨSŨ†

S) + tr
(

U⊥
S (U⊥

S )†ŨSŨ†
S

)]1/2

=
√

2
∥∥(U⊥

S )†ŨS

∥∥
F
�

√
2S
∥∥(U⊥

S )†ŨS

∥∥. (D.8)

In the second inequality we used that tr(USU†
S) = tr(ŨSŨ†

S) = S since US as well as ŨS consist of S
orthonormal columns, and D � D2 = DD†, since I � D � 0. In addition, at the end we use that
UU† = USU†

S + U⊥
S (U⊥

S )† = I as U is unitary. �

The next step is to bound the deviation of the ESPRIT signal matrix Ψ̃ = Ũ+
0 Ũ1 from the rotated

version of its noiseless variant (O2O1)Ψ(O2O1)† = (O2O1)U+
0 U1(O2O1)† in terms of

∥∥US(O2O1)† − ŨS

∥∥.
Recall that U0 (resp. U1) are constructed by removing respectively the first or last row from the matrix US.
Note also that only the eigenvalues of the signal matrix Ψ matter in the ESPRIT algorithm 2 and the
additional unitary rotations O2O1 do not alter these eigenvalues. We first establish some intermediate result:

Lemma D.4. Let A, B be matrices such that rank(A) = rank(B). If ‖A − B‖ � σmin(A)/2 then

∥∥A+ − B+
∥∥ � 1 +

√
5

2
‖A − B‖

∥∥A+
∥∥2

=
1 +

√
5

2

‖A − B‖
σ2

min(A)
. (D.9)

Proof. From theorem 4.1 in [45] we get that

∥∥A+ − B+
∥∥ � 1 +

√
5

2
‖A − B‖

∥∥A+
∥∥∥∥B+

∥∥. (D.10)
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Furthermore, since ‖A − B‖ � σmin(A)
2 < 1

‖A+‖ , we have by lemma 3.1 in [45] that

∥∥B+
∥∥ � ‖A+‖

1 − ‖A+‖‖A − B‖ �
∥∥A+
∥∥, (D.11)

leading to the first inequality in equation (D.9) and the lemma follows. �

The next lemma establishes that if a (non-square) matrix is full rank, a sufficiently small perturbation
does not decrease the rank (and hence rank is preserved). Note that full-rankness is really required, as an
arbitrarily small perturbation can always increase the rank.

Lemma D.5. Let A be an m × n (m � n) matrix of rank m and let B an m × n matrix s.t.
‖A − B‖ � σmin(A)/2. Then rank(A) = rank(B).

Proof. By construction, we have rank(A) � rank(B). Moreover we have that the smallest singular value of B
is at least σmin(A) − ‖A − B‖, by Weyl’s singular value perturbation theorem [39]. Thus by construction the
smallest singular value of B is at least σmin (A)/2 which is strictly larger than 0 as A is full rank and thus B is
also full rank, and thus rank(A) = rank(B). �

Finally, we will require a bound on the smallest nonzero singular value of U0. This is the only lemma
where we deviate significantly from the work done in [25], where the corresponding result, lemma 3 in
[25], makes explicit use of the fact that in their scenario all poles zj lie on the unit circle (what we call the
real-time, oscillatory signal). The bound we present here is simpler and more general and thus applies to
both imaginary (decaying) as well as real-time (oscillatory) signals, but leads to a suboptimal dependence
on the condition number of the Vandermonde matrix VL defined in equation (28) (in particular σmin (VL)).
However, it is sufficient for our purpose. The lemma will use some essential properties of how the ESPRIT
algorithm 2 works which we review first. Key to the functioning of ESPRIT is the fact that H(g) has two
decompositions

H(g) = UΣW = VLCVT
K−L, (D.12)

where VL is the (L + 1) × S Vandermonde matrix defined in equation (28) and the coefficient matrix C is
given in equation (27). When S � L � K + 1 − S (requiring K + 1 � 2S), VL and VK−L are full rank. Then
VL and US have an image of the same dimension, which means there exists an invertible matrix A such that

US = VLA, (D.13)

and thus
U0 = VL−1A, U1 = VL−1ZA, (D.14)

with Z = diag(z1, . . . , zS). This implies that

Ψ = U+
0 U1 = A−1V+

L−1VL−1ZA = A−1ZA, (D.15)

and hence the eigenvalues of Ψ are the poles zi.

Lemma D.6. Let U0 be the L × S matrix obtained from US by removing the last row. If the associated
Vandermonde matrix VL−1 is of (full) rank S then so is U0, and moreover

σmin(U0) � σmin(VL−1)

‖VL‖
. (D.16)

Proof. We have
IS = U†

SUS = (VLA)†VLA = A†V†
LVLA, (D.17)

which means that the singular values of A are precisely inverse to those of VL, or equivalently that A+ has
the same singular spectrum as VL. Moreover, by assumption VL−1 has full column rank, and A is
invertible so

σ−1
min(U0) =

∥∥U+
0

∥∥ = ∥∥(VL−1A)+
∥∥ = ∥∥A−1V+

L−1

∥∥ � ∥∥A−1
∥∥∥∥V+

L−1

∥∥ = ‖VL‖
σmin(VL−1)

, (D.18)

which is the inverse of the lemma statement. �
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With lemmas D.4–D.6 in hand, we can give a perturbation bound for the signal matrix Ψ̃. We will show
that if Ũ0 does not deviate strongly from the rotated version of U0, namely U0(O2O1)†, then the noisy signal
matrix is also close to the ideal (rotated) version.

Lemma D.7. Let Ψ :=U+
0 U1, Ψ̃ = Ũ+

0 Ũ1 be the ideal and perturbed version of the signal matrix, respectively.
Now assume that

∥∥U0(O2O1)† − Ũ0

∥∥ � σmin(U0)/2, where O2O1 is defined through the singular value

decomposition of U†
S ŨS (i.e. O1U†

S ŨSO2 = D). With this assumption we have

∥∥∥(O2O1)Ψ(O2O1)† − Ψ̃
∥∥∥ � 5

∥∥US(O2O1)† − ŨS

∥∥ ‖VL‖2

σ2
min(VL−1)

. (D.19)

Proof. Following [25] we have∥∥∥(O2O1)Ψ(O2O1)† − Ψ̃
∥∥∥ � ∥∥(O2O1)U+

0

∥∥∥∥U1(O2O1)† − Ũ1

∥∥+ ∥∥(O2O1)U+
0 − Ũ+

0

∥∥∥∥Ũ1

∥∥. (D.20)

We have
∥∥Ũ1

∥∥ � ∥∥ŨS

∥∥ = 1, since Ũ†
SŨS = IS and removing a row vector decreases the operator norm.

Similarly we have
∥∥U1(O2O1)† − Ũ1

∥∥ � ∥∥US(O2O1)† − ŨS

∥∥. Now note that by our initial assumption and
lemma D.5 (with A = U0(O2O1)† and B = Ũ0) we have Rank(U0(O2O1)†) = Rank(Ũ0). This means that we
can use lemma D.4 to conclude that

∥∥(O2O1)U+
0 − Ũ+

0

∥∥ � 1 +
√

5

2

∥∥U0(O2O1)† − Ũ0

∥∥
σ2

min(U0)
� 1 +

√
5

2

∥∥US(O2O1)† − ŨS

∥∥
σ2

min(U0)
. (D.21)

Hence we get

∥∥∥(O2O1)Ψ(O2O1)† − Ψ̃
∥∥∥ � ∥∥US(O2O1)† − ŨS

∥∥
σmin(U0)

+
1 +

√
5

2

∥∥US(O2O1)† − ŨS

∥∥
σ2

min(U0)

� (σmin(U0) + (1 +
√

5)/2)

∥∥US(O2O1)† − ŨS

∥∥
σ2

min(U0)

�
(

3

2
+
√

5

)∥∥US(O2O1)† − ŨS

∥∥
σ2

min(U0)
, (D.22)

where we used σmin(U0) � ‖U0‖ � 1. Plugging in the lower bound on σmin (U0) (lemma D.6) and noting
that 3

2 +
√

5 � 5 we obtain the lemma statement. �

Combining all of this we get the following general theorem. From now on we restrict ourselves to the
case L = K/2:

Theorem D.8. Let (g + η)(k) be the signal with g(k) =
∑S

i=1cizk
i and η(k) a small noise vector to which we

apply the ESPRIT algorithm 2. Consider then the associated Hankel matrices H(g) and H(g + η), with singular
value decompositions H(g) = UΣW and H(g + η) = ŨΣ̃W̃, and label the matrix of the first S columns of U
(resp. Ũ) as US (resp. as ŨS). Denote by U0 (resp. U1) the submatrix of US with the last row (resp. first row)
removed and define the signal matrix Ψ = U+

0 U1 (similarly for Ψ̃). Let L = K/2 and K + 1 � 2S. Now, if

4‖H(η)‖ � cminσ
2
min(VK/2)σmin(VK/2−1)

∥∥VK/2

∥∥−1
, (D.23)

then ∥∥∥(O2O1)Ψ(O2O1)† − Ψ̃
∥∥∥ � 10

√
2S‖H(η)‖

∥∥VK/2

∥∥2

σ4
min(VK/2−1)

c−1
min, (D.24)

where O2O1 is defined through the singular value decomposition of U†
S ŨS, equation (D.3).

Proof. We start from the requirement in lemma D.7 that
∥∥U0(O2O1)† − Ũ0

∥∥ � ∥∥US(O2O1)† − ŨS

∥∥
� σmin(U0)/2. By lemma D.6, this is certainly satisfied if

∥∥US(O2O1)† − ŨS

∥∥ � σmin(VK/2−1)
∥∥VK/2

∥∥−1
/2.

Moreover, from lemma D.3 we know that
∥∥US(O2O1)† − ŨS

∥∥ � 2
√

2S‖H(η)‖σ−1
min(H(g)) so now let’s

upperbound σ−1
min(H(g)) in terms of the smallest singular value of VK/2. We have

σ−1
min(H(g)) =

∥∥H(g)+
∥∥ = ∥∥∥(VT

K/2)+C−1V+
K/2

∥∥∥ � σ−2
min(VK/2)c−1

min, (D.25)

where we used cmin = mini ci. This means that the condition

4‖H(η)‖ � cminσ
2
min(VK/2)σmin(VK/2−1)

∥∥VK/2

∥∥−1
, (D.26)
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allows us to use lemma D.7∥∥∥(O2O1)Ψ(O2O1)† − Ψ̃
∥∥∥ � 10

√
2S

‖H(η)‖
∥∥VK/2

∥∥2

σ2
min(VK/2)σ2

min(VK/2−1)
c−1

min

� 10
√

2S‖H(η)‖
∥∥VK/2

∥∥2

σ4
min(VK/2−1)

c−1
min, (D.27)

where we also used the general fact about Vandermonde matrices [2, theorem 1] that σmin (VK/2) � σmin

(VK/2−1) (i.e. the smallest non-zero singular value of VL grows monotonically with L). �

We wish to translate the bound in theorem D.8 to a theorem on the distance between the inferred
eigenvalues zi and z̃i. The argument is as follows. We know from the Bauer–Fike theorem and the fact that
(O2O1)Ψ(O2O1)† is diagonalizable (see [3, exercise VIII.3.2]) that the operator norm bound on
(O2O1)Ψ(O2O1)† implies a matching bound distance on its eigenvalues zi, using equation (D.15). That is,
we have

d({zi}, {z̃j}) := max
π∈PermS

min
i
|zπ(i) − z̃i| � (2S − 1)κ(A(O2O1)†)

∥∥∥(O2O1)Ψ(O2O1)† − Ψ̃
∥∥∥, (D.28)

where κ(A(O2O1)†) = κ(A) := ‖A‖
∥∥A−1

∥∥ is the condition number of the invertible matrix A in
equation (D.13). We have A = V+

K/2US and since US is an isometry we know that

κ(A) = ‖A‖
∥∥A+
∥∥ = ∥∥VK/2

∥∥∥∥∥V+
K/2

∥∥∥ = ∥∥VK/2

∥∥
σmin(VK/2)

, (D.29)

and hence we get a bound on the matching distance of the eigenvalues in terms of known quantities, as
expressed in the following theorem:

Theorem D.9. Let y(k) = (g + η)(k) (k = 0, . . . , K) be the signal with g(k) =
∑S

i=1cizi, let η(k) a small noise
vector, and K + 1 � 2S (L = K/2). Let z̃i be the output of the ESPRIT algorithm. Then under the noise
condition:

4‖H(η)‖ � cminσ
2
min(VK/2)σmin(VK/2−1)

∥∥VK/2

∥∥−1
, (D.30)

we have

d({zi}, {z̃j}) � (2S − 1)
10
√

2S‖H(η)‖
∥∥VK/2

∥∥3

σ5
min(VK/2−1)

c−1
min. (D.31)

This theorem thus holds for both the decaying as well as oscillatory signal.
In order to use the theorem, one has to lower bound σmin (VL−1) (and more trivially, upper bound ‖VL‖

as well) for L = K/2. For complex poles zi on the unit circle one can get very good bounds, assuming a gap,
see equation (34).

To lower bound σmin (VL−1) for a purely decaying signal, we start with the following characterization of
square Vandermonde matrices with real poles due to Gautschi:

Theorem D.10. (Theorem 1 in [12]). Let VS−1 be a square S × S Vandermonde matrix with S (unequal) real
positive poles z1, . . . , zS. Then ∞ norm of V−1

S−1 is

∥∥V−1
S−1

∥∥
∞ :=max

i

∑
j

∣∣∣(V−1
S−1

)
ij

∣∣∣ = max
i∈{1,...,S}

S∏
j=1,j�=i

1 + zi

|zj − zi|
. (D.32)

Based on this theorem we can work out a very similar statement for non-square Vandermonde matrices
VL−1 where L is a multiple of S. Note that this lemma does not depend on any gap.

Lemma D.11. Let VST−1 be an ST × S Vandermonde matrix (where T is a positive integer) with S (unequal)
real positive poles z1, . . . , zS � 1. Then we have∥∥V+

ST−1

∥∥
∞ � 2

∥∥V−1
S−1

∥∥
∞. (D.33)

Proof. Note that
VST−1 =

(
VT

S−1 ZSVT
S−1 Z2SVT

S−1 . . . Z(T−1)SVT
S−1

)T
, (D.34)

with Z = diag(z1, . . . , zS), using (VS−1)ij = zi−1
j and (ZSVT

S−1)ij = zs+j−1
i .

The pseudo-inverse V+
ST−1 of size S × ST can be directly calculated as

V+
ST−1 = (I − Z2S)(I − Z2ST )−1

(
V−1

S−1 ZSV−1
S−1 Z2SV−1

S−1 . . . Z(T−1)SV−1
S−1

)
, (D.35)
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using a geometric series. Hence
∥∥V+

ST−1

∥∥
∞ can be calculated to be

max
i∈{1,...,S}

1 − z2S
i

1 − z2ST
i

T−1∑
p=0

zpS
i

S∏
j=1,j�=i

1 + zi

|zj − zi|
� max

i

[
1 − z2S

i

1 − z2ST
i

1 − zST
i

1 − zS
i

]∥∥V−1
S−1

∥∥
∞

= max
i

[
1 + zS

i

1 + zST
i

]∥∥V−1
S−1

∥∥
∞ � 2

∥∥V−1
S−1

∥∥
∞, (D.36)

which gives the lemma statement. �

To apply this lemma, we use that σ−1
min(VST−1) =

∥∥V+
ST−1

∥∥ � √
S
∥∥V+

ST−1

∥∥
∞ so that

σmin(VST−1) � (2
√

S)−1
∥∥V−1

S−1

∥∥−1

∞ , (D.37)

for any T. Unlike the lower bound for the real-time signal which explicitly uses the gap Δ in equation (34),
this bound does not improve with T. We will now use the gap to upper bound

∥∥V−1
S−1

∥∥
∞ given in

equation (D.32), thus lower bounding σmin (VST−1) for any T. This is done in the proof of our final theorem
3.2 (and its slight adaptation theorem 3.3) restated here:

Theorem. Let (g + η)(k) be an imaginary-time decaying signal (of length K) with g(k) =
∑S

i=1cizk
i , ci > 0∀ i,

cmin = mini ci and η(k) a small noise vector. Let zi = e−Ei with Ei ∈ [0, 2π) and given eigenvalue gap Δ < 1 in
equation (33), and {Ẽi} the energy estimates of ESPRIT with L = K/2. Let K + 1 � 2S, K even and K = TS for
some positive integer T. If we have

‖H(η)‖ � cmin√
K

g1(S,Δ), (D.38)

with

g1(S,Δ) =
1

32S2
(e−2ππΔ)3(S−1), (D.39)

then
d({Ẽi}, {Ej}) � ‖H(η)‖c−1

minK
√

Kg2(S,Δ), (D.40)

with
g2(S,Δ) = e2π

√
2640S5.5(e−2ππΔ)−5(S−1). (D.41)

Proof. First, we can lift the bound on the eigenvalue distance d({zi}, {z̃j}) to one on energies d({Ei}, {Ẽj})
defined in equation (32), with Ẽi := − log(z̃i) and Ei ∈ [0, 2π) by noting that

1

2π
|Eπ(i) − Ẽi| =

1

2π
| log(zπ(i)) − log(z̃i)| =

1

2π
| log
(
1 − (z̃i − zπ(i))/z̃i

)
|

� |(z̃i − zπ(i))/z̃i

)
| � e2π|(z̃i − zπ(i))|, (D.42)

using that zi ∈ (e−2π , 1] and z̃i ∈ (e−2π , 1]. In particular, for the first inequality, let x = (z̃i − zπ(i))/z̃i. If
x < 0, | log(1 − x)| � |x|. If x > 0, since zi ∈ (e−2π , 1], we have x � 1 − e−2π , so that | log(1 − x)| � 2π|x|.

Second, let us now use the gap condition |Ei − Ej| � 2πΔ in equation (33). This leads to a gap
condition on the zi themselves through (assuming w.l.o.g. that zi � zj):

2πΔ � |Ei − Ej| = | log(zi/zj)|, (D.43)

and thus

e2πΔ � zi

zj
=

zi − zj

zj
+ 1, (D.44)

which gives
|zi − zj| = zi − zj � zj(e2πΔ − 1) � e−2π2πΔ. (D.45)

This implies through equation (D.32) that∥∥V−1
S−1

∥∥
∞ � (πΔ)−(S−1) e2π(S−1), (D.46)

so that
σmin(VST−1) � (2

√
S)−1(πΔe−2π)(S−1), (D.47)

for any integer T. We note that this lower bound on σmin is exponentially small in S as Δ < 1.
Third, we need an upper bound on ‖VL‖ in order to use theorem D.9. For zj ∈ (0, 1], we have

‖VL‖ � ‖VL‖F =
(∑

i,jz
2(i−1)
j

)1/2
� S1/2

(∑L+1
i=1 z2(i−1)

max

)1/2
= S1/2

(
1−z2(L+1)

max
1−z2

max

)1/2

which can tend to
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(S(L + 1))1/2 when zmax → 1, so we use the simple upper bound (S(L + 1))1/2 � (SK)1/2. Putting all this
together allows to translate equation (D.31) to equation (D.40). The condition on ‖H(η)‖ in
equation (D.30) then translates to the sufficient condition in equation (D.38) using that
σmin (VK/2) � σmin (VK/2−1), the lower bound on σmin (VK/2−1), and the upper bound on

∥∥VK/2

∥∥. �
The adapted version, theorem 3.3, is proved almost identically (but requires that all Ei are in principle

bounded away from 2π):

Theorem. Let (g + η)(k) be an imaginary-time decaying signal (of length K) with g(k) =
∑S

i=1cizk
i , ci > 0, ∀ i,

cmin = mini ci, and η(k) a small noise vector. Let zi = 1 − Ei/2π with Ei ∈ [0,π] and given eigenvalue gap
Δ < 1 in equation (33), and {Ẽi} the energy estimates of ESPRIT with L = K/2. Let K + 1 � 2S, K even and
K = TS for some positive integer T. If we have

‖H(η)‖ � cmin√
K

g̃1(S,Δ), (D.48)

with

g̃1(S,Δ) =
1

32S2
Δ3(S−1), (D.49)

then
d({Ẽi}, {Ej}) � ‖H(η)‖c−1

minK
√

Kg̃2(S,Δ), (D.50)

with
g̃2(S,Δ) = 640

√
2S5.5Δ−5(S−1). (D.51)

Proof. First, we convert the eigenvalue distance d({zi}, {z̃j}) to one on energies d({Ei}, {Ẽj}) defined in
equation (32), with Ẽi := 2π(1 − z̃i), so

1

2π
|Eπ(i) − Ẽi| = |zπ(i) − z̃i|. (D.52)

Second, let us now use the gap condition |Ei − Ej| � 2πΔ in equation (33). This leads to a gap condition
on the zi themselves through:

|zi − zj| � Δ. (D.53)

This implies through equation (D.32) that ∥∥V−1
S−1

∥∥
∞ � Δ−(S−1) (D.54)

so that
σmin(VST−1) � (2

√
S)−1Δ(S−1), (D.55)

for any integer T. Following identical steps as in the proof of the previous theorem then leads to the final
statements. �
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