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Abstract: The use of collaborative robots (or cobots) in rehabilitation therapies is aimed at assisting
and shortening the patient’s recovery after neurological injuries. Cobots are inherently safe when
interacting with humans and can be programmed in different working modalities based on the
patient’s needs and the level of the injury. This study presents a design optimization of a robotic
system for upper limb rehabilitation based on the manipulability ellipsoid method. The human–robot
system is modeled as a closed kinematic chain in which the human hand grasps a handle attached
to the robot’s end effector. The manipulability ellipsoids are determined for both the human and
the robotic arm and compared by calculating an index that quantifies the alignment of the principal
axes. The optimal position of the robot base with respect to the patient is identified by a first global
optimization and by a further local refinement, seeking the best alignment of the manipulability
ellipsoids in a series of points uniformly distributed within the shared workspace.

Keywords: rehabilitation robotics; collaborative robotics; design optimization; manipulability ellipsoids

1. Introduction

Collaborative robots (or cobots) are a new category of robots able perform tasks in
cooperation with humans, simply by sharing a workspace or with real physical interaction.
They can support operators in manual activities, such as manufacturing or assembly
tasks, in total safety thanks to advanced sensor systems, limited power and forces and
ergonomic features that protect against mechanical and electrical risks [1]. This novel
philosophy of robotics has evolved as one of the key drivers of Industry 4.0. Human–
Robot Interaction (HRI), in particular, is a promising strategy for achieving higher and
more flexible productivity by combining the decision-making ability of humans with the
repeatability of robots [2]. In addition to force sensors used to determine the contact forces
with the environment, cobots typically also exploit vision systems able to perceive the
presence and location of objects or humans in the workspace, increasing flexibility and real
time adaptability to dynamically varying scenarios [3].

Because collaborative robots are inherently safe and reliable, scientific research on
their use in the healthcare sector is growing. In robotic rehabilitation, for example, the
robot is in contact with patients and aims to provide physical interaction driven by the
actuation systems [4], so the use of cobots may represent an appropriate choice. Currently,
there is a wide range of robotic devices used in neuro-muscolar rehabilitation, starting with
exoskeletons, which are rigid anthropomorphic structures directly attached to human’s
body segments, or end-effector devices which are usually attached to a distal segment
of the patient [5]. Cobots can be considered to belong to the second category; however,
only one cobot specifically designed for rehabilitation is nowadays in the market. This is
ROBERT, by Life Science Robotics, which can be used for the rehabilitation of lower limbs
or mobilization of legs of bedridden patients [6]. Compared to the traditional therapy, a
cobot-assisted therapy can provide intensive and task-specific solutions for each patient.
Moreover, it is possible to control the interaction force with the patient and, at the same
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time, to record data of the motion resulting from the exercise. A further advantage is
given by the possibility of carrying out long and repeated intensive therapy sessions
with limited intervention by the therapist. The latter has the role of selecting the correct
rehabilitation treatment among the pre-programmed exercises, supervising several patients
simultaneously. At the same time, patients can train more independently and maximize
their efforts [7].

In a rehabilitative cobotic system the patient’s limb is typically fixed to the robot’s
end-effector, and the robotic manipulator is used to drive the patient arm over a path or to
give a force feedback to the patient while executing a task. In general, different working
modalities are possible [8–10]:

• Passive mode—the patient’s limb is passive and driven by the cobot along a predefined
trajectory;

• Active mode—the patient actively performs the exercise while the robot can exert a
programmable resistance;

• Active-assisted mode—the patients tries to execute the task while the robot provides
assistance only if the patient exhibits a lack of strength.

In general, cobot-assisted therapy is more efficient if actively assisted exercises are
performed, as brain stimuli are more intense than in passive mode [11]. In order to increase
the potentialities of the exercise, the authors have conceived a specific working mode,
that can be named vision-assisted mode, which exploits a smart camera integrated to the
robotic system used to detect a real object placed by the therapist within the manipulator
workspace; when the patient is asked to reach the target object, the robot reacts with a force
feedback in order to channel the movement of the hand along the correct path, possibly
with active assistance to facilitate the motion in that direction. The combination of different
types of feedback as visual, auditory and haptic, proves to be highly beneficial since it
maximizes the attention to the task and enhances the motor performance [12].

Although the evidence on the efficacy of robot-assisted therapy is growing, there are
still problems related to the lack of standardized protocols and the differences between the
various devices that can be used [13]. However, the advantages of cobot rehabilitation, such
as repeatability, high intensity and limited intervention by therapists, are the prerequisites
for a rapid spread of this practice compared to traditional therapies.

This paper presents a design optimization of a robotic system for upper limb reha-
bilitation based on the manipulability ellipsoid method. An optimization algorithm is
used to find the best location of the robot’s base with respect to the human shoulder in
order to confer to the human and robotic arms a similar kinematic behaviour when the are
coupled. The problem, typical of other application fields such as machining operations [14],
can be approached by different methods [15,16]. In this case, the human–robot system is
modeled as a closed kinematic chain in which the human hand grasps a handle attached to
the robot’s end-effector. The manipulability ellipsoids are determined for both the human
and the robotic arm and compared by calculating an index that quantifies the alignment
of the principal axes. The optimal position of the robot base is identified by a first global
optimization on a predefined grid of points and by a further local refinement, seeking the
best alignment of the manipulability ellipsoids in a series of points uniformly distributed
within the shared workspace.

Section 2 describes the kinematic model of the human and robotic arms. Section 3
introduces the velocity and force ellipsoids used to define the index which describes the
alignment of principal directions of manipulability between the two kinematic chains. The
design optimization procedure is presented in Section 4, where the main results are also
discussed, while conclusions and future works are given in Section 5.

2. Kinematic Model of the Human–Robot System

As shown in Figure 1a, the human–robot system consists of a closed kinematic chain
in which the human hand grasps a handle fixed to the end effector of the commercial cobot
Universal Robots UR5e, already used by the authors in a series of studies in the field of
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human–robot collaboration [17]. The ergonomic handle, suitably made for a comfortable
grip, is shown in Figure 1b.

q1

q3

θ1

θ2

θ3

θ4 θ5

θ6

q4 q5 q7

q2

q6

(a) (b)

Figure 1. (a) Kinematic chain of the human–robot system; (b) ergonomic handle attached to
the end-effector.

The human arm is modeled as three rigid segments connected by frictionless joints
with seven degrees of freedom (DOF) in total. The spherical joint representing the shoulder
confers flexion–extension (q1), abduction–adduction (q2) and internal–external rotation
(q3). The elbow is modeled as a universal joint that allows for flexion–extension (q4) and
pronation–supination (q5) of the forearm. The universal joint relative to the wrist provides
the flexion–extension (q6) and the ulnar–radial deviation of the hand (q7). To confine
joint rotations within physiological limits, the maximum and minimum angles are set
according to the values available from the OpenSim software [18] (Table 1). The Italian
male 50th percentile is considered as a reference for anthropometric measurements. Table 2
summarizes the lengths of the body segments; the length of the hand, closed to hold the
handle, is considered half of the total for simplicity.

The robot UR5e is characterized by a serial chain of revolute joints arranged as shown
in Figure 1a which confers a full mobility (6 DOF) to the end-effector; joint angles are
hereafter indicated as θi with i = 1, . . . , 6.

The kinematics of the human and robotic arms are implemented by the Matlab Robotic
Toolbox using the Denavit–Hartemberg (DH) method, the parameters of which are summa-
rized in Tables 3 and 4. The resulting kinematic chains are represented in Figure 2a,b for
the human and robotic arms, respectively.
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(a) (b)

Figure 2. Kinematic models of the human arm (a) and the UR5e (b) implemented in Matlab
Robotic Toolbox.

Table 1. Joint limits of the human arm.

Joint Minimum Value [◦] Maximum Value [◦]

q1 −90 90
q2 −120 90
q3 −90 90
q4 0 150
q5 0 180
q6 −70 70
q7 −25 35

Table 2. Lengths of the upper limb segments (50th percentile Italian male).

Upper Limb Segment Length [mm]

Height 1750
Arm 280

Forearm 256
Hand 189

Closed Hand 95

Table 3. DH parameters of the human arm: d is the distance along z-axis of the current joint; a is the
distance along x-axis between two consecutive joint axis; α is the rotation around the x-axis of the
current joint; off-set is the angle between the two consecutive x-axis about the z-axis of the previous
joint [19].

Joint d [m] a [m] α[◦] Off-Set [◦]

q1 0 0 90 90
q2 0 0 90 90
q3 −0.27 0 90 90
q4 0 0 −90 0
q5 −0.25 0 90 0
q6 0 0 90 90
q7 0 −0.09 −90 0
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Table 4. DH parameters of the UR5e robot (see definitions given in Table 3).

Joint d [m] a [m] α [◦] Off-Set [◦]

θ1 0.09 0 90 90
θ2 0.14 −0.42 0 0
θ3 −0.12 −0.39 0 0
θ4 0.11 0 90 0
θ5 0.09 0 90 180
θ6 0.05 0 0 0

The inverse kinematics of the human arm is solved by a numerical approach that aims
to minimize the error function e(q) = |f(q)− x| starting from a guess solution q0, being
f(q) the direct kinematics law and x = [x, y, z, α, β, γ]T the Cartesian pose of the hand. The
x, y, z sequence of current rotation axes corresponding to the rotation angles α, β, γ is used
to represent the orientation. Furthermore, the minimization procedure is implemented
taking into account physiological limits of joint rotations.

The velocity kinematics of the human arm can be formulated as:

ẋ =

[
ẋl
ω

]
=

[
Jp
Jo

]
q̇ = J(q)q̇ (1)

where the velocity vector ẋ is composed by the linear velocity vector ẋl and the angular
velocity ω, while J(q) is the geometrical Jacobian matrix of dimension (6× 7), composed
by Jp and Jo which are the (3× 7) position and orientation Jacobian matrices, respectively.
A similar approach for both position and velocity kinematics is used for the robotic arm,
which is constrained to realize the same motion of the human hand in the Cartesian space
acting on the six DOF related to actuated joints θi with i = 1, . . . , 6. Figure 3 shows the hu-
man and robot models in the rest position of the human arm (q = [50◦ 0 0 33◦ 90◦ 0 − 6◦ ]T),
corresponding to the robot joint position vector θ = [−261◦ 207◦ − 47◦ − 70◦ 90◦ 9◦ ]T .
Without loss of generality, the origin of the global coordinate system is located on the
shoulder of the human joint.

Figure 3. Closed kinematic chain of human and robotic arm models.

A set of points of the shared human–robot workspace is defined in order to evaluate
the average kineto-static affinity of the two arms in a uniform spatial distribution. Using
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spherical coordinates with the center coincident with the human shoulder, two radii are
considered based on the total length of the upper limb. They correspond to the 83% and
50% of the total upper limb length, respectively. Abduction/adduction of the shoulder is
spanned by ±30◦, whereas the flexion/extension range is ±20◦. A total of 18 points are in
this way defined, as shown in Figure 4. The orientation of the hand on each of the points is
defined by a local frame which has always the x axis aligned to the forearm and the z axis
aligned with the vertical direction.

Figure 4. Set of points used for the evaluation of the objective function of the optimization.

3. Manipulability Analysis

Several studies are available in the literature on manipulability analysis on human
and robotic arms. An index based on the intersection volume of velocity ellipsoids is
used in [20], where the human arm (modeled with 5 DOF) and a KUKA collaborative
robot are considered. In [21], a robotic-assistive control system for the rehabilitation of
the human arm is studied analyzing the principal axes of the manipulability ellipsoids
in order to find the easiest direction of motion of the upper limb. Other studies, as [22],
focus on the relationship between the manipulability ellipsoids and the activation of the
musculoskeletal system.

In general, manipulability can be defined as the capacity of change in position and
orientation of the end-effector of a robot given a joint configuration [19,23]. In particular,
the velocity manipulability ellipsoid describes the operational space velocities that can
be generated by a given set of joint velocities with unitary norm in a known pose of the
manipulator. In terms of equations, the unitary norm constraint of the joint space velocity
q̇ can be expressed as:

q̇Tq̇ = 1 (2)

The Jacobian matrix J(q) of the manipulator can be used to map Equation (2) into the
Cartesian space:

ẋT
(

J(q)J(q)T
)†

ẋ = 1 (3)

where † indicates the pseudo-inverse operator that must be applied in case of non-square
Jacobians. As a result, the unitary radius sphere surface represented by Equation (2)
transforms in an ellipsoid surface expressed by Equation (3).

Limiting the problem to translations, only the Jp Jacobian relative to the linear velocity
of the end-effector is considered. Thus, the axes directions ui of the velocity ellipsoid can
be found as eigenvectors of the matrix

(
Jp(q)Jp(q)T)†, whereas their dimension σi is equal

to the square root of the relative eigenvalues λi:(
Jp(q)Jp(q)T

)†
ui = λiui σi =

√
λi i = 1, 2, 3 (4)
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The directions and dimensions of the axes of the ellipsoid describe the motion capacity
of the end effector: along the major axis the end-effector can move at the maximum velocity,
whereas the minor axis corresponds to the direction of minimum velocity.

According to the kinetostatic duality [24], the force ellipsoid can be obtained by
calculating the eigenvectors and the eigenvalues of the matrix Jp(q)Jp(q)T . As a result, the
directions of the velocity and force ellipsoids axes are the same, whereas their dimensions
are reciprocal; consequently, the two ellipsoids are orthogonal to each other. Figure 5 shows
the velocity (yellow) and force (green) ellipsoids for the UR5e robotic arm in a specific
configuration; as expected, the direction of maximum velocity corresponds to a minimum
of force.

ffoorrccee
eelllliippssooiidd

vveelloocciittyy
eelllliippssooiidd

Figure 5. Example of ellipsoids of manipulability for the robot UR5e.

In order to evaluate the kinematic affinity between the robot and the human arm, only
the velocity ellipsoids are considered in this study. Obviously, the optimal configuration of
the system obtained by a kinematic (velocity) approach will correspond also to the optimal
configuration from a static (force) point of view. Once joint positions of the two arms
are assigned and the Jacobian matrices are calculated, ellipsoids of manipulability can be
determined in the operational space and the dimensions of their axes can be normalized
setting to one the maximum axis and scaling proportionally the others. As an example,
Figure 6 shows the velocity ellipsoid for the robotic (a) and human arm (b) in a common
pose of the end-effector, with a frame representing the axes orientation.

a) b)

mmaajjoorr aaxxiiss
mmaajjoorr aaxxiiss

mmiinnoorr aaxxiiss

mmiinnoorr aaxxiiss

Figure 6. Velocity ellipsoids with axes orientation: (a) robotic arm, (b) human arm.

It is assumed that an optimal configuration of the system is obtained when the human
and the robot have a similar ability to develop velocities along a certain direction, that is,
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the ellipsoids have a similar orientation of their axes. To quantify the kinematic affinity of
the two arms a scalar index can be defined as:

I =
∑3

i=1 |ai,r · ai,h|
∑3

i=1 ai,rai,h
(5)

where ai = uiσi is the vector representing the ith axis, index i = 1, 2, 3 indicates the order
of the axis ai, from major (i = 1) to minor (i = 3), and subscripts r, h relate to robot and
human, respectively. The output is an absolute value between 0 and 1, where 0 indicates that
there is orthogonality between the two ellipsoids, whereas 1 indicates a perfect alignment
of them. Furthermore, the alignment of the major axis weights more than the remaining
axes, especially when the ellipsoid is stretched along a principal direction. In Figure 6,
for example, human and robot present almost aligned major axes, with an index value
I = 0.7. The same index can be calculated at all the poses of the set represented in Figure 4
to evaluate the average value Iav:

Iav =
∑18

j=1 Ij

18
(6)

where Ij is the index I evaluated for the jth pose of the end-effector inside the workspace.
The index Iav indicates how valid the specific layout of the system is. The relative position
of the base of the robot with respect to the shoulder of the man, in particular, is the free
element of the problem to be obtained through an optimization procedure.

4. Layout Optimization

An optimization algorithm based on the evaluation of the Iav index is implemented
to find the optimal position of the robot’s base with respect to the human shoulder. The
optimal position is sought in a domain consisting of two horizontal planes (Figure 7), the
first located at the shoulder, the second at the elbow (when the arm is extended downwards
along the trunk).

Figure 7. Domain of the robot’s base position for the optimization algorithm.

The first step of the algorithm is the evaluation of the average index Iav in a discrete
grid of points where the robot’s base is thought to be fixed. The grid is defined on planes I
and II with a resolution of 100 mm. Once the base position with the highest value of Iav is
found by the initial global optimization, the output is used as guess solution for the second
step of the algorithm, which is a local optimization performed by the fminsearch routine by
Matlab; the objective function is still the average index Iav while the optimization algorithm
is based on the Nelder–Mead method (also known as downhill simplex method) which is a
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numerical method used to find the minimum or maximum of an objective function in an
unconstrained multidimensional space by a direct search based on function comparison.

The outputs of the global optimization algorithm are summarized in Table 5, whereas
the interpolated maps of Iav on the Planes I and II are plotted in Figure 8.

Iav

x [m]

y [m]

Iav

max

(a)

Iav

x [m]

y [m]

Iav

max

(b)

Figure 8. Interpolated maps of Iav on plane I (a) and plane II (b).

The results obtained after the second step of local optimization are summarized in
Table 6. The refined values of the optimal position of the robot base are very close to the
global optimization outputs. Furthermore, a strong influence on the coordinates x and y
can be noticed, while a variation of the height z implies a small modification of the value
of Iav. This result suggests positioning the robot base at x ' 0 and y ' 1.1 m, while, for
design simplicity, the base can be fixed on the desk top which is approximately at the elbow
level (z ' −0.3 m) without significantly impairing system performance. Figure 9 shows
the final layout of the system prototype which is currently under experimentation.

Figure 9. Final layout of the rehabilitation station.
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Table 5. Output of the global optimization.

Base Position

x [m] y [m] z [m] Iav

Plane I −0.2 1.1 0 0.74
Plane II 0 1.1 −0.3 0.70

Table 6. Output of the local optimization.

Base Position

x [m] y [m] z [m] Iav

Plane I −0.118 1.157 0.001 0.75
Plane II 0.001 1.158 −0.113 0.74

5. Conclusions

In this work, the optimization of the layout of a collaborative robotic system for upper
limb rehabilitation was presented. The optimization method was based on a manipulability
analysis that quantifies the kinematic affinity between the robotic arm and the human one
by means of the Iav index that derives from the comparison of the velocity ellipsoids of the
two arms. The aim was to create a system in which no constraint of velocity/force of the
machine limits the ability to carry out rehabilitation exercises of various kinds.

A two-step algorithm was used to find the optimal position for the robot’s base relative
to the human shoulder. This result was taken into account in the final design of the system.
Even if the result of the optimization procedure depends on the anthropometric parameters
of the patient, a general indication can be deduced: the robot should be placed in front of
the patient (x ' 0) at a distance of approximately 1 m, whereas the height of the base can
range from the shoulder (plane I) to the elbow (plane II) of the patient without significant
differences. Thus, the simplest solution for the design can be adopted, i.e. to collocate the
robot directly on the desk top.

The system was realized and tested at the Mechatronics and Industrial Robotics
Laboratory (MIR Lab) of the Polytechnic University of Marche, Ancona, Italy, where
various protocols were developed, including the use of a vision system to identify a real
target to be physically grasped by the patient with the active assistance of the robot. During
the exercise it is possible to acquire a series of data, among which the most important
are the actual trajectory of the end-effector and the force applied by the patient’s hand,
which can be used to define quantitative indices for monitoring the path of recovery of the
patient. The first clinical trials are currently underway at the Neurorehabilitation Clinic,
Azienda Ospedali Riuniti, Ancona. The preliminary results and impressions are positive
and promising. The patients had good acceptance of the rehabilitation system while the
therapists were able to set up the robot and supervise the therapy very easily. Future work
will focus on an in-depth analysis of the data acquired during the tests, aimed at improving
the control of the robot and exercise protocols in order to better meet the needs of patients
and therapists that emerged from the first clinical trials.
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