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Abstract
This paper proposes novel multi-objective optimization strategies to develop a weighted
ensemble model. The comparison of the performance of the proposed strategies against
simulated data suggests that the multi-objective strategy based on joint entropy is superior
to other proposed strategies. For the application, generalization, and practical implications
of the proposed approaches, we implemented the model on two real datasets related to the
prediction of credit risk default and the adoption of the innovative business model by firms.
The scope of this paper can be extended in ordering the solutions of the proposed multi-
objective strategies and can be generalized for other similar predictive tasks.

Keywords Multi-objective optimization · Ensemble model · Prediction · Business model
innovation · Credit risk

1 Introduction

Decision-makers in many areas, from industry to engineering and the social sector, consider
multiple, conflicting objectives in their decision processes (Zhao, 2007). Standard statistical
techniques for decision-making have mainly relied on different information criteria for mod-
eling with single-objective functions (Burnham&Anderson, 2002). When several objectives
have been considered, prevalent optimization techniques have aggregated multiple objective
functions into single-objective functions for solving the problem, at the cost of excluding
relevant alternatives or techniques that otherwise could be explored (Izui et al., 2015).

One promising approach for decision-making is the use of the ensemble model. The
ensemble model combines multiple models using diverse available techniques and methods
for enhancing predictive performance (Zhang & Yunqian, 2012). Despite a large volume of
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literature that advocates the benefits of the ensemblemodel based on single-objective function
(Tumer & Ghosh, 1996), its limitations are well-known (Deb, 2001; Jin, 2006; Krawczyk,
2016; Wozniak et al., 2014).

By contrast, the multi-objective optimization approach provides an alternative tool that
allows handling several conflicting objectives and constraints to identify optimal solutions.
These solutions have been used for many different purposes, for example in the context of
a regression problem (Breskvar et al., 2018), transfer learning (Kordík et al., 2018), meta-
learning (Kordík et al., 2018), feature selection (Kou et al., 2021a, b; Kozodoi et al., 2019),
(Ribeiro et al., 2020), the evaluation of different frameworks for driving ensemble model like
competition and cooperation (Fletcher et al., 2020), or ensemble learning prediction-based
strategies for re-initializing the sample of prediction (Sahâ et al., 2019; Shi et al., 2014;Wang,
2019; Wang et al., 2020), budget allocation problems (Kou et al., 2021a, b), for financial risk
analysis (Kou et al., 2014; Li et al., 2021), bankruptcy prediction for SMEs (Kou et al.,
2021a, b).

However, none of the studies in the literature considers the solution of the multi-objective
optimization problem as a weight for combining a pool of candidate models to develop a
weighted ensemble model. This paper addresses this topic by proposing four multi-objective
approaches that have not only the potential to overcome the limitation of the single-objective
optimization function, but also provide the advantage of integrating some prior knowledge
in the estimation process to improve the predictive performance of the ensemble model.

Specifically, the paper provides a simple modeling framework and mathematical struc-
ture to solve the multi-objective problem to obtain local and global optimal solutions. The
analytical solution assumes no bias and therefore ignores the problem that weights are ran-
dom variate since weights are constrained to minimize any maximum deviations among the
obtained solutions. Solutions of the multi-objective problems are then used as weights in the
development of the ensemble model.

This paper provides three main contributions. First, it provides a set of four different
multi-objective strategies that can be used to develop a weighted ensemble model from their
analytical solutions as a linear combination of pooled models. This approach is new as the
extant literature has addressed the issue in a very different way, specifically by doing feature
selection and shuffling the sample for prediction. The pooled model can be parametric,
non-parametric, or any general ensemble model. The combination process does not take
into account any estimation of model parameters to avoid possible criticism summarized in
Banner and Higgs (2017).

Second, it offers the flexibility to solve a multi-objective problem analytically without
any need to reduce or transform the given constraints, thus avoiding the drawback of neg-
atively affecting the performance of the predictive model when constraints and objectives
are reduced. The solution obtained from the proposed multi-objective strategies is unordered
and any ordering or preference is therefore not required in this scope of the study. Moreover,
the proposed approach is rather simple, intuitive, and easy to implement compared to other
multi-objective optimization techniques.

Third, it shows how the weighted ensemble model based on multi-objective approach
helps to estimate class instances of supervised learning problems like credit risk default
and business model innovation. The prediction of credit risk default and business model
innovation as a supervised learning problem has not been widely explored in the literature
from the perspective of multi-objective optimization to deal with conflicting objectives. This
paper brings a novel direction in the definition of new perspectives to study the literature on
credit risk and business model innovation. As for the generalization, the proposed approach
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can be applied to any problem that involves decision-making based on several constraints
and conflicting objectives.

In this context, we compared the performance of a multi-objective strategy based on joint
entropy against a single-objective optimization function on two real datasets. The perfor-
mance comparison on the two real datasets suggests that the developed weighted ensemble
model using a multi-objective strategy provides superior predictive performance compared
to a single-objective optimization function. A similar comparison of the remaining proposed
multi-objective strategies against single-objective function can be done, but we just preferred
to make the comparison only picking the best of four proposed multi-objective strategies.

The proposed idea and insights from this paper are broad and can be an interesting to solve
problems in other domains where multi-objective optimization function is of primary interest
as a methodological approach and is not limited only to solve a supervised learning problem
as discussed in this paper. For future research directions, any ordering of the solutions of
multi-objective problems would be an additional advantage in improving the performance of
the ensemble model.

The remaining section of the paper is as follows. Section 2 presents background informa-
tion followed by the proposed strategies in Sect. 3 and results in Sect. 4. Section 5 presents
the application of the theories followed by concluding remarks and future research direction
in Sect. 6.

2 Background information

Any machine learning algorithm from the optimization point of view can be seen as a sin-
gle objective learning, scalarized multi-objective learning, and Pareto-based Multi-objective
learning. Single objective learning often minimizes mean squared error (MSE) on the train-
ing data but many different suitable error metrics can be equally used to solve optimization
problem.

The recent trends in the use of machine learning algorithm has seen applications of multi-
objective to overcome the limitations of single-objective functions depending on how cost
function is adopted. The increasing impetus of multi-objective approach for various tasks is
mostly attributed to the advancement of evolutionary algorithms and other stochastic search
methods.

The advantage of multi-objective learning with scalar cost function helps in addressing
different topics of machine learning such as clustering, feature selection, improvement of
generalization ability, knowledge extraction, and ensemble model generation.

Using multi-objective optimization, one can categorize any learning problem as an opti-
mization problem as it is often a task of model selection and parameter estimation evaluated
against different criteria. For instance, in supervised learning, the common criteria is an error
function that reflects the approximation quality whereas in the unsupervised problem, the
criteria is to maximize inter-cluster similarity andminimize intra-cluster similarity. For prob-
lems of reinforcement learning, the criterion is a value function that helps in predicting the
reward for an agent to perform a given action in a given state.

Many competing and conflicting objectives can be optimized together through the help
of multi-objective optimization approach. For instance, complexity and interpretation of
the model is one such conflicting objectives to be optimized together using multi-objective
approach. These two objectives of the model are strongly interrelated to each other and in
general, the lower is the complexity of the model, the easier it is to understand the model.
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To obtain this, one has to consider a second objective reflecting the complexity of the model
which can be aggregated as a scalar objective function keeping f = E + λ� , where E is
common error function, � is a measure for model complexity that indicates the number of
free parameters in the model, with λ > 0 is a positive hyper-parameter.

Such approach is widely used to regularize neural networks, create interpretable fuzzy
rules and many other usage in the field of machine learning. However, there are two main
weaknesses in the use of scalarized objective function for multi-objective problem. Firstly,
it is difficult to make an appropriate choice of hyper-parameter λ and secondly only single
solution can be gained from which it is difficult to visualize any further additional insights
into the problem. To overcome such limitation, one has to take advantage of a multi-objective
approach that helps any learning algorithm to improve the overall accuracy.

3 Proposed strategies

Notation and assumptions

In this section, we propose four multi-objective strategies that can serve as a useful tool
in enhancing the objectives of the weighted ensemble model. The models considered for
weighted ensemble model are a collection of parametric, non-parametric, and ensemble
model, to say, let {1, 2, . . . , n} represents the set of these models to which we assume allo-
cating random vector of weights w = {w1, w2, . . . , wn} ∈ R

n as a preferential choice where
wi is any specific weight attached with any model i f or i = 1, 2, . . . , n constrained as∑n

i=1 wi = 1.
Let p = {

p1, p2,..., pn
} ∈ R

n be the performance associated with each of the models.
It may be possible that the weights may be mis-allocated due to existing co-variance. To
minimize the co-variance between weights and performance of the models, we construct the
following relation,

f1(w) = w · pT =
n∑

i=1

wi pi (3.1)

where
∑

(.,) is the co-variance between model and their allocated weights. Therefore, the
error of the model is defined simply the co-variance between weights and transposed weights
as the following,

f2(w) = w
∑

wT (3.2)

With the help of Eqs. (3.1) and (3.2), We can construct multi-objective optimization
problem as bi-objective problem,

min
w∈C

[
w pT

w
∑

wT

]

, where C =
{

w ∈ R
n;

n∑

i=1

wT 1 = 1, wT ŷ = y f or i = 1, 2, . . . , n

}

(3.3)

and 1 is a unitary matrix. The symbol ŷ , y refers to predicted and observed mean values.
Obtaining a solution for such minimization problem is difficult compared to single-

objective problem. The scalarized approach discussed in Sect. 2 helps to certain extent for
aggregating multi-objective function but is not efficient to obtain optimal solutions. To com-
bat this limitation, one such approach is goal programming which is a special case of the
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multi-objective problem as a bi-objective problem where we fix a goal value for each objec-
tive function, and measure the deviations of the values of the objective function from their
goal value over the feasible region.

The advantage of using such an approach is that we are able to optimize a target value
for each goal function and then minimize the difference between each target function and
its goal rather than directly optimizing goal objective function. Formally, the bi-objective
problem can be reformulated as a goal programming problem by assigning to each fi a goal
value gi and minimizing the deviation ( fi − gi )+ f or i = 1, 2 over feasible region where
+ refers to the positive part of the function.

To be more precise, let us define a g1 = p∗ ,where p∗ denotes the desired level of
performance on the model and let g2 = 0 as two target goal function. The goal vector
g = (p∗, 0) ∈∈ R

2 do not necessarily lie in the objective space. Using the above settings,
we propose four different multi-objective strategies that helps to reformulate multi-objective
problem into bi-objective problem to enhance not only performance of theweighted ensemble
model but also to trade-off against competing objectives of any given problem. The following
flowchart explains the framework and its processing components for constructing weighted
ensemble model from the proposed strategies.

Fig. 1 Flowchart for weighted ensemble model from the proposed strategies
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Strategy 1 The first strategy we consider is called weighted sum of deviations (WSD) that
formally can be written as

min
w∈C

N∑

j=1

w j ( f j (w) − g j )
+ where C is a set of constraints. (3.4)

A scalarized or aggregated function can be written as F = ∑N
j=1 w j ( f j − g j )

+ which
can further be formulated as convex combinations that can help us to generate a new curve
as a weighted average of deviations for each objective from its goal.
Strategy 2The second strategywe use here is called Chebyshev goal programming and can be
considered as an extension of previous Strategy 1 sincewe try tominimize only themaximum
weighted deviation instead of minimizing the sum of deviations.When this is done, this helps
in minimizing other deviations which are smaller. More formally, we can write them as

min
x∈C

[

max
j

w j ( f j (x) − g j )
+
]

f or j = 1, 2,

· · · N where C is any constraint defined in equation (3.3). (3.5)

Strategy 3 This strategy is called joint entropy and helps us to understand the uncertainty or
divergence associated between models. The joint entropy of n models can be formulated as

H(x1, . . . , xn) = −
∑

x1∈χ1

. . .
∑

xn∈χn

P(x1, . . . , xn) log2 [P(x1, . . . , xn)] (3.6)

More formally, to understand how much each of these models diverge from each other,
we can formalize them as x = (x1, . . . , xn) ∈ pn, y = (y1, . . . , yn) ∈ qn then f or i =
2, ..., n , as it holds (3.7) zi = min

{∑i
j=1 p j ,

∑i
j=1 q j

}
− ∑i−1

j=1 z j for any z = x ∧ y

; pn and qn which are respective marginal probability distributions. One has to keep in
mind that such measure helps in understanding the diversification between models which is
non-negative and concave.
Strategy 4: Another variant of Strategy 3 is to use cross entropy rather joint entropy for
understanding diversification among models. The idea of using cross entropy is based on
importance sampling. For instance, if we take a random sample x1, . . . , xn based on impor-
tance sampling with density g on χ and using unbiased estimator l and likelihood ratio,
we can minimize the distance of cross entropy which is equivalent to solving maximization
problem

max
v

∫

g∗(x) ln f (x; v) dx (3.8)

where g∗(x) = I{S(x)≥γ } f (x;u)

l
is the density measure and f (.; v) is a family of density.

So far, we have been asserting that it is possible to formulate the given bi-objective problem
into a goal programming problem to generate an optimal solution, but we do not know if the
optimal solution obtained through goal programming problem is also the optimal solution to
bi-objective problem. We can formalize a theorem in this context to see if it is true.

Theorem If x∗ is the optimal solution for goal programming then this also serves as a unique
minimizer or optimal point for the multi-objective problem.
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Proof Using weighted sum of deviations method, we can approach to prove this theorem for
the goal programming problem assuming that x∗ is the unique global minimizer of

min
x∈C

[

w1

(
xpT − p∗)+ + w2

(

x
∑

xT
)]

(3.9)

Let us assume further that x∗ is not a global optimal solution or optimal solution for the
multi-objective problem, ∃ a point x̂ ∈ C with condition either x̂ pT < x∗ pT or x̂

∑
x̂ <

x∗ ∑
x∗T . Therefore, we can say that following relation holds w1(̂x pT − p∗)+ +

w2 (̂x
∑

x̂) < w1(x∗ pT − p∗)+ + w2(x∗ ∑
x∗T )

where x̂ is a global minimizer of multi-objective problem and this is a contraction to what
we assumed. An equivalent or alternate theorem can be established for global maximization
problem to find optimal solutions of multi-objective problem. ��

4 Results

Solving each of the strategies above using a minimization framework provides a set of non-
dominated solutions that are not ordered but sufficiently serves as local and global optimal
values for the considered objective functions. They are efficient solutionwhich is used to rank
the performance of machine learning models (parametric, non-parametric, and ensemble).
This, in turn, helps us in mapping relationships between our objective function, which can be
changed sequentially by varying weights especially in the strategic approach of a weighted
sum of deviation, and Chebyshev goal programming.

The ordering analysis of the optimal solution is not considered in this scope of study
in terms of no preferred method, a priori method, posterior method, hybrid method, and
interactive method since these are broadly defined topics meeting the different purposes of
solving a multi-objective problem. Our approach here to some extent is very similar to the
no-preference method where we have been able to scalarize the problem taking the objectives
that are normalized into a uniform dimensionless scale.

Each of the ensemblemodel based on proposed strategieswere developed using parametric
models (logistic regression (GLM)), and ensemble model average technique such as (random
forest, Bayesian moving average).

To evaluate the performance of the ensemble model using proposed strategies on simu-
lated data, various key performance metrics reflecting accuracy and error metrics were used
such as hmeasure (H), Area under the roc curve (AUC), Minimum error rate (MER), and
Minimum cost weighted error rate (MWL) which helps to examine predictive capability, dis-
criminatory power and stability of the results. The simulated dataset is created randomly from
the underlying structure of ensemble model development. The generated simulated dataset
resembles real dataset as the data generating process is assumed to come from multi-variate
normal distribution with similar mean and co-variances. The developed ensemble model is
a weighted model of different classifiers which is combined using the optimal weight of
proposed multi-objective problem.

Figure 2 presents the multi-objective solutions as an unordered point with two local mini-
mum optimal solutions and a set of various points as a globally optimal solution with respect
to Strategy 1 that is based on a weighted sum of deviations. The solution achieved through
this strategy is useful for the direct comparison of objectives since unnecessary deviations
are multiplied with weights to form a single sum for the goal or achievement function.
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Fig. 2 Unordered solutions using Strategy 1

Figure 3 presents the multi-objective solutions with respect to Strategy 2 where we can
see a peak at some point in their objective function value and being flattened at many other

Fig. 3 Unordered solutions using Strategy 2
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points with the goal to minimize maximum deviation in the goal programming approach i.e.
to reduce maximum co-variance among the chosen machine learning models. These peak
points are the local minimum optimal solution and flattened points are the global minimum
optimal solution.

Figure 4 indicates the multi-objective unordered solution of the minimization problem
referring to Strategy 3 that is based on joint entropy, and we can see multiple local and global
optimal points.

Fig. 4 Unordered solutions using Strategy 3

Figure 5 indicates the unordered solution of cross-entropy referring to Strategy 4 that
shows multiple local optimal solutions and one global optimal solution.
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Fig. 5 Unordered solutions using Strategy 4

Table 1 Performance metrics
reflecting accuracy of the
strategies

Strategy H AUC

Strategy 1 0.60 0.92

Strategy 2 0.48 0.93

Strategy 3 0.64 0.94

Strategy 4 0.06 0.63

Significance of [bold]: The bold text is there to highlight best strategy
among other strategies with respect to performance metrics

Table 2 Performance metrics
reflecting error of the strategies

Strategy MER MWL

Strategy 1 0.14 0.14

Strategy 2 0.12 0.12

Strategy 3 0.11 0.11

Strategy 4 0.28 0.28

Significance of [bold]: The bold text is there to highlight best strategy
among other strategies with respect to performance metrics

Tables 1, 2 indicate how each of the proposed strategy performs on simulated data with
respect to the chosen performance metrics for developing ensemble model. The comparison
in Tables 1, 2 suggests that proposed Strategy 3 based on joint entropy is superior to other
proposed strategies that can help to enhance the predictive performance of ensemble model
in classifying class instances of a classification problem.
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5 Application

The applications of the proposed approach could be broad and various case studies of real-
world problems can be solved usingmulti-objective optimization techniques. The application
further depends as how many objectives have been defined and the level of interactions with
decisionmakers.One canfindvarious combinations of number of objectives and interaction to
solve real-world problems from themulti-objective techniques (for instance, any optimization
problem in policy planning and strategic management often requires various conflicting
objectives to take into account for decision-making process). To facilitate the comprehension,
we took a couple of dataset corresponding to different nature of problems and evaluated the
application scope of the proposed approach.

The first real dataset for the application collects a credit risk information about the cus-
tomer. The dataset has a binary dependent variable (ClientStatus) that takes class value 0
(good customer) and class value 1 (bad customer). A prior probability for the dependent
variable shows 96.11 % of class label 0 and 3.9 % of class label 1.This data is composed
of 40,000 observations and 30 explanatory variables. The explanatory variable is mainly
categorized as information about socio-demographic characteristics, customer equipment,
customer history, and other things related to customer behavior. This dataset is provided by
one of the leading financial institution in Europe and is not available as a public data for its
wider use. Refer to appendix for more details on the dataset.

Another dataset used for the analysis from the application perspective of the proposed
strategies is a survey data of Italian firms that report information on business model inno-
vation summarized by major changes in the product, process, finance, and business network
profiles of the firm. The dataset is composed of 7836 observations obtained from a ques-
tionnaire survey on a representative sample of Italian manufacturing firms, submitted in the
period October 2019–March 2020. The explanatory variables mainly collect information on
the economic and financial profile of the company, its innovation profile in terms of prod-
uct, process and organizational innovations, the intensity of investment in IT-related assets,
additional information on the ownership of the company and main individual characteristics
of board members, managers and directors. The response variable is a binary choice variable
indicating business model innovation with class label 0 and class label 1. A prior probability
for the dependent variable shows that 92.3 percent of class label 0 indicate innovation in
the business models and 7.7 percent of class label 1 are firms that did not innovative their
business model. Refer to appendix for more details on the dataset.1

It is obvious to see that the dependent variable for both the datasets is imbalanced class
distribution and to train them for a predictive model, it is necessary to balance the class
distribution using any over-sampling or under-sampling technique to avoid any over-fitting

1 Business model innovation refers to changes in the existing structure of assets and operations (i.e., business
model) that a company uses to deal with the market. Whether a firm at strategic level realizes this or not,
business model is always there, which could be either in evident or latent form. In principle, the underlying
logic or architecture of any business always refers to the business model in place. A firm changes many
decisions at strategic level across various functions which may lead to the overall innovation of the existing
business model. Specifically, it is the combination of several changes in different functions of business which
matters the most in innovating the business model. The design of the survey is done in such a way to capture
information of the changes done across different functions within the firm. Such integrated changes of different
functions in the business most likely lead to innovation of the business model. In abstract sense, the binary
dependent variable “business model innovation” is nothing but a function of individual indicators that refers
changes in the business model. More precisely, business model innovation is a function BMI = f (f3, p7, f2, n5,
...), which is a linear combination of individual indicators of business model change. We thank an anonymous
referee for helping to make this point clearer.
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Fig. 6 Predicted distribution of ensemble model using multi-objective Strategy 3 on credit risk data

problem. To create class balance, we use SMOTE (synthetic minority over-sampling tech-
nique)which is a preferred technique to treat the imbalance problemof data. SMOTE (Chawla
et al., 2002) creates synthetic observations based on existingminority observations that works
on the principle of k-nearest neighbors. It generates new instances that are not just copies of
the existing minority class: in fact, the rule is to take samples of feature space for each target
class and its nearest neighbors. In this way, it increases the features available to each class
and makes the samples more general and balanced.2

Although each of the four proposed strategies can be applied to any nature of datasets
for a predictive model task, our focus is to pick the best proposed strategy and compare the
performance against any single objective function that can be broadly defined as follows:

min
w

wT
∑

w Such thatwT 1 = 1wT ŷ = y (5.1)

From the four proposed multi-objective strategies, we compared Strategy 3 (joint entropy)
against a single-objective function defined in Eq. 5.1. Figures 5, 6, 7 and 8 show the predicted
probability distribution of Strategy 3 (joint entropy) and single-objective optimization on the
credit risk data and business model survey data.

Looking at Table 3, Figs. 5 and 6, it infers that the performance of ensemble model
using multi-objective optimization Strategy 3 based on joint entropy (EMM1) is superior in
predicting credit risk default compared to single- objective optimization function (EMS1)3.
The distribution of predicted probability in Fig. 5 is well separated for positive and negative
predictive class in comparison to distribution in Fig. 6 which further confirms the superior
performance of multi-objective optimization Strategy 3 based on joint entropy.

2 For credit risk dataset, the class size, their distribution after SMOTE are (9342, 10,899) and (46%, 54%)
respectively. For business model dataset, the class size, their distribution after SMOTE are (1881, 2037) and
(48%, 52%) respectively.
3 EMM1 refers the proposed strategy 3, EMM2 to strategy 4, EMM3 to strategy 2, and EMM4 to strategy
1. EMS1, EMS2, EMS3 and EMS4 refers to the single-objective optimization function of the proposed four
strategies and follows the same sequence of EMM1, EMM2, EMM3, and EMM4.
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Fig. 7 Predicted distribution of ensemble model using single-objective function on credit risk data

Fig. 8 Predicted distribution of ensemble model using Strategy 3 (multi-objective) on business model inno-
vation survey data

Looking at Table 4 and Figs. 7, 8, it infers that the performance of ensemble model
using multi-objective optimization Strategy 3 based on joint entropy (EMM) is superior in
predicting business model innovation compare to its version of single-objective optimization
function (EMS)4. The distribution of predicted probability in Fig. 7 is well separated for
positive and negative predictive class in comparison to distribution in Fig. 8 which further

4 EMM2 refers to the proposed multiobjective strategy 3 and EMS2 is a single-objective version of EMM2.
EMM2 and EMM1 are interchangeably the same as they have been developed using strategy 3, it is just
two different convention for evaluating the performance on two different datasets.So, is the case with EMS1
and EMS2. The other models in Table 4 stands for GLM(generalized linear model), RF(random forest), and
BMA(Bayesian moving average).
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Table 3 Performance evaluation
of different ensemble model
construction

Optimization function H AUC MER MWL

EMM1 0.64 0.94 0.11 0.11

EMM2 0.52 0.86 0.18 0.20

EMM3 0.66 0.89 0.16 0.18

EMM4 0.46 0.79 0.22 0.32

EMS1 0.05 0.63 0.25 0.27

EMS2 0.32 0.69 0.35 0.37

EMS3 0.03 0.64 0.25 0.22

EMS4 0.15 0.74 0.20 0.18

Table 4 Performance evaluation
of multi-objective,
single-objective ensemble model
and other classifier

Optimization function H AUC MER MWL

EMM 0.56 0.95 0.17 0.12

EMS 0.45 0.76 0.16 0.18

GLM 0.26 0.64 0.36 0.48

RF 0.39 0.89 0.26 0.32

BMA 0.55 0.83 0.27 0.17

confirms the superior performance of multi-objective optimization Strategy 3 based on joint
entropy.

To establish the statistical difference between obtained results, we used theDeLong test for
comparing the difference in AUC values of the ensemble model based on single-objective
optimization and multi-objective optimization function. The pairwise comparison of the
model and using its p-value with reference to the significance value of 0.05, it is found that
all pair is statistically significant and different except the pair of EMS1 and EMS2 in Table 3.
In Table 4, it is found that all pair-wise comparison of models is statistically significant and
different except for the pair RF and BMA (refer DeLong et al., 1988).

6 Conclusion

This paper gives a new perspective in connecting the use of the multi-objective approach to a
classification problemby proposing different strategies to assess optimal solutions as aweight
for developing ensemble models. This approach can help in understanding how to generate
interpretable models, retrieve new insight for model selection, and model uncertainty. The
overall benefit of the proposed strategies is to enhance the performance of the ensemble
model for any predictive task that seeks the attention of multi-objective optimization.

Limitations to this approach mainly come from the difficulty to guarantee and measure
convergence in order to achieve regular spacing of solutions, a result which is largely due
to the dominance and diverse nature of multi-objective approaches. The research activity in
the area of multi-objective optimization is an active field, with many challenging problems
still open in the context of uncertainty handling, computational complexity, and robustness.
For instance, one such intriguing question is the influences of learning behavior or simply a
property of the learning curve due to a multi-objective approach to machine learning. Any
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Fig. 9 Predicted distribution of ensemble model using single-objective function on business model innovation
survey data

ordering of the optimal solutions obtained from the proposed strategies in this paper would
be a useful direction to explore in future research.

7 Appendix

7.1 Details on credit risk dataset

See Tables 5, 6, 7 and 8.

Table 5 Socio-economic variable description

Variable Description Type

Age Loan applicant age Discrete

Region Location details Categorical

Account age Age of the current account (expressed in years) Discrete

Residency Type of residence (owner or tenant) Categorical

Residency age Seniority of residence in the current residence (expressed in years) Discrete

Civil status Marital status (married, single, divorced …) Categorical

Kids Number of children Discrete

Gender Gender Categorical

Income_applicant Applicant income Continuous

Income_family Family income Continuous

Profession Job details Categorical

Birth_place Country of birth Categorical

Job_seniority Working seniority (expressed in years) Discrete
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Table 6 Client equipment variable description

Variable Description Type

Financing Financing channel (agency, web, telephone …) Categorical

Personal_loans Current personal loans—number of practices Discrete

Personal_balance Current personal loans—residual amount on the balance Continuous

Residual_duration Current personal loans—residual duration to balance Continuous

Approved_loans Total finalized loans in progress—number of practices Discrete

Approved_loans_balance Total finalized loans in progress—remaining balance Continuous

Approved_loans_maturity Total finalized loans in progress—residual maturity at the balance Continuous

Credit_card_info Card—customer holding card Discrete

Credit_card_balance Card—credit card display Continuous

Table 7 Client history variable description

Variable Description Type

Personal_loans_details Personal loans paid in the last 24 months—number of files Discrete

Approved_loans_details Finalized loans paid in the last 24 months—number of practices Discrete

Table 8 Client behavior variable description

Variable Description Type

Late_payment Number of late payments from origin (in months) Discrete

Behavioral_score_internal Internal behavioral score Continuous

Behavioral_score_bureau Credit bureau behavioral score Categorical

Recovery_yearly Number of recovery ascents in the last 12 months Discrete

Recovery_monthly Number of months to recovery in the last 12 months Discrete

7.2 Details on business model innovation dataset

See Table 9

Table 9 Variable description of business model innovation dataset

Variable Description

f3 Did firm introduce new features to existing product to improve sales?

p7 Did firm make any change to products and process?

f7 Did firm set price dynamically?

p6 Did firm shorten the time to market?

f2 Did firm change the way in which they sell product (revenue model)?

n1 Did firm integrate their merger and acquisition upstream?
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Table 9 continued

Variable Description

n8 Did firm get grant to support innovation policy?

p3 Did firm introduce the product in niche market?

n3 Did firm integrate within the main business support activities?

n5 Did firm modify or introduce new direct sales channels (online,
e-commerce,digital, and new sales network)?

f5 Did firm focus on differentiated product?

n2 Did firm integrate their merger and acquisition downstream?

o1 Did firm include any new function in their organizational process?

n7 Did firm sign any partnership with customer and supplier?

n3 Did firm integrate within the main business support activities?

p1 Did firm introduce new product?

n4 Did firm introduce business skill?

o7 Did firm change the hierarchy in organizational process?

f1 Did firm change the the pricing policy according to demand or discount
system?

o2 Did firm delete any new function in their organizational process?

p5 Did firm introduce process innovation?

n6 Did firm modify or introduce new indirect sales channels (wholesalers,
distributors and other intermediaries)?

p2 Did firm add additional service to existing product?

n5 Did firm introduce process innovation?

o4 Did firm introduce business skill?

p4 Did firm change the customer portfolio or market?

f6 Did firm use fixed price?

f4 Did firm focus on mass market?
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