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 The recent deployment of automatic modulation recognition (AMR) for 

cognitive radio (CR) systems has significantly enhanced spectrum sensing 

capabilities. The utilization of real-time over-the-air digital radio frequency 

(RF) data for the development of a digital spectrum sensing model based on 

the automatic modulation classification (AMC) is presented in this study as a 

step for incorporating opportunistic spectrum sensing onto the NomadicBTS 

architecture. Some digital modulation techniques were studied for second-

generation (2G) through fourth-generation (4G) technology. The raw RF 

signal dataset was digitized and curated, while non-complex first-order 

statistical (FOS) features were used with algorithms based on the Scaled 

conjugate gradient (SCG) and Levenberg-Marquardt (LM) to find the best 

learning algorithm for the generated AMR model. The results show that the 

developed AMR model has a very high likelihood of correctly classifying 

signals, with distinct patterns for each of the features of FOS. The results are 

compared to reveal a least mean square error (MSE) of 0.0131 with a 

maximum accuracy of 93.5 percent when the model was trained with 

seventy (70) neurons in the hidden layer using the LM method. The best 

model's accuracy will allow for the most precise identification of spectrum 

holes in the bands under consideration. 
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1. INTRODUCTION 

Globally, mobile phone usage and voice and data traffic are surging. Recent figures suggest that 

global growth will accelerate [1]. Like electricity, wireless communication is increasingly essential for most 

social, economic, and industrial activities. Due to this global trend, demand for faster data rates will grow, 

requiring more radio spectrum use. However, the radio spectrum is a limited natural resource controlled by 

National Regulatory Authorities (NRA) [2]. As spectrum use rises, a shortage appears and this is traceable to 

https://creativecommons.org/licenses/by-sa/4.0/
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the inherent shortcomings of the conventional fixed spectrum access (FSA) used in most countries [3]. Based 

on an analysis of spectrum utilization and coverage internationally, the FSA policy won't be able to 

accommodate the growth of mobile connection and increased data transmission speeds in the coming years. 

To enhance QoS and user experience, more comprehensive and scalable spectrum access is needed, enabling 

users of more crowded channels to utilize available and less occupied channels seamlessly. Dynamic 

spectrum access (DSA) is a flexible spectrum policy linked with the IEEE 802.22 standard, and cognitive 

radio (CR) is required for DSA implementation. 

Based on the CR definition as detailed in [4]–[7], a transceiver in a CR system can automatically 

identify the available spectrum and then use the vacant channels while skipping the occupied ones. It 

optimizes limited radio resources while causing the least amount of disturbance to main and secondary users, 

while DSA frees up idle capacity in occupied but underutilized bands such as TV white space [8]. While 

other functions play their roles, spectrum sensing is the most essential and remains the most fundamental 

component of CR's operation [9]. Several traditional approaches or algorithms for CR spectrum sensing are 

well-documented and frequently used [10], while machine learning (ML) algorithms are cutting-edge ways to 

improve CR system performance. They use the classification concept to detect the availability of frequency 

channels [11]. Automatic modulation recognition (AMR)-based spectrum sensing has gained scientific 

attention in recent years. It's an automated approach for recognizing signals' modulation classification and 

features [12], based on the concept that primary users (PUs) use a defined modulation technique for 

transmission within a given frequency channel. The absence of almost any modulation scheme in the channel 

means it's free and safe for transmission by a secondary user (SU) [13]. 

A wide variety of AMR techniques for spectrum sensing have been developed in literature and are 

classified into two major categories: (i) likelihood-based (LB) and (ii) feature-based (FB) techniques. LB 

approaches use hypothesis testing theory, and even though the performance is adjudged optimal, they are 

prone to high computation complexity. FB methods were created for practical application and typically 

extract features after preprocessing, employing classifiers to accomplish modulation classification. Various 

feature parameters could also be utilized to distinguish between multiple digital signals [14], [15]. The FB 

technique is further subdivided into shallow and deep learning techniques [12]. Although shallow machine 

learning-based classifiers have been used successfully, manual feature engineering relies on professional 

expertise, which may impair performance. Deep learning-based techniques for AMR have been presented due 

to their essential self-learning capabilities, especially when presented with an unfamiliar environment [16]. 

Interestingly, important studies on Feature-based AMR spectrum sensing have been documented in 

the literature. However, the majority of the studies that investigated AMR for spectrum sensing in CR used a 

variety of simulated datasets and feature types, such as constellation shapes, pseudo wigner-ville distribution 

(PWVD) coefficients, fractional lower-order statistics, and higher-order statistics [17]-[24], with only a few 

reports on results based on real datasets [13], [25]. Simulated datasets are not subjected to signal degradation 

effects, which normally occur in real-time wireless communication scenarios. Thus, models that are based on 

such datasets will have limited performance in real-time deployment. In addition, the use of complex feature 

extraction techniques will attract substantial computational costs.  

In the present study, real-time over-the-air radio frequency (RF) datasets were collected, curated, 

and non-complex first-order statistical characteristics were used to create an AMR model. As a first step 

toward adding opportunistic spectrum sensing to the recently developed nomadic base transceiver station 

(NomadicBTS), a new base station architecture based on software-defined radio (SDR) technology for CR 

applications, this study describes the use of real-time over-the-air digital RF data for the development of a 

digital spectrum sensing model based on the automatic modulation classification (AMC), while exploring 

selected digital modulations. 

 

 

2. METHOD 

The nomadic base transceiver station (NomadicBTS) proposed in [26] is designed and built 

essentially on the software defined radio (SDR). The NomadicBTS architecture has two vital sub-modules 

with the front-end housing the SDR hardware while the SDR software operates on a personal computer (PC) 

at the back-end [26]. The architecture was extended in our study reported in [27] by incorporating CR 

capability with the AMR-based spectrum sensing model in the NomadicBTS architecture, where four (4) 

modulation schemes were considered and employed, namely, amplitude modulation (AM), Gaussian 

minimum shift key (GMSK), frequency modulation (FM) and (iv) noise (no-modulation).  

In the current study, however, the following modulation schemes were evaluated to further advance 

the AMR model in the NomadicBTS architecture for real-time over-the-air digital RF signals: (i) quadrature 

phase shift keying (QPSK), (ii) Gaussian minimum shift keying (GMSK), (iii) binary phase shift keying 

(BPSK), (iv) eight-ary phase shift keying (8PSK), (v) 16-quadrature amplitude modulation (16-QAM), and 
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(vi) 64-quadrature amplitude modulation (64-QAM). A no-modulation signal (noise) was also incorporated 

to depict spectrum possibilities or gaps in a real-world situation. As seen in Figure 1, the model in this paper 

is classified into seven categories (modulation plus no-modulation). With the implementation of this model in 

the NomadicBTS architecture [26], [27] for practical deployment, it will be able to differentiate between 

occupied and vacant spectrum bands. It will also indicate the type of modulation scheme for an appropriate 

choice of demodulation algorithm, which enables adaptability across wireless standards in an SDR scenario. 

This is crucial given the widespread usage of SDRs in modern wireless communication systems alongside 

satellite, spectrum sensing, and cellular systems [26]-[29]. The following sections describe the phases 

involved in implementing the AMR model in this study. If any modulation scheme associated with any 2G to 

4G communication technology is detected, it indicates the occupied states of the spectrum band. If, however, 

only the noise is detected, it indicates the availability (free) state of the spectrum band. 

 

 

 
 

Figure 1. Flowchart for AMC-based spectrum sensing model development 

 

 

2.1.  Real-time RF data acquisition 

For this study, raw RF signals for frequencies matching the specified modulation schemes were 

recorded between 2G to 4G cellular standards and WiFi (see Table 1). The data acquisition campaign was 

carried out at Covenant University, Ota, Ogun State, Nigeria (Figure 2), a Smart Campus with coverage for 

all the itemized wireless standards in Table 1. The real-time RF dataset was obtained from the setup 

comprising the Universal Software Radio Peripheral (USRP B200) as the hardware and the GNU-Radio 

Companion (GRC) as the software configured on Ubuntu Linux 16.04 LTS as the operating system 

(OS). This setup allows the USRP to effectively communicate with the host computer as shown in Figure 3. 

The technical and operating parameters of the USRP B200 are detailed in [27], while the parameter 

configurations for the different modulation schemes in this study are presented in Table 2. Each class had 50 

real-time signals gathered, resulting in a total of 350 samples. 

 

 

Table 1. Mobile technologies and respective modulation schemes [30] 
Communications technology Wireless 

generation 

Centre frequency (MHz) Modulation scheme 

Global System for Mobile Communications (GSM) 2G 900, 1800 GMSK 
General Packet Radio Service (GPRS) 2.5G 900, 1800 GMSK 

Enhanced Data Rate for Global Evolution (EDGE) 2.75G 900, 1800 8PSK 

Universal Mobile Telecommunications System (UMTS) 3G 900, 2100 QPSK 
High Speed Packet Access (HSPA) 3.5G 2100 QPSK, 16-QAM 

Long Term Evolution (LTE) 4G 700, 800, 1800, 2300, 2600 QPSK, 16-QAM, 64-QAM 

Wireless Fidelity (Wi-Fi /WLAN)  2400, 5000 BPSK, QPSK, 16-QAM, 
64-QAM 
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Figure 2. Location of one of the base stations for GSM data acquisition (latitude 6.6658O N, longitude 

3.15880 E) 

 

 

 
 

Figure 3. Interconnection of USRP B200 with host PC for real data acquisition campaign 

 

 

Table 2. Parameter configurations for the modulation schemes in this study 
Modulation 

scheme 

Wireless standard Bandwidth 

(kHz) 

Operator Downlink frequency range (MHz) Centre frequency 

(MHz) 

GMSK GSM - 2G 200 Globacom 945-950 947.5 
 GPRS – 2.5G  MTN 950-955 952.5 

8PSK EDGE – 2.75G 200 Airtel 955-960 957.5 

QPSK UMTS – 3G 
LTE – 4G 

5 MTN 2,110-2,120 2115 

 

 

Although BPSK, 16 QAM, and 64 QAM, as well as QPSK are deployed in WiFi, they differ in 

terms of received signal strength indicator (RSSI) sensitivity and data rate. Table 3 shows the theoretical data 

ranges and minimum RSSI sensitivities for each of the modulation schemes in WiFi. The dataset for this 

study is available at the Advanced Signal Processing and Machine Intelligence Research (ASPMIR) 

Laboratory, Covenant University, Ota, Nigeria. To carry out an accurate signal acquisition for each of the 

WiFi modulation schemes during our campaign, strategic locations within the Covenant University campus 

were selected through the use of Network Signal Information Pro mobile application software. The software 

interface as shown in Figure 4 shows the parameters in Table 3 and other information about any WiFi access 

point (AP) that is enabled and connected. Real signals were captured at the location where the network 

information corresponded with the data rate range and minimum RSSI of any of the modulation schemes, as 

detailed in Table 3. 

 

 

Table 3. Theoretical data rates and minimum RSSI sensitivities for the WiFi modulation schemes 
Modulation 
scheme 

Theoretical data rate 
(Mbps) 

RSSI (dBm) for 20-
MHz channel BW 

RSSI (dBm) for 40-MHz 
channel BW 

BPSK 6.50 – 7.20 -82 -79 

QPSK 13.00 – 21.70 -79 to -77 -76 to -74 
16-QAM 26.00 – 43.30 -74 to -70 -71 to -67 

64-QAM 52.00 – 72.20 -66 to -64 -63 to -61 
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Figure 4. Network signal info pro with WiFi parameters 

 

 

2.2.  Data preprocessing 

Each signal acquired at a particular frequency was digitized by the USRP B200 circuitry, which was 

used to realize the RF front-end of the NomadicBTS architecture. The received signal passes through 

different stages at the front end, such as: (i) filtering, (ii) down-conversion, (iii) signal conditioning, (iv) 

analog-to-digital conversion (ADC), and (v) digital signal processing (DSP) to produce the digitized format 

of the RF signal. The digitized signals were stored as .dat files in the GRC flow graph. Each of these binary 

files was further preprocessed into a vector of float numbers. Algorithm below shows data conversion 

algorithm, which outlines the procedure for converting each .dat file into a float vector. The algorithm was 

implemented with MATLAB R2017a. 

 

 
 

2.3.  First-order statistical features 

In this work, First-order statistics (FOS) values were retrieved for all preprocessed signal samples. 

For the following reasons, FOS features were considered and employed in this study: (i) the ability to identify 

distinctive attributes of signals, (ii) the awareness of signal modulation types, (iii) lack of sensitivity to 

variations in signal-to-noise ratio (SNR), and (iv) the significantly lower complexity compared to higher-
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order statistics based on our ultimate goal of achieving an on-device deployment of the AMR model [31]. 

The statistical parameters used are mean, variance, standard deviation, kurtosis, skewness, root mean square 

(RMS), median, and entropy, with mathematical details in [32]. The algorithm for the feature extraction 

procedure in this study is detailed in Algorithm below shows feature extraction algorithm, and its 

implementation was carried out in the MATLAB 2017a environment. 

 

 
 

2.4.  Development of a classification model 

This involves building and training classification model configurations to differentiate between the 

seven classes, which are the six modulation schemes and a no-modulation output as noise. Multiple 

experiments were conducted utilizing two classification models: kernel-based SVM and multilayer 

perceptron ANN (MLP-ANN). The experiments employed the following MLP-ANN model specifications: 

a. Architecture type: a feed-forward MLP-ANN with an input layer of 8 neurons showing characteristics, 

experimentally varying hidden layer neurons, and an output layer of 7 neurons for 7 modulation classes [13]. 

b. Activation functions: in the input layer, a linear activation function, i.e., Purelin, was utilized. In addition, 

to incorporate non-linearity into the network, the bipolar sigmoidal function, i.e., the Tan-Sigmoid 

function, was applied to both the hidden layer and the output layer [13].  

c. Learning algorithms: to train the model, two variants of back propagation algorithms were employed: the 

Levenberg-Marquardt (LM) and the scaled conjugate gradient (SCG). They were chosen based on their 

training speed, efficiency, stability, and superior accuracy [13], [29]. 

d. Performance functions: to evaluate training performance, the mean square error (MSE) and accuracy were 

utilized.  

 

 

3. RESULTS AND DISCUSSION 

For the development of the AMR model, different classification model configurations were used to 

differentiate between the seven classes. Several experiments were carried out to find the best model for this 

objective using the kernel-based SVM and the MLP-ANN classification models. For the type of architecture, 

a feed-forward MLP-ANN was set up, and Purelin was utilized as the linear activation function. Non-

linearity was incorporated into the network, and the Tan-Sigmoid function was applied to the hidden and 

output layers. The LM and SCG algorithms were employed for the training of the model. The performance 
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was evaluated using the mean square error (MSE), while the accuracy was established using the confusion 

matrix and the popular receiver operator characteristics (ROC) methodology. Figures 5(a)-(g) depict some 

spectrum graphs as samples of the raw RF signals obtained. These charts were developed and presented on 

the FFT sink in the GRC environment. 

 

 

 
 

 
 

 
 

 
 

Figure 5. Spectrum plots for (a) sample of GMSK signals, (b) sample of 8PSK signals, (c) sample of QPSK 

signals (d) sample of BPSK signals (e) sample of 16 QAM signals (f) sample of 64QAM signals and 

(g) sample of no-modulation signals 
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Figures 6(a)-(g) present bar charts demonstrating the retrieved FOS attributes for each class. This 

means that the created AMR model is highly likely to classify signals correctly. On the horizontal plane of 

the graph, the FOS is denoted by the mean, standard deviation, variance, skewness, RMS, kurtosis, median, 

and entropy. As illustrated, the pattern for each of the FOS attributes for the different class are distinct, which 

is a vital element for pattern recognition using the AMR technique. The LM and SCG algorithms were used 

to determine the best learning algorithm for the AMR model developed. The number of neurons in the hidden 

layer was varied for each learning algorithm in order to systematically ascertain the number of hidden layer 

neurons that generated low MSE with the highest accuracy. 

 

 

 
 

 
 

 
 

 
 

Figure 6. feature bar charts for (a) GMSK sample (b) 8PSK sample (c) QPSK sample (d) BPSK sample (e) 

16-QAM sample (f) 64-QAM sample and (g) noise sample  
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Based on the comparison of the findings, with seventy (70) neurons in the hidden layer, the 

model had the lowest MSE of 0.0131 and the highest accuracy of 93.5 percent when trained using the LM 

algorithm. Additionally, it was observed that when training using LM repeatedly on a predefined number of 

neurons for the hidden layer, the obtained accuracy values were relatively steady and within a very suitable 

range. As for the SCG, however, the levels of accuracy acquired for each predefined number of neurons for 

the hidden layer diverged virtually inexplicably. Figures 7 and 8 represent the best AMR model's confusion 

matrix and ROC curves, respectively, from this study. This model's specifications are shown in Table 4, and 

its topology is shown in Figure 9. The optimal AMR model obtained in this study is based on the compact 

FOS features that will form a CR component for the real-time deployment of NomadicBTS architecture to 

achieve dynamic spectrum sensing [26]. Similar efforts on the use of statistical features and CR for spectrum 

sensing have also been reported in the literature [27]-[29]. 

 

 

 
 

Figure 7. Confusion matrix for 70 hidden-Layer 

neurons for the LM-trained model 

 
 

Figure 8. ROC curves for the 70 hidden-layer neurons 

in the LM-trained model 

 

 

The accuracy confusion matrix for the proposed model is presented in Figure 7. As shown, most of 

the various modulation signal types are classified correctly with a 93.5% accuracy rate. This result indicates 

that the proposed model demonstrates an acceptable classifying capability for various modulation signals. As 

shown in Figure 8, the area under the curve (AUC) metric was used to evaluate the overall test accuracy of 

the optimal model by plotting the output probabilities based on the ROC methodology for the seven (7) 

different modulation classes. It is generally observed that the model performed satisfactorily well, with 

classes 1, 5, and 7 recording the highest AUC, followed by classes 2, 3, and 4, while class 6 is identified with 

the least AUC. 

 

 

 
 

Figure 9. Topology of the best AMR model 

 

 

Table 4. Characteristics of the best AMR model 
Characteristics Description 

Number of neurons at the input layer 8 
Number of neurons at the hidden layer 70 

Number of neurons at the output layer  7 

Input layer’s activation function  Purelin 
Hidden layer’s activation function  Tan-sigmoid 

Output layer’s activation function  Tan-sigmoid 
Mean square error (MSE) 0.0131 

Accuracy 93.5% 

Learning algorithm Levenberg-Marquardt (LM) 
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4. CONCLUSION 

Presented here is the development of an AMR-based spectrum sensing model toward the 

implementation of opportunistic spectrum sensing into the NomadicBTS architecture. Real-time over-the-air 

RF datasets were gathered from the experimental setup, including the USRP B200 device and the GRC 

software, and non-complex first-order statistical features were used as descriptors to design the AMR model. 

Selected digital modulation techniques for second-generation (2G) through fourth-generation (4G) 

technologies were evaluated, and the accuracy of the best model was determined. This would inevitably 

improve the identification of spectral holes within the reviewed bands. Complete prototyping of the CR-

based NomadicBTS architecture (incorporating the AMR model for the fifth generation (5G) mobile 

technologies), interoperability of multiple NomadicBTS for cooperative spectrum sensing, development of 

deep learning-based AMR models with more digital modulation schemes, and prototyping of the architecture 

for other use cases are all exciting areas for further research. 
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