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ABSTRACT

Manipulation of visual attributes of real images is a fundamental generative com-

puter vision task. The goal is to alter specified visual attributes of a given input

image while preserving all other visual attributes. The manipulations can be global,

such as changes in lighting or view angle, or spatially localized, such as the addi-

tion or removal of individual objects or actors, changes to their appearance, pose,

or expression. The majority of existing attribute manipulation methods are either

hand-crafted for a very specific manipulation (e.g. Photoshop filters) or require a large

dataset with attribute annotations to learn the desired manipulation in a supervised

fashion. This requirement renders fully-supervised methods prohibitively expensive

to apply in many real application domains that do not have large densely annotated

datasets. In this thesis, we investigate whether flexible attribute manipulation mod-

els can be trained without massive labeled datasets of real images by transferring

knowledge about the desired manipulation across different image datasets (domains)

that share the underlying structure. This transfer is often performed by transform-

ing examples from one domain in a way that makes them indistinguishable from the

other for a given family of neural discriminators. This procedure is called unsuper-

v



vised adversarial image alignment, and in this thesis we show that it suffers from

training instability, and introduce two new approaches for the stabilization of this

alignment: objective dualization and likelihood-ratio minimizing flows. After that,

we propose a novel setup and a method for manipulation of natural images that uses

only cross-domain supervision. Finally, we propose a new method for the manipu-

lation of domain-specific and domain-invariant factors of variation in the absence of

any supervision in either domain. We show that the proposed cross-domain alignment

objectives yield more stable solutions and that the proposed cross-domain image ma-

nipulation techniques successfully learn correspondences between factors of variation

present across different visual domains.
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Chapter 1

Introduction

Ever since the first photograph was taken by Joseph Nicephore Niepce with the aid

of the camera obscura in the beginning of the 19th century [96], the art of realis-

tic manipulation of captured imagery has been continuously developing. An early

example of such manipulation, shown in Figure 1·1, depicts a military general on a

horse in front of a battlefield. All parts of this image were sourced from different

pre-existing images by stacking multiple negative strips. In the decades following

early experiments of Kirsch et al. [58], digital image capture flourished, and eventu-

ally penetrated all spheres of modern life. Early digital image manipulation software

[108] mimicked classical forgery techniques, providing tools to manually split captured

images into “layers”, and stack these layers across multiple images, similar to how

authors of the fake military general photograph stacked photographic film. While

powerful, these tools require a lot of skill and can not be applied at scale if one

needs to perform a manipulation consistently across a large collection of images, e.g.

for video manipulation. In an attempt to streamline face manipulation across video

frames, computer-generated (CGI) face manipulation techniques used in movie pro-

duction [12] often relied on parametric morphable face models that explicitly model

face shape, lighting, albedo, reflectance, etc. As shown in Figure 1·2, these approaches

reduce image manipulation into three simpler sub-tasks: approximating the input im-

age by fitting the parameters of the parametric model to it, manipulating inferred

parameter values as needed to perform the desired manipulation, and rendering an

1
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Figure 1·1: An example of image forgery (1902). The final
image (top left) was created artificially by combining a horseman, a
battlefield, and a face from three other photographs. General Grant at
City Point, Library of Congress [23].

image back from the manipulated parameter vector. Unfortunately, building accu-

rate and visually plausible parametric domain models even for a relatively simple

problem domain, such as human faces, turned out to be an extremely challenging

problem that took decades of research to get even remotely close to realism. And

while more recent learning-based approaches that use parametric face models show a

lot of potential [28, 114], we argue that the sheer amount of intellectual effort required

for building such hand-crafted parametric models for each application domain from

scratch renders them poor candidates for building generic image manipulation tools

in the future.

Beyond addition and removal of objects and manipulation of facial expression,

practitioners might be interested in being able to manipulate arbitrary atomic and

uniquely identifiable properties of images - that we further refer to as “image at-

tributes”. Recently, fully-supervised neural methods [19, 20, 66] were shown to be
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Figure 1·2: Face manipulation using morphable face models
[12] (1999) factors the problem into three sub-problems: fitting a 3D
mesh and texture to the face image, manipulating these meshes and
textures, and rendering them back into the image domain.

able to learn how to manipulate specified attributes of real images while preserving

other attributes using explicit attribute labels, as demonstrated in Figure 1·3. These

methods require dense attribute annotations for each real image, which are often

prohibitively expensive to acquire. Moreover, some visual attributes, like reflectance

or lighting maps, can not be easily labeled by humans at all. To sum up, most im-

age manipulation approaches extensively explored throughout the last two decades

require either a lot of time and skill to manually manipulate each image, decades

of research to build accurate parametric models of the application domain, or large

manually annotated datasets that are either expensive or impossible to acquire for

many real-world application domains. In this thesis, we explore an alternative direc-
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Figure 1·3: Manipulation of natural images using a fully-
supervised neural method [66] requires a large annotated dataset
for supervision. Such densely annotated datasets are prohibitively ex-
pensive to acquire in many real-world application domains.

tion: building methods that manipulate real images by inferring relationships between

factors of variability present across structurally similar but visually distinct datasets,

that we further refer to as “different visual domains”. Some examples of such visually

distinct but structurally similar domains, provided in Figure 1·4, include datasets of

winter-time and summer-time photos, horses and zebras, etc. In Section 4.1, we show

that we can manipulate various aspects of real images using a crude simulation with-

out relying on any additional supervision by inferring relationships between factors

of variability present across real and synthetic domains.

First, we note that in order to learn structural relationships between arbitrary

domain pairs that, unlike 3D morphable models (3DMMs), lack out-of-the-box image

fitting capabilities, we need a universal mechanism for discovering and relating visual
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Figure 1·4: Examples of visual domains. Landscape paintings
and landscape photos, images of horses and zebras, winter-time and
summer-time photos - these dataset pairs are visually distinct but struc-
turally similar (image from the work of Zhu et al. [127]).

domains that do not assume access to pairs of corresponding images from these do-

mains during training. Being able to infer a mapping that turns images from “source”

domain into plausible examples from the ”target” domain using unpaired examples

of images from two domains is the first step towards reaching our ultimate goal of

learning meaningful structural relationships between visual domains. This problem

is called “unsupervised adversarial alignment”, and prior work addressing it [21, 71]

focuses on finding a transformation that minimizes some notion of “distinguishabil-

ity” between real examples of images from the target domain and transformed source

images. In this thesis, we show that existing notions of distinguishability lack either

expressivity or stability and semantic consistency. As a result, methods capable of

producing high-quality alignment in higher dimensional spaces, such as spaces of im-

ages, are often prone to training instability or to producing semantically nonsensical

solutions. To address these limitations, we propose several techniques for improving

the stability and semantic consistency of unsupervised adversarial alignment without

sacrificing the expressive power of trained models using objective dualization [50],

normalizing flows [98], and adversarial defense techniques [112].
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Figure 1·5: 3D Morphable Basel Face Model [66] does not model
many aspects of in-the-wild faces, such as hair or shadows cast by other
objects in the scene, but it still can be used to learn about meaningful
degrees of variability in real data. In this thesis, we focus on relating
such degrees of variability across different visual domain pairs.

Next, we note that a simulation that shares the underlying structural degrees of

variability with the application domain can provide a lot of useful learning signals

about the structure of that problem domain, even if its visual fidelity and complete-

ness are far from ideal. For example, a popular morphable model of a human face

[66], shown in Figure 1·5, lacks many features of real faces, such as hair, subsurface

scattering, or cast shadows. In this thesis, we show that, despite these limitations, we

can transfer control over individual factors that can be manipulated in this simula-

tion, such as the facial expression or head orientation, onto a real face domain using

unsupervised adversarial alignment. Finally, we note that while we, of course, can

not learn to accurately manipulate individual factors of variation in real images using

a synthetic dataset if that factor is absent in that synthetic dataset, like hair color in
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the example above, in this thesis we show that we can still learn to differentiate such

“missing” factors from those shared across two domains without any pair supervision

and manipulate such domain-specific and shared attributes in isolation.

More specifically, in Chapter 3, we address the stability and semantic consistency

of unsupervised adversarial alignment. After that, in Chapter 4, we focus on the task

of controlled manipulation of visual attributes of real images using cross-domain su-

pervision in two specific setups. In the “cross-domain image manipulation by demon-

stration” [119] setup, discussed in Section 4.1, we show how to manipulate a single

specific attribute of a real image for which we have “demonstrations” of the desired

manipulation in the synthetic domain. For example, the task might be to learn to

manipulate face expressions in photos of real humans using “demonstrations” of face

expression manipulations on 3D face renders. In the second “unsupervised multi-

modal translation” [47] setup, discussed in Section 4.2, we show how to manipulate

groups of attributes that are specific to images from the input domain while preserv-

ing attributes shared across domains without any explicit attribute supervision. For

example, let us assume that males and females look sufficiently different and that

in addition to that, males have a variable amount of facial hair, and females have a

variable amount of makeup. We would like to learn to control the amount of facial

hair in male images and the amount of makeup in female images, while preserving

attributes that vary across both domains, such as face orientation. We would like the

resulting method to learn this using just two unlabeled sets of images as supervision

without relying on any attribute annotations or pair supervision. The contributions

made in this thesis can be summarized as follows:

• In Section 3.1 of Chapter 3, we show how to stabilize adversarial alignment

by dualizing the discriminator objective if the discriminator is a logistic one

and show its relation to the maximum mean discrepancy [38] and iteratively-
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reweighted least squares. This work was presented at the International Confer-

ence on Machine Learning (ICLR) workshop [118].

• In Section 3.2 of Chapter 3, we show how to stabilize adversarial alignment

with a much richer family of discriminators if the learned transformation is a

normalizing flow. We show how to bound the adversarial alignment objective

with a novel non-adversarial objective, and show its relation to Jensen-Shannon

divergence and GANs [35]. This work was presented at the Advances in Neural

Information Processing Systems (NeurIPS) conference [120].

• In Section 3.3 of Chapter 3, we investigate the effect that the cycle-consistency

loss (a regularization technique proposed by Zhu et al. [127] and used in the

vast majority of state-of-art unsupervised image alignment methods since then)

has on the semantic consistency of learned cross-domain mappings. We show

that all methods that use this loss end up learning to “cheat” by performing

an adversarial attack “on themselves” to satisfy this loss. We show that this

cheating manifests as a low-amplitude structured noise in translated images and

that the semantic consistency of the learned cross-domain image mapping can be

improved by defending against this adversarial attack using a new adversarial

objective. This work was presented at the Advances in Neural Information

Processing Systems (NeurIPS) conference [7].

• In Section 4.1 of Chapter 4, we show how to train a model that can manipulate

a specific attribute of an input image if we have access to triplets of images

“demonstrating” this manipulation in a different domain. For example, the

proposed model can learn to realistically manipulate mouth expression or light-

ing in images of real humans using demonstrations of how these manipulations

look on 3D renders. This work was presented at the International Conference
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on Computer Vision (ICCV) [119].

• In Section 4.2.2 of Chapter 4, we demonstrate all existing translation models

that claim to be able to infer which attributes are domain-specific and which

are shared in both domains using only unpaired examples from two domains,

actually mostly rely on biases hard-coded into their architectures, that enable

them to work well on some datasets but make them fail miserably on others.

This work was presented at the Winter Conference on Applications of Computer

Vision (WACV) [8].

• In Section 4.2.3 of Chapter 4, we show how to manipulate attributes specific to

one domain while preserving attributes present in both domains (or vice versa)

without any explicit attribute supervision. The proposed method infers which

attributes are specific for each domain from data using self-adversarial defenses

described in Sec. 3.3. This work [121] is available as a technical report on arXiv.

Author Contribution. Ben Usman is the second author on two papers [7, 8]

discussed above. His contribution to these papers is limited (see Sec. 3.3 and 4.2.2).



Chapter 2

Background

In this section, we give a brief overview of the unsupervised adversarial alignment

and the background necessary for the remainder of this thesis. For a more in-depth

discussion of prior work relevant specifically to stabilization and cross-domain disen-

tanglement, please refer to the background subsections of corresponding chapters.

Neural networks. In 1806, Legendre [64] derived a way to estimate functional rela-

tionships between covariates X and outcome variables Y from observations, assuming

that the inferred relationship is linear up to a normally distributed residual ε:

Y = β ·X+ ε, ε ∼ N (0, σ) (2.1)

Later generalized linear models [88] relax this assumption, allowing estimation of

relationships that are given by a composition of an unknown linear and a fixed known

functional relation g(x), up to a residual ε that follows some fixed known distribution

P from the exponential family:

Y = g−1(β ·X) + ε, ε ∼ P (2.2)

For example, logistic regression is a generalized linear model with g(x) = ln(x/(1−x))

and logistically distributed residuals. Unlike linear models, parameters β of general-

ized linear models can not be inferred from data in closed-form, and are estimated by

solving a sequence of least squares problems iteratively reweighted by the derivatives

10
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of g(x). In the seminal work on backpropagation of error, Rumelhart et al. [102] pro-

posed a general algorithm for estimating the parameters of functional relationships

given by arbitrary length sequences of linear transformations interspersed with fixed

functional relationships, colloquially known as deep neural networks:

Ŷ(X, β1, . . . , βN) = gN(βN · . . . g2(β2 · g1(β1 ·X)) . . . ) (2.3)

Y = Ŷ(X, β1, . . . , βN) + ε, ε ∼ P (2.4)

Assuming that the negative log-likelihood of the residual ε is given by the function

L(ε), Rumelhart et al. [102] show that the parameter vectors β1, . . . , βN can be com-

putationally efficiently estimated via gradient decent with learning rate α:

l(β1, . . . , βN) = L(Y − Ŷ(X, β1, . . . , βN)) (2.5)

β
(t+1)
i = β

(t+1)
i − α · ∂l(β1, . . . , βN)

∂βi

∣∣∣∣
(β

(t)
1 ,...,β

(t)
N )

(2.6)

The resulting algorithm for computationally efficiently updating parameters of deep

neural networks is called the backpropagation algorithm. Auto-differentiation with

reverse-mode accumulation [69] generalizes the backpropagation algorithm to arbi-

trary directed acyclic graphs of computation, allowing multiple branches of indepen-

dent computations to share parameters and minimize multiple objectives.

Deep convolutional neural networks. The seminal work of LeCun et al. [60]

showed that replacing linear transformation with inherently translation-invariant multi-

channel convolutions, and adding spatial pooling and sub-sampling in-between

Ŷ(X,w1,w2, β3, β4, β5) = β5 · tanh(β4 · tanh(β3 · flatten(h2))) (2.7)

h2 = pool(tanh(w1 ∗ h1)), h1 = pool(tanh(w1 ∗X)) (2.8)

results in better generalization to unseen data on tasks involving images, and pro-
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Figure 2·1: LeNet-5 [60] architecture and activation maps.

duces interpretable spatial feature maps h1 and h2, see Fig. 2·1. Since then, many

critical improvements were made to this architecture, including (but not limited to)

residual connections [42] that enabled training deeper networks, and batch normal-

ization [48] that improved convergence of large networks, but the overall perspective

of seeing deep convolutional networks as sequences of translation-invariant non-linear

transformations applied to spatial feature maps remained largely intact.

Deep convolutional generators. In many real-world tasks, such as colorization

[16], super-resolution [79], or surface normal estimation [123], the estimated under-

lying function takes an image as an argument and produces another image as an

output. While nothing prevents us from regressing individual pixel intensities in-

dependently from each other, similar to how we regressed outcome variables in Eq.

(2.7), approaches that take into account the spatial structure of generated images
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tend to produce higher quality results. Most approaches factorize the learned image-

to-image mapping f : x → y into a deep convolutional encoder E : x → e mapping

an input image x into an intermediate embedding e, architecturally similar to deep

convolutional networks presented in the previous paragraph, and a deconvolutional

generator G : e → y mapping the embedding vector e to the output image y, i.e.

f = E ◦G. The architecture of the generator, introduced under a different name by

Zeiler et al. [126], mirrors the architecture of the encoder, but in reverse: replacing

pooling with upsampling, and convolutions with transposed convolutions [126].

Unsupervised adversarial alignment. As discussed in the previous chapter, our

ultimate goal is to learn a relationship between two visual domains from unpaired

examples from these domains. The first step towards this goal is to learn the vector

of parameters θ of an encoder-generator transformation T (x; θ) that would map im-

ages from one domain into plausible examples from another. The parameter vector

θ is usually updated via gradient descent to minimize some notion of distinguishabil-

ity between examples from respective domains, i.e. to perform unsupervised domain

alignment. This distinguishability is often defined as a maximum possible difference

between empirical means of values of a witness function f(x) evaluated on samples

A and B from respective domains, maximized over the function family F :

df (A,B) = max
f∈F

(Ex∼A f(x)− Ex∼B f(x)) (2.9)

An example of such witness function for a pair of a Gaussian and a Laplacian

distribution is given in Figure 2·2. Starting from the seminal work of Goodfellow

et al. [35] introducing generative adversarial networks (GANs), this distinguishability

is often defined as the inverted classification loss L(p̂, p) of the best deep convolutional

classifier p̂ = f(x;w) with parameter vector w, called discriminator, and trained

to discriminate real examples from B from transformed examples from A. This way,
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Figure 2·2: The optimal witness function f discriminating samples
from the Gaussian p and Laplace distribution q. (Gretton et al. [38])

in order to align distributions A and B, one has to minimize the following objective

with respect to the parameters θ of the learned transformation:

min
θ

df (T (A; θ), B) = min
θ

max
w

(Ex∼A L(f(T (x; θ);w); 1)− Ex∼B L(f(x;w); 0))

(2.10)

Supervised image-to-image translation. Isola et al. [49] were among the first to

show that the adversarial alignment objective (2.10) can improve the visual quality

in the supervised image translation task. Figure 2·3 shows that for a paired dataset

D = {(xi, yi)}Ni=0 of, for example, shoes and corresponding shoe outlines, the task

is to learn the parameters of the mapping T (x; θ) that maps a novel outline into a

realistic shoe. For a generated shoe image ŷi = T (xi; θ), Isola et al. [49] optimized

the combination of a supervised L1 loss, and an unsupervised alignment loss ensuring

that the generated shoe-outline pair looks “indistinguishable” from the real pair:

Lpix2pix(xi, yi, ŷi) =
∑
i

∥ŷi − yi∥1 + df ((ŷi, xi), (yi, xi)). (2.11)
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Figure 2·3: The comparison between supervised and unsuper-
vised image translation tasks (from the work of Zhu et al. [127]).

Unsupervised image-to-image translation. CycleGAN [21] and UNIT [71] were

the first to show that adversarial domain alignment objective (2.10) can be used to

infer relationships between complex distributions in higher dimensions, such as distri-

butions of natural images, even without any pair supervision (see Figure 2·3). In or-

der to achieve high-quality alignment, they trained two separate mappings (T (x; θA2B)

and T (x; θB2A)) and applied alignment losses in both domains

Ladv = df (T (A; θA2B), B) + df (T (B; θB2A), A) (2.12)

and regularized learned mappings either by weight sharing, or via a VAE-like [56]

KL-penalty terms [71], or the cycle-consistency loss

Lcyc = Ea∼A ∥T (T (a; θA2B); θB2A)− a∥+ Eb∼B ∥T (T (b; θB2A); θA2B)− b∥, (2.13)

or a combination of the above. We refer to models that use cycle-consistency loss

(2.13) as cycle-consistent models in the remainder of this thesis. These methods

were shown [21, 71] to be able to capture semantic correspondances in image layouts
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across visual domains and realistically translate between, for example, images of

outdoor scenes captured at daytime and nighttime, images of horses and zebras,

and even images of driving scenes and so called “segmentation maps” specifying only

types, approaching (but not quite reaching) the performance of supervised image-to-

image translation methods.

Domain Adaptation. Neural domain adaptation methods seek to improve the per-

formance of a classifier network on a target distribution that is different from the

original training distribution by introducing an additional objective that minimizes

the difference between representations learned for source and target data, similar to

the unsupervised alignment objective (2.10). Some models align feature representa-

tions across domains by minimizing the distance between first or second-order feature

space statistics [76, 109, 115]. When adversarial objectives are used for domain adap-

tation, a domain classifier is trained to distinguish between the generated source and

target representations, either using the standard GAN objective [30], or an alternative

adversarial objective [116, 117]. Ben-David et al. [10] showed that the test error of the

learning algorithm trained and tested on samples from different distributions labeled

using a shared “ground truth” labeling function is bounded by the H∆H-distance

between the two distributions, therefore framing domain adaptation as distribution

alignment. This particular distance is difficult to estimate in practice, so early neural

feature-level domain adaptation methods such as deep domain confusion [115], DAN

[76], or JAN [77] directly optimized estimates of non-parametric statistical distances

(e.g. maximum mean discrepancy) between deep features of data points from two

domains. Other early neural DA methods approximated domain distributions via

simple parametric models, for example, DeepCORAL [109] minimizes KL-divergence

between pairs of Gaussians. Unfortunately, these approaches struggle to capture the

internal structure of real-world datasets. Adversarial (GAN-based) approaches, such
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as ADDA [31] and DANN [117], address these limitations using deep convolutional

domain discriminators. However, adversarial models are notoriously hard to train and

provide few automated domain-agnostic convergence validation and model selection

protocols, unless ground truth labels are available. Many recent improvements in the

performance of classifiers adapted using adversarial alignment rely on techniques uti-

lizing source labels, such as semantic consistency loss [44], classifier discrepancy loss

[104], or pseudo-labeling [29], added on top of the unsupervised adversarial alignment.

Challenges in adversarial alignment. The instability of adversarial training was

pointed out as one of the major factors limiting their wider adoption, often attributed

to the fact that training a discriminator until convergence results in vanishing and

noisy generator gradients [2]. This issue was tackled from many different directions

[84] including closed-form discriminator regularization in [100] and instance noise

and data augmentations [54], as well as better discriminator objectives that can be

optimized until convergence without causing the vanishing of generator gradients

[2, 86].

Normalizing Flows [98] are a class of unsupervised models that can capture the

complexity of high-dimensional distributions and do not suffer from training insta-

bility. The main assumption behind such models is that the unknown distribution

PX of observed samples x ∼ PX can be modeled as a simple known distribution PZ

transformed by a sequence of simple unknown invertible transformations T1, . . . , TM :

z0 ∼ PZ , z0
T1−→ z1

T2−→ . . .
TM−−→ x, x ∼ PX (2.14)

For a given sequence of transformations, the density at a given point x can be es-

timated using the change of variable formula by inverting each transformation and
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evaluating determinants of Jacobians at corresponding points:

PX(x|T1, . . . , TM) = PZ(T
−1
1 (T−1

2 (. . . (T−1
M (x)))) ·

∏
j

det

∣∣∣∣∣∂T−1
j (zj)

∂zj

∣∣∣∣∣ (2.15)

Then the distribution PX can be estimated from samples {xi}i via maximum likeli-

hood by optimizing the objective above over parameters of all transformations. The

main challenge in developing such models is to define a class of atomic transfor-

mations T that are invertible, rich enough to model real-world distributions, and

simple enough to enable direct estimation of the aforementioned Jacobian determi-

nant. Most notable examples of recently proposed normalizing flows include Real

NVP [25], GLOW [57] built upon Real NVP with more general learnable permuta-

tions and trained at multiple scales to handle high-resolution images, and the recent

FFJORD [36], which used forward simulation of an ODE with a velocity field param-

eterized by a neural network as a flow transformation. In the next chapter, we show

how normalizing flows can be used to stabilize adversarial domain alignment.

In this thesis, we show that the min-max nature of the alignment objective (2.10)

causes unstable training and that successful alignment alone is not sufficient for con-

trolled manipulation of real images. In the following chapters, we show several ways of

stabilizing adversarial alignment using objective dualization and normalizing flows,

improving the semantic consistency of the alignment, and applying these ideas to

controlled manipulation of natural images with cross-domain supervision.



Chapter 3

Stability and Semantic Consistency of

Adversarial Alignment

As discussed in the previous chapter, mathematically, adversarial domain alignment

requires solving a saddle point problem (2.10). As we demonstrate with a simple

example in Section 3.1.1, using gradient descent to solve saddle point problems is

inherently very difficult. In Section 3.1 we explore how restricting the problem to a

logistic discriminator, and dualizing the resulting logistic objective affects the stabil-

ity of the resulting alignment. In Section 3.2 we show that even for a much more

general class of discriminators, the inner maximization problem can be bounded by

a minimization problem, if the learned domain transformation is a normalizing flow,

effectively reducing the min-max problem to a minimization problem with known

convergence guarantees. In Section 3.3 we show that the cycle loss, often used to im-

prove semantic consistency of learned domain correspondences, causes embedding of

the low-amplitude structured noise into intermediate generated images, and propose

a new adversarial loss that prevents this “cheating” and, as a result, improves the

translation accuracy.

3.1 Stabilizing Alignment via Objective Dualization

In this section, we explore how replacing the maximization part of the adversarial

alignment problem with a dual minimization problem for a logistic discriminator af-

fects the stability of the alignment. Moreover, we show that it is strongly related

19
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Figure 3·1: Gradient descent fails to solve the saddle point problem
minxmaxy xy. The red line shows the trajectory of the gradient descent
if vector field g(x, y) = (y,−x) is used at each iteration. Blue lines are
examples of vectors from this vector field.

to the iteratively reweighted empirical estimator of maximum mean discrepancy [38].

We also evaluate how well our dual method can handle a point alignment problem

on a low-dimensional synthetic dataset, and compared its performance with the anal-

ogous primal method on a real-image domain adaptation problem using the Street

View House Numbers (SVHN) and MNIST domain adaptation dataset pair. In these

experiments, the goal is to align feature distributions produced by the network on the

two datasets so that a classifier trained to label digits on SVHN does not lose accu-

racy on MNIST due to the domain shift. In both cases, we show that the proposed

dual formulation of the adversarial distance yields consistent improvement over time,

whereas using the primal formulation results in unstable training and often does not

converge.

3.1.1 Motivating Example

We start with a well-known [35] motivating example of a simple min-max problem to

show that, even in this simple case, gradient descent fails dramatically. Let us consider

the problem of finding a saddle point of a hyperbolic surface. Given the function

f(x, y) = xy, our problem is to solve minxmaxy f(x, y), which has a unique solution



21

at (0, 0). Suppose that we want to apply gradient descent to solve this problem. The

intuitive analog of the gradient vector that we might consider using in the update rule

is defined by the vector field g(x, y) = (x,−y). However, at any given point the vector

g(x, y) will be tangent to a closed circular trajectory, thus following this trajectory

would never lead to the true solution (0, 0). One can observe the trajectory produced

by the update rule xt+1 = xt + αg(x, y) applied to the problem above in Figure 3·1.

Neither block coordinate descent nor various learning rate schedule can improve the

performance of the gradient descent on this problem.

3.1.2 Background

Other objectives for distribution matching that have been proposed in the literature,

including Maximum Mean Discrepancy [38], f-discrepancy [92], and others, have also

been used for generative modeling [26, 67]. A single step of our iterative reweighting

procedure is similar to instance reweighting methods that were theoretically and

empirically shown to improve accuracy in the presence of domain shift. For example,

Huang et al. [45] used sample reweighting that minimized empirical MMD between

populations to plug it as instance-weights in weighted classification loss, whereas Gong

et al. [34] did that to choose points for a series of independent auxiliary tasks, so no

iterative reweighting was performed in both cases. In an independent and concurrent

work, Li et al. [68] proposed to dualize the local linear approximation of the min-max

objective to stabilize the procedure.

In general, most statistical distances used for distribution alignment fall into one

of two categories: they are either f-divergences (e.g. GAN objective, KL-divergence),

or integral probability metrics (IPMs) that are differences in expected values of a test

function at samples from different distributions maximized over some function family

(e.g. Maximum Mean Discrepancy, Wasserstein distance). In this work, we specifi-

cally consider the logistic adversarial objective (f-divergence), show that it is useful
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to optimize its dual, and present a relation between this adversarial dual objective

and MMD, another statistical distance with a test function from reproducing kernel

Hilbert space (RKHS).

While there is a huge body of work on using alternative descent schemes for convex-

concave saddle point optimization, including, but not limited to different variants of

mirror descent, such as Nesterov’s dual averaging [90] and Mirror Prox [89], authors

are not aware of any successful attempts to use it in the context of adversarial dis-

tribution alignment, likely because the problem at hand is rarely convex-concave.

Some techniques developed for solving continuous games such as fictitious play were

successfully adopted by Salimans et al. [105].

3.1.3 Dual Logistic Adversarial Distance

We first propose a new formulation of the adversarial objective for distribution align-

ment problems. Then we apply this approach to the domain adaptation scenario in

Section 3.1.3. Suppose that we are given a finite set of points A sampled from the

distribution p, and a finite set of points B sampled from the distribution q, and our

goal is to match q with p by aligning B with A. More specifically, we aim to learn

a matching function Fθ(B) that maps B to be as close as possible to A by minimiz-

ing some empirical estimate of a statistical distance d(·, ·) between them where θ are

parameters of the matching function: θ∗ = argminθ d(A,Fθ(B)).

Let us denote B′
θ = Fθ(B) or just B′ in contexts where dependence on θ is not

important. The regular adversarial approach obtains the distance function by finding

the best classifier Dw(x) with parameters w that discriminates points x ∈ A from

points x ∈ B′ and considers the distance between A and B′ to be equal to the

likelihood of this classifier. A higher likelihood of separating A from B′ means that

A is far from B′. This can be any form of hypothesis in general and is often chosen

to be a linear classifier [115] or a multi-layer neural network [35]. In this work, we
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use the class of linear classifiers, specifically, logistic regression in its primal and dual

formulations. The solution can also be kernelized to obtain nonlinear discriminators.

We will define the distance between distributions to be equal to the maximum

likelihood of the logistic classifier parametrized by w:

d(A,B′) = max
w

∑
xi∈A

log(σ(wTxi)) +
∑
xj∈B′

log(1− σ(wTxj))−
λ

2
wTw (3.1)

We can equivalently re-write this expression as:

Cθ = {(xi, yi) : xi ∈ A ∪B′
θ , yi = 1 if xi ∈ A else –1} (3.2)

min
θ

d(A,B′
θ) = min

θ
max
w,b

∑
xi,yi∈Cθ

log(σ(yi(w
Txi + b)))− λ

2
wTw (3.3)

The duality derivation [50, 85] follows from the fact that the log-sigmoid has a sharp

upper-bound

log(σ(u)) ≤ αTu+H(α) , αi ∈ [0, 1] (3.4)

H(α) = αT logα + (1− α)T log(1− α) (3.5)

thus we can upper-bound the distance as

d(A,B′
θ) = min

0≤α≤1
max
w,b

∑
xi,yi∈Cθ

αiyi(w
Txi + b) +H(α)− λ

2
wTw (3.6)

where the dual variable αi corresponds to the weight of the point xi. A higher weight

means that the point is contributing more to the decision hyperplane. The optimal

value of alpha attains this upper bound. The w that maximizes the inner expression

can be computed in a closed form as w∗ = 1
λ
(
∑

j xjyjαj). Optimally of bias requires
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∑
i αiyi = 0. By substituting w∗ we obtain a minimization problem:

d(A,B′
θ) = min

0≤αi≤1

1

2λ

∑
ij

αiαj(yixi)
T (yjxj) +H(α) = min

0≤αi≤1

1

2λ
αTQα +H(α) =

(3.7)

= min
0≤αi≤1/λ

1

2
αT
AQAAαA +

1

2
αT
BQBBαB − αT

AQABαB +H(αA) +H(αB) (3.8)

s.t. ||αA||1 = ||αB||1

The equation (3.8) is obtained by splitting the summation into blocks that include

samples only from A, only from B, and from both A and B. For example, the matrix

QAB = ATB consists of pairwise similarities between points from A and B, and is

equal to the dot product between corresponding data points in the linear case and

kernel similarity in the kernelized case. The factor of two in front of the cross term

comes from the fact that off-diagonal blocks in the quadratic form are equal. The

constraint on alpha sums comes from splitting optimality conditions on the bias into

two term. We will denote the resulting objective as dD(α,A,B).

The above expression gives us a tight upper bound on the likelihood of the discrim-

inator. Thus, by minimizing this upper bound, we can minimize the likelihood itself,

as in the original loss, and therefore minimize the distance between the distributions:

θ∗, α∗ = argmin
θ,α∈A

dD(α,A, Fθ(B)) (3.9)

Note that the overall problem has changed from an unconstrained saddle point prob-

lem to a smooth constrained minimization problem, which ultimately converges when

gradient descent has a properly chosen learning rate, whereas the descent iterations

for the saddle point problem are not guaranteed to converge at all.

The resulting smooth optimization problem consists of minimization over α to

improve classification scores and over θ to move points towards the decision boundary.
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The next section provides more intuition behind the resulting iterative procedure.

Relationship to MMD. In this section, we show that our dual formulation of the

adversarial objective has an interesting relationship to another popular alignment

objective. The integral probability metric between distributions p and q with a given

function family H is defined as

d(p, q) = sup
f∈H

∣∣∣Ex∼pf(x)− Ex∼qf(x)
∣∣∣. (3.10)

It was shown to have a closed form solution and a corresponding closed form empirical

estimator if H is a unit ball in reproducing kernel Hilbert space with the reproducing

kernel k(x, y) and is commonly referred to as Maximum Mean Discrepancy [38]:

d(p, q) =
1

2
Ep×pk(x, x

′) +
1

2
Eq×qk(y, y

′)− Ep×qk(x, y) (3.11)

d(A,B) =
1

2|A|
∑
i,j∈A

k(x, x′) +
1

2|B|
∑
i,j∈B

k(y, y′)− 1

|A||B|
∑
A×B

k(x, y). (3.12)

From the definition, it is essentially the distance between means of vectors from p and

q embedded into the corresponding RKHS. The resulting empirical estimator com-

bines average inner and outer similarities between samples from the two distributions

and goes to zero as the number of samples increases if p = q.

Note that if sample weights in Eq. (3.8) are constant and equal across all samples,

so αi = c, then the dual distance introduced above becomes exactly an empirical

estimate of the MMD plus the constant from the entropic regularizer. Thus, the

adversarial logistic distance introduced in Eq. (3.8) can be viewed as an iteratively

reweighted empirical estimator of the MMD distance. Intuitively, what this means

is that the optimization procedure consists of two alternating minimization steps:

(1) find the best sample weights assignment by changing α so that the regularized

weighted MMD is minimized, and then (2) use a fixed α to minimize the resulting



26

weighted MMD distance by changing the matching function Fθ. This makes the

resulting procedure similar to the Iteratively Reweighted Least Squares Algorithm

[37] for logistic regression. An interesting observation here is that it turns out that

high weights in this iterative procedure are given to the most mutually close subsets

of A and B′, where closeness is measured in terms of Maximum Mean Discrepancy.

These happen to be exactly the support vectors of the corresponding optimal domain

classifier. Therefore, the procedure described above essentially brings sets of the

support vectors of the optimal domain classifier from different domains closer together.

We note that the computational complexity of a single gradient step of the pro-

posed method grows quadratically with the size of the dataset because of the kernel-

ization step. However, our batched GPU implementation of the method performed

on par with MMD and outperformed primal methods, probably because inference in

modern neural networks requires so many dot products that a batch size × batch size

multiplication is negligibly cheap compared to the rest of the network with modern

highly parallel computing architectures.

Domain Adaptation. We now show how the above formulation can be applied

to unsupervised domain adaptation. In this scenario, we train our classifier in a

supervised fashion on some domain A and have to update it to perform well on a

different domain B without using any labeled samples from the latter. Common

examples include adapting to a camera with different image quality or to different

weather conditions.

More rigorously, we assume that there exist two distinct distributions on X ×

Y : a source distribution PS(X, Y ) and a target distribution PT (X, Y ). We as-

sume that we observe a finite number of labeled samples from the source distribu-

tion DS ⊂ [X × Y ]n ∼ PS(X, Y ) and a finite number of unlabeled samples from the

target distribution DT ⊂ [X ]m ∼ PT (X). Our goal then is to find a labeling function
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f : X → Y from a hypothesis space F that minimizes target risk RT , even though

we only have labels for samples from the source.

RT (f) = E(x,y)∼PT
L(f(x), y) ≤ RS(f) + d(PT , PS) + C(V, n) (3.13)

Ben-David et al. [9] showed that, under mild restrictions on probability distributions,

the target risk is upper-bounded by the sum of three terms: (1) the source risk, (2)

the complexity term involving the dataset size, and the VC-dimensionality of F , and

(3) the discrepancy between source and target distributions. Thus, in order to make

the target risk closer to the source risk, we need to minimize the discrepancy between

distributions. They define discrepancy as a supremum of differences in measures

across all events in a given σ-algebra: d(p, q) = supA∈Σ |p(A) − q(A)|. Estimation

of the indicated expression is hard in practice, therefore it is usually replaced with

more computationally feasible statistical distances. The total variation between two

distributions and the Kolmogorov-Smirnov test are closely related to the discrepancy

definition above and are also often considered to be too strong to be useful, especially

in higher dimensions.

Our approach can be applied directly to this scenario if the discrepancy is re-

placed with an adversarial objective that uses a logistic regression domain classifier.

In Section 3.1.4, we consider an instance of this problem where the main task is clas-

sification and the hypothesis space corresponds to multi-layer neural networks. We

compare the standard min-max formulation of the adversarial objective in Eq. (3.3)

with our min-min formulation in Eq. (3.8), and report the accuracy of the resulting

classifier on the target domain.
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3.1.4 Experiments and Results

Synthetic Distribution Matching. We first test the performance of our proposed

approach on a synthetic point cloud matching problem. The data consists of two

clouds of points on a two-dimensional plane and the goal is to match points from one

cloud with points from the other. There are no restrictions on the transformation

of the target point cloud, so Fθ includes all possible transformations and is therefore

parameterized by the point coordinates themselves, so the coordinates themselves

were updated on each gradient step. We minimized the logistic adversarial distance in

primal space by solving the corresponding min-max problem in Eq (3.3) and compared

this to maximizing the proposed negative adversarial distance given by the dual of

the logistic classifier in Eq (3.8) and the corresponding kernelized logistic classifier

with a Gaussian kernel.

As expected, the optimization of distances given by the dual versions of domain

classifiers (linear and kernelized) worked considerably better than the same distance

given by a linear classifier in the primal form. More specifically, the results in the

primal case were very sensitive to the choice of learning rate. In general, the resulting

decent iterations for the saddle point problem did not converge to a single solution,

whereas both dual versions successfully converged to solutions that matched the two

clouds of points both visually and in terms of means and covariances.

We suggest one more intuitive explanation of why the dual procedure might work

better, in addition to the fact that optimization problems are just inherently easier

than saddle point problems. The decision boundary of the classifier in the dual space

is defined implicitly through a weighted average of observed data points, so when these

data points move, the decision boundary moves with them. If points move too rapidly

and the discriminator explicitly parametrizes the decision boundary, the weights of the

discriminator may change drastically to keep up with moving points, leading to the
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Figure 3·2: (Best viewed in color) When trained on a point cloud
matching task, the primal approach leads to an unstable solution that
makes the decision boundary spin around data points when they are
almost aligned, whereas both the linear and kernel dual approaches lead
to stable solutions that gradually assign 0.5 probability of belonging to
either A or B to all points, which is exactly the desired behavior. Yellow
and blue points are the original point clouds, red points correspond to
the positions of yellow points after transformation Mθ.

overall instability of the training procedure. In support of this hypothesis, we observed

interesting patterns in the behavior of the linear primal discriminator: when point

clouds become sufficiently aligned, the decision boundary starts ”spinning” around

these clouds, slightly pushing them in corresponding directions. In contrast, both

dual classifiers end up gradually converging to solutions that assigned each point

with a 0.5 probability of corresponding to either of the two domains.

Feature-Space Unsupervised Domain Adaptation. We also evaluated the per-

formance of the proposed dual objective on a visual domain adaptation task. We

performed a series of experiments on an SVHN-MNIST digit classification dataset

pair in an unsupervised domain adaptation setup: the task is to use a classifier

trained on SVHN and unlabeled samples from MNIST to improve test accuracy on
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Figure 3·3: (Best viewed in color) Top row: Distribution of tar-
get test accuracies at different epochs with different objectives dur-
ing SVHN-MNIST domain adaptation. The red dashed line represents
source accuracy, therefore, a larger accuracy distribution mass to the
right of (above) the red line is better. These results suggest that our
Dual objective leads to very minimal divergence from the optimal solu-
tion under the majority of learning rates and hyperparameter combina-
tions. The other methods have lower solution stability, in descending
order: Improved WGAN, MMD, ADDA. Bottom row: Evolution of
target test accuracy over epochs. Our Dual objective (third column)
clearly performs well under the majority of the learning rates. WGAN
often performs better than MMD and ADDA, but experiences signif-
icant oscillations. Different validation heuristics, such as considering
only runs that resulted in a significant drop in the distance, did not
significantly change these trends. The proportion of runs that outper-
formed the source baseline after 40 epochs was: 52.3% for Dual, 21.5%
for WGAN, 17.1% for MMD, and 6.9% for ADDA.
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the latter.

Following Tzeng et al. [117] we used standard LeNet as a base model and outputs

of the last layer before the softmax as feature representations. We trained the source

network to perform well on source dataset and the discriminator to distinguish fea-

tures computed by the source and target networks. After training the source network

on the source domain, we initialized the target network with source weights and op-

timized it to make the distributions of source and target feature representations less

distinguishable from the discriminator perspective.

We tested several primal objectives based on Adversarial Discriminative Domain

Adaptation (ADDA) [117], Improved Wasserstein GAN-based objective with a unit-

norm gradient regularizer [105], and MMD [76], and compared them to our Dual

objective. To eliminate the influence of a particular discriminator and examine the

stability of the objective structure, we restricted the discriminator hypothesis space

H to linear classifiers, because primal objectives (ADDA, Improved WGAN) cannot

be kernelized and MMD does not support multilayer discriminators. This restriction

limits the power of the resulting discriminator, thus leading to scores lower than

reported state of the art (usually with carefully chosen hyperparameters), but we are

more interested in trends in the behavior of these objectives rather than in absolute

reached values.

For each model, we varied learning rates and regularization parameters and ran

each experiment for 50 epochs to examine the behavior of these models in the long

run. In unsupervised domain adaptation, we do not have access to target labels and

thus cannot perform validation of stopping criteria. In fact, if labeled target data

were available then it could be used for fine-tuning the source model, rather than just

doing unsupervised learning. Therefore we evaluate the behavior of the models over

multiple training epochs to see which would be more stable in the face of uncertain
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stopping criteria in practical domain adaptation scenarios.

Figure 3·3 shows the digit classification accuracies obtained by the four models on

the target MNIST dataset. The top row presents the distribution of accuracies at dif-

ferent epochs and the bottom row shows the evolution of individual runs. From these

results, we see that on average descent iterations with our Dual objective converged

to satisfactory solutions under a considerably higher number of learning rates and hy-

perparameter combinations compared to other methods. Our model often stayed at

peak performance, whereas all other methods most often slowly deviated from it. The

amount of instability demonstrates how important it is to choose exactly the right

hyperparameters and stopping criteria for these models. In contrast, our Dual ob-

jective (third column) clearly performs well under the majority of the learning rates.

WGAN often performs better than MMD and ADDA, but experiences significant

oscillations. We tried using different validation heuristics, such as considering only

runs that resulted in a significant drop in the distance, but this did not significantly

change these trends.

Conclusion. In this section we showed that objective dualization leads to more stable

optimization without the need for choosing an optimal stopping criterion and learning

rates by cross-validation on test data. Unfortunately, this approach is limited only to

logistic discriminators. In the next section, we propose an alternative approach that

works with a much broader family of discriminators.
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3.2 Bounding Likelihood Ratios with Normalizing Flows

Unfortunately, the approach described in the previous section can be applied only

if the discriminator family is constrained to logistic classifiers, severely restricting

the notion of distinguishability of aligned datasets, and, consequently, the quality of

learned alignment. In this section, we discuss how the adversarial objective can be

stabilized with a much richer family of discriminators - if the estimated transformation

between two domains is a normalizing flow.

The majority of modern neural approaches to domain alignment directly search

for a transformation of the dataset that minimizes an empirical estimate of some sta-

tistical distance - a non-negative quantity that takes lower values as datasets become

more similar. The variability of what “similar” means in this context, which trans-

formations are allowed, and whether data points themselves or their feature represen-

tations are aligned, leads to a variety of domain alignment methods. Unfortunately,

existing estimators of statistical distances either restrict the notion of similarity to

enable closed-form estimation [109], or rely on adversarial (min-max) training [117]

that makes it very difficult to quantitatively reason about the performance of such

methods [6, 13, 113]. In particular, the value of the optimized adversarial objective

conveys very little about the quality of the alignment, which makes it difficult to

perform automatic model selection on a new dataset pair. On the other hand, Nor-

malizing Flows [98] are an emerging class of deep neural density models that do not

rely on adversarial training. They model a given dataset as a random variable with

a simple known distribution transformed by an unknown invertible transformation

parameterized using a deep neural network. Recent work on normalizing flows for

maximum likelihood density estimation made great strides in defining new rich pa-

rameterizations for these invertible transforms [25, 36, 57], but little work focused on

flow-based density alignment [39, 125].
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In this section, we present the Log-likelihood Ratio Minimizing Flow (LRMF), a

new non-adversarial approach for aligning distributions in a way that makes them

indistinguishable for a given family of density models M . We consider datasets A

and B indistinguishable with respect to the family M if there is a single density

model in M that is optimal for both A and B individually since in this case there

is no way of telling which of two datasets was used for training it. For example,

two different distributions with the same means and covariances are indistinguishable

for the Gaussian family M since we can not tell which of two datasets was used

by examining the model fitted to either one of them. For a general M , we can

quantitatively measure whether two datasets are indistinguishable by models from

M by comparing the average log-likelihoods of two “private” density models each fit

independently to A and B, to the average log-likelihood of the “shared” model fit to

both datasets at the same time. We observe that, if datasets are sufficiently large,

the maximum likelihood of the “shared” model would reach the likelihoods of two

“private” models on respective datasets only if the shared model is optimal for both

of them individually, and consequently datasets are equivalent with respect to M .

Then a density model optimal for A is guaranteed to be optimal for B and vice versa.

We want to find a transformation T (x) that transforms dataset A in a way that

makes the transformed dataset T (A) equivalent to B for the given family M . We do

that by minimizing the aforementioned gap between average log-likelihood scores of

“shared” and “private” models.

In this section, we show that, while, in general, such T (x) can be found only by

solving a min-max optimization problem, if T (x, ϕ) is a family of normalizing flows,

then the flow T (x, ϕ∗) that makes T (A, ϕ∗) and B equivalent w.r.t. M can be found

by minimizing a single objective that attains zero upon convergence. This enables

automatic model validation and hyperparameter tuning on the held-out set.
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To sum up, the novel non-adversarial data alignment method presented in this

section combines the clear convergence criteria found in non-parametric and simple

parametric approaches and the power of deep neural discriminators used in adversarial

models. Our method finds a transformation of one dataset that makes it “equivalent”

to another dataset with respect to the specified family of density models. We show

that if that transformation is restricted to a normalizing flow, the resulting problem

can be solved by minimizing a single simple objective that attains zero only if two

domains are correctly aligned. We experimentally verify this claim and show that the

proposed method preserves the local structure of the transformed distribution and

that it is robust to model misspecification by both over- and under-parameterization.

We show that minimizing the proposed objective is equivalent to training a partic-

ular adversarial network, but in contrast with adversarial methods, the performance

of our model can be inferred from the objective value alone. We also characterize

the vanishing of generator gradient mode that our model shares with its adversarial

counterparts, and principal ways of detecting it.

3.2.1 Background

Composition of inverted flows. AlignFlow [39] is built of two flow models G and

F trained on datasets A and B in the “back-to-back” composition F ◦ G−1 to map

points from A to B. We argue that the structure of the dataset manifold is destroyed

if two flows are trained independently, since two independently learned “foldings” of

lower-dimensional surfaces into the interior of a Gaussian ball are almost surely “in-

compatible” and render correspondences between F−1(B) and G−1(A) meaningless.

Grover et al. [39] suggests sharing some weights between F and G, but we propose

that this solution does not address the core of the issue. Yang et al. [125] showed that

PointFlow - a variational FFJORD trained on point clouds of mesh surfaces - can be
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used to align these point clouds in the F ◦G−1 fashion. But the point correspondences

found by the PointFlow are again due to the spatial co-occurrence of respective parts

of meshes (the left bottom leg is always at the bottom left) and do not respect the

structure of respective surface manifolds. Our approach requires 2-3 times more pa-

rameters than our composition-based baselines, but in the next section, we show that

it preserves the local structure of aligned domains better, and the higher number of

trainable parameters does not cause overfitting.

CycleGAN with normalizing flows. RevGAN [122] used GLOW [57] to enforce

the cycle consistency of the CycleGAN, and left the loss and the adversarial train-

ing procedure unchanged. We believe that the normalizing flow model for dataset

alignment should be trained via maximum likelihood since the ability to fit rich mod-

els with plain minimization and validate their performance on held-out sets are the

primary selling points of normalizing flows that should not be dismissed.

Likelihood ratio testing for out-of-distribution detection. Nalisnick et al. [87]

recently observed that the average likelihood is not sufficient for determining whether

the given dataset came from the same distribution as the dataset used for training the

density model. A recent paper by Ren et al. [97] suggested using the log-likelihood

ratio test on LSTMs to detect distribution discrepancy in genomic sequences, whereas

we propose a non-adversarial procedure for minimizing this measure of discrepancy

using unique properties of normalizing flows.

3.2.2 Log-Likelihood Ratio Minimizing Flow

In this section, we formally define the proposed method for aligning distributions.

We assume that M(θ) is a family of densities parameterized by a parameter vector

θ, and to fit a model to a dataset X we maximize the likelihood of X w.r.t. θ.

Intuitively, if we fit two models θA and θB to datasets A and B independently,
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Figure 3·4: To align input datasets A and B, we look for a transfor-
mation T that makes T (A) and B “indistinguishable”. (a) We propose
the log-likelihood ratio distance d⇤(T (A), B) that compares likelihoods
of density models ✓AT fitted to T (A) and ✓ B to B independently with
the likelihood of ✓S optimal for the combined dataset T (A) [ B. This
problem is adversarial, but we show how to reduce it to minimization
if T is a normalizing flow. ( b) C olored c ontours r epresent l evel sets
of models for B (orange), T (A) (green), and ✓S (purple), contour sizes
corresponds to entropies of these models. Only ✓AT and ✓S (dashed)
change during training. The proposed objective can be viewed as max-
imizing the entropy of the transformed dataset while minimizing the
combined entropy of T (A)[B, i.e. expanding the green contour while
squeezing the purple contour around the green and orange contours. At
equilibrium, ✓S and ✓AT model the same distribution as ✓B, i.e. shapes
of purple and green contours match and tightly envelope the orange
contour. Best viewed in color.

and also fit a single shared model ✓S to the combined dataset A [ B, then the log-

likelihood ratio distance would equal the di↵erence between the log-likelihood of that

optimal “shared” and the two optimal “private” models (Definition 3.2.1).

Next, we consider the problem of finding a transformation that would minimize

this distance. In general, this would require solving an adversarial optimization prob-

lem (3.16), but we show that if the transformation is restricted to the family of

normalizing flows, then the optimal one can be found by minimizing a simple non-

adversarial objective (Theorem 3.2.3). We also illustrate this result with an example

that can be solved analytically: we show that minimizing the proposed distance be-

tween two random variables with respect to the normal density family is equivalent to

directly matching their first two moments (Example 3.2.1). Finally, we show the re-

lation between the proposed objective and Jensen-Shannon divergence and show that
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and also fit a single shared model ✓S to the combined dataset A [ B, then the log-

likelihood ratio distance would equal the di↵erence between the log-likelihood of that

optimal “shared” and the two optimal “private” models (Definition 3.2.1).

Next, we consider the problem of finding a transformation that would minimize

this distance. In general, this would require solving an adversarial optimization prob-

lem (3.16), but we show that if the transformation is restricted to the family of

normalizing flows, then the optimal one can be found by minimizing a simple non-

adversarial objective (Theorem 3.2.3). We also illustrate this result with an example

that can be solved analytically: we show that minimizing the proposed distance be-

tween two random variables with respect to the normal density family is equivalent to

directly matching their first two moments (Example 3.2.1). Finally, we show the re-

lation between the proposed objective and Jensen-Shannon divergence and show that
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minimizing the proposed objective is equivalent to training a generative adversarial

network with a particular choice of the discriminator family.

Notation. Let log PM (X; θ) := Ex∼PX log PM (x; θ) denote the negative cross-entropy

between the distribution PX of the dataset X defined over X ⊂ Rn, and a member PM 

(x; θ) of the parametric family of distributions M(θ) defined over the same domain, 

i.e., the likelihood of X given PM (x; θ).

Definition 3.2.1 (Log-likelihood Ratio Distance). Let us define the log-likelihood 
ratio distance dΛ between datasets A and B from X with respect to the family of 
densities M , as the difference between log-likelihoods of A and B given optimal models 
with “private” parameters θA and θB, and “shared” parameters θS :

dΛ(A,B;M) = max
θA;θB

[
logPM(A; θA) + logPM(B; θB)

]
−max

θS

[
logPM(A; θS) + logPM(B; θS)

]
= min

θS
max
θA;θB

[(
logPM(A; θA)− logPM(A; θS)

)
+
(
logPM(B; θB)− logPM(B; θS)

)]
.

(3.14)

The expression above is also the log-likelihood ratio test statistic log Λn for the

null hypothesis H0 : θA = θB for the model described by the likelihood function

P (A,B | θA, θB) =
[
PM(A; θA) · PM(B; θB)

]
and intuitively equals to the amount of

likelihood we “lose” by forcing θA = θB onto the model fitted to approximate A and B

independently. Figure 3·4 illustrates that, in terms of average likelihood, the shared

model (purple) is always inferior to two private models from the same class, unless

two datasets are in fact just different samples from the same distribution.

Lemma 3.2.1. The log-likelihood ratio distance is non-negative, and the equals zero

only if there exists a single “shared” model that approximates datasets as well as their

“private” optimal models:

dΛ(A,B;M) = 0 ⇔ ∃ θS : logPM(A; θS) = max
θ

logPM(A; θ) ∧ logP (B; θS) = max
θ

logPM(B; θ).

(3.15)

Proof. Follows from the fact that the shared part in the Definition 3.2.1 is identical

to the private part but over a smaller feasibility set {θA = θB}. If we define f(x) =
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logPM(A, x) and g(x) = logPM(B, x), the first statement dΛ ≥ 0 follows from the

fact that

∀x f(x) + g(x) ≥ min
x

f(x) + min
x

g(x) ⇒ min
x

(f(x) + g(x))−min
x

f(x)−min
x

g(x) ≥ 0

The second statement f(x∗) = minx f(x), g(x
∗) = minx g(x) comes form the fact

that the equality holds only if there exists such x∗ that

f(x∗) + g(x∗) = min
x

f(x) + min
x

g(x)

Assume that f(x∗) ̸= minx f(x), then f(x∗) > minx f(x) from the definition of the

min, therefore

g(x∗) = (f(x∗) + g(x∗))− f(x∗) < (min
x

f(x) + min
x

g(x))−min
x

f(x) = min
x

g(x),

which contradicts the definition of the minx g(x), therefore f(x∗) = minx f(x).

Adversarial formulation. If we introduce the parametric family of transforma-

tions T (x, ϕ) and try to find ϕ that minimizes the log-likelihood ratio distance

minϕ dΛ(T (A;ϕ), B;M), an adversarial problem arises. Note that for a fixed dataset

B, only the first term is adversarial, and only w.r.t. θAT :

min
ϕ,θS

max
θAT ;θB

[
logPM(T (A;ϕ); θAT ) + logPM(B; θB)− logPM(T (A;ϕ); θS)− logPM(B; θS)

]
(3.16)

Figure 3·4b illustrates that minimizing this objective (3.16) over θS while maximizing

it over θAT corresponds to minimizing entropy (“squeezing”) of the combination of

T (A) and B while maximizing entropy of (“expanding”) transformed dataset T (A)

as much as possible.

Non-adversarial formulation. The adversarial objective (3.16) requires finding a

new optimal model θAT for each new value of ϕ to find the maximal likelihood of

the transformed dataset T (A), but Figure 3·4a illustrates that the likelihood of the
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transformed dataset can be often estimated from the parameters of the transforma-

tion T alone. For example, if T uniformly squeezes the dataset by a factor of two,

the average maximum likelihood of the transformed dataset maxθ logPM(T (A); θ)

doubles compared to the likelihood of the original A. In general, the likelihood of

the transformed dataset is inversely proportional to the Jacobian of the determinant

of the applied transformation. The lemma presented below formalizes this relation

taking into account the limited capacity of M , and leads us to our main contribution:

the optimal transformation can be found by simply minimizing a modified version of

the objective (3.16) using an iterative method of one’s choice.

Lemma 3.2.2. If T (x;ϕ) is a normalizing flow, then the first term in the objective

(3.16) can be bounded in closed form as a function of ϕ up to an approximation error

Ebias. The equality in (3.2.2) holds when the approximation term vanishes, i.e. if M

approximates both A and T (A;ϕ) equally well; PA is the true distribution of A and

T [PA, ϕ] is the push-forward distribution of the transformed dataset.

max
θAT

logPM(T (A;ϕ); θAT ) ≤ max
θA

logPM(A; θA)− log det |∇xT (A;ϕ)|+ Ebias(A, T,M)

Ebias(A, T,M) ≜ max
ϕ

[
min
θ

DKL(PA;M(θ))−min
θ

DKL(T [PA, ϕ];M(θ))
]

(3.17)

Proof. Overall, we expand likelihoods of combined and shared datasets given best

models fromM into respective “true” negative entropies and the approximation errors

due to the choice of M (KL-divergence between true distributions and their KL-

projections onto M). Then we replace the entropy of the transformed dataset with

the entropy of the original and the log-determinant of the Jacobian of the applied

transformation, noting that log det |∇xT
−1(T (A, ϕ), ϕ)| = log det |∇xT (A, ϕ)|.

More specifically, first, we add and remove the true (unknown) entropy of the

distribution H[PA] = −Ea∼PA
logPA(a):

max
θA

Ea∼PA
logPM(a; θA) = max

θA

[
Ea∼PA

logPA(a)− Ea∼PA
log

PA(a)

PM(a; θA)

]
(3.18)

= H[PA]−min
θA

Ea∼PA

[
log

PA(a)

PM(a; θA)

]
= H[PA]−min

θ
DKL(PA;M(θ)). (⋆)
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And then add and remove the (unknown) entropy of the transformed distribution

H[T [PA, ϕ]]. We also use the change of variable formula T [PA](x) = PA(T
−1(x)) ·

det |∇xT
−1(x)|, and substitute the expression for H[PA] from the previous line (⋆):

max
θAT

logPM(T (A;ϕ); θAT ) = max
θAT

Ea′∼T [PA,ϕ] logPM(a′; θAT )

=max
θAT

[
Ea′∼T [PA,ϕ] log T [PA](a

′)− Ea′∼T [PA,ϕ] log
T [PA, ϕ](a

′)

PM(a′; θAT )

]
=max

θAT

[
Ea∼PA

PA(T
−1(T (a, ϕ), ϕ)) +

+ log det |∇xT
−1(T (a, ϕ), ϕ)| − DKL(T [PA, ϕ];M(θAT ))

]
= H[PA]− log det |∇xT (A, ϕ)| −min

θ
DKL(T [PA, ϕ];M(θ))

≤max
θA

logPM(A; θA)− log det |∇xT (A, ϕ)|+ Ebias(A, T,M).

(3.19)

By applying this lemma to the objective (3.16) and grouping together terms that

do not depend on θS and ϕ, we finally obtain the final objective.

Definition 3.2.2 (Log-likelihood Ratio Minimizing Flow). Let us define the

log-likelihood ratio minimizing flow (LRMF) for a pair of datasets A and B on X ,

the family of densities M(θ) on X , and the parametric family of normalizing flows

T (x;ϕ) from X onto itself, as the flow T (x;ϕ∗) that minimizes LLRMF (3.2.2), where

the constant c(A,B) does not depend on θS and ϕ, and can be precomputed in ad-

vance.

LLRMF(A,B, ϕ, θS) = − log det |∇xT (A;ϕ)| − logPM(T (A;ϕ); θS)− logPM(B; θS) + c(A,B),

c(A,B) = max
θA

logPM(A; θA) + max
θB

logPM(B; θB) (3.20)

Theorem 3.2.3. If T (x, ϕ) is a normalizing flow, then the adversarial log-likelihood

ratio distance (3.16) between the transformed source and target datasets can be

bounded via the non-adversarial LRMF objective (3.2.2), and therefore the param-

eters of the normalizing flow ϕ that make T (A, ϕ) and B equivalent with respect to

M can be found by minimizing the LRMF objective (3.2.2) using gradient descent

iterations with known convergence guarantees.

0 ≤ dΛ(T (A, ϕ), B;M) ≤ minθLLRMF(A,B, ϕ, θ) + Ebias. (3.21)
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This theorem follows from the definition of dΛ and two lemmas provided above that

show that the optimization over θAT can be (up to the error term) replaced by a closed-

form expression for the likelihood of the transformed dataset if the transformation is

a normalizing flow. Intuitively, the LRMF loss (3.2.2) encourages the transformation

T to draw all points from A towards the mode of the shared model P (x, θS) via the

second term, while simultaneously encouraging T to expand as much as possible via

the first term as illustrated in Figure 3·4b. The delicate balance is attained only when

two distributions are aligned, as shown in Lemma 3.2.1. The inequality (3.21) is tight

(equality holds) only when the bias term is zero, and the shared model is optimal.

The example below shows that the affine log-likelihood ratio minimizing flow be-

tween two univariate random variables with respect to the normal density family M

corresponds to shifting and scaling one variable to match two first moments of the

other, which agrees with our intuitive understanding of what it means to make two

distributions “indistinguishable” for the Gaussian family.

Example 3.2.1. Let us consider two univariate normal random variables A,B with

moments µA, µB, σ
2
A, σ

2
B, restrict M to normal densities, and the transform T (x;ϕ)

to the affine family: T (x; a, b) = ax+ b, i.e. θ = (µ, σ) and ϕ = (a, b). Using the ex-

pression for the maximum log-likelihood (negative entropy) of the normal distribution,

and the expression for variance of the equal mixture, we can solve the optimization

over θS = (µS, σS) analytically:

min
µ,σ

EX logP (X;µ, σ) = −1

2
log(2πeσ2

X) = − log σX + C (3.22)

min
θS

[
− logPM(T (A;ϕ); θS)− logPM(B; θS)

]
= (3.23)

= log
(1
2
(a2σ2

A + σ2
B)−

1

4
(µA + b− µB)

2
)
− 2C. (3.24)

Combining expressions above gives us the final objective that can be solved analytically
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by setting the derivatives with respect to a and b to zero:

log det |∇xT (A;ϕ)| = log a and c(A,B) = − log σA − log σB + 2C, (3.25)

LLRMF = − log a+ log
(1
2
(a2σ2

A + σ2
B)−

1

4
(µA + b− µB)

2
)
− log σA − log σB (3.26)

(a∗, b∗) = argminLLRMF(a, b) ⇒ a∗ =
σB

σA

, b∗ = µB − µA. (3.27)

The error term Ebias equals zero because any affine transformation of a Gaussian is

still a Gaussian.

Relation to Jensen-Shannon divergence and GANs. From the same expan-

sion as in the proof of Lemma 3.2.2 and the information-theoretic definition of the

Jensen-Shannon divergence (JSD) as the difference between entropies of individual

distributions and their equal mixture, it follows that the likelihood-ratio distance (and

consequently LRMF) can be viewed as biased estimates of JSD.

dΛ(A,B) = 2 ·JSD(A,B)−DKL(A,M)−DKL(B,M)+2 ·DKL((A+B)/2,M) (3.28)

Also, if the density family M is “convex”, in a sense that for any two densities from

M their equal mixture also lies in M ,

then by rearranging the terms in the definition of the likelihood-ratio distance,

and noticing that the optimal shared model is the equal mixture of two densities, it

becomes evident that the LRMF objective is equivalent to the GAN objective with

the appropriate choice of the discriminator family:

min
T

dΛ(T (A), B,M) = min
T

max
θAT ,θB

min
θS

[
log

PM(T (A); θAT )

PM(T (A); θS)
+ log

PM(B; θB)

PM(B; θS)

]
(3.29)

= min
T

max
θAT ,θB

[
log

PM(T (A); θAT )

PM(T (A); θAT ) + PM(T (A); θB)
+ log

PM(B; θB)

PM(B; θAT ) + PM(B; θB)
+ log 4

]
= min

T
max
D∈H

[
logD(T (A)) + log (1−D(B)) + log 4

]
, H(θ, θ′) =

{
PM(x; θ)

PM(x; θ) + PM(x; θ′)

}
.

Since M is not “convex” in most cases, minimizing the LRMF objective is equivalent
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to adversarially aligning two datasets against a regularized discriminator. From the

adversarial network perspective, the reason why LLRMF manages to solve this min-max

problem using plain minimization is because for any flow transformation parameter ϕ

the optimal discriminator between T (A;ϕ) and B is defined in closed form: D∗(x, ϕ) =

PM(x; θ∗B)/
(
PM(x; θ∗B) + PM(T−1(x;ϕ); θ∗A) det |∇xT

−1(x;ϕ)|
)
.

Vanishing of generator gradients. The relation presented above suggests that

the analysis performed by Arjovsky and Bottou [2] for GANs (Theorem 2.4, page 6)

applies to LRMF as well, meaning that gradients of the LRMF objective w.r.t. the

learned transformation parameters might vanish in higher dimensions. This implies

that while the inequality (3.21) always holds, the model produces a useful alignment

only when a sufficiently “deep” minimum of the LRMF loss (3.2.2) is found, otherwise

the method fails, and the loss value should be indicative of this. An example presented

below shows that reaching this deep minimum becomes exponentially more difficult

as the initial distance between distributions grows, which is often the case in higher

dimensions.

Example 3.2.2. Consider M(θ) that parameterizes all equal mixtures of two uni-

variate Gaussians with equal variances, i.e. θ = (µ
(1)
s , µ

(2)
s , σ2

s) and

PM(x | θ) = 1

2

(
N (x|µ(1)

s , σ2
s) +N (x|µ(2)

s , σ2
s)
)
. (3.30)

Consider A sampled from M(δ,−δ, σ2
0) and Bµ sampled from M(µ+ δ, µ− δ, σ2

0) for

some fixed δ, µ and σ0. Let transformations be restricted to shifts T (x; b) = x+ b, so

ϕ = b, and log det |∇xT (x;ϕ)| = 0, and Ebias = 0 since M can approximate both A and

T (A; b) perfectly for any b. For a sufficiently large µ, optimal shared model parameters

can be found in closed form: θ∗ = (b, µ, σ2
0 + δ2). This way the LRMF loss can be

computed in closed form up to the cross-entropy: L(b, µ) := minθ LLRMF(A,Bµ, b, θ) =

−2H[M(µ+ δ, µ− δ, σ2
0),M(b, µ, σ2

0 + δ2)] +C. A simulation provided in the Section

3.2.3 shows that the norm of the gradient of the LRMF objective decays exponentially

as a function of µ: ∥[∂L(b, µ)/∂µ](0, µ)∥ ∝ exp(−µ2), meaning that as A and Bµ

become further, the objective quickly becomes flat w.r.t ϕ near the initial ϕt=0 = 0.
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Model complexity. We propose the following intuition: 1) chose the family M(θ)

that gives the highest validation likelihood on B, since at optimum the shared model

has to approximate the true underlying PB well; 2) chose the family T (x;ϕ) that

has fewer degrees of freedom then M , since otherwise the problem becomes under-

specified. For example, consider M containing all univariate Gaussians parameter-

ized by two parameters (µ, σ) aligned using polynomial transformations of the form

T (x; a0, a1, a2) = a2x
2 + a1x+ a0. In Example 3.2.1 we showed that Gaussian LRMF

is equivalent to moment matching for two first moments, but with this choice of T ,

there exist infinitely many solutions for ϕ that all produce the desired mean and

variance of the transformed dataset.

3.2.3 Experiments and Results

In this section, we present experiments that verify that minimizing the proposed

LRMF objective (3.2.2) with Gaussian, RealNVP, and FFJORD density estima-

tors indeed results in dataset alignment. We also show that both under- and over-

parameterized LRMFs performed well in practice, and that resulting flows preserved

the local structure of aligned datasets better than non-parametric objectives and the

AlignFlow-inspired [39] baseline and were overall more stable than parametric adver-

sarial objectives. We also show that the RealNVP LRMF produced a semantically

meaningful alignment in the embedding space of an autoencoder trained simultane-

ously on two digit domains (MNIST and USPS) and preserved the manifold structure

of one mesh surface distribution mapped to the surface distribution of a different

mesh. We provide Jupyter notebooks with code in JAX [14] and TensorFlow Proba-

bility (TFP) [24].

Setup 1: Moons and blobs. We used LRMF with Gaussian, Real NVP, and

FFJORD densities PM(x; θ) with affine, NVP, and FFJORD transformations T (x;ϕ)
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Figure 3·5: The dynamics of training a Real NVP LRMF on
the blob (first row) and moons (second row) datasets. Blue, red
and cyan points represent A,B and T (A) respectively. The first two
columns show T (A) before and after training. The third and fourth
columns show optimal models from M for A and B. The fifth and the
sixth columns show the evolution of the shared model. The last column
shows the LRMF loss over time. Even a severely overparameterized
LRMF does a good job at aligning blob distributions. The animated
version that shows the evolution of respective models is available on
the project web page ai.bu.edu/lrmf. Best viewed in color.

respectively to align pairs of moon-shaped and blob-shaped datasets. The blobs

dataset pair contains two samples of size N = 100 from two Gaussians. The moons

dataset contains two pairs of moons rotated 50� relative to one another. We used orig-

inal hyperparameters and network architectures from Real NVP [25] and FFJORD

[36], the exact values are given in the supplementary. We also measured how well the

learned LRMF transformation preserved the local structure of the input compared to

other common minimization objectives (EMD, MMD) and the “back-to-back” compo-

sition of flows using a 1-nearest neighbor classifier trained on the target and evaluated

on the transformed source. We also compared our objective to the adversarial net-

work with spectral normalized discriminator (SN-GAN) in terms of how well their

alignment quality can be judged based on the objective value alone.

Results. In agreement with Example 3.2.1, a�ne Gaussian LRMF matched the

first two moments of aligned distributions. In Real NVP and FFJORD experiments,

the shared model converged to ✓
⇤

B gradually “enveloping” both domains and push-

ing them towards each other. In both under-parameterized (Gaussian LRMF on
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Figure 3·5: The dynamics of training a Real NVP LRMF on
the blob (first row) and moons (second row) datasets. Blue, red
and cyan points represent A,B and T (A) respectively. The first two
columns show T (A) before and after training. The third and fourth
columns show optimal models from M for A and B. The fifth and the
sixth columns show the evolution of the shared model. The last column
shows the LRMF loss over time. Even a severely overparameterized
LRMF does a good job at aligning blob distributions. The animated
version that shows the evolution of respective models is available on
the project web page ai.bu.edu/lrmf. Best viewed in color.

respectively to align pairs of moon-shaped and blob-shaped datasets. The blobs

dataset pair contains two samples of size N = 100 from two Gaussians. The moons

dataset contains two pairs of moons rotated 50� relative to one another. We used orig-

inal hyperparameters and network architectures from Real NVP [25] and FFJORD

[36], the exact values are given in the supplementary. We also measured how well the

learned LRMF transformation preserved the local structure of the input compared to

other common minimization objectives (EMD, MMD) and the “back-to-back” compo-

sition of flows using a 1-nearest neighbor classifier trained on the target and evaluated

on the transformed source. We also compared our objective to the adversarial net-

work with spectral normalized discriminator (SN-GAN) in terms of how well their

alignment quality can be judged based on the objective value alone.

Results. In agreement with Example 3.2.1, a�ne Gaussian LRMF matched the

first two moments of aligned distributions. In Real NVP and FFJORD experiments,

the shared model converged to ✓
⇤

B gradually “enveloping” both domains and push-

ing them towards each other. In both under-parameterized (Gaussian LRMF on
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(d) objective value vs quality of alignment in SN-GAN(a)  input (b)  accuracy (c)  objective

Figure 3·6: The dynamics of training a GAN with Spectral
Normalization (SN-GAN) on the moons dataset. The adver-
sarial framework provides means for aligning distributions against rich
families of parametric discriminators but requires the right choice of
learning rate and an external early stopping criterion because the ab-
solute value of the adversarial objective (blue) is not indicative of the
actual alignment quality even in low dimensions. The proposed LRMF
method (orange) can be solved by plain minimization and converges to
zero.

moons) and over-parameterized (RealNVP LRMF on blobs) regimes our loss success-

fully aligns distributions. In all experiments, the LRMF loss converged to zero in

average (red line), so E(A, T,M) ≈ 0, meaning that affine, Real NVP, and FFJORD

transformations keep input distributions “equally far“ from M . The loss occasion-

ally dropped below zero because of the variance in mini-batches. Figure 3·7 shows

that, despite good marginal alignment (top row) produced by MMD, EMD, and the

F ◦G−1 composition (inspired by AlignFlow [39]), the alignment produced by LRMF

preserved the local structure of transformed distributions better, comparably to the

SN-GAN both qualitatively (color gradients remain smooth in the middle row) and

quantitatively in terms of adapted 1-NN classifier accuracy (bottom row). We believe

that LRMF and SN-GAN preserved the local structure of presented datasets bet-

ter than non-parametric models because assumptions about aligned distributions are

too general in the non-parametric setting (overall smoothness, etc.), i.e. parametric

models (flows, GANs) are better at capturing structured datasets. At the same time,

Figure 3·6 shows that the quality of the LRMF alignment can be judged from the

objective value (orange line) and stays at optima upon reaching it, while SN-GAN’s

performance (blue) can be hardly judged from the value of its adversarial objective
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48 SN-GAN
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0.720.780.96 0.91±0.05

Real NVP 
LRMF (our)

0.99±0.0003

Real NVP 
  F∘G-1

(a) USPS and USPS2MNIST (b) the value of the LRMF objective
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A B T(A)  F(G-1(A))

(c) composition of flows on meshes

Figure 3·7: Among the non-adversarial alignment objectives,
only LRMF preserves the manifold structure of the trans-
formed dataset. Each domain contains two moons. The top row
shows how well two domains (red and blue) are aligned by di↵er-
ent methods trained to transform the red dataset to match the blue
dataset. The middle row shows new positions of points colored consis-
tently with the first column. The bottom row shows what happens to
red moons after the alignment. Numbers at the bottom of each figure
show the accuracy of the 1-nearest neighbor classifier trained on labels
from the blue domain and evaluated on transformed samples from the
red domain. The animated version is available on the project web page
http://ai.bu.edu/lrmf.

and diverges even from near-optimal configurations.

Setup 2: Meshes. We treated vertices from two meshes as samples from two mesh

surface point distributions and aligned them. After that, we draw faces of the original

mesh at new vertex positions. We trained two di↵erent flows F and G on these surface

distributions, passed one vertex cloud through their back-to-back composition, and

compared this with the result obtained using LRMF.

Results. Figure 3·8a shows that, in agreement with the previous experiment, the

number of points in each sub-volume of B matches the corresponding number in the

transformed point cloud F (G 1(A)), but drawing mesh faces reveals that the local

structure of the original mesh surface manifold is distorted beyond recognition. The

LRMF alignment (fourth column) better preserves the local structure of the original

distribution - it rotated and stretched A to align the most dense regions (legs, torso,
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Figure 3·7: Among the non-adversarial alignment objectives,
only LRMF preserves the manifold structure of the trans-
formed dataset. Each domain contains two moons. The top row
shows how well two domains (red and blue) are aligned by di↵er-
ent methods trained to transform the red dataset to match the blue
dataset. The middle row shows new positions of points colored consis-
tently with the first column. The bottom row shows what happens to
red moons after the alignment. Numbers at the bottom of each figure
show the accuracy of the 1-nearest neighbor classifier trained on labels
from the blue domain and evaluated on transformed samples from the
red domain. The animated version is available on the project web page
http://ai.bu.edu/lrmf.

and diverges even from near-optimal configurations.

Setup 2: Meshes. We treated vertices from two meshes as samples from two mesh

surface point distributions and aligned them. After that, we draw faces of the original

mesh at new vertex positions. We trained two di↵erent flows F and G on these surface

distributions, passed one vertex cloud through their back-to-back composition, and

compared this with the result obtained using LRMF.

Results. Figure 3·8a shows that, in agreement with the previous experiment, the

number of points in each sub-volume of B matches the corresponding number in the

transformed point cloud F (G�1(A)), but drawing mesh faces reveals that the local

structure of the original mesh surface manifold is distorted beyond recognition. The

LRMF alignment (fourth column) better preserves the local structure of the original

distribution - it rotated and stretched A to align the most dense regions (legs, torso,
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(b) A2B learned by LRMF in embedding space and pixel space 

B
A B T(A)  F∘G-1 (A)

(a) composition of flows on meshes vs LRMF

A

emb

pix

Figure 3·8: RealNVP LRMF successfully semantically aligned
digits and preserved the local structure of the mesh surface
manifold. (a) The marginal distribution produced by the “back-to-
back” composition F ◦G−1 of two normalizing flows trained on vertices
of two meshes matches the point distribution of B, but the local struc-
ture of the original manifold is distorted, while LRMF preserves the
local structure. (b) USPS digits (B) transformed into MNIST digits
(A) via LRMF in VAE embedding space (emb), via LRMF in pixel
space (pix ).

head) with the most dense regions of B.

Setup 3: Digit embeddings. We trained a VAE-GAN to embed unlabeled images

from USPS and MNIST into a shared 32-dimensional latent space. We trained a Real

NVP LRMF to map latent codes of USPS digits to latent codes of MNIST. We also

trained digit label classifiers on images obtained by decoding embeddings transformed

using LRMF, CORAL, and EMD and applied the McNemar test of homogeneity [83]

to the contingency tables of predictions made by these classifiers.

Results. The LRMF loss attained zero. Figure 3·8b(emb) shows that LRMF seman-

tically aligned images form two domains. Classifiers trained on images transformed

using LMRF had higher accuracy on the target dataset (.55 for LRMF vs .47 for EMD

vs .48 for CORAL). McNemar test showed that LRMF’s improvements in accuracy

were significant (p-value ≪ 1e-3 in all cases).

Setup 4: GLOW. We trained a GLOW LRMF to align USPS and MNIST in 32x32

pixel space, visualized outputs of the forward and backward transformation, and the

LRMF loss value over training iterations.



50

B (MNIST)

A (USPS)

LRMF T(A)

F∘G-1 T(A)

LRMF T-1(B)

F∘G-1 T-1(B)

(b) LRMF loss in pixel space did not
converge to zero, indicating the
vanishing of generator gradients

(a) Glow-LRMF and the Align-Flow [12] inspired baseline in pixel space

Figure 3·9: GLOW-LRMF did not converge in pixel space,
but preserved class labels much better than the AlignFlow-
inspired baseline [39]. (a) Images generated by applying learned
flow models in forward and backward directions to USPS and MNIST
respectively. (b) GLOW-LRMF loss did not converge to zero due to
the vanishing gradients in higher dimensions (pixel space). This failure
mode can be detected by looking at the loss values alone.

Results. The model learned to match the stroke width across domains but did not

make images completely indistinguishable (Figure 3·9). The shared density model

converged to the local minima that corresponds to approximating T (A) and B as

two distinct “bubbles” of density that fail to merge. This is the same failure mode

we illustrated in Example 3.2.2 where two components of the shared model get stuck

approximating datasets that are too far away and fail to bring the model into the

deeper global minima. We would like to note that even though the loss did not

converge to zero, i.e. the model failed to find a marginally perfect alignment, it did

so not silently, in stark contrast with adversarial methods that typically fail silently.

These results agree with our hypothesis about vanishing transformation gradients in

higher dimensions (end of Section 2), resulting in vast flat regions in the LRMF loss

landscape with respect to the transformation parameter ϕ, obstructing full marginal

alignment. The AligFlow-inspired [39] composition of flows (F ◦G−1 in Figure 3·9),

on the other hand, produced very good marginal alignment, judging from the fact

that transformed images look very much like MNIST and USPS digits, but erased
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(a) (b) (c)

Figure 3·10: Gradient of the cross-entropy of between two mixture
models as a function of the mean of one of the first components of the
first mixture to illustrate the Example 3.2.2, estimated using JAX. (a)√

− log(|∂L/∂µ|) vs aµ+ b; (b) |∂L/∂µ| vs exp(−(aµ+ b)2); (c) same
as in the middle pane, but for µ ∈ [7, 16].

the semantics in the process, judging from the mismatch between classes of original

and transformed digits.

Vanishing Gradient Simulation. We approximated |∂H[m1,m2(µ)]/∂µ|, where

m1 and m2(µ) are two equal mixtures of normal distributions, by computing

the partial derivative using auto-differentiation in JAX. The objective was L =

logsumexp({log(pi(X;µ))+ log 2}i), where log pi(x;µ) is a log probability of the mix-

ture component fromm2, andX is a fixed large enough (n=100k) sample from them1.

Figure 3·10 shows that
√

− log(|∂L/∂µ|) fits to aµ + b for a = 0.6, b = −1.168 with

R = 0.99996, therefore making us believe that ∥[∂L(b, µ)/∂µ](0, µ)∥ ∝ exp(−µ2).

Conclusion. To sum up, in this section we propose a new alignment objective

parameterized by a deep density model and a normalizing flow that, when converges

to zero, guarantees that the density model fitted to the transformed source dataset

is optimal for the target and vice versa. We also show that the resulting model is

robust to model misspecification and preserves the local structure better than other

non-adversarial objectives. We showed that minimizing the proposed objective is

equivalent to training a particular GAN, but is not subject to mode collapse and

instability of adversarial training, however in higher dimensions, is still affected by
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the vanishing of generator gradients. Translating recent advances in dealing with the

vanishing of generator gradients, such as instance noise regularization [2, 100, 107],

to the language of likelihood-ratio minimizing flows offers an interesting challenge for

future research.
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3.3 Improving Semantic Consistency using Honesty Losses

Author Contribution. Findings concerning self-adversarial defense techniques de-

scribed in this section were first reported by Bashkirova et al. [7]. Ben Usman helped

constructing datasets, automating evaluation, aggregating results across baselines,

and motivating the problem, but the core technical contribution of the proposed

self-adversarial defense methods should be attributed to its first author.

While stabilizing the alignment objective using methods described in the first

half of this chapter results in better convergence, the learned mapping might still be

nonsensical. In this section, we show that an adversarial attack that takes place in

such models results in poor semantic consistency of the learned domain alignment

mapping, and propose several solutions to this issue.

Unsupervised image-to-image translation methods [71, 127] can infer semantically

meaningful one-to-one cross-domain mappings from pairs of semantically related sets

of images (domains) without pair supervision. In this section, we show all models

that use the cycle-consistency loss (2.13), including the original CycleGAN [127],

learn to reconstruct input images by embedding low-amplitude structured noise into

intermediate generated images. We propose an adversarial loss that prevents this

“cheating” and, as a result, improves translation accuracy.

As discussed previously, suppose we are given independent samples from two image

domains A and B, and our goal is to learn mappings from one visual domain into the

other. In line with the notation introduced in the original CycleGAN [127] paper,

we train two cross-domain mappings G : A → B and F : B → A to generate

plausible examples of respective domains by pitting them against two discriminators

DA and DB trained to classify whether the input image is a true representative of the

corresponding domain or was generated by G or F accordingly. These mappings are

regularized using the pixel-wise cycle-consistency loss between the input image and
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its cycle reconstruction:

Lrec = Ex∼A ∥F (G(x))− x∥1 + Ex∼B ∥G(F (x))− x∥1 (3.31)

However, in the case when domain A is richer than B, the mapping G is many-

to-one (i.e. for each image in B there are multiple correct correspondences in A),

the generator is still forced to perfectly reconstruct the input even though some of

the information of the input image is lost after the translation to the domain B. As

shown in [21], such behavior of a CycleGAN can be described as an adversarial attack,

and in fact, for any given image it is possible to generate such structured noise that

would lead to a perfect reconstruction of the target image.

In this section, we show that methods that use cycle-consistency loss (3.31) add a

low-amplitude signal to the translation ŷ that is invisible to the human eye. The addi-

tion of this signal is enough to reconstruct the information of image x that should not

be present in ŷ. This makes methods that incorporate cycle-consistency loss sensitive

to low-amplitude high-frequency noise since that noise can destroy the hidden signal

(shown in Figure 3·11). In addition, such behavior can force the model to converge

to a non-optimal solution or even diverge since by adding structured noise the model

”cheats” to minimize the reconstruction loss instead of learning the correct mapping.

3.3.1 Honest CycleGAN

In this subsection, we introduce two defense techniques that prevent cycle-consistent

models from embedding such adversarial signals into generated images.

Adversarial training with noise. One approach to defending the model from

a self-adversarial attack is to train it to be resistant to the perturbation of nature

similar to the one produced by the hidden embedding. Unfortunately, it is impossible

to separate the pure structured noise from the translated image, so classic adversarial
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defense training cannot be used in this scenario. However, it is possible to prevent the

model from learning to embed by adding perturbations to the translated image before

reconstruction. The intuition behind this approach is that adding random noise of

amplitude similar to the hidden signal disturbs the embedded message. This results

in a high reconstruction error, so the generator cannot rely on the embedding. The

modified noisy cycle-consistency loss can be described as follows:

Lnoisy
rec = ∥F (G(x) + ε(θn))− x∥1 , (3.32)

where ε(θn) is some high-frequency perturbation function with parameters θn.

Guess Discriminator. Ideally, the self-adversarial attack should be detected by

the discriminator, but this might be too hard for it since it never sees real and fake

examples of the same content. In the supervised setting, this problem is naturally

solved by conditioning the outputs on the ground truth labels. For example, a self-

adversarial attack does not occur in Conditional GANs, such as pix2pix [49], because

the discriminator is conditioned on the ground truth class labels and is provided with

real and fake examples of each class. In the unsupervised setting, however, there is no

such information about the class labels, and the discriminator only receives unpaired

real and fake examples from the domain. This task is significantly harder for the

discriminator as it has to learn the distribution of the whole domain. One widely

used defense strategy is adding adversarial examples to the training set. While it is

possible to model the adversarial attack of the generator, it is very time and memory

consuming as it requires training an additional network that generates such examples

at each step of training the GAN. However, we can use the fact that cycle-consistency

loss forces the model to minimize the difference between the input and reconstructed

images, so we can use the reconstruction output to provide the fake example for the

real input image as an approximation of the adversarial example.
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Method ACC ↑ IoU↑ IoU p2p↑ RH↓ SN↓
CycleGAN 0.23 0.16 0.20 27.43 ± 6.1 446.9
CycleGAN + noise* 0.24 0.17 0.23 9.17 ± 7.4 94.2
CycleGAN + guess* 0.24 0.17 0.21 11.4 ± 7.0 212.6
CycleGAN + guess + noise* 0.236 0.17 0.24 6.1 ± 5.9 150.6
UNIT 0.08 0.04 0.06 6.4 ± 11.7 361.5
MUNIT + cycle 0.13 0.08 0.17 2.5 ± 8.9 244.9
pix2pix (supervised) 0.4 0.34 – – –

Table 3.1: Results on the GTA V dataset. acc. segm and IoU
segm represent mean class-wise segmentation accuracy and IoU, IoU
p2p is the mean IoU of the pix2pix segmentation of the segmentation-
to-frame mapping; RH (Eq.3.34) and SN (Eq.3.35) are the quantized
reconstruction honesty and sensitivity to noise of the many-to-one map-
ping (B2A2B) respectively. * – our proposed defense methods. The
reconstruction error distributions plots can be found in the supplemen-
tary material (Section 2).

Thus, the defense during training can be formulated in terms of an additional guess

discriminator that is very similar to the original GAN discriminator, but receives as

input two images – input and reconstruction – in a random order, and ”guesses” which

of the images is fake. As with the original discriminator, the guess discriminatorDguess

is trained to minimize its error while the generator aims to produce such images that

maximize it. The guess discriminator loss or guess loss for domain A with guess

discriminator DA
guess can be written down as:

LA
guess = ϕ(DA

guess(X,F (G(X))) + ϕ(1−DA
guess(F (G(X)), X)) (3.33)

where X ∼ PA, D
A
guess(X, X̂) ∈ [0, 1] is the predicted probability that X is real and

X̂ is reconstruction, and ϕ(x) is a discriminator loss function (ϕ(x) = log(x) for the

original GAN, and ϕ(x) = x2 for LSGAN we used). This loss resembles the class

label conditioning in the Conditional GAN in the sense that the guess discriminator

receives real and fake examples that are presumably of the same content, therefore

the embedding detection task is significantly simplified.



Figure 3·11: Results of translation of GTA [99] frames to semantic segmenta-
tion maps using CycleGAN, UNIT, and CycleGAN with our two proposed defense
methods, additive noise and guess loss. The last column shows the reconstruction
of the input image when high-frequency noise (Gaussian noise with mean 0 and
standard deviation 0.08 ∼ 10 intensity levels out of 256) is added to the output
map. Ideally, if the reconstruction is ”honest” and relies solely on the visual fea-
tures of the input, the reconstruction quality should not be greater than that of the
translation. The results of all three translation methods (CycleGAN, UNIT, and
MUNIT) show that the reconstruction is almost perfect regardless of the translation
accuracy. Furthermore, the reconstruction of the input image is highly sensitive to
low-amplitude random noise added to the translation. Both of the proposed self-
adversarial defense techniques (Section 3.3) make the CycleGAN model more robust
to the random noise and make it rely more on the translation result rather than the
adversarial structured noise as in the original CycleGAN and UNIT. More trans-
lation examples can be found in Section 3 of the supplementary material in the
original paper [7]. Best viewed in color.
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Figure 3·12: Results of the GTA frames-to-segmentation translation
with the original CycleGAN and our defense techniques. The frame
reconstruction (b2a2b) with noisy CycleGAN is remarkably similar to
the opposite translation (a2b). For example, the road marking in the
reconstructed image is located at the same place as in the translation
(a2b) rather than as in the input (b).
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3.3.2 Experiments and Results

In the abundance of GAN-based methods for unsupervised image translation, we

limited our analysis to three popular state-of-art models that cover both unimodal

and multimodal translation cases: CycleGAN [127], UNIT [71], and MUNIT [47]. To

provide empirical evidence of our claims, we performed a sequence of experiments on

three publicly available image-to-image translation datasets. Despite the fact that all

three datasets are paired and hence the ground truth correspondence is known, the

models that we used are not capable of using the ground-truth alignment by design

and thus were trained in an unsupervised manner.

Playing for Data (GTA) Dataset. Out split of the original dataset [99] consists

of 24966 pairs of image frames and their semantic segmentation maps. We used a

subset of 10000 frames (7500 images for training, 2500 images for testing) with day-

time lighting resized to 192 × 192 pixels, and randomly cropped with window size

128× 128.

Translation quality metric. The choice of aligned datasets was dictated by the

need to quantitatively evaluate the translation quality which is impossible when the

ground truth correspondence is unknown. However, even having the ground truth

pairs does not solve the issue of quality evaluation in one-to-many case, since for one

input image there exist a large (possibly infinite) number of correct translations, so

pixel-wise comparison of the ground truth image and the output of the model does not

provide a correct metric for the translation quality. In order to overcome this issue, we

adopted the idea behind the Inception Score [105] and trained the supervised Pix2pix

[49] model to perform many-to-one mapping as an intermediate step in the evaluation.

Considering the GTA dataset example, in order to evaluate the unsupervised mapping

from segmentation maps to real frames (later on – segmentation to real), we train the

Pix2pix model to translate from real to segmentation; then we feed it the output of
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the unsupervised model to perform ”honest” reconstruction of the input segmentation

map, and compute the Intersection over Union (IoU) and mean class-wise accuracy

of the output of Pix2Pix when given a ground truth example and the output of

the one-to-many translation model. For any ground truth pair (Ai, Bi), the one-to-

many translation quality is computed as IoU(pix(GA(Bi)), pix(Ai)), where pix(·) is

the translation with Pix2pix from A to B. The ”honest reconstruction” is compared

with the Pix2pix translation of the ground truth image Ai instead of the ground

truth image itself in order to take into account the error produced by the Pix2pix

translation.

Reconstruction honesty metric. Since it is impossible to acquire the structured

noise produced as a result of a self-adversarial attack, there is no direct way to either

detect the attack or measure the amount of information hidden in the embedding. In

order to evaluate the presence of a self-adversarial attack, we developed a metric that

we call quantized reconstruction honesty. The intuition behind this metric is that,

ideally, the reconstruction error of the image of the richer domain should be the same

as the one-to-many translation error if given the same input image from the poorer

domain. In order to measure whether the model is independent of the origin of the

input image, we quantize the many-to-one translation results in such a way that it

only contains the colors from the domain-specific palette. In our experiments, we

approximate the quantized maps by replacing the colors of each pixel with the closest

one from the palette. We then feed those quantized images to the model to acquire the

”honest” reconstruction error and compare it with the reconstruction error without

quantization. The honesty metric for a one-to-many reconstruction can be described

as follows:

RH =
1

N

N∑
i=1

{∥GA(⌊GB(Xi)⌋)− Yi∥2 − ∥GA(GB(Xi))− Yi∥2}, (3.34)
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where ⌊∗⌋ is a quantization operation, GB is a many-to-one mapping, (Xi, Yi) is a

ground truth pair of examples from domains A and B.

Sensitivity to noise. Aside from the obvious consequences of the self-adversarial at-

tack, such as convergence of the generator to a suboptimal solution, there is one more

significant side effect of it – extreme sensitivity to perturbations. Figure 3·11 shows

how the addition of low-amplitude Gaussian noise effectively destroys the hidden

embedding thus making a model that uses cycle-consistency loss unable to correctly

reconstruct the input image. In order to estimate the sensitivity of the model, we add

zero-mean Gaussian noise to the translation result before reconstruction and compute

the reconstruction error. The sensitivity to noise of amplitude σ for a set of images

Xi ∼ pA is computed by the following formula:

SN(σ) =
1

N

N∑
i=1

∥GA(GB(Xi) +N (0, σ))−GA(GB(Xi))∥2 (3.35)

The overall sensitivity of a method is computed as an area under the curve:

AuC(SN(σ)) =

b∫
a

SN(x)dx (3.36)

In our experiments we chose a = 0, b = 0.2, N = 500 for Google Maps and GTA

experiments and N = 100 for the SynAction experiment. In case when there is no

structured noise in the translation, the reconstruction error should be proportional to

the amplitude of added noise, which is what we observe for the one-to-many mapping

using MUNIT and CycleGAN. Surprisingly, UNIT translation is highly sensitive to

noise even in the one-to-many case.

The many-to-one mapping result (Figure 3·11), in contrast, suggests that the

structured noise is present since the reconstruction error increases rapidly and quickly

saturates at noise amplitude 0.08. The results of one-to-many and many-to-one noisy
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reconstruction show that both noisy CycleGAN and guess loss defense approaches

make the CycleGAN model more robust to high-frequency perturbations compared

to the original CycleGAN.

Results. The results of our experiments show that the problem of self-adversarial

attacks is present in all three cycle-consistent methods we examined. The noise-

regularization defense helps the CycleGAN model to become more robust both to

small perturbations and to the self-adversarial attack. The guess loss approach, on the

other hand, while allowing the model to hide some small portion of information about

the input image (for example, road marking for the GTA experiment), produces more

interpretable and reliable reconstructions. Furthermore, the combination of both

proposed defense techniques results beats both methods in terms of translation quality

and reconstruction honesty (Figure 3·12). Since both defense techniques force the

generators to rely more on the input image than on the structured noise, their results

are more interpretable and provide a deeper understanding of their “reasoning”. For

example, since the training set did not contain any examples of a truck that is colored

in white and green, at test time the guess-loss CycleGAN approximated the green part

of the truck with the ”vegetation” class color and the white part with the building

class color (see Section 3 of the supplementary material); the reconstructed frame

looked like a rough approximation of the truck despite the fact that the semantic

segmentation map was wrong. This can give a hint about the limitations of the given

training set.



Chapter 4

Cross-Domain Image Manipulation

In the previous chapter, we showed how to improve the stability and semantic consis-

tency of adversarial alignment. In this chapter, we show how to use these adversarial

alignment methods to manipulate individual factors of real images using cross-domain

supervision. In this section, we show that the adversarial alignment alone is not

enough to efficiently manipulate individual factors of real images and propose novel

components that enable such controlled manipulation. For example, Figure 4·1a-b

shows what happens if we apply an alignment method, such as CycleGAN [21], to a

pair of domains where the first (real) domain is our application domain that lacks any

supervision, and the second (synthetic) domain provides fine control over all factors

of variation. The learned mapping would not be very useful for image manipulation,

since mapping an image to the synthetic domain, manipulating it there, and mapping

it back, would randomly alter all aspects of the input image not reflected in the sim-

ulation. In Section 4.1 we investigate how we can use adversarial domain alignment

to transfer fine control over individual factors present in the simulation onto a real

domain while preserving all other aspects of the input image intact. While we, of

course, can not use synthetic supervision to learn to manipulate individual factors of

real images absent from the synthetic domain, as illustrated in Figure 4·1c, in Sec-

tion 4.2 we investigate how adversarial domain alignment can help us differentiate

factors of variation shared across both domains from those unique to each domain,

and manipulate factors in these two groups independently from each other.
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Syn2Real

Real2Syn

in the synthetic 
domainReal2Syn

Syn2Real

(a) (b)
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mouth
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Figure 4·1: Challenges in performing controlled cross-domain image ma-
nipulation via domain alignment. (a) While an unsupervised adversarial
alignment method can learn a pair of mappings between uncontrolled (real)
and controlled (synthetic) datasets, (b) translating a real image into the
synthetic domain, applying a transformation there, and mapping it back to
the real domain is not practical, since it changes many other attributes of
the input image (e.g. identity in this example). In Section 4.1 we show how
to overcome these challenges and train a model that can manipulate individ-
ual factors of real images using synthetic supervision. (c) While synthetic
supervision is not available for factors absent from the synthetic domain
(such as hair color in this example), in Section 4.2 we show how one to learn
to differentiate factors present in both domains from domain-specific ones
without any pair supervision and manipulate these two groups of factors
independently from each other.
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Figure 4·2: The task of image manipulation from cross-domain
demonstrations. The model has to learn to manipulate attributes of real
images using only synthetic supervision.

4.1 Image Manipulation via Cross-Domain Demonstrations

In this section, we propose PuppetGAN - a deep model for targeted and controlled

modification of natural images that requires neither explicit attribute labels nor a

precise simulation of the real domain. To enable control over a specific attribute in

real images PuppetGAN only requires “demonstrations” of how the desired attribute

manipulation affects the output of a crude simulation, see Figure 4·2. Our method

uses these synthetic demonstrations to supervise attribute disentanglement in the

synthetic domain and extends this disentanglement to the real domain. We quanti-

tatively evaluate how well our model can preserve other attributes of the input when

a single attribute is manipulated. To sum up, in this section we:

1. Introduce a new challenging “cross-domain image manipulation by demonstra-

tion” task: the model has to manipulate a specific attribute of a real image

to match a synthetic reference image using only examples of real images and
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attribute

labels for
single-domain cross-domain

single domain

Mathieu et al. [82],

Cycle-VAE [41],

Szabó et al. [111]

E-CDRD [73],

DiDA [15],

PuppetGAN

both domains — UFDN [70]

unsupervised

InfoGAN [18],

β-VAE [43],

β-TCVAE [17]

DRIT [62],

MUNIT [47]

Table 4.1: Some of existing disentanglement methods that enable
controlled manipulation of real images.

demonstrations of the desired attribute manipulation in the synthetic domain

at train time in the presence of a significant domain shift both in the domain

appearance and attribute distributions.

2. Propose a model that enables controlled manipulation of a specific attribute

and correctly preserves other attributes of the real input. We are the first to

propose a model that enables this level of control under these data constraints.

3. Propose both proof-of-concept (digits) and realistic (faces and face renders)

dataset pairs and a set of metrics for this task. We are the first to quantitatively

evaluate the effects of cross-domain disentanglement on values of other (non-

manipulated) attributes of images.

4.1.1 Background

Parametric domain models. Following recent advances in differentiable graphics

pipelines [78], and high-quality morphable models [95], the work of Thies et al. [114]

proposed a way to perform photo-realistic face expression manipulation and reenact-

ment that cannot be reliably detected even by trained individuals. Unfortunately,
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methods like these rely on precise parametric models of the target domain and accu-

rate fitting of these parametric models to input data. These most. Then, in order

to manipulate a single property of an input image, all other properties (such as head

pose, lighting, and facial expression in case of face manipulation) have to be estimated

from an image and passed to a generative model together with a modified attribute

to essentially “rerender” a new image from scratch. This approach enables visually

superb image manipulation, but requires a detailed domain model capable of precisely

modeling all aspects of the domain and re-rendering any input image from a vector

of its attributes - it is a challenging task, and its solution often does not generalize

to other domains.

Fully-supervised methods. An overview of generative neural models with full su-

pervision is beyond the scope of this thesis, but it would include attribute supervision

[20], supervision with scene graphs and segmentation [3], etc.

Single-Domain Disentanglement. One alternative to full domain simulation is

learning a representation of the domain in which the property of interest and other

properties could be manipulated independently - a so-called “disentangled represen-

tation”. We summarized several kinds of disentanglement methods that enable such

control over real images using simulated examples in Table 4.1. Supervised single-

domain disentanglement methods require either explicit or weak (pairwise similarity)

labels [41, 82, 111] for real images - a much stronger data requirement than the one

we consider. As discussed in the seminal work of Mathieu et al. [82] on disentangling

representations using adversarial learning and partial attribute labels and later ex-

plored in more detail by Szabó et al. [111] and Harsh Jha et al. [41], there are always

degenerate solutions that satisfy the proposed constraints but cheat by ignoring one

component of the embedding and hiding information in the other, we discuss steps

we undertook to combat these solutions in the model and experiment sections.
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Supervised Cross-Domain Disentanglement. In the presence of the second do-

main, one intuitive way of addressing the visual discrepancy between the two is to

treat the domain label as just another attribute [70] and perform disentanglement on

the resulting single large partially labeled domain. This approach enables interpola-

tion between domains, and training conditional generative models using labels from a

single domain, but does not provide means for manipulation of existing images across

domains unless explicit labels in both domains are provided. Recent papers [15, 73]

suggested using explicit categorical labels to train explicit attribute classifiers on the

synthetic domain and adapt it to the real domain; the resulting classifier is used

to (either jointly or in stages) disentangle embeddings of real images. These works

showed promising results in manipulating categorical attributes of images to aug-

ment existing datasets (like face attributes in CelebA [74] or class labels in MNIST),

but neither of these methods was specifically designed for or tested for their ability

to preserve other attributes of an image: if we disentangle the size of a digit from

its class for the purpose of, effectively, generating more target training samples for

classification, we do not care whether the size is preserved when we manipulate the

digit class since that would still yield a correctly “pseudo-labeled” sample from the

real domain. Therefore, high classification accuracies of adapted attribute classifiers

(reported in these papers) do not guarantee the quality of disentanglement and the

ability of these models to preserve unlabeled attributes of the input. Moreover, these

methods require explicit labels making them not applicable to a wide range of at-

tributes that are hard to express as categorical labels (shape, texture, lighting). In

this work, we specifically focus on manipulating individual attributes of images using

demonstrations from another domain, in the presence of a significant domain shift

(both visual and in terms of distributions of attribute values) and explicitly quanti-

tatively evaluate the ability of our model to preserve all attributes other the one we
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disentangled embeddings

mouthhead yaw,
gaze, etc. discarded discarded 

E E E E

GB GA

mouthhead yaw,
gaze, etc. discarded discarded 

Figure 4·3: PuppetGAN overview: we train a domain-agnostic encoder
(E), a decoder for the real domain (GA), and a decoder for the synthetic
domain (GB) to disentangle the attribute we would like to control in real
images (the “attribute of interest” - AoI - mouth expression in this exam-
ple), and all other attributes (head orientation, gaze direction, microphone
position in this example) that are not labeled or even not present (e.g. mi-
crophone) in the synthetic domain. Our model is trained on demonstrations
of how the AoI is manipulated in synthetic images and individual examples
of real images. At test time, a real image can be manipulated with a syn-
thetic reference input by applying a real decoder to the attribute embedding
of the reference image (green capsule) combined with the remaining embed-
ding part (purple capsule) of the real input.

manipulated.

4.1.2 PuppetGAN

In this subsection, we formally introduce our data constraints, define a disentangled

encoder and domain decoders used in the loss, and describe a set of constraints that

ensure proper disentanglement of synthetic images and extension of this disentangle-

ment to a real domain.

Setup. Consider having access to individual real images a ∈ XA, and triplets of

synthetic images (b1, b2, b3) ∈ XB such that (b1, b3) share the attribute of interest
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we crop the face
use synthetic image
to manipulate mouth
and insert it back

(a) mouth manipulation in 300-VW (b) relighting faces from YaleB

Figure 4·4: More examples with other identities are provided in the sup-
plementary. (a) When trained on face crops from a single 300-VW [103]
video, PuppetGAN learns to manipulate mouth expression while preserving
head orientation, gaze orientation, expression, etc. so well that directly
“pasting” the manipulated image crop back into the frame without any
stitching yields realistically manipulated images without noticeable head ori-
entation or lighting artifacts (chin stitching artifacts area are unavoidable
unless an external stitching algorithm is used); the video demonstration is
available in the supplementary and at http://bit.ly/iccv19_pupgan. (b)
When trained on face crops of all subjects from YaleB [33] combined into a
single domain, PuppetGAN learns to properly apply lighting (AoI) from a
synthetic reference image and correctly preserves subjects’ identities without
any identity labels; lighting of the original real image has little to no effect
on the output.

http://bit.ly/iccv19_pupgan
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Figure 4·5: Supervised losses jointly optimized during the training
of the PuppetGAN. When combined, these losses ensure that the “at-
tribute embedding” (green capsule) affects only the attribute of inter-
est (AoI) in generated images and that the “rest embedding” (purple
capsule) does not affect the AoI in generated images. When trained,
manipulation of AoI in real images can be performed by replacing their
attribute embedding components. Unsupervised (GAN) losses are not
shown in this picture. An example at the top right corner illustrates
sample images fed into the network to disentangle mouth expression
(AoI) from other face attributes in real faces. Section 4.1.2 provides
more details on the intuition behind these losses.
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(AoI - the attribute that we want to control in real images), whereas the pair (b2, b3)

shares all other attributes present in the synthetic domain. See the top right corner

of Figure 4·5 for an example of inputs fed into the network to learn to control mouth

expression (AoI) in real faces using crude face renders.

Model. The learned image representation consists of two real-valued vectors eattr

and erest denoted as green and purple capsules in Figures 4·3 and 4·5. We introduce

domain-agnostic encoders for the attribute of interest Eattr and all other attributes

Erest, and two domain-specific decoders GA, GB for the real and synthetic domains

respectively:

Eattr : (x) 7→ eattr, GA : (eattr, erest) 7→ xa

Erest : (x) 7→ erest, GB : (eattr, erest) 7→ xb.

To simplify the loss definitions below, we introduce the domain-specific “attribute

combination operator” that takes a pair of images (x, y), each from either of two

domains, combines embeddings of these images, and decodes them as an image in the

specified domain K:

CK(x, y) ≜ GK

(
Eattr(x), Erest(y)

)
, K ∈ {A,B}.

Losses. We would like CK(x, y) to have the AoI of x and all other attributes of y, but

we can not enforce this directly as we did not introduce any explicit labels. Instead,

we jointly minimize the weighted sum of L1-penalties for violating the following con-

straints illustrated in Figure 4·5 with respect to all parameters of both encoders and

decoders:

(a) the reconstruction constraint ensures that encoder-decoder pairs actually learn
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representations of respective domains

Lrec = Ex∼XA
||x− CA(x, x)||+ Ex∼XB

||x− CB(x, x)|| (4.1)

(b) the disentanglement constraint ensures correct disentanglement of synthetic im-

ages by the shared encoder and the decoder for the synthetic domain

Lattr = E(b1,b2,b3) ||b3 − CB(b1, b2)||, (b1, b2, b3) ∼ XB (4.2)

(c) the cycle constraint was shown [127] to improve semantic consistency in visual

correspondences learned by unsupervised image-to-image translation models

Lcyc = E ||a− CA(b̃c, b̃c)||+ E ||b− CB(ãc, ãc)|| (4.3)

b̃c = CB(a, a), ãc = CA(b, b), a ∼ XA, b ∼ XB (4.4)

(d) the pair of attribute cycle constraints prevents shared encoders and the real

decoder GA from converging to a degenerate solution - decoding the entire real

image from a single embedding and completely ignoring the other part. The

first “attribute cycle constraint” (the left column in Figure 4·5d) ensures that

the first argument of CA is not discarded:

Lcyc
attr-B = E ||b3 − CB(ã, b2)|| (4.5)

ã = CA(b1, a), a ∼ XA, (b1, b2, b3) ∼ XB. (4.6)

The only thing that is important about ã as the first argument of CB is its

attribute value, so CA must not discard the attribute value of its first argument

b1, since otherwise, reconstruction of b3 would become impossible. The “rest”

component of a should not influence the estimate of b3 since it only affects the

“rest” component of ã that is discarded by later application of CB. To ensure



74

that the second “rest embedding” argument of CA is not always discarded, the

second attribute cycle constraint (the right column in Figure 4·5d)

Lcyc
attr-A = E ||a− CA(b̃, a)|| (4.7)

b̃ = CB(a, b), a ∼ XA, b ∼ XB (4.8)

penalizes CA if it ignores its second argument since the “rest” of a is not recorded

in b̃ and therefore can be obtained by CA only from its second argument.

The proposed method can be easily extended to disentangle multiple attributes at

once using separate encoders and example triplets for each attribute. For example,

to disentangle two attributes p and q using encoders Ep
attr, E

q
attr and synthetic triplets

(bp1, b
p
2, b

p
3), (b

q
1, b

q
2, b

q
3) where (bp2, b

p
3) share all other attributes except p (including q),

and vice versa, the disentanglement constraint should look like:

bp3 = GB(E
p
attr(b

p
1), E

q
attr(b

p
2), Erest(b

p
2)) (4.9)

bq3 = GB(E
p
attr(b

q
2), E

q
attr(b

q
1), Erest(b

q
2)). (4.10)

In addition to the supervised losses described above, we apply unsupervised ad-

versarial LS-GAN [81] losses to all generated images. Discriminators DK(x
′) and

attribute combination operators CK(x, y) are trained in an adversarial fashion so

that any combination of embeddings extracted from images x, y from either of two

domains and decoded via either real or synthetic decoder GK looks like a reasonable

sample from the respective domain.

Architecture. We used the “CycleGAN resnet” encoder (padded 7x7 conv followed

by two 3x3 conv with stride 2 all with relus), followed by six residual conv blocks (two

3x3 convs with relus) a fully-connected bottleneck of size 128 and a pix2pix decoder

(two bi-linear up-sampling followed by a convolution). We used LS-GAN objective
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in all GAN losses. It generally follows the architecture of CycleGAN implementation

provided in the tfgan package1.

Training. We optimized the entire loss jointly with respect to all encoder-decoder

weights and then all discriminator losses in two consecutive iterations of the Adam

optimizer with α = (2e-4, 5e-5) learning rates with polynomial decay and β = 0.5.

A model trained by updating different losses wrt different weights independently in

an alternating fashion did not converge, so all generator and discriminator losses

must be updated together in two large steps. We also added Gaussian instance

noise to each image used in disentanglement and attribute cycle losses to improve

stability during training. We added stop gradient op after the application of CB

in the second attribute cycle loss and instance noise to all intermediate images to

avoid the “embedding” behavior. We purposefully avoid constraining embeddings

themselves, e.g. penalizing Euclidean distances between embedding components of

images that are known to share a particular attribute, as such penalties often cause

embedding magnitudes to vanish.

4.1.3 Experiments

Setup. We evaluated the ability of our model to disentangle and manipulate indi-

vidual attributes of real images using synthetic demonstrations in multiple different

settings illustrated in Figures 4·4 and 4·6.

1. Size and rotation of real digits from MNIST and USPS were manipulated using a

synthetic dataset of typewritten digits rendered using a sans-serif Roboto font.

2. Mouth expression in human face crops from the VW-300 [103] dataset was manip-

ulated using synthetic face renders with varying face orientation and expression, but

same identity and lighting, obtained using Basel parametric face model [59] with the

1https://www.tensorflow.org/api_docs/python/tf/contrib/gan/CycleGANModel

https://www.tensorflow.org/api_docs/python/tf/contrib/gan/CycleGANModel
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(c) spherical harmonic lighting (d) light direction and intensity in YaleB (e) distributions of attribute values

P(rot) P(size)

(b) size of scaled MNIST digits

(a) rotation of MNIST digits

Synthetic input Real input

(i)

(ii)

(iii)

Figure 4·6: (a-d) The PuppetGAN model correctly transfers synthetic
AoI onto real images and completely ignores other attributes of synthetic
inputs. (ii) For example, in the digit rotation experiment, when a synthetic
input with the same rotation but a di↵erent size and class label (e.g. smaller
“eight” instead of bigger “four”) is passed through the model, the outputs do
not change. (iii) Our model is robust to synthetic inputs with AoI (rotation)
beyond the range observed during training - it “saturates” on synthetic out-
liers. (e) The distribution of attributes is monotonically remapped to match
the real domain.

global illumination prior [27].

3. Global illumination (spherical harmonics) in female synthetic face renders was

manipulated using male renders with di↵erent head orientations and expressions.

4. Direction and power of the light source in real faces from the YaleB [33] dataset

were manipulated using synthetic 3D face renders with varying lighting and identities

(but the constant expression and head orientation).

We used visually similar digit dataset pairs to investigate how discrepancy in at-

tribute distributions a↵ects the performance of the model, e.g. how it would perform
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(a) MUNIT applied to mouth expression in VW-300

(d) MUNIT
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Figure 4·7: Results of methods related to PuppetGAN (only DiDA
is directly comparable) (a) MUNIT disentangled mouth expression from
head orientation, but style spaces of two domains are not aligned, so con-
trolled mouth manipulation is not possible; (b) Cycle-Consistent VAE is
not suited for large domains shift; (c) DiDA converged to degenerate solu-
tions that used only one input; (d) MUNIT disentangled stroke from other
attributes (i.e. did not isolate rotation or size from the class label); (e)
Cycle-Consistent VAE was able to extract information only from real inputs
that looked “synthetic enough”.

if synthetic digits looked similar to real digits, but were much smaller than real ones

or rotated differently. In face manipulation experiments we used a much more vi-

sually distinct synthetic domain. In VW-300 experiments we treated each identity

as a separate domain, so the model had to learn to preserve head orientation and

expression of the real input; we used the same set of 3D face renders across all real

identities. In the experiment on reapplying environmental lighting to synthetic faces,

the expression and head orientation of the input had to be preserved. In the lighting

manipulation experiment on the YaleB dataset, we used a single large real domain

with face crops of many individuals with different lighting setups each having the

same face orientation across the dataset, so the model had to learn to disentangle

and preserve the identity of the real input.
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Metrics. In order to quantitatively evaluate the performance of our model on digits

we evaluated Pearson correlation (r) between measured attribute values in inputs and

generated images. We measured the rotation and size of both input and generated

digit images using image moments, and trained a LeNet [60] to predict digit class.

Below we define the metrics reported in Table 4.2. The AoI measurements in images

generated by an “ideal” model should strongly correlate with the AoI measurements in

respective synthetic inputs (rsynattr ↑ - the arrow direction indicates if larger or smaller

values of this metric is “better”), and the measurement of other attributes should

strongly correlate with those in real inputs (Acc - accuracy of preserving the digit

class label - higher is better), and no other correlations should be present (rsynrest lower

is better). For example, in digit rotation experiments we would like the rotation of

the generated digit to be strongly correlated with the rotation of the synthetic in-

put and uncorrelated with other attributes of the synthetic input (size, class label,

etc.); we want the opposite for real inputs. Also, if we use a different synthetic input

with the same AoI value (and random non-AoI values) there should be no change

in pixel intensities in the generated output (small variance Vrest). Optimal values of

these metrics are often unachievable in practice since attributes of real images are not

independent, e.g. inclination of real digits is naturally coupled with their class label

(sevens are more inclined than twos), so preserving the class label of the real input

inevitably leads to a non-zero correlation between rotation measurements in real and

generated images. We also estimated discrepancy in attribute distributions by com-

puting Jensen-Shannon divergence between optimal [106] kernel density estimators of

respective attribute measurements between real and synthetic images (J syn) as well as

real and generated images (Jgen). In order to quantitatively evaluate to what extent

proposed disentanglement losses improve the quality of attribute manipulation, we

report the same metrics for an analogous model without disentanglement losses that
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Model
Disentanglement Quality

Size Rotation
Acc ↑ rsynattr ↑ rsynrest ↓ Vrest ↓ Acc ↑ rsynattr ↑ rsynrest ↓ Vrest ↓

PuppetGAN 0.73 0.85 0.02 0.02 0.97 0.40 0.11 0.01
CycleGAN [127] 0.10 0.28 0.06 0.28 0.11 0.54 0.37 0.33
DiDA [15] 0.71 0.18 0.09 0.02 0.86 0.04 0.35 0.02
MUNIT [47] 0.96 0.06 0.09 0.01 1.00 0.00 0.15 0.01
Cycle-VAE [41] 0.17 0.92 0.16 0.01 0.29 0.45 0.10 0.01
PuppetGAN† 0.64 0.28 0.07 0.01 0.10 0.06 0.04 0.01

Table 4.2: Rotation and scaling of MNIST digits (Figures 4·6-4·7). Our
model exhibits a higher precision of attribute manipulation. We measure how
well models preserve the class labels of real inputs (Acc), AoI of synthetic

inputs rsynthattr , and ignore non-AoI of synthetic inputs rsynthrest . We investigate
how increased discrepancy between sizes of synthetic and real digits (meaning
higher J syn

attr for size and J syn
rest for rotation) affects the performance of our

model (PuppetGAN†). Arrows ↑↓ indicate if higher or lower values are
better, good results are underscored.

translates all attributes of the synthetic input to the real domain (CycleGAN).

Hyperparameters. We did not change any hyperparameters across tasks, the model

performed well with the initial “reasonable” choice of parameters listed in the sup-

plementary. As with all adversarial methods, our model is sensitive to the choice of

generator and discriminator learning rates.

4.1.4 Results.

The proposed model successfully learned to disentangle the attribute of interest (AoI)

and enabled isolated manipulation of this attribute using embeddings of synthetic

images in all considered experiment settings:

1. In the digit rotation experiment (Figure 4·6a), generated images had the class la-

bel, size, and style of the respective real input and rotation of the respective synthetic

input, and did not change if either class or size of the synthetic (Figure 4·6(ii)), or

rotation of the real input changed. Attributes were properly disentangled in all face

manipulation experiments (Figure 4·4ab, 4·6cd), e.g. in the YaleB experiment “orig-

inal” lighting of real faces and identities of synthetic faces did not affect the output,
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whereas identities of real faces and lighting of synthetic faces were properly preserved

and combined. For the VW-300 domain with face crops partially occluded by a mi-

crophone, the proposed model preserved the size and position of the microphone, and

properly manipulated images with the partially occluded mouth, even though this

attribute was not modeled by the simulation.

2. Larger discrepancy between attribute distributions in two domains (PuppetGAN†

in Table 4.2) leads to poorer attribute disentanglement, e.g. if synthetic digits are

much smaller than real, or much less size variation is present in the real MNIST, or

much less rotation in USPS (see the published paper [119]). For moderate discrep-

ancies in attribute distributions, AoI in generated images followed the distribution of

AoI in the real domain (Figure 4·6e, and supplementary of the original paper [119]).

If during evaluation the property of interest in a synthetic input was beyond values

observed during training, the model’s outputs “saturated” (Figure 4·6(iii)).

3. Ablation study results (supplementary of the original paper [119]) and the visual

inspection of generated images suggest that domain-agnostic encoders help to se-

mantically align embeddings of attributes across domains. Image level GAN losses

improve the “interchangeability” of embedding components from different domains.

Learned representations are highly excessive, so even basic properties such as “digit

rotation” required double-digit embedding sizes. Attribute cycle losses together with

pixel-level instance noise in attribute and disentanglement losses improved conver-

gence speed, stability, and the resilience of the model to degenerate solutions [7].

Comparison to Related Methods. To our knowledge, only E-CDRD [73] and

DiDA [15] considered similar input constraints at train time (both use explicit la-

bels). We could not obtain any implementation of E-CDRD, and since authors focused

on different applications (domain adaptation for digit classification, manipulation of

photos using sketches), their reported results are not comparable with ours. While
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MUNIT [47] (unsupervised cross-domain) and Cycle-Consistent VAE [41] (single-

domain) methods have input constraints incompatible with ours, we investigated

how they perform, respectively, without attribute supervision and in the presence

of the domain shift. Quantitative evaluation (Table 4.2) supports our explanations

of qualitative results (Figures 4·6-4·7). Proposed losses greatly improve the quality

of isolated attribute manipulation over both cross-domain non-disentangled (Cycle-

GAN), cross-domain disentangled (DiDA, MUNIT), and single-domain disentangled

(Cycle-VAE) baselines. More specifically, MUNIT disentangled the wrong attribute

(stroke) and DiDA converged to degenerate solutions that ignored synthetic AoI -

both have low rsynattr. The Cycle-VAE disentangled correct attributes of digits (high

rsynattr), but due to the domain shift failed to preserve class labels of real inputs (low

Acc). Figure 4·7a shows that MUNIT disentangled face orientation as “content” and

mouth expression as “style”, as random style vectors appear to mostly influence the

mouth. Unfortunately, style embedding spaces of two domains are not semantically

aligned, so controlled manipulation of specific attributes (e.g. mouth) across domains

is not possible. The available implementation of DiDA made it very difficult to ap-

ply it to faces. Cycle-Consistent VAE learned great disentangled representations and

enabled controlled manipulation of synthetic images, but, like in digits experiments,

failed to encode and generate plausible real faces because domains looked too different

(Figure 4·7b).

Conclusion. In this section we presented a novel task of “cross-domain image manip-

ulation by demonstration” and a model that excels in this task on a variety of realistic

and proof-of-concept datasets. Our approach enables controlled manipulation of real

images using crude simulations, and therefore can immediately benefit practitioners

that already have imprecise models of their problem domains by enabling controlled

manipulation of real data using existing imprecise models.
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Figure 4·8: An unsupervised many-to-many image translation
model must disentangle factors of variation shared across two domains from
those specific to each domain using unpaired sets of source and target im-
ages during training. At the same time, the model has to perform domain
translation, preserving factors of the source image shared across two domains
and applying target-specific factors from the “guide” image. We show that
existing methods fail on at least one of the two datasets shown above, and
the proposed method excels on both.

4.2 Disentangling Domain-Specific and Shared Factors

As illustrated in Figure 4·1c, we can not use simulation to manipulate factors of real

images absent from that simulation, but in this section, we show that we still can

learn something about these factors from unpaired image sets. More specifically, we

show how to train a model that can differentiate domain-specific factors of variation

from those shared across two domains and manipulate these two groups of factors in

independently from each other.

When one domain has unique factors of variation absent in the other domain, in

order to keep the task well-defined, we must alter the definition of the unsupervised

alignment problem from mapping individual source images to the target domain -

to mapping pairs of source and target images to the target domain. The resulting
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(b) An overview of RIFT.

Figure 4·9: (a) On Shapes-3D-A, shown in Fig. 4·8(c-d), all prior methods
fail to either preserve shared attributes of the source (shape, object color), or
apply target-specific attributes of the guide (size, orientation), while the pro-
posed method (RIFT) succeeds at both (compare to GT). (b) To minimize
the cycle-reconstruction loss, RIFT encodes source-specific factors of varia-
tion (mustache) into the source-specific embedding, because, unlike shared
factors (background, pose), source-specific factors can not be inferred from
an image translated into the target (female) domain, and vice versa.

unsupervised many-to-many translation problem [47] has a unique and well-defined

solution. More specifically, for an input pair consisting of a source image and a target

“guide” image, the learned mapping must generate a new image from the target

domain, preserving all factors of variation of the source image that are shared across

two domains, and taking factors of variation specific to the target domain from the

guide image. For example, in Fig. 4·8(a-b) the task is to preserve the pose, skin

tone, and background of the male source, and apply the hair color of the female

guide, whereas in Fig. 4·8(c-d), object color and shape should be preserved, and the

orientation and size should come from the guide.

Identifying and preserving shared factors during translation is of crucial impor-

tance in many applications of unsupervised many-to-many translation, such as pre-

serving skin color for clothing or makeup try-on [65] or face manipulation with syn-

thetic data [119]. In simulation-to-real adaptation [52], it is important to identify the

factors present in the real data, but not reflected in the simulation.
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Unfortunately, in Section 4.2.2, we show that all state-of-the-art methods fail to

infer which attributes are domain-specific and which are domain-invariant from data

on certain kinds of attribute combinations, and rely on heuristics that work for some

dataset pairs, but fail on others. More specifically, many state-of-the-art methods

[20, 47] implicitly assume that all domain-specific variations can be modeled as “style

vectors” mixed-in globally into intermediate features of image decoders via adaptive

instance normalization (AdaIN) [46] originally designed for style transfer. As a result,

these methods change all colors and textures of the source input to match the guide,

even if these colors and textures are varied across both domains and therefore should

be preserved. For example, Fig. 4·9a shows that even on a toy dataset pair from

Fig. 4·8(c-d), MUNIT and StarGANv2 change the color of the source object to match

the color of the guide, even though the object color should be preserved. In Sec. 4.2.6,

we show that these methods also change backgrounds and skin tones in the female-

to-male setup from Fig. 4·8(a-b), even though they must be preserved. On the other

hand, methods based on auto-encoders and reconstruction losses [1, 11, 63] preserve

shared information better, but often fail to apply correct domain-specific factors. For

example, in Fig. 4·9a DIDD [11] preserved the object color of the source, but failed

to extract and apply the correct orientation and size from the guide.

4.2.1 Background

Many-to-many translation. To account for (and enable control over) domain-

specific factors, many-to-many image translation methods [1, 20, 47, 63, 72] separate

domain-invariant “content” from domain-specific “style”. We avoid the terms “con-

tent” and “style” to distinguish the general many-to-many translation problem from

its subtask - style transfer [32].

Adaptive instance normalization. Many state-of-art many-to-many translation
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methods [20, 47], use AdaIN [46], originally designed for style transfer. Some methods

[80] add a spatial dimension to AdaIN to distinguish colors and textures of different

objects, but fundamentally still rely on the re-normalization of decoder features to

perform disentanglement. While effective at realistic layout-preserving texture trans-

fer (day-to-night, summer-to-winter), this architectural choice was shown [8] to limit

the range of applications of these methods to cases when domain-specific information

lies within textures and colors.

Autoencoders. In contrast, methods like Augmented CycleGAN [1], DRIT++ [63],

and Domain Intersection and Domain Difference (DIDD) [11] rely on embedding losses

and therefore are more general. For example, DIDD forces domain-specific embed-

dings of the opposite domain to be zero, while DRIT++ uses adversarial training to

make the source and target content embeddings indistinguishable.

Cycle losses. Most many-to-many methods [1, 47] use cycle-consistency on domain-

specific embeddings to ensure that information about the guide image is not ignored

during translation, and cycle loss on reconstructed images [127] to improve seman-

tic consistency. However, cycle losses on images have been shown [7, 21] to force

one-to-one unsupervised translation models to “cheat” by hiding domain-specific at-

tributes into translations in the form of imperceptible low-amplitude structured noise.

Alternative consistency objectives, such as the patchwise contrastive loss [94], are de-

signed to be invariant to differences across domains, and therefore can not be used to

supervise the manipulation of domain-specific factors in the many-to-many case.

Few-shot [72] and truly unsupervised [5] translation methods solve a related but

different problem. Since these methods have either very few domain examples or no

domain labels whatsoever, shared and domain-specific attributes can not be inferred

(or even defined) by looking at data. To resolve this ambiguity, these methods also

assume that the layout distribution is shared and that the variability in appearance
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(e.g. colors and textures) is domain-specific.

Single-domain unsupervised disentanglement methods, such as InfoGAN [18]

and β-VAE [43], tackle a different problem as well. First, many-to-many translation

is not aimed at in controlled manipulation of individual factors, but of all domain-

specific or all shared factors at once. Second, if we applied these methods blindly to

the combined source and target dataset to analyze the distribution of latent codes

across each domain, the structure of the combined dataset would conflict with the

core assumption of independence of latent features built into these methods, since

distributions of domain-specific factors are not independent both from each other and

from the distribution of domain labels.

Overall, prior methods ensure that the guide input modulates the translation re-

sult in some non-trivial way, but, to our knowledge, no prior work explicitly addresses

the adversarial embedding of domain-specific information into the translated image,

or quantitatively verifies that domain-specific factors are correctly applied and shared

factors are preserved during translation, and our work discussed in the remainder of

this section fills this gap.

4.2.2 Evaluation Protocol

Author Contribution. The evaluation protocol and findings concerning existing

many-to-many translation methods described in this subsection were first reported by

Bashkirova et al. [8]. Ben Usman helped constructing synthetic datasets, automating

evaluation, and writing this paper, but the idea and core technical contribution of

the proposed evaluation pipeline paper should be attributed to its first author.

We propose a new, data-driven approach for the evaluation of unsupervised

cross-domain disentanglement quality in unsupervised many-to-many image-to-image

(UMMI2I) methods. We designed three evaluation protocols based on the synthetic

3D Shapes [55] dataset (originally designed for evaluation of single-domain disentan-
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Figure 4·10: Examples of M→F (top) and F→M (bottom) transla-
tions on the proposed CelebA-D subset. A correct translation should
have domain-specific attributes of the guidance image (hair color in the
top two lines; facial hair, smile, and age in the bottom two lines), and
the rest of the attributes (facial features, orientation, etc.) from the
input image.

glement), a more challenging synthetic SynAction [110] pose dataset, and a widely

used CelebA [75] dataset of faces.

1. To the best of our knowledge, we are the first to propose a set of metrics for

evaluation of the semantic correctness of UMMI2I translation. Our metrics

evaluate how well the shared attributes are preserved, how reliably the domain-

specific attributes are manipulated, whether the translation result is a valid

example of the target domain and whether the network collapsed to producing

the same most frequent attribute values.

2. We create three evaluation protocols based on 3D-Shapes, SynAction and

CelebA datasets, and measure the disentanglement quality of the current state-

of-the-art UMMI2I translation methods on them.
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Figure 4·11: Illustration of UMMI2I translation results on 3D-
Shapes (top) and SynAction (bottom) subsets. Domain-specific at-
tributes in 3D-Shapes are wall and floor color (A) / size and view
angle (B), and in SynAction are background texture (A) / clothing
and identity (B). The ground truth (GT) outputs can be found in the
rightmost column.
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3. We show that for all tested methods there is a clear trade-off between content

preservation and manipulation of the domain-specific variations, leading to a

subpar performance on at least one dataset. More specifically, all methods we

tested poorly manipulated attributes associated with adding or changing certain

parts of the objects (e.g. facial hair or smile) and AdaIN-based [46] methods

showed an inductive bias toward treating spatial attributes, such as poses and

position of objects in the scene, as the domain-invariant factors, and colors

and textures as the domain-specific sources of variation, irrespective of which

attributes were actually shared between domains and which are domain-specific.

Qualitative results can be found in Figures 4·10 and 4·11 and we refer the reader

to the original paper [8] for qualitative evaluation.

4.2.3 Restricted Information Flow for Translation

Setup. Following Huang et al. [47], we assume that we have access to two unpaired

image datasets A = {ai} and B = {bi} that share some semantic structure, but

differ visually (e.g. male and female faces with poses, backgrounds and skin color

varied in both). In addition to that, each domain has some attributes that vary only

within that domain, e.g. only males have variation in the amount of facial hair and

only females have variation in the hair color (Fig. 4·8). Our goal is to find a pair

of guided cross-domain mappings FA2B : A,B → B and FB2A : B,A → A such that

for any source inputs as, bs and guide inputs ag, bg from respective domains, resulting

guided cross-domain translations b′ = FA2B(as, bg) and a′ = FB2A(bs, ag) look like

plausible examples of respective output domains, share domain-invariant factors with

their “source” arguments (as and bs respectively) and domain-specific attributes with

their “guidance” arguments (bg and ag respectively). For example, the correct guided

female-to-male mapping FB2A applied to female source image bs and a guide male
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Figure 4·12: Losses used to train RIFT. For illustration, we use
3D-Shapes-A described in Section 4.2.5 and illustrated in Fig. 4·13 and
Fig.4·9a. When the model is trained, green arrows carry only B-specific
information (floor and wall color), blue arrows carry only A-specific
information (orientation and size), and red arrows carry information
shared across two domains (object color and shape).

image ag should generate a new male image a′ with pose, background, and skin tone

from the female input image bs, and facial hair from the guidance input ag, because

poses, backgrounds and skin tone vary in both, while facial hair is male-specific.

Method. While it might be possible to approximate functions FA2B and FB2A di-

rectly, following prior work, we split each one into two learnable parts: encoders

sA(a), sB(b) that extract domain-specific information from corresponding guide im-

ages, and generators GA2B(a, sb) and GB2A(b, sa) that combine that domain-specific

information with a corresponding source image, as illusrated in Figure 4·12. Final

many-to-many mappings are just compositions of encoders and generators:

FA2B(a, b) = GA2B(a, sB(b)), FB2A(b, a) = GB2A(b, sA(a)) (4.11)

Components introduced in the remainder of this section ensure that encoders s∗

extract all domain-specific information from their inputs and nothing else, and that

generators G∗ use that information, along with domain-invariant factors from their

source inputs to form plausible images from corresponding domains.
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Noisy cycle-consistency loss. First, to ensure that each factor of input images is

not ignored completely, we use a guided analog of the cycle consistency loss [127]. This

loss ensures that any image translated into a different domain, and translated back

with its original domain-specific embedding is reconstructed perfectly. Additionally,

before translating images back into their original domains, we add zero-mean Gaussian

noise (εs, εg) of amplitudes σs and σg and appropriate shapes to generated images and

domain-specific embeddings respectively - the motivation is given in the two following

paragraphs.

LA
cyc = Ea,b ||acyc − a||1, LB

cyc = Eb,a ||bcyc − b||1 (4.12)

acyc = GB2A(GA2B(a, sB(b) + εg) + εs, sA(a) + εg) (4.13)

bcyc = GA2B(GB2A(b, sA(a) + εg) + εs, sB(b) + εg) (4.14)

a ∼ A, b ∼ B, εs ∼ N (0, σs), εg ∼ N (0, σg) (4.15)

Translation honesty. Unfortunately, any form of cycle loss encourages the model

to “hide” domain-specific information inside the translated image in the form of

structured adversarial noise [21]. To prevent the model from “hiding” the domain-

specific information, such as mustache, inside a generated female image (instead of

putting it into a male-specific embedding sa), we use two so-called “self-adversarial

defenses” proposed by Bashkirova et al. [7]. First, we destroy the structured signal

by adding Gaussian noise εs to intermediate images before cycle reconstruction, see

Eq. (4.13) above. Moreover, we use an additional guess loss to train the generator.

To compute it, we train a pair of guess discriminators that predict which of its two

inputs is a cycle-reconstruction and which is the original image. For example, if the

male-to-female generator GA2B is consistently adversarially embedding mustaches into

all generated female images, then the cycle-reconstructed female bcyc will also have

traces of an embedded mustache, because it was generated using that male-to-female
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generator GA2B, and will be otherwise identical to the input b. In this case, the guess

discriminator Dgs
B , trained specifically to detect differences between input images and

their cycle-reconstructions, will detect this hidden signal and penalize the model:

LA
guess = [Dgs

A (a, acyc)]
2 + [1−Dgs

A (acyc, a)]
2 (4.16)

LB
guess = [Dgs

B (b, bcyc)]
2 + [1−Dgs

B (bcyc, b)]
2 (4.17)

Domain-specific channel capacity. Unfortunately, neither of the two losses de-

scribed above can prevent the model from learning to embed the entire guide image

ag into the domain-specific embeddings sa and reconstructing it from that embed-

ding in GB2A, ignoring its first argument completely, i.e. just always producing the

guide input exactly. In order to prevent this from happening, we add Gaussian noise

εg to predicted domain-specific embeddings before cycle reconstruction (see Eq. 4.13

above) and penalize norms of these embeddings:

LA
norm = Ea ||sA(a)||22, LB

norm = Eb ||sB(b)||22 (4.18)

As we show below, this constrains the effective capacity of domain-specific embed-

dings. Intuitively, the mutual information between the input guide image ag and the

predicted translation a′ corresponds to the maximal amount of information that an

observer could learn about translations a′ by observing guides ag if they had infinite

amount of examples to learn from. Formally, we can show that if we add Gaussian

noise of amplitude σg and penalize the norms of these embeddings as described above,

this mutual information is bounded by:

MI(ag; a
′) ≲ dim(sA(a)) · log2

(
1 + LA

norm/σ
2
g

)
, (4.19)

where a′ = GB2A(bs, sA(ag) + εg), εg ∼ N (0, σg) (4.20)
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(see proof in the next Sec. 4.2.4) meaning that minimizing LA
norm loss effectively limits

the amount of information from the guide image ag that GA2B can access to generate

a′, i.e. the effective capacity of the domain-specific embedding. Note that disabling

either the noise (σg = 0) or the capacity loss (Lnorm → ∞) results in effectively

infinite capacity, so we need both. Intuitively, this bound describes the expected

number of “reliably distinguishable” embeddings that we can pack into a ball of

radius
√

LA
norm assuming that each embedding is perturbed randomly by Gaussian

noise with amplitude σg.

Realism losses. Remaining losses are analogous to the original GAN and identity

losses [71] ensuring that generated images lie within respective domains:

LA
GAN = [DA(a)]

2 + [1−DA(GB2A(b, sA(a) + εas))]
2 (4.21)

LB
GAN = [DB(b)]

2 +
[
1−DB(GA2B(a, sB(b) + εbs))

]2
(4.22)

LA
idt = Ea ||GB2A(a, sA(a) + εg)− a||1, (4.23)

LB
idt = Eb ||GA2B(b, sB(b) + εg)− b||1 (4.24)

Discriminator losses We also train discriminators DA, DB and guess discriminators

Dgs
A , D

gs
B by minimizing corresponding adversarial LS-GAN [81] losses.

4.2.4 Derivation of the capacity

Let A and B be arbitrary datasets, s and G be domain-specific embedding and gen-

erator functions, and a′ be the translation from source b to domain A, guided by the

target example a. The following theorem bounds the amount of information about a

that G can access to generate a′.

Theorem 4.2.1. The effective capacity of the guided embedding, i.e. the capacity of
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the a → a′ channel, i.e. the mutual information MI(a; a′) is bounded by:

MI(a; a′) ≲ dim(s(a)) · log2
(
1 + L/σ2

)
, (4.25)

where a′ = G(b, s(a) + ε), ε ∼ N (0, σ2), (4.26)

and L = E∥s(a)∥22, a ∼ A, b ∼ B (4.27)

Proof. Applying the data processing inequality

X → Y → Z ⇒ MI(X;Z) ≤ MI(X;Y ) ∧ MI(X;Z) ≤ MI(Y ;Z) (4.28)

twice to following Markov chains

a → (s(a) + ε) → a′, a → s(a) → (s(a) + ε) (4.29)

gives us

MI(a; a′) ≤ MI(a; s(a) + ε) ≤ MI(s(a); s(a) + ε) (4.30)

intuitively meaning that the overall pipeline always loses at least as much information

as each of its steps. Then expanding the mutual information in terms of the differential

entropy h(X) gives us

MI(s(a); s(a) + ε) = h(s(a) + ε)− h(s(a) + ε|s(a)) (4.31)

= h(s(a) + ε)− h(ε) (4.32)

Since the the second raw moment (aka power) of s(a) is bounded by L, the entropy

h(s(a)+ ε) will be maximized if s(a) is a k-dimensional spherical multivariate normal

with variance L, where k = dim(s(a)) therefore

MI(s(a); s(a) + ε) ≤ h(Nk(0;L+ σ2)) + h(Nk(0;σ
2)) (4.33)

=
1

2
ln

(
(L+ σ2)k

σ2k

)
≤ k · log2

(
1 + L/σ2

)
. (4.34)
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A

B

C

shared: object color, shape
source: floor, wall color
target:  size, orientation

shared: wall color, size
source: object color, orient.
target:  shape, floor color

shared: floor color, orient.
source: wall color, shape
target:  size, object color

Figure 4·13: Shapes-3D-ABC splits. Respective shared and domain-
specific attributes.

4.2.5 Experiments

We would like to measure how well each model can generalize across a diverse set of

shared and domain-specific attributes. In this section, we discuss datasets we used

and generated to achieve this goal, as well as baselines and metrics we used to compare

our method to prior work.

Data. Popular image translation datasets (e.g. summer-to-winter [71], GTA5-to-

BDD, AFHQ [53]) lack attribute annotations, precluding quantitative evaluation, and

focus exclusively on layout-preserving texture/palette transfer. To evaluate methods’

ability to disentangle and transfer other attributes, following the protocol proposed in

Section 4.2.2, we re-purposed existing disentanglement datasets to evaluate the ability

of our method to model different attributes as shared and domain-specific. We used

3D-Shapes [55], SynAction, [110] and CelebA [61]. Unfortunately, among the three,

only 3D-Shapes [55] is balanced enough and contains enough labeled attributes to

make it possible to generate and evaluate all methods across several attribute splits
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of comparable sizes. For example, if we attempted to build a split of SynAction with

a domain-specific pose attribute, the domain with a fixed pose would only contain 90

unique images, which is not sufficient to train an unsupervised translation network.

3D-Shapes-ABC. The original 3D-Shapes [55] dataset contains 40k synthetic im-

ages labeled with six attributes: floor, wall, and object colors, object shape and

object size, and orientation (viewpoint). There are ten possible values for each color

attribute, four possible values for the shape (cylinder, capsule, box, sphere), fifteen

values for orientation, and eight values for size. We used three subsets of 3D-Shapes

with different attribute splits visualized in Figure 4·13. Three resulting domain pairs

contained 4.8k/4k, 12k/3.2k, and 12k/6k images respectively.

SynAction. We used the same split of SynAction [110] as in Section 4.2.2 - with

background varied in one domain (nine possible values), identity/clothing varied in

the other (ten possible values), and pose varied in both (real-valued vector). The

resulting dataset contains 5k images in one domain and 4.6k images in the other. We

note that the attribute split of this dataset matches the inductive bias of AdaIN

methods, since the layout (pose) is shared and textures (background, clothing) are

domain-specific in both domains. We noticed that the original “fixed bg” domain

introduced in Section 4.2.2 actually has some variations in the background, and fixed

them before training both our method and all baselines (see supplementary of the

original paper [121]).

CelebA-FM. We used the male-vs-female split discussed in Section 4.2.2 with 25k

images in each domain and evaluated the disentanglement of the six most visually

prominent attributes: pose, skin, and background color (shared attributes, real-valued

vectors), male-specific presence of facial hair (binary), female-specific hair color (three

possible values), and domain-defining gender.
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Baselines. We compare the proposed method against several state-of-art AdaIN

methods, namely MUNIT [47], StarGANv2 [20], MUNITX (Section 4.2.2), and

autoencoder-based methods, namely Domain Intersection and Domain Difference

(DIDD) [11], Augmented CycleGAN [1], and DRIT++ [63]. We did not evaluate

other AdaIN-based methods, such as EGSC-IT [80], since these methods perform

disentanglement similarly. We did not evaluate truly unsupervised methods [5] and

other methods built explicitly to preserve the layout and transfer the appearance [124]

because they approach a different problem, as discussed in Sec. 4.2.2. We also provide

a random baseline (RAND) that corresponds to returning a random image from the

target domain to give a sense of scale to reported values.

Metrics. In order to evaluate the performance of our method, we measured how well

the domain-specific attributes were manipulated and domain-invariant attributes were

preserved. Similar to Section 4.2.2, we trained an attribute classifier f(x), and for

each attribute k, we measured its manipulation accuracy - the probability of correctly

modifying an attribute across input-guide pairs for which the value of the attribute

must change:

ACCA
k = p(fk(FA2B(a, b)) = y∗k | fk(a) ̸= fk(b)) (4.35)

where the “correct” attribute value equals y∗k = fk(a) for shared attributes, and y∗k =

fk(b) otherwise. For real-valued multi-variate attributes (pose keypoints, background

RGB, skin RGB, etc.) we measured the probability of generating an image with

predicted attribute vector closer to the correct attribute vector y∗k then to the incorrect

vector y′k from the opposite domain:

ACCA
k = p(∥fk(FA2B(a, b))− y∗k∥ ≤ ∥fk(FA2B(a, b))− y′k∥) (4.36)

where y∗k = fk(a) and y′k = fk(b) for shared attributes, and vice-versa otherwise. The

manipulation accuracy in the opposite direction ACCB
k was estimated analogously.
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For Shapes-3D, we additionally aggregated results across three splits by averaging ac-

curacies across splits in which the given attribute was shared/common (C) or domain-

specific (S). If we introduce the set of all splits S and predicates common(k, s) and

specific(k, s, dom), and the manipulation accuracy at a given split ACCA
k (s), aggre-

gated manipulation accuracy can be defined as follows:

ACCS
k =

∑
d∈{A, B}

∑
s∈S ACC

d
k(s) · specific(k, s, d)∑

d∈{A, B}
∑

s∈S specific(k, s, d)
(4.37)

ACCC
k =

∑
d∈{A, B}

∑
s∈S ACC

d
k(s) · common(k, s)∑

d∈{A, B}
∑

s∈S common(k, s)
(4.38)

For three splits of 3D-Shapes we also report the relative discrepancy between domain-

specific and domain-invariant manipulation accuracies:

RD = 100 ·
∑

k |ACC
S
k − ACCC

k |∑
k(ACC

S
k +ACCC

k )
. (4.39)

Evaluation protocol. To compute the metrics above, we generated two guided

translations per source image per domain per baseline. We re-ran each method mul-

tiple times to account for poor initialization. We used PoseNet [93] to get ground

truth poses for SynAction, and Ruiz et al. [101] and median background and skin color

for CelebA, see supplementary of the original paper [121] for prediction visualizations.

Architecture. We used standard CycleGAN [21] components: pix2pix [49] genera-

tors and patch discriminators with LS-GAN loss [81].

4.2.6 Results

In this section, we first compare our method to prior work both qualitatively and

quantitatively. Then we show what happens if we remove key losses discussed in the

previous section. And finally, we discuss implicit assumptions made by our method,

and key challenges that future methods might encounter in further improving manip-
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Figure 4·14: Qualitative comparison to prior work on SynAc-
tion. Our model correctly preserves shared attributes (pose) of the
source image and applies domain-specific attributes of the guide do-
main (clothing/identity colors on the left, background texture on the
right) - compare to Ground Truth (GT). Errors made by top-performing
methods are highlighted in red.
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Figure 4·15: Guided translations generated by RIFT on 3D-
Shapes-A. Our model successfully preserves shared attributes (object
color and shape) of the source image and applies domain-specific at-
tributes of the guide domain (rotation and size on the left, floor and
wall color on the right). A qualitative comparison to prior work can be
found in Fig. 4·9a and in supplementary of the original paper [121].



101

Figure 4·16: Qualitative comparison to prior work on CelebA-FM.
Methods should preserve the pose and the background of the source, and
apply only the hair color of the female guide during male2fem translation
(top) and only the facial hair of the male guide during fem2male translation
(bottom). Only RIFT and DIDD preserved background colors and applied
correct target-specific hair colors and mustaches.
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Method 3DS SA CA AVG RD

StarGANv2 45 82 51 59 97
MUNIT 58 37 53 49 56
MUNITX 33 52 55 47 74
DRIT++ 18 24 55 32 20
AugCycleGAN 12 37 40 29 20
DIDD 44 67 64 58 35
RIFT (ours) 88 78 60 75 6

RAND 12 24 49 27 9

Table 4.3: Average (AVG↑) manipulation accuracy (ACC) and
relative discrepancy (RD↓) across 3D-Shapes-ABC (3DS), SynAction
(SA), and CelebA-FM (CA). Notation: best, 2nd best.

ulation accuracy across these three datasets.

Qualitative results. Figures 4·14 and 4·15 show that, in most cases, the proposed

method successfully preserves domain-invariant content and applies domain-specific

attributes from respective domains on 3D-Shapes and SynAction. Figure 4·16 shows

that, on CelebA, our method preserves poses and backgrounds, and applies hair color

better than other baselines. On 3D-Shapes-A, our method also preserves object color

and applies correct size and orientation better than all alternatives (Figure 4·9a).

We provide a more detailed side-by-side qualitative comparison of generated images

across all baselines and all datasets in the supplementary. We show that RIFT can

modulate domain-specific factors of images while keeping them within their original

domains (see supplementary of the original paper [121]).

Quantitative results. Tables 4.3 and 4.4 show that across three splits of 3D-

Shapes-ABC our method achieves the highest average manipulation accuracy and

the lowest relative discrepancy between accuracies of modeling the same attributes

as shared and specific. On SynAction, which matches the inductive bias of AdaIN-

based methods, our method performs on par with StarGANv2 and outperforms all

non-AdaIN methods. On CelebA-FM, our method performs on par with DIDD up

to a small margin and outperforms other methods. Overall, RIFT achieves best or



103

Method
3D-Shapes-ABC SynAct CelebA-FM

FC WC OC SZ SH ORI PS IDT BG HC FH GD ORI BG SC

C S C S C S C S C S C S C S S S S S C C C

StarGANv2 0 99 0 99 0 78 5 56 4 99 0 96 96 52 99 76 15 97 87 11 22
MUNIT 5 94 0 99 0 97 59 31 96 58 99 61 75 28 7 45 7 90 89 43 44
MUNITX 1 50 2 55 8 28 12 16 95 21 99 7 93 26 37 64 17 75 83 50 43
DRIT++ 7 12 9 19 10 10 27 14 7 15 42 51 52 6 13 23 9 96 89 67 44
AugCycGAN 10 8 10 9 11 7 17 13 30 13 7 7 90 8 12 16 30 98 12 42 40
DIDD 38 81 29 22 72 18 41 20 87 43 48 34 89 12 99 22 50 91 78 89 56
RIFT 100 100 100 100 100 100 5 60 98 100 97 96 89 47 99 22 35 99 65 83 57

RAND 10 10 10 10 10 10 12 19 24 19 6 6 50 11 11 12 31 99 50 50 50

Table 4.4: Manipulation accuracy for shared/common (C) or domain-
specific (S) attributes aggregated across Shapes-3D-ABC: floor color (FC),
wall color (WC), object color (OC), size (SZ), shape (SH), room orientation
(ORI); SynAction: pose (PS), identity/clothing (IDT), background (BG);
CelebA-FM: hair color (HC), facial hair (FH), gender (GD), face orienta-
tion (ORI), background (BG) and skin color (SC).

second-best (with a small margin) performance in each of the three datasets, whereas

both runner-ups (DIDD and StarGANv2) perform poorly on at least one of three

datasets (DIDD on SynAction, StarGANv2 on CelebA, both on 3D-Shapes), best

average accuracy (AVG) across three datasets, and lowest relative discrepancy (RD).

Ablations. During B2A translation on Shapes-3D-A the model trained with all

losses uses object color/shape from the source image and floor/wall color from the

guide (Fig. 4·15). If we remove the penalty on the capacity of domain-specific em-

beddings (Lnorm), the model ignores the source input (Fig. 4·17a-top): it encodes

all attributes into domain-specific embeddings, and cycle-reconstructs inputs a and b

perfectly from these embeddings (Fig. 4·17a-bottom), completely ignoring the source

input: b = FA2B(a, b) = bcyc. Removing honesty losses (Lguess), on the other hand,

results in a model that ignores the guide input altogether (Fig. 4·17b-top). The

model “hides” domain-specific information inside generated translations instead of the

domain-specific embeddings, and makes domain-specific embeddings equal zero, re-

sulting in zero capacity loss Lnorm = 0, and zero cycle reconstruction loss Lcyc = 0. For

example (Fig. 4·17b-bottom), the size and orientation of b is hidden inside FB2A(b, a)
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(b) w\o honesty loss(a) w\o capacity penalty

acyc

bcyc
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acyc
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FA2B(a, b), FB2A(b, a)
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ce

guide

a

b

FA2B(a, b), FB2A(b, a)

Figure 4·17: Ablations. Effects of disabling capacity and honesty losses
on guided translations (top) and guided cycle-reconstructions (bottom) on
Shapes-3D-A. Inputs images from domains A and B, A2B and B2A guided
translations.

in the form of imperceptible adversarial noise and is used to reconstruct bcyc perfectly.

If mapping FA2B actually used size and orientation of b to generate bcyc, it would have

also applied that same size and orientation when generating FA2B(a, b), but it did

not - so we conclude that both FA2B and FB2A ignore domain-specific embeddings

and embed information inside generated translations instead (see supplementary of

the original paper [121]). We also confirmed that the model trained with all proposed

losses does not hide information inside generated images: we trained a separate classi-

fication network to predict attributes of the inputs that should have been lost during

translation from translated images. The resulting classifier was able to accurately

predict hidden information from images generated without honesty losses and was

unable to predict them (above chance) from images generated by a model trained with

honesty loss. This confirms that shared attributes of the guide and domain-specific

attributes of the source were indeed correctly ignored by the translation network

trained with all proposed losses - see supplementary of the original paper [121].
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Challenges. We suggest two major causes of remaining errors that existing methods

fail to handle at the moment, and future researchers will need to address to make

further progress in this task possible. First, some attributes “affect” very different

numbers of pixels in training images, and as a consequence contribute very differently

to reconstruction losses, making the job of balancing different loss components much

harder. For example, the floor color in 3D-Shapes “affects” roughly half of all image

pixels, whereas size affects only one-tenth of all pixels - resulting in drastically different

effective weights across all losses, especially if both are either domain-specific or shared

at the same time. Second, unevenly distributed shared attributes in real-world in-

the-wild datasets (such as CelebA) pose an even more serious challenge, rendering

the many-to-many problem task not well defined. For example, if both male and

female domains had hair color variation, but males were mostly brunet with only

3% of blondes, but females were equally likely to be blondes and brunettes - should

the model preserve blonde hair when translating females to males and sacrifice the

“realism” of the generated male domain, or should it treat hair-color as a domain-

specific attribute despite variations present in both? This poses an open question.

Ethical considerations. While more precise attribute manipulation models requir-

ing less supervision might be used for malicious deepfakes [22, 91], they can also be

used to remove biases present in existing datasets [40] to promote fairness in down-

stream tasks [4]. We acknowledge that the CelebA dataset contains many biases

(e.g. being predominantly white) and that binary gender labels are problematic and

encourage the community to collect more inclusive datasets.

Conclusion. In this section we proposed RIFT - a new unsupervised many-to-many

image-to-image translation method that determines which factors of variation are

shared and which are domain-specific from data, and achieves consistently high at-

tribute manipulation accuracy across a wide range of datasets with different kinds of
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domain-specific and shared attributes, and the low discrepancy between these accura-

cies. We provide ablations confirming that the self-adversarial embedding takes place

in the many-to-many setting and that the honesty loss prevents it from happening.

We also show that the capacity loss restricts the effective capacity of the domain-

specific embedding in agreement with the provided theoretical bound. Finally, we

identified core challenges that need to be resolved to enable further development of

unsupervised many-to-many image-to-image translation.



Chapter 5

Future Work

In this chapter, we identify several key future applications of the ideas introduced in

this thesis, as well as research directions in which, in our opinion, immediate further

progress can be made.

Combating vanishing generator gradients via generalized instance noise. As

demonstrated in Section 3.2, likelihood-ratio minimizing flows introduced in this the-

sis do not suffer from mode collapse and training instability of adversarial alignment

methods, but still, experience vanishing of generator gradients in higher dimensions.

This failure mode of generative networks was extensively researched in prior work

[2, 84, 100], with most authors agreeing that adaptive discriminator regularization is

the key, with instance noise being the simplest form of discriminator regularization

to implement in practice. One of the most recent and notable is the work of Karras

et al. [54], who showed that the discriminator can be regularized with arbitrary image

augmentations instead of additive instance noise without any loss of image quality, as

long as these augmentations do not make distinct distributions indistinguishable after

the transformation. Incorporating these techniques into the framework of likelihood-

ratio minimizing flows is the next major step towards being able to apply this stable

and predictable method to more complex real-world distributions.

Applying dualization to neural tangent kernels. As demonstrated in Sec-

tion 3.1, closed-form exact dualization is possible in only a handful of cases. Indepen-

dently, Li et al. [68] successfully dualized linear approximations of neural discrimina-

107
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tors around their optimas with respect to their weight vectors, but the procedure is

complicated, preventing more widespread adoption of this technique. Recently, Jacot

et al. [51] showed that deep neural networks can be accurately approximated via their

linear Taylor expansions around their initial parameter vectors, resulting in accurate

predictions of the learning dynamics of resulting networks via so-called neural tan-

gent kernels. Incorporating insights given by the theory of neural tangent kernels into

the dualization of discriminators for improved stability is another potentially fruitful

direction.

Understanding and improving the stability of self-adversarial defenses.

Self-adversarial defenses of Bashkirova et al. [7] were shown to improve the seman-

tic consistency of learned cross-domain mappings, as discussed in Section 3.3, and

play a key role in disentangling domain-specific factors from domain-invariant ones,

as discussed in Section 4.2.3. We argue that gaining a better understanding of the

interplay between adversarial alignment and adversarial self-defense losses, and the

stability of the overall procedure is the key to future deployment of these techniques

in real-world applications.

Applying cross-domain image manipulation to interpretability. Techniques

for controlled manipulation of individual visual attributes of real images using syn-

thetic supervision proposed in Section 4.1 are indispensable for measuring the effect

of particular individual factors on the outputs of the downstream model, if coun-

terfactual experiments are economically unfeasible, which is often the case in most

important application domains. Moreover, techniques for manipulation of domain-

specific attributes in isolation from domain-invariant in the absence of any additional

supervision could be very helpful for the identification of biases or factors of variation

present in the test dataset that are not present in the training dataset, if we training

and deployment datasets come from different distributions.
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