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Three-level BDDC for Virtual Elements

Axel Klawonn, Martin Lanser, and Adam Wasiak

Abstract The Virtual Element Method (VEM) is a discretization procedure for the
solution of partial differential equations that allows for the use of nearly arbitrary
polygonal/polyhedral grids. For the parallel scalable and iterative solution of large
scale VE problems, the FETI-DP (Finite Element Tearing and Interconnecting - Dual
Primal) and BDDC (Balancing Domain Decomposition by Constraints) domain de-
composition methods have recently been applied. As for the case of finite element
discretizations, a large global coarse problem that usually arises in large scale ap-
plications is a parallel scaling bottleneck of FETI-DP and BDDC. Nonetheless, the
coarse problem/second level is usually necessary for the numerical robustness of
the method. To alleviate this difficulty and to retain the scalability, the three-level
BDDC method is applied to virtual element discretizations in this article. In this
approach, to allow for a parallel solution of the coarse problem, the solution of it is
only approximated by applying BDDC recursively, which automatically introduces a
third level. Numerical results using several different configurations of the three-level
approach and different polygonal meshes are presented and additionally compared
with the classical two-level BDDC approach.

1 Introduction

The Virtual Element Method (VEM) is a Galerkin-type method for the solution of
partial differential equations which allows for the discretization with general polyg-
onal/polyhedral meshes. Furthermore, the VEM framework allows for the relatively
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simple construction of trial and test spaces with desirable properties on these gen-
eral meshes. In recent years, numerous variants of the VEM have been proposed and
analyzed, which include nonconforming, high-regularity, high-order, and hourglass-
stabilized variants [5, 4, 11, 9]. The different approaches have been applied to many
different model problems. As a framework to make the VEM suitable for large scale
problems, the FETI-DP (Finite Element Tearing and Interconnecting - Dual Primal)
and BDDC (Balancing Domain Decomposition by Constraints) domain decomposi-
tion methods have been introduced for virtual element discretizations [6, 7], which
allows for an efficient and parallel iterative solution on large-scale computers. Re-
cently, the analysis has been extended to the Stokes problem in [8], and adaptive
coarse spaces for virtual element discretizations have been considered in [10] for
mixed form problems in three dimensions and in [13] for stationary diffusion and
linear elasticity in two dimensions. The use of adaptive coarse spaces allows for
the solution of highly heterogeneous problems, for example, stationary diffusion
problems with jumps in the diffusion coefficient, since, in the case of both finite and
virtual elements, the method is provably robust. In [14] a condition number bound of
the preconditioned system which only depends on geometrical constants and a user
defined tolerance was shown for finite element discretizations and in [13] the same
was shown for the virtual element case. Unfortunately, adaptive coarse spaces can be
large, especially for decompositions with many subdomains and/or difficult coeffi-
cient distributions. Also classical coarse spaces grow proportionally with the number
of subdomains amd, in a parallel context, with the number of parallel ressources.
These large global coarse problems are a typical parallel scalability bottleneck in
BDDC and FETI-DP methods, since the exact solution using, for example, sparse
direct solvers does not scale. To alleviate this difficulty in BDDC, numerous multi-
level approaches have been proposed, where the solution of the coarse problem is
approximated by applying BDDC recursively using a very coarse domain decompo-
sition. This allows for a parallel solution of the coarse problem and thus improves
scalability. Here, we consider the three-level BDDC preconditioner introduced in
[16] and apply it to the BDDC method with virtual element discretizations for the
first time.

2 Model problems and the virtual element method

The domain Ω ⊂ R2 is assumed to be a polygon. Let f ∈ L2(Ω). We consider the
stationary diffusion equation with homogeneous Dirichlet boundary values

−∇ · (ρ∇u) = f in Ω, u = 0 on ∂Ω.

Here, we assume ρ to satisfy 0 < ρ∗ ≤ ρ(x) ≤ ρ∗ for two constants ρ∗, ρ∗ ∈ R. The
corresponding weak formulation is given by
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Find u ∈ H1

0 (Ω) such that
a(u, v) = ( f , v)L2(Ω) for all v ∈ H1

0 (Ω),
(1)

where a(v,w) := (ρ∇v,∇w)L2(Ω) for v,w ∈ H1
0 (Ω). We briefly introduce the VEM

as it is presented in [2, 1]. Let {Th}h be a sequence of quasi-uniform tessellations
of Ω into a finite number of simple polygons K , where h := maxK ∈Th hK and
hK := diam(K). Each polygon has a finite number of vertices. Let Pk(K) denote the
space of polynomials of at most degree k on K . The meshes are assumed to satisfy
the following condition. There exists a γ > 0 such that for all h and for all K ∈ Th:

1. K is star-shaped with respect to a ball of radius ≥γhK .
2. The distance between any two vertices of K is ≥γhK .

Denoting the set of edges of K by EK and defining P−1 = {0}, a suitable local virtual
element space for the target order of accuracy k ∈ N is given by

Vh(K) = {v ∈ H1(K) : v e ∈ Pk(e)∀e ⊂ EK, v ∂K ∈ C(K), ∆v ∈ Pk−2(K)}.

Then the global virtual element space can be defined asVh = {v ∈ V : v K ∈ Vh(K)}.
We can choose the following degrees of freedom on Vh:

• The values of vh on each polygon vertex.
• For k ≥ 2, the k − 1 values of vh on each point of the Gauss-Lobatto quadrature

rule on every edge of the tessellation.
• For k ≥ 2 and all K ∈ Th , the volume moments up to order k − 2 of vh in K .

The term a(uh, vh) cannot be computed for vh,wh ∈ Vh from the given degrees
of freedom. Therefore, we replace a(·, ·) with a suitable approximate bilinear form
ah(·, ·) obtaining the discrete variational problem: Find uh ∈ Vh such that ah(uh, vh) =
fh(vh) ∀vh ∈ Vh . For more details on the construction and implementation of ah(·, ·)
and related theoretical estimates we refer to [2, 1, 3].

3 BDDC and Three-Level BDDC

Ω1 Ω2

Ω3 Ω4

h

H

I ∆ Π

Fig. 1: Domain decomposition
with polygonal meshes.

Let us give a brief description of the BDDC
method as it applies to virtual element dis-
cretizations. Let {Ωi}

N
i=1 be a nonoverlapping

domain decomposition of Ω such that Ω =
∪N
i=1Ωi , equipped with sequences of quasi-

uniform tessellations T h
i , i = 1, ..., N that sat-

isfy the VEMgrid assumptions. For each subdo-
main Ωi , we obtain local stiffness matrices K (i)

and load vectors f (i) using the VEM.
We denote by Hi the diameter of Ωi and define
H := maxi Hi . Let Γ := ∪i,j∂Ωi ∩ ∂Ωj\∂ΩD
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be the interface, that is, the set of all points that belong to at least two subdomains.
Further denoting by Γh the set of all degrees of freedom (d.o.f.) which lie on the
interface, we split these into two distinct sets, the set of primal degrees of freedom
(Π) and the set of dual degrees of freedom (∆) obtaining Γh = ∆∪Π. In this article,
the primal variables are chosen as the subdomain vertices. For degrees of freedom in
the interior, we use the index I. A depiction can be found in fig. 1. Finally, we require
the decomposition to be conforming, that is, the virtual element nodes coincide on
the interface. We define Vh ⊂ V to be a finite dimensional virtual element space
which can be split into Vh =

∏N
i=1 Vh

i , where Vh
i ⊂ Vi are the local discrete virtual

element spaces. We further define the discrete trace spaces Wi := Vh(∂Ωi ∩ Γh) and
let W :=

∏N
i=1 Wi .

3.1 Standard BDDC

The BDDC method is defined as follows. We assume the following local ordering
of the degrees of freedom which yields the following representation of the local
stiffness matrices, solution vectors, and right-hand sides

K =
[
KI I KIΓ

KΓI KΓΓ

]
, u =

[
uI

uΓ

]
, and f =

[
fI
fΓ

]
,

where KI I := diagNi=1K (i)I I and KIΓ := diagNi=1K (i)IΓ . In the same way, we have uTI =
(u(1)TI , . . . , u(N )TI ), and similarly for uΓ, fI , and fΓ. We define the unassembled Schur
complement and the reduced right-hand side by

S := S
ΓΓ
= K

ΓΓ
− K

ΓIK−1
I I KIΓ and g := g

Γ
= f
Γ
− K

ΓIK−1
I I fI .

We denote by RT
Π
= (R(1)T

Π
, R(2)T
Π

, . . . , R(N )T
Π
) and RT

∆
= (R(1)T

∆
, R(2)T
∆

, . . . , R(N )T
∆
) the

partial finite element assembly operators with values in {0, 1}, which assemble the
system in the primal variables. We further define RΓ = diag(R∆, IΠ).

By assembling S and g in the primal variables we obtain

S̃ =
[
I∆

RT
Π

]
S

[
I∆

RΠ

]
=:

[
S∆∆ S̃∆Π
S̃Π∆ S̃ΠΠ

]
and g̃ =

[
I∆

RT
Π

]
g.

By assembling these systems in the dual variables we obtain the standard BDDC
system

RT
Γ S̃R

Γ
ug = RT

Γ g̃ ⇐⇒: Sgug = gg .

Next, we introduce scaling matrices D(i) belonging to their subdomains Ωi .
Consider the domain Ωi which shares the edges Ei j1, . . . , Ei jn with the subdo-
mains Ωj1, . . . ,Ωjn , respectively. Ordering D(i) according to the edges, yields
D(i) = diagnm=1D[i]

E i jm
. We further require that the two scaling matrices belonging to
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Fig. 2: Example of a three-level domain decomposition into 16 regular subdomains
(bottom) and 4 regular subregions (top) with polygonal meshes on the subdomains.
The interface Γ between subregions is marked in magenta.

an interface edge Ei j satisfy D[i]
E i j
+ D[j]

Ei j
= I, where I denotes the identity matrix.

Here, we consider ρ-scaling [15]. With these scaling matrices, the scaled versions
of R∆ and RΓ are defined as RT

D,∆ = (R
(1)T
D,∆

, . . . , R(N )T
D,∆
) and RD,Γ = diag(R

D,∆
, I
Π
),

where R(i)
D,∆
= D(i)R(i)

∆
. Finally the preconditioned BDDC system is given by

M−1Sgug = M−1gg, where M−1 := M−1
BDDC := RT

D,Γ S̃
−1RD,Γ .

4 Three-level BDDC

The three-level BDDCmethod is now characterized by an approximate solution of the
linear Schur complement system S̃z = r which occurs in the preconditioner and thus
has to be solved in each iteration for an arbitrary residual vector r . The approximation
is based on a recursive application of the two-level BDDC preconditioner to the
coarse problem using a coarser third level decomposition for the set of primal
degrees of freedom. More precisely, the exact inverse S̃−1

ΠΠ
is replaced by the BDDC

preconditioner on the third level within each application of S̃−1. We define the
operator Ŝ such that the solution of ẑ = Ŝ−1r is the desired approximation of z
and we will discuss its construction below. This allows us to define the three-level
preconditioner

M−1
3L := RT

D,Γ Ŝ
−1RD,Γ .
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We decomposeΩ into N subregionsΩ(j) with diameters H. Each subregion is the
union of Nj subdomains, whichwewill denote byΩ(j)i , i = 1, . . . , Nj . To create a third
level, we split the primal variables Π into different categories, just as in the two level
case. Let Γ ⊂ Π be the interface between the subregions, that is, the primal variables
belonging to two or more subregions. We further split the subregion interface into
dual and primal variables obtaining Γ = ∆∪Π. Here, the subregion primal variables
are those, that are connected to three or more subregions, that is, the vertices of
the subregions. The remaining primal variables are denoted as I. An example of
a three-level decomposition is shown in fig. 2. The operator Ŝ is constructed by
applying BDDC to the subregion decomposition. Instead of assembling the global
Schur complement on all primal variables, the third-level decomposition is used
to assemble a Schur complement on each subregion. For these subregion Schur
complements, the BDDC preconditioner is built analogously to the second level and
replaces the inverse action of S̃−1

ΠΠ
in each iteration of BDDC. In general (under

certain assumptions on the coefficient distribution), the resulting system requires
more PCG iterations to converge to the desired tolerance and shows higher condition
numbers than the classical BDDC method but is more efficient due to being able to
be computed in parallel. For more details we refer to [16, 12].

5 Numerical results

For the numerical experiments, we consider Ω = [0, 1]2 and regular domain de-
compositions into m × m quadratic subdomains and M × M quadratic subregions.
To create a conforming decomposition, the meshes in fig. 3 are mirrored across
the subdomain interface. The PCG method is iterated until a relative reduction of
the residual of 10−8 is reached. The results in fig. 4 confirm the expected behavior
of BDDC and three-level BDDC for the case of virtual elements, where using the
three-level variant increases the iteration numbers and condition numbers slightly.
Nonetheless, the method is fairly robust and scalable against increasing the number
of subregions or their size. This is comparable to the finite element case. Similar

Fig. 3: Voronoi tessellations (two figures on the left) and Centroidal Voronoi Tessel-
lations (CVT) (two figures on the right) with 25 and 16 elements respectively used
for the numerical experiments.
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BDDC Three-level BDDC
H/H = 5, H/h ≈ 5 sr 5 × 5, H/H = 5

H/h it cond sr it cond H/H it cond
≈25 15 2.38 5 × 5 21 4.09 5 21 4.09
≈50 16 2.40 10 × 10 25 4.73 10 24 5.12
≈75 16 2.40 15 × 15 26 4.90 15 28 6.43

Fig. 4: Condition numbers (cond) and iteration numbers (it) for BDDCand three-level
BDDC with linear virtual element discretizations for a stationary diffusion problem.
The coefficient distribution and the decomposition in subregions for the third level
in the case of 5 × 5 subregions are shown on the left side. The Voronoi tessellation
with 25 elements shown in fig. 3 is used on each subdomain. The coefficient function
is 106 on the red patches and 1 on the white ones.

Table 1: Condition numbers (cond) and iteration numbers (it) for three-level BDDC
with virtual element discretizations with polynomial degree given by k for a coef-
ficient distribution in a subregion checkerboard pattern with a contrast of 106. The
subdomain meshes for H/h ≈ 5 and H/h ≈ 4 are shown in fig. 3.

H/H = 5, H/h ≈ 5
k = 1 Voronoi CVT
sr it cond it cond

5 × 5 14 2.33 13 2.33
10 × 10 14 2.33 13 2.33
15 × 15 14 2.35 13 2.35

sr 5 × 5, H/h ≈ 5
k = 1 Voronoi CVT
H/H it cond it cond
5 14 2.33 13 2.33
10 15 2.38 14 2.38
15 15 2.39 14 2.39

sr 5 × 5, H/H = 5
k = 1 Voronoi CVT
H/h it cond it cond
≈5 14 2.33 14 2.33
≈10 17 3.19 17 3.22
≈15 19 3.65 19 3.76

H/H = 4, H/h ≈ 4
k = 2 Voronoi CVT
sr it cond it cond

4 × 4 17 3.53 16 3.55
8 × 8 17 3.54 16 3.55

12 × 12 17 3.54 16 3.55

sr 4 × 4, H/h ≈ 4
k = 2 Voronoi CVT
H/H it cond it cond
4 17 3.53 16 3.55
8 18 3.53 18 3.57
12 19 3.56 18 3.60

sr 4 × 4, H/H = 4
k = 2 Voronoi CVT
H/h it cond it cond
≈4 17 3.53 16 3.55
≈8 20 4.49 20 4.44
≈12 21 4.66 22 5.64

results can be obtained for CVT meshes. Considering a subregion checkerboard
pattern as the coefficient distribution, both meshtypes, and virtual elements of order
k = 1, 2 in table 1, we can observe a similar behavior.

To conclude, we have applied the three-level BDDC method to virtual element
discretizations. The method shows a similar performance to its finite element coun-
terpart. A proof of the three-level BDDC condition number bound to virtual element
discretizations is in preperation.
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