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MODEL KESAN RAWAK SEHALA UNTUK MIN TERPANGKAS TAK 

SIMETRI 

 

ABSTRAK 

 

Terdapat dua perkara yang perlu diberi perhatian untuk model kesan rawak. 

Yang pertama, anggapan kesamaan varians antara kumpulan dan yang kedua, 

anggapan kenormalan. Pelanggaran kedua-dua faktor ini akan menghasilkan Ralat 

Jenis I yang tidak memuaskan dan kehilangan kuasa yang agak ketara. Prosedur 

Jeyaratnam-Othman (J&O) (1985) berjaya menangani masalah pertama tersebut 

yang melibatkan ketaksamaan varians dengan kenormalan data. Wilcox (1994) 

meneruskan kajian dengan cadangan mengitlakkan prosedur J&O berdasarkan min 

terpangkas simetri. Prosedur ini berjaya menghasilkan nilai kuasa yang tinggi tetapi 

kurang memuaskan apabila taburan menjadi pencong dengan saiz sampel kumpulan 

tidak setara. Kajian ini menggantikan min terpangkas simetri di dalam prosedur 

Wilcox dengan min terpangkas tak simetri. Ralat Jenis I yang memuaskan ataupun 

lebih memuaskan daripada prosedur Wilcox menjadi sasaran. Dua penganggar engsel 

Q1 dan Q2 Reed dan Stark (1996) dipilih untuk mendapatkan min terpangkas tak 

simetri kajian ini. Simulasi dijalankan untuk prosedur J&O, procedure Wilcox dan 

kedua-dua prosedur kajian ini ke atas rekabentuk empat kumpulan dengan pelbagai 

taburan data. Rekabentuk seimbang kedua-dua prosedur yang dicadangkan 

menghasilkan Ralat Jenis I yang baik bernilai dari 0.026 sehingga 0.082. Begitu juga 

dengan kuasa dengan purata 0.782. Namun demikian, kuasa dan Ralat Jenis I yang 

tidak memuaskan diperolehi pada rekabentuk tak seimbang. 
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ONE-WAY RANDOM EFFECTS MODEL FOR ASYMMETRIC TRIMMED 

MEANS 

 

ABSTRACT 

 

There are two very important concerns for the random effects model. The 

first concern being the assumption of equal variances of groups and the second 

concern is assuming normality. Violations of these result in unsatisfactory Type I 

errors and considerable loss of power. Jeyaratnam-Othman (1985) addresses the first 

concern in dealing with unequal variances while assuming normality. Wilcox in 1994 

continued the study by suggesting a generalization on Jeyaratnam-Othman’s 

procedure based on symmetric trimmed means. The procedure resulted in significant 

gain in power but was unsatisfactory for skewed distributions with unequal group 

sizes. This research replaces Wilcox’s symmetric trimmed means with asymmetric 

ones aiming to obtain good, if not, better Type I errors. Two hinge estimators by 

Reed and Stark (1996), Q1 and Q2, were employed to obtain the asymmetric trimmed 

means for this research. Simulations were carried out for Jeyaratnam-Othman (1985), 

Wilcox (1994) and the two proposed procedures for a four-group design subjected to 

different data distributions. Good control of Type I errors was evident for both 

proposed procedures for balanced designs with values ranging from 0.026 to 0.082. 

Good power averaging 0.782 was also obtained. However, power and Type I errors 

for the unbalanced design were very unsatisfactory. 
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CHAPTER ONE 

INTRODUCTION 

 

 

1.1 BACKGROUND 

The random effects ANOVA model has been used extensively in fields such 

as psychological studies (Bowen & Huang, 1990; Mirman, Dixon & Magnuson, 

2008), quantitative genetics (Snedecor & Cochran, 2014), health (Madden, Browne, 

Li, Kearney & Fitzgerald, 2018; Arku et al., 2018) and astronomy (Scheffe, 1999). 

The traditional random effects model for J randomly sampled groups is that of 

 ij j ijY a e    

where ijY  is the i-th observation from the j-th group ;( 1,  ,  1,  ,  )ji n j J    , jn  is the 

size of the group,   is an unknown common constant; and ja  and ije  are normally 

distributed random independent variables, i.e.  2~ 0,j aa N  and  2~ 0,ije N . The 

variance of ja is
2

a  and since it is independent of ,ije  the variance of any 

observation is   2 2.ij aVar Y     For testing of hypotheses in this particular model, 

the testing of individual treatment effects is meaningless (Montgomery, 2017) but 

instead the test is about the variance component,
2

a . 

 

The procedures of the ANOVA for the random effects model are identical to 

the way computations are done for the fixed effects cases. With that in mind, two 

fundamental concerns have been discussed in (Wilcox, 1994a). The first concern is 

the assumption of equal variances. Violation of this assumption will result in the 

traditional test of 
2

0 : 0aH    to be unsatisfactory in terms of Type I errors, even 



2 
 

with data that are normally distributed. The second is departure from normality, 

regardless of a slight deviation or a major deviation from normality such as a heavy-

tailed distribution, will lead to an increase in the standard error of the sample mean 

by a substantial amount thus resulting in a serious effect on power (Tukey, 1960).  

 

Jeyaratnam and Othman (1985) derived a test of the null hypothesis as 

2

0 : 0aH    that shows unequal error variances whilst assuming normality. The 

assumption that the variance of 
2

ij ee   (constant) was replaced with the assumption 

that the variance of 
2

ij je   now which can vary among the J groups. 

 

Wilcox (1994a) continues to study a generalization of the Jeyaratnam and 

Othman method on the usual random effects model based on symmetric trimmed 

means. This symmetric trimmed mean procedure has error that is less affected by 

heavy-tailed distributions and outliers and can yield considerable gains in power. 

Work have been done in the fixed effects model using trimmed means and according 

to Wilcox, the use of the usual mean can possibly portray a distorted view of “how 

the typical individual in one group compares to the typical individual in another, and 

about accurate probability coverage, controlling the probability of a Type I error, and 

achieving relatively high power” (Wilcox, 1995, p.66). 

 

Hence, as Keselman, Kowalchuk and Lix (1998b) notes, the trimmed mean is 

preferable as a robust estimator of location because of its computational simplicity 

and good theoretical properties (Wilcox, 1995), particularly when the standard error 

of the trimmed mean is less affected by departures from normality. 
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Although several results have proven that the trimmed mean is a well-

accepted measure under the effects of nonnormality and variance heterogeneity, there 

is always the lingering question of the accuracy of trimming when distributions are 

skewed: should the data be trimmed symmetrically or asymmetrically and how much 

trimming should be done. Keselman, Wilcox, Othman and Fradette (2002) 

demonstrated the advantage of a prior test for symmetry in order to determine 

whether data should be trimmed from both tails (symmetric trimming) or just from 

one tail (asymmetric trimming).  

  

Following the course of trimming on fixed effects models, Keselman, Wilcox, 

Lix, Algina and Fradette (2007) showed several methods that determine whether the 

data distribution should be trimmed and the quantity of trimming from the tails of the 

distribution. The two main adaptive trimming methods discussed by Keselman et al. 

(2007) are the Reed and Stark (1996) and the Tukey-McLaughlin-Jaeckel-Hogg 

methods. The Reed and Stark (1996) method is based on the work of Hogg (1974, 

1982) whereby several adaptive location estimators were defined depending on 

measures of tail length and skewness and the Tukey-McLaughlin-Jaeckel-Hogg 

method suggests that the amount to be trimmed in each tail can be selected by 

adopting a trimming strategy that results in the smallest standard deviation of the 

sample trimmed mean. 

 

Alkhazaleh and Razali (2010) adopted Hogg’s tail weight measures in 

proposing a technique to estimate asymmetric trimmed means. In addition, Md. 

Yusof, Othman and Syed Yahaya (2010) compared Type I error rates between two 
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statistics for unequal population variance by using variable trimming. These two 

statistics were modified using variable trimming with indeterminate percentages.  

 

As extensive work has been done on fixed effects model, there has not been 

many follow ups on the random effects. This research proposes the use of 

asymmetric trimmed means in view of Wilcox’ (1994a) measures on random effects 

model and how the asymmetric trimmed means compares with the symmetric 

trimmed means in terms of Type I error and power. In obtaining the asymmetric 

trimmed means, the hinge estimators were studied whereby this method of adaptive 

trimmed mean trims data using asymmetric trimming technique, where the tails of 

the distribution are trimmed based on the characteristics of a particular distribution. 

There are seven adaptive location estimators namely Q, Q1, H3, Q2, H1, SK2 and SK5 

and the two that were chosen for this research are Q1 and Q2. 

 

 

1.2 RESEARCH PROBLEM 

Existing one-way random effects model are not robust to nonnormal data, 

existence of group variance heterogeneity and the combination of the unbalanced 

group sizes. Therefore, the one-way random effects model for asymmetric trimmed 

means was proposed to address the issue.  

 

 

1.3 RESEARCH OBJECTIVES 

The objectives for this research are as follows: 

(i) To develop an asymmetric trimmed mean test statistic for REM 
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(ii) To compare the performance of (i) with the one-way random effects model 

with symmetric trimmed means, Ft. 

 

 

1.4 SIGNIFICANCE OF RESEARCH 

The significance of this research is to add to the knowledge of the behaviour 

of the one-way random effects model under nonnormality and to verify that the 

proposed measure of trimming is better performing than the existing symmetric 

measures. 

 

 

1.5 THESIS ORGANIZATION 

This first chapter briefly introduces the topic of interest for this research 

which includes some background literature and also the objectives, aims and 

hypotheses for this work of the one-way random effects model with asymmetric 

trimmed means. In Chapter Two, the review of literature will be expanded in detail 

and it will show how this research topic is built upon existing works. Chapter Three 

will show the methodology - the test procedures and study conditions - carried out 

for this research. Following that, Chapter Four is where the results and discussion are 

presented. Chapter Five concludes this research and suggests of future research work 

that can be done. The bibliography and appendices are also included after the five 

chapters. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

 

2.1 INTRODUCTION 

In the design of an experiment, systematic procedures are carried out to form 

or to test a hypothesis that will lead to the discovery of an unknown effect or to 

confirm known effects. In an experimental situation, the experimenter is interested in 

factors with large number of levels. When the experimenter randomly selects a 

number of these levels from the population of factor levels, the factor is said to be 

random. Because the levels of the factor used in the experiment were actually chosen 

at random, conclusions are made about the entire population of factor levels. These 

form the random effects model (REM) or also called the components of variance 

model. As stated in Chapter One, the random effects ANOVA model has been used 

extensively in fields such as psychological studies, quantitative genetics, health and 

astronomy. 

 

 

2.2 RANDOM EFFECTS MODEL ANOVA TESTS 

The traditional random effects ANOVA model for a factor with J randomly 

sampled levels is that of  

ij j ijY a e                                                                      (2.1) 

where ijY  is the i-th observation from the j-th factor level ( 1, , ji n , 1, , )j J , 

jn  is the size of the level,   is the grand mean; and both ja  and ije  are normally 
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distributed random independent variables:  2~ 0,j aa N   and  2~ 0,ije N   

respectively. The variance of ja is
2

a  and since it is independent of ,ije  the variance 

of any observation is   2 2.ij aVar Y     Testing of hypotheses in this particular 

model is about the variance component,
2

a . (Montgomery, 2017, p. 506) 

 

 

2.2.1 The Balanced One-Way REM with Equal Error Variances 

For the balanced design model from Equation (2.1), let jn n  and 
2 2

e   

for all levels. Hence, let 

1

1 n

j ij

i

Y Y
n 

  .                                                                        (2.2) 

Therefore, the unbiased point estimators of the parameters are then given by 

1

1 J

j

j

Y Y
J




   ,                                                                         (2.3) 

 
 

2

2

1 1 1


 







J n
ij j

e

j i

Y Y

J n
, and                                                  (2.4) 

   
 

2 2

2

1 1 11 1

J J n
j ij j

a

j j i

Y Y Y Y

J Jn n


  

 
 

 
  .                                (2.5) 

Now, let  

 
2

1

1 1

J n

ij j

j i

S Y Y
 

   and                                                    (2.6) 

 
2

2

1

J

j

j

S Y Y


  .                                                                (2.7) 
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Therefore, the ratios of 1

2

e

S


 and 2

2 2

e a

S

n 
are independent chi-square variables with 

degrees of freedom,  1J n  and 1J  , respectively.  

 

Define  

 

2

1

1

1

S

JW
S

J n





                                                                      (2.8) 

and multiplying both sides by 

2

2 2

e

e an



 
, therefore 

                  

 

2
2 2

2 2 2 2
1

1

1

e e

e a e a

S

JW
Sn n

J n

 

   
 

 



                                          

  

 

2

2 2

1

2

1

1

e a

e

S

J n

S

J n

 



 




.                                                    (2.9) 

Hence,  

                                   

2 2

2

e a

e

n
W W

 



 
  

 
    

2

2
1 a

e

n
W





 
  

 
                                                              (2.10) 

where  

 

 

2

2 2

1

2

1

1

e a

e

S
J

n
W

S
J n

 



 
 

 
 

 
 

                                               (2.11) 
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is distributed as 
    1 , 1J J n

F
 

. Under the null hypothesis of 
2

0 : 0aH    the value W  

is equal to W . In this case, at a significant level of  , 0H  is rejected when the 

evaluated value   of W  is greater than 
    : 1 , 1J J n

F
  

. 

 

 

2.2.2 The Unbalanced One-Way REM with Equal Error Variances 

Reconsider Equation (2.1), with 
2 2

e   for all treatment levels, let the 

sample sizes of the levels be different, jn  with 1,...,j J  then 

1

1 jn

j ij

ij

Y Y
n 

  .                                                                    (2.12) 

Therefore, the unbiased point estimators of the parameters are then given by 

1

1

J

j j

j

J

j

j

n Y

Y

n






 




,                                                                (2.13) 

 

 

2

2

1 1

1

1

jnJ
ij j

e J
j i

j

j

Y Y

n


 










, and                                               (2.14) 

   

 

2 2

2

1 1 10

1

1

1
1

jnJ J
j j ij j

a J
j j i

j

j

n Y Y Y Y

J J
n


  



 
  
  

 


 
 

 


                (2.15) 

where  

 

2 2

1

0
1



 
 

 



J

j

j

N n

J
N J

 and                                                      (2.16) 
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1

J

j

j

N n


 .                                                                         (2.17) 

Now, let  

 
2

1

jn

i ij j

i

S Y Y


   and                                                       (2.18) 

 
2

1

J

o j j

j

S n Y Y


  .                                                         (2.19) 

Just as the case of the balanced model, define 

*

1

1
o

J
i

j

S

JW
S

N J






                                                                  (2.20) 

and multiplying both sides by 

2

2 2

0

e

e aJ



 
, therefore 

               

2 2
*

2 2 2 2

0 0

1

1
o

e e

J
ie a e a

j

S

JW
SJ J

N J

 

   



 
 




                                          

  

 

2 2

0

2
1

1

o

e a

J
i

j e

S

J J

S

N J

 



 





.                                                (2.21) 

Hence,  

    

 

 

2 2

0*

2
1

1o

e a

J

i

j e

S
J

J
W

S
N J

 



 
 

 
 

 
 


.                                            (2.22)                                                
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Therefore, the ratios of 
2

i

e

S


 and 

2 2

0

o

e a

S

J 
 are independent chi-square 

variables with degrees of freedom, N J and 1J  , respectively. Under the null 

hypothesis of 
2

0 : 0aH   , the value 
*W has a distribution of    1 ,J N J

F
 

. With that 

said, at a significant level of  , 0H  is rejected when the evaluated value 
*  of 

*W  

is greater than    : 1 ,J N J
F
  

. 

 

While having important roles in various fields of study, the REM suffers from 

two very key concerns which are primarily addressed by Wilcox (1994a). The first 

concern is the assumption of equal variances of the groups. This assumption must be 

made as Wilcox (1994a) mentions that violation of this assumption will result with 

the traditional test of 
2

0 : 0aH    to be inadequate in terms of Type I error even 

under normality. The second concern is assuming normality. This assumption must 

be made because, regardless of a slight deviation or a heavy-tailed distribution, a 

slight departure from normality will lead to an increase in the standard error of the 

sample mean by a substantial amount thus resulting in a serious effect on power 

(Tukey, 1960).  

 

 

2.3 THE JEYARATNAM-OTHMAN PROCEDURE 

In addressing the first concern of the REM, Jeyaratnam and Othman (1985) 

did a study on the random effects ANOVA model by proposing an approximate 

procedure for testing 
2

0 : 0aH    versus 
2

1 : 0aH    with unequal variances of the 

groups under normality.  That is, the assumption that the variance of ije  is a constant 
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2  is being replaced with the assumption that the variance is 
2

j which may vary 

among the J  sampled treatment levels. The following model is considered: 

ij j ijY a                                                                     (2.23) 

for 1, , ji n  and 1, ,j J  where ja  and ij  are independently distributed with 

means zero and variances 
2

a  and 
2

j  respectively. The model in Equation (2.23) is 

referred to as the one-way REM with unequal variances by Jeyaratnam and Othman 

(1985). Jeyaratnam and Othman (1985) proposed a test statistic for testing 

2

0 : 0aH    without assuming equal variances as follows: 

 

 
 

2
*

1

2

1 1

1

1

j

J

j

j

nJ
ij j

j i j j

Y Y

JF
Y Y

Jn n



 












                                                     (2.24) 

where 

 
1

jn

ij

j

i j

Y
Y

n

 ,                                                                        (2.25) 

*

1

J
j

j

Y
Y

J




  ,                                                                (2.26) 

 
2

2

1 1

jn
ij j

j

i j

Y Y

n








  and                                                      (2.27) 

 
2

*
2

2

1 1

1

1

J Jj
j

a

j j j

Y Y

J J n




 


 


  .                                         (2.28) 
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Now, let 

 
2

*

1

1

J

j

j

Z Y Y


                                                               (2.29) 

 
2

2

1

jn

ij j

i

Z Y Y


                                                               (2.30) 

The proposed test statistic for testing 
2

0 : 0aH    as given by Equation (2.24) is as 

follows: 

 
 
 

2
*

1

2

1 1

1

1

1

1

j

J

j

j

nJ
ij j

j i j j

Y Y
J

F
Y Y

J n n



 













                                                   (2.31) 

or in terms of 1Z  and 2Z , 

 

1

2

1

1

1
1

1

J

j j j

Z
JF

Z

J n n






.                                                       (2.32) 

Following this, since the numerator F  is a function of 1Z  and the denominator is a 

function of 2Z  accordingly, hence the numerator and denominator of F are 

independent.  

 

Using the information from Equations (2.27) and (2.28), the following are obtained. 

                   
2

*

1

1

1 1

1 1

J

j

j

E Z E Y Y
J J 

  
   

    
  

2

2

1

1 J
j

a

j jJ n






                                                               (2.33) 
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 

 
 

2

2

1 1 1

1 1

1 1

jnJ J
ij j

j j ij j j j

Y YZ
E E

J Jn n n n  

   
   
   

    

   

 

2

1

1 J
j

j jJ n





                                                                       (2.34) 

Now multiplying both sides of F  by 

2

1

2

2

1

1

1

J
j

j j

J
j

a

j j

J n

J n
















, therefore 

           

 
 
 

2 2
2

*

1 1 1

2 2 2

2 2

1 1
1 1

1 1 1

1

1 1
1

1

j

J J J
j j

j
j jj j j

J J
nJj j

ij j
a a

j jj j
j i j j

Y Y
J n J n J

F
Y Y

J n J n
J n n

 

 
 

  

 
 




 
 



  

  

 

 

 
 

2
*

1

2

2

1

2

1 1

2

1

1

1 1

11

1

j

J

j

j

J
j

a

j j

nJ
ij j

j i j j

J
j

j j

Y Y

J

J n

Y Y

n n

J

J n










 



 
 

   
    

 
  

 
 
 
 
 
 
  









.                                        (2.35) 

From Equation (2.35), let 

2

1

2

2

1

1

1

J
j

j j

J
j

a

j j

J n
F F

J n


















. 
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So                               

 

 
 

2
*

1

2

2

1

2

1 1

2

1

1

1 1

11

1

j

J

j

j

J
j

a

j j

nJ
ij j

j i j j

J
j

j j

Y Y

J

J n
F

Y Y

n n

J

J n










 



 
 

   
    

 
  

 
 
 
 
 
 
  









.                                         (2.36) 

 

The numerator and denominator of F can be defined such that 

 
 

2
*

1

2

2

1

1

1 1

J

j

j

J
j

a

j j

Y Y

Num F
J

J n








 
 

        
 

  





                                          (2.37) 

 

 
 

2

1 1

2

1

11

1

jnJ
ij j

j i j j

J
j

j j

Y Y

n n
Den F

J

J n



 



 
 
 
 
 
 
  





                                               (2.38) 

 

and so 
 
 

Num F
F

Den F
 . Under normality, F  has an approximate F  distribution with 

estimated degrees of freedom: (Jeyaratnam and Othman, 1985) 

 

 

2
2

1

2
2 4

2
1 1

1

2

J
j

j j

J J
j j

j jj j

J
Jn

U

J
Jn Jn



 



 

 
 

  
 

   
 



 

 and                             (2.39) 
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 

2
2

1

4

2
1 1

J
j

j j

J
j

j j j

n
V

n n









 
  
 







.                                                           (2.40) 

Since we let 

2

1

2

2

1

1

1

J
j

j j

J
j

a

j j

J n
F F

J n


















,  it can be also written as  

                                    

2

2

1

2

1

1

1

J
j

a

j j

J
j

j j

J n
F F

J n


















 

2

2

1

1
1

a

J
j

j j

F

J n







 
 
  
 
 
 
 


.                                                      (2.41) 

 

The Jeyaratnam and Othman proposed test resulted in controlling the 

probability of the Type I error reasonably well. The estimated actual probabilities of 

Type I error were quite close to the specified significant level for number of groups 

2J   and 3J   when both ja  and ij  are normally distributed (Jeyaratnam & 

Othman, 1985). 

 

Wilcox (1994a) shows that his results are consistent with the results in 

Jeyaratnam and Othman (1985) for normal distributions. However, when 

distributions were just slightly nonnormal, the Jeyaratnam and Othman (1985) 
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procedure gave Type I error probabilities that were unacceptable ( 0.1) in both 

situations of equal and unequal sample sizes (Wilcox, 1994a). 

 

 

2.4 THE WILCOX 1994 PROCEDURE 

In view of the methodology by Jeyaratnam and Othman in Section 2.3, 

Wilcox (1994a) continued this line of study by suggesting a generalization of that 

procedure on traditional REM based on trimmed means. The benefit of using the 

trimmed mean over the sample mean is such that the trimmed mean has a standard 

deviation that is unlikely to be affected by heavily skewed distributions. Wilcox 

(1994a) also shows that the symmetrically trimmed mean value employed in his 

model can result in a significant gain in power. 

 

 Let tj  be the population trimmed mean for the given j-th randomly sampled 

group. The REM is generalized by letting  w w tjE  . In words, w is the 

Winsorized mean for the population of trimmed mean that is being sampled. It is 

important to note that tj  is conditional on the sampled group. This means, for a 

given j-th group, tj  is its trimmed mean.  The model used for this part of study 

becomes 

ij w j ijY b                                                                   (2.42) 

where ijY  is the i-th observation sampled from the j-th group: ( 1, , ji n ,

1, , )j J , 
j tj wb    ,   0w jE b   and   0w ijE   . The Winsorized variance 
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of jb  is   2

w j wbVAR b    the Winsorized variance of ij  is   2

w ij wjVAR   . Also, 

 2 2

w wj weE   , where the Winsorized expectation is taken with respect to a 

randomly sampled group. When there are no differences among the trimmed means 

associated with the pool of treatment groups under investigation, 
2 0wb  . Let 

tjY be 

the trimmed mean corresponding to the j-th group and so  

*

1

1 J

t tj

j

Y Y
J 

  .                                                                     (2.43) 

Wilcox (1994a) then defines 

   
2

*

1

1

1

J

t tj t

j

Num F Y Y
J 

 

                                                    (2.44) 

 
 

  

2

1 1

1

2 2 1

jnJ
ij wj

t

j i j j j j

Y Y
Den F

J n k n k 




 
 , j jk n               (2.45) 

where jn    is the value of jn  rounded down to the nearest integer. ijY  is the 

value of iY  based on the trimmed data in the j-th group and 
wjY  is the resulting 

Winsorized mean with   being the percentage of trimming. Hence, 

 
 

  

2
*

1

2

1 1

1

1

1

2 2 1

j

J

tj t

j

t
nJ

ij wj

j i j j j j

Y Y
J

F
Y Y

J n k n k



 







 





.                               (2.46) 

 

Wilcox (1994a) also shows that 

 
 

2

2

2
1

1

1 2

J
wj

t wb

j j

E Num F
nJ




 

    


  and                                   (2.47) 
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 
 

2

2
1

1

1 2

J
wj

t

j j

E Den F
nJ



 

   


 .                                                   (2.48) 

Therefore, when the test of null hypothesis 
2

0 : 0wbH    is true, the test statistic 

 

 
t

t

t

Num F
F

Den F
  is considered and has an approximate F  distribution with estimated 

degrees of freedom: 

 

 

2

1

2

2

1 1

1

2

J

j

j

t
J J

j j

j j

J q

U

q J J q



 

 
 

 
 

  
 



 

 and                                (2.49) 

 

2

1

2

1 2 1

J

j

j

t
J

j

j j j

Jq

V
Jq

n k





 
 
 

 





.                                                         (2.50) 

where  

 
  
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2 2 1

j wj

j

j j j j

n s
q

J n k n k




  
,                                      (2.51) 

 
2

2

1

1

1

jn

wj ij j

ij

s Y Y
n 

 

  and                                            (2.52) 

1

1 jn

j ij

ij

Y Y
n 

  .                                                                    (2.53) 

 

Wilcox (1994a) performed simulations of 10000 replications to study the 

sampling properties of the proposed test as well as the traditional F  test and 

Jeyaratnam and Othman’s test. Simulations were carried out for 4J   groups 

because as J  increases, the F  test fails to perform fairly for the condition of 
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unequal variances with respect to controlling the probability of the Type I error as 

reported by Wilcox, Charlin and Thompson (1986). Therefore, 4J   is the ideal 

value for the F  test to perform well. 

 

Wilcox (1994a) reports that the simulations results for the procedures did not 

meet the criterion set by Bradley (1978). According to Bradley (1978), a test is 

considered robust if the observed rate of Type I error,   is within the interval 0.5  

and 1.5 .  Therefore, at the typical five percent level of significance  0.05 ,   a 

test is considered robust in a particular condition if the observed Type I error rates 

fall within the interval of 0.025 and 0.075.  

 

Under the condition of normality, Wilcox (1994a) states that the conventional 

F  test did not perform well with unequal sample sizes. As for equal sample sizes, 

the resulted Type I error of the F  test has a significantly high value but this problem 

was corrected using the ,F  as expected. The tF considered by Wilcox resulted in an 

estimated probability of Type I error with value 0.079. Wilcox reported that tF  does 

not perform well in situations of skewed distributions and unequal sample sizes. 

 

In terms of power gain, the conventional F  and F  tests resulted in poor 

power for heavy-tailed distributions compared to the tF  test that was satisfactory, 

although in some cases the F  test did give more power but at the expense of really 

poor control over the probability of a Type I error. The tF  test performs really well 

for the situation of unequal sample sizes.                                    
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2.5 TRIMMED MEANS IN FIXED EFFECTS MODEL 

2.5.1 Symmetric Trimming 

The appropriateness of using the parameter of population mean as a measure 

of location is doubtful when the nature of the population distribution is skewed. 

According to Wilcox, the use of the usual mean can possibly portray a distorted view 

of "how the typical individual in one group compares to the typical individual in 

another, and about accurate probability coverage, controlling the probability of a 

Type I error, and achieving relatively high power" (Wilcox, 1995a, p. 66). By the 

substitution of robust measure of location, it becomes more likely to obtain test 

statistics which are insensitive to the combined effects of variance heterogeniety and 

nonnormality. 

 

The trimmed mean is preferable because it is easy to obtain and has good 

theoretical properties (Wilcox, 1995a) as Keselman, Lix and Kowalchuk (1998a) 

notes, particularly when the standard error of the trimmed mean is less affected by 

departures from normality. This is because under extreme cases, observations in the 

heavy tails of a distribution are removed. Also, while the use of trimmed means can 

be effective, Keselman, Kowalchuk and Lix (1998b) advised that the measure should 

only be employed in testing for treatment effects across groups using a measure of 

location that will accurately reflect the typical score within a group when heavy- 

tailed distributions are involved. 

 

For one-way designs, Lix and Keselman (1998) found that tests of mean 

equality (on fixed effects models) based on the usual mean and variance were 

affected by skewness when group sizes were unequal and this problem was improved 
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upon when trimmed means and variances based on Winsorized  data were used. 

Keselman et al. (1998b) states that tests of mean equality under variance 

heterogeneity and nonnormality have been conducted for nonorthogonal factorial 

designs which is the Welch-James (WJ) type statistic is able to provide robustness in 

unbalanced factorial designs when variances were heterogeneous. However, the WJ 

test had its own limitations when the assumptions of unequal variances and 

nonnormality were violated for unbalanced fixed-effects factorial designs. 

 

The performance of the WJ test, however, could be improved upon by 

incorporating robust measures of location and variability instead of relying on the 

usual least squares estimators. Wilcox (1994b) showed results that using trimmed 

means could result in a more accurate solution when the distributions have heavy 

tails because "this type of nonnormality have smaller standard errors compared to 

least square means (Keselman  et al., 1998b, p. 147). Keselman et al. (1998b) had 

also mentioned that Yuen (1974) suggested for trimmed means and variances based 

on Winsorized sums of squares to be used in conjunction with Welch (1938)’s 

statistic. For symmetric distributions that are heavily tailed, Yuen (1974) showed that 

the statistic based on these robust estimators was able to control the rate of Type I 

errors and generated greater power than a statistic based on the usual mean and 

variance. 

 

Continuing with the investigation of the Welch’s (1938) statistic, a research 

by Keselman, Wilcox, Kowalchuk and Olejnik (2002) investigated three tests to 

compare measure of locations across two groups: Welch (1938) test, the Zhou, Gao 

and Hui (1997) test and the Yuen (1974) procedure. In the study, the three tests were 
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run under several cases of nonnormality and variance heterogeneity for balanced and 

unbalanced designs.  The results proved the fact by Keselman et al. (1998b) and Lix 

and Keselman (1998) that Welch (1938)’s test was nonrobust. The study also shows 

that the procedure by Zhou et al. (1997) could not optimally perform for nonnormal 

skewed data of other forms such as the chi-square as the test was designed to be used 

with skewed lognormal data. Keselman, Wilcox,  Kowalchuk and Olejnik (2002) 

notes that the Yuen (1974) statistic tests proved trimmed  means - as opposed to the 

usual least squares means - provided better estimates of the typical individual in 

distributions  that are skewed or have outliers. As pointed out by Zhou et al. (1997), 

distributions are generally skewed and the results by Keselman et al. (2002)  proved 

that conforming to the use of trimmed means and Winsorized variances will provide 

enough control over the Type I error probability.  

 

Although several results have proved that trimmed mean is a well accepted 

measure under the effects of nonnormality and variance heterogeneity, there is 

always the lingering question of the accuracy of trimming when distributions are 

skewed: should the data be trimmed symmetrically or asymmetrically and how much 

trimming should be done. Keselman, Wilcox, Othman and Fradette (2002) 

demonstrated the advantage of a prior test for symmetry in order to determine 

whether data should be trimmed from both tails (symmetric trimming) or just from 

one tail (asymmteric trimming).  This approach of the preliminary test for symmetry 

was a modification by Babu, Padmanabhan and Puri (1999) due to Hogg, Fisher and 

Randles (1975). 
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Othman, Keselman, Wilcox, Fradette and Padmanabhan (2002) further proves that 

the test of symmetry is a powerful procedure as a test for treatment group equality 

when combined with a heteroscedastic statistic which compared means that are either 

symmetrically trimmed or asymmetrically trimmed because of the excellent control 

over Type I errors for very heterogenous distributions that are extremely nonnormal. 

Othman et al. (2002) also mentioned that Babu et al. (1999) had used the preliminary 

test for symmetry to establish "whether groups should be compared on their 

symmetrically determined trimmed means, when distributions were deemed 

symmetric, or on their medians, when distributions were deemed asymmetric" 

(Othman et al., 2002, p. 314). 

 

 

2.5.2 Asymmetric Trimming 

Following the course of trimming on fixed effects models, Keselman, Wilcox, 

Lix, Algina and Fradette (2007) showed several methods that determine if the data 

distribution should be trimmed and the quantity of trimming from the tails of the 

distribution.  The two main adaptive trimming methods discussed by Keselman et al. 

(2007) are the Reed and Stark (1996) and the Tukey-McLaughlin-Jaeckel-Hogg 

methods. 

 

The Reed and Stark (1996) method is based on the work of Hogg (1974, 1982) 

whereby several adaptive location estimators were defined depending on measures of 

tail-length and skewness for a set of observations. 

 




