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Abstract—Industrial manufacturing environments are often
characterized as being stochastic, dynamic and chaotic, being
crucial the implementation of proper maintenance strategies to
ensure the production efficiency, since the machines’ breakdown
leads to a degradation of the system performance, causing the
loss of productivity and business opportunities. In this context,
the use of emergent ICT technologies, such as Internet of Things
(IoT), machine learning and augmented reality, allows to develop
smart and predictive maintenance systems, contributing for the
reduction of unplanned machines’ downtime by predicting pos-
sible failures and recovering faster when they occur. This paper
describes the deployment of a smart and predictive maintenance
system in an industrial case study, that considers IoT and
machine learning technologies to support the online and real-time
data collection and analysis for the earlier detection of machine
failures, allowing the visualization, monitoring and schedule of
maintenance interventions to mitigate the occurrence of such
failures. The deployed system also integrates machine learning
and augmented reality technologies to support the technicians
during the execution of maintenance interventions.

Index Terms—Industrial maintenance, Predictive maintenance,
Intelligent Decision Support, Augmented reality.

I. INTRODUCTION

In industrial manufacturing environments, often character-
ized as being stochastic, dynamic and chaotic, maintenance
systems are crucial to ensure the production efficiency, since
the occurrence of unexpected disturbances leads to a degrada-
tion of the system performance, causing the loss of produc-
tivity and business opportunities, which are crucial roles to
achieve competitiveness [1]. Traditionally, industrial mainte-
nance is mainly reactive and preventive, being the predictive
strategy only applied for critical situations. However, the main-
tenance paradigm is changing and industrial maintenance is
now understood as a strategical factor and a profit contributor
to ensure productivity in industrial systems [2], [3], with
predictive maintenance assuming a crucial role. Predictive
maintenance involves the collection and evaluation of data
from machines to increase efficiency and optimization of the
maintenance processes [4], considering advanced techniques,
e.g., sensor technology and analytical methods, to predict

when equipment’s failures might occur and to prevent the
occurrence of the failures data by performing maintenance [5].

In this context, new maintenance approaches are enabled
by considering the operational state of assets, such as the
Prognostic and Health Management (PHM), the Condition-
Based Maintenance (CBM) and even Digital Twin [6]. CBM
is a maintenance strategy that uses the collected real-time data
to determine the machine’s condition and predict the need
for maintenance actions [7]. Furthermore, it allows a more
optimized planning, reducing the unnecessary interventions
and the time-based maintenance intervals with confidence.

The Industry 4.0 advent has created an opportunity for pre-
dictive maintenance, by considerating the huge amount of data
being generated on the shop floor and the available emergent
Information and Communication Technologies (ICT), e.g.,
Internet of Things (IoT), Big data, machine learning and cloud
computing. The consideration of artificial intelligence and
new human-machine interfaces, e.g., virtual and augmented
reality technologies, also allows to develop smart decision
support systems that help technicians to execute maintenance
interventions, contributing to reduce the maintenance costs
and the machines’ downtime. In spite of the significant work
implemented as lab prototypes, few industrial implementations
are reported in the literature, e.g., using big data to predict the
remaining life of a key component of a machining equipment
[8] and data mining to perform fault diagnosis and prognosis
in machine centers [9]. In the same manner, augmented reality
is supporting human workers in a rapidly changing production
environment, e.g., assembly of new products, maintenance
staff and plant planner [10], or supporting the better under-
standing of assembly procedures [11].

Having this in mind, a smart and predictive maintenance
system is deployed in an industrial metal stamping machine,
considering an online analysis of the collected data to monitor
and earlier detect the occurrence of failures, transforming
the traditional “fail and recover” practices into “predict and
prevent” practices. This approach also considers an intelligent
decision support system that assists the technicians during the
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execution of the maintenance interventions, contributing for a
faster and more efficient recovery of the failure occurrence.

The rest of the paper is organized as follows: Section
II overviews the smart and predictive maintenance system
architecture, and Section III describes the deployment of the
data collection and data analysis applications for the industrial
metallic stamping case study aiming the dynamic monitoring,
and particularly the earlier detection of machine’s failures.
Section IV presents the developed intelligent decision support
application using augmented reality technology to support the
technicians during the execution of maintenance interventions.
Finally, Section V rounds up the paper with the conclusions.

II. SYSTEM ARCHITECTURE

The proposed system architecture for the condition-based
maintenance takes advantage of a broad spectrum of emergent
technologies, such as IoT, machine learning and augmented
reality, and comprises several modules, namely the data collec-
tion, the analysis and monitoring, and the intelligent decision
support (IDS), as illustrated in Figure 1 [1].

Figure 1. Smart and predictive maintenance system architecture.

Briefly, the data collection module is responsible for the
manual and automatic collection of data from several hetero-
geneous sources, using IoT technologies. The collected data,
stored in a database, will feed the analysis and monitoring
module that is responsible for the monitoring of the machine
health along the time but also the earlier detection of machine
failures (i.e. the needs for maintenance interventions). For this
purpose, data is continuously analysed and correlated using
machine learning techniques. Finally, the intelligent decision
support module is responsible to support the technician during
the execution of maintenance interventions, providing guid-
ance and easy access to the machine condition through the
use of augmented reality technologies.

The proposed system architecture was implemented in an
industrial case study comprising a metallic stamping machine
that stamps metal parts with 400 tons of force and operates

in a range of 10 to 24 strikes per minute. This machine is
composed by a storing system, a feeding system and a transfer
system that transfers the parts through the successive stamping
stations. These systems operate synchronously through the
use of a Siemens S7 PLC (Programmable Logic Controller)
alongside with several Sinamics motor controllers. At the end
of the stamping process, an operator is responsible to execute
the visual inspection of each produced part, which data is not
currently recorded.

III. DYNAMIC MONITORING AND PREDICTION

This section details the implementation of the data collec-
tion and analysis methods to support the dynamic monitoring,
including the earlier detection of failures.

A. Automatic Data Collection using IoT

The automatic data collection module allows to gather
several operational and environmental parameters, namely at-
mospheric pressure, temperature, humidity, hydraulic pressure
and vibration, reflecting the condition of the machine. For this
purpose, several sensing modules were developed and installed
strategically in the machine, without damaging or impairing
its proper operation, as illustrated in Figure 2.

Figure 2. Sensing modules installed in the metal stamping machine.

The operational data (right side of Figure 2), e.g. the
vibration, is collected at 300 samples per second, but the
environmental data (left side of Figure 2) is collected each 5
minutes, since they do not suffer significant changes in short
periods of time. These sensing modules constitute IoT nodes
capable to acquire and transmit these parameters over Wi-Fi,
following a JSON file format. The transmission protocol is the
Message Queue Telemetry Transport (MQTT), that uses the
publish/subscribe schema and a message protocol optimized
for TCP/IP. The collected environmental and operational data,
as well as the log of warnings and failures generated by the
machine, are stored in a database.

The autonomy of these sensing modules is improved by
integrating a controlled switch in the power circuit, allowing
the temporary power-off of all components, with the exception
of the micro-controller which is kept in deep-sleep mode, when
the module is not acquiring or transmitting data.

B. Manual Data Collection

The data regarding the products’ defects is manually col-
lected from operators by using a friendly and ergonomic user
interface (UI), as illustrated in Figure 3.

In this web-based application, running in a hand-held de-
vice, e.g. a tablet, the operator can report a part defect by
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Figure 3. UI for the defects’ data collection.

selecting the product being produced and the defect that should
be reported. The data associated to the defect, including the
part type, the defect type and the timestamp, is stored in the
database, and visualized in real-time.

C. Visualization and Dynamic Monitoring

The collected data is only useful if analysed, allowing to
monitor the machine’s condition and the products’ quality, de-
tect in advance failures and trigger maintenance interventions
to mitigate the degradation of the machine performance. For
this purpose, the acquired data is monitored through a com-
putational application developed in the Node-RED platform
(https://nodered.org). The first dashboard, depicted in Figure 4,
was built on the top of a responsive framework enabling its
dynamic adaptation according to the hosted device, and is
related to the real-time visualization over the time of the
environmental and operational parameters, collected by the
developed IoT nodes. The dashboard also shows warning
messages as a result of applying process control methods,
particularly Nelson rules [12] that use the mean value and the
standard deviation to determine if a parameter is out of control
or presents a trend towards to be out of control. Besides the
monitoring in the dashboard, these warnings are sent by email
or SMS to the maintenance manager.

A second dashboard, illustrated in Figure 5, provides statis-
tical information regarding the product quality (i.e. product
defects) and the machine operation (i.e. machine failures).
Regarding the products quality, the dashboard displays for
each type of defect, the total number of occurrences, the date
of the last occurrence, the time without defect (in days) and
the Mean Time Between Failure (MTBF), which is a crucial
industry parameter to be considered. The same display schema
is used to monitor the machine health parameters, considering
the data regarding to the machine failures. This dashboard also
provides the visualization of the real-time events regarding to
the product defects and machine failures.

As a Web-based UI, the maintenance technician can re-
motely access the complete Node-RED monitoring applica-
tion, allowing to monitor the current condition of a given asset
(in terms of product or machine failures and warnings). For
this purpose, the technician can connect with a mobile phone
to the network where the dashboard is housed, either by WiFi
or VPN, and access via the dashboard’s IP.

D. Prediction of Machine’s Failures

A machine learning approach with supervised learning was
implemented for the early prediction of failure occurrences,
concerning the advantage of detecting underling patterns that
may not be detected by a human operator/programmer [13],
[14]. For this purpose, the early failure/warning prediction
inference engine was codified in python and uses a type of re-
current neural networks (RNN), the LSTM (Long Short-Term
Memory) network [15]–[17], which is especially attractive to
learn from past sequences and forecast the next probable event.
The implemented network was configured with 50 up to 150
cells, the Adam optimizer and binary cross entropy as loss
function through 30 epochs. The algorithm was trained using
as input data the previous events collected from the log of
machine failures (more than 43.000) using the csv format,
classified and labeled accordingly to the type of event (failure
as 1 or warning as 0), rather than being explicitly programmed
and harmonized by a set of static rules. Since the majority of
the events are not related to failures, i.e. almost 98% of the
original machine events are warnings, resulting in extremely
imbalanced dataset, the model was designed to group events
in 5 minutes blocks and thus predict the type of event that
may arise in the next 5 minutes (failure or not).

Figure 6 represents the results for the training and validation
accuracy and loss for the 150 neuron configuration and consid-
ering the range up to 30 epochs. The results show an increase
in the accuracy with a steady decrease in loss, reaching a
value of 99% accuracy after 15 epochs, which suggests that
the network is able to properly learn patterns or new features.

The implemented prediction algorithm was able to predict
anomalies from internal and external data sources. However,
the restrictions in the access to internal machine data restricted
the prediction time range to 5 minutes. The predicted failure or
warning occurrences were real-time represented in the bottom
of the dashboard illustrated in Figure 5, which shows the
probability of the failure occurrence and the type of failure.
Additionally, on the right side of the dashboard are indicated
which failures or warnings are most likely to be predicted.

IV. INTELLIGENT MAINTENANCE ASSISTANCE

The IDS module is responsible to provide guidance to the
technician to execute the maintenance interventions in a faster
and more efficient manner, showing the way to execute the
sequence of actions using text, images, videos and/or 3D
animations, and accessing to the historical and current data
regarding the machine operation. This module comprises two
distinct applications with interactive UIs: the first application
was developed to run in an Android environment for a regular
operational usage, while the second application was developed
for training, under the Microsoft HoloLens environment.

A. IDS for Android Environment

The IDS application developed for the Android environment
comprises three modules: Maintenance procedures, Training
and Monitoring. The first module provides a guidance through
the execution of maintenance procedures, showing to the
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Figure 4. Visualization and monitoring of machine’s parameters along the time.

Figure 5. Visualization and monitoring of statistical data related to product’s defects and machine’s failures.

Figure 6. Training and validation accuracy and loss for 150 neurons.

technician a step-by-step sequence of the tasks, explaining the
procedure to be executed. Note that each maintenance proce-
dure comprises a sequence of specific tasks that are necessary

to be executed by the technician during the maintenance inter-
vention. The maintenance procedures were represented using
the Business Process Model and Notation (BPMN) language,
which represents the workflow of tasks (see Figure 7). These
BPMN chart flows are automatically translated into a XML
programmable script by using the Camunda tool. The sequence
of tasks, expressed in the XML format, is managed by an
engine that is codified in C# using the Visual Studio platform
and embedded in the Unity development platform, which
provides a flexible and adaptive environment to develop the
interface for the Android platform. The engine may associate
media files, such as images and videos, to each task step in
order to improve the maintenance procedure understanding.
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Figure 7. Managing the execution of the maintenance procedures in the Unity
environment (for Android and HoloLens platforms).

The existence of a large and diverse number of maintenance
procedures can be difficult for the maintenance technician,
especially in case of new or complex ones. Having this in
mind, the second module, called Training, allows the mainte-
nance technician to train on how to perform the procedures,
gaining experience off-line and before to execute the procedure
in reality, increasing his performance and efficiency. During
each training procedure, there are instructions with video clips
detailing the maintenance intervention or sequence of images
with detailed explanation of the actions to be taken.

Along the execution of a maintenance intervention, the
maintenance technician may require to get information about
the machine’s condition, in order to decide the actions to be
performed. For this purpose, the Monitoring module allows to
display the required information by scanning, e.g., using the
camera of the tablet, an identification QR mark that is attached
to each machine (see Figure 8).

Figure 8. Monitoring the machine condition health.

After identifying the mark, the use of augmented reality
technology through Vuforia allows to augment a certain object
or display the visualization and monitoring dashboard contain-
ing the real-time information about the machine condition state
(as described previously in Figures 4 and 5).

During the IDS life-cycle, the data regarding the usage of
the tool by the technician is recorded, namely the executed
maintenance procedures, the timestamps about the beginning
and the end of the executed procedures, and the feedback
from the technician during the execution of the maintenance

procedure. The collected data will support posterior data
analysis related to the technician performance and the average
time to execute the maintenance interventions.

B. IDS for HoloLens

As the Unity environment supports the Android and Mi-
crosoft operating systems, the application for HoloLens is
based on the one for Android with small changes (also shown
in Figure 7). The main differences are related to the use of
3D models and gestures and voice commands.

The benefits to creating intelligent maintenance systems as
a augmented reality application are mainly the capability to
train technicians and operators to work with various equipment
without the need to have the training models, and to guide step
by step the technician during the execution of the tasks.

The interaction with the HoloLens headset is performed
through the Gaze, Gesture and Voice (GGV) paradigm, which
means that the headset is able to recognize the users speech,
gestures and gaze. With the GGV paradigm, it is possible to
select and manipulate virtual objects, for example zooming-in
and zooming-out (note that to select an object, the user needs
to look at it and give a voice command or tap with a finger,
which is equivalent to a click).

Using the Mixed reality Toolkit (MRTK), provided by
Microsoft, it was possible to create a list of GGV commands to
personalize the control of the application. Figure 9 illustrates
the use of the augmented reality application running on a
HoloLens at the shop floor.

Figure 9. Augmented reality technology applied to maintenance using a
HoloLens device.

C. User Experience Evaluation

The developed IDS applications were deployed in the indus-
trial case study, and used by operators in their normal opera-
tion, allowing to evaluate the user experience. For this purpose,
the System Usability Scale (SUS) survey [18] was used to
test the system reliability right after giving the respondent an
opportunity to evaluate the system. It consists of a 10-item
questionnaire, illustrated in Table I, with a five-level Likert
scale [19] with options ranging from "Strongly disagree" to
"Strongly agree", with a numerical correspondence from 1
to 5. It is a mixed-tone questionnaire in which items have
alternatively a positive and a negative tone. For positive items
the score contribution is the scale position minus 1, and 5
minus the scale position for the remaining. By multiplying the
sum of the scores by 2.5, the overall value of SUS is obtained.
The SUS score reflects a measurement of the system reliability
with its own assessment concerning the system approval and
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usually referred as percentiles (in opposition to percentage).
A score above 70 is acceptable and between 80 and 90 is
considered excellent.

Table I
SUS 10 ITEM QUESTIONNAIRE

I think that I would like to use this system frequently

I found the system unnecessary complex

I think the system was easy to use

I would need the support of a technical person to be able to use the system

I found the various functions in the system were well integrated

I thought there was too much inconsistency in the system

I would imagine that most people would learn to use the system very
quickly

I found the system very cumbersome to use

I felt very confident using the system

I needed to learn a lot of things before I could use the system

The performed SUS survey obtained a score of 84.8 per-
centiles, corresponding to a qualitative evaluation of "Excel-
lent", which means that in general the users had a positive
experience. In fact, users highlighted positively the easy to
use, the integration of useful functions, the fast learning of
the system and the confidence to use the system. However,
it is also noticed that the users refer the need to learn more
before taking complete advantage of using the system, as well
as the discommodity of using the HoloLens devices for long
periods, especially due to their weight, which suggests that
they should only be used for short periods.

V. CONCLUSIONS

This paper describes the deployment of a smart and predic-
tive maintenance system for an industrial stamping machine
case study, that integrates IoT, AI and augmented reality
technologies to minimize the effects and impact of unexpected
failures in the production system, and consequently increas-
ing the competitiveness of manufacturing enterprises. This is
particularly important in manufacturing companies that aim to
improve the system efficiency and reliability, by preventing
the system failures and reducing the maintenance costs.

The proposed approach considers advanced and online
analysis of the collected data for the earlier detection of
machine failures and the dynamic monitoring of the machine’s
condition and products’ quality, as well as an intelligent
decision support to guide technicians during the execution
of maintenance interventions. The deployed solution takes
advantage of emergent technologies associated to Industry
4.0, namely IoT, machine learning and augmented reality
technologies. Although, several limitations still exist either due
to data availability, process digitalization or technician learning
curve, particularly in using augmented reality technologies,
this work enabled the deployment and validation of the smart
and predictive maintenance system in a real industrial produc-
tion unit for metal stamping for the automotive sector. Future

work will be devoted to extend the collection of more internal
machine parameters that will allow to predict machine failures
with a higher accuracy and earlier, i.e. with a tie range higher
than 5 minutes.
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