
DISSECT-CF-Fog: A Simulation
Environment for Analysing the

Cloud-to-Thing Continuum

PhD Thesis

András Márkus
Supervisor: Attila Kertész, PhD.

Doctoral School of Computer Science

Department of Software Engineering

Faculty of Science and Informatics

University of Szeged

Szeged
2022

Contents

1 Introduction 5
1.1 Contributions . 7
1.2 Project Involvements . 8

2 A Survey and Taxonomy of IoT-Fog-Cloud Systems 9
2.1 Introduction . 9
2.2 Related Works . 10
2.3 Simulation Environments of IoT-Fog-Cloud Systems 12

2.3.1 Introduction of General Cloud Simulators 13
2.3.2 Introduction of IoT Simulators 18
2.3.3 Introduction of Fog Simulators 22
2.3.4 Detailed Taxonomy for Fog Modelling in Simulators 28
2.3.5 Discussion and Future Research Challenges 33

2.4 Further Investigation of iFogSim and DISSECT-CF-Fog 36
2.4.1 In-depth Performance Analysis 38

2.5 Discussion and Concluding Remarks 43

3 Simulating IoT Systems in a Multi-cloud Environment 45
3.1 Introduction . 45
3.2 The Proposed Pricing-aware Model for IoT Sensors and Applications . 46

3.2.1 IoT Pricing Schemes . 47
3.2.2 Cloud Pricing Schemes . 49
3.2.3 The Weather Forecasting IoT Use Case 49
3.2.4 Evaluation with the Pricing-aware IoT Extension 51

3.3 A Multi-cloud Simulation Environment 56
3.3.1 Basic Strategies . 57
3.3.2 The Pliant Strategy . 58
3.3.3 Evaluation with Weather Forecasting Scenarios 61

3.4 Discussion and Concluding Remarks 68

i

4 Simulating IoT Systems in a Multi-layered Fog Environment 69
4.1 Introduction . 69
4.2 Related Works . 71
4.3 Managing Offloading Decisions in DISSECT-CF-Fog 73

4.3.1 The Proposed Task Allocation Strategies for Fog Nodes 74
4.3.2 The Considered Scenarios and Their Configuration 75

4.4 The Actuator and Mobility Models of DISSECT-CF-Fog 81
4.4.1 Actuator Implementation in DISSECT-CF-Fog 84
4.4.2 Representing IoMT Environments in DISSECT-CF-Fog 86
4.4.3 Evaluation . 88

4.5 Modelling Energy Consumption in DISSECT-CF-Fog 95
4.5.1 Analysis of Real Microcontrollers 97
4.5.2 The Energy Model for IoT Devices 98
4.5.3 Evaluation of the Energy Extension 99

4.6 Discussion and Concluding Remarks 103

Bibliography 105

Summary 113

Összefoglalás 117

Publications 121

ii

iv

List of Figures

1.1 The evolution of DISSECT-CF-Fog through its components 6

2.1 The ratio of the simulator types . 29
2.2 Visualised relationships between the examined cloud, IoT, and fog sim-

ulators . 30
2.3 The ratio of the programming languages used to implement simulators 34
2.4 Topology of the DISSECT-CF-Fog and the iFogSim 38
2.5 Telemetry data of the investigated simulators 42

3.1 A typical IoT use case: meteorological application 50
3.2 Number of virtual machines in the first scenario 53
3.3 IoT and cloud costs in the first scenario 54
3.4 Number of virtual machines in the first scenario 55
3.5 The general IoT execution flow in the extended DISSECT-CF-IoT sim-

ulator . 57
3.6 The Kappa function . 61
3.7 Timeline comparing task allocations of Pliant and Cost-aware strate-

gies in the first scenario . 65

4.1 The connections and layers of a typical fog topology 70
4.2 The considered fog topology in the evaluation 75
4.3 Low-level sensor events . 82
4.4 Actuator events related to mobility behaviour 83
4.5 Random Walk mobility model . 87
4.6 Applied fog ranges in the first scenario 89
4.7 Delay values of the second scenario . 93
4.8 The utilisation of Raspberry Pi (left) and ESP32 (middle) microcon-

trollers and KCX-017 meter (right) . 97
4.9 Cumulative energy consumption of cloud, fog nodes and IoT devices . 100
4.10 Energy consumption percentage of cloud, fog nodes and IoT devices . 101

1

2 List of Figures

List of Tables

1.1 Publications, theses and citations . 8

2.1 Literature search results in June, 2019 11
2.2 Comparison of related surveys according to their main contributions . 12
2.3 Comparison of the examined cloud simulators with implementation-

related properties . 16
2.4 Comparison of the examined cloud simulators with cloud modelling

properties . 17
2.5 Comparison of the examined cloud simulators with software metrics . 18
2.6 Comparison of the examined IoT simulators with implementation-related

properties . 20
2.7 Comparison of the examined IoT simulators with IoT modelling prop-

erties . 21
2.8 Comparison of the examined IoT simulators with software metrics . . . 22
2.9 Comparison of the examined fog simulators with implementation-related

properties . 26
2.10 Comparison of the examined fog simulators with fog modelling prop-

erties . 27
2.11 Comparison of the examined fog simulators with software metrics . . . 28
2.12 Comparison of DISSECT-CF-Fog and iFogSim 37
2.13 Comparison of the two simulators . 41

3.1 Basic configuration information of the application 50
3.2 Cost estimation for the meteorological case study 51
3.3 Number of VMs, tasks, and the amount produced data in the first sce-

nario . 53
3.4 IoT and cloud costs in the second scenario 54
3.5 Normalisation parameters . 60
3.6 Detailed Bluemix, Azure and Amazon pricing-based private cloud con-

figurations used in the evaluations . 62
3.7 Detailed multi-cloud configuration for the evaluations 63

3

4 List of Tables

3.8 Evaluation results of the first scenario 64
3.9 Evaluation results of the second scenario 65
3.10 Evaluation results of the third scenario 66
3.11 Evaluation results of the fourth scenario 67

4.1 Detailed characteristics of the related simulation tools 73
4.2 Normalisation parameters . 75
4.3 Evaluation results of the first scenario 76
4.4 Evaluation results of the second scenario 77
4.5 Evaluation results of the third scenario 79
4.6 The mean of the results of the scenarios 80
4.7 Results of the Random actuator strategy and number of events during

the first scenario . 90
4.8 Results of the Transport actuator strategy and number of events during

the first scenario . 91
4.9 Results and number of events during the second scenario 93
4.10 Results and number of events in the scalability studies 94
4.11 Uniform sampling of microcontrollers 96
4.12 Mapping the benchmark and measured values to the model power

values in DISSECT-CF-Fog . 97
4.13 Comparison of the final results of the simulated scenarios 102
4.14 The chosen values of the energy model for nodes and microcontrollers 102

1
Introduction

Internet of Things (IoT) is estimated to reach over 75 billion smart devices around
the world by 2025 [68], which will dramatically increase the network traffic and the
amount of data generated by them. The IoT paradigm composes sensors, actuators,
and smart devices into a complex system through the Internet, which are utilised
in various domains such as smart homes, smart cities, healthcare, agriculture, and
transportation.

IoT systems often rely on Cloud Computing [57] solutions, because of their ubiq-
uitous and theoretically infinite, elastic computing and storage resources. However,
clouds are not always fitting for real-time IoT applications. If billions of IoT devices
keep pushing their data to the cloud, it can be overloaded and the response time
of the applications can dramatically increase. Fog Computing is derived from Cloud
Computing to resolve the problems of increased latency, high density of smart de-
vices, and overloaded communication channels, which is also known as the bottleneck-
effect. The proximity of Fog Computing [15] nodes to end users usually ensures short
latency values, however, these nodes are resource-constrained as well. Fog Comput-
ing can aid cloud nodes by introducing additional layers between the cloud and the
IoT devices, where a certain part of the generated data can be processed faster [39].

IoT-Fog-Cloud systems have to deal with various challenges in order to ensure
reliable IoT services [76]. Emerging issues of the IoT-to-Cloud continuum, such as
connectivity problems of IoT devices, task offloading of computing nodes, billing and
operation costs of substantial components, and resource provisioning are typically
addressed by researchers. However, hiring physical machines from virtual server

5

6 Introduction

parks fitting various IoT scenarios could be very expensive, and the investigation of
IoT-enabled service compositions is not always possible with real cloud providers.
As a result, in many cases simulators are applied to address such examinations with
adequate results.

Figure 1.1: The evolution of DISSECT-CF-Fog through its components

The goal of my PhD research work was to address the challenges listed above.
During the period of my doctoral studies, I had the opportunity to achieve my re-
search goals by working with well-experienced researchers. This work started in
2016 as a BSc student, therefore, this dissertation concludes not just the last four,
but the last six years of my research. During investigating the IoT-Cloud-Fog systems,
which is often referred to as the Cloud-to-Thing Continuum [6], I have extended the
DISSECT-CF discrete event IaaS (Infrastructure-as-a-Service) cloud simulator in four
phases; this evolution towards DISSECT-CF-Fog is depicted in Figure 1.1. This dis-
sertation goes through these phases by presenting my incremental research results
as follows. Chapter 2 presents a comprehensive overview of various IoT, cloud, and
fog simulators in order to determine the key requirements of a compact and well-
defined IoT-Fog-Cloud simulator. Furthermore, it presents an in-depth analysis and

1.1 Contributions 7

a comparison of two major fog simulators. Chapter 3 introduces the first two ex-
tension phases, namely the IoT and the pricing extension, exploiting a multi-cloud
environment with resource allocation strategies. Finally, Chapter 4 summarises the
last two phases, where the simulator is extended towards modelling multi-layered fog
systems with energy measurement and task allocation policies, and more detailed ac-
tuator and mobility events. The resulting DISSECT-CF-Fog simulator is open-source
and available on GitHub1.

1.1 Contributions

The ideas, figures, tables, and results included in this thesis were published in scien-
tific papers (listed at the end of the thesis). The research results I achieved so far are
organised into three theses, which are the following:

Thesis I. I analysed and classified numerous simulation approaches in terms of func-
tionality, usability, maintainability, and code quality, in order to determine the most
relevant properties for modelling IoT-Fog-Cloud systems. I also compared the two
most prominent simulators in these fields, namely DISSECT-CF-Fog and iFogSim, with
an in-depth performance analysis.

Thesis II. I designed a generic model of IoT systems and implemented it in the
DISSECT-CF-IoT simulator. I developed a novel cost estimation extension using real
cloud and IoT provider pricing schemes. I proposed various resource allocation
strategies to reduce IoT application execution time and utilisation costs for multi-
cloud environments. I also evaluated these strategies with a real-world meteorologi-
cal use case.

Thesis III. I designed a generic model of Fog Computing and implemented it in the
DISSECT-CF-Fog simulator to enable the modelling of the Cloud-to-Thing Continuum.
I developed various task offloading policies for fog and cloud infrastructure manage-
ment, to optimise IoT application makespan, utilisation costs, and energy consump-
tion. I also proposed novel extensions to enable mobility and actuator behaviour
analysis, and I evaluated these extensions with different smart system use cases.

Table 1.1 summarises the relationship between the thesis points and the corre-
sponding publications and it also presents the citations received so far according to
Google Scholar and MTMT.

1DISSECT-CF-Fog simulator (accessed in October, 2022): https://github.com/sed-inf-u-
szeged/DISSECT-CF-Fog

8 Introduction

Table 1.1: Publications, theses and citations

Thesis I Thesis II Thesis III
Citations

Google Scholar MTMT
[P3] ♦ 48 36
[P7] ♦ 4 4

[P11] ♦ 1 2
[P1] ♦ 13 11
[P2] ♦ 10 7
[P5] ♦ 10 7
[P6] ♦ 3 4

[P10] ♦ 5 3
[P4] ♦ 1 1
[P8] ♦ - -
[P9] ♦ 1 -
Sum 3 5 3 96 75

1.2 Project Involvements

During the years of this research, I had the chance to be involved in numerous na-
tional and international projects and scholarships, the results of this thesis could not
have been achieved without them. I am especially grateful for the support received
from:

• the European COST program under action identifier CA19135 (CERCIRAS);

• the EU-supported Hungarian national grant GINOP-2.3.2-15-2016-00037 titled
”Internet of Living Things”;

• the Hungarian Scientific Research Fund under the grant number OTKA FK
131793;

• the Hungarian Government under the grant number EFOP-3.6.1-16-2016-00008;

• the UNKP-21-3 New National Excellence Program of the Ministry for Innovation
and Technology from the source of the National Research, Development and
Innovation Fund;

• the national project TKP2021-NVA-09 implemented with the support provided
by the Ministry of Innovation and Technology of Hungary from the National
Research, Development and Innovation Fund;

• and the National Research, Development and Innovation Office within the frame-
work of the Artificial Intelligence National Laboratory Programme.

2
A Survey and Taxonomy of

IoT-Fog-Cloud Systems

2.1 Introduction

In the past decade, we experienced how rapidly distributed computing infrastruc-
tures evolve. The use of cloud technologies was almost unavoidable in 2010 for suc-
cessful service providers of the future. Miniaturisation and improvements in battery
lifetimes, which is another demand of the 21st century, have led to small computa-
tional devices that can interact and communicate among themselves and with the
environment via the Internet giving birth to the Internet of Things (IoT) paradigm.
As the number of things grows, the vast amount of data they produce requires the
assistance of various services for storage, processing, and analysis. Cloud Comput-
ing became a good candidate to serve IoT applications, and their marriage created
so-called smart systems [7].

Such IoT-Cloud systems can be utilised in many application areas ranging from
local smart homes to mid-range smart cities, or wider smart regions. To cope with
the possibly huge number of communicating entities, data management operations
are better placed close to their origins, resulting in the better exploitation of the
edge devices of the network. In the latest distributed computing paradigm called Fog
Computing [39], groups of such edge nodes form a fog, where data processing and
analysis can be performed with reduced service latency and improved service quality
compared to remote cloud utilisation.

9

10 A Survey and Taxonomy of IoT-Fog-Cloud Systems

As a result, cloud and fog technologies can be used together to aid the data man-
agement needs of IoT environments, but their application gives birth to complex
systems that still need a significant amount of research. It is obvious that significant
investments, design and implementation tasks are required to create such IoT-Fog-
Cloud systems in reality, therefore, it is inevitable to use simulations in the design,
development, and operational phases of such establishments. This rationale has led
many scientists to create simulators to investigate and analyse certain properties and
processes of similar complex systems. There are already existing survey papers high-
lighting the basic capabilities of simulation tools modelling such complex systems,
also comparing them by certain views, e.g. by Ragman et al. [58] or by Puliafito
et al. [55]. Nevertheless, we believe that modelling IoT-Fog-Cloud architectures in
such simulators is far from complete, and there is a need to gather and compare how
key properties, especially of fogs, are represented in these works to trigger further
research in this field.

The remaining sections of this chapter are organised as the following: Section
2.2 introduces related works proposing surveys in similar research fields and states
our methodology for literature review. Section 2.3 is composed of five subsections,
in which we give short introductions to the analysed simulators, define the taxon-
omy elements used for categorising them, provide classifications with comparison
tables for three groups of simulators, and discuss the relevant findings of our classi-
fications. Section 2.4 presents a comparison of the fog modelling capabilities of two
distinguished simulators. Finally, the contributions are summarised in Section 2.5.

2.2 Related Works

The methodology for finding suitable works for our investigations was twofold. First,
we looked for recently published surveys targeting Fog Computing and narrowed
their scope to fog modelling and simulation. Hence, we filtered the group of their
cited papers and kept the ones using simulators. In this way, we could build on their
results, as well as go beyond their findings by further analysing these works.

Second, to extend the group of considered solutions, we performed a literature
search with the following engines: Google Scholar, ResearchGate, Scopus, and Di-
mensions. We performed detailed searches for publications of the years 2015-2019
with the following keywords (for all fields): Fog Computing + Simulation. Table 2.1
shows the results of our literature search per publication year. We went through
the search results and gathered only those works that contained solutions having
open-source simulator implementations or containing novel approaches in the field
of Cloud and Fog Computing. ResearchGate does not provide detailed information
on search results, thus we omitted it from the comparison table. We also considered
relevant solutions referenced in the processed articles, but we skipped those tools or

2.2 Related Works 11

simulators, that were published before 2009.

Table 2.1: Literature search results in June, 2019

Year Google Scholar Scopus Dimensions
2019 3,320 914 2,940
2018 6,140 1,560 5,447
2017 4,460 707 3,389
2016 2,870 310 2,100
2015 2,160 206 1,650
Sum 18,950 3,697 15,526

There are already a couple of survey papers addressing different aspects of Cloud
Computing and Fog Computing supporting IoT systems. These works helped us to
identify taxonomy categories for comparing our considered papers, i.e. solutions
modelling Cloud and Fog Computing in simulated environments. Next, we sum-
marise the most relevant surveys we found, then compare them with our research
aims.

Rahman et al. [58] looked for available solutions for simulating Cloud Computing
and modelling data centres and their networks. The authors investigated the capa-
bilities of cloud simulators with the following categories: (i) graphical user interface,
(ii) application model, (iii) communication model, (iv) energy model, (v) virtual
machine (VM) support, (vi) SLA support, (vii) cost model. They investigated 15
simulators in detail, and also listed the applied programming language, the utilised
platform, and the code availability of the simulators. This study is probably the clos-
est to our work in terms of comparison methodology, but we focused more on the
quality of the simulator software and broadened the research scope to IoT and fog
areas.

Yousefpour et al. [77] presented a survey on Fog Computing and made compar-
isons with the following main points of view: computing paradigms such as cloud,
fog, mobile, mobile-cloud, and edge, and frameworks and programming models for
real applications, software, and tools for simulated applications.

Svorobej et al. [67] examined different fog and edge computing scenarios, and in-
vestigated Fog and Edge Computing with various aspects, such as (i) application level
modelling, (ii) infrastructure and network level modelling, (iii) mobility and (iv) re-
source management, and (v) scalability, and made a comparison of seven available
fog tools.

Hong and Varghese [26] summarised resource management approaches in Fog
and Edge Computing focusing on their utilised infrastructure and algorithms, while
Ghanbari et al. [22] investigated different resource allocation strategies for IoT
systems. This second work classified the overviewed works into eight categories:

12 A Survey and Taxonomy of IoT-Fog-Cloud Systems

QoS-aware, context-aware, SLA-based, efficiency-aware, cost-aware, power-aware,
utilisation-aware, and load balancing-aware resource allocation. We found this work
particularly interesting, hence it opened the investigations into the field of IoT.

Puliafito et al. [55] investigated the benefits of applying Fog Computing tech-
niques to support the needs of IoT services and devices. In their survey, they de-
scribed the characteristics of fogs and introduced six IoT application groups exploit-
ing fog capabilities. They also gathered fog hardware and software platforms sup-
porting the needs of these IoT applications.

Table 2.2: Comparison of related surveys according to their main contributions

Survey Year Aim
Yousefpour et al. [77] 2018 Paradigms and research topics for fogs

Hong and Varghese [26] 2018 Resource management in the fog and edge
Rahman et al. [58] 2019 Simulating cloud infrastructure
Svorobej et al. [67] 2019 Fog and edge simulation challenges
Ghanbari et al. [22] 2019 Resource allocation methods for IoT
Puliafito et al. [55] 2019 Fog characteristics for IoT

Our survey 2019 Fog models and software quality of simulators

Table 2.2 summarises the relevant surveys representing the current state of the art
close to our research aims. Though cloud solutions are dominating, some started to
open investigations towards fog, edge, and IoT fields. To the best of our knowledge,
there is no detailed study available targeting the fog modelling capabilities and the
usability of simulation tools. In our work, we still do not neglect cloud and IoT
solutions, hence they are tightly connected to fogs in most cases. We also investigate
the software quality of the available simulators, which has a direct effect on the
learning curve of utilisation and experiment reliability.

Our preliminary observation based on the literature analysis is that most simu-
lation tools started to be developed as cloud simulators, and were later extended
to model IoT and fog systems as well. However, occasionally these extensions were
developed not by the original developer team, but other research groups. In the next
section, we give a short introduction to the main goals and properties of these works
and then compare them in a detailed taxonomy.

2.3 Simulation Environments of IoT-Fog-Cloud Systems

In this section, we present an introduction and detailed comparison of the currently
available simulators in the fields of cloud, fog, and IoT. We considered the following
properties as taxonomy categories for the investigation: (i) the topology and layers of

2.3 Simulation Environments of IoT-Fog-Cloud Systems 13

a simulator, (ii) the type of a simulator (i.e. a generic, event-driven or a specialised,
network simulator), (iii) the date of the latest modification (to help with filtering out-
dated solutions), (iv) the applied cost model in a simulator (i.e. pre-defined, static
or real provider pricing model), (v) geographic location management (mostly for
fog placement optimisation), (vi) utilised sensor model, (vii) configurable network
settings or protocols, (vii) VM management functionality, (viii) power usage or en-
ergy consumption calculations, and finally (ix) support for hierarchical organisation
model (mostly in case of IoT and fog simulators).

2.3.1 Introduction of General Cloud Simulators

As we mentioned before, the life of most simulators we consider started as a cloud or
network simulator. Some stayed at this level, and others were extended to support
the analysis of fog, edge or IoT management. This means that we cannot avoid the
investigation of cloud simulators.

One of the most referred to and widely used simulators is the CloudSim simula-
tion toolkit [11], which is a popular solution for simulating cloud environments. In
CloudSim, users define tasks by creating so-called cloudlets, which are processed by
virtual machines running on cloud resources. This open-source, Java-based solution
is built on SimJava [27]. CloudSim is a discrete event simulator, and its architecture
has five layers (i.e. network, cloud resources, cloud services, VM services, and user
interface structures). Virtual machines in CloudSim have three states, and users can
configure only static usage costs for resources (i.e. memory, bandwidth, CPU, and
storage usage). CloudSim also contains a power model, but it is only restricted to
CPU energy consumption. Communication between components in the network is
modelled with the bandwidth parameter and a delay value.

There are many extensions of CloudSim, focusing on mostly one aspect of Cloud
Computing or providing the implementation for a missing or insufficient feature of
the original software. Unfortunately, it seems that the developers found no need to
collect all of the extensions into a single repository, and there are also many referred
studies without publishing or citing available source code. Next, we introduce the
ones we found relevant to our research.

CloudAnalyst [73] is one of the oldest extensions of CloudSim and contains im-
portant additions by implementing (i) application users, (ii) internet connections,
(iii) simulations defined by time periods, (iv) service brokers. CDOSim [18] is an
extension to simulate cloud deployment options for migration support. The simula-
tor can measure the cost of deployment and its response time. The novelty of this
work is to introduce MIPIPS, which is a fine-grained version of MIPS for low-level
instruction definitions.

TeachCloud [29] is another extension for educational purposes. The main fea-

14 A Survey and Taxonomy of IoT-Fog-Cloud Systems

tures added in this version are: (i) a cloud workload generator, (ii) the MapReduce
framework, and (iii) new cloud network models. EMUSIM [10] has the purpose to
bring emulation and simulation into one tool to predict service behaviour, when the
resource pool is changing. First, an emulation phase can be used to extract informa-
tion on application behaviour, then in the second phase, this information is fed into
a simulation model to arrive at more accurate methods for application simulation.

CEPSim [25] aim to simulate complex event processing (CEP) and stream process-
ing systems in cloud environments. CEP is usually related to Big Data management,
in this version CEP systems are represented by Directed Acyclic Graphs. Users can
define how to process input streams with special queries that can run continuously in
the simulation with user-defined runtime. CloudEval [72] is a CloudSim extension to
support virtual machine consolidation with different migration algorithms. The au-
thors have created a domain-specific language (DSL) for algorithm implementation
for investigating specific VM migration strategies. The proposed DSL is based on the
Groovy programming language, and it contains the following: descriptions for (i) the
data centre and the VM scheduling strategies, (ii) evaluation metrics, and finally (iii)
data collection and performance metrics.

CloudSimSDN simulator [63] is an extension to simulate Software Defined Net-
working (SDN) methods, which makes network elements (e.g. switches) dynamically
programmable. Its new components (e.g. Link, Switch and Host) enable networking
with virtual links in the physical topology. There is also a virtual topology layer in
the top level of the CloudSimSDN architecture. The configuration of a simulation is
based on JSON files which contain specifications for the nodes, policies and band-
width values, and CSV files which contain the workload on the defined topology.

The ContainerCloudSim [52] package was created to respond to the growing
trend of container technologies. It is an extension that enables running contain-
ers on top of VMs in a simulation. In this solution, the Container entity is hosted
by a VM, and the container task has a very similar working as a Cloudlet. Network-
CloudSim [21] extends CloudSim with enhanced network options for modelling the
interconnection of data centres. NetworkCloudlet is a novel component in this ver-
sion, which can be used to simulate different task types (namely communication and
computation tasks). Other extended components are the NetworkDataCenter and
the NetworkHost (which can be managed by the former), these classes make it pos-
sible to simulate network traffic (using bandwidth and latency parameters) through
switches. It also uses the ContainerCloudSim package listed earlier.

DynamicCloudSim [9] was created to simulate instability and dynamic changes
in VM provisioning, which may occur in cases when the host machine serves more
than one virtual machine at the same time. The newly introduced features are the
following: (i) running different types of tasks (i.e. input-output, CPU, bandwidth-
bound) on VMs, (ii) managing instability caused by hardware and network issues,

2.3 Simulation Environments of IoT-Fog-Cloud Systems 15

(iii) managing heterogeneity caused by different types of hosts, (iv) introducing VM
performance changes and noise, and finally (v) defining failures during task execu-
tion. Finally, CloudSim Plus [20] is a redesigned and refactored version of CloudSim,
which aims to provide easier usage and more reliable simulation.

Concerning solutions outside the CloudSim world, the DISSECT-CF cloud simula-
tor [32] is an event-driven simulator written in Java. It can be used to model cloud
Infrastructure-as-a-Service systems, having an energy consumption model both for
physical and virtual machines with min, max and idle power states. Concerning
resource management, there are four possible states of a physical machine, while
virtual machines can be in 11 different states including migration. To model network
communication between nodes, users can configure latency, as well as input, output
and disk bandwidth. For further information, a recent study on its comparison to
CloudSim is available in [41].

DCSim [70] is an event-driven simulator (using the Java programming language).
It was developed for simulating virtualised resource management. The main ability
of DCSim is to provide a VM sharing mechanism for VMs belonging to a single, multi-
tiered application. Its architecture is composed of: DataCentre, Host, VMAllocation,
and there are unique managers for networking, virtual machines, and power con-
sumption. During simulation, the following values are measured: (i) dynamic VM
allocation (migration), (ii) SLA violation, (iii) host operation hours and utilisation,
(iv) power consumption and (v) simulation and algorithm running time.

GroudSim [51] aims to simulate grid and cloud systems in a scalable way. This
Java-based software is a discrete-event simulator with the main ability to provide
cost calculation, and simulations using the background-load of resources. The archi-
tecture is composed of Entity, Job, and Cost elements, and it contains a cost model
using time units of CPU usage, or data usage (in GB).

GreenCloud [35] is an extension of NS-2 packet-level network simulator and is
based on TCL scripts and C++. The main purpose of the simulator is to present
energy-aware cloud data centre analysis including energy-usage measurements of
the system components (i.e. servers, switches, links). Its energy consumption model
includes PUE and DC infrastructure efficiency (both are represented in Watt). The
architecture components can be servers and switches, and the tool is able to simulate
TCP/IP protocols for networking.

ICanCloud [50] is an OMNET++ based simulator (programmed in C++), which
aims to simulate cloud infrastructures. Its novelty is that it introduces a hypervisor
component for managing cloud brokering policies. Its experiments are focused on
the trade-offs between the cost and performance of a given application, which can
be run with Amazon VM instance types only. The architecture has the following ele-
ments: cloud system, hypervisor, application repository, VM repository, and hardware
models. It also contains a cost model, which follows the pay-as-you-go manner. The

16 A Survey and Taxonomy of IoT-Fog-Cloud Systems

virtual machine handling is quite simple, it can execute the jobs, but neglects cloud-
specific network simulation. It uses the Inet framework (included in OMNET++) for
TCP/UDP protocols.

Finally, SPECI [66] was developed with the aim to simulate cloud-scale data cen-
tres focusing on their performance and behaviour, which is based on a discrete-event
simulator called DES Java.

Table 2.3: Comparison of the examined cloud simulators with implementation-related
properties

Simulator Core simulator Last modified Type
or published

CloudSim SimJava 2019 Event-driven
CDOSim CloudSim 2012 Event-driven

NetworkCloudSim CloudSim 2011 Event-driven
TeachCloud CloudSim 2015 Event-driven

CloudAnalyst CloudSim 2009 Event-driven
EMUSIM CloudSim 2012 Event-driven
CEPSim CloudSim 2016 Event-driven

CloudEval CloudSim 2016 Event-driven
CloudSimSDN CloudSim 2019 Event-driven

ContainerCloudSim CloudSim 2019 Event-driven
DynamicCloudSim CloudSim 2017 Event-driven

CloudSim Plus CloudSim 2019 Event-driven
DISSECT-CF - 2018 Event-driven

SPECI DES Java 2009 Event-driven
DCSim - 2014 Event-driven

GroudSim - 2011 Event-driven
GreenCloud NS-2 2011 Network
ICanCloud OMNET++ 2015 Network

2.3 Simulation Environments of IoT-Fog-Cloud Systems 17

Ta
bl

e
2.

4:
Co

m
pa

ri
so

n
of

th
e

ex
am

in
ed

cl
ou

d
si

m
ul

at
or

s
w

it
h

cl
ou

d
m

od
el

lin
g

pr
op

er
ti

es

Si
m

ul
at

or
A

rc
hi

te
ct

ur
e

C
os

t
m

od
el

N
et

w
or

k
m

od
el

V
M

m
an

ag
em

en
t

En
er

gy
m

od
el

C
lo

ud
Si

m
N

et
w

or
k,

C
lo

ud
R

es
ou

rc
es

,
C

lo
ud

Se
rv

ic
es

,V
M

se
rv

ic
es

an
d

U
se

r
In

te
rf

ac
e

St
ru

ct
ur

e

St
at

ic
co

st
fo

r
ph

ys
ic

al
re

so
ur

ce
s:

m
em

or
y,

st
or

ag
e,

ba
nd

w
id

th
,a

nd
C

PU
us

ag
e

B
an

dw
id

th
an

d
th

e
de

la
y

va
lu

e
be

tw
ee

n
th

e
en

ti
ti

es

3
st

at
es

of
V

M
s

an
d

it
ex

ec
ut

es
C

lo
ud

le
ts

Po
w

er
m

od
el

is
ba

se
d

on
m

ax
po

w
er

an
d

a
co

ns
ta

nt
(s

ta
ti

c
po

w
er

)
va

lu
es

C
D

O
Si

m
Si

m
ila

r
to

pa
ra

m
et

er
s

of
C

lo
ud

Si
m

N
et

w
or

kC
lo

ud
Si

m
N

et
w

or
kD

at
aC

en
te

r,
Sw

it
ch

an
d

N
et

w
or

kH
os

t

St
at

ic
co

st
fo

r
ph

ys
ic

al
re

so
ur

ce
s:

m
em

or
y,

st
or

ag
e,

ba
nd

w
id

th
,a

nd
C

PU
us

ag
e

Si
m

ul
at

e
ne

tw
or

k
tr

af
fic

(b
an

dw
id

th
+

la
te

nc
y)

th
ro

ug
h

sw
it

ch
es

3
st

at
es

of
V

M
s

an
d

it
ex

ec
ut

es
C

lo
ud

le
ts

Po
w

er
m

od
el

is
ba

se
d

on
m

ax
po

w
er

an
d

a
co

ns
ta

nt
(s

ta
ti

c
po

w
er

)
va

lu
es

Te
ac

hC
lo

ud
Si

m
ila

r
to

pa
ra

m
et

er
s

of
C

lo
ud

Si
m

C
lo

ud
A

na
ly

st
Si

m
ila

r
to

pa
ra

m
et

er
s

of
C

lo
ud

Si
m

EM
U

SI
M

Si
m

ila
r

to
pa

ra
m

et
er

s
of

C
lo

ud
Si

m
C

EP
Si

m
Si

m
ila

r
to

pa
ra

m
et

er
s

of
C

lo
ud

Si
m

C
lo

ud
Ev

al
Si

m
ila

r
to

pa
ra

m
et

er
s

of
C

lo
ud

Si
m

C
lo

ud
Si

m
SD

N
Ph

ys
ic

al
To

po
lo

gy
(L

in
k,

Sw
it

ch
an

d
H

os
t

an
d

C
lo

ud
D

at
a

C
en

te
r)

an
d

Vi
rt

ua
lT

op
ol

og
y

St
at

ic
co

st
fo

r
ph

ys
ic

al
re

so
ur

ce
s:

m
em

or
y,

st
or

ag
e,

ba
nd

w
id

th
,a

nd
C

PU
us

ag
e

Vi
rt

ua
ll

in
k

w
it

h
ba

nd
w

id
th

va
lu

es
3

st
at

es
of

V
M

s
an

d
it

ex
ec

ut
es

C
lo

ud
le

ts

Po
w

er
m

od
el

is
ba

se
d

on
m

ax
po

w
er

an
d

a
co

ns
ta

nt
(s

ta
ti

c
po

w
er

)
va

lu
es

C
on

ta
in

er
C

lo
ud

Si
m

Si
m

ila
r

to
pa

ra
m

et
er

s
of

C
lo

ud
Si

m

D
yn

am
ic

C
lo

ud
Si

m
Si

m
ila

r
to

pa
ra

m
et

er
s

of
C

lo
ud

Si
m

D
yn

am
ic

V
M

w
it

h
ta

sk
’s

le
ng

th
,I

/O
an

d
ba

nd
w

id
th

co
ef

fic
ie

nt

Po
w

er
m

od
el

is
ba

se
d

on
m

ax
po

w
er

an
d

a
co

ns
ta

nt
(s

ta
ti

c
po

w
er

)
va

lu
es

C
lo

ud
Si

m
Pl

us
Si

m
ila

r
to

pa
ra

m
et

er
s

of
C

lo
ud

Si
m

D
IS

SE
C

T-
C

F

Ev
en

t
Sy

st
em

,U
ni

fie
d

re
so

ur
ce

sh
ar

in
g,

En
er

gy
M

od
el

lin
g,

In
fr

as
tr

uc
tu

re
Si

m
ul

at
io

n
an

d
In

fr
as

tr
uc

tu
re

M
an

ag
em

en
t

N
/A

La
te

nc
y,

in
pu

t
ba

nd
w

id
th

,
ou

tp
ut

ba
nd

w
id

th
an

d
di

sc
ba

nd
w

id
th

be
tw

ee
n

no
de

s

11
st

at
es

of
Vi

rt
ua

lM
ac

hi
ne

an
d

it
ex

ec
ut

es
co

m
pu

te
ta

sk
s

En
er

gy
m

od
el

fo
r

PM
an

d
V

M
in

cl
ud

in
g

m
in

-,
m

ax
-

an
d

id
le

po
w

er
SP

EC
I

N
/A

D
C

Si
m

D
at

aC
en

tr
e,

H
os

t
an

d
V

M
A

llo
ca

ti
on

N
/A

B
an

dw
id

th
m

an
ag

er
si

m
ul

at
ed

V
M

m
an

ag
er

,
an

d
V

M
al

lo
ca

ti
on

Po
w

er
m

od
el

in
cl

ud
es

id
le

-
an

d
m

ax
po

w
er

G
ro

ud
Si

m
En

ti
ti

es
(C

lo
ud

Si
te

,G
ri

dS
it

e)
,

Jo
b,

C
os

t
C

os
t

ca
lc

ul
at

io
n

fo
r

jo
b

ex
ec

ut
io

n
B

ac
kg

ro
un

d
lo

ad
on

re
so

ur
ce

s
N

/A
N

/A

G
re

en
C

lo
ud

Se
rv

er
s,

Sw
it

ch
es

an
d

Li
nk

s
N

/A
TC

P/
IP

N
/A

PU
E

an
d

D
C

in
fr

as
tr

uc
tu

re
ef

fic
ie

nc
y

IC
an

C
lo

ud

C
lo

ud
Sy

st
em

,h
yp

er
vi

so
r,

ap
pl

ic
at

io
n

re
po

si
to

ry
,

V
M

s
re

po
si

to
ry

ha
rd

w
ar

e
m

od
el

s

N
/A

N
/A

N
/A

N
/A

18 A Survey and Taxonomy of IoT-Fog-Cloud Systems

Table 2.5: Comparison of the examined cloud simulators with software metrics

Simulator Language
Lines of

code

Comments

(%)

Duplication

(%)
Files Bugs Vulnerabilities

Code

smells

CloudSim Java, XML 20,752 33.9 21.4 225 33 136 1.2k

CDOSim Java
N/A

NetworkCloudSim Java

TeachCloud Java, XML, JSON 33,905 49.1 N/A 395 N/A

CloudAnalyst Java, HTML,XML 44,861 12.1 N/A 248 N/A

EMUSIM Java, XML, Python 1,665 3.33 N/A 21 N/A

CEPSim Java, Scala 5,875 20.5 N/A 82 N/A

CloudEval Java, Groovy N/A

CloudSimSDN Java, XML 12,585 16.8 15.7 120 23 109 1.2k

ContainerCloudSim Java N/A

DynamicCloudSim Java, XML 16,778 31.5 14.2 173 65 428 754

CloudSim Plus Java, XML 32,425 34.8 5.6 441 36 2 1.3k

DISSECT-CF Java, XML 5,152 42.6 0.3 62 9 17 173

SPECI Java N/A

DCSim Java, Markdown 9,006 13.1 N/A 143 N/A

GroudSim Java N/A

GreenCloud C++, TCL script N/A

ICanCloud
C++, HTML,

XML, JS
2,901,003 4.1 N/A 12,463 N/A

2.3.2 Introduction of IoT Simulators

Some of these cloud simulators followed the new trend represented by the Internet
of Things. Such things are sensors and small devices that can be connected to the
Internet, and used to monitor environments or gather special-purpose data. They
are rarely used ”alone”, cloud services are generally needed to store and process
their data. Once such data management is performed at the cloud network edge
or close to the users on purpose, we arrive at the latest trend of Fog Computing.
This reasoning led us to introduce the category of IoT simulators in our research.
The revised cloud simulators had the aim to model entities of the Internet of Things
world, which in some cases led to the introduction of fog features. Nevertheless, we
can also find solutions focusing on IoT system operation, somewhat neglecting or
hiding cloud and fog capabilities. In our view, IoT simulators belong to a separate
category, hence IoT devices and sensors can be modelled as independent entities of
data sources having special properties (e.g. data generation frequency, behaviour
models, limited connectivity). In this section, we compare works focusing on IoT
management.

SysML4IoT [14] is an extension of SysML and it is designed for model-driven
development for IoT systems. In SysML4IoT an IoT system has two main compo-

2.3 Simulation Environments of IoT-Fog-Cloud Systems 19

nent groups: devices (Tag, Sensor, Actuator), and services (Human, Digital Artifact),
and this approach follows the publish/subscribe pattern to specify sensor behaviour.
With this tool a high-level model can be designed of an IoT system that can later be
transformed into a source code, hence an implementation of a system.

CrowdSenSim [19] is a simulator designed for mobile crowd-sensing. The main
features are the following: (i) users can scan the layout of cities, (ii) can manage user
mobility and (iii) perform energy measurements for sensing tasks. The modules or
layers are the following: User Mobility, City Layout, and CrowdSensing module. For
managing mobility, the latitude, longitude, and altitude of a device are considered,
and it may also use real sensors (e.g. accelerometer, temperature and pressure). This
simulator contains a power model using idle, transmission and reception modes, and
the cost of the sensing is also measured.

The DPWSim [24] simulation toolkit helps to develop and test IoT applications
with web services using the DPWS standard without any physical devices. DPWS
works with publish/subscribe mechanisms on the architecture based on spaces, de-
vices, operations and events. The main abilities of the DPWSim are the following: (i)
Platform Independence due to JVM, (ii) virtual device management for DPWS and it
supports SOAP and HTTP protocols.

SimIoT [65] is an extension of SimIC with an IoT layer, and the authors demon-
strate its utilisation with an IoT-based healthcare application use case. This extension
provides an extra layer for communication between the entities. Its architecture has
three main layers: User level (device-sensor), SimIoT level (communication broker),
and SimIC level (cloud entities). The virtual machines are used to execute tasks, and
there is a bandwidth constraint for governing the network load.

A few studies mention the use of special software to simulate or manage IoT
systems. Angelakis et al. [3] used the Mixed Integer Linear Program in Matlab to
model resource allocation problems in heterogeneous IoT networks. Simulink [37] is
also a Matlab-based solution that provides secure model-based design for IoT system
analysis. Thomas and Irvine [69] presented an LTE approach for IoT sensor networks.
They performed experiments with the OMNET++ network simulator to investigate
how many sensor nodes can be transmitted per resource block.

The SmartSim tool [13] was designed for energy-metering in IoT smart homes.
This simulation tool was developed in Python, and it is able to generate smart device
energy traces based on energy models (with frequency, duration, time and activity).
There is a semi-simulated solution for modelling IoT, fog, and cloud systems called
MobIoTSim [34], which is an Android-based software for IoT device simulation and
management. It was designed with the aim to avoid expensive device and sensor
purchases for developing and evaluating IoT applications. By executing simulations,
the mimicked devices can connect to real cloud providers (e.g. IBM Bluemix), and
communicate over the network using MQTT and HTTP protocols. MobIoTSim has

20 A Survey and Taxonomy of IoT-Fog-Cloud Systems

the following layers: sensor, device, application, and cloud.
IOTSim [78] is a CloudSim extension that supports Internet of Things and Big

Data simulation. IoT has appeared in the CloudSim model as a three-layer ar-
chitecture: perception, network, and application layer, with the following details:
CloudSim Simulation Layer, Storage Layer, Big Data Processing Layer, and User Code
Layer. The aim of this work was to simulate a MapReduce approach for Big Data
processing, hence the novelty of this work is the MapReduce function implemented
by the MapCloudlet and ReduceCloudlet entities. Unfortunately, no detailed infor-
mation can be found on sensors or actuators, and there was no available source code
cited.

Finally, DISSECT-CF-IoT [P1] is an extension of the DISSECT-CF cloud simulator.
The novelty of this extension is the sensor model, which contains detailed configura-
tion options (e.g. measurement delay, data generation frequency, and generated file
size parameters), detailed network configurations for IoT devices, and different ap-
proaches for multi-cloud management strategies for IoT applications. It also contains
extensible pricing models of four real providers (Amazon, Azure, IBM Bluemix, and
Oracle), both for IoT and cloud-side costs. To enable large-scale simulations, it uses
different XML description files for easy configuration management.

Table 2.6: Comparison of the examined IoT simulators with implementation-related
properties

Simulator Core simulator
Last modified/

published Type

SysML4IoT - 2016 -
CrowdSenSim v1.0.0 - 2017 Event-driven

DPWSim - 2014
Service-messaging

events
SimIoT SimIC 2014 N/A

SmartSim - 2016 N/A
IOTSim CloudSim 2016 Event-driven

MobIoTSim Android 2019 Semi-simulated
DISSECT-CF-IoT DISSECT-CF 2019 Event-driven

2.3 Simulation Environments of IoT-Fog-Cloud Systems 21

Ta
bl

e
2.

7:
Co

m
pa

ri
so

n
of

th
e

ex
am

in
ed

Io
T

si
m

ul
at

or
s

w
it

h
Io

T
m

od
el

lin
g

pr
op

er
ti

es

Si
m

ul
at

or
A

rc
hi

te
ct

ur
e

C
os

t
m

od
el

G
eo

lo
ca

ti
on

Se
ns

or
m

od
el

N
et

w
or

k
m

od
el

V
M

m
an

ag
em

en
t

En
er

gy
m

od
el

Sy
sM

L4
Io

T
N

/A

C
ro

w
dS

en
Si

m
v1

.0
.0

U
se

r
M

ob
ili

ty
,C

it
y

La
yo

ut

an
d

C
ro

w
dS

en
si

ng
m

od
ul

e

O
nl

y
en

er
gy

co
st

of
th

e
se

ns
in

g

La
ti

tu
de

,l
on

gi
tu

de

an
d

al
ti

tu
de

R
ea

ls
en

so
rs

N
/A

po
w

er
in

id
le

,

tr
an

sm
is

si
on

an
d

re
ce

pt
io

n
m

od
e

D
PW

Si
m

Sp
ac

es
,D

ev
ic

es
,

op
er

at
io

ns
an

d
Ev

en
ts

N
/A

N
/A

N
/A

SO
A

P
an

d
H

T
TP

pr
ot

oc
ol

s
N

/A
N

/A

Si
m

Io
T

U
se

r
le

ve
l(

de
vi

ce
-s

en
so

r)
,

Si
m

Io
T

le
ve

l(
co

m
m

un
ic

at
io

n
br

ok
er

)

Si
m

IC
le

ve
l(

C
lo

ud
En

ti
ti

es
)

N
/A

N
/A

N
/A

B
an

dw
id

th
co

ns
tr

ai
nt

V
M

fo
r

ex
ec

ut
e

ta
sk

N
/A

Sm
ar

tS
im

N
/A

IO
TS

im

C
lo

ud
Si

m
Si

m
ul

at
io

n,

St
or

ag
e,

B
ig

D
at

a

Pr
oc

es
si

ng
,

U
se

r
C

od
e

La
ye

r

Si
m

ila
r

to
pa

ra
m

et
er

s
of

C
lo

ud
Si

m

M
ob

Io
TS

im

Se
ns

or
,D

ev
ic

e,

A
pp

lic
at

io
n

an
d

C
lo

ud
la

ye
r

N
/A

N
/A

N
/A

M
Q

T
T

N
/A

N
/A

D
IS

SE
C

T-
C

F-
Io

T
Se

ns
or

,S
m

ar
t

D
ev

ic
e,

an
d

C
lo

ud

D
yn

am
ic

Io
T

an
d

cl
ou

d-
si

de
co

st
s

N
/A

D
el

ay
,f

re
qu

en
cy

an
d

fil
e

si
ze

La
te

nc
y,

in
pu

t
ba

nd
w

id
th

,

ou
tp

ut
ba

nd
w

id
th

an
d

di
sc

ba
nd

w
id

th
be

tw
ee

n

no
de

s
fo

r
de

vi
ce

s
an

d
no

de
s

11
st

at
es

of

Vi
rt

ua
lM

ac
hi

ne
an

d

it
ex

ec
ut

es
co

m
pu

te
ta

sk
s

En
er

gy
m

od
el

fo
r

PM
an

d
V

M

in
cl

ud
in

g
m

in
-,

m
ax

-

an
d

id
le

po
w

er

22 A Survey and Taxonomy of IoT-Fog-Cloud Systems

Table 2.8: Comparison of the examined IoT simulators with software metrics

Simulator Language
Lines of

code

Comments

(%)

Duplication

(%)
Files Bugs Vulnerabilities

Code

smells

SysML4IoT N/A

CrowdSenSim v1.0.0 HTML, JS, C++, Python 44,437 2.8

N/A

346

N/A

DPWSim Java,HTML 55,346 51.2 551

SimIoT Java N/A N/A

SmartSim Python 946 12.7 13

IOTSim Java N/A N/A

MobIoTSim Java,XML 5,490 4.6 75

DISSECT-CF-IoT Java,XML 7,160 37.1 0.3 91 23 90 306

2.3.3 Introduction of Fog Simulators

Finally, we arrive at the latest category of fog simulators responding to the current
trend called Fog Computing. In this category, we focus on key properties required to
model a Fog Computing environment. In their development we can also identify the
close relation to clouds: most of them are extensions of cloud or IoT simulators. Nev-
ertheless, they follow different architectural models: some have centralised, while
some more decentralised, peer-to-peer communication schemes. As a result, under-
standing the model elements, functions, and implementation details can be very hard
and time-consuming; that is one of the issues our survey aims to relax.

Brogi et al. [8] presented a novel cost model for deploying applications on a fog
infrastructure. The approach is based on a simulation prototype called FogTorchΠ,
which determines a deployment on fog according to actual resource consumption
and cost needs. To calculate these metrics, the simulator uses Monte Carlo methods.
The main capabilities of this simulator are the monthly cost calculation extended
with subscription/data transfer cost of IoT devices (using bandwidth and latency pa-
rameters), and it takes into account geolocation information. The cost model differ-
entiates two methods: (i) to choose one pre-defined virtual machine with the given
costs, or (ii) to build the necessary units of the CPU cores, RAM, and HDD for a vir-
tual machine. The connections of fog nodes and clouds have different types, and both
vertical and horizontal hierarchies are possible. The realisation of an IoT-Fog-Cloud
architecture follows the 3-tier model sensor-fog-cloud, but it lacks some important
features of cloud/fog simulation (e.g. virtual machine simulation and management).
This tool focuses on providing a fog-searching algorithm for the given parameters.
FogDirSim is a closely related simulation tool from the same authors, which provides
compatibility with CISCO FogDirector across REST services to securely manage IoT
applications on fog architectures.

Abbas et al. [1] presented a work using the OPNET network simulator and aims

2.3 Simulation Environments of IoT-Fog-Cloud Systems 23

to present the fog security service for end-to-end security between the fog layer and
IoT devices. They represent the difference between the cloud-fog-device layer archi-
tecture and the fog-device architecture with a decentralised approach. The authors
describe an encryption solution for the fog layer and its devices in a mixed real-life
system and simulation possibilities. First, they run a scenario with real devices (e.g.
iPhone, Samsung Galaxy) to get some benchmark values, then they use the OPNET
network simulator parameterised with the measured values to get information about
different traffic loads.

Tychalas and Karatza proposed PDES [71] for Fog Computing, the Parallel Dis-
crete Event Simulation implemented in the C programming language. They defined
a system with the following parameters: a cloud of 128 VMs, a cluster of 32 rasp-
berries, a cluster of 64 PCs and 64 smartphones. If a task arrives to the system, it
can be stored in a resource queue. The tasks are independent, and they prefer the
shortest queue with the lowest load for placing a task. There are three thresholds
in the system for task allocation (representing the cloud, raspberry and smartphone
categories). It seems that there is no possibility for the detailed and dynamic config-
uration of simulated system components, the provided solution focuses on analysing
task scheduling algorithms to decrease the response time.

The FogNetSim++ [56] is built on the OMNeT++ discrete event simulator, which
focuses on network simulation. This simulator was designed to provide configuration
options to handle fog networks (e.g. fog node scheduling algorithms and devices
hand-over). The implementation programming language is C++. The main capabil-
ities of this simulator are the handling of communication protocols such as MQTT or
CoAP, and the different mobility models such as LinearMobility or TractorMobility.

Edge-Fog [44] is a Python-based simulator, in which a fog layer is represented
by networking devices (e.g. routers and switches). The authors use this tool to
present their LPCF algorithm (i.e. least processing cost first), which orders tasks to
available nodes by minimising processing time and network costs. This approach is
decentralised, thus the edge layer has a device-to-device connection.

The Yet Another Fog Simulator (YAFS) [36] is proposed to simulate application
deployment on a fog infrastructure. The main capabilities of the simulator are the
following: (i) dynamic application module allocation, (ii) network failures, and (iii)
user mobility. YAFS is a Python-based discrete event simulator and provides JSON-
based scenario definition. The simulation results contain information such as net-
work utilisation, response time, and network delay.

EdgeNetworkCloudSim [61] is an extension of CloudSim that supports the edge
computing paradigm focusing on consolidation and orchestration on the edge (mostly
mobile) devices. EdgeNetworkCloudSim is based on NetworkCloudSim, and the ex-
tensions are the following: EdgeService models the service chain, EdgeDatacenter-
Broker communicates with a user, and EdgeVms helps to define a service app.

24 A Survey and Taxonomy of IoT-Fog-Cloud Systems

The PureEdgeSim2 tool was proposed to design and model cloud, fog, and edge
applications focusing on the high scalability of devices and heterogeneous systems.
PureEdgeSim is based on CloudSim Plus, and it uses XML descriptions for the simula-
tion, where the users can configure the data and parameters of geographical location,
energy model and virtual machine settings.

One of the most referred fog simulators is iFogSim [23], which is also based on
CloudSim. iFogSim can be used to simulate real systems and follows the sensing,
processing and actuating model, therefore, the components are separated into these
three categories. The main physical components are the following: (i) fog devices
(including cloud resources, fog resources, smart devices) with the possibility to con-
figure CPU, RAM, MIPS, uplink- and downlink bandwidth, busy and idle power val-
ues, (ii) actuators with geographic location and reference to the gateway connection,
(iii) sensors that generate data in the form of a tuple representing information. The
main logical components aim to model a distributed application: the (i) AppModule
is a processing element of iFogSim, and the (ii) AppEdge realises the logical data
flow between the virtual machines. The main management components are as fol-
lows: the (i) Module Mapping searches for a fog device to serve a virtual machine,
if no such device is found, the request is sent to an upper-tier object, and the (ii)
Controller launches the application on a fog device. For simulating fog systems, first,
we have to define the physical components, then the logical components, and finally
the controller entity. Although numerous articles and online source codes are avail-
able for the usage of this simulator, based on our experiments suggest that there is a
lack of source code comments for many methods, classes, and variables. As a result,
application modelling with this tool requires a relatively long learning curve, and its
operations take valuable time to understand. After its appearance, it has been used
for many research works and various experiments. For example, in [47] a smart city
network architecture is presented for Fog Computing called FOCAN as a case study,
and in [5] the authors proposed to combine Fog and the Internet of Everything into
the so-called Fog of Everything paradigm.

There are also more advanced extensions of iFogSim. MyiFogSim [38] was de-
signed to manage virtual machine migration for mobile users. The main capability
of this simulator is the modelling of user mobility and its connection with the VM
migration policy. The evaluation contains a comparison to a simulation without VM
migration. Another extension is the iFogSimWithDataPlacement [45] tool, which
proposed a way for data management investigation on how data is stored in a fog
system. It also considers latency, network utilisation, and energy consumption for
data placement. The authors presented a parallel Floyd-Warshall algorithm to define
the shortest distance between the nodes for optimal data placement.

2PureEdgeSim simulator online (accessed in June, 2019):
https://github.com/CharafeddineMechalikh/PureEdgeSim

2.3 Simulation Environments of IoT-Fog-Cloud Systems 25

EdgeCloudSim [64] is another CloudSim extension that is available on GitHub3.
The main capabilities of this simulator are the network modelling extension for
WLAN, WAN, and the device mobility. They aimed to respond to the disadvantage of
iFogSim’s simple network model, which ignores network load and does not provide
content mobility.

SpanEdge [60] is another decentralised tool related to edge computing, aiming
to model data stream processing. Developers can build up a geographically dis-
tributed network by installing the parts of a stream processing application near the
data source for latency and bandwidth reduction. We can also find simulation solu-
tions in the field of Fog Computing exploiting the use of Matlab, Docker or other real
service APIs. Zhang et al. [79] proposed to investigate simulated resource allocation
in a 3-tier fog network by using the MatLab framework. They aim to provide man-
agement functionalities for data service operators, data service subscribers, and fog
nodes.

DockerSim [49] aims to support the analysis of container-based SaaS systems
in simulated environments. It is based on the OMNET++ and iCanCloud network
simulators to model container behaviour, network, protocol and OS process schedul-
ing behaviour. EmuFog [43] is an extensible emulation framework for fog infras-
tructures, and also a useful tool for emulating real applications. After designing a
network topology, EmuFog enables connecting fog nodes in the topology and to run
Docker applications on it.

DISSECT-CF-Fog [P7] is a direct extension of DISSECT-CF-IoT, written in Java pro-
gramming language. The purpose of this simulator extension is to model fog devices
and nodes, and by building on the core DISSECT-CF simulator and on DISSECT-CF-
IoT extension functions, it is able to model IoT-Fog-Cloud systems. The main ben-
efit of this fog extension is the possibility of detailed configuration settings through
XML configuration files, and it requires only minimal programming knowledge to
define additional scenarios. DISSECT-CF-Fog contains its own simulation time unit
for the general and time-independent simulations. The network operations, such as
bandwidth, latency simulations, and file transfers between the physical components
are supported by its core simulator. To create a physical topology, any horizontal
and vertical connections are allowed. The IoT layer provides the management of
smart devices and those sensors with the ability to simulate sensor measurement
time and data generation frequency with size configuration. Its application manage-
ment layer handles the VMs and pairs the compute tasks (generated based on the
received amount of data) to the VMs. The cost module is responsible for evaluating
pricing methods, capable of calculating both dynamic cloud and IoT-side costs based
on real provider schemes. Finally, the logical dataflow is defined by the physical

3EdgeCloudSim simulator online (accessed in June, 2019): https://github.com/CagataySonmez/
EdgeCloudSim

26 A Survey and Taxonomy of IoT-Fog-Cloud Systems

topology by default for simplicity.

Table 2.9: Comparison of the examined fog simulators with implementation-related
properties

Simulator Core simulator
Last modified/

published Type

FogTorchΠ - 2018 N/A
FogDirSim - 2018 N/A

OPNET - 2019 Network
PDES - 2018 Event-driven

FogNetSim++ OMNET++ 2018 Network
Edge-Fog - 2017 N/A

YAFS - 2019 Event-driven
EdgeNetworkCloudSim NetworkCloudSim 2017 Event-driven

PureEdgeSim CloudSim Plus 2019 Event-driven
iFogSim CloudSim 2017 Event-driven

MyiFogSim iFogSim 2017 Event-driven
iFogSimWithDataPlacement iFogSim 2018 Event-driven

EdgeCloudSim CloudSim 2019 Event-driven
SpanEdge - 2016 N/A

Zhang et al. - Matlab - 2017 N/A
DockerSim iCanCloud 2017 Network

EmuFog - 2019 Emulator
DISSECT-CF-Fog DISSECT-CF-IoT 2019 Event-driven

2.3 Simulation Environments of IoT-Fog-Cloud Systems 27

Ta
bl

e
2.

10
:

Co
m

pa
ri

so
n

of
th

e
ex

am
in

ed
fo

g
si

m
ul

at
or

s
w

it
h

fo
g

m
od

el
lin

g
pr

op
er

ti
es

Si
m

ul
at

or
A

rc
hi

te
ct

ur
e

C
os

t
m

od
el

G
eo

lo
ca

ti
on

Se
ns

or
m

od
el

N
et

w
or

k
m

od
el

En
er

gy
m

ea
su

re
m

en
t

Fo
gT

or
ch

Π
C

lo
ud

D
at

a
C

en
tr

e,
Fo

g
N

od
e

an
d

Th
in

g
N

/A
C

oo
rd

in
at

es
C

oo
rd

in
at

es
La

te
nc

y,
ba

nd
w

id
th

N
/A

N
/A

Fo
gD

ir
Si

m
N

/A

O
PN

ET
D

ev
ic

e,
Fo

g
an

d
C

lo
ud

N
/A

B
en

ch
m

ar
ke

d
va

lu
es

N
/A

B
en

ch
m

ar
ke

d
va

lu
es

N
/A

N
/A

PD
ES

N
/A

Fo
gN

et
Si

m
+

+
D

ev
ic

es
,F

og
no

de
s,

B
ro

ke
r

no
de

an
d

B
as

e
st

at
io

n

Pa
y-

as
-y

ou
-g

o,
su

bs
cr

ip
ti

on
(m

on
th

ly
,e

tc
.)

,
pa

y-
fo

r-
re

so
ur

ce
s

an
d

hy
br

id
m

od
el

R
eg

io
ns

Se
ns

or
no

de
is

da
ta

ge
ne

ra
to

r
an

d
us

er
no

de
ge

ne
ra

te
or

re
ce

iv
e

da
ta

,
w

ir
e

an
d

w
ir

el
es

s
no

de
s

Ex
ec

ut
io

n
de

la
y,

pa
ck

et
er

ro
r

ra
te

,
ha

nd
ov

er
s,

la
te

nc
y

N
/A

En
er

gy
m

od
el

fo
r

de
vi

ce
s

an
d

fo
g

no
de

s
ba

se
d

th
e

ta
sk

co
m

pu
te

d

Ed
ge

-F
og

Ed
ge

an
d

Fo
g

an
d

D
at

a
St

or
e

la
ye

r
N

/A

YA
FS

C
lo

ud
,F

og
,

Se
ns

or
an

d
A

ct
ua

to
r

C
os

t
of

ex
ec

ut
io

n
in

cl
ou

d
C

oo
rd

in
at

es
In

st
ru

ct
io

ns
,b

yt
es

B
an

dw
id

th
an

d
lin

k
pr

op
ag

at
io

n
N

/A
Po

w
er

in
w

at
t

Ed
ge

N
et

w
or

kC
lo

ud
Si

m
Ed

ge
Se

rv
ic

e,
Ed

ge
D

at
ac

en
te

rB
ro

ke
r˜

an
d

Ed
ge

V
m

s
Si

m
ila

r
to

pa
ra

m
et

er
s

of
C

lo
ud

Si
m

Si
m

ul
at

e
ne

tw
or

k
tr

af
fic

(b
an

dw
id

th
+

la
te

nc
y)

th
ro

ug
h

sw
it

ch
Si

m
ila

r
to

pa
ra

m
et

er
s

of
C

lo
ud

Si
m

Pu
re

Ed
ge

Si
m

C
lo

ud
,F

og
an

d
Ed

ge
N

/A
C

oo
rd

in
at

es
N

/A

N
et

w
or

k
us

ag
e

(L
A

N
an

d
W

A
N

ba
nd

w
id

th
),

la
te

nc
y

la
te

nc
y

re
qu

ir
em

en
t

al
lo

ca
te

d
ba

nd
w

id
th

fo
r

ea
ch

ta
sk

Ta
sk

fil
e

si
ze

,
ta

sk
s

C
PU

ut
ili

sa
ti

on
3

st
at

e
of

V
M

s

En
er

gy
co

ns
um

pt
io

n,
ba

tt
er

y
ca

pa
ci

ty
,

id
le

an
d

m
ax

co
ns

um
pt

io
n

iF
og

Si
m

Se
ns

or
s,

A
ct

ua
to

rs
,

Fo
g

de
vi

ce
s

an
d

D
at

a
C

en
te

rs

St
at

ic
co

st
fo

r
ph

ys
ic

al
re

so
ur

ce
s:

m
em

or
y,

st
or

ag
e,

ba
nd

w
id

th
an

d
C

PU
us

ag
e

La
ti

tu
de

,l
on

gi
tu

de

O
ut

pu
t

si
ze

,
la

te
nc

y,
C

PU
us

ag
e

le
ng

th
,

ne
tw

or
k

us
ag

e
le

ng
th

U
pl

in
k

ba
nd

w
id

th
,

do
w

nl
in

k
ba

nd
w

id
th

,
an

d
up

lin
k

la
te

nc
y

3
st

at
e

of
V

M
s

ex
ec

ut
es

Tu
pl

es

Po
w

er
m

od
el

is
ba

se
d

on
m

ax
po

w
er

an
d

a
co

ns
ta

nt
st

at
ic

po
w

er
)

va
lu

es

M
yi

Fo
gS

im

M
ob

ile
se

ns
or

s,
M

ob
ile

ac
tu

at
or

s,
M

ob
ile

˜
de

vi
ce

s,
an

d
D

at
a

ce
nt

re

St
at

ic
co

st
fo

r
ph

ys
ic

al
re

so
ur

ce
s:

m
em

or
y,

st
or

ag
e,

ba
nd

w
id

th
an

d
C

PU
us

ag
e

C
oo

rd
in

at
es

Si
m

ila
r

to
pa

ra
m

et
er

s
of

iF
og

Si
m

iF
og

Si
m

W
it

hD
at

aP
la

ce
m

en
t

N
ew

co
m

po
ne

nt
s:

D
at

aP
la

ce
m

en
t,

In
fr

as
tr

uc
tu

re
Pa

rt
it

io
n,

W
or

kL
oa

d
R

ep
ar

ti
ti

on

Si
m

ila
r

to
pa

ra
m

et
er

s
of

iF
og

Si
m

Ed
ge

C
lo

ud
Si

m
C

lo
ud

Si
m

+
N

et
w

or
k,

Ed
ge

Se
rv

er
an

d
M

ob
ile

C
lie

nt

St
at

ic
co

st
fo

r
ph

ys
ic

al
re

so
ur

ce
s:

m
em

or
y,

st
or

ag
e,

ba
nd

w
id

th
an

d
C

PU
us

ag
e

C
oo

rd
in

at
es

N
/A

Tr
an

sm
is

si
on

de
la

y,
W

LA
N

/W
A

N
,

up
lo

ad
/d

ow
nl

oa
d

da
ta

Si
m

ila
r

to
pa

ra
m

et
er

s
of

C
lo

ud
Si

m

Sp
an

Ed
ge

Ed
ge

D
at

a
C

en
tr

e,
˜

C
en

tr
al

D
at

a
C

en
tr

e
w

it
h

m
as

te
r-

w
or

ke
r

co
nn

ec
ti

on

N
/A

N
/A

Si
ze

in
B

yt
es

,
m

es
sa

ge
C

ou
nt

La
te

nc
y

N
/A

N
/A

M
at

la
b

(Z
ha

ng
et

al
.)

N
/A

D
oc

ke
rS

im
Em

uF
og

D
IS

SE
C

T-
C

F-
Fo

g
Se

ns
or

,S
m

ar
t

D
ev

ic
e,

Fo
g

N
od

e
an

d
C

lo
ud

D
yn

am
ic

Io
T

an
d

cl
ou

d-
si

de
co

st
s

C
oo

rd
in

at
es

D
el

ay
,f

re
qu

en
cy

an
d

fil
e

si
ze

La
te

nc
y,

in
pu

t
ba

nd
w

id
th

,
ou

tp
ut

ba
nd

w
id

th
an

d
di

sc
ba

nd
w

id
th

be
tw

ee
n

no
de

s
fo

r
de

vi
ce

s
an

d
no

de
s

11
st

at
es

of
Vi

rt
ua

lM
ac

hi
ne

an
d

it
ex

ec
ut

es
co

m
pu

te
ta

sk
s

En
er

gy
m

od
el

fo
r

PM
an

d
V

M
in

cl
ud

in
g

m
in

-,
m

ax
-

an
d

id
le

po
w

er

28 A Survey and Taxonomy of IoT-Fog-Cloud Systems

Table 2.11: Comparison of the examined fog simulators with software metrics

Simulator Language
Lines of

code

Comments

(%)

Duplication

(%)
Files Bugs Vulnerabilities

Code

smells

FogTorchΠ Java, XML 2,748 15.9 8.3 39 21 31 308

FogDirSim Python, YAML 5,641 1.4

N/A

84

N/A

OPNET N/A
N/A

PDES C N/A

FogNetSim++ C++ 20,199 5.7 59

Edge-Fog Python 887 17.2 66

YAFS Python, JS, HTML, JSON 31,597 22.0 208

EdgeNetworkCloudSim Java, HTML 113,654 27.5 571

PureEdgeSim Java, XML 3,308 12.2 4.3 30 18 101 301

iFogSim Java, XML 27,754 25.3 24.3 290 124 248 1.5k

MyiFogSim Java, XML 32,723 23.2 23.5 328 174 275 2k

iFogSimWithDataPlacement Java, Protocol Buffers 212,780 7.6 N/A 2,313 N/A

EdgeCloudSim Java, XML 6,232 14.3 29.7 54 14 22 496

SpanEdge Java, XML 1,417 10.3 34.1 17 9 11 232

Matlab (Zhang et al.) N/A
N/A

N/A
N/ADockerSim C++, INI 48,118 22.7 336

EmuFog Java 2,570 77.6 52

DISSECT-CF-Fog Java, XML 9,870 33.3 2.0 118 31 192 482

2.3.4 Detailed Taxonomy for Fog Modelling in Simulators

To compare the works we introduced in the previous subsections we define 10 taxon-
omy categories. These categories appear in the comparison tables we placed next to
the introduction of the considered simulators: Table 2.3, Table 2.4 and Table 2.5 are
used to summarise cloud simulators; Table 2.6, Table 2.7 and Table 2.8 are used for
IoT simulator comparison; and finally Table 2.9, Table 2.10 and Table 2.11 depicts
and compares properties of fog simulators. Next, we define our taxonomy elements,
then provide a discussion for the mapped survey papers:

• Simulation type:

Simulation in general has a long history of research, and many classification
schemes are available. Roth [59] stated that there are three major types of
simulation models: discrete, continuous, and combined. For dynamic systems,
discrete event simulation models are the most widespread. In order to cat-
egorise the overviewed solutions, we define the following types of simulators:
(i) Network Simulators aim to simulate the network connections and data trans-
fers between the nodes. They are useful for modelling low-level interactions in
systems, but their disadvantage is that it is hard to create higher-level abstract
components (i.e. cloud or fog resources, IoT sensors) to build up complex sys-
tems (from their building blocks, i.e. network entities). Generally, in these
cases, the simulation time may increase significantly. The other type category

2.3 Simulation Environments of IoT-Fog-Cloud Systems 29

is the general, (ii) Event-driven Simulators, which use the discrete event simula-
tion model, where the inner working of the systems can be modelled by specific
time moments (i.e. events). These events are usually mapped to system states,
and the state transitions to certain component operations. The disadvantage
of these simulators is the lack of built-in network operations and properties,
however, one may choose the level of abstraction more easily, which is an ad-
vantage – as we have seen in DISSECT-CF or NetworkCloudSim to take into
account the network traffic during the generation of virtual machines, commu-
nication or data forwarding. In Figure 2.1, we can see the ratio of the defined
simulator types for the considered works. More than half of the investigated
simulators (with 63.6%) fall in the event-based category to simulate complex
systems composed of cloud, IoT or fog elements.

5

11

28Event-driven Simulators
63,6%

Network Simulators
11,4%

Other/N.A
25,0%

Figure 2.1: The ratio of the simulator types

• Implementation:

The next category aims to reflect the development details of the considered sim-
ulators. Many of them have a single developer or a small group of contributors,
only some have bigger developer communities (CloudSim or OMNET++).

We have seen in the previous subsections that some solutions became very pop-
ular, and influenced other researchers to extend the core tools with additional
functionalities. Figure 2.2 presents a graph highlighting the connections among
the overviewed simulators based on the realised extensions. The bottom circle
represents the core or base simulators, their extensions within the same system
categories are placed on top of them, while the arrows lead to extensions for so-
lutions modelling other systems as well. This graph shows that many variations

30 A Survey and Taxonomy of IoT-Fog-Cloud Systems

CloudEval

TeachCloud

EMUSIM

CDOSim

CEPSim

CloudAnalyst

Network-
CloudSim

Container-
CloudSim

CloudSimSDN

Dynamic-
CloudSim

CloudSim
Plus

CloudSim

OMNET++

IOTSim

ICanCloud

DISSECT-CF DISSECT-CF-
IoT

FogNetSim++

EdgeNetwork-
CloudSim

PureEdgeSim

iFogSim

MyiFogSimiFogSimWidth-
DataPlacement

EdgeCloudSim

DISSECT-CF-
Fog

DockerSim

Cloud Simulators IoT Simulators Fog Simulators

Figure 2.2: Visualised relationships between the examined cloud, IoT, and fog simula-
tors

of a base simulator exist, and we also know that a concrete simulator has many
development versions that may have different features. This fact makes it very
hard for researchers to choose the right version for their investigations, and
for developers to create an improved solution of different versions of the same
simulator. Our taxonomy aims to reveal some implementation details later, in
this regard.

• Publication date:

2.3 Simulation Environments of IoT-Fog-Cloud Systems 31

In the last decades we have seen the evolution of distributed systems: cloud
systems matured around 2010, then various things started to appear to form
IoT systems to generate data for clouds, and finally fog nodes were created
to improve application execution quality of cloud services. We believe that
the publication and development dates can help us to place the considered
simulators in this evolution time frame. The publication date of a solution
determines the technological novelties and capabilities its model is based on.
It is true that a well-maintained and updated simulator can follow the latest
trends, but its software can wear out in a few years due to corrections and
extensions. The comparison tables reveal that CloudSim and DISSECT-CF were
born quite early, and they are still under development to respond to the ongoing
technological changes. On the other hand, old tools without improvements
cannot fulfil recent research needs.

• Cost model:

To predict the costs of certain operations in a complex system is an important
and useful feature for researchers. With the advent of commercial solutions in
these distributed systems, it became inevitable to provide simulated cost calcu-
lations for users planning to enter this market. Though commercial solutions
for Fog Computing are still in their infancy, we can find various cost models for
clouds and IoT in the considered simulators.

• Geolocation:

One of the goals of Fog Computing is to reduce data transfer and service re-
sponse times, which require the use of geographical information of system el-
ements (e.g. sensors, nodes or users). In most cases, simulators having this
property use two different representations: storing the (i) X and Y coordinates
of an element in a system or the (ii) longitude and latitude values for more spe-
cific distance calculations. We applied this taxonomy category only for IoT and
fog simulators. Mobility is a closely related property to geolocation, solutions
offering this feature enable dynamic changes in the location of certain system
elements.

• Sensor model:

Sensors are key elements of IoT systems, and in many cases, they appear in
fog environments as well. Therefore, it is important to know how sensors (or
devices or things) are represented in certain simulators. In general, they should
provide interfaces to discover, connect and monitor, they have certain data gen-
eration frequency, possibly data storing or queuing properties. Their model may
also reflect behavioural information, such as actuation, failures or latencies.

32 A Survey and Taxonomy of IoT-Fog-Cloud Systems

• Network model:

One of the crucial points of a simulator for distributed systems is how it handles
the network operations, especially the representation of bandwidth and latency.
The corresponding configuration settings, and the fine- or coarse-grained net-
working functions usually have a significant impact on the simulation time and
accuracy of a simulator. Fine-grained models can support low-level protocol
representations (e.g. HTTP or MQTT communication) to provide realistic sim-
ulations.

• VM management:

Representing virtual machines and their management functions are some of
the basic properties of modelling clouds and fogs. They determine the config-
uration means of VMs in the simulated environments, which can highly affect
the usability of the simulator. The corresponding features of this category are:
migration, task execution, network load, and background workload. Some fog
solutions neglect this category to focus more on physical fog node management
(e.g. FogTorchΠ or YAFS).

• Energy model:

Physical elements of real-life distributed systems consume energy and affect
carbon emissions. In order to develop solutions reducing these values, simula-
tors should provide energy metering and power usage predictions. In general,
three options are used for energy models: idle, min, and max consumption.

• Source code metrics:

As a final taxonomy element we chose source code metrics to represent and
compare the software quality of the considered simulators. In general, bad
software quality makes it hard to read, understand, and reuse the source code
for extensions, and it also negatively affects simulation time and accuracy. In
this work, we used the static code analyser called SonarQube4 to calculate cer-
tain quality metrics. This tool is able to measure various quality features of
the source code of a software. In cases we could not apply SonarQube, we
used an even simpler tool called CLOC5 that can handle almost any type of pro-
gramming language, but provides less information. Certainly, we could analyse
only simulators with published, open-source code. We considered the following
metrics for our investigation:

– Language: the applied programming language to implement the simulator.

4SonarQube online (accessed in May, 2019): https://www.sonarqube.org
5CLOC online (accessed in May, 2019): http://cloc.sourceforge.net

2.3 Simulation Environments of IoT-Fog-Cloud Systems 33

We also highlighted additional languages where applicable, e.g. the ones
used for serialisation.

– Lines of code: this metric represents the number of lines in the source
code. Note that blank lines are not counted.

– Comments: this metric counts the ratio (in %) of comment lines to the
total lines of code (i.e. blank lines plus lines of code).

– Duplication: it denotes the ratio of the code duplication to the whole
source code.

– Files: this metric tells us the number of files that comprise the software.

– Bugs: it shows the number of bugs in the software, where bugs represent
wrong language constructions (e.g. missing operand casting), according
to the definition of SonarQube.

– Vulnerabilities: this metric tells us the number of vulnerabilities in the
software, which are possible security issues (e.g. public member notation
in a class) in the SonarQube terminology.

– Code smells: it counts the number of code smells, which are code blocks
where modification and understanding could be time-consuming (e.g. empty
statements), based on the definition of SonarQube.

In general, when a tool has acceptable quality metrics, this also has a posi-
tive effect on the application of the simulator. Concerning the evaluation of
the metrics, we can state that higher values for code duplication complicate
the readability of the source code, and the bigger ratio of comment lines helps
researchers understand and reuse the code. Needless to say, the researchers
would prefer fewer bugs, vulnerabilities, and code smells when deciding to
use a simulator for an investigation. Concerning the implementation of the
reviewed works, Figure 2.3 shows that more than 70% of the investigated sim-
ulators are written in Java, which is a platform-independent programming lan-
guage.

2.3.5 Discussion and Future Research Challenges

In this subsection, we provide further discussions on the comparison of the analysed
simulators. In the previous subsections, we provided short introductions to the main
properties of the overviewed works, defined the taxonomy elements used for cate-
gorising them, and provided classifications with comparison tables for three groups
of simulators, namely: cloud, IoT, and fog simulators. Though the tables provide

34 A Survey and Taxonomy of IoT-Fog-Cloud Systems

31

5

4

4
Other/N.A
9,1%
Python
9,1%

C,C++
11,4%

Java
70,5%

Figure 2.3: The ratio of the programming languages used to implement simulators

detailed information on the properties of the tools, we summarise the most valuable
findings of these comparisons.

For cloud solutions, Table 2.3 shows that most of the cloud simulators apply the
generic, event-driven model to simulate entities of cloud systems. We can also see
that 12 out of 18 simulators are based on CloudSim. Table 2.4 depicts that only
limited (mostly static) cost calculations can be performed on the majority of these
tools, and mostly the bandwidth parameter is the only way to model network com-
munications. VM management functions are less supported in the network simulator
category, and they are also surprisingly simple for the cloud-specific ones, except for
DISSECT-CF (offering 12 functions). The energy model is also quite simple for most
solutions (using static, physical CPU power consumption values), GreenCloud and
DISSECT-CF have additional possibilities. Table 2.5 reflects software quality. Java is
the dominating programming language, and the source code length varies between
5 to 30 thousand in general. iCanCloud is exceptionally long, which is due to the un-
derlying OMNET++ framework size. Code duplication and the number of files seem
to be proportional to the code length; the number of bugs and vulnerabilities are the
highest in the CloudSim family. The percentage of comments is surprisingly low in
most cases, only TeachCloud and DISSECT-CF are close to 50%. Modelling Cloud
Computing solutions is the earliest field, the CloudSim tool and its family dominate
investigations in this area. Though new cloud management algorithms are still being
developed and validated with them, they are rarely updated or maintained.

For solutions with IoT support, Table 2.6 shows that IoT system modelling is still
not mature enough compared to Cloud Computing simulation solutions. Simulators
in this group appeared around 2014, showing a wider variety of approaches (fully

2.3 Simulation Environments of IoT-Fog-Cloud Systems 35

simulated, semi-simulated, and real environments), and there seems to be no con-
verging among them. Table 2.7 depicts that IOTSim and DISSECT-CF-IoT have the
most detailed models reflecting almost all taxonomy elements. Important to note
that geolocation support only appears in CrowdSenSim, meanwhile only DISSECT-
CF-IoT supports dynamically measured IoT-side cost calculation besides cloud side-
costs. The third comparison table in this group, Table 2.8 details the measured source
code metrics of IoT solutions. We can see that only DISSECT-CF-IoT as an extension
maintains the quality of its base simulator (having similar good values for comments
and code duplication), while other extensions often worsen quality compared to their
core solutions. Finally, we can see a huge variation in the lines of code metric, Crowd-
SenSim and DPWSim have tens of thousands of lines, while SmartSim has less than
a thousand, and DISSECT-CF-IoT and MobIoTSim stand in the middle. The IoT field
brought up new simulation methods: they partly affected the former cloud simu-
lators by triggering extensions to model cloud support functionalities for IoT data
management, and novel simulators also appeared to focus on the device and sensor
handling capabilities of IoT systems. These solutions are not really converging, and
the non-standard approaches in this area make it hard to come up with comprehen-
sive solutions.

Considering fog modelling, according to Table 2.9 we can state that models of
Fog Computing are evolving more rapidly than the ones for IoT based on the latest
publications, which is approved by the fact that we found twice as many solutions for
the fog group. There are many independently developed tools (half of the considered
studies), and six works extend some CloudSim solution in a direct or indirect way.
It also seems that former (purely) network simulation solutions are not considered
anymore to be the base of new extensions for Fog Computing. Table 2.10 shows that
all defined taxonomy categories are covered by at least one simulator, but the most
wanting category is VM management, hence only seven out of 18 tools are able to
consider the utilisation of network operations of a virtual machine. We can see a great
improvement over IoT simulators for geolocation support and network models. Only
the iFogSim simulator (and its variants) and the DISSECT-CF-Fog satisfy all of our
categories. Unfortunately, many simulators (FogTorchΠ, OPNET or SpanEdge) aim
to model one specific capability of Fog Computing, which makes them less productive
and usable for general simulations. Table 2.11 depicts that the iFogSim simulator has
relatively bad software quality: about one-fourth of its code is duplicated, and it has
more than 25 thousand lines of code having more than 1,500 code smells, which is
the worst out of all simulators. On the contrary, DISSECT-CF-Fog and PureEdgeSim
have the best ratio of duplication, and EmuFog has the best ratio of comment lines.
As it revealed, software re-engineering methods are highly encouraged to be used in
the future to arrive at reliable and maintainable extensions.

Fog Computing modelling is the latest direction, and it tries to build on previ-

36 A Survey and Taxonomy of IoT-Fog-Cloud Systems

ous cloud and IoT system simulators. This area is under active research, and fog
modelling is still in its infancy, mainly due to the still-forming real-world fog appli-
cations. Focusing on the currently available fog simulators, we can summarise that
though usable solutions can be found for analysing specific fog capabilities or use
cases, in general, complex fog environments are still hard to be addressed with a
single tool. It is also unlikely that near future solutions would target coming up with
a general simulator, rather extensions will appear to cover more fog management-
related properties. One direction, which has already been started, is the modelling of
container-based fog node behaviour, another one is the location-aware management
of fog nodes. Cost modelling and energy-aware management are also missing fea-
tures in many simulators, hence they still need extensive research. The sensor models
are quite simple in most tools, therefore, sensor and device behaviour analysis and
modelling should also be a target feature of future research.

2.4 Further Investigation of iFogSim and DISSECT-CF-
Fog

Based on our detailed survey and taxonomy presented in 2.3, we can agree that all
of these simulators would be interesting for further analysis. The CloudSim-based
extensions (e.g. iFogSim or EdgeCloudSim) are often used for investigating Cloud
and Fog Computing approaches, and in general, they are the most referred works in
the literature. On the other hand, the DISSECT-CF simulator is proven to be much
faster, more scalable, and more reliable than CloudSim (see [41]). This former re-
search showed that the simulation time of DISSECT-CF is 2,800 times faster than
the CloudSim simulator for similar cloud use cases. Taking into account the litera-
ture search results, the existing performance comparison of the core simulators, and
the maturity and number of citations, our next goal was to make a comprehensive
comparison with the original version of iFogSim and the DISSECT-CF-Fog simulator.
The fog modelling capabilities of DISSECT-CF-Fog is presented comprehensively in
Chapter 4.

iFogSim and DISSECT-CF-Fog are quite evolved and complex simulators, how-
ever, they follow a slightly different logic to model Fog Computing. This means that
though they have similar components, we cannot match them easily. iFogSim was
created to model resource management techniques in Fog environments, for which
the DISSECT-CF-Fog can also be applicable. To facilitate their comparison, we gath-
ered and compared their main properties and components and showed them in Table
2.12. Its first column names a generic simulation property or entity, the second col-
umn shows how they are represented in DISSECT-CF-Fog, and the third summarises
their representation in iFogSim. As we can see, the biggest difference between them

2.4 Further Investigation of iFogSim and DISSECT-CF-Fog 37

is the chosen unit for simulation time measurement. iFogSim measures time passing
in the simulated environment in milliseconds, while DISSECT-CF-Fog has a specific
naming for the smallest unit for simulation time called a tick, which is related to the
simulation events. The researcher using the simulator can set up the parameters and
properties of a concrete simulation to associate a certain time interval (e.g. millisec-
ond) for a tick. The measurement of processing power in the simulators can also
be done with different approaches. iFogSim associates MIPS for every node, which
represents the computational power and does not take into account the number of
CPU cores. The number of CPU cores affects only the creation of virtual machines.
In DISSECT-CF-Fog, both physical machines (PM) and virtual machines (VM) have to
be configured with CPU core processing values, which define how many instructions
should be processed during one tick.

Table 2.12: Comparison of DISSECT-CF-Fog and iFogSim

Property DISSECT-CF-Fog iFogSim
Unit of the simulation time Tick Millisecond

Unit of the processing
CPU core

processing power MIPS

Physical component ComputingAppliance FogNode
IoT model Device and Sensor Sensor

Logical component Application Application with AppModule and AppEdge
Task ComputeTask on VM Tuple

Architecture Graph Tree
Communication direction Horizontal and vertical Vertical

Dataflow Implicit in physical connection Separately in the AppEdge

Sensor
Processing depends on the
size of the data generated Predefined MIPS value

Pricing
Dynamic cost for

cloud and IoT side
Static cost for RAM, storage,

bandwidth and CPU

A physical component is represented by one dedicated class (see the third row
of Table 2.12) in both simulators. To represent IoT components, iFogSim uses the
Sensor class, while DISSECT-CF-Fog differentiates general IoT devices with comput-
ing and storage capacities and smaller sensors represented by the Device and Sensor
classes. The logical components to define concrete applications are implemented
with three classes defining processing elements and logical dataflow in iFogSim (Ap-
plication, AppEdge, AppModule), which are not straightforward to configure. Be-
sides, the ModuleMapping class is an important component, which is responsible for
the mapping of the logical and physical entities based on a given strategy (e.g. cloud-
aware, edge-aware). On the other hand, in DISSECT-CF-Fog, the physical topology
already defines data routes, so researchers can focus on setting up the required pro-
cessing units (of the components placed in the topology). The representation of
computational tasks is also different. In DISSECT-CF-Fog, researchers should define
a ComputeTask with a certain number of instructions, also stating the number of

38 A Survey and Taxonomy of IoT-Fog-Cloud Systems

instructions to be executed within a tick. In iFogSim, researchers should define a
so-called Tuple for each task and state the number of MIPS required for its execution.
In DISSECT-CF-Fog tasks can be dynamically created to process a certain amount
of sensor-generated data, therefore, the number of instructions will be proportional
(to the available data) in the created tasks. In iFogSim, a static MIPS value should
be defined in the Tuple, hence it cannot respond to the actual generated data of a
scenario.

Concerning the communication among components, iFogSim orders components
in a hierarchical way and supports only vertical communication among elements of
its layers (by default), while DISSECT-CF-Fog supports communication to any direc-
tion among any components in the topology. Figure 2.4 also depicts the different rep-
resentations of IoT-Fog-Cloud systems in the considered simulators, highlighting their
architectural and communication possibilities. To support cost calculations and pric-
ing, in iFogSim static cost can be defined for CPU, bandwidth, storage, and memory
usage. DISSECT-CF-Fog has a more mature cost model, and it supports XML-based
configuration for cloud and IoT-side costs based on real provider pricing schemes.

Figure 2.4: Topology of the DISSECT-CF-Fog and the iFogSim

2.4.1 In-depth Performance Analysis

As we mentioned in the previous section, these simulators are heterogeneous, thus
we have to apply some restrictions to present a fair and realistic comparison. We
limit the configuration of DISSECT-CF-Fog by allowing only-single core CPUs for the
simulated resources. In the case of DISSECT-CF-Fog, the speed of the task execution
depends on the number of CPU cores and their processing power, whilst in iFogSim,

2.4 Further Investigation of iFogSim and DISSECT-CF-Fog 39

only the MIPS value of the task defines the time of task processing, as we men-
tioned before. The common parameters that can be set up in both simulators with
similar values are the following: simulation time, data generation frequency, process-
ing power and configuration of the physical resources, count of instructions for the
tasks, and finally the physical topology. Nevertheless, we cannot avoid introducing
some different setups. In iFogsim, the devices have direct connections to the physical
resources, while in DISSECT-CF-Fog, the actual positions and distances to the corre-
sponding physical resources are also considered, which can affect the connections.

We also have to deal with the issue that iFogSim does not take into account the
size of the generated data in task creation, because sensors in iFogSim always create
Tuples with the same MIPS value, hence the file size does not have an influence on
that value. As a result, dynamically received sensor data on a fog device cannot be
modelled, only static, predefined tasks have to be used. To allow fair comparison, we
configured the scenarios in DISSECT-CF-Fog to always generate tasks with the same
size.

Concerning task forwarding, in iFogSim, a fog device uses a method to forward a
received (or generated) task to a higher-level device if it cannot handle (i.e. process)
it. In the case of DISSECT-CF-Fog, every application module has a threshold value to
handle task overloading, which defines the number of allowed waiting tasks. If this
number exceeds the threshold (so more tasks arrive than could be processed), the
unhandled tasks will be forwarded to other available nodes (according to some se-
lection algorithm). To match the default behaviour of iFogSim, the topology defined
in DISSECT-CF-Fog allowed only vertical forwarding among the available fog nodes
(i.e. tasks are forwarded to upper nodes only).

After applying these restrictions to make the two simulators comparable, we had
to find an IoT application as a case study for our measurements. Since we thoroughly
analysed meteorological applications in our research (see Chapter 3), we decided
to use this analogy for the current evaluation as well. So in our scenario, sensors
attached to IoT devices (i.e. weather stations) monitor weather conditions, and send
the sensed data to fog or cloud resources for processing (i.e. for weather forecasting
and analysis).

To perform the comparison, we defined four layers for the topology: (i) a cloud
layer, (ii) an upper Fog device layer with stronger resources, (iii) a lower Fog device
layer with weaker resources, and (iv) an IoT (smart) device layer. For the concrete
resource parameters we defined one scenario with three different test cases:

• In the first test case, we set up 20 IoT devices to generate data to be processed;

• In the second test case we initiated 40 IoT devices;

• While in the third test case, we initiated 60 IoT devices for data generation
(where each device had a single sensor).

40 A Survey and Taxonomy of IoT-Fog-Cloud Systems

• Concerning data processing, we used the following resource parameters for the
test cases: one Cloud with 45 CPU cores and 45 GB RAM, 4 (stronger) fog
nodes with 3 CPU cores and 3 GB RAM each, 20 (weaker) fog nodes with 1
CPU core and 1 GB RAM.

We did not use preset workloads during the experiments, only the started sensors
generated data independently, thus in both simulators, we modelled the execution
of so-called bag-of-tasks applications in fogs and clouds. In some cases the use of
traditional hypervisors is not possible on fog nodes, there we may use container
technologies. In our paper, we refrain from distinguishing containers and traditional
virtual machines, hence both considered simulators model virtual machines to serve
application execution. To be as close to iFogSim as possible, we only used one type
of virtual machine in DISSECT-CF-Fog, having 1 CPU core and 1 GB RAM. In the case
of iFogSim, the power of virtual machines was 1,000 MIPS. The tasks to be executed
in VMs were statically set to 2,500 MIPS in both simulators. The simulation time
was set to 10,000 seconds, and sensor readings were done every 5.1 seconds (i.e.
the data generation frequency of the sensors). Each sensor generated 500 bytes of
data during one iteration. The latency and bandwidth values were set equally in both
simulators.

All the experiments were run on a PC with Intel Core i5-7300HQ 2.5GHz, 8GB
RAM and a 64-bit Windows 10 operating system. The results of executing the test
cases with both simulators can be seen in Table 2.13. We executed the same test
cases five times with both simulators and counted their medium values to be stored
in the table. To compare the use of the simulators, we only took into account the
default outputs of the simulators and their execution time (e.g. cost calculations
were neglected, hence they follow different logics in the simulators, and also are not
really relevant for the performance comparisons).

According to these measurements, we can observe that the time needed for exe-
cuting the simulation of the first test case was about ten times more with iFogSim,
than with DISSECT-CF-Fog. In the second test, case we doubled the number of IoT de-
vices, and the runtime values increased by about 25% in the case of DISSECT-CF-Fog
and about 71% in the case of iFogSim. Comparing their runtime, DISSECT-CF-Fog is
better suited for high-scale simulations, while iFogSim simulations become intoler-
ably time-consuming by modelling higher than a certain number of entities. In the
third test case, we could not even wait for the measurements to finish (cancelled
them after 1.5 hours).

The application delay is the time within the simulation needed to process all
remaining data in the system after we stopped data generation by the IoT devices.
The results in Table 2.13 show that this delay was longer in the case of iFogSim,
though the generated data sizes were equal for the same test cases in both simulators
(hence the output results concerning the processed data were also equal). This is due

2.4 Further Investigation of iFogSim and DISSECT-CF-Fog 41

to the different methods of task creation, scheduling, and processing in the simulators
(we could not eliminate all differences with the restrictions).

Finally, we used a simple source code metric to compare the implemented sce-
narios in the simulators. The so-called lines of code (LOC) is a common metric for
analysing software quality. It is interesting to see that the same scenario could have
been written three times shorter in the case of DISSECT-CF-Fog, than in iFogSim. Of
course, we tried to implement the code in both simulators with the least number of
methods and constructs (in Java language). We also have to state that some configu-
ration parameters had to be set at different parts of the software (this adds some lines
in the case of iFogSim, and around 20 lines of XML generation and configuration in
the case of DISSECT-CF-Fog).

We can draw some conclusions from the experiments performed so far. We man-
aged to model an IoT-Fog-Cloud environment with both simulators and investigated
a meteorological IoT application execution on top of it with different sensor and fog
and cloud resource numbers. While DISSECT-CF-Fog dealt with these simulations
with ease, iFogSim struggled to simulate more than 65 entities of this complex sys-
tem. Nevertheless, it is obvious that there are only a small number of real-world
IoT applications that require only hundreds of sensors and fog or cloud resources;
we need to be able to examine systems and applications composed of hundreds of
thousands of these components. [P11] presents the related large-scale evaluation in
more detail.

Table 2.13: Comparison of the two simulators

Property DISSECT-CF-Fog iFogSim
Test case I. II. III. I. II. III.

Runtime (ms) 248.75 312.5 392.58 2,260.33 3,873.66 5,400,000*
Application delay (min) 3.41 4.33 4.33 14.89 17.52 N.A.
Generated data (byte) 19,600,000 39,200,000 58,800,000 19,600,000 39,200,000 N.A.

Lines of code
50 lines + XML files

for detailed configuration
159 lines + some
inline constants

Since the result of the first scenario showed a strong performance difference
between the investigated simulators, we decided to perform further examinations.
Next, we applied JProfiler6, which is able to analyse Java-based applications consid-
ering threads, classes, instances, and usage of the garbage collector, besides memory
and CPU usage. We repeated the test cases defined for both simulators in the pre-
vious section focusing on these metrics and characteristics as shown in Figure 2.5.
Each row presents the three test cases of the first scenario in the corresponding sim-
ulator. The comparison is based on the following characteristics: Memory reflects
the heap memory, the used size is labelled by blue, whilst the free size of memory

6JProfiler (accessed in June, 2020): https://www.ej-technologies.com/products/jprofiler/over-
view.html

42 A Survey and Taxonomy of IoT-Fog-Cloud Systems

is labelled by green. Recorded Objects present the instantiated objects, blue refers
to the number of arrays, and green refers to the non-arrays objects. The Recorded
Throughput shows the freed objects per second using green colour, and blue repre-
sents created objects per second. The GC Activity presents the activity ratio of the
garbage collector of the JVM, Thread presents the number of threads with runnable
state, whilst Classes shows the number of used classes during the evaluation. Finally,
CPU Load reflects the process load (green) and the system load (blue).

Figure 2.5: Telemetry data of the investigated simulators

Interpreting the results, DISSECT-CF-Fog utilises less memory, and in all test cases,
the heap size stayed less than 200 MBs, whilst in the case of iFogSim the heap size of
the second test case almost reached 400 MBs. The Recorded Object value was almost
four-times higher during the evaluation with iFogSim, however, DISSECT-CF-Fog used
almost 3,000 Java classes for the evaluation (external libraries are considered by the
JProfiler, as well). The iFogSim tool used the CPU more intensively than DISSECT-
CF-Fog; the CPU Load almost reached 90% in the first two test cases during the
iFogSim simulations. The GC Activity and the Recorded Throughput metrics point
out a possible malfunction in the third test case of iFogSim, because after about
5 seconds, these values were correlated showing no relevant operation occurrence.
The reason for this behaviour is the process starvation caused by the Java Finalizer
thread. A similar issue was mentioned in [2], however, this problem can strongly
relate to the negative code quality as it has been presented in Table 2.11.

2.5 Discussion and Concluding Remarks 43

2.5 Discussion and Concluding Remarks

In the past decade, we have seen how the latest technological advances shaped dis-
tributed systems and led to the emergence of clouds, IoT, and finally fog systems.
The complex networks and environments they established are closely coupled: the
data generated by IoT devices have to be stored, processed, and analysed by cloud
or fog services to ensure reliability and sustainability. We can find numerous simula-
tors for these purposes, but in many cases, it is hard to reveal their differences, and
implementing our use cases with different solutions is time-consuming.

By responding to these challenges, we proposed a survey and taxonomy of the
available simulators modelling clouds, IoT, and fogs. The novelty of our work lies in
the applied viewpoints to perform the classifications. In our taxonomy, we separated
the considered simulators into three groups, and presented comparison tables based
on the taxonomy to reveal their differences and to highlight how they model the
elements of IoT-Fog-Cloud systems. We can conclude that a comprehensive model
for Fog Computing is still wanting, and complex fog environments are hard to be
addressed with a single simulator. Our main recommendation for further research is
to continue model extensions of simulators to better grasp fog capabilities with the
warning to maintain software quality. This way can lead to easier understanding and
shorter learning curves for designing and performing experimentation in the field.

We also compared two fog modelling approaches, namely iFogSim and DISSECT-
CF-Fog and presented an evaluation, which showed how to create and execute sim-
ulated IoT scenarios using fog and cloud resources with these tools. Our results
highlight that DISSECT-CF-Fog can provide easier configurations and faster and more
reliable simulations for higher scales.

The results of this chapter belong to Thesis I, and its contents were published
in papers [P3], [P7], and [P11]. My contributions presented in this chapter are the
following:

I/1. I proposed a comprehensive survey and taxonomy of numerous simulation ap-
proaches aiming at the examination of cloud, IoT, and fog systems.

I/2. I compared and analysed these simulation environments in terms of function-
ality, usability, maintainability, and code quality in order to determine the most
relevant properties for modelling IoT-Fog-Cloud systems.

I/3. I presented an in-depth performance analysis with a comparison of the two
most prominent simulators in these fields, namely DISSECT-CF-Fog and iFogSim,
showing a significant performance difference in favour of DISSECT-CF-Fog.

44 A Survey and Taxonomy of IoT-Fog-Cloud Systems

3
Simulating IoT Systems

in a Multi-cloud Environment

3.1 Introduction

The Internet of Things (IoT) paradigm allows for interconnecting sensors (e.g. heart
rate, heat, motion, etc.) and actuators (e.g. motors or lighting devices) in automated
and customisable systems [62]. IoT systems are currently expanding rapidly as the
amount of smart devices (sensors with networking capabilities) is growing substan-
tially, and at the same time, the costs of sensors are decreasing.

IoT solutions are often used a lot within businesses to increase the performance
in certain areas, and allow for smarter decisions to be made based on more accurate
and valuable data. Businesses have grown to require IoT systems to be accurate, as
decisions based on their data are heavily relied on. However, many sensors have dif-
ferent behavioural patterns. For example, a heart rate sensor has different behaviour
compared to a light sensor, since a heart rate sensor relies on human behaviour as
well, which is inherently unpredictable, whereas a light sensor could be predicted
quite accurately based on the time of day and location. Predicting how a sensor
may impact a system is important as companies generally want to leverage the most
out of an IoT system. An incorrect estimation of their performance could possibly
have a negative impact on the performance of other systems (e.g. using too many
sensors could flood the network, potentially causing inaccurate data, slow response
times, or even system crashes). As there are many ways a sensor can behave, it is

45

46 Simulating IoT Systems in a Multi-cloud Environment

difficult to predict the effects they may have on the overall system, therefore, their
interaction and operation must be analysed. Performing such testing could be costly,
time-consuming, and high-risk if the infrastructure has to be created and a wide
range of sensors are purchased before any information is obtained about the planned
system behaviour. It is even more difficult to determine the impact of a prototype
system on the network, as there may be limited or no physical sensors available to
perform the tests with. An example of this issue is the introduction of soil moisture
sensors that analyse soil properties in real-time and adjust water sprinklers to ensure
crops have the correct conditions to grow. In order to test this IoT system efficiently,
a huge number of sensors is required, however, they can become quite costly and
difficult to implement.

As it is discussed in Section 2.3, there are many simulators available to exam-
ine distributed, and specifically cloud systems, as well as IoT environments. In this
chapter, we lay the foundations for the flexible and scalable modelling of IoT sensors
through our extensions made to the DISSECT-CF simulator.

The remainder of this chapter is as follows: Section 3.2 first presents the descrip-
tion of the IoT extension, then in its subsections, the pricing model is described along
with cost analysis scenarios. In Section 3.3, the multi-cloud extension is presented
with detailed emphasis on the possible device allocation strategies. Finally, Section
3.4 concludes the chapter and highlights the main contributions.

3.2 The Proposed Pricing-aware Model for IoT Sen-
sors and Applications

We aim at supporting the simulation of up to thousands of devices participating in
previously unforeseen/existing IoT scenarios that have not been examined before in
detail (e.g. in terms of scalability, energy efficiency or management costs). Sensors
are essential parts of IoT systems, and they are usually passive entities. Their per-
formance is limited by their network gateway’s (i.e. the device which polls for the
measurements and sends them away) connectivity and maximum update frequency.
Actuators are entities also limited by their network connectivity and reaction time
(e.g. how long does it take to actually perform an actuation action). They also have
a unique feature that allows changing the location of non-cloud entities. Finally, cen-
tral computing services provide the large-scale background processing and storage
capabilities needed for IoT scenarios. According to recent advances in IoT, these ser-
vices are expected to be used only if unavoidable. The simulator extension presented
in this chapter takes into account the following IoT components: sensors, devices (i.e.
gateways or brokers), and applications (deployed in a central computing service, i.e.
cloud).

3.2 The Proposed Pricing-aware Model for IoT Sensors and Applications 47

To represent an IoT device with sensors, the following parameters are considered:
it has a unique identifier and its lifetime is specified with start time and stop time.
The cardinality of the supervised sensor set must be defined as well. Alongside the
set cardinality, the average data produced by one of the sensors can be specified in
the set. Data generation frequency could be set for the sensors (e.g. in milliseconds)
to determine the time interval between two measurements. Each device controls its
local storage with a predefined capacity and its network connectivity to the outside
world is specified by bandwidth and latency values.

IoT applications that receive, process, and store IoT data can also be modelled
by installing on the IaaS cloud representation layer of DISSECT-CF. The following
properties are taken into consideration by modelling an IoT application: the types
of virtual machines utilised by the application and the task size attribute, which
aggregates IoT data into a processing unit for the VM.

3.2.1 IoT Pricing Schemes

In our simulation model, we aim to investigate certain IoT cloud applications, there-
fore, we need to define and monitor the following parameters: the number of sensors
or devices used, the total number of messages (and their data) sent in a certain pe-
riod of time, and the uptime and capacity of virtual machines used to provide ingest
services. Based on these parameters we can estimate how our application would be
charged after operating its system for a certain amount of time at a concrete IoT
cloud provider.

The calculation of the prices depends on different methods. Some providers bill
only according to the number of messages sent, while others also charge for the num-
ber of devices used. The situation is very similar if we consider the virtual machine
rental or application service prices. One can be charged after GB-hour (uptime) or
according to a fixed monthly service price. This price also depends on the configura-
tion of the virtual machine or the selected application service, especially the amount
of RAM used or the number of CPU cores or their clock signal.

We considered the following most popular providers as the base of our extension:
(i) Microsoft and its IoT platform called Azure IoT Hub7, (ii) IBM’s Bluemix IoT
platform8, the services of (iii) Amazon (AWS IoT)9, and (iv) Oracle’s IoT platform10.
We took into account the prices publicly available on the websites of the providers
and if it necessary we asked for clarifications via email.

7MS Azure IoT Hub (accessed in January, 2017): https://azure.microsoft.com/en-us/services/iot-
hub

8IBM Bluemix (Accessed at January, 2017): https://www.ibm.com/cloud-
computing/bluemix/internet-of-things

9Amazon AWS IoT (accessed in January, 2017): https://aws.amazon.com/iot/pricing
10Oracle IoT platform (accessed in January, 2017):

https://cloud.oracle.com/en US/opc/iot/pricing

48 Simulating IoT Systems in a Multi-cloud Environment

Azure IoT Hub

Concerning the IoT-side pricing, Azure IoT Hub charges after the chosen edition/tier.
This means that there are intervals for the number of messages used in a month.
Azure also comes with some additional platform services similar to other providers,
but we only kept the general parts to allow the identification of common pricing
components. There is a restriction for message sizes, which depends on the chosen
tier. One can choose from four tiers, Free, S1, S2, and S3. Each of them varies in
price and the total messages allowed per day. The message and group size of the
Free tier are significantly more limited compared to the other tiers.

IBM Bluemix

IBM Bluemix IoT platform’s pricing follows the pay-as-you-go approach. Bluemix
only charges after the MB of data exchanged. They differentiate three categories in
terms of data usage and each of them comes with a different price per MB. The more
we transfer the less our price per MB will be.

Amazon’s IoT Platform

Amazon’s IoT platform can also be classified as a pay-as-you-go service. Prices have
two components: publishing cost (the number of messages published to AWS IoT)
and delivery cost (the number of messages delivered by AWS IoT to devices or ap-
plications). A message is a 512-byte block of data and the pricing in EU and US
regions denotes 5 US dollars per million messages. In addition, there is no charge for
deliveries to some other AWS Services.

Oracle’s IoT Platform

Finally, we investigated the pricing of Oracle’s IoT solution. This pricing method
is slightly different from the three providers described before. It is more similar to
Azure’s tiers than to the completely ”pay as you go” billing like in Bluemix. The
information was gathered from and calculated with the so-called Metered Services.
There are four product categories regarding the used devices (wearable, consumer,
telematics, and business). Categories determine the monthly device price and the
number of messages that can be sent by that particular type of device. In addition,
there is a restriction on how many messages a particular type of device delivers per
month. In case the number of messages sent by a device is more than the device’s
category permits, an additional price will be charged according to a predefined price
per thousand messages.

3.2 The Proposed Pricing-aware Model for IoT Sensors and Applications 49

3.2.2 Cloud Pricing Schemes

Besides the IoT-side costs, we had to investigate how the four providers calculate the
cloud-side costs. Most providers have a simple method, which is the following: (i) to
run an IoT application one needs at least one virtual machine (VM), container, com-
pute service, or application instance, which has a fixed instance price every month,
or (ii) the providers consider the hour per price for every instance the IoT applica-
tion needs. The pricing scheme of these providers can be found on their websites.
We considered Azure’s application service11, Bluemix’s runtime pricing sheet under
the Runtimes section12, Amazon EC2 On-Demand prices13, and Oracle’s compute ser-
vice14 together with the Metered Services pricing calculator15. The cloud cost is based
on either instance prices (Azure and Oracle), hourly prices (Amazon), or the mix of
the two (Bluemix), in which the provider uses both types of price calculating. For
example, Oracle charges depending on the daily uptime of our application as well as
the number of CPU cores used by our VMs.

3.2.3 The Weather Forecasting IoT Use Case

In Figure 3.1, we reveal the typical data flow of a weather forecasting service, which
we often use to evaluate the different versions of our simulator extension. This ap-
plication aims to make weather analysis more efficient by allowing the purchase of a
small weather station kit including light sensors (to potentially capture cloud cover-
age), wind sensors (to collect wind speed), and temperature sensors (to capture the
current ambient temperature). The weather station will then create a summary of
the sensor’s findings over a certain period of time and report it to a cloud service for
further processing, such as detecting hurricanes or heat waves in the early stages. If
many of these stations are set up over a region, it can provide accurate and detailed
data flow to the cloud service to produce accurate results.

As one of the earliest examples of sensor networks is from the field of meteorology
and weather prediction, we chose to model the crowd-sourced meteorological service
of Hungary called Idokep.hu16. It was established in 2004, and it is one of the most
popular meteorology websites in Hungary. Detailed information on its system archi-
tecture and operation can also be found on its website: more than 400 stations send

11MS Azure price calculator (accessed in January, 2017): https://azure.microsoft.com/en-
gb/pricing/calculator/

12IBM Bluemix pricing sheet (accessed in January, 2017): https://www.ibm.com/cloud-
computing/bluemix

13Amazon pricing (accessed in January, 2017): https://aws.amazon.com/ec2/pricing/on-demand/
14Oracle pricing (accessed in January, 2017):

https://cloud.oracle.com/en US/opc/compute/compute/pricing
15Orcale Metered Services pricing calculator (accessed in January, 2017):

https://shop.oracle.com/cloudstore/index.html?product=compute
16Idokep.hu (accessed in February, 2017): http://www.idokep.hu

50 Simulating IoT Systems in a Multi-cloud Environment

Figure 3.1: A typical IoT use case: meteorological application

sensor data to their system (including temperature, humidity, barometric pressure,
rainfall, and wind properties), and the actual weather conditions are refreshed every
10 minutes. They also provide forecasts for up to a week. They also produce and
sell sensor stations capable of extending their sensor network and improving their
weather predictions to be installed at buyer-specific locations. Detailed information
on the properties of this IoT Cloud application operated over a month can be seen in
Table 3.1.

Table 3.1: Basic configuration information of the application

Devices with sensors 3,864
Device type Consumer

Message size (KB) 0.05
Messages / month / device 4,464

Total messages / day 556,416
Total messages / month 17,248,896
MB exchanged / month 842.23125

Messages transferred / device / hour 6
Test duration (days) 31
Full uptime (hours) 744

Based on the investigations presented in the previous section, we performed a cost
estimation of operating this meteorological application for a period of one month.
Table 3.2 shows the prices to be paid by using these providers. In these calculations,

3.2 The Proposed Pricing-aware Model for IoT Sensors and Applications 51

we considered 483 stations with 3864 sensors. From this figure, we can see that
Azure charges ∼610 Euros. We estimated this cost concerning the IoT-related prices
(for sending messages) and the price of running the application service (gathering
and processing the messages in the system). Bluemix offers a reasonably better price.
The IoT part charges after MBs are exchanged, in our case ∼0.82 Euros, while the
required computational services cost ∼284 Euros. Amazon offers the best price at
∼241 Euros, while Oracle is incredibly expensive compared to the other providers
at ∼3862 Euros according to our estimations. The number is so high because of the
high number of devices used. The device price is ∼3594 Euros which is the greater
part of the total price. We do not need to pay for additional messages since none of
the devices exceeds the restriction for message numbers of consumer product type.

Table 3.2: Cost estimation for the meteorological case study

Provider / Cost Azure Cost Bluemix Cost Amazon Cost Oracle Cost

IoT fix prices and device side

Device price / month - - - + 3,593.52

”Price / message” pricing - - + 78.69 +

”X messages / month” pricing + 421.65 - - + 0

Data exchange (in MB) - + 0.82 - -

Message size limit 4 - 0.5 -

Total messages / day with size limit 556,416 552,960

Cloud side

Instance prices + 188.22 + 245.38 - + 268

GB-hour prices - 0.05 39.13 0.01 162.53 -

TOTAL PRICE / MONTH 609.87 285.33 241.22 3,861.52

3.2.4 Evaluation with the Pricing-aware IoT Extension

The weather forecasting scenarios play a vital role in the evaluation phase of our
publications, therefore, we used it as a base point to execute various IoT scenarios.
The execution steps are listed below:

1. Set up the IaaS clouds. In our evaluations, we typically used the model of a
Hungarian private infrastructure, namely the ELKH Cloud [28] (formerly the
LPDS Cloud of MTA SZTAKI).

2. Set up the necessary amount of IoT devices and sensors.

3. Initialise VM parameters and IoT applications. On each IoT application, an
initial VM is deployed for data processing and the metering process in all IoT
devices is also started.

52 Simulating IoT Systems in a Multi-cloud Environment

4. The IoT devices then monitor their environment, they then save and send sen-
sor data (to the cloud storage). Parallel to this, methods responsible for calcu-
lating cost estimate the price of IoT and cloud operation, based on the gener-
ated data and processing of those data. The process of cost calculation depends
on the chosen provider. If provider pricing is not time-dependent, like in the
case of Bluemix, we have to pay only after data traffic, then this loop is exe-
cuted only once, at the end of the simulation. Otherwise, if the provider cost
is time-dependent (e.g. having daily or monthly fees), the call of the related
methods is recurring based on the time interval.

5. A daemon service checks regularly if the cloud repository received a scenario-
specific amount of data. If so, then the IoT application generates the computer
tasks.

6. Next, for each generated task, a free VM is searched. If a VM is found, the task
and the relevant data are sent to it for processing.

7. In case no free VMs are found, the daemon initiates a new VM deployment and
holds back the not yet mapped tasks.

8. If at the end of the task assignment phase, there are still free VMs, they are
all decommissioned except those that are held back for the next rounds (this
amount can be configured and even completely turned off at will). Step 7-8
implements the auto-scaler for the application.

9. Finally, the execution returns to Step 5 until there is unprocessed data.

In the next two scenarios, we mainly focus on how resource utilisation and man-
agement patterns alter based on changing sensor behaviour, and how these affect the
incurred costs of operating the IoT system (e.g. how different sensor data sizes and
the varying number of stations and sensors affect the operation of the simulated IoT
system). The aim of these scenarios was to focus on the validation of our proposed
IoT extensions, and thus the used scenarios abstract away some low-level properties
of a real-world weather forecasting service.

Before getting into the details, we clarify the common behavioural patterns we
used during all of the scenarios below (these were the common starting points for
all scenarios unless stated otherwise). First of all, to limit simulation runtime, all
of our experiments limited the station lifetimes to a single day. A station typically
utilised 8 sensors and a sensor measurement was executed every minute. The start-
up period of the stations was selected randomly between 0 and 20 minutes. The task
creator daemon service spawned tasks after the cloud storage received the metering
data, but the size of a task could not exceed 250 KB. This step ensured the estimated
processing time of 5 minutes/task. If a task was started with less than 250 KB to

3.2 The Proposed Pricing-aware Model for IoT Sensors and Applications 53

process, the execution time was scaled down. Finally, the application was using
Bluemix VM instances utilising 8 CPU cores and 4 GB memory and its cost was set
based on Table 3.2.

First Scenario

Figure 3.2: Number of virtual machines in the first scenario

Table 3.3: Number of VMs, tasks, and the amount produced data in the first scenario

Amount of data (byte) Number of VMs Number of tasks Produced data (GB)
50 12 1,153 0.261
100 27 2,299 0.522
200 28 4,486 1.044

In the first scenario, we varied the amount of data produced by the sensors of
486 weather stations: we set 50, 100, and 200 bytes for different cases (allowing
overheads for storage, network transfer, different data formats, and secure encoding
etc.). We also investigated how the costs of the IoT side changed if we would use

54 Simulating IoT Systems in a Multi-cloud Environment

	0

	500

	1000

	1500

	2000

	2500

	3000

	3500

	4000

	4500

BluemixAmazon Azure Oracle BluemixAmazon Azure Oracle BluemixAmazon Azure Oracle

Su
m
	o
f	t
he
	c
os
ts	
in
	E
ur
o

	

Costs	of	the	IoT	side
Costs	of	the	Cloud	side

Costs	of	the	IoT	side
Costs	of	the	Cloud	side

Costs	of	the	IoT	side
Costs	of	the	Cloud	side

200	byte	/	message100	byte	/	message50	byte	/	message

Figure 3.3: IoT and cloud costs in the first scenario

Table 3.4: IoT and cloud costs in the second scenario

IoT provider Bluemix Amazon Oracle Azure
IoT-side cost 0.18 18.92 14,136.00 421.65
VM function ON OFF ON OFF ON OFF ON OFF

Bluemix cloud cost 51.80 89.39 51.80 89.39 51.80 89.39 51.80 89.39

Sum (Euro) 51.98 89.58 70.72 108.31 14,187.80 14,225.39 473.45 511.04

one of the four IoT providers defined before. The measurement results can be seen
in Figure 3.2, Figure 3.3, and Table 3.3.

For the first case with 50 bytes of sensor data, we measured 0.261 GBs of pro-
duced data in total, while in the second case of 100 bytes, we measured 0.522 GBs,
and in the third of 200 bytes, we measured 1.044 GBs (showing linear scale up). In
the three use cases, we needed 12, 27, and 28 VMs to process all tasks respectively.
With the preloaded cloud parameters, the system is allowed to start a maximum of
28 virtual machines, therefore, in the first case of 50 bytes our cloud cost was 48.839
Euros, in the second case of 100 bytes the cloud cost was 103.896 Euros, and finally,
in the last case, our cloud cost was 217.856 Euros. The lesson learnt from this sce-
nario is that if we use more than 200 bytes per message, we need stronger virtual
machines (also a larger cloud with stronger physical resources) to manage our appli-
cation, because in the third case the simulation run for more than 24 hours (despite
the fact that the sensors were only producing data for a single day), which increased
our costs using time-dependent cloud services. Finally, Table 3.3 shows how many

3.2 The Proposed Pricing-aware Model for IoT Sensors and Applications 55

Figure 3.4: Number of virtual machines in the first scenario

virtual machines are needed to process all of the generated data for all test cases,
and how many tasks were generated for the produced data.

Figure 3.3 presents a cost comparison for all considered providers. We can see
that Oracle costs are much higher than the other three providers in all cases (50,
100, 200 bytes messages). The main cause of this issue is that Oracle charges after
each utilised device, which is not the case for other providers. Our initial estimations
show that only such an IoT cloud system operation is beneficial with Oracle, which
has at most 200 devices and transfers 1-2 messages per minute per device.

Second Scenario

As we model a crowd-sourced service, we expect to see more dynamic behaviour
regarding the number of active stations. In the previous case, we used a static num-
ber of stations per experiment, while in this scenario, we ensured that the station
numbers dynamically changed. Such changes may occur due to station or sensor
failures, or even sensor replacement. In this scenario, we performed these changes
at specific hours of the day: from 0-5:00 a.m. we started 200 stations, from 5-8:00
a.m. we operated 700 stations, from 8:00 a.m. to 4:00 p.m. we scaled them down
to 300, then from 4-8:00 p.m. up to 500, finally for the last round from 8-12:00

56 Simulating IoT Systems in a Multi-cloud Environment

p.m. we set it back to 200. In this experiment we also wanted to examine the ef-
fects of VM decommissioning; therefore, we executed two different cases, one with
and one without turning off unused VMs. The results can be seen in Table 3.4. We
can see that without turning off the unused VMs from 6:00 p.m. we kept 15 VMs
alive (resulting in more over-provisioning), while in the other case, the number of
running VMs dynamically changed to the one required by the number of tasks to be
processed. Figure 3.4 shows what happens with the application operating costs if
we do not turn off the unused, but still running virtual machines. The cheapest IoT
provider is Bluemix with 51.98 Euros, and we can save almost 38 Euros using the
VM turning off function.

In summary, we have shown that with our extended DISSECT-CF-IoT simulator,
we can investigate the behaviour and operating costs of these systems and contribute
to the development of better design and management solutions in this research field.

3.3 A Multi-cloud Simulation Environment

The main research question of this section is how we can influence the behaviour of
an IoT application if the sensors can have different allocation strategies for multiple
clouds. In the earlier version of the extended DISSECT-CF-IoT we could only exploit
one cloud data centre to start VMs, therefore, all sensors and smart devices were con-
nected to this specific cloud, and all the generated data of the sensors were processed
by virtual machines running in the same cloud (as we summarised in the previous
section). In this single cloud setup, a cloud can have a preloaded cost calculation
policy with a single pricing scheme. Smart devices usually have different sensors and
usage frequencies affecting data generation methods that can influence cloud service
operation and also the provider pricing. As a result, a single cloud could be easily
overloaded, and the unprocessed data could hinder the operation of the IoT appli-
cation causing longer response times and even service unavailability in real-world
services. In this section, we introduce the possibility of multi-cloud management for
IoT cloud simulations in DISSECT-CF-IoT.

During the start of the simulation, we can set up different IaaS clouds, and an-
other improvement is the introduction of a cloud broker, which can manage different
IoT applications and their VM queues. These queues may have virtual machines with
different pricing policies, and within a simulation the broker can decide to which
cloud (and to which application) the IoT devices should be connected, thus where
the generated data should be sent and processed in an application. This revised IoT
Cloud management architecture is depicted in Figure 3.5, showing one cloud with
three different applications mapped to three different VM queues. These extensions
make the simulator more flexible and capable of performing scalability experiments
involving multiple cloud providers.

3.3 A Multi-cloud Simulation Environment 57

Virtual machines

Applications

Repository

Cloud broker

IoT devices

Figure 3.5: The general IoT execution flow in the extended DISSECT-CF-IoT simulator

In the IoT paradigm, the sensors are passive entities of the systems, thus their
performance is limited by the operation frequency (i.e. data generation, storing,
transfer to the cloud), up-time and network connection. Usually, large amounts of
sensor data are sent from the smart devices to cloud resources for further computa-
tion and analysis. Since resource consumption can be costly, IoT application owners
can reduce their expenses by selecting a provider having a suitable pricing scheme.

Currently, four different resource allocation (i.e. device) strategies can be chosen
to perform cloud provider selection during each IoT device start-up; they are the
following: (i) Random, (ii) Cost-aware, (iii) Runtime-aware, and (iv) Pliant.

3.3.1 Basic Strategies

With the Random strategy, the cloud broker chooses one of the available applications
running in the simulated clouds randomly for an actual IoT device (sensor or station).

The Cost-aware strategy looks for the cheapest available VM in a cloud (based on

58 Simulating IoT Systems in a Multi-cloud Environment

their static pricing properties), thus it compares the prices of the required VM flavors
for a given device. This solution may be more suitable for IoT applications having
relatively small data processing needs or that are less susceptible to the processing
time because cloud providers usually offer lower resource capacities for lower costs.

In the Load-balanced strategy, the corresponding algorithm ranks the available
applications (residing in different clouds) by a specific value defined by the ratio
of the number of already connected devices and the number of available physical
machines of the hosting cloud. This is a dynamic strategy that takes into account the
actual load of the available clouds. Applications having longer data processing needs
may prefer this strategy.

3.3.2 The Pliant Strategy

Fuzzy sets were introduced in 1965 with the aim of reconciling mathematical mod-
elling and human knowledge in the engineering sciences. Fuzzy logic means that we
cannot decide whether the value is true or not. The truth lies between the true and
false values, hence it offers more flexibility for reasoning [75]. Over the last century,
fuzzy sets and fuzzy logic [16] have become more popular areas for research, and
they are being applied in fields such as computer science, mathematics, and engi-
neering. This has led to truly enormous literature, where there are presently over
thirty thousand published papers dealing with fuzzy logic, and several hundreds of
books have appeared on the various facets of the theory and the methodology. How-
ever, there is not a single, superior fuzzy logic or fuzzy reasoning method available,
although there are numerous competing theories.

The Pliant system is a kind of fuzzy theory that is similar to a fuzzy system [17].
The difference between the two systems lies in the choice of operators. In fuzzy the-
ory, the membership function plays an important role, but the exact definition of this
function is often unclear. In the Pliant system, we use a so-called distending func-
tion, which represents a soft inequality. Furthermore, the various operators, which
are called conjunction, disjunction, and aggregative operators, are closely related to
each other. We also have a generator function, which can be used to create such
operators. In the Pliant system, the corresponding aggregative operators of the strict
t-norm and strict t-conorm are equivalent, and De Morgan’s law is obeyed with the
corresponding strong negation of the strict t-norm or t-conorm.

The Pliant system has a strict, monotonously increasing t-norm and t-conorm, and
the following expression is valid for the generator function:

fc(x)fd(x) = 1, (3.1)

where fc(x) and fd(x) are the generator functions for the conjunctive and disjunctive
logical operators, respectively. This system is defined in the [0,1] interval.

3.3 A Multi-cloud Simulation Environment 59

The operators of the Pliant system are

c(x) =
1

1 +

(
n∑

i=1

wi

(
1−xi

xi

)α
)1/α

(3.2)

d(x) =
1

1 +

(
n∑

i=1

wi

(
1−xi

xi

)−α
)−1/α

(3.3)

aν∗(x) =
1

1 +
(

1−ν∗
ν∗

)∏n
i=1

(
1−xi

xi

1−ν∗
ν∗

)wi
(3.4)

n(x) =
1

1 +
(

1−ν∗
ν∗

)2
x

1−x

, (3.5)

κ(λ)
ν (x) =

1

1 + 1−ν0
ν0

(
ν

1−ν
1−x
x

)λ (3.6)

where ν∗ ∈]0, 1[, with generator functions

fc(x) =

(
1− x

x

)α

fd(x) =

(
1− x

x

)−α

, (3.7)

where α > 0.
The operators c, d, and n fulfil the De Morgan identity for all ν, a and n fulfil the

self-De Morgan identity for all ν, and the aggregative operator is distributive with
the strict t-norm or t-conorm. The ν value expresses the expected value of the given
context. This means that if the given x value is greater than ν, then the operators
increase the value of x. The opposite is true when x is smaller than ν.

In a previous work [33], we used the Pliant system approach to schedule applica-
tions to VMs in a cloud by minimising energy consumption. There, we experienced
that uncertainty could be well tolerated with this approach, and better results can be
achieved with this model than with traditional approaches.

In this work, we create a new algorithm that can predict which cloud could be the
best for managing a given IoT device by calculating a score for each cloud using the
environment properties. This algorithm is also based on the Pliant logic, therefore,
for each cloud (i.e. for each VM queue in a cloud), it calculates a score number. The
first step of the algorithm is to normalise the data into the [0,1] interval. We apply
a Sigmoid function for this purpose, which is one of the most popular threshold
functions. λ > 0 determines the steepness of the continuous function f and squashes
the content of the function:

60 Simulating IoT Systems in a Multi-cloud Environment

Table 3.5: Normalisation parameters

Parameter Lambda Shift
General VM cost -1.0/96.0 15
Cost of the application -1.0 (Maximum price - minimum price) /2
Workload -1.0 Maximum workload
Number of VMs -1.0/8.0 3
Number of stations -0.125 Number of stations / number of applications
Number of active stations -0.125 Number of stations / active stations
VM memory size 1.0/256 350
VM CPU cores 1.0/32 3

fshift,λ(x) =
1

1 + e−λ(x−shift)
(3.8)

In the normalisation step, it should be mentioned that if the normalised value is
close to one, that means it is a more valuable property, and if the normalised value
is close to zero, that means it is a less prioritised property. For example, if the CPU
utilisation of the VM is high, the normalisation algorithm should give a value close to
zero. We define the following properties for each cloud VM: general VM cost, current
cost of the application, workload (i.e. tasks), number of running VMs in the hosting
cloud, total number of devices, number of devices that are already connected to a
cloud (i.e. active stations), memory size, and CPU cores of VMs. In Table 3.5 we can
see the exact values of the normalisation functions.

After the normalisation step, we modify the normalised value to emphasise the
importance of the result. This means that if the given x value is greater than our
expectation (ν) then we will increase the value of x. The opposite is true when the
given x is smaller than ν. To achieve this we will modify the normalised value by
using the Kappa function shown in Figure 3.6 with ν = 0.4 and λ = 3.0 parameters:

κλ
ν(x) =

1

1 +
(

ν
1−ν

1−x
x

)λ (3.9)

Finally, a cloud score number for the given application has to be calculated. To
achieve this, we can use conjunction, disjunction, or aggregation operators. The con-
junctive operator is similar to the AND operator. This means that if one of the values
is small, then the result will also be small. The opposite is true for a disjunctive oper-
ator, which is similar to the OR operator. If one of the values is large, the result will
also be large. The aggregation operator lies between the disjunctive or conjunctive
operator, that is why we use this operator:

3.3 A Multi-cloud Simulation Environment 61

Figure 3.6: The Kappa function

aν,ν0(x1, · · · , xn) =
1

1 + 1−ν0
ν0

ν
1−ν

∏n
i=1

1−xi

xi

, (3.10)

where ν is the neutral value and ν0 is the threshold value of the corresponding nega-
tion. Here we do not want to threshold the result so both parameters have the same
value of 0.5. The result of the calculation is always a real number that lies in the
[0,1] interval. So we calculate the score for all clouds (i.e. VM queues of clouds)
to find which one is the most suitable for a given device. Finally, when the score
number is calculated for all clouds, we create a distribution function based on the
score number and choose one from this distribution randomly.

3.3.3 Evaluation with Weather Forecasting Scenarios

With our proposed algorithms of the device strategies, we address the optimisation of
cloud side-costs with an enhanced allocation of the IoT devices. Which means we can
define more cloud providers with their own pricing schemes, but we use only one IoT
provider (therefore the IoT-side cost cannot be optimised). To achieve this, we chose
to model the crowd-sourced meteorological service of Hungary called Idokep.hu,
again. As an enhancement, a sensor’s data is not restricted to a standalone cloud
service (i.e. application), but multiple choices become available by utilising more
clouds.

62 Simulating IoT Systems in a Multi-cloud Environment

Table 3.6: Detailed Bluemix, Azure and Amazon pricing-based private cloud configura-
tions used in the evaluations

Cloud Bluemix
Flavor Small Medium Large

Hourly price (Euro) 0.0378 0.149 0.295
CPU (cores)/RAM (GB) 1/1 4/2 8/4

Cloud Azure
Flavor Small Medium Large

Hourly price (Euro) 0.019 0.0579 0.297
CPU (cores)/RAM (GB) 1/1.75 2/3.5 8/14

Cloud Amazon
Flavor Small Medium Large

Hourly price (Euro) 0.0229 0.0415 0.3327
CPU (cores)/RAM (GB) 1/2 2/4 8/32

First Scenario

In this scenario, all weather stations have 8 sensors (represented by a device in our
model), the message size of the sensors can be set up to 0.05 KBs, and the sensors
generate data every minute. The start-up period of the stations was selected ran-
domly between 0 and 20 min. In order to exemplify the usage of different cloud
selection strategies, we defined periodic start-up and shut-down dates for certain
stations (e.g. to represent malfunctions or failures). We simulate a whole day of op-
eration (from 0:00 to 24:00), and we start the simulation by setting up 200 stations
at 0:00 a.m. At 2:00 a.m. we start 100 more and at 10:00 a.m. 200 more to scale the
total number of operated stations up to 500. At 2:00 p.m. we shut down 200 stations
to scale down the number of running stations to 300 by 10:00 p.m. At the end of
the day, the total number of running stations returns to 200. This means the total
number of operated meteorological stations in this scenario is 500 (which denotes a
relatively small-scale, nationwide system).

With these station management timings we run four different test cases: (i) all
stations use the Random strategy, (ii) all stations use the Cost-aware strategy, then (iii)
all stations use the Load-balanced strategy. Finally, (iv) we used the Pliant strategy
in the last experiment. For this evaluation, we configured three clouds based on
the LPDS-1 cloud description from Table 3.7, and every cloud can run application
instances (to execute compute tasks) in three VM flavors defined in Table 3.6 (that
makes 9 possible application instances in total).

We executed the formerly defined scenario with the four test cases. The results
of the experiments can be seen in Table 3.8. After executing this scenario the ap-

3.3 A Multi-cloud Simulation Environment 63

Table 3.7: Detailed multi-cloud configuration for the evaluations

Cloud Physical machines
LPDS-1 1 PM - 32 cores, 128 GB RAM

4 PMs - 8 cores, 12 GB RAM
LPDS-2 1 PM - 64 cores, 128 GB RAM

1 PMs - 48 cores, 128 GB RAM
1 PMs - 32 cores, 128 GB RAM

9 PMs - 8 cores, 12 GB RAM
LPDS-3 2 PMs - 64 cores, 128 GB RAM

2 PMs - 48 cores, 128 GB RAM
2 PMs - 32 cores, 128 GB RAM
18 PMs - 8 cores, 12 GB RAM

plications processed 173.75 MBs of data. The so-called timeout parameter denotes
how much time it took for the application to terminate (i.e. to perform all remaining
data processing operations) after the last station stopped working (at 24:00). As we
can see from these results, the cheapest solution is the Cost-aware strategy (1.769
Euros) with these simulation parameters, it also has the shortest timeout (1.76 min-
utes) and it utilises the fewest virtual machines. This strategy only used 5 instances
of the cheapest VM while the other strategies used 1 VM instance in every running
application. Since the stronger virtual machines (having higher costs) processed the
tasks faster than the weaker ones (as expected), they had to generate tasks more
frequently. In general, choosing the cheapest VM for an application may result in
serious delays in real-time systems, but in this case, our simulated system can oper-
ate with weaker resources in real time due to the small amount of sensor data to be
processed. At the beginning of the simulation there is no virtual machine running,
which can serve any task execution request, thus each simulation has to wait at most
5 minutes to deploy one and allocate tasks, which means all timeout values of the
strategies are acceptable.

The Random, Load-balanced, and Pliant strategies use unnecessarily more expen-
sive virtual machines, which results in more than 60 Euros of cost in every case,
but we can see the advantage of the Pliant strategy: it tries to minimise the timeout
value. In this case, it achieved a timeout of 2.06 minutes, which is the second-best
result. It shows that our Pliant strategy focused more on execution time reduction
than cost savings.

Figure 3.7 shows the allocated tasks of an application running in the simulation
with the Pliant and Cost-aware strategies for the first 12 hours. Every box denotes a
different task and boxes having the same colour were processed by the same virtual
machine. The length of the tasks refers to their execution time. We can see that

64 Simulating IoT Systems in a Multi-cloud Environment

Table 3.8: Evaluation results of the first scenario

Strategies Cost-aware Random Load-balanced Pliant
App-1 cost 0 1.119 1.119 1.119
App-2 cost 0 2.027 2.027 2.027
App-3 cost 0 16.167 16.223 16.223
App-4 cost 0 1.842 1.842 1.842
App-5 cost 0 7.300 7.300 7.300
App-6 cost 0 14.426 14.426 14.426
App-7 cost 1.769 0.974 0.972 0.974
App-8 cost 0 2.827 2.822 2.827
App-9 cost 0 14.478 14.454 14.478

Total cost (Euro) 1.769 61.164 61.188 61.219
No. of used VMs 5 9 9 9

Total tasks 227 2,619 2,616 2,619
Timeout (min) 1.76 4.01 4.05 2.06

the tasks of the Cost-aware strategy processed a relatively medium amount of data
resulting in many, not-too-narrow boxes on the timeline. In case the amount of
unprocessed data was growing, the system started to scale up the number of utilised
virtual machines. Meanwhile, the Pliant strategy worked with stronger and faster
virtual machines, which also resulted in many tasks with small amounts of data, but
using only the same, best-fit VM. This explains the difference between the number of
total tasks of these strategies. Next, we investigate a scenario of a higher scale.

Second Scenario

In the second scenario, we aimed to simulate a larger, worldwide system. An in-
ternational meteorological service called OpenWeatherMap is operated by the Open-
weather IT company17, which was established in 2014 by a group of experts in Big
Data and image processing. As their website suggests, they manage over 40,000 me-
teorological stations all over the world. Our goal with this scenario is to investigate
how IoT applications behave in such large-scale environments. Similar to the first
scenario, we used three clouds configured with Amazon, Azure, and IBM Bluemix
cloud provider pricing defined in Table 3.6, but we modified the physical parameters
of the simulated private clouds (to be able to cope with the higher number of sta-
tions) as defined by LPDS-2 in Table 3.7. The number of running weather stations
has been increased to 40,000, each of them works with 8 sensors and generates 50
bytes of data every minute. We run this scenario to simulate 6 working hours. In the

17OpenWeather (accessed in September, 2018): https://openweather.co.uk/about

3.3 A Multi-cloud Simulation Environment 65

Figure 3.7: Timeline comparing task allocations of Pliant and Cost-aware strategies in
the first scenario

Table 3.9: Evaluation results of the second scenario

Strategies Cost-aware Random Load-balanced Pliant
App-1 cost 0 3.563 3.544 3.542
App-2 cost 0 3.745 3.707 3.721
App-3 cost 0 12.396 12.451 12.451
App-4 cost 0 5.799 5.796 5.783
App-5 cost 0 9.384 8.324 8.748
App-6 cost 0 12.157 12.132 12.034
App-7 cost 26.419 3.061 3.063 3.090
App-8 cost 0 5.156 5.243 5.166
App-9 cost 0 11.261 11.187 11.112

Total cost (Euro) 26.419 66.527 65.451 65.651
No. of used VMs 109 180 170 173

Total tasks 1,722 1,830 1,819 1,838
Timeout (min) 631 86 86 71

beginning, we started 10,000 stations, then we added 10,000 stations more in the
next hours to reach 40,000 stations by the fourth hour.

The results of the second scenario are shown in Table 3.9. After executing this
scenario the applications processed 4.008 GBs of data. In the previous scenario the
Cost-aware strategy was a good choice for both cost and runtime, but problems may
occur for systems with higher scale. In this case, the cheapest schedule was provided
by the Cost-aware strategy with 26.419 Euros, but it had 631 minutes (∼10.51 hours)
timeout, which is almost twice longer than the simulated working time (i.e. 6 hours).
For applications that are not sensitive to low latency, the Cost-aware strategy can still
be an acceptable opportunity to decrease costs, but for time-dependent applications

66 Simulating IoT Systems in a Multi-cloud Environment

(e.g. smart systems, weather forecasting systems) other strategies are needed. Never-
theless, the Cost-aware strategy utilised the lowest number of VMs, too. The Random
and the Load-balanced strategies have the same timeout (86 minutes), but the Load-
balanced approach operated with fewer virtual machines (10 VMs) and saved around
one Euro compared to the Random one. The Pliant strategy was even better with
almost the same price since it reached the most favourable timeout (71 minutes).

Third Scenario

In the third scenario, we configured our private cloud to be the strongest, having
twice as many resources as in the second scenario (detailed in the LPDS-3 parameter
setup of Table 3.7), while the rest of the configuration (the applications and the
stations) remained untouched, thus the final amount of generated (and processed)
data was the same as in the previous scenario.

Table 3.10 shows the results of the third scenario. With the increased physical
resources the running time has decreased, but the Cost-aware strategy still required
526 minutes (∼8.76 hours) timeout, after the last station stopped working.

Table 3.10: Evaluation results of the third scenario

Strategies Cost-aware Random Load-balanced Pliant
App-1 cost 0 3.512 3.552 3.552
App-2 cost 0 3.724 3.731 3.804
App-3 cost 0 13.283 12.479 12.451
App-4 cost 0 6.233 5.830 5.824
App-5 cost 0 9.197 8.523 8.386
App-6 cost 0 12.428 12.157 11.960
App-7 cost 26.489 3.085 3.071 3.070
App-8 cost 0 5.224 5.185 5.195
App-9 cost 0 11.904 12.251 12.152

Total cost (Euro) 26.489 66.429 66.784 66.397
Used VMs 172 183 184 185
Total tasks 1,722 1,905 1,889 1,893

Timeout (min) 526 36 36 36

If we take a look at the figures, we can see that most strategies benefited from
the stronger clouds: they all managed to reduce the timeout significantly. The Cost-
aware strategy remained the cheapest one, but the number of used virtual machines
increased the most against the other strategies compared with the second scenario.
The amount of unprocessed data grew faster than the number of available virtual

3.3 A Multi-cloud Simulation Environment 67

Table 3.11: Evaluation results of the fourth scenario

Strategies Cost-aware Load-balanced Pliant
Total cost (Euro) 10.442 41.765 38.84

Used VMs 81 51 51
Total tasks 685 1,384 1,242

Timeout (min) 41 31 24.9

machines, thus when the application operated with the maximum number of sta-
tions the stronger resources could provide more virtual machines to reduce timeout.
Comparing the other three strategies, they show minimal deviation in the used virtual
machines or the costs. The Pliant approach uses the most virtual machines (185), but
it was the cheapest with 66.397 Euros. At the same time, all strategies have the same
timeout value of 36 minutes. This means that by increasing the number of resources,
the strategies behave differently.

Fourth Scenario

In the previous scenarios, the station allocation strategies had to choose only 2-4
times to select VM-queues for the applications processing sensor data of the stations.
One of the advantages of the Pliant approach is that it is able to take into account
more features of the underlying systems, but for this strategy these scenarios were
too static, having only a small number of decision points. Thus in the last, fourth
scenario, we defined a more dynamic scenario, where we managed 11,500 stations
in the following way. Every half an hour, 500 stations started to operate and the
whole simulation ran for 12 hours. The Pliant algorithm had to decide more often
than in the former cases. Our aim with this scenario is to prove that this sophisticated
algorithm is able to decrease both the costs and the runtime at the same time. The
results can be seen in Figure 3.11. The processed data for the whole experiment is
1.54 GBs. For this scenario, we used a different cloud setup as well. We configured
three clouds based on the LPDS-1, LPDS-2, and LPDS-3 cloud descriptions of Table
3.7, respectively.

As expected, the cheapest solution is the Cost-aware algorithm with 10.442 Eu-
ros, which also has the highest timeout of 41 minutes. This strategy used the highest
number of virtual machines, which is also a disadvantage if the cloud provider calcu-
lates the cost based on the number of VMs. Comparing the other strategies (here we
neglected the Random approach), the Pliant and the Load-balanced strategies used
the same number of virtual machines, but the Pliant algorithm managed to reduce
both the cost and the runtime most effectively.

68 Simulating IoT Systems in a Multi-cloud Environment

3.4 Discussion and Concluding Remarks

Distributed system simulators are not generic enough to be applied in newly emerg-
ing domains, such as IoT-Cloud systems, which require in-depth analysis of the in-
teraction between IoT devices and cloud resources. Therefore, in this chapter, we
introduced a method to show how generic IoT sensors could be modelled in a state-
of-the-art cloud simulator.

We also analysed the operating costs of IoT applications by introducing a model
of pricing schemes of four providers, and then comparing them by calculating the
costs of a real-world meteorological application.

Finally, we introduced four cloud selection strategies aimed to reduce IoT applica-
tion execution time and usage costs. Our presented, dynamic approach based on the
Pliant method can adapt to the actual state of the underlying, possibly multi-cloud
systems, therefore, it can find better placement of devices, resulting in lower costs
and response times.

The results of this chapter belong to Thesis II, and its contents were published in
papers [P1], [P2], [P5], [P6], and [P10]. My contributions presented in this chapter
are the following:

II/1. I investigated IoT-Cloud use cases to derive a general IoT use case based on
meteorological forecasting, and I used it to evaluate the proposed IoT model.

II/2. I laid the foundations for the flexible and scalable modelling of IoT systems,
and I implemented it in the DISSECT-CF-IoT simulator.

II/3. I analysed the operating costs of the meteorological IoT use case, and I de-
veloped a novel cost estimation extension using real cloud and IoT provider
pricing schemes.

II/4. I introduced greedy and Pliant-based resource allocation strategies to reduce
application execution time and utilisation costs for multi-cloud environments.

4
Simulating IoT Systems in a

Multi-layered Fog Environment

4.1 Introduction

The Internet of Things (IoT) paradigm forms sensors, actuators, and smart devices
into a complex system via the Internet. IoT is often supported by Cloud Comput-
ing because the huge amount of sensed data requires elastic storage and processing
services for further analysis. In the past years, a new paradigm called Fog Comput-
ing has grown out of Cloud Computing, where the generated sensor data are stored
and processed on so-called fog nodes, which are located geographically closer to the
end-users for minimising latency and ensuring the privacy of the data [39].

A typical fog topology is shown in Figure 4.1, where sensors and actuators of
IoT devices are located at the lowest layer. Based on their configuration and type,
things produce various raw sensor data. Sensors are mostly resource-constrained and
passive entities with restricted network connection, on the other hand, actuators en-
sure broad functionality with an Internet connection and enhanced resource capacity
[48]. They aspire to make various types of decisions by assessing the processed data
retrieved from the nodes. These actions can affect the physical environment or refine
the configuration of the sensors. Furthermore, the embedded actuators can manipu-
late the behaviour of smart devices, for instance, restart or shut down a device, and
motion-related responses can also be triggered.

In the surrounding world of IoT devices, location is often fixed, however, the

69

70 Simulating IoT Systems in a Multi-layered Fog Environment

Figure 4.1: The connections and layers of a typical fog topology

Quality of Service (QoS) of these systems should also be provided at the same level
in the case of dynamic and moving devices. Systems composed of IoT devices sup-
porting mobility features are also known as the Internet of Mobile Things (IoMT)
[46]. Mobility can have a negative effect on the QoS to be ensured by fog systems,
for instance, they could increase the delay between the device and the actual node
it is connected to. Furthermore, using purely cloud services can limit the support for
mobility [53].

Besides scalability, latency, and resource management issues, the energy con-
sumption of a fog environment and the corresponding smart devices is also a great
challenge as stated in [4], therefore, it should be considered as one of the key fac-
tors for the development of Fog Computing solutions. Energy-efficient solutions also
have a significant impact on the carbon footprint and on climate change. In order
to avoid wasting energy, smart decisions could take into account IoT device motion
or corresponding environmental parameters, in order to optimally handle the related
equipment.

The remainder of this chapter is as follows: Section 4.2 extends the related works

4.2 Related Works 71

of IoT-Fog-Cloud systems towards modelling actuators and mobility. Next, Section
4.3 introduces another type of strategy to handle task offloading decisions of the
multi-layered fog topology. Section 4.4 then presents the detailed model for simu-
lating actuator and mobility use cases, and Section 4.5 introduces the energy-aware
extension of the simulation environment. Finally, 4.6 concludes the chapter with the
contributions.

4.2 Related Works

A detailed comparison of the related simulation approaches and the main compo-
nents of fog modelling in DISSECT-CF-Fog were already presented in the first chapter
(see Section 2.3 and 2.4), but to support the modelling of the latest technological en-
hancements in the addressed research fields, we had to extend our literature review
towards actuator modelling and mobility simulation.

The CloudSim-based iFogSim simulator [23] is one of the leading fog simulators
within the research community, which follows the sense-process-actuate model. In
this tool, the actuator is declared as the responsible entity for the system or a mech-
anism, and the actualisation event is triggered when a task, which is known as a
Tuple, determining a certain amount of instruction and size in bytes, is received by
the actuator. In the current implementation of iFogSim, this action has no significant
effect, however, custom events can also be defined by overriding the corresponding
method. Nevertheless, no such events are created by default. The actuator compo-
nent is determined by its connection and network latency. The original version of
iFogSim does not support mobility, however, the static, geographical location of a
node is stored.

Another CloudSim extension is EdgeCloudSim [64], which aims to ensure mobil-
ity support in simulation environments. It associates the position information of a
mobile device with a two-dimensional coordinate point, which can be updated dy-
namically. This simulation solution considers the nomadic mobility model, by the
definition of which a group of nodes moves randomly from one position to another.
This work also takes into account the attractiveness of a position to define the du-
ration of stay at some place. Further mobility models can be created by extending
the default class for mobility, but there is no actuator entity implemented in this
approach.

FogNetSim++ [56] can be used to model fog networks supporting heterogeneous
devices, resource scheduling, and mobility. In this paper, six mobility strategies were
proposed, and new mobility policies can also be added. This simulator aids the en-
tity mobility models, which handle the nodes independently, and take into account
parameters such as speed, acceleration, and direction in a three-dimensional coordi-
nate system. Unfortunately, the source code of the simulator presents examples of

72 Simulating IoT Systems in a Multi-layered Fog Environment

the linear and circular mobility behaviour only. This simulation tool used no actuator
model.

YAFS [36] is a simulator that analyses IoT application deployments and mobile
IoT scenarios. The actuator in this realisation is defined as an entity, which receives
messages with the given number of instructions and bytes, similar to the solution of
iFogSim. The paper also mentioned dynamic user mobility, which takes into account
different routes using GPX formats (it is used by applications to depict data on the
map), but this behaviour was not explained or experimented with.

[30] proposed the IoTSim-Edge simulation framework by extending the CloudSim
model towards IoT and Edge systems. This simulator focuses on resource provision-
ing for IoT applications considering the mobility function and battery usage of IoT
devices, and different communication and messaging protocols as well. The IoTSim-
Edge contains no dedicated class for the actuator components, nevertheless, the rep-
resentative class of an IoT device has a method for actuator events, which can also
be overridden. There is only one predefined actuator event affecting the battery of
an IoT device, however, it was not considered during the evaluation phase by the
authors. This simulation tool also takes into consideration the mobility of smart
devices. The location of a device is represented by a three-dimensional coordinate
system. Motion is influenced by a given velocity and range, where the corresponding
device can move, and only horizontal movements are considered within the range by
the default moving policy.

MobFogSim [54] aims to model user mobility and service migration, and it is one
of the latest extensions of the iFogSim, where actuators are supported by default.
Furthermore, the actuator model was revised and improved to handle migration de-
cisions, because migration is often affected by end-user motions. To represent mo-
bility, it uses a two-dimensional coordinate system, the users’ direction and velocity.
The authors considered real datasets as mobility patterns, which describe buses and
routes of public transportation.

The actuator and mobility abilities of these simulators are further detailed in Ta-
ble 4.1. The second column shows possible directions for transferring the sensor data
(usually in the form of messages), in case the actuator interface is realised in the cor-
responding simulator. It can be observed that it basically follows similar logic in all
cases. The third column highlights actuator events that can be triggered in a simu-
lator. The fourth column shows the supported mobility options (we only listed the
ones offered in their source code) and finally, we denote the position representation
manner in the last column.

It can be observed that there is a significant connection between mobility support
and actuator functions, but only half of the investigated simulators applied both of
them. Since the actuator has no commonly used software model within the latest
simulation tools, developers omit it, or it is left to the users to implement it, which

4.3 Managing Offloading Decisions in DISSECT-CF-Fog 73

Table 4.1: Detailed characteristics of the related simulation tools

Simulator Communication direction Actuator events Mobility Position

DISSECT-CF-Fog
(this work)

- Sensor → Fog / Cloud → Actuator
- Sensor → Actuator

- 10 different predefined
actions for actuation

- Adding new by overriding

- Nomadic
- Random Walk

Latitude,
Longitude

iFogSim - Sensor → Fog → Actuator
- Default, but it can be

overridden - Coordinates

EdgeCloudSim - - - Nomadic Coordinates

FogNetSim++ - -
- Linear

- Circular Coordinates

IoTSim-Edge - Sensor → Fog Device → Actuator
- Default, but it can be

overridden - Linear Coordinates

YAFS - Sensor → Service → Actuator - - Real dataset
Latitude,
Longitude

MobFogSim
- Mobile Sensor → Mobile Device

→ - Mobile Actuator - Migration
- Linear

- Real dataset Coordinates

can be time-consuming (considering the need for additional validation). In a few
cases, both actuator and mobility models are simplified or just rudimentary handled,
thus realistic simulations cannot be performed.

4.3 Managing Offloading Decisions in DISSECT-CF-Fog

In order to serve actuator and mobility decisions, first we have to introduce an of-
floading mechanism for IoT applications, because if the selected fog node is over-
loaded, the execution of the appropriate task will be delayed, which has a negative
effect on the makespan of its application and/or on the execution costs. To reach the
required Quality of Service of an IoT application, the management of IoT-Fog-Cloud
systems should also take into account the position and the actual load of fog nodes.

When the number of tasks is growing, a single fog node may not be able to pro-
cess them continuously, therefore, a forwarding function for some of the tasks to
other nodes can be useful to manage a higher number of tasks of an IoT application.
A fog topology consisting of several nodes with different locations can handle the un-
foreseen appearance of smart devices (and new tasks) more effectively, than a single,
heavyweight cloud node. Such functions can take into account the physical location
of the entities of the execution environment (i.e. fog or cloud node or IoT devices),
the load of the network used for communication and data transfers, and the transfer,
storage, and execution costs.

To overcome this problem, multi-layer fog node management was introduced in
DISSECT-CF-Fog by enabling task offloading from (possibly overloaded) nodes to oth-
ers. A typical fog topology can contain numerous nodes, some of them are grouped as
a fog cluster, which restricts the access and visibility of other nodes. These nodes can
be ordered into layers, where higher-level fog layers usually contain stronger phys-

74 Simulating IoT Systems in a Multi-layered Fog Environment

ical resources. The computing nodes can be heterogeneous and often restricted on
certain types and strengths of VMs and applications in order to serve as many users
as possible, such restrictions usually concern the processing power and the memory
usage of the given VM.

To manage the offloading decisions separately for each node, we introduce the ap-
plication strategy components with which different task allocation approaches can be
created and implemented taking into consideration the characteristics of the topol-
ogy. In our experiments, we also exploit the recently introduced capabilities and
components of the simulator. The parallel steps of the simulation are the following,
detailed briefly: (i) sensors of smart devices generate data in the given frequency, (ii)
the unprocessed data are forwarded to a node (based on the applied device strategy
presented in Chapter 3), (iii) the data are packaged in a compute task, (iv) VMs on a
node process as many tasks as they can, and finally (v) if a node is overloaded, then
the unprocessed tasks will be forwarded to another node.

4.3.1 The Proposed Task Allocation Strategies for Fog Nodes

We defined four basic strategies for task allocation to validate the usability of our
proposal. The Random strategy is the default, which always chooses one from the
connected nodes randomly. The Push Up strategy always chooses the connected par-
ent node (i.e. a node from a higher layer), if available. This approach does not take
into account the properties of the neighbours, and basically ensures the fastest way
to forward unprocessed tasks to the cloud, where more powerful VMs may reduce
the processing time of it. The disadvantage of these strategies is the disability to con-
sider increased network traffic and costs of the operation in the decision. The third
strategy called Hold Down aims to address privacy needs because the system can keep
application data as close to the end-user as possible. In this way, the network traffic
is minimal, but the execution time of the application can increase dramatically (due
to the possible overload of constrained resources at the lowest layer). The Runtime-
aware strategy ranks the available parent nodes, and all neighbour nodes (from its
own layer) by network latency and by the ratio of the available CPU capacity and
the total CPU capacity. The algorithm picks the node with the highest rank (i.e. the
closest and least loaded one). The last strategy we propose is an algorithm that can
predict which computing node could be the best for managing a given IoT device
(according to the actual state of the system, represented by its properties). This algo-
rithm is also based on the Pliant logic (as it is described in Section 3.3.2), therefore,
for each reachable fog and cloud node the Pliant strategy calculates a score number
using normalisation, Sigmoid and Kappa functions, and the aggregation operator to
choose the appropriate one for the offloading decision. We define the following three
properties for each system node: load, cost, and unprocessed data of a node. In Table

4.3 Managing Offloading Decisions in DISSECT-CF-Fog 75

Table 4.2: Normalisation parameters

Parameter Lambda Shift
Workload of a node -1.0/8.0 (Maximum workload - minimum workload) / 2
Price of using a node 4.0 Minimum price
Unprocessed data -1.0/4.0 (Maximum unprocessed data - minimum unprocessed data)

4.2, we can see the exact values of the normalisation functions.

Device layer

Fog layer II.

Cloud layer

Fog layer I.

Frankfurt

Athens

Brussel
Budapest

Kiev

London Paris

Amsterdam

Vienna Prague

Bratislava

Moscow Vilnius

Warsaw

Stockholm

Figure 4.2: The considered fog topology in the evaluation

4.3.2 The Considered Scenarios and Their Configuration

The stakeholders of IoT applications and resource providers have to prepare in ad-
vance for the unforeseen data generated by sensors and often aspire to treat them in
real-time, thus a fog topology should be robust enough and be able to handle a vast
amount of IoT devices. Such requirements can be investigated by defining applica-
tion and device strategies. Thus, we applied the device strategies for our experiments,
which were introduced in Section 3.3, but some revisions were also required. As a
reminder, a device strategy is applicable to map any device to any preferred node,
according to the policy of the actual device. Similar to other models, resource needs,

76 Simulating IoT Systems in a Multi-layered Fog Environment

Table 4.3: Evaluation results of the first scenario

First scenario
Device strategy Distance-based

Application strategy Pliant Runtime-aware Random Hold Down Push Up
Num. of VMs 75 73 75 56 70

Cost ($) 76.1 73.6 70.4 57.0 81.7
Network utilisation (sec.) 31 41 44 0 39

Data transferred (MB) 101 144 176 0 140
Timeout (min.) 4.6 4.9 6.0 228.5 4.9

Device strategy Load-balanced
Application strategy Pliant Runtime-aware Random Hold Down Push Up

Num. of VMs 72 72 72 36 46
Cost ($) 118.3 122.3 117.7 81.9 112.1

Network utilisation (sec.) 87 147 102 0 21
Data transferred (MB) 4,057 9,560 4,851 0 2,654

Timeout (min.) 27.8 70.3 57.8 8,842.0 1,529.8

Device strategy Mixed
Application strategy Pliant Runtime-aware Random Hold Down Push Up

Num. of VMs 77 77 77 41 54
Cost ($) 93.7 99.4 91.5 59.3 87.1

Network utilisation (sec.) 60 95 76 0 34
Data transferred (MB) 1,414 2,361 1,766 0 1,197

Timeout (min.) 11.6 30.9 14.8 4,371.0 8.5

energy consumption, latency, bandwidth, and IoT/cloud side-cost can be considered,
in order to ensure appropriate pricing or to reduce IoT application execution time
(i.e. makespan).

The Distance-based device strategy chooses the geographically closest fog node, to
be selected only from the lowest fog layer, for a device to communicate with (i.e. send
tasks to). The disadvantage of this strategy lies in data overload in a certain node if
many devices were located in its neighbourhood. The Load-balanced device strategy
always tries to balance the number of connected devices for each node considering
the number of available physical machines of the node as well. The disadvantage of
this strategy is the increased latency if a device chose a farther-located node from
the lowest layer. One can observe that considering only device strategies can cause a
bottleneck effect in the topology.

We evaluated the proposed device mapping and task allocation strategies with
three different scenarios simulating a European-wide weather forecasting system.
The first scenario deals with 5,000 devices (i.e. weather stations). In the second sce-

4.3 Managing Offloading Decisions in DISSECT-CF-Fog 77

Table 4.4: Evaluation results of the second scenario

Second scenario
Device strategy Distance-based

Application strategy Pliant Runtime-aware Random Hold Down Push Up
Num. of VMs 90 90 90 59 79

Cost ($) 149.2 150.0 147.9 106.0 138.4
Network utilisation (sec.) 150 214 189 0 111

Data transferred (MB) 3,835 8,041 5,483 0 2,103
Timeout (min.) 24.0 50.5 24.5 1,918.5 349.8

Device strategy Load-balanced
Application strategy Pliant Runtime-aware Random Hold Down Push Up

Num. of VMs 72 60 72 36 46
Cost ($) 191.9 170.8 192.3 134.4 195.9

Network utilisation (sec.) 177 1,305 210 0 35
Data transferred (MB) 14,700 20,636 16,726 0 6,011

Timeout (min.) 2,436.9 742.3 2,464.8 19,133.5 5,634.8

Device strategy Mixed
Application strategy Pliant Runtime-aware Random Hold Down Push Up

Num. of VMs 87 86 87 56 71
Cost ($) 148.4 155.8 151.4 108.4 152.3

Network utilisation (sec.) 144 332 185 0 58
Data transferred (MB) 6,476 31,894 8,077 0 3,147

Timeout (min.) 99.8 182.3 174.8 10,143.5 1,962.3

nario, we doubled the number of devices, hence 10,000 stations utilised the system.
In both cases, the whole simulation period took one day. Finally, in the last scenario,
we modelled a more dynamic system. In the beginning, only 2,000 stations started
to work, and after every 4 hours we installed 2,000 more, thus at the end of the day,
the total number of devices was 12,000. In all cases, each station was equipped with
five sensors (e.g. measuring weather conditions, such as temperature and humidity,
with 50 bytes of sensor data). The time interval between two measurements (i.e. the
data generation frequency) was set to one minute.

The topology contains two fog layers with 14 different fog nodes organised into
clusters, and one cloud layer having a single cloud node. Each node is represented
by a different city and the latency between them is measured by using WonderNet-
work18. The defined topology can be seen in Figure 4.2, which also depicts the fog
clusters and layers with different colours. The arrows represent routes which are
responsible for communication between the layers, while the (undirected) edges are

18WonderNetwork (accessed in May, 2020): https://wondernetwork.com/pings

78 Simulating IoT Systems in a Multi-layered Fog Environment

for the message exchanges inside a cluster. The network capability of the smart de-
vices (or stations) is modelled with a 4G network with an average 50 ms of latency.
When a connection is created by applying a device policy, the exact latency value will
be weighted in proportion to the physical distance between the device and the node.

The nodes of the topology are modelled with real VM specifications and pricing
schemes according to the Amazon Web Services (AWS): the lowest Fog layer has VMs
with 2 CPU cores, 4 GB RAM and 0.051$ hourly price, the top fog layer has VMs with
4 CPU cores, 8 GB RAM and 0.101$ hourly price, finally, the cloud layer has VMs with
8 CPU cores, 12 GB RAM and 0.204$ hourly price. Each VM can process only one
task (represented by 250 KB of data) at a time. The lowest fog layer of the topology
was divided into three clusters, one node of the cluster tackled with 12 CPU cores
and 24 GB RAM altogether. We doubled the resource capacity of a node of the upper
fog layer, thus it dealt with 24 CPU cores and 48 GB RAM.

Our preliminary evaluation showed that applying this scheme made the topology
(the system) particularly strong, therefore, some strategies (e.g. Push Up) became
more beneficial than others. Therefore, the cloud resources were set to 48 GB CPU
cores and 96 GB RAM.

Concerning the application management in the simulator during executing a sce-
nario, the ratio of the forwardable data is limited to 50% (hence moving all data to
a different node is prohibited). The daemon service of the application decides after
every 150 seconds about the task allocation request to a VM of a node. In each sce-
nario, the locations of all devices were fixed during the simulation, however, those
positions were randomly chosen at the beginning of the simulation to enable realistic
and unexpected behaviour of such devices. The start time of the devices had a delay
randomly set from the 0-20 interval in minutes (to avoid burst operations, and also
to be more realistic).

Evaluation of the Strategies

Table 4.3, Table 4.4, and Table 4.5 summarise the average results after executing the
scenarios with all device and application strategies three times. Table 4.6 presents
the mean of the results of the scenarios. We also extended our measurements with
an extra device strategy called Mixed, where half of the IoT devices were managed
with the Distance-based, and the other half of the devices were managed with the
Load-balanced strategy.

To compare the proposed strategies, we measured how many VMs were required
for processing the tasks (and their data) during operating hours. The Network util-
isation metric reflects the network load, and it represents the time taken to transfer
the sensor data from the source node to the actual processing node. The Data trans-
ferred metric represents the total size of all forwarded data. The Data transferred
and the Network utilisation metrics were rounded to the nearest integer number.

4.3 Managing Offloading Decisions in DISSECT-CF-Fog 79

Table 4.5: Evaluation results of the third scenario

Third scenario
Device strategy Distance-based

Application strategy Pliant Runtime-aware Random Hold Down Push Up
Num. of VMs 90 90 90 60 79

Cost ($) 110.1 111.9 107.8 77.1 105.0
Network utilisation (sec.) 87 131 110 0 69

Data transferred (MB) 2,117 5,471 2,939 0 1,099
Timeout (min.) 74.8 144.4 111.6 1,091.0 332.3

Device strategy Load-balanced
Application strategy Pliant Runtime-aware Random Hold Down Push Up

Num. of VMs 90 90 90 51 66
Cost ($) 132.8 138.1 131.5 106.9 134.8

Network utilisation (sec.) 114 204 140 0 40
Data transferred (MB) 4,307 13,599 5,300 0 2,911

Timeout (min.) 195.3 172.8 217.8 3,095.0 1,852.3

Device strategy Mixed
Application strategy Pliant Runtime-aware Random Hold Down Push Up

Num. of VMs 90 90 90 60 80
Cost ($) 111.0 112.8 110.2 78.0 107.3

Network utilisation (sec.) 83 121 108 0 55
Data transferred (MB) 2,194 5,126 3,402 0 1,251

Timeout (min.) 68.7 112.7 72.3 1,641.0 254.8

The Timeout value means the time taken to finish data processing after the last sen-
sor measurement was performed. This metric relates to the makespan of an appli-
cation. Here, the less time required to process all tasks of an IoT application (after
stopping the devices), the better a node selection strategy is. According to the used
AWS pricing models, we could calculate the exact costs of the usage of the fog and
cloud resources (after executing the IoT applications).

Concerning the results of the first scenario, the Pliant strategy manages the task
with the best Timeout value in the first test case, however, we can save money (73.6$)
with the Runtime-aware application strategy which has only slightly worse perfor-
mance with 4.9 minutes. It is obvious that with this topology the lowest layer is
inadequate for fast data processing, but it ensures the cheapest solutions in each test
case with the Hold Down policy. When the smart devices applied the Load-balanced
device strategy, it increased all values heavily, but still, the Pliant algorithm processed
the tasks in the fastest way with 27.8$. In the third test we can see that the process-
ing of all generated tasks is cheaper (with 87.1$) and faster (with 8.5 minutes) in

80 Simulating IoT Systems in a Multi-layered Fog Environment

Table 4.6: The mean of the results of the scenarios

First scenario - average values
Device strategy Distance-based Load-balanced Mixed
Num. of VMs 69.8 59.6 65.2

Cost ($) 71.8 110.5 86.2
Network utilisation (sec.) 31.0 71.4 53.0

Data transferred (MB) 112.2 4,224.4 1,347.6
Timeout (min.) 49.8 2,105.5 887.4

Second scenario - average values
Device strategy Distance-based Load-balanced Mixed
Num. of VMs 81.6 57.2 77.4

Cost ($) 138.3 177.0 143.2
Network utilisation (sec.) 132.8 345.4 143.8

Data transferred (MB) 3,892.4 11,614.6 9,918.8
Timeout (min.) 473.4 6,082.4 2,512.5

Third scenario - average values
Device strategy Distance-based Load-balanced Mixed
Num. of VMs 81.8 77.4 82.0

Cost ($) 102.4 128.8 103.9
Network utilisation (sec.) 79.4 99.6 73.4

Data transferred (MB) 2,325.2 5,224.6 2,394.6
Timeout (min.) 350.8 1,106.6 429.9

the cloud (Push Up). According to these results, it seems the IoT application handles
the devices better, if they run with the Distance-based strategy.

In the second scenario, we investigated how our IoT application behaves if it
has to deal with a doubled number of smart devices. In the first and the third test
cases, the Pliant handles the increased data the best with 24.0 minutes and 99.8
minutes, respectively. However, applying the Load-balanced device strategy with
Runtime-aware application policy reaches better results. These results show that the
distance between the devices and the nodes has serious effects on the IoT application
execution, and similar to the first scenario, the application strategies cannot handle
the impact of the Load-balanced devices.

Concerning the results of the third scenario, two of the device strategies (Distance-
based, Mixed), and the Plant application strategy managed the best Timeout values
with 74.8$ and 68.7$. Similar to the second scenario, an IoT application only handles
the data in a fair way when we applied the Load-balanced strategy with the Runtime-

4.4 The Actuator and Mobility Models of DISSECT-CF-Fog 81

aware strategy.
Concerning the average results for the device strategy, we can see that the best

strategy for the operation cost, the network transfer and the timeout value is the
Distance-based device strategy. In one case, the Mixed had a good influence on the
network utilisation of the third scenario, which means location independence of the
smart devices may require further investigation. We can clearly see that the Load-
balanced strategy dealt with the least number of virtual machines and it became the
best scenario, but it also dramatically increased the rest of the metric values.

4.4 The Actuator and Mobility Models of DISSECT-CF-
Fog

In the layered architecture of IoT, actuators are located in the perception layer, which
is often referred to as the lowest or physical layer that requires the most detailed level
of abstraction in IoT. The actuator interface should facilitate a more dynamic device
layer and a volatile environment in a simulation. Therefore, it is preferred to be able
to implement actuator components in any kind of simulation scenario, if needed. In
our model, one actuator is connected to one IoT device for two reasons in particular:
(i) it is observing the environment of the smart device and can act based on previ-
ously specified conditions, or (ii) it can influence some low-level sensor behaviour,
for instance, it changes the sampling interval of a sensor, resets or completely stops
the smart device.

The latter indirectly conveys the conception of a reinterpreted actuator function-
ality for simulator solutions. The DISSECT-CF-Fog actuator can also behave as a low-
level software component for sensor devices, which makes the model compound.
The actuator model of DISSECT-CF-Fog can only operate with compact, well-defined
events, that specify the exact influence on the environment or the sensor. The set of
predefined events during a simulation provides a restriction to the capability of the
actuator and limits its scope to certain actions that are created by the user or already
exist in the simulator. A brief illustration of sensor-based events is shown in Figure
4.3.

The determination of the exact event, executed by the actuator, happens in a sep-
arate, reusable, and extendable logic component. This logic component can serve as
an actual actuator configuration, but can also be used as a descriptor for environmen-
tal changes and their relations to specific actuator events. This characteristic makes
the actuator interface thoroughly flexible and adds some more realistic factors to cer-
tain simulation scenarios. With the help of the logic component, the actuator inter-
face works in an automatic manner. After a cloud or fog node has processed the data
generated by the sensors, it sends a response message back to the actuator, which

82 Simulating IoT Systems in a Multi-layered Fog Environment

Figure 4.3: Low-level sensor events

chooses an action to be executed. This models the typical sensor-service-actuator
communication direction.

Unexpected actions may occur in real-life environments, which are hard for al-
gorithms to define, and the execution of some events may not require cloud or fog
processes, e.g. when a sensor fails. To be able to handle such issues, the actuator
component is capable of executing events apart from its predefined configuration.
This feature facilitates immediate and direct communication between sensors and
actuators through a smart device.

The proximity of computing nodes is the main principle of Fog Computing and
it has numerous benefits, but mobile IoT devices may violate this criterion. These
devices can move further away from their processing units, causing higher and un-
predictable latency. When a mobile device moves out of range of the currently con-
nected fog node, a new, suitable fog node must be provided. Otherwise, the quality
of service would drastically deteriorate and due to the increased latencies, the fog
and cloud nodes would hardly be distinguishable in this regard, resulting in losing
the benefits of Fog Computing.

Another possible problem that comes with mobile devices is service migration.
The service migration problem can be considered as when, where and how (W2H)
questions. Service migration usually happens between two computing nodes, but if
there is no fog node in an acceptable range, the service could be migrated to the
smart device itself, causing lower performance and shorter battery time.

The physical location of fog nodes in a mobile environment is a major concern.
Placing Fog Computing nodes too far from each other will result in higher latency or
connection problems. In this case, IoT devices are unable to forward their data, hence
they are never processed. Some devices may store their data temporarily until they

4.4 The Actuator and Mobility Models of DISSECT-CF-Fog 83

connect to a fog node, but this contradicts the real-time data processing promises of
fogs. A slightly better approach would be to install fog nodes fairly dense in space
to avoid the problem discussed above. However, there might be some unnecessary
nodes in the system, causing a surplus in the infrastructure, which results in resource
wastage.

Considering different mobility models for mobile networks in simulation environ-
ments have been researched for a while. The survey by [12] presents 7 entity and
6 group mobility models in order to replace trace files, which can be considered as
the footprints of movements in the real world. Applying mobility models is a reason-
able decision because they mimic the movements of IoT devices in a realistic way.
The advent of IoT and the technological revolution of smartphones have brought the
need for seamless and real-time services, which may require an appropriate simula-
tion tool to develop and test the cooperation of Fog Computing and moving mobile
devices.

The current extension of the DISSECT-CF-Fog was designed to create a precise
geographical position representation of computing nodes (fog, cloud) and mobile
devices and simulate the movements of devices based on specified mobility policies.
As the continuous movement of these devices could cause connection problems we
consider the following events shown in Figure 4.4.

Figure 4.4: Actuator events related to mobility behaviour

Examining the occurrence of these specific actuator and mobility events can help
in optimising the physical allocation of fog nodes depending on the mobility features
of IoT devices.

84 Simulating IoT Systems in a Multi-layered Fog Environment

4.4.1 Actuator Implementation in DISSECT-CF-Fog

For the proper behaviour of the actuator, the data representation in the simulator
needs to be more detailed and comprehensive. Consequently, this extension of the
DISSECT-CF-Fog simulator introduces a new type of data fragment in the system, to
store specific details throughout the life-cycle of the sensor-generated data. Such
fragments are forwarded to an IoT application located in a fog or cloud node to be
processed. The new IoT data representation handles the following attributes and
information:

• source: Holds a reference to the IoT device generating sensor data, so the sys-
tem keeps track of the data source.

• destination: Holds a reference to the IoT application of a fog node where the
data has been originally forwarded to.

• data path: In some cases, fog nodes cannot process the current data fragment,
therefore, they might send it to another one. This parameter keeps track of the
visited fog nodes by the data before it has been processed.

• event size: The size of the response message sent from a fog node to the actuator
component. This helps to simulate network usage while sending information
back to the actuator.

• actuation needed: Not every message from the IoT device requires an actuator
response event. This logical value holds true if the actuator should take action
after the data has been processed, otherwise it is false.

• fog needed: A logical value is true if the data must be processed in a fog node,
and should not be sent to the cloud. It is generally set to true when real-time
response is needed from the fog node.

• start time: The exact time in the simulator when the data was generated.

• process time: The exact time in the simulator when the data was processed.

• end time: The exact time in the simulator when the response has been received
by the actuator.

• event type: This is the specific event type that is sent back to the actuator for
execution.

• MTTF: The mean time until the sensor fails. This attribute is essential to cal-
culate the sensor’s average life expectancy, which helps in modelling sensor
failure events. If the simulation’s time exceeds the MTTF value, the sensor has
a higher chance to fail.

4.4 The Actuator and Mobility Models of DISSECT-CF-Fog 85

• maximum latency: Its value determines the maximum latency tolerated by the
device when communicating with a computing node. For instance, in the case
of medical devices, this value is generally lower than in the case of agricul-
tural sensors. Mobile devices may move away from fog nodes inducing latency
fluctuations and this attribute helps to determine whether a computing node is
suitable for the device, or the expected latency exceeds this maximum latency
limitation, therefore the device should look for a new computing node. This
attribute plays a major role in triggering fog-selection actuator events when the
IoT device is moving between fog nodes.

When creating an IoT device in the simulation, its sensors start generating the
new kind of data segments, which later are forwarded to a certain IoT application
of a fog node, based on the fog selection strategy of the device. If the actual fog
node has adequate resources to process the received data, the processing happens,
and if the actuation needed attribute of the processed data object was true, then it
is sent back to the actuator (i.e. the data source) expanded with a specific actuator
event object denoting an action to be performed by the actuator. Otherwise, if the
current fog node does not have the capacity to process the data, it sends them over
to another node based on the actual strategy of the application.

As mentioned, the actuator model must only operate with predefined events to
limit its scope to certain actions. These events are represented by an interface and
should be implemented in order to specify an exact action. There are some prede-
fined events in the system: five of them are low-level, sensor-related events, and the
other five are related to the mobile functionality of the devices, but these can be
extended to different types of behaviours.

Since the actuator has the ability to control the sensing process itself [53], half
of the predefined actuator events foster low-level sensor interactions. The Change
file size event can modify the size of the data to be generated by the sensor. Such
behaviour reflects use cases, when more or less detailed data are required for the
corresponding IoT application, or the data should be encrypted or compressed for
some reason. Increase frequency and Decrease frequency might be useful when the
IoT application requires an increased time interval between the measurements of a
sensor. A typical use case of this behaviour is when a smart traffic control system
of a smart city monitors the traffic at night when usually fewer inhabitants are lo-
cated outside. The Decrease frequency is the opposite of the previously mentioned
one, a typical procedure may appear in IoT healthcare, for instance, the blood pres-
sure sensor of a patient measures continuously increasing values, thus more frequent
perceptions are required. The Stop device event imposes a fatal error on a device,
typically occurring randomly, and it is strongly related to the MTTF value described
above. The MTTF is considered as a threshold, before reaching it, there is only a
small chance for failure, after exceeding it, the chance of a failure increases expo-

86 Simulating IoT Systems in a Multi-layered Fog Environment

nentially. Finally, the Restart device reboots the given device to simulate software
errors or updates.

Customised events can also be added to the simulation by overriding the related
methods, which describe the series of actions to occur upon executing the event. In
order to model a broad spectrum of scenarios as detailed as possible, we introduce
a third type of strategy. The actuator strategy makes it possible to represent an en-
vironment around an IoT device, and make the actuator component reactive to its
changes by selecting the corresponding event. For instance, let us consider a humid-
ity sensor and a possible implementation of the actuator component. We can then
mimic an agricultural environment in the actuator strategy with the help of some
well-defined conditions to react to changes in humidity values, and select the appro-
priate customised actuator events (e.g. opening windows, or watering), accordingly.
This characteristic enables DISSECT-CF-Fog to simulate environment-specific scenar-
ios while maintaining its extensive and generic feature.

4.4.2 Representing IoMT Environments in DISSECT-CF-Fog

The basis of mobility implementations in the competing tools usually represent the
position of users or devices as two or three-dimensional coordinate points, and the
distance between any two points is calculated by the Euclidean distance, whereby the
results can be slightly inaccurate. To overcome this issue and have a precise model,
we take into account the physical position of the end users, IoT devices and data
centres (fog, cloud) by longitude and latitude values. The representative class calcu-
lates distance using the Haversine formula [74]. Furthermore, applying geographical
location with a coordinate system often results in a restricted map, where the enti-
ties are able to move, thus in our case worldwide use cases can be implemented and
modelled.

In real life, the motion of an entity can be represented by a continuous function,
however, in DISSECT-CF-Fog the discrete events reflect the state of the function de-
scribing a motion, thus continuous movements are transformed into such events, for
instance modifying the direction in discrete moments. Therefore, the actual posi-
tion only matters and is evaluated before the decisions are made by a computing
appliance or a device, for instance when the sensed data is ready to be forwarded.
The mobile device movements are based on certain strategies. Currently, two mobil-
ity strategies are implemented. We decided to implement one entity and one group
mobility model according to [12], but since we provide a mobility interface, the col-
lection of usable mobility models can be easily extended.

The goal of the (i) Nomadic mobility model is that entities move together from one
location to another, in our realisation multiple locations (i.e. targets) are available.
It is very similar to the public transport of a city, where the route can be described

4.4 The Actuator and Mobility Models of DISSECT-CF-Fog 87

Figure 4.5: Random Walk mobility model

by predefined points (or bus stops), and the dedicated points (Pi) are defined as
geographical positions. An entity reaching the final point of the route will no longer
move but may function afterwards. Between the locations, a constant v speed is
considered, and there is a fixed order of the stops as follows:

P
(lat,long)
1

v→ P
(lat,long)
2

v→ ...
v→ P (lat,long)

n

The (ii) Random Walk mobility takes into consideration entities with unexpected
and unforeseen movements, for instance, the observed entity walks around the city,
unpredictably. The aim of this policy is to avoid moving in straight lines with a
constant speed during the simulation because such movements are unrealistic. In
this policy, a range of the entity is fixed (r), where it can move with a random speed
(v). From time to time, or if the entity reaches the border of the range, the direction
and the speed of the movement dynamically change (Pi). That kind of movement is
illustrated in Figure 4.5.

The simulator monitors the position of the fog nodes and IoT devices continu-
ously and makes decisions knowing these properties. A connection of an IoT device
is closed with the corresponding node in case the latency exceeds the maximum tol-
erable limit of the device, or the IoT device is located outside of the range of the
node. When a device finds a better fog node instead of the current one, or the IoT
device runs without connection to any node, it finds an appropriate one.

As we mentioned earlier, actuation and mobility are interlinked, thus we intro-
duce five actuator events related to mobility. Position changes are done by the Change
position event of the actuator. The connection or disconnection methods of a device

88 Simulating IoT Systems in a Multi-layered Fog Environment

are handled by the Disconnect from node and the Connect to node events, respectively.
When a more suitable node is available for a device than the already connected one,
the Change node actuator event is called. Finally, in some cases, a node may stay
without any connection options due to its position, or in cases when only overloaded
or badly equipped fog nodes are located in its neighbourhood. The Timeout event
is used to measure the unprocessed data due to these conditions, and to empty the
device’s local repository, if data forwarding is not possible.

4.4.3 Evaluation

We evaluated the proposed actuator and mobility extensions of the DISSECT-CF-Fog
simulator with two different scenarios, which belong to the main open research chal-
lenges in the IoT field [42]. The goal of these scenarios is to present the usability
and broad applicability of our proposed simulation extension. We also extended one
of the scenarios with larger-scale experiments, in order to determine the limitations
of DISSECT-CF-Fog (e.g. determining the possible maximum number of simulated
entities).

Our first scenario is IoT-assisted logistics, where more precise location tracking of
products and trucks can be realised, than with traditional methods. It can be useful
for route planning (e.g. for avoiding traffic jams or reducing fuel consumption), or
for better coping with different environmental conditions (e.g. for making weather-
specific decisions).

Our second scenario is IoT-assisted (or smart) healthcare, where both monitoring
and reporting abilities of the smart systems are heavily relied on. Sensors worn by
patients continuously monitor the health state of the observed people, and in case of
data spikes, it can immediately alarm the corresponding nurses or doctors.

During the evaluation of our simulator extension, we envisaged a distributed com-
puting infrastructure composed of a certain number of fog nodes (hired from local
fog providers) to serve the computational needs of our IoT applications. Besides these
fog resources, additional cloud resources can be hired from a public cloud provider.
For each of the experiments, we used the cloud schema of LPDS Cloud of MTA SZ-
TAKI to determine realistic CPU processing power and memory usage for the physical
machines. Based on this schema we attached 24 CPU cores and 112 GB of memory
for a fog node and set at most 48 CPU cores and 196 GB of memory to be hired from
a cloud provider to start virtual machines (VMs) for additional data processing.

The simulator can also calculate resource usage costs, so we set VM prices accord-
ing to the Amazon Web Services19 (AWS) public cloud pricing scheme. For a cloud
VM having 8 CPU cores and 16 GB RAM we set a 0.204$ hourly price (a1.2xlarge),

19Amazon Web Service (accessed in October, 2020): https://aws.amazon.com/ec2/pricing/on-
demand/

4.4 The Actuator and Mobility Models of DISSECT-CF-Fog 89

while for a fog VM having 4 CPU cores and 8 GB RAM we set a 0.102$ hourly price
(a1.xlarge). This means that the same amount of data is processed twice faster on the
stronger cloud VM, however, the cloud provider also charges twice as much money
for it. In our experiments, we proportionally scale the processing time of data, for
every 50 KB, we model one minute of processing time on the Cloud VM.

For both scenarios, we used a PC with Intel Core i5-4460 3.2GHz, 8GB RAM, and
a 64-bit Windows 10 operating system to run the simulations. Since our simulations
take into account random factors, each experiment was executed ten times, and the
average values are presented below.

Figure 4.6: Applied fog ranges in the first scenario

The Logistics IoT Scenario

In the first scenario, we simulated a one-year-long operation of a smart transport
route across cities located in Hungary. This track is exactly 875 kilometres long, and
it takes slightly more than 12 hours to drive through it by a car based on Google
Maps, which means the average speed of a vehicle is about 73 km/h.

We placed fog nodes in 9 different cities maintained by a domestic company, and
we used a single cloud node of a cloud provider located in Frankfurt. Each fog node
has a direct connection with the cloud node, the latency between them is set based
on the values provided by the WonderNetwork service as before. A fog node forms
a cluster with the subsequent and the previous fog node on the route as depicted
in Figure 4.6. This figure also presents the first test case (a), when the range of a
fog node is considered as 25 kilometres radius (similar to a LoRa network). For the
second test case (b), we doubled the range to 50 kilometres radius. The IoT devices
(placed in the vehicles to be monitored) were modelled with 4G network options
with an average 50 ms of latency.

All vehicles were equipped with three sensors (asset tracking sensor, AIDC (au-
tomatic identification, and data capture) and RFID (radio-frequency identification))

90 Simulating IoT Systems in a Multi-layered Fog Environment

Table 4.7: Results of the Random actuator strategy and number of events during the
first scenario

Actuator strategy Random
Fog node range (km) 25 50

Vehicle (pc.) 2 20 200 2 20 200
VM (pc.) 19 19 19 19 19 19

Generated data (MB) 48 491 4,868 79 801 8,025
Fog + Cloud cost ($) 1,988.5 2,973.1 9,619.9 3,061.1 4,026.1 10,357.4

Delay (min.) 5.0 4.01 2.03 5.0 4.02 2.02
Runtime (sec.) 3 13 141 4 16 169

Change file size (pc.) 20,937 210,009 2,102,215 34,873 348,226 3,477,983
Change node (pc.) 0 0 0 11,573 115,535 1,155,243

Change position (pc.) 181,388 1,812,784 18,137,172 181,447 1,814,159 18,141,355
Connect / disconnect

to node (pc.) 12,985 129,944 1,299,099 1,556 15,833 158,751

Increase frequency (pc.) 21,239 210,352 2,104,912 34,812 346,774 3,479,261
Decrease frequency (pc.) 10,591 105,888 1,059,124 17,282 174,314 1,739,929
Restart / stop device (pc.) 0 0 0 0 0 0

Timeout (pc.) 70,941 709,384 7,091,262 0 0 0
Timeout data (MB) 27 274 2,752 0 0 0

generating 150 bytes20 of data per sensor. A daemon service on the computational
node checks the local storage for unprocessed data every five minutes and allocates
them in a VM for processing. Each simulation run deals with an increasing number
of IoT entities, we initialise 2, 20, and 200 vehicles in every twelve hours, which go
around on the route. Half of the created objects are intended to start their move-
ments in the opposite direction (selected randomly).

During our experiments, we considered two different actuator strategies: the (i)
Random actuator strategy models a chaotic system behaviour, where both mobility
and randomly appearing actualisation events of a sensor can happen. The failure
rate of IoT components MTTF were set to 90% of a year, and to avoid unrealisti-
cally low or high data generation frequencies, we limited them to a range of one to
15 minutes. Finally, we enhanced the unpredictability of the system by setting the
actuation needed to 50%. The (ii) Transport actuator policy defines a more realistic
strategy to model asset tracking, which aims to follow objects based on a broadcast-
ing technology (e.g. GPS). A typical use case of this is when a warehouse can prepare
for receiving supplies according to the actual location of the truck. In our evaluation,
if the asset was located closer than five kilometres, it would send position data every
two minutes. In the case of five to 10 kilometres, the data frequency is five minutes,
and from 10 to 30, the data generation is set to 10 minutes, lastly, if it is farther than
30 kilometres, it informs changes in 15 minutes.

20Ericsson (accessed in May, 2021): https://www.ericsson.com/en/mobility-
report/articles/massive-iot-in-the-city

4.4 The Actuator and Mobility Models of DISSECT-CF-Fog 91

Table 4.8: Results of the Transport actuator strategy and number of events during the
first scenario

Actuator strategy Transport
Fog node range (km) 25 50

Vehicle (pc.) 2 20 200 2 20 200
VM (pc.) 19 19 19 19 19 19

Generated data (MB) 65 642 6,445 83 851 8,469
Fog + Cloud cost ($) 1,974.7 4,492.9 10,231.1 2,557.8 5,006.5 10,312.7

Delay (min.) 5.0 4.03 2.02 5.0 4.04 4.01
Runtime (sec.) 3 13 119 4 15 128

Change file size (pc.) 20,012 198,221 1,986,157 20,107 189,693 1,870,594
Change node (pc.) 0 0 0 6,111 65,424 654,135

Change position (pc.) 91,167 910,014 9,122,057 93,088 970,373 9,791,859
Connect / disconnect

to node (pc.) 13,140 131,455 1,314,037 7,029 66,349 659,573

Increase frequency (pc.) 19,833 198,888 1,982,648 19,573 66,117 1,872,881
Decrease frequency (pc.) 19,735 199,759 1,983,997 19,646 189,298 1,875,489
Restart / stop device (pc.) 0 0 0 0 0 0

Timeout (pc.) 35,379 354,788 3,536,881 0 0 0
Timeout data (MB) 15 149 1,557 0 0 0

The results are shown in Table 4.7 and Table 4.8. The comparisons are based
on the following parameters: (i) VM reflects the number of created VMs during the
simulation on the cloud and fog nodes, which process the amount of generated data.
As we mentioned earlier, our simulation tool is able to calculate the utilisation cost
of the resources based on the predefined pricing schemes (Fog+Cloud cost). Delay
reflects the timespan between the time of the last produced data and the last VM
operation. Runtime is a metric describing how long the simulation runs on the corre-
sponding PC. The rest of the parameters are previously known, it shows the number
of the defined actuator and mobility events. Nevertheless, Timeout data is highlight-
ing the amount of data lost, which could not be forwarded to any node, because the
actual position of a vehicle is too far for all available nodes.

Interpreting the results, we can observe that in the case of the 25-kilometre range,
the Random actuator strategy drops more than half (around 56,19%) of the unpro-
cessed data losing information, whilst the same average is about 23,4% for the Trans-
port actuator strategy. In the case of the 50-kilometre range, there is no data dropped,
because the nodes roughly cover the route and the size of gaps cannot trigger the
Timeout event. In contrast, the ranges do not cover each other in the case of the
25-kilometre range, which results in a zero Change node event.

Based on the Fog+Cloud cost metric, one can observe that the Transport actuator
strategy utilises the cloud and fog resources more than the Random actuator strategy,
nevertheless, the average price of a device (applying two vehicles) is about 1,197.7$.

92 Simulating IoT Systems in a Multi-layered Fog Environment

In the case of 20 assets, it decreases to about 206.2$, and lastly, operating 200 ob-
jects reduces the price to about 50.6$, which means that the continuous load of the
vehicles utilises the VMs more effectively.

Since the IoT application frequency was set to five minutes, we considered the De-
lay acceptable, when it was equal to or less than five minutes. Based on the results,
all test cases fulfilled our expectations. It is worth mentioning that MTTF might be
effective only in simulating years of operation, thus neither software nor hardware
error is triggered (Restart / stop device) in this case. The Runtime metric also points
to the usability and reliability performance of DISSECT-CF-Fog; less than three min-
utes was required to evaluate a one-year-long scenario with thousand of entities (i.e.
simulated IoT devices and sensors running for a year).

Smart Healthcare Scenario

In the second scenario, we continued our experiments with a smart healthcare case
study. In this scenario, patients wear blood pressure and heart rate monitors. We
automatically adjust the data sampling period if the monitors report nominal be-
haviour: (i) in case of blood pressure lower than 90 or higher than 140; (ii) in case
of heart rate values lower than 60, and higher than 100.

In this scenario, each patient represents a different data flow (starting from its IoT
device), similar to the previously mentioned way. First, the data is forwarded to the
fog layer, if the data processing is impossible there due to overloaded resources, then
the data is moved to the cloud layer to be allocated to a VM for processing. As IoT
healthcare requires as low latency as possible, the frequency of the daemon services
on the computational node was set to one minute. Similar to the first scenario, one
measurement of a sensor creates (a message of) 150 bytes.

We focus on the maximum number of IoT devices that can be served with mini-
mal latency by the available fog nodes, and we are also interested in the maximum
tolerable delay if the raw data is processed in the cloud. We applied the same VM
parameters as in the previous scenario, and the simulation period took one day. We
did not implement mobility in this scenario, nevertheless, actualisation events were
still required in case of a health emergency to see how the system adapts to the
unforeseen data.

Similar to the first scenario, the hospital was assumed to use a public cloud node
in Frankfurt, but it was also assumed to maintain three fog nodes on the premises of
the hospital. During our experiments, we considered various numbers of patients
(100, 1,000, and 10,000), and we investigated how the operating costs and de-
lay change and adapt to the difference in the number of fog VMs and actualisation
events.

Since each fog node is available in the local region, the communication latency

4.4 The Actuator and Mobility Models of DISSECT-CF-Fog 93

was set randomly between 10 and 20 ms (regarding AWS21), furthermore, the actu-
ation needed was set to 100%, because of the vital information of the sensed data,
thus each measurement required some kind of actuation. The rest of the parameters
were the same as we used in the logistics scenario.

Table 4.9: Results and number of events during the second scenario

Actuator strategy Healthcare

Fog / cloud node ratio 3 / 1 2 / 1 1 / 1 0 / 1

Patient (pc.) 10,000 1,000 100 10,000 1,000 100 10,000 1,000 100 10,000 1,000 100

VM (pc.) 21 11 12 17 8 9 12 5 5 6 2 2

Generated data (MB) 251 27 2 231 27 2 197 27 2 145 27 2

Fog + Cloud cost ($) 48.1 25.1 27.8 42.0 19.7 22.7 35.2 15.3 14.9 37.1 10.8 9.9

Delay (min.) 7.74 1.41 1.06 9.51 1.46 1.07 9.50 1.79 1.05 14.8 2.44 1.22

Runtime (sec.) 8 1 1 8 1 1 8 1 1 11 1 1

Increase frequency (pc.) 132,125 14,687 1,431 119,954 14,192 1,392 98,975 14,127 1,468 71,153 13,927 1,399

Decrease frequency (pc.) 750,751 80,718 8,068 684,829 80,845 8,104 563,198 80,295 8,023 406,155 81,105 8,115

Restart / stop device (pc.) 0 0 0 0 0 0 0 0 0 0 0 0

Our findings are depicted in Table 4.9. One can observe that the increasing num-
ber of applied fog nodes reduces the average costs per patient, in the case of three
fog nodes the mean cost (projected on one patient) is around 83.7$. This amount of
money grows continuously as the fog nodes are omitted one by one, the correspond-
ing average operating costs are about 97.7$, 118.7$, and 124.0$, respectively, which
means maintaining fog nodes also might be economically worthwhile.

Figure 4.7: Delay values of the second scenario

21AWS Architecture Guidelines and Decisions (accessed in May, 2021):
https://aws.amazon.com/blogs/compute/low-latency-computing-with-aws-local-zones-part-1/

94 Simulating IoT Systems in a Multi-layered Fog Environment

Figure 4.7 presents the delay of the IoT application concerning the number of
utilised fog and cloud nodes. Using a higher number of fog nodes can foster faster
data processing, however, in the case of 10,000 patients, the best delay is 7.74 min-
utes, which points out that the utilised resources were overloaded. In the other
cases, the system managed the patients’ data with less than three minutes delay, but
decreasing the number of usable fog nodes can continuously increase the delay.

Lastly, we can observe that no failure happened during the evaluation (Restart /
stop device), because of the reliability of medical sensors and the short time of the
simulation. We can also realise that our simulation tool is able to model thousands
of smart objects (e.g. IoT devices and sensors), and their one-day-long simulated
operation could be done in 11 seconds of elapsed time (Runtime) in the worst case.

Table 4.10: Results and number of events in the scalability studies

Actuator strategy Healthcare
Fog / cloud node ratio 3 / 1 7 / 1 55 / 1

Patient (pc.) 170,000 180,000 190,000 190,000 190,000
VM (pc.) 24 24

Out of memory

48 336
Generated data (MB) 1,196 1,261 1,513 1,679
Fog + cloud cost ($) 197.6 208.5 244.9 674.9

Delay (min.) 6,256.0 6,796.0 5,886.0 9.9
Runtime (sec.) 186 256 159 163

Increase frequency (pc.) 624,860 657,725 790,999 810,153
Decrease frequency (pc.) 3,557,783 3,751,754 4,498,906 4,049,325
Restart / stop device (pc.) 0 0 0 0 0

Large-scale Experiments of the Smart Healthcare Scenario

In this section, our goal was to point out the possible limitations of DISSECT-CF-Fog
using the previously detailed smart healthcare scenario. The runtime of DISSECT-
CF-Fog largely depends on the used execution environment and its actual hardware
resources (mostly memory), similar to any other software.

Our findings are presented in Table 4.10, in which we used the same metrics as
before.

For this scalability study, we also applied the earlier used topology with three
fog nodes and a cloud node. Determining the exact number of IoT devices that can
be modelled by the simulator is not possible because our system takes into account
random factors. Nevertheless, we can give an estimate by scaling the number of IoT
devices, in our case the number of active devices (i.e. patients).

In this evaluation, we increased the number of patients with 10,000 for the test
cases, and examined the memory usage of the execution environment. The results
showed that even for cases of 170,000 and 180,000 IoT devices, the fog and cloud

4.5 Modelling Energy Consumption in DISSECT-CF-Fog 95

nodes can process the vast amount of data generated by the modelled IoT sensors,
however, the Delay value also increased dramatically to 6,256 minutes, in the first
case, and 6,796 minutes, in the second case. It is worth mentioning that besides such
a huge number of active entities, the Runtime values are below five minutes. When
we simulated 190,000 IoT devices, the simulator consumed all of the memory of the
underlying hardware.

In the fourth test case, we applied seven fog nodes. Our findings showed that the
Delay value decreased spectacularly to 5,886 minutes, however, it is far from what
we experienced in the second scenario, therefore, our further goal was to define how
many computational resources (i.e. fog nodes) are required to decrease the Delay
parameter below ten minutes, similar to what we expected in the second scenario.

We can clearly see in the fifth test case that at least 55 fog nodes are required for
190,000 IoT devices to process and store their data. In this case, the Delay value is 9.9
minutes, but because of the higher number of computational nodes, both numbers of
the utilised VMs (336 pieces) and these costs (674.9$) increased heavily. The Java
representation of the fog and cloud nodes hardly differ, therefore, we could reach
similar results if we increased the number of cloud nodes as well.

It can be clearly seen that the critical part of DISSECT-CF-Fog is the number of IoT
devices utilising in the system, however, if we also increase the number of the simu-
lated computing resources (i.e. fog and cloud nodes), we can reach better scalability
(i.e. the delay and simulation runtime would not grow). The reason for this is that
the actual Java implementation of DISSECT-CF-Fog stores the references of model
entities of the devices and the unprocessed data. To conclude, the current DISSECT-
CF-Fog extension is capable of simulating even up to 200 thousand system entities.
Limitations are only imposed by the hardware parameters utilised, and the wrongly
(or extremely) chosen ratio of the number of IoT devices and computing nodes set
for the experiments.

4.5 Modelling Energy Consumption in DISSECT-CF-Fog

The monitoring and measuring of energy consumption entail significant challenges
for IoT-Fog-Cloud systems since the task of offloading and resource allocation of an
IoT-Fog-Cloud architecture can take it into consideration. The initial energy model of
DISSECT-CF covered cloud data centres by introducing resource consumption mod-
elling for CPU, disk, and network energy utilisation. To ensure the required level of
system granularity, the simulator mimics the behaviour of infrastructure clouds by
predefined states of physical machines (PM), virtual machines (VM), storage, and
disks. For instance, a PM can be in the following states: turned off, switching on,
running, and switching off. As a result, the basic concept of energy saving can be
easily realised by turning off the unused machine. Besides, this refined model sup-

96 Simulating IoT Systems in a Multi-layered Fog Environment

ports the mapping of certain energy consumption values to the predefined states,
which ensures the fine-granularity of the simulator.

The energy model of the simulator takes into account: the minimum (min) power
(e.g. the machine/device is turned off, but still plugged into the energy source), the
maximum (max) power (e.g. if the CPU is fully utilised), and the idle power (e.g.
when the PM is running without executing computational tasks). At this moment
the simulator has two power models: (i) dynamic power draining behaviour applies
linear interpolation between idle and max power values, whilst (ii) constant power
draining behaviour can consider any power value (e.g. min). By default, the dynamic
model is applied in the case of states with high energy consumption (e.g. running
state of a PM), and it handles the idle power with min power values, and the con-
sumption range can be get by subtracting the idle power value from the max power
value. In this section, we take a step forward, and besides the energy measurement
of cloud resources, we cover IoT devices with our proposed extended model, to en-
able complex energy utilisation analysis of IoT-Fog-Cloud systems. First, we started
to analyse the real power consumption of microcontrollers, which is detailed in the
next subsection.

Table 4.11: Uniform sampling of microcontrollers

Microcontroller ESP32 Raspberry Pi (RPi)
Sampling (min.) V I P V I P

1 5.13 0.07 0.3591 5.12 0.28 1.4336
2 5.17 0.02 0.1034 5.12 0.26 1.3312
3 5.19 0.02 0.1038 5.12 0.31 1.5872
4 5.17 0.02 0.1034 5.13 0.26 1.3338
5 5.19 0.02 0.1038 5.13 0.28 1.4364
6 5.17 0.02 0.1034 5.12 0.28 1.4336
7 5.16 0.05 0.258 5.13 0.28 1.4364
8 5.19 0.02 0.1038 5.13 0.26 1.3338
9 5.21 0.02 0.1042 5.12 0.28 1.4336

10 5.17 0.02 0.1034 5.13 0.28 1.4364
11 5.18 0.02 0.1036 5.13 0.31 1.5903
12 5.17 0.02 0.1034 5.13 0.28 1.4364
13 5.20 0.05 0.26 5.12 0.28 1.4336
14 5.21 0.02 0.1042 5.13 0.28 1.4364
15 5.18 0.02 0.1036 5.13 0.26 1.3338

4.5 Modelling Energy Consumption in DISSECT-CF-Fog 97

Table 4.12: Mapping the benchmark and measured values to the model power values
in DISSECT-CF-Fog

Data source Research papers Websites Our experiments IoT energy model
Microcontroller ESP32 RPi ESP32 RPi ESP32 RPi ESP32 RPi

Power
cons. (W)

min N.A. N.A. 0.01 0.1 N.A. N.A. 0.01 0.1
idle 0.17 0.94 0.04 1.1 0.1 1.33 0.1 1.1
max 0.28 1.57 0.42 2.1 0.36 1.59 0.35 1.75

4.5.1 Analysis of Real Microcontrollers

In order to determine a fine-grained energy model for microcontrollers, we measured
and collected the energy consumption values of real devices. In our experiments, we
chose ESP3222 (WROOM-32) and Raspberry Pi23 (1 Model A+) microcontrollers for
further analysis. Both devices were equipped with DTH22 temperature and humidity
sensors, and a KCX-017 meter was applied to display the voltage and the current of
the connected USB port. The assembly of the used gadgets can be seen in Figure 4.8.

Figure 4.8: The utilisation of Raspberry Pi (left) and ESP32 (middle) microcontrollers
and KCX-017 meter (right)

To measure the general power consumption of IoT applications, we developed a
typical and simple program written in Python/MicroPython covering the following
functionalities: sensor data reading (temperature and humidity values in our current
case), message creation, and sending as an IoT client device by using the MQTT pro-
tocol. We scheduled sensor value sampling every minute by default and connected
the devices to the Internet via WiFi. The data application running on the microcon-
trollers forwarded the sensor data to an IoT analytics platform called Thingspeak24,
where it could be visualised.

To determine the electric power (P measured in watts) in the SI system, we mul-

22The official website of ESP32 (accessed in February, 2021):
https://www.espressif.com/en/products/socs/esp32/

23The official website of Raspberry Pi (accessed in February, 2021): https://www.raspberrypi.org/
24The official website of Thingspeak (accessed in February, 2021): https://thingspeak.com/

98 Simulating IoT Systems in a Multi-layered Fog Environment

tiplied the metered voltage (V measured in volts) with the metered electric current
(I measured in amps) values:

P = V ∗ I, e.g.1W = 1V ∗ 1A (4.1)

Finally, we can determine the energy usage (J measured in joules/watt-second/kilowatt-
hour) by:

J = P ∗ t, e.g.1J = 1W ∗ 1s (4.2)

4.5.2 The Energy Model for IoT Devices

Finally, in order to utilize monitored data of real IoT devices in DISSECT-CF-Fog, we
executed our sampling application five times on both microcontrollers for 15 minutes,
while measuring the power consumption each millisecond.

Table 4.11 presents the average values of the uniform sampling of the metering
device for each one-minute period. Based on the monitored values, we calculated
the electric power. The results show that our typical IoT monitoring application
consumed 0.1 to 0.36 W per minute on average with ESP32 and 1.3 to 1.59 W with
RPi. In the next subsection, we show how we applied these measured values to our
proposed IoT energy model.

Concerning the power consumption of IoT resources, we had to build up the en-
ergy model from scratch. In this work, we had to extend the IoT device representation
of DISSECT-CF-Fog, which represents any smart objects, and is responsible for power
consumption metering for IoT devices during simulations. To resolve this issue, we
decided to create a more detailed physical layer called a microcontroller for imple-
menting our energy model. Such realisation keeps the already existing functionalities
(e.g. data sensing of IoT sensors, temporary data storing, and data forwarding to fog
or cloud nodes), and introduces predefined states for microcontrollers, which allow
mapping a certain power consumption to a certain state.

Besides our real measurements of a typical use of a microcontroller, we gathered
information from the following works. [40] and [31] focus on the comparative anal-
ysis and the monitoring of ESP32 and Raspberry Pi devices, while detailed online
benchmark results for their energy consumption can also be found on websites25 26.
The collected and measured numbers are shown and compared in Table 4.12. It also
shows the predefined values (for min, idle, and max) we chose to be the base for our
IoT energy model. We arrived at these values by counting the median for the concrete

25Raspberry Pi benchmark values (accessed in February, 2021):
https://lastminuteengineers.com/esp32-sleep-modes-power-consumption/

26ESP32 benckmark values (accessed in February, 2021): https://lastminuteengineers.com/esp32-
sleep-modes-power-consumption/

4.5 Modelling Energy Consumption in DISSECT-CF-Fog 99

values gathered from the research papers, websites and by our measurements.
Our findings and experiments revealed that the power consumption values of mi-

crocontrollers are highly dependent on their actual behaviour and their use cases.
Typical modifying circumstances may be the usage of a wired connection instead of
wireless, and/or different types of power supply cables or converters. As we men-
tioned earlier, during our experiments we used an online service for retrieving and
storing the generated data by the DTH22 sensor. Table 4.11 also shows that in a few
cases (i.e. after every fifth sampling), the consumption doubled in the case of ESP32.
To handle such extreme cases and to be able to simulate uncertainty, we introduce
three different states of a microcontroller in our model.

The state OFF indicates a fully turned-off device with static minimal energy con-
sumption using the min power preset value. The RUNNING state represents a high
energy consumption state, where the actual power consumption can change dynam-
ically with regard to the actual CPU utilisation. The minimal and maximal consump-
tion values in this state are set by the predefined idle and max power values. To
simulate specific events when high power spikes appear (caused by e.g. activating
a previously unused port of the device), we introduce the ACTIVE state. It also rep-
resents a high energy consumption state allowing dynamic changes, but its minimal
value should be higher than in the RUNNING state; by default, it is set to double the
idle power value.

According to our observation, we experienced such behaviour in 20% of the sam-
pling process, therefore, we decided that the ACTIVE state will be set during the
sensing process of IoT sensors until the data is saved into the local storage of the IoT
device. In this way, each simulated IoT device enters the OFF state when it is created,
the RUNNING state, when it is started, and it periodically switches between the AC-
TIVE (performing sensor data generation) and RUNNING states till it is stopped (OFF
state) or terminated.

We would also note that DISSECT-CF-Fog provides a transparent and easily usable
interface to create additional, new states, and hence multiple energy models, and it
is up to the researcher where to use such new states during the simulation.

4.5.3 Evaluation of the Energy Extension

In this section, we illustrate the use of the extended, unified energy model for IoT-
Fog-Cloud architectures in DISSECT-CF-Fog. For this purpose, we model one of the
typical IoT use cases, which represents a weather forecasting scenario with numerous
weather stations (run by IoT microcontrollers with special sensors). These devices
can communicate with a fog layer directly, which contains three different nodes with
an equal amount of resources, utilising 40 CPU cores and 40 GB of memory in to-
tal. On the top of the fog topology, there is one cloud data centre having 56 CPU

100 Simulating IoT Systems in a Multi-layered Fog Environment

Figure 4.9: Cumulative energy consumption of cloud, fog nodes and IoT devices

cores and 40 GB of memory, furthermore, the devices are not allowed to send mes-
sages (unprocessed sensor data) directly to the cloud (they are connected only to the
fog). We considered two types of virtual machine images simulating existing Ama-
zon Cloud (AWS) instances. The cloud1 node can utilise VMs with 8 CPU cores and
4 GB of memory, their hourly prices were set to 0.202$, while the fog1, fog2 and fog3
nodes can deploy VMs with 4 CPU cores and 2 GB of memory with 0.101$ hourly
price. We also set the IoT-side pricing by applying the IBM Cloud pricing schema,
which charges the consumer after the amount of data exchanged (in MB).

In our simulation, the microcontrollers can use either ESP32 or Raspberry Pi en-
ergy models, and they are equipped with a temperature-humidity sensor (similar to
our real-world measurements). In our weather forecasting use case, we defined three
different scenarios by scaling up the number of operating devices. In the first case,
we utilised 100 IoT devices, then we increased the number of devices to 1,000, and
finally, in the last case, the maximum device number was 10,000, operated for 60
minutes within the experiments. The microcontrollers measured the environmental
parameters every 60 seconds, similar to the real device evaluation, hence our goal
was to map the real monitoring execution in the DISSECT-CF-Fog simulation environ-
ment.

The evaluation process is the following in each scenario: (i) the IoT microcon-
trollers monitor the environment based on their sampling frequency, (ii) the gener-

4.5 Modelling Energy Consumption in DISSECT-CF-Fog 101

Figure 4.10: Energy consumption percentage of cloud, fog nodes and IoT devices

ated data are forwarded to the less loaded fog node (using the default scheduling
algorithm), (iii) a node allocates a task (i.e. collection of 256 KB of data) to a VM
to be processed, or requests a new one, if there is no free VM available, in case the
current resource capacity allows it. Otherwise, the unallocated task will be moved to
a less-loaded node (in the fog or to the cloud layer).

During the evaluation, we modelled a European-wide scenario, where the cloud
was located in Frankfurt, whilst the three fog nodes were positioned in London,
Budapest, and Vienna. The latency between them was determined based on online
ping statistics27. The delay between a device and a fog node was set to an average
of 50 ms weighted with the actual physical distance, and the positions of the devices
were randomly generated across Europe.

In order to highlight the energy consumption of the nodes, the number of VMs
was scaled up and down dynamically according to the actual load caused by the
tasks. To be as realistic as we can, each computational resource dealt with different
energy models based on the resource schema of LPDS Cloud of MTA SZTAKI. The
exact values we used to set the energy model parameters are summarised in Table
4.12 and Table 4.14.

The comparison of the results can be seen in Table 4.13. We listed the number of
VMs utilised by all nodes (Number of VMs), and the cost of both the cloud/fog and IoT

27WonderNetwork (accessed in March, 2021): https://wondernetwork.com/pings/

102 Simulating IoT Systems in a Multi-layered Fog Environment

Table 4.13: Comparison of the final results of the simulated scenarios

Microcontroller ESP32 Raspberry Pi
Number of devices 100 1,000 10,000 100 1,000 10,000

Number of VMs 7 7 29 7 7 29
Cloud and fog cost ($) 0.84 0.85 2.79 0.84 0.84 2.79

IoT cost ($) 0.009 0.90 83.2 0.009 0.90 83.2
Delay (min.) 1.03 1.25 3.50 1.03 1.25 3.50

Runtime (sec.) 0 4 95 0 4 118

Energy
consumption (kWh)

cloud1
consumption 0.067 0.068 0.068 0.067 0.034 0.068

fog1 consumption 0.456 0.456 0.456 0.456 0.456 0.456
fog1 device

consumption 0.006 0.053 0.525 0.053 0.500 5.000

fog2 consumption 0.436 0.431 0.531 0.433 0.456 0.492
fog2 device

consumption 0.011 0.106 1.050 0.105 1.003 10.000

fog3 consumption 0.611 0.611 0.578 0.611 0.611 0.611
fog3

device consumption 0.016 0.158 1.575 0.150 1.500 14.972

Total consumption by nodes 1.570 1.569 1.636 1.569 1.558 1.628
Total consumption by devices 0.032 0.316 3.150 0.307 3.003 29.972

Table 4.14: The chosen values of the energy model for nodes and microcontrollers

Resource Type Min Power Idle Power Max Power
cloud1 20 398 533
fog1 20 296 493
fog2 20 296 533
fog3 20 398 493

sides (Cloud and fog cost, IoT cost). The Delay value reflects the makespan of the IoT
application, whilst Runtime indicates the elapsed time in the execution environment
required by the actual simulation. The Energy consumption ensures consumption in-
formation detailed for each computational node (e.g. cloud1 consumption denotes
the consumed energy by the cloud1 node), and we also counted the summed con-
sumption values of IoT devices related to an actual node (e.g. fog1 device consump-
tion denotes the total consumed energy by all simulated microcontrollers connected
to fog1). Lastly, the total energy usage of both nodes and devices is presented by
Total consumption of nodes and Total consumption of devices.

As we can see from Table 4.13, the cloud resource utilisation is basically the same
in all six simulation cases, because they had to deal with around the same amount of
unprocessed data/tasks (coming from the fog layer). Nevertheless, it also shows that

4.6 Discussion and Concluding Remarks 103

in the case of 1,000 devices, seven VMs could easily handle the scheduled amount of
tasks for both microcontrollers. The more data a task contains, the more time it takes
for the task to be processed, and additional incoming tasks may trigger new VMs to
be deployed (depending on the applied task scheduling policy threshold).

In the third case having 10,000 devices, the number of VMs is dramatically in-
creased to 29, for both device types.

Since the IBM Cloud pricing is independent of the actual device type, only the
transmitted data counts and the cost of the computational nodes is proportional to
the number of utilised VMs, therefore, the corresponding costs are the same in the
case of ESP32 and RPi. It can also be observed that the timeout delay (i.e. application
makespan minus the set operation interval of the IoT devices (60 minutes in these
scenarios)) is less than 90 seconds for 100 and 10,000 devices. As we can see for
the third, 10,000 devices cases, the throughput of the system decreased, hence the
delay increased to 3.5 minutes. The execution time (runtime) of the simulations for
all cases remains within two minutes for all cases, which points out that DISSECT-
CF-Fog can manage thousands of entities on a single PC (for the evaluation we used
a PC with Windows 10 OS, i5-4460 CPU, and 8 GB memory).

Figure 4.9 and Figure 4.10 highlight the results by comparing the energy con-
sumption ratio of the utilised cloud node, fog nodes, and IoT devices (i.e. microcon-
trollers). Figure 4.9 depicts the total energy used in kWh for each category, while
Figure 4.10 depicts their ratio in percentage. As we can see from the diagrams, cloud
consumption takes only a small part of the total energy consumption in all six sce-
narios. The fog nodes are mostly capable of handling the vast amount of data with
their own resources generated by the IoT layer, and there is no need to involve cloud
resources drastically. Nevertheless, when we scale up the number of microcontrollers
in the IoT layer, our results show a significant increase in the total energy consump-
tion, caused by only exclusively the operation of the IoT devices. For the case of using
10,000 RPi devices, we can see that the energy consumed by the IoT layer takes up
almost 95% of the total consumption, as shown in Figure 4.10. For smaller scales, we
can observe that 100 ESP32 devices caused only 2% of the total energy consumption.
This ratio goes up to about 16%, in the case of 1,000 ESP32 and 100 RPi devices,
and we experienced around the same ratio in the case of 10,000 ESP32 and 1,000
RPi devices (with ∼ 66%).

4.6 Discussion and Concluding Remarks

In the last chapter of this thesis, we presented three extensions to the DISSECT-CF-
Fog simulator. To evaluate the extensions, we used the basic weather forecasting use
case and some more complex case studies of frequently used IoT applications. First,
we extended the simulation environment with a more detailed fog model to enhance

104 Simulating IoT Systems in a Multi-layered Fog Environment

its location awareness and multi-layer fog node management by introducing various
application strategies to manage task offloading decisions of complex IoT-Fog-Cloud
systems.

Next, we introduced the extended version of DISSECT-CF-Fog supporting actua-
tors and mobility features. Concerning our main, novel contribution in this chapter,
we designed and developed an actuator model that enables broad configuration pos-
sibilities for investigating IoT-Fog-Cloud systems. With our extensions, various IoT
device behaviours and management policies can be defined and evaluated with ease
in this simulator. We also presented how to use different actuator strategies, in order
to define specific application (and sensor/actuator) behaviour.

Finally, we presented a novel extension of the energy model of the DISSECT-CF-
Fog simulator to enable the energy monitoring of its simulated IoT components. In
this way, we realised a unified energy model capable of analysing the power con-
sumption of complex, IoT-Fog-Cloud infrastructures.

The results of this chapter belong to Thesis III, and its contents were published
in papers [P4], [P8], and [P9]. My contributions presented in this chapter are the
following:

III/1. I designed a generic model of Fog Computing and implemented it in the DISSECT-
CF-Fog simulator to enable the modelling of the Cloud-to-Thing Continuum.

III/2. I proposed greedy and Pliant-based task allocation algorithms for fog and cloud
infrastructure management to optimise IoT application makespan, utilisation
costs, and energy consumption.

III/3. I designed a realistic and dynamic IoT behaviour modelling supporting IoT mo-
bility features, which can be configured by using the novel actuator interface
of DISSECT-CF-Fog.

III/4. I designed an IoT energy model based on real-world experiments and proposed
an extension of the DISSECT-CF-Fog simulator for the energy usage monitoring
of IoT devices.

III/5. I also presented an enhancement of the basic weather forecasting IoT scenar-
ios, towards modelling more refined IoT logistics and healthcare case studies.

Bibliography

[1] N. Abbas, M. Asim, N. Tariq, T. Baker, and S. Abbas. A mechanism for secur-
ing iot-enabled applications at the fog layer. Journal of Sensor and Actuator
Networks, 8:1, 2019.

[2] D. Perez Abreu, K. Velasquez, M. Curado, and E. Monteiro. A comparative
analysis of simulators for the cloud to fog continuum. Simulation Modelling
Practice and Theory, 101:102029, 2020.

[3] V. Angelakis, I. Avgouleas, N. Pappas, and D. Yuan. Flexible allocation of het-
erogeneous resources to services on an iot device. IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pages 99–100, 2015.

[4] H. F. Atlam, R. J. Walters, and G. B. Wills. Fog computing and the internet of
things: A review. Big Data and Cognitive Computing, 2:2, 2018.

[5] E. Baccarelli, P. G. V. Naranjo, M. Scarpiniti, M. Shojafar, and J. H. Abawajy. Fog
of everything: Energy-efficient networked computing architectures, research
challenges, and a case study. IEEE Access, pages 9882–9910, 2017.

[6] M. Bendechache, S. Svorobej, P. Takako Endo, and T. Lynn. Simulating re-
source management across the cloud-to-thing continuum: A survey and future
directions. Future Internet, 12:95, 2020.

[7] A. Botta, W. de Donato, V. Persico, and A. Pescapé. Integration of cloud com-
puting and internet of things: A survey. Future Generation Computer Systems,
56:684–700, 2016.

[8] A. Brogi, S. Forti, and A. Ibrahim. Deploying fog applications: How much does
it cost, by the way? Proceedings of the 8th International Conference on Cloud
Computing and Services Science (CLOSER), pages 68–77, 2018.

[9] M. Bux and U. Leser. Dynamiccloudsim: Simulating heterogeneity in computa-
tional clouds. Future Generation Computer Systems, 46:85–99, 2015.

105

106 Bibliography

[10] R. N. Calheiros, M. A. S. Netto, C. De Rose, and R. Buyya. Emusim: an in-
tegrated emulation and simulation environment for modeling, evaluation, and
validation of performance of cloud computing applications. Software: Practice
and Experience, 43:595–612, 2012.

[11] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya.
Cloudsim: A toolkit for modeling and simulation of cloud computing environ-
ments and evaluation of resource provisioning algorithms. Software: Practice
and Experience, 41:1, 2011.

[12] T. Camp, J. Boleng, and V. Davies. A survey of mobility models for
ad hoc network research. Wireless Communications and Mobile Computing,
2:10.1002/wcm.72, 2002.

[13] D. Chen, D. Irwin, and P. Shenoy. Smartsim: A device-accurate smart home
simulator for energy analytics. IEEE International Conference on Smart Grid
Communications (SmartGridComm), pages 686–692, 2016.

[14] B. Costa, P. F. Pires, and F. C. Delicato. Modeling iot applications with sysml4iot.
42th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), pages 157–164, 2016.

[15] A. V. Dastjerdi and R. Buyya. Fog computing: Helping the internet of things
realize its potential. Computer, 49:112–116, 2016.

[16] J. Dombi. A general class of fuzzy operators, the demorgan class of fuzzy opera-
tors and fuzziness measures induced by fuzzy operators. Fuzzy sets and systems,
8:149–163, 1982.

[17] J. Dombi. Pliant system. In Proceedings of IEEE International Conference on
Intelligent Engineering Systems, pages 289–294, 1997.

[18] S. Frey F. Fittkau and W. Hasselbring. Cdosim: Simulating cloud deploy-
ment options for software migration support. 6th IEEE International Workshop
on the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems
(MESOCA), pages 37–46, 2012.

[19] C. Fiandrino, A. Capponi, G. Cacciatore, D. Kliazovich, U. Sorger, P. Bouvry,
B. Kantarci, F. Granelli, and S. iordano. Crowdsensim: a simulation platform
for mobile crowdsensing in realistic urban environments. IEEE Access, 5:3490–
3503, 2017.

Bibliography 107

[20] M. C. Silva Filho, R. L. Oliveira, C. C. Monteiro, P. R. M. Inácio, and M. M.
Freire. Cloudsim plus: A cloud computing simulation framework pursuing soft-
ware engineering principles for improved modularity, extensibility and correct-
ness. IFIP/IEEE Symposium on Integrated Network and Service Management (IM),
pages 400–406, 2017.

[21] S. K. Garg and R. Buyya. Networkcloudsim: Modelling parallel applications
in cloud simulations. Fourth IEEE International Conference on Utility and Cloud
Computing (UCC), pages 105–113, 2011.

[22] Z. Ghanbari, N. Jafari Navimipour, M. Hosseinzadeh, and A. Darwesh. Resource
allocation mechanisms and approaches on the internet of things. Cluster Com-
puting, 22:1253–1282, 2019.

[23] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya. ifogsim: A toolkit for
modeling and simulation of resource management techniques in internet of
things, edge and fog computing environments. Software: Practice and Experi-
ence, 47:1275–1296, 2017.

[24] S. N. Han, G. M. Lee, N. Crespi, K. Heo, N. Van Luong, M. Brut, and P. Gatellier.
Dpwsim: A simulation toolkit for iot applications using devices profile for web
services. IEEE World Forum on Internet of Things (WF-IoT), pages 544–547,
2014.

[25] W. A. Higashino, M. A.M. Capretz, and L. F. Bittencourt. Cepsim: Modelling
and simulation of complex event processing systems in cloud environments.
Future Generation Computer Systems, 65:122–139, 2016.

[26] C. Hong and B. Varghese. Resource management in fog/edge computing: A sur-
vey on architectures, infrastructure, and algorithms. ACM Computing Surveys,
52:5, 2019.

[27] F. Howell and R. McNab. Simjava: A discrete event simulation library for java.
Simulation Series, 30:51–56, 1998.

[28] M. Héder, E. Rigó, D. Medgyesi, R. Lovas, Sz. Tenczer, F. Török, A. Farkas,
M. Emődi, J. Kadlecsik, Gy. Mező, Á. Pintér, and P. Kacsuk. The past, present
and future of the elkh cloud. Információs Társadalom, 22:128, 2022.

[29] Y. Jararweh, Z. Alshara, M. Jarrah, M. Kharbutli, and M. N. Alsaleh. Teach-
cloud: A cloud computing educational toolkit. International Journal of Cloud
Computing, 2:237–257, 2013.

108 Bibliography

[30] D. N. Jha, K. Alwasel, A. Alshoshan, X. Huang, R. Naha, S. Battula, S. Garg,
D. Puthal, P. James, A. Zomaya, S. Dustdar, and R. Ranjan. Iotsim-edge: A
simulation framework for modeling the behavior of internet of things and edge
computing environments. Software: Practice and Experience, 50:844–867, 2020.

[31] F. Kaup, P. Gottschling, and D. Hausheer. Powerpi: Measuring and modeling
the power consumption of the raspberry pi. 39th Annual IEEE Conference on
Local Computer Networks, pages 236–243, 2014.

[32] G. Kecskemeti. Dissect-cf: A simulator to foster energy-aware scheduling in
infrastructure clouds. Simulation Modelling Practice and Theory, 58:188–218,
2015.

[33] A. Kertesz, J. D. Dombi, and A. Benyi. A pliant-based virtual machine schedul-
ing solution to improve the energy efficiency of iaas clouds. Journal of Grid
Computing, 14:41–53, 2016.

[34] A. Kertesz, T. Pflanzner, and T. Gyimothy. A mobile iot device simulator for
iot-fog-cloud systems. Journal of Grid Computing, 17:529–551, 2018.

[35] D. Kliazovich, P. Bouvry, Y. Audzevich, and S. U. Khan. Greencloud: A packet-
level simulator of energy-aware cloud computing data centers. IEEE Conference
and Exhibition on Global Telecommunications (GLOBECOM), pages 1–5, 2010.

[36] I. Lera, C. Guerrero, and C. Juiz. Yafs: A simulator for iot scenarios in fog
computing. IEEE Access, 7:91745–91758, 2019.

[37] Z. Li, K. Liu, Y. Su, and Y. Ma. Adaptive resource allocation algorithm for
internet of things with bandwidth constraint. Transactions of Tianjin University,
18:253–258, 2012.

[38] M. M. Lopes, W. A. Higashino, M. A.M. Capretz, and L. F. Bittencourt.
10.1145/3147234.3148101. Proceedings of The 10th International Conference
on Utility and Cloud Computing, page 47–52, 2017.

[39] R. Mahmud, R. Kotagiri, and R. Buyya. Fog computing: A taxonomy, survey and
future directions. Internet of Everything: Algorithms, Methodologies, Technologies
and Perspectives, pages 103–130, 2018.

[40] A. Maier, A. Sharp, and Y. Vagapov. Comparative analysis and practical im-
plementation of the esp32 microcontroller module for the internet of things.
International Conference on Internet Technologies and Applications, pages 143–
148, 2017.

Bibliography 109

[41] Z. Mann. Cloud simulators in the implementation and evaluation of virtual
machine placement algorithms. Software: Practice and Experience, 48:7, 2017.

[42] M. Marjani, F. Nasaruddin, A. Gani, A. Karim, I. A. T. Hashem, A. Siddiqa, and
I. Yaqoob. Big iot data analytics: Architecture, opportunities, and open research
challenges. IEEE Access, 6:5247–5261, 2017.

[43] R. Mayer, L. Graser, H. Gupta, E. Saurez, and U. Ramachandran. Emufog:
Extensible and scalable emulation of large-scale fog computing infrastructures.
IEEE Fog World Congress (FWC), pages 1–6, 207.

[44] N. Mohan and J. Kangasharju. Edge-fog cloud: A distributed cloud for internet
of things computations. Cloudification of the Internet of Things (CIoT), pages
1–6, 2016.

[45] M. I. Naas, J. Boukhobza, P. Raipin Parvedy, and L. Lemarchand. An exten-
sion to ifogsim to enable the design of data placement strategies. IEEE 2nd
International Conference on Fog and Edge Computing (ICFEC), pages 1–8, 2018.

[46] K. Nahrstedt, H. Li, P. Nguyen, S. Chang, and L. Vu. Internet of mobile
things: Mobility-driven challenges, designs and implementations. IEEE First In-
ternational Conference on Internet-of-Things Design and Implementation (IoTDI),
pages 25–36, 2020.

[47] P. G. V. Naranjo, Z. Pooranian, M. Shojafar, M. Conti, and R. Buyya. Focan: A
fog-supported smart city network architecture for management of applications
in the internet of everything environments. Journal of Parallel and Distributed
Computing, 132:274–283, 2018.

[48] E. C. H. Ngai, M. R. Lyu, and Jiangchuan Liu. A real-time communication
framework for wireless sensor-actuator networks. IEEE Aerospace Conference,
9, 2006.

[49] Z. Nikdel, B. Gao, and S. W. Neville. Dockersim: Full-stack simulation of
container-based software-as-a-service (saas) cloud deployments and environ-
ments. IEEE Pacific Rim Conference on Communications, Computers and Signal
Processing (PACRIM), pages 1–6, 2017.

[50] A. Núñez, J. L. Vázquez-Poletti, A. Caminero, G. G. Castañé, J. Carretero, and
I. M. Llorente. Icancloud: A flexible and scalable cloud infrastructure simulator.
Journal of Grid Computing, 10:185–209, 2012.

[51] S. Ostermann, K. Plankensteiner, R. Prodan, and T. Fahringer. Groudsim: An
event-based simulation framework for computational grids and clouds. Euro-
Par 2010 Parallel Processing Workshops, pages 305–313, 2011.

110 Bibliography

[52] S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya. Container-
cloudsim: An environment for modeling and simulation of containers in cloud
data centers. Software: Practice and Experience, 47(4):505–521, 2017.

[53] F. Pisani, F. M. C. de Oliveira, E. S. Gama, R. Immich, L. F. Bittencourt, and
E. Borin. Fog computing on constrained devices: Paving the way for the future
iot. Advances in Edge Computing: Massive Parallel Processing and Applications,
35:22–60, 2020.

[54] C. Puliafito, D. M. Gonçalves, M. M. Lopes, L. L. Martins, E. Madeira, E. Min-
gozzi, O. Rana, and L. F. Bittencourt. Mobfogsim: Simulation of mobility
and migration for fog computing. Simulation Modelling Practice and Theory,
101:102062, 2020.

[55] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana. Fog computing
for the internet of things: A survey. ACM Transactions on Internet Technology,
19:2, 2019.

[56] T. Qayyum, A. W. Malik, M. A. K. Khattak, O. Khalid, and S. U. Khan. Fognet-
sim++: A toolkit for modeling and simulation of distributed fog environment.
IEEE Access, 6:63570–63583, 2018.

[57] L. Qian, Luo Z, Y. Du, and L. Guo. Cloud computing: An overview. IEEE Inter-
national Conference on Cloud Computing, page 626–631, 2009.

[58] U. U. Rahman, K. Bilal, A. Erbad, O. Khalid, and S. U. Khan. Nut-
shell—simulation toolkit for modeling data center networks and cloud com-
puting. IEEE Access, 7:19922–19942, 2019.

[59] P. F. Roth. Discrete, continuous, and combined simulation. Proceedings of the
20th Conference on Winter Simulation, pages 56–60, 1988.

[60] H. P. Sajjad, K. Danniswara, A. Al-Shishtawy, and V. Vlassov. Spanedge: To-
wards unifying stream processing over central and near-the-edge data centers.
EEE/ACM Symposium on Edge Computing (SEC), pages 168–178, 2016.

[61] M. Seufert, B. K. Kwam, F. Wamser, and P. Tran-Gia. Edgenetworkcloudsim:
Placement of service chains in edge clouds using networkcloudsim. IEEE Con-
ference on Network Softwarization (NetSoft), pages 1–6, 2017.

[62] D. Miorandi S. Sicari, F.De Pellegrini, and I. Chlamtac. Internet of things: Vi-
sion, applications and research challenges. Ad Hoc Networks, 10:1497–1516,
2012.

Bibliography 111

[63] J. Son, A. V. Dastjerdi, R. N. Calheiros, X. Ji, Y. Yoon, and R. Buyya.
Cloudsimsdn: Modeling and simulation of software-defined cloud data centers.
15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID), pages 475–484, 2015.

[64] C. Sonmez, A. Ozgovde, and C. Ersoy. Edgecloudsim: An environment for
performance evaluation of edge computing systems. Second International Con-
ference on Fog and Mobile Edge Computing (FMEC), pages 39–44, 2017.

[65] S. Sotiriadis, N. Bessis, E. Asimakopoulou, and N. Mustafee. Towards simulat-
ing the internet of things. 28th International Conference on Advanced Informa-
tion Networking and Applications Workshops,, pages 444–448, 2014.

[66] I. Sriram. Speci, a simulation tool exploring cloud-scale data centres. Cloud
Computing, page 381–392, 2009.

[67] S. Svorobej, P. Takako Endo, M. Bendechache, C. Filelis-Papadopoulos, K. M.
Giannoutakis, G. A. Gravvanis, D. Tzovaras, J. Byrne, and T. Lynn. Simulat-
ing fog and edge computing scenarios: An overview and research challenges.
Future Internet, 11:3, 2019.

[68] R. Taylor, D. Baron, and D. Schmidt. The world in 2025 - predictions for the next
ten years. 10th International Microsystems, Packaging, Assembly and Circuits
Technology Conference (IMPACT), pages 192–195, 2015.

[69] D. Thomas and J. Irvine. Connection and resource allocation of iot sensors to
cellular technology-lte. 11th Conference on Ph.D. Research in Microelectronics
and Electronics (PRIME), pages 365–368, 2015.

[70] M. Tighe, G. Keller, M. Bauer, and H. Lutfiyya. Dcsim: A data centre simulation
tool for evaluating dynamic virtualized resource management. 8th international
conference on network and service management (CNSM) and workshop on systems
virtualiztion management (SVM), pages 385–392, 2012.

[71] D. Tychalas and H. Karatza. Simulation and performance evaluation of a fog
system. Third International Conference on Fog and Mobile Edge Computing
(FMEC), pages 26–33, 2018.

[72] Z. Wang, Z. Zhou, S. Jia, H. Liu, D. Li, and J. Cheng. Cloudeval: A simulation
environment for evaluating the dynamic cloud vm consolidation. Proceedings of
the 9th EAI International Conference on Simulation Tools and Techniques, pages
37–45, 2016.

112 Bibliography

[73] B. Wickremasinghe, R. N. Calheiros, and R. Buyya. Cloudanalyst: A cloudsim-
based visual modeller for analysing cloud computing environments and appli-
cations. 24th IEEE International Conference on Advanced Information Networking
and Applications (AINA), pages 446–452, 2010.

[74] E. Winarno, W. Hadikurniawati, and R. N. Rosso. Location based service for
presence system using haversine method. International Conference on Innovative
and Creative Information Technology (ICITech), pages 1–4, 2017.

[75] R. R. Yager and L. A. Zadeh. An introduction to fuzzy logic applications in
intelligent systems. Springer Science and Business Media, 165, 2012.

[76] S. Yi, C. Li, and Q. Li. A survey of fog computing: Concepts, applications and
issues. In Proceedings of the Workshop on Mobile Big Data, page 37–42, 2015.

[77] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji,
J. Kong, and J. P. Jue. All one needs to know about fog computing and related
edge computing paradigms: A complete survey. Journal of Systems Architecture,
98:289–330, 2019.

[78] X. Zeng, S. K. Garg, P. Strazdins, P. P. Jayaraman, D. Georgakopoulos, and
R. Ranjan. Iotsim: A simulator for analysing iot applications. Journal of Systems
Architecture, 72:93–107, 2017.

[79] H. Zhang, Y. Xiao, S. Bu, D. Niyato, F. R. Yu, and Z. Han. Computing re-
source allocation in three-tier iot fog networks: A joint optimization approach
combining stackelberg game and matching. IEEE Internet of Things Journal,
4:1204–1215, 2017.

Summary

This PhD thesis presents a conclusion of a six-year-long research in the field of Cloud
Computing, Fog Computing, and Internet of Things. The main goal of the inter-
cooperation of such domains, which are often associated with the Cloud-to-Thing
Continuum is to process, store, and analyse vast amount of data of IoT applications
in an effective way. The latest complex distributed systems involving thousands of
IoT devices promote widely usable services by leveraging the computing and storing
capacities of cloud data centres. To enhance the elasticity of a concrete service, cloud
resources are often aided by resource-constrained fog nodes to improve the response
time of the IoT application and to disperse the various types and unforeseen amounts
of data.

These IoT-Fog-Cloud systems require significant investments in terms of design,
development and operation, therefore, the use of simulators for their investigation is
inevitable. There are a large number of simulators addressing the analysis of parts
of these systems, however, it is obvious that only a state-of-the-art simulator is ca-
pable of modelling complex architectures in a realistic way, which meets modern
challenges.

This PhD thesis consists of three theses separated into three major chapters. The
first chapter presents a detailed survey and taxonomy of various IoT, cloud, and
fog simulators in order to determine the key requirements of a compact and well-
defined IoT-Fog-Cloud simulator. Furthermore, it presents an in-depth analysis and
a comparison of two major fog simulators. The second chapter introduces the IoT
and the pricing extension, exploiting a multi-cloud environment with resource allo-
cation strategies in the DISSECT-CF-IoT simulator. Finally, in the third chapter, the
DISSECT-CF-Fog simulator is presented which is able to model a multi-layered fog
topology with energy measurement, task allocation algorithms and, mobility and ac-
tuator events.

Contributions of the Thesis

In Chapter 2, 44 simulation solutions modelling clouds, IoT and fogs were thor-
oughly analysed and classified. In our taxonomy, we separated the considered simu-

113

114 Summary

lators into three groups, and presented comparison tables and figures based on the
taxonomy to reveal their differences and highlight how they model the elements of
IoT-Fog-Cloud systems. We also compared two fog modelling approaches, namely
iFogSim and DISSECT-CF-Fog. Finally, we presented an evaluation, which showed
how to create and execute simulated IoT scenarios using fog and cloud resources
with these tools.

The results of this chapter belong to Thesis I, and its contents were published
in papers [P3], [P7], and [P11]. My contributions presented in this chapter are the
following:

I/1. I proposed a comprehensive survey and taxonomy of numerous simulation ap-
proaches aiming at the examination of cloud, IoT, and fog systems.

I/2. I compared and analysed these simulation environments in terms of function-
ality, usability, maintainability, and code quality in order to determine the most
relevant properties for modelling IoT-Fog-Cloud systems.

I/3. I presented an in-depth performance analysis with a comparison of the two
most prominent simulators in these fields, namely DISSECT-CF-Fog and iFogSim,
showing a significant performance difference in favour of DISSECT-CF-Fog.

In Chapter 3, we introduced the DISSECT-CF-IoT simulator, which is able to
model generic IoT sensors, devices, and applications with detailed pricing schemes.
Finally, we also proposed four resource allocation (i.e. cloud selection) strategies
aimed to reduce IoT application execution time and usage costs for the multi-cloud
environment.

The results of this chapter belong to Thesis II, and its contents were published in
papers [P1], [P2], [P5], [P6], and [P10]. My contributions presented in this chapter
are the following:

II/1. I investigated IoT-Cloud use cases to derive a general IoT use case based on
meteorological forecasting, and I used it to evaluate the proposed IoT model.

II/2. I laid the foundations for the flexible and scalable modelling of IoT systems,
and I implemented it in the DISSECT-CF-IoT simulator.

II/3. I analysed the operating costs of the meteorological IoT use case, and I de-
veloped a novel cost estimation extension using real cloud and IoT provider
pricing schemes.

II/4. I introduced greedy and Pliant-based resource allocation strategies to reduce
application execution time and utilisation costs for multi-cloud environments.

Summary 115

In Chapter 4, we introduced the DISSECT-CF-Fog simulator with a more detailed
fog model to enhance its location awareness and multi-layer fog node management
by introducing four task allocation strategies to manage task offloading decisions of
complex IoT-Fog-Cloud systems. Finally, the simulation tool was extended towards
modelling actuators and mobility features, and the energy measurements of IoT de-
vices.

The results of this chapter belong to Thesis III, and its content was published
in papers [P4], [P8], and [P9]. My contributions presented in this chapter are the
following:

III/1. I designed a generic model of Fog Computing and implemented it in the DISSECT-
CF-Fog simulator to enable the modelling of the Cloud-to-Thing Continuum.

III/2. I proposed greedy and Pliant-based task allocation algorithms for fog and cloud
infrastructure management to optimise IoT application makespan, utilisation
costs, and energy consumption.

III/3. I designed a realistic and dynamic IoT behaviour modelling supporting IoT mo-
bility features, which can be configured by using the novel actuator interface
of DISSECT-CF-Fog.

III/4. I designed an IoT energy model based on real-world experiments and proposed
an extension of the DISSECT-CF-Fog simulator for the energy usage monitoring
of IoT devices.

III/5. I also presented an enhancement of the basic weather forecasting IoT scenar-
ios, towards modelling more refined IoT logistics and healthcare case studies.

116 Summary

Összefoglalás

Ez a doktori értekezés a Felhő és Köd Számı́tások (Cloud Computing and Fog Com-
puting) és a Dolgok Internete (Internet of Things - IoT) területén végzett hatéves ku-
tatást foglalja össze. Ezen területek - amelyekre gyakran Cloud-to-Thing Continuum-
ként hivatkoznak - együttműködésének fő célja az IoT alkalmazások által kezelt
hatalmas adatmennyiség hatékony feldolgozása, tárolása és elemzése. A legújabb,
több ezer IoT eszközt magában foglaló összetett és elosztott rendszerek a felhő-alapú
adatközpontok számı́tási és tárolási kapacitásának kihasználásával széles körben hasz-
nálható szolgáltatásokat biztośıtanak. Egy konkrét szolgáltatás rugalmasságát növeli,
ha a felhő rendszerek erőforrásait gyakran erőforrásaiban korlátozott köd csomó-
pontok seǵıtik, az IoT-alkalmazás válaszidejének jav́ıtása és a különböző t́ıpusú, akár
előre nem látható adatok kezelése érdekében.

Ezek az IoT-Köd-Felhő rendszerek jelentős beruházásokat igényelhetnek a ter-
vezés, a fejlesztés és az üzemeltetés tekintetében, ezért elkerülhetetlen a szimulátorok
használata a vizsgálatukhoz. Számos szimulátor foglalkozik ezen rendszerek egyes
részeinek elemzésével, azonban csak egy korszerű szimulátor képes a komplex ar-
chitektúrák realisztikus, a modern kih́ıvásoknak megfelelő modellezésére.

A doktori értekezés három tézisből áll, amelyek három fő fejezetre osztják a
disszertációt. Az első fejezet a különböző IoT, felhő és köd szimulátorok részletes
áttekintését és osztályozását mutatja be annak érdekében, hogy meghatározzuk egy
kompakt és jól definiált IoT-köd-felhő szimulátorral szemben támasztott legfontosabb
követelményeket. Továbbá bemutatja két jelentősebb köd szimulátor alapos elemzését
és összehasonĺıtását. A második fejezet részletezi az IoT és az árazási kiterjesztést,
kihasználva a több felhőből álló környezetet a DISSECT-CF-IoT szimulátorban. Ezen
túl különböző erőforrás-elosztási stratégiákat is bemutatunk. Végül, a harmadik fe-
jezetben a DISSECT-CF-Fog szimulátor kerül bemutatásra, amely képes egy többrétegű
köd topológia modellezésére mobilitás és aktuátor események támogatásával. A szi-
mulátort bőv́ıtettük különféle feladatkiosztási algoritmusokkal és az IoT eszközök
energiafogyasztását mérő funkcióval is.

117

118 Összefoglalás

A tézisek kontribúciói

A 2. fejezetben összesen 44 darab, felhő, IoT és köd rendszereket modellező szimu-
lációs megoldást elemeztünk és osztályoztunk. A vizsgált szimulátorokat három cso-
portra osztottuk, és az osztályozás alapján összehasonĺıtó táblázatokat és ábrákat mu-
tattunk be, hogy feltárjuk a különbségeket, és ráviláǵıtsunk arra, hogyan modellezik
az IoT-Köd-Felhő rendszerek egyes elemeit a különböző megvalóśıtások. Kettő, köd
rendszereket modellező megközeĺıtést részletesebben összehasonĺıtottunk, nevezete-
sen az iFogSim és a DISSECT-CF-Fog szimulátorokat. Végül bemutattuk, hogyan lehet
ezekkel a szimulációs eszközökkel köd és felhő erőforrások használó IoT használati
eseteket létrehozni és elemezni.

Ebben a fejezetben bemutatott kutatás az I. tézishez tartozik, és a [P3], [P7] és
[P11] publikációkban kerültek részletesebben tárgyalásra. A fejezetben bemutatott
fő hozzájárulások a következők:

I/1. Kidolgoztam egy taxonómiát és rendszerezést a felhő, IoT és köd rendszerek
vizsgálatát célzó számos szimulációs megközeĺıtés összehasonĺıtásához.

I/2. Elemeztem és összehasonĺıtottam a vizsgált szimulációs környezeteket funkci-
onalitás, használhatóság, karbantarthatóság és kódminőség szempontjából an-
nak érdekében, hogy meghatározzam az IoT-Köd-Felhő rendszerek modellezé-
séhez leginkább releváns tulajdonságokat.

I/3. Bemutattam egy mélyreható teljeśıtményelemzést a két legjelentősebb szimu-
látor, nevezetesen a DISSECT-CF-Fog és az iFogSim összehasonĺıtásával, amely
jelentős teljeśıtménykülönbséget mutatott a DISSECT-CF-Fog javára.

A 3. fejezetben bemutattuk a DISSECT-CF-IoT szimulátort, amely képes részletes
árképzési sémákkal modellezni az IoT szenzorokat, eszközöket és alkalmazásokat.
Végül négy erőforrás-elosztási (azaz felhő választási) stratégiát is javasoltunk a több-
felhős környezethez, amelyek célja az IoT alkalmazások végrehajtási idejének és
költségeinek csökkentése.

Ebben a fejezetben bemutatott kutatás a II. tézishez tartozik, és a [P1], [P2],
[P5], [P6] és [P10] publikációkban kerültek részletesebben tárgyalásra. A fejezetben
bemutatott fő hozzájárulások a következők:

II/1. Megvizsgáltam különböző IoT-felhő felhasználási eseteket, amelyek alapján
meghatároztam egy meteorológiai előrejelző rendszereken alapú általános IoT
felhasználási esetet, amit aztán a javasolt IoT-modell kiértékelésére használtam.

Összefoglalás 119

II/2. Kidolgoztam az IoT rendszerek rugalmas és skálázható modellezésének alap-
jait, majd megvalóśıtottam azt a DISSECT-CF-IoT szimulátorban.

II/3. Elemeztem a meteorológiai IoT használati eset működési költségeit, és egy
újszerű költségbecslési kiterjesztést dolgoztam ki valós felhő és IoT szolgáltatók
árképzési szabályainak felhasználásával.

II/4. Kifejlesztettem különböző mohó és Pliant-alapú erőforrás-elosztási stratégiákat
az alkalmazások végrehajtási idejének és költségeinek csökkentésére a több
felhőből álló környezetek számára.

A 4. fejezetben bevezettük a DISSECT-CF-Fog szimulátort köd rendszerek mo-
dellezésére, amely figyelembe veszi a köd csomópontok fizikai poźıcióját is. A többré-
tegű köd architektúrák kezelésének jav́ıtása érdekében különböző alkalmazás straté-
giákat vezettünk be a komplex IoT-Köd-Felhő rendszerek tehermenteśıtő döntéseinek
kezelésére. Végül a szimulációs eszközt kiterjesztettük az aktuátorok és a mobilitási
jellemzők modellezésére, valamint az IoT eszközök energiafogyasztásának mérésére.

Ebben a fejezetben bemutatott kutatás a III. tézishez tartozik, és a [P4], [P8] és
[P9] publikációkban kerültek részletesebben tárgyalásra. A fejezetben bemutatott fő
hozzájárulások a következők:

III/1. Megterveztem a köd rendszerek általános modelljét, és implementáltam a
DISSECT-CF-Fog szimulátorban, hogy lehetővé tegyem IoT-Köd-Felhő rendsze-
rek modellezését.

III/2. Kifejlesztettem mohó és Pliant-alapú feladatkiosztási algoritmusokat a köd és
felhő infrastruktúra kezeléshez, az IoT-alkalmazások végrehajtási idejének,
használati költségeinek és energiafogyasztásának optimalizálása érdekében.

III/3. Megterveztem egy realisztikus és dinamikus viselkedés modellt, amely támo-
gatja az IoT mobilitási jellemzőit, és amely a DISSECT-CF-Fog újszerű aktuátor
interfészének használatával konfigurálható.

III/4. Kidolgoztam egy valós világbeli ḱısérleteken alapuló IoT energia modellt, és
ennek alapján javaslatot tettem a DISSECT-CF-Fog szimulátor kiterjesztésére
az IoT-eszközök energia felhasználásának mérésére.

III/5. Bemutattam az általános meteorológiai előrejelző IoT használati eset tovább-
fejlesztését egy logisztikai és egy egészségügyi használati eset modellezéséhez.

120 Összefoglalás

Publications

Journal publications

[P1] A. Markus, G. Kecskemeti and A. Kertesz. Cost-aware IoT extension of DISSECT-
CF. Future Internet, Volume 9, 2017. DOI: 10.3390/fi9030047

[P2] A. Markus and J. D. Dombi. Multi-Cloud Management Strategies for Simulat-
ing IoT Applications. Acta Cybernetica, Volume 24, 2019. DOI: 10.14232/acta-
cyb.24.1.2019.7

[P3] A. Markus and A. Kertesz. A Survey and Taxonomy of Simulation Environments
Modelling Fog Computing. Simulation Modelling Practice and Theory, Volume
101, 2020. DOI: 10.1016/j.simpat.2019.102042

[P4] A. Markus, M. Biro, G. Kecskemeti and A. Kertesz. Actuator behaviour mod-
elling in IoT-Fog-Cloud simulation. PeerJ Computer Science, 7:e651, 2021. DOI:
10.7717/peerj-cs.651

Full papers in conference proceedings

[P5] A. Markus, G. Kecskemeti and A. Kertesz. Flexible Representation of IoT Sen-
sors for Cloud Simulators (PDP). In Proceedings of 25th Euromicro International
Conference on Parallel, Distributed and Network-based Processing (PDP), 199-203,
2017. DOI: 10.1109/PDP.2017.87

[P6] A. Markus and A. Kertesz. Simulating IoT Cloud Systems: A Meteorological
Case Study. In Proceedings of Second International Conference on Fog and Mobile
Edge Computing (FMEC), 171-176, 2017. DOI: 10.1109/FMEC.2017.7946426

[P7] A. Markus, P. Gacsi and A. Kertesz. Develop or Dissipate Fogs? Evaluating an
IoT Application in Fog and Cloud Simulations. In Proceedings of 10th Interna-

121

122 Publications

tional Conference on Cloud Computing and Services Science (CLOSER), 193-203,
2020. DOI: 10.5220/0009590401930203

[P8] A. Markus and A. Kertesz. Modelling Energy Consumption of IoT Devices
in DISSECT-CF-Fog. In Proceedings of 11th International Conference on Cloud
Computing and Services Science (CLOSER), 320-327, 2021. DOI:
10.5220/0010500003200327

[P9] A. Markus, J. D. Dombi and A. Kertesz. Location-aware Task Allocation Strate-
gies for IoT-Fog-Cloud Environments. In Proceedings of 29th Euromicro Inter-
national Conference on Parallel, Distributed and Network-Based Processing (PDP),
185-192, 2021. DOI: 10.1109/PDP52278.2021.00037

Further related publications

[P10] A. Markus, A. Marques, G. Kecskemeti and A. Kertesz. Efficient Simulation of
IoT Cloud Use Cases. In Autonomous Control for a Reliable Internet of Services,
313-336, 2018. DOI: 10.1007/978-3-319-90415-3 12

[P11] A. Markus and A. Kertesz. Investigating IoT Application Behaviour in Sim-
ulated Fog Environments. In Cloud Computing and Services Science, 258-276,
2021. DOI: 10.1007/978-3-030-72369-9 11

”Performance is bounded, but success is un-
bounded.”

— Albert-László Barabási

Acknowledgements

First of all, I would like to thank my supervisor, Dr. Attila Kertész, for directing
me to the path of a researcher in 2016. Over the past years I could participate
in research projects, review papers for scientific journals, supervise bachelor and
master students, and I could present my research in workshops, conference talks,
and student competitions. Without his useful critics, encouragement, and guidance
this thesis would have never come true.

I am grateful to my colleagues at the Department of Software Engineering, to my
co-authors and my friends for helping in realising my dissertation. Special thanks to
Dr. Tamás Pflanzner and Csaba Fülöp that I could always count on them.

Last but not least, I cannot thank my parents, my sister and my aunt enough for
their constant care and support. Thank you, Tina, from the bottom of my heart, for
accompanying me on this adventure.

I could not have done it without you.

András Márkus, 2022

123

	Introduction
	Contributions
	Project Involvements

	A Survey and Taxonomy of IoT-Fog-Cloud Systems
	Introduction
	Related Works
	Simulation Environments of IoT-Fog-Cloud Systems
	Introduction of General Cloud Simulators
	Introduction of IoT Simulators
	Introduction of Fog Simulators
	Detailed Taxonomy for Fog Modelling in Simulators
	Discussion and Future Research Challenges

	Further Investigation of iFogSim and DISSECT-CF-Fog
	In-depth Performance Analysis

	Discussion and Concluding Remarks

	Simulating IoT Systems in a Multi-cloud Environment
	Introduction
	The Proposed Pricing-aware Model for IoT Sensors and Applications
	IoT Pricing Schemes
	Cloud Pricing Schemes
	The Weather Forecasting IoT Use Case
	Evaluation with the Pricing-aware IoT Extension

	A Multi-cloud Simulation Environment
	Basic Strategies
	The Pliant Strategy
	Evaluation with Weather Forecasting Scenarios

	Discussion and Concluding Remarks

	Simulating IoT Systems in a Multi-layered Fog Environment
	Introduction
	Related Works
	Managing Offloading Decisions in DISSECT-CF-Fog
	The Proposed Task Allocation Strategies for Fog Nodes
	The Considered Scenarios and Their Configuration

	The Actuator and Mobility Models of DISSECT-CF-Fog
	Actuator Implementation in DISSECT-CF-Fog
	Representing IoMT Environments in DISSECT-CF-Fog
	Evaluation

	Modelling Energy Consumption in DISSECT-CF-Fog
	Analysis of Real Microcontrollers
	The Energy Model for IoT Devices
	Evaluation of the Energy Extension

	Discussion and Concluding Remarks

	Bibliography
	Summary
	Összefoglalás
	Publications

