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Abstract

Katona, Soltész, and Varga showed that no induced subgraph can

be excluded from the class of minimally tough graphs. In this paper,

we consider the opposite question, namely which induced subgraphs,

if any, must necessarily be present in each minimally t-tough graph.

Katona and Varga showed that for any rational number t ∈ (1/2, 1],
every minimally t-tough graph contains a hole. We complement this

result by showing that for any rational number t > 1, every minimally

t-tough graph must contain either a hole or an induced subgraph iso-

morphic to the k-sun for some integer k ≥ 3. We also show that for

any rational number t > 1/2, every minimally t-tough graph must con-

tain either an induced 4-cycle, an induced 5-cycle, or two independent

edges as an induced subgraph.

Keywords: toughness, minimally tough graph, chordal graph, strongly

chordal graph, split graph, moplex

1 Introduction

In 1973, Chvátal defined a (finite, simple, and undirected) graph G to be
t-tough, where t is a positive real number, if the removal of any vertex set
S leaves at most |S|/t components provided the removal of S disconnects
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the graph, and all graphs are considered 0-tough. The toughness of G is
the largest real number t such that G is t-tough, whereby the toughness of
complete graphs is defined as infinity [7]. As informally described by Chvá-
tal himself, toughness “measures in a simple way how tightly various pieces
of a graph hold together”. Toughness aimed at generalizing the notion of
Hamiltonicity since Hamiltonian graphs are 1-tough, and Chvátal conjec-
tured that there exists a real number t0 such that every t0-tough graph is
Hamiltonian [7]. His stronger conjecture was that every more than 3/2-tough
graph is Hamiltonian – but this was disproved by Thomassen [2]. Thereafter
it was conjectured (based on [9]) that every 2-tough graph is Hamiltonian –
but this was also disproved, this time by Bauer et al. in 2000 [1]. However,
the general conjecture remains open until this day.

A concept closely related to Chvátal’s conjecture is that of minimally
t-tough graphs, which Broersma et al. defined as graphs whose toughness
is t but the deletion of any edge decreases their toughness [6]. This notion
has been studied in a number of subsequent works (see, e.g., [14–16, 19]).
In particular, Katona et al. showed in [15] that for every positive rational
number t, any graph is an induced subgraph of some minimally t-tough
graph.

In this paper, we continue the study of minimally t-tough graphs. First,
we provide a necessary and sufficient condition for a graph G to be minimally
tough. We then use this condition to derive that for every t > 1, every
minimally t-tough, noncomplete graph must contain a hole or an induced
subgraph isomorphic to the k-sun for some k ≥ 3. This result complements
the one of Katona et al. stating that for all rational number t ∈ (1/2, 1],
every minimally t-tough graph contains a hole [16]. In addition, this result
shows that there are no minimally t-tough, strongly chordal graphs for any
rational number t > 1/2. Furthermore, our approach also implies that for
any rational number t > 1, if a minimally t-tough graph contains a universal
vertex, then it contains a hole. Finally, we show that there are no minimally
t-tough, split graphs for any rational number t > 1/2.

2 Preliminaries

In this section, we present some necessary definitions and claims. Let ω(G)
denote the number of components1, κ(G) the connectivity and δ(G) the min-
imum degree of a graph G. For a vertex v and for a set of vertices W in

1Using ω(G) to denote the number of components might be confusing; most of the
literature on toughness, however, uses this notation.
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a graph G, the degree of v is denoted by dG(v), the open neighborhood and
the closed neighborhood of v and those of W are denoted by NG(v), NG[v],
NG(W ), and NG[W ], respectively. In all cases, the subscript G is dismissed
whenever it does not cause confusion.

Definition 2.1. Let t be a real number. A graph G is called t-tough if
|S| ≥ t · ω(G − S) holds for any vertex set S ⊆ V (G) that disconnects the
graph (i.e., for any S ⊆ V (G) with ω(G − S) > 1). The toughness of G,
denoted by τ(G), is the largest t for which G is t-tough, taking τ(Kn) = ∞
for all n ≥ 1.

A graph G is said to be minimally t-tough if τ(G) = t and τ(G− e) < t
for all e ∈ E(G). A graph is called minimally tough if it is minimally t-tough
for some real number t.

Note that a graph is disconnected if and only if its toughness is 0.
It is not difficult to see that the toughness of any connected, noncomplete

graph is a positive rational number, thus there exist no minimally tough
graphs with nonpositive or with irrational toughness. Also note that every
complete graph on at least two vertices is minimally ∞-tough.

The following claim easily follows from the definition of minimally tough
graphs.

Claim 2.2 ([14]). Let t be a positive rational number and G a minimally
t-tough graph. For every edge e ∈ G,

1. the edge e is a bridge in G, or

2. there exists a vertex set S = S(e) ⊆ V (G) with

ω(G− S) ≤
|S|

t
and ω

(

(G− e)− S
)

>
|S|

t
,

and the edge e is a bridge in G− S.

In the first case, we define S = S(e) = ∅.

The following relation between the toughness of a graph and its connec-
tivity can be proved directly from the definition of toughness.

Claim 2.3 (Chvátal [7]). For every noncomplete graph G, we have τ(G) ≤
κ(G)/2.

Now we give the definitions and theorems needed for this paper. For two
vertices u, v ∈ V (G), a set S ⊆ V (G)\{u, v} is called a u-v separator if u and
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v belong to different components of G−S. A u-v separator is called minimal
if none of its proper subsets is a u-v separator. A set S ⊆ V (G) is called a
(minimal) separator if it is a (minimal) u-v separator for some u, v ∈ V (G).
Note that a minimal separator can be a proper subset of another minimal
separator but for different pairs of vertices.

To give a characterization for minimal separators, we need the following
definition.

Definition 2.4. For a set S ⊂ V (G), a component C of G−S is said to be
S-full if every vertex in S has a neighbor in C.

Claim 2.5 (Golumbic, Exercise 10 of Chapter 4 in [13]). In a graph G, a
set S ⊆ V (G) is a minimal separator if and only if the graph G − S has at
least two S-full components.

In this work, we mainly focus on chordal, strongly chordal, and split
graphs. A hole in a graph is an induced cycle of length at least 4. A graph is
chordal if it is hole-free, i.e., if it does not contain an induced cycle of length
at least 4. A graph is strongly chordal if it is chordal and every even cycle
of length at least 6 has an odd chord, i.e., a chord whose endpoints are an
odd distance apart in the cycle. A graph is a split graph if its vertex set can
be partitioned into a clique and an independent set. It is not difficult to see
that every split graph is chordal, but not necessarily strongly chordal.

A vertex or a set of vertices is called simplicial if its closed neighborhood
is a clique. A classical theorem of Dirac states that every chordal graph has
a simplicial vertex; moreover, every noncomplete, chordal graph contains at
least two nonadjacent simplicial vertices [8].

Definition 2.6. A vertex u ∈ N [v] is a maximum neighbor of a vertex v if
N [w] ⊆ N [u] holds for all w ∈ N [v].

Note that a vertex can be its own maximum neighbor.
Building upon the notion of maximum neighbor, we introduce the fol-

lowing definition.

Definition 2.7. An edge uu′ is a maximum neighboring edge of a vertex v
if u, u′ ∈ N(v) and N [w] ⊆ N [u] ∪N [u′] holds for all w ∈ N [v].

Note that if a vertex v has a maximum neighbor different from v itself,
then this maximum neighbor and any other neighbor of v (if existing) form
a maximum neighboring edge of v.
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Definition 2.8. A vertex s is called a simple vertex if its closed neighborhood
can be linearly ordered by inclusion, i.e., for any x, y ∈ N [s], if x precedes
y, then N [x] ⊆ N [y].

Observe that every simple vertex is simplicial, and they have a maximum
neighbor.

Definition 2.9. Given an integer k ≥ 3, a k-sun Sk is a graph whose vertex
set can be partitioned into two sets A = {a1, . . . , ak} and B = {b1, . . . , bk}
such that A is a clique and B is an independent set in Sk, and for all i, j ∈
{1, . . . , k}, the vertices ai and bj are adjacent if and only if i = j or i ≡ j+1
(mod k) (see Figure 1).

A graph is said to be sun-free if it does not contain an induced k-sun for
any integer k ≥ 3.

S3 S4 S5

Figure 1: The 3-sun, the 4-sun, and the 5-sun.

Later, we make use of the following characterizations of strongly chordal
graphs.

Theorem 2.10 (Farber [10]). For any graph G, the following conditions are
equivalent.

1. The graph G is strongly chordal.

2. The graph G is chordal and sun-free.

3. Each induced subgraph of G has a simple vertex.

The following theorem gives a characterization of split graphs.

Theorem 2.11 (Földes and Hammer [11]). A graph is a split graph if and
only if it is (C4, C5, 2K2)-free, i.e., if it does not contain a cycle of length 4,
a cycle of length 5, and a pair of independent edges as induced subgraphs.

5



The following definition can be considered as a generalization of the con-
cept of simplicial vertices.

Definition 2.12. In a graph G, a set of vertices M ⊆ V (G) is a module
if each vertex v ∈ V (G) \M is either adjacent to every vertex in M or not
adjacent to any vertex in M . A clique module is a module that is a clique.
A moplex in a graph G is an inclusion-maximal clique module whose open
neighborhood is either empty or is a minimal separator in G. A vertex that
belongs to a moplex is said to be moplicial.

By the following characterization of chordal graphs, it is not difficult to
see that in a chordal graph every moplicial vertex is simplicial.

Theorem 2.13 (Dirac [8]). A graph G is chordal if and only if every minimal
separator in G forms a clique.

The previously mentioned result of Dirac on the existence of simplicial
vertices in chordal graphs [8] was strengthened by Berry and Bordat in [3]
using the concept of moplexes, which, in the case of chordal graphs, can
consist of simplicial vertices only.

Theorem 2.14 (Berry and Bordat [3]). Every noncomplete graph contains
at least two moplexes.

The following lemma provides a link between simple vertices and mo-
plexes.

Lemma 2.15. If s is a simple vertex of a graph G, then s is moplicial.

Proof. Let M denote the set of those vertices in G whose closed neighborhood
is the same as that of s. Clearly, M is an inclusion-maximal clique module.
If G is complete, then M = V (G) and N(M) = ∅, thus M is a moplex.
So assume that G is noncomplete. In this case, we claim that N(M) is a
minimal separator in G. By Claim 2.5, we need to show that G−N(M) has
at least two N(M)-full components.

Since M is a clique module, it forms an N(M)-full component in G −
N(M). Let v be a vertex in N(M) with smallest degree. Since s is simple
and v /∈ M ,

N [s] $ N [v] ⊆ N [w]

holds for any w ∈ N(M). Let u ∈ N [v] \ N [s], and let H denote the
connected component of u in G −N(M). Since u ∈ N [v] ⊆ N [w] holds for
any w ∈ N(M), we can conclude that H is also an N(M)-full component in
G−N(M).

Therefore, M is a moplex, thus s is moplicial.
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Chordal graphs have several equivalent definitions; in this paper, we also
rely on the one using the concept of clique trees.

Definition 2.16. Let G be a graph and let QG denote the set of its maximal
cliques. A clique tree of G is a tree with vertex set QG such that for every
pair of distinct maximal cliques Q,Q′ ∈ QG, the set Q ∩Q′ is contained in
every clique on the path connecting Q and Q′ in the tree.

Theorem 2.17 (Gavril [12], Blair and Payton [5]). A graph is chordal if
and only if it has a clique tree.

With the help of clique trees, minimal separators in chordal graphs can
be characterized as follows.

Lemma 2.18 (Blair and Payton [5]). Let G be a connected, chordal graph
and T a clique tree of G. A set of vertices S ⊆ V (G) is a minimal separator
in G if and only if S is the intersection of two maximal cliques corresponding
to two adjacent nodes of T .

The following lemma shows an interesting connection between moplexes
in a chordal graph and its clique trees.

Lemma 2.19 (Berry and Bordat [4]). For any moplex M in a connected,
chordal graph G, there exists a clique tree T of G such that N [M ] is a max-
imal clique corresponding to a leaf of T .

3 A characterization of non-minimally tough graphs

The following theorem characterizes graphs that are not minimally tough.

Theorem 3.1. Let G be a connected, noncomplete graph and let t = τ(G).
Then G is not minimally t-tough if and only if G contains an edge e = uv
such that the following conditions are met.

1. There exist at least 2t+ 1 pairwise internally vertex-disjoint u-v paths
in G (including uv).

2. Every separator S in G that is also a u-v separator in G− e satisfies

|S| ≥ t ·
(

ω(G− S) + 1
)

.

Proof. First, assume that G is not minimally t-tough. Then, there exists
an edge e = uv in G such that τ(G − e) = t. By Theorem 2.3, we have
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κ(G − e) ≥ 2τ(G− e) = 2t, so by Menger’s Theorem, there exist at least 2t
pairwise internally vertex-disjoint paths from u to v in G− e, which proves
Condition 1. Consider now a separator S in G that is also a u-v separator in
G−e. Then e is a bridge in G−S, which implies ω

(

(G−e)−S
)

= ω(G−S)+1.
Since S is a separator in G− e and τ(G− e) = t, we obtain

|S| ≥ t · ω
(

(G− e)− S
)

= t ·
(

ω(G− S) + 1
)

,

which proves Condition 2.

Conversely, let e = uv be an edge in G for which Conditions 1 and 2
hold. We claim that τ(G − e) = t, which implies that G is not minimally
t-tough. Let S be an arbitrary separator in G − e. We need to show that
|S| ≥ t · ω

(

(G− e)− S
)

holds.
Assume first that S is not a separator in G. Then ω(G − S) = 1 and e

is a bridge G− S, which implies

ω
(

(G− e)− S
)

= ω(G− S) + 1 = 2 .

By Condition 1, we have |S| ≥ 2t. Therefore,

|S| ≥ 2t ≥ t · ω
(

(G− e)− S
)

.

Assume now that S is a separator in G, as well as a u-v separator in
G− e. Then ω

(

(G− e)− S
)

= ω(G− S) + 1 and by Condition 2, we have

|S| ≥ t ·
(

ω(G− S) + 1
)

= t · ω
(

(G− e)− S
)

.

Finally, assume that S is a separator in G, but not a u-v separator in
G−e. Then ω

(

(G−e)−S
)

= ω(G−S) and using the fact that G is t-tough,
we obtain

|S| ≥ t · ω(G− S) = t · ω
(

(G− e)− S
)

.

This completes the proof.

As a side remark, let us note that Theorem 3.1 can be strengthened
further by the use of the following lemma.

Lemma 3.2. Let G be a connected, noncomplete graph, let t = τ(G), and
let e = uv be an edge of G. Then the following two conditions are equivalent.

1. Every separator S in G that is also a u-v separator in G− e satisfies

|S| ≥ t ·
(

ω(G− S) + 1
)

.
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2. Every separator S in G that is also a u-v separator in G−e and whose
every vertex has neighbors in at least two components of (G − e) − S
satisfies

|S| ≥ t ·
(

ω(G− S) + 1
)

.

Proof. Condition 1 trivially implies Condition 2.
To prove the converse, assume that Condition 2 holds. We show that

every separator S in G that is also a u-v separator in G − e satisfies |S| ≥
t ·
(

ω(G−S)+1
)

by induction on k = k(S) defined as the number of vertices
in S that have neighbors in at most one component of (G− e)− S.

The base case corresponds to k = 0, where the desired inequality holds by
Condition 2. Let S be an arbitrary separator in G that is also a u-v separator
in G−e with k = k(S) > 0, and assume that |S′| ≥ t·

(

ω(G−S′)+1
)

holds for
any separator S′ in G that is also a u-v separator in G−e with k(S′) < k. Let
w ∈ S be a vertex that has neighbors in at most one component of (G−e)−S
and let S′ = S \{w}. It is not difficult to see that S′ is a separator in G and
also a u-v separator in G − e, and ω

(

(G − e) − S′
)

= ω
(

(G − e) − S
)

, and
k(S′) < k(S). Thus by the induction hypothesis,

|S| > |S′| ≥ t ·
(

ω(G− S′) + 1
)

= t · ω
(

(G− e)− S′
)

= t · ω
(

(G− e)− S
)

= t ·
(

ω(G− S) + 1
)

,

which completes the proof.

Using Theorem 3.1, we now derive the following sufficient condition for
a graph not to be minimally tough.

Lemma 3.3. Let t be a positive rational number and let G be a graph contain-
ing two adjacent vertices u and v such that u and v have at least 2t common
neighbors, at least t of which have all their neighbors in N(u) ∪N(v). Then
G is not minimally t-tough.

Proof. We can assume that τ(G) = t, otherwise G is clearly not minimally
t-tough. We verify that the graph G and its edge uv satisfy Conditions 1 and
2 of Theorem 3.1. Clearly, Condition 1 follows from the assumption that u
and v are adjacent and have at least 2t common neighbors. For Condition 2,
let S be an arbitrary separator in G that is also a u-v separator in G − e.
Let

T =
{

w ∈ N(u) ∩N(v)
∣

∣ N(w) ⊆ N(u) ∪N(v)
}

.

By the assumption of the lemma, |T | ≥ t holds. Furthermore, T ⊆ S since S
is a u-v separator in G−e. Consider the vertex set S′ = S\T . The definition
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of T implies that S′ is a separator in G with ω(G − S′) = ω(G − S). Since
G is t-tough, we obtain

|S| = |S′|+ |T | ≥ t ·ω(G−S′)+ t = t ·
(

ω(G−S′)+ 1
)

= t ·
(

ω(G−S)+ 1
)

.

Therefore, Condition 2 holds as well, and we conclude that G is not minimally
t-tough.

4 Implications for chordal, strongly chordal, and

split graphs

Using Lemma 3.3, we now prove the following result, which appears already
in [16].

Theorem 4.1. For any rational number t ∈ (1/2, 1], there exists no mini-
mally t-tough, chordal graph.

Proof. Let t ∈ (1/2, 1] be a rational number and let G be a chordal graph
with τ(G) = t. Now we prove that G is not minimally t-tough.

Since τ(G) = t, the graph G is connected and noncomplete. Since G is
a chordal graph, it has a clique tree T , and since G is noncomplete, T has
at least two nodes.

Let Q be a maximal clique in G corresponding to a leaf of T , and let
Q′ be the maximal clique of G corresponding to the unique neighbor of this
leaf in T . By Lemma 2.18, S = Q ∩ Q′ is a minimal separator in G. By
Claim 2.3, |S| ≥ 2t > 1, i.e., |S| ≥ 2, thus S contains two adjacent vertices
u and v.

Since Q and Q′ are distinct maximal cliques in G, there exist a vertex
x ∈ Q\Q′ and a vertex y ∈ Q′ \Q. Clearly, the vertices x and y are common
neighbors of u and v, thus u and v have at least 2 ≥ 2t common neighbors.
Now, we show that at least 1 ≥ t of the common neighbors of u and v,
namely x, have all their neighbors in N(u)∪N(v). For this, observe that the
set of vertices of T that correspond to maximal cliques containing any fixed
vertex in G induces a subtree of T . Since x ∈ Q \Q′ and Q corresponds to a
leaf in T , this implies that Q is the only maximal clique containing x in G.
Therefore N(x) = V (Q) ⊆ N(u) ∪N(v).

So by Lemma 3.3, we infer that G is not minimally t-tough.

Theorem 4.1 can be equivalently stated as follows.

Corollary 4.2. For any rational number t ∈ (1/2, 1], every minimally
t-tough graph contains a hole.
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By Theorem 2.14, every graph contains moplicial vertices, and in the
following theorem, we study these vertices in minimally t-tough, chordal
graphs with t > 1/2. For the definition of maximum neighboring edges,
recall Definition 2.7.

Theorem 4.3. Let t > 1/2 be a rational number and let G be a minimally
t-tough, chordal graph. Then none of the moplicial vertices of G have a
maximum neighbor or a maximum neighboring edge.

Proof. Suppose to the contrary that G is a minimally t-tough, chordal graph
containing a moplicial vertex s with a maximum neighbor u or with a max-
imum neighboring edge uv.

Since t 6= 0 and t 6= ∞, the graph G is connected and noncomplete. By
Theorem 4.1, t > 1 holds.

As we observed earlier, since G is chordal and s is moplicial, Theorem 2.13
implies that s is simplicial. Note that since G is connected and noncomplete,
s cannot be its own maximum neighbor. Also note that by Claim 2.3, s has
at least two neighbors. Therefore, if s has a maximum neighbor u, then for
any other neighbor v of s (which exists), uv is a maximum neighboring edge.

Since s is moplicial, there exists a moplex X containing s. Since s is
simplicial, N [s] = N [X] is the unique maximal clique containing s. Let
Q = N [X]. Then by Lemma 2.19, Q corresponds to a leaf of some clique
tree T of G; let Q′ denote the maximal clique of G that corresponds to the
only neighbor of this leaf in T . By Lemma 2.18, Q∩Q′ is a minimal separator
in G, so by Claim 2.3, |Q ∩Q′| ≥ 2t. Since G is noncomplete, Q 6= Q′, thus
|Q| ≥ |Q ∩Q′|+ 1 ≥ 2t+ 1.

Now consider the vertices of Q \{u, v}. Clearly, they are common neigh-
bors of u and v, and since Q = N [s] and uv is a maximum neighboring edge
of s, the vertices of Q\{u, v} have all their neighbors in N [u]∪N [v]. Clearly,

∣

∣Q \ {u, v}
∣

∣ = |Q| − 2 ≥ (2t+ 1)− 2 = 2t− 1 > t ,

where the last inequality is valid since t ≥ 1. Therefore, Lemma 3.3 implies
that G is not minimally t-tough, which is a contradiction.

Theorem 4.3 has several interesting consequences.

Corollary 4.4. For any rational number t > 1/2, there exists no minimally
t-tough, strongly chordal graph.

Proof. Let t > 1/2 be a rational number and let G be a strongly chordal
graph. By Theorem 2.10, G contains a simple vertex s, and by Lemma 2.15,
s is moplicial. Since every simple vertex has a maximum neighbor, Theo-
rem 4.3 implies that G is not minimally t-tough.
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Thus by Theorem 2.10, we can conclude the following.

Corollary 4.5. For any rational number t > 1/2, every minimally t-tough
graph contains a hole or an induced k-sun for some integer k ≥ 3.

Furthermore, since every interval graph is strongly chordal [17], Corol-
lary 4.4 directly implies the following.

Corollary 4.6. For any rational number t > 1/2, there exists no minimally
t-tough, interval graph.

Three independent vertices in a graph form an asteroidal triple if every
two of them are connected by a path avoiding the neighborhood of the third.
Since the interval graphs are exactly those chordal graphs which are also
asteroidal triple-free [17], Corollary 4.6 can equivalently stated as follows:
for any rational number t > 1, every minimally t-tough graph contains either
a hole or an asteroidal triple.

A graph is a co-comparability graph if its complement admits a transitive
orientation (i.e., if (u, v) and (v,w) are arcs of the resulting directed graph,
then (u,w) must be also an arc of it). It is natural to ask whether the result
of Corollary 4.6 generalizes to the larger class of co-comparability graphs,
but this is not the case. For an integer k ≥ 2, let G be the graph consisting
of two disjoint cliques of size k and a perfect matching between them. Then
G is a co-bipartite graph and thus a co-comparability graph. Furthermore,
G is claw-free and κ(G) = k since we need to remove at least one vertex
from each edge of the perfect matching to disconnect G and G is k-regular.
Thus by [18], τ(G) = κ(G)/2 = k/2. Since G is k-regular, Claim 2.3 implies
τ(G− e) ≤ κ(G− e)/2 ≤ (k− 1)/2. Therefore, G is a minimally k/2-tough,
co-comparability graph.

We now move to another consequence of Theorem 4.3, one related to
graphs with a universal vertex, that is, a vertex adjacent to all other vertices.
Observe that there exist minimally t-tough graphs with t > 1 that have
universal vertices: it is not difficult to see that wheels on n ≥ 5 vertices
(for some examples, see Figure 2) are minimally tn-tough graphs having a
universal vertex, where tn = (n + 1)/(n − 1) for odd n and tn = n/(n − 2)
for even n.

In fact, it turns out that every minimally t-tough graph with t > 1
containing a universal vertex must also contain an induced subgraph iso-
morphic to a wheel. A graph G is said to be wheel-free if it does not contain
any induced subgraph isomorphic to a wheel Wn for some n ≥ 5. In this
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W5 W6

Figure 2: The wheels on 5 and 6 vertices.

terminology, the above statement reads as follows: for any rational number
t > 1, there exists no minimally t-tough, wheel-free graph with a universal
vertex. Since a wheel-free graph can only have a universal vertex if it is
chordal, it suffices to prove the analogous statement for chordal graphs.

Corollary 4.7. For any rational number t > 1, there exists no minimally
t-tough, chordal graph with a universal vertex.

Proof. Let t > 1 be a rational number and let G be a chordal graph with a
universal vertex. We need to show that G is not minimally t-tough. We may
assume that G is noncomplete, otherwise it is clearly not minimally t-tough.
Let U be the set of universal vertices in G and let G′ = G − U . Since G is
noncomplete, G′ has vertices and G′ is also a noncomplete.

Thus, by Theorem 2.14, G′ contains a moplex M . Now we show that M
is also a moplex in G. Since M is an inclusion-wise maximal clique module
in G′ and U is adjacent to every vertex in G, we infer that M is also an
inclusion-wise clique module in G. Furthermore, the fact that NG′(M) is a
minimal separator in G′ implies that NG(M) = NG′(M) ∪ U is a minimal
separator in G. Thus M is indeed a moplex in G.

Let s ∈ M and u ∈ U be arbitrary. Clearly, s is moplicial and u is a
maximum neighbor of s, so by Theorem 4.3, G is not minimally t-tough.

The following claim characterizes minimally t-tough graphs with t ≤ 1
having a universal vertex.

Theorem 4.8. Let t ≤ 1 be a rational number. If G is a minimally t-tough
graph with a universal vertex, then G ∼= K1,b and t = 1/b for some integer
b ≥ 2.

Proof. Let t ≤ 1 be a rational number, G a minimally t-tough graph, and
u ∈ V (G) a universal vertex of G. Let v ∈ V (G), v 6= u be an arbitrary
vertex. Since u is universal, uv ∈ E(G). Let S = S(uv) ⊆ V (G) be a vertex
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set guaranteed by Claim 2.2. Since uv is a bridge in G − S, clearly u /∈ S.
Since u is universal in G, the graph (G−uv)−S has exactly two components:
the one containing only v and the other containing all the remaining vertices.
Therefore, N(v) \ {u} ⊆ S. Then by Claim 2.2,

∣

∣N(v)
∣

∣ − 1

t
=

∣

∣N(v) \ {u}
∣

∣

t
≤

|S|

t
< ω

(

(G− e)− S
)

= 2 ,

that is,
∣

∣N(v)
∣

∣ < 2t+ 1 .

Note that the above arguments and inequalities also hold in the case when
uv is a bridge in G, in which case S = ∅.

So by Claim 2.3, ⌈2t⌉ ≤ κ(G) ≤ d(v) < 2t+1 holds for any vertex v 6= u,
moreover, since d(v) is integer, d(v) = ⌈2t⌉. This means, that if t ≤ 1/2,
then each vertex, except possibly for u, is of degree 1. Thus G is a star, that
is, G ∼= K1,b for some integer b ≥ 0, and since the toughness of K1 and K2

is infinity, G ∼= K1,b and t = 1/b for some integer b ≥ 2. If 1/2 < t ≤ 1, then
then each vertex, except for u, is of degree 2, thus G can be obtained from
a star on at least 3 vertices by adding a matching covering every leaf of the
star. However, no such graph is minimally t-tough with 1/2 < t ≤ 1: if G
has exactly 3 vertices, then G ∼= K3, whose toughness is infinity, and if G
contains more than 3 vertices, then v is a cut-vertex in G, thus the toughness
of G is at most 1/2.

Finally, we study minimally tough, split graphs. Our next result, Theo-
rem 4.10, can also be found in [16], but with a significantly different proof.

Claim 4.9 ([16]). Let t be a positive rational number and G a minimally
t-tough, split graph partitioned into a clique Q and an independent set I. Let
e = uv be an edge between two vertices of Q and S = S(e) ⊆ V (G) a vertex
set guaranteed by Claim 2.2. Then

S =
(

Q \ {u, v}
)

∪ {w ∈ I | uw, vw ∈ E(G)} .

Notice that for any integer b ≥ 2, the star K1,b is a minimally t-tough,
split graph for t = 1/b ≤ 1/2. On the other hand, there are no such graphs
for t > 1/2.

Theorem 4.10. For any rational number t > 1/2, there exists no minimally
t-tough, split graph.
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Proof. Since every split graph is chordal, we can assume by Theorem 4.1
that t > 1. So let t > 1 be an arbitrary rational number and suppose to
the contrary that there exists a minimally t-tough, split graph G. Then
G is connected and noncomplete, otherwise its toughness would be either
0 or infinity, and not t. Since G is a split graph, its vertex set can be
partitioned into a clique Q and an independent set I. We can assume that
in this partition, Q is inclusion-wise maximal, i.e., none of the vertices of I is
adjacent to every vertex of Q. Since G is noncomplete, I 6= ∅. By Claim 2.3,
every vertex of G has degree at least κ(G) ≥ ⌈2t⌉ ≥ 3 (since t > 1), in
particular, so do the vertices of I (and, as we saw, I 6= ∅), thus |Q| ≥ 3.
Furthermore, |I| ≥ 2 since I 6= ∅ and if |I| = 1 held, then the neighbors of the
only vertex in I (and since each vertex is of degree at least 3, the only vertex
in I has indeed neighbors) would be universal, contradicting Corollary 4.7.

Now we show that each vertex of I forms a moplex. Let v ∈ I be an
arbitrary vertex. Obviously, {v} is a clique module, and now we show that
it is an inclusion-wise maximal one. So suppose to the contrary that there
exists a clique module M such that v ∈ M and M 6= {v}. Since M is a
clique and none of the vertices of I is adjacent to every vertex of Q, clearly
M \ {v} ⊆ N(v) $ Q holds. Consider any vertex w ∈ M \ {v} and any
vertex u ∈ Q \N(v). Then uv /∈ E(G), and since M \ {v} $ Q and Q is a
clique, uw ∈ E(G). Since M is a clique module with v,w ∈ M and u /∈ M ,
this is a contradiction. So {v} is indeed an inclusion-wise maximal clique
module. Clearly, N(v) is a minimal separator. Therefore, {v} is a moplex.
Thus each vertex of I is moplicial.

For any v ∈ Q, let Iv = N(v) ∩ I. Now we show that |Iu ∪ Iv| ≤ 3 and
|Iu \ Iv| ≤ 1 hold for any u, v ∈ Q, u 6= v. Let u, v ∈ Q be arbitrary vertices.
Since Q is a clique, uv ∈ E(G). Let S = S(uv) ⊆ V (G) be a vertex set
guaranteed by Claim 2.2. By Claim 4.9,

S =
(

Q \ {u, v}
)

∪ {w ∈ I | uw, vw ∈ E(G)} .

Then by Claim 2.2,

|Q| − 2 + |Iu ∩ Iv|

t
=

|S|

t
< ω

(

(G− uv)− S
)

= ω(G− S) + 1

=
(

|I| − |Iu ∪ Iv|+ 1
)

+ 1 = |I| − |Iu ∪ Iv|+ 2 .

Since G is t-tough and Q is a separator (by |I| ≥ 2),

|I| = ω(G−Q) ≤
|Q|

t
.
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Thus,

|I| ≤
|Q|

t
=

|Q| − 2 + |Iu ∩ Iv|

t
+

2− |Iu ∩ Iv|

t

< |I| − |Iu ∪ Iv|+ 2 +
2− |Iu ∩ Iv|

t
,

that is,

|Iu ∪ Iv| < 2 +
2− |Iu ∩ Iv|

t
≤ 2 +

2

t
< 4 ,

where the last inequality is valid since t > 1. Therefore, |Iu ∪ Iv| ≤ 3.
By Corollary 4.7, no vertex of Q is adjacent to all vertices of I, thus

Q \ {v} is a separator, and since G is t-tough,

|I| − |Iv |+ 1 = ω
(

G−
(

Q \ {v}
)

)

≤

∣

∣Q \ {v}
∣

∣

t
=

|Q| − 1

t

holds. Thus,

|I| − |Iv|+ 1 ≤
|Q| − 1

t
=

|Q| − 2 + |Iu ∩ Iv|

t
+

1− |Iu ∩ Iv|

t

< |I| − |Iu ∪ Iv|+ 2 +
1− |Iu ∩ Iv|

t
,

that is,

|Iu \ Iv| ≤ 1 +
1− |Iu ∩ Iv|

t
≤ 1 +

1

t
< 2 ,

where the last inequality is valid since t > 1. Therefore, |Iu \ Iv| ≤ 1, and
similarly, |Iv \ Iu| ≤ 1.

By the inequalities |Iu ∪ Iv| ≤ 3 for any u, v ∈ Q, clearly |Iu| ≤ 3 holds
for any u ∈ Q, and it is not difficult to see that if |Iu| = 3 for some u ∈ Q,
then |I| = 3 and thus u is a universal vertex, contradicting Corollary 4.7.
Thus, |Iu| ≤ 2 for every u ∈ Q.

If |Iu| = 1 for all u ∈ Q, then any vertex in Q is a maximum neighbor of
its only neighbor in I, which contradicts Theorem 4.3 since the vertices in I
are moplicial.

Thus, there exists a vertex u ∈ Q with |Iu| = 2. Let Iu = {a, b}. Let
A = N(a) and B = N(b). Obviously, u ∈ A∩B, thus {a, b} ⊆ N(A)∩ I and
{a, b} ⊆ N(B) ∩ I. In addition, N(A) ∩ I 6= {a, b}, otherwise u would be a
maximum neighbor of a, contradicting Theorem 4.3. Similarly, N(B) ∩ I 6=
{a, b}. Let c ∈

(

N(A)∩I
)

\{a, b} and let v ∈ A\{u} be a neighbor of c (such
a vertex v exists since c is of degree at least 3). Now, N(B) ∩ I 6= {a, b, c},
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otherwise for any v′ ∈ N(B) \ {u} which is a neighbor of c, the edge uv′

would be a maximum neighboring edge of b, contradicting Theorem 4.3. Let
d ∈

(

N(B) ∩ I
)

\ {a, b, c}, and let w ∈ B \ {u, v} be a neighbor of d (such a
vertex w exists since d is of degree at least 3). Now a, c ∈ Iv and b, d ∈ Iw,
where a, b, c, d are four distinct vertices, contradicting |Iv ∪ Iw| ≤ 3.

By Theorem 2.11, the above result, i.e., Theorem 4.10, can be equiva-
lently stated as follows.

Corollary 4.11. For any rational number t > 1/2, every minimally t-tough
graph contains either an induced 4-cycle or an induced 5-cycle or a pair of
independent edges as an induced subgraph.

In conclusion, we pose the following.

Conjecture 4.12. For any rational number t > 1/2, there exists no mini-
mally t-tough, chordal graph.

If true, the conjecture would provide a common generalization of Theo-
rems 4.1 and 4.10 and Corollaries 4.4 and 4.7.
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