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ON SIDORENKO’S CONJECTURE FOR DETERMINANTS AND

GAUSSIAN MARKOV RANDOM FIELDS

BALÁZS SZEGEDY

Abstract. We study a class of determinant inequalities that are closely re-
lated to Sidorenko’s famous conjecture (Also conjectured by Erdős and Si-
monovits in a different form). Our results can also be interpreted as entropy
inequalities for Gaussian Markov random fields (GMRF). We call a GMRF
on a finite graph G homogeneous if the marginal distributions on the edges
are all identical. We show that if G satisfies Sidorenko’s conjecture then the
differential entropy of any homogeneous GMRF on G is at least |E(G)| times
the edge entropy plus |V (G)|−2|E(G)| times the point entropy. We also prove
this inequality in a large class of graphs for which Sidorenko’s conjecture is
not verified including the so-called Möbius ladder: K5,5 \C10. The connection
between Sidorenko’s conjecture and GMRF’s is established via a large devi-
ation principle on high dimensional spheres combined with graph limit theory.

1. Introduction

For a finite graph G = (V,E) and x ∈ (−1, 1) let Ψ(G, x) denote the set of V × V
matrices M such that

(1) M is positive definite,

(2) Every diagonal entry of M is 1,

(3) Mi,j = x for every edge (i, j) of G.

The strict concavity of the function M 7→ log(det(M)) and the convexity of Ψ(G, x)
together imply that there is a unique matrix Σ(G, x) in Ψ(G, x) which maximizes
determinant. For probabilists, this matrix is know as the covariance matrix of the
Gaussian Markov random field {Xv}v∈V (G) (or shortly GMRF) on G in which
Xv ∼ N(0, 1) holds for every vertex v and E(XiXj) = x holds for every edge (i, j)
of G. The function τ(G, x) := det(Σ(G, x)) is an interesting analytic function of x
for every fixed graph G. One can for example easily see that if G is a tree then

τ(G, x) = (1− x2)|E(G)|

and if G is the four cycle then

τ
(

C4,
»

X2/2 + x/2
)

= 1− 2x+ 2x3 − x4.

In general we are not aware of any nice explicit formula for τ(G, x) however we know
that the power series expansion of τ(G, x) around 0 has integer coefficients (for
the sketch of the proof see chapter 5) that carry interesting combinatorial meaning
which will be studied in a separate paper. Based on extensive computer experiments
(using the algorithm described in chapter 5) we conjecture the following.
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Conjecture 1.1. If G is any graph and x ∈ [0, 1) then τ(G, x) ≥ (1− x2)|E(G)|.

Note that since τ(e, x) = 1 − x2 for the single edge e the conjecture says that
τ(G, x) ≥ τ(e, x)|E(G)|. It is not hard to verify conjecture 1.1 for complete graphs
and cycles.

Remark 1.2. With some effort one can compute the first non zero coefficient in the
power series of ln(τ(G, x))− |E(G)| ln(1− x2) around 0 and find that it is positive.
This establishes a local version conjecture 1.1 in a small interval [0, ǫ).

It is easy to see that if G is bipartite then τ(G, x) is an even function of x and thus
conjecture 1.1 implies the following weaker conjecture.

Conjecture 1.3. If G is any bipartite graph and x ∈ (−1, 1) then τ(G, x)
≥ (1− x2)|E(G)|.

Using a large deviation principle on high dimensional spheres and logarithmic graph
limits [11] we will relate the quantities τ(G, x) to more familiar subgraph densities
t(G,H) from extremal combinatorics. If G and H are finite graphs then t(G,H)
denotes the probability that a random map from V (G) to V (H) takes edges to
edges. We say that G is a Sidorenko graph if t(G,H) ≥ t(e,H)|E(H)| holds for
every graph H . Sidorenko’s famous conjecture [2] says that every bipartite graph is
a Sidorenko graph. Even though this conjecture is still open there are many known
examples for Sidorenko graphs including rather general infinite families. For lit-
erature on Sidorenko’s conjecture see: [1],[2],[3],[5],[6],[7],[8],[9],[11],[12]. Note that
a somewhat stronger version of the conjecture was formulated by Erdős and Si-
monovits in [10]. The smallest graph for which Sidorenko’s conjecture is not known
is the so-called Möbius ladder which is K5,5 \ C10. Our next theorem verifies con-
jecture 1.3 for all Sidorenko graphs.

Theorem 1.4. If G is a Sidorenko graph then G satisfies conjecture 1.3.

A similar theorem for finite state Markov random fields was proved by the author
in [11]. The proof of theorem 1.4 does not follow directly from the results in [11], it
relies on the above mentioned large deviation principle on high dimensional spheres
(see theorem 2.1 and theorem 2.4) which is interesting on its own right. Using
methods developed in [12] we also prove the next theorem.

Theorem 1.5. Let G be a bipartite graph with color classes V1 and V2. If
∑

v∈V2

deg(v)(deg(v)− 1) ≥ |V1|(|V1| − 1)

then G satisfies conjecture 1.3.

Theorem 1.4 verifies conjecture 1.3 for the Möbius ladder but also for large classes
of graphs that are not known to be Sidorenko. In particular theorem 1.5 shows that
possible counter examples to conjecture 1.3 have to be quite sparse.

The importance of the function τ(G, x) is also rooted in the fact that the differential
entropy of the GMRF corresponding to Σ(G, x) is

|V |

2
ln(2πe) +

1

2
ln(τ(G, x)).
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The next observation connects the theorems in this paper to differential entropy. Let
us denote the differential entropy of a joint distribution {Xi}i∈I by D({Xi}i∈I).

Observation 1.6. If G = (V,E) satisfies conjecture 1.3 then every homogeneous
GMRF {Xv}v∈V on G satisfies the next entropy inequality

(1) D({Xv}v∈V )−
∑

(i,j)∈E

D({Xi, Xj}) +
∑

v∈V

(deg(v)− 1)D(Xv) ≥ 0.

Using the homogeneity of {Xv}v∈V , the inequality in the observation is equivalent
with the fact that the differential entropy of the whole field is at lest |E(G)| times
the edge entropy plus |V (G)|−2|E(G)| times the point entropy. Formally, the point
entropies are only needed to cancel the extra additive constant in the formula for
differential entropy however we believe that they may become important in a mere
general circle of questions. The left hand side of (1) is an interesting invariant for
general GMRF’s where the marginals are not necessarily equal.

2. A large devation principle on the sphere

It is well known that if k ∈ N is a fixed number and n is big compared to k then if
we choose independent uniform vectors v1, v2, . . . , vk in the sphere Sn−1 = {x|x ∈
R

n, ‖x‖2 = 1} then with probability close to one the vectors are close to be pairwise
orthogonal. It will be important for us to estimate the probability of the atypical
event that the scalar product matrix (vi, vj)1≤i,j≤k is close to some matrix A that
is separated from the identity matrix. Let λk denote the Lebesgue measure on the
space of symmetric k× k matrices with 1′s in the diagonal. In this chapter we give
a simple formula for the density function (vi, vj)1≤i,j≤k relative to the Lebesgue
measure λk. Using this formula we prove a large deviation principle for the scalar
product matrices of random vectors.

Theorem 2.1. Assume that n ≥ k ≥ 2 are integres. Let v1, v2, . . . , vk be independ-
ent, uniform random elements on the sphere Sn−1 and let M(k, n) be the k × k
matrix with entries M(k, n)i,j := (vi, vj). The probability density function fk,n of
M(k, n) is supported on the set Mk of positive semidefinte k× k matrices with 1′s
in the diagonal entries and is given by the formula

fk,n(M) = det(M)(n−k−1)/2Γ(n/2)kΓk(n/2)
−1

where Γk is the multivariate Γ-function.

Proof. Let {Xi}
k
i=1 be a system of k independent χn distributions. Let M ′(k, n) be

the k × k matrix with entries M ′(k, n)i,j := (Xivi, Xjvj) = XiXj(vi, vj). We have
that M ′(k, n)i,i = X2

i holds for 1 ≤ i ≤ k. The definition of the χn distribution and
the spherical symmetry of the n dimensional standard normal distribution imply
that Xivi is an n dimensional standard normal distribution. We obtain that the
distribution of M ′(k, n) is the Wishart distribution corresponding to the k × k

identity matrix . It follows that the density function f̃k,n of M ′(k, n) is supported
on positive semidefinite matrices and is given by

f̃k,n(M) = det(M)(n−k−1)/2e−tr(M)/22−kn/2Γk(n/2)
−1.
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The next step is to compute the conditional distribution of M ′(k, n) in the set
M ′(k, n)i,i = X2

i = 1 for 1 ≤ i ≤ k. Using the fact that the density function gn(x)
of χ2

n is

gn(x) = xn/2−1e−x/22−n/2Γ(n/2)−1

the statement of the proposition follows from fk,n(M) = f̃k,n(M)/gn(1)
k for M ∈

Mk and fk,n(M) = 0 for M /∈ Mk. �

Remark 2.2. It is a nice fact that theorem 2.1 allows us to give an explicit formula
for the volume of the spectahedron Mk. If n = k+1 then fk,n is a constant function
and by the fact that it is a density function, this constant is the inverse volume of
Mk. We obtain that Vol(Mk) = Γ((k + 1)/2)−kΓk((k + 1)/2).

Lemma 2.3. For k ≥ 2 we have that

lim
n→∞

Γ(n/2)kΓk(n/2)
−1

(n/(2π))k(k−1)/4
= 1.

Proof. It is straightforward from the furmulas that

Γ(n/2)kΓk(n/2)
−1 = ck−1

n ck−2
n−1 . . . cn−k+2

where cr = π−1/2Γ(r/2)/Γ((r − 1)/2). It is well known that limr→∞ Γ(r)Γ(r −
α)−1r−α = 1. It follows that limr→∞ cr(r/(2π))

−1/2 = 1 which completes the
proof. �

Now we are ready to formulate and prove our large deviation principle. Let us
denote by µk,n the probability measure corresponding to the random matrix model
M(k, n) defined in theorem 2.1. We have that µk,n is concentrated on the closed
set Mk. If n ≥ k ≥ 2 then Mk is a compact convex set of positive measure in
the space of symmetric k× k matrices with ones in the diagonal. For a measurable
function f : Mk → R we denote by ‖f‖∞ the essential maximum of f relative to
the measure λk. Note that ‖f‖∞ can differ from supx∈Mk

f(x) because changes in
f on 0 measure sets are ignored. In general will use the norms ‖.‖p for functions on
Mk.

Theorem 2.4 (Large deviation principle on the sphere). Let k ≥ 2 be a fixed
integer. Let A ⊆ Mk be a Borel measurable set. We have that

lim
n→∞

n−1 ln(µn,k(A)) = (1/2) ln ‖1A det ‖∞.

Proof. We have from theorem 2.1 that

µk,n(A) = ck,n

∫

A

(det)n−k−1dλk = ck,n

∫

Mk

1A(det)
n−k−1dλk =

ck,n

∫

Mk

(1A det)n−k−1dλk = ck,n‖1A det ‖
(n−k−1)/2
(n−k−1)/2

where ck,n = Γ(n/2)kΓk(n/2)
−1. It follows that

n−1 ln(µk,n(A)) = ln(c
1/n
k,n ) +

n+ k − 1

2n
ln ‖1A det ‖(n−k−1)/2.

From lemma 2.3 we get that

lim
n→∞

ln(c
1/n
k,n ) = 0.
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Now the statement of the theorem follows from limp→∞ ‖1A det ‖p = ‖1A det ‖∞.
�

3. Spherical graphons and the proof of theorem 1.4

A graphon (see [4]) is symmetric measurable function of the form W : Ω2 → [0, 1]
where (Ω, µ) is a standard probability space. If G is a finite graph then it makes
sense to introduce the "density" of G in W using the formula

t(G,W ) =

∫

x∈ΩV (G)

∏

(i,j)∈E(G)

W (xi, xj) dµ
k.

Note that the conjecture of Sideronko was originally stated in this integral setting
and it says that t(G,W ) ≥ t(e,W )|E(G)| holds for every bipartite graph G and
graphon W .

In this chapter we prove theorem 1.4 using special graphons that we call spherical

graphons. Let A ⊆ [−1, 1] be a Borel measurable set and let n be a natural number.
Let us define the graphon SphA,n : Sn × Sn → [0, 1] such that SphA,n(x, y) = 1 if
(x, y) ∈ A and SphA,n(x, y) = 0 if (x, y) /∈ A.

For a Borel measurable set A ⊆ [−1, 1] and graph G let Ψ(G,A) denote the set of
positive semidefinite V (G)×V (G) matrices M such that the diagonal entries of M
are all 1′s and Mi,j ∈ A holds for every (i, j) ∈ E(G). It is clear that using the
notation from the previous chapter we have that

t(G, Sph(A, n− 1)) = µ|V (G)|,n(Ψ(G,A))

It follows from theorem 2.4 that

(2) lim
n→∞

n−1 ln(t(G, Sph(A, n)) = (1/2) ln ‖1Ψ(G,A) det ‖∞.

Now we get the next lemma.

Lemma 3.1. Assume that A ⊆ [−1, 1] is a Borel set and G is a Sidorenko graph.
Then

‖1Ψ(G,A) det ‖∞ ≥ ‖1Ψ(e,A)‖
|E(G)|
∞ .

Proof. The Sidorenko property of G implies that for every n we have that

n−1 ln(t(G, Sph(A, n)) ≥ |E(G)|n−1 ln(t(e, Sph(A, n)).

Then (2) completes the proof by taking the limit n → ∞. �

To prove theorem 1.4 let x ∈ (−1, 1) arbitrary and let Aǫ := [x−ǫ, x+ǫ]∩(−1, 1). It
follows from the continuity of determinants that limǫ→0 ‖1Ψ(G,Aǫ) det ‖∞ = τ(G, x)
holds for every graph G. Then lemma 3.1 complets the proof.
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4. Conditional independent couplings and the proof of theorem 1.5

In the proof of theorem 1.5 we will use a gluing operation for positive definite
matrices that corresponds to conditional independent couplings of Gaussian distri-
butions in the probabilistic setting.

Lemma 4.1. Assume that X and Y are two finite sets with X ∩ Y = Z and
X ∪ Y = Q. Assume furthermore A ∈ R

X×X and B ∈ R
Y×Y are two positive

definite matrices such that their submatrices AZ×Z and BZ×Z are equal to some

matrix C ∈ R
Z×Z . Let Ã, B̃ and C̃ be the matrices in R

Q×Q obtained from A−1, B−1

and C−1 by putting zeros to the remaining entries. Then the matrix

D := (Ã+ B̃ − C̃)−1

satisfies the following conditions.

(1) DX×X = A , DY×Y = B,

(2) D is positive definite

(3) det(D) = det(A) det(B) det(C)−1.

Proof. The statement can be checked with elementary linear algebraic methods. To
highlight the connection to probability theory we give the probabilistic proof which
is also more elegant. We can regard A,B and C as covariance matrices of Gaussian
distributions µA, µB and µC on R

X ,RY and R
Z with density functions fA, fB and

fC . The condition AZ×Z = BZ×Z is equivalent with the fact that the marginal
distribution of both µA and µB on R

Z is equal to µC . The conditional independent
coupling of µA and µB over the marginal µC has density function

f(v) = (2π)−|Q|/2e−
1
2 (vPXA−1PXvT+vPY B−1PY vT −vPZC−1PZvT )

where PX , PY and PZ are the projections to the coordiantes in X,Y and Z. We
have by the definition of D that

f(v) = (2π)−|Q|/2e−
1
2vD

−1vT

and thus f is the density function of the Gaussian distribution µ with covariance
matrix D. The first property of D follows from that fact that the marginals of µ
on X and Y are have covariance matrices A and B. The second property of D
follows from the fact that it is a covariance matrix of a non-degenerated Gaussian
distribution. The third property follows from the fact that

0 = D(µ)− D(µA)− D(µB) + D(µC)

holds for the differential entropies in a conditionally independent coupling. On the
other hand the right hand side is equal to

ln(det(D))− ln(det(A)) − ln(det(B)) + ln(det(C)).

�

We will refer to the matrix D and the conditionally independent coupling of A and
B (over C) and we denote it by AgB.

Let G be a bipartite graph on color classes V1 and V2 such that V1⊔V2 = V . Let x ∈
(−1, 1) be an arbitrary number. Our goal in this chapter is to build up a matrix M
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in Ψ(G, x) using a sequence of conditionally independent couplings. Then we show
that if G satisfies the degree condition in theorem 1.5 then det(M) ≥ (1−x2)|E(G)|.
Thus we construct a witness matrix for the fact that τ(G, x) ≥ (1−x2)|E(G)|.

Let M0 be the V1 × V1 matrix with 1’s in the diagonal and x2 elsewhere. For
v ∈ V2 let N(v) ⊆ V1 denote the set of neighbors of v and let Mv be the ({v} ∪
N(v)) × ({v} ∪ N(v)) matrix that has 1′s in the diagonal and Mv

v,w = Mv
w,v = x

for every w ∈ N(v) furthermore Mv
i,j = x2 for i, j ∈ N(v) with i 6= j. We have the

followings:

(1) det(M0) = (1− x2)a−1(1 + (a− 1)x2),

(2) det(Mv) = (1− x2)dv ,

(3) det(Mv
N(v)×N(v)) = (1 − x2)dv−1(1 + (dv − 1)x2).

where a = |V1| and dv = |N(v)|. Assume that V2 = {1, 2, . . . , b}. Let

M := (. . . ((M0 gM1)gM2) . . . )gM b

be the conditionally independet coupling of the matrices M0,M
1,M2, . . . ,M b. Us-

ing all the previous formulas, lemma 4.1 and the fact that M ∈ Ψ(G, x) we obtain
that

(3) τ(G, x) ≥ det(M) = (1− x2)a+b−1(1 + (a− 1)x2)
b
∏

i=1

(1 + (di − 1)x2)−1.

For the proof of theorem 1.5 it remains to show the next lemma.

Lemma 4.2. If a, b, di and x are as above and
∑b

i=1 di(di − 1) ≥ a(a− 1) then the
right hand side of (3) is at least (1 − x2)|E(G)|.

Proof. By using that
∑b

i=1 di = |E(G)| we can simplify the desired inequality to

(1 + (a− 1)y)(1− y)a−1 ≥
b
∏

i=1

(1 + (di − 1)y)(1− y)di−1

where y = x2. For y = 0 both sides are equal to 1. Now it is enough to show that
the logarithmic derivative of the left hand side is at least the logarithmic derivative
of the right hand side for every y ∈ (0, 1). After taking logarithmic derivative of
both sides and simplifying by −y it remains to show that

(4)
a(a− 1)

1 + (a− 1)y
≤

b
∑

i=1

di(di − 1)

1 + (di − 1)y
.

Now using di ≤ a we have that

di(di − 1)

1 + (di − 1)y
≥

di(di − 1)

1 + (a− 1)y

holds for 1 ≤ i ≤ b and this together with
∑b

i=1 di(di − 1) ≥ a(a − 1) and (4)
finishes the proof. �
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5. the recoupling algorithm

We finish this paper with an algorithm that we used in computer experiments to
approximate the determinant maximizing matrices Σ(G, x). The algorithm can also
be used to compute the coefficients in the power series expansion of τ(G, x).

Let G = (V,E) be a fixed graph and x ∈ [0, 1). Let M0(G, x) denote the V ×
V matrix with 1′s in the diagonal and x elsewhere. Our algorithm produces a
sequence of matrices Mi(G, x) recursively with increasing determinants such that
they converge to Σ(G, x).

the recursive step To produce Mi+1(G, x) from Mi(G, x) we choose a non-edge
ei+1 := (v, w) ∈ V × V with ei+1 /∈ E. Let A := V \ v and B := V \ w. Then we
set

Mi+1(G, x) := Mi(G, x)A×A gMi(G, x)B×B .

The algorithm depends on a choice of non edges e1, e2, . . . . Our choice is to repeat a
fix ordering of all non-edges several times. One can also perform the algorithm with
formal matrices in which the entries are rational functions of x. It is easy to see
by induction that in each step the entries remain of the form f(x)/(1 + xg(x)) for
some polynomials f, g ∈ Z(x). This implies that the powers series expansions of the
entries have integer coefficients. These coefficients stabilize during the algorithm
and this provides a method to compute the power series of τ(G, x) around 0. The
formulas for the coefficients will be given in a subsequent paper.
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