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The Quadratic Unconstrained Binary Optimization (QUBO) problems are NP hard; thus, so
far, there are no algorithms to solve them efficiently. There are exact methods like the Branch-
and-Bound algorithm for smaller problems, and for larger ones, many good approximations like
stochastic simulated annealing for discrete variables or the mean field annealing for continuous
variables. This paper will show that the statistical physics approach and the quantum mechanical
approach in the mean field annealing give the same result. We examined the Ising problem, which is
an alternative formulation of the QUBO problem. Our methods consist of a set of simple gradient-
based minimizations with continuous variables, thus easy to simulate. We benchmarked our methods
with solving the Maximum Cut problem with the G-sets. In many graphs, we could achieve the
best-known Cut Value.

I. INTRODUCTION

Spin models are versatile because they are simple
yet able to demonstrate fundamental phenomenons, like
phase transition [1–3]. Many complex physical models
can be reduced to a simple Ising or Heisenberg model, like
electron and nuclear spins [4], and even social situations
[5]. It is also important in modern applied physics since
many real-life problems can be traced back to find the
global minimum of a high-dimensional, nonlinear func-
tion. Most of these tasks are NP-hard [6], thus there
exist no effective method to solve them, but there are
many good numerical approximations, like the stochas-
tic simulated annealing [7–9], mean field annealing [10],
tabu search [11, 12], semidefinite programming [13–15],
and special devices like coherent Ising machine [16, 17],
adiabatic quantum computer [18, 19] to treat them, like
the D-Wave system [20–23] There are also exact methods
like the Branch-and-Bound [24], or Branch-and-Cut [25]
algorithms, but their drawback is they cannot handle too
many nodes. In a dense problem, approximately up to
100 nodes.

In the current paper, we introduce a mean field approx-
imation based algorithm for solving the QUBO problem.
The structure of this paper is the following. In section
II we summarize the definition of the Ising model and
the QUBO problems shortly and show their connection.
In section III and IV we present two equivalent methods
to give a good result to the Ising and QUBO problem.
The first builds on the variational principle of statisti-
cal physics [26, 27] with annealing, the second on the
variational principle of quantum mechanics [28] with the
adiabatic theorem [29, 30]. Finally in section V we bench-
mark our program with the G-sets [31].

II. ISING MODEL AND QUBO PROBLEMS

The Ising model consist of interacting spins: S =
(S1, S2 . . . SN ), with components Si ∈ {±1}. The model

is defined by its energy:

ES = −1

2

∑
ij

JijSiSj −
∑
i

hiSj , (1)

where Jij is the interaction between spin i and j, and hi
is the external magnetic field. We assume, that Jij = Jji
and Jii = 0. A relevant question is what is the critical
temperature, what are the temperature dependencies of
the expected values or correlation, and if the system is
frustrated than even the ground state is nontrivial.

A QUBO problem is defined by

argmin
x
{q(x)}, (2)

where

q(x) =
∑
ij

Qijxixj xi ∈ {0, 1}, (3)

and Q is a symmetric matrix. Substituting xi = (1 +

Si)/2 in equation 3 yields

q =
1

4

∑
ij

(i6=j)

QijSiSj +
1

2

∑
i

∑
j

Qij

Si + const (4)

which means if Jij = − 1
2Qij for i 6= j, Jii = 0 and

hi = − 1
2

∑
j Qij then the QUBO problem is equivalent

to finding the ground state of the Ising model. As it was
summarized by Lucas, many NP hard problem can be
formulated with the Ising model [32]

One typical QUBO problem is the Maximum Cut prob-
lem [33]. The task is to partition an undirected graph
(G = (V, E)) into two subsets (S,V\S) such as that the
number of edges between these subsets is as large as pos-
sible. If the graph is defined via its adjacency matrix
(Wij), than the corresponding cut value (CV) is

CV =
∑

{i,j}∈E,i∈S,j∈V\S

Wij =
∑
i,j

(i<j)

Wij
1− SiSj

2
. (5)
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In equation 5 Si is the spin variable and Si = 1 (↑) means
the ith spin is in the subset S, and Si = −1 (↓) means
it’s in V\S. Maximizing the cut value is equivalent to
minimize the Ising energy, where Jij = −Wij .

III. VARIATIONAL APPROACH IN
STATISTICAL PHYSICS

The variational principle of statistical physics is a pow-
erful tool to examine interactive systems at finite temper-
atures. The most straightforward version of this princi-
ple is the mean field approximation, albeit not perfect,
but simple, suggestive, and works fine if the number of
links per node (spin) is large enough. E.g., the mean
field approximation predicts phase transition even at the
one-dimensional Ising model, since we know that this is
false, but as we increase the dimension, the exact critical
temperature and the mean field critical temperature ap-
proach, and in the uniform fully connected Ising model
the two temperatures are the same. In a real-life, non-
physical problem, the number of nodes usually not too
large (hundreds or thousands but not 1023 ), but there is
no symmetry. As the number of links per node increases,
the mean field approximation improves.

One of the central quantities we are interested in sta-
tistical physics at finite temperature is free energy.

F (exact)(T ) = −T ln

(∑
n

e−
En
T

)
(6)

Here T is the temperature, the Boltzmann factor is 1, the
sum goes over all the states of the system, and {En}s are
the energies. The probability of finding the system at

state n is P
(e)
n ∝ e−En/T therefore at zero temperature

the free energy is the ground state energy. The problem
with equation (6) is that even if we know all the En en-
ergies, apart from the simplest cases we can’t evaluate
the summation. The variational principle states that the
exact free energy is always smaller or equal to the varia-
tional free energy: F (e)(T ) ≤ F (T ). The variational free
energy is

F (T ) = 〈En〉−TSinf =
∑
n

PnEn +T
∑
n

Pn ln(Pn), (7)

where 〈En〉 is the energy average, Sinf is the information
entropy and Pn can be any probability distribution, but
the better our guess, the lower F (T ) will be. We have to
take account, that in practice the distribution can’t be
too difficult because we have to calculate analytically the
variational free energy, otherwise it is futile. The typical
strategy is to consider a class of probability distribution
with parameters a: Pn(a), calculate F (a, T ) and finally
minimize in a. This solution is temperature dependent
and we will refer to as a(T ). This a parameter might
have physical meaning e.g. averages. The variational
free energy is now F (T ) = F (a(T ), T ).

A. Mean field annealing

Stochastic simulated annealing, e.g., the idea of imitat-
ing the annealing of materials, is well known in computer
science [7]. However, in that case, the jumps are between
discrete states, and now we have continuous parameters.

In general the F (a, T ) function has more than one min-
imum. The deeper minimum we can find, the closer we
are to the exact free energy. Nevertheless, it is technically
impossible to find all the minima in a complex system.
Using a random point in the phase space of a and then
with some gradient method finding a local minimum gives
us typically a bad minimum. A better strategy is to de-
termine a(T ) at high temperature, where it is easy since
only the entropic term is dominant, and then gradually
decrease T by ∆T and find the new a(T − ∆T ) which
is close to a(T ). Repeating this procedure will lead to a
low-temperature solution where the energy term is dom-
inant. The whole T 7→ a(T ) function is the trajectory.

Nothing guarantees that the final solution will be the
one with the lowest free energy. Initially, there is only
one solution, but during the cooling, more and more can
emerge. These minima also move continuously, and at
some point, some of them can be smaller than a(T ).

In the mean field approximation, we assume that a
variational distribution factorizes. In the case of spin
systems

PMF(S;m) =

N∏
i=1

Pi(Si;mi) =
∏
i

1 +miSi

2
(8)

This distribution is normed (
∑

S P
MF(S) = 1) and the

expected value is simply 〈Si〉 = mi. The variational free
energy is

FMF(m,T ) = −1

2

∑
ij

Jijmimj −
∑
i

himj

+T
∑
i

[1 +mi

2
ln

(
1 +mi

2

)
+

1−mi

2
ln

(
1−mi

2

)]
.

(9)

This function has to be minimal, so its derivative is zero

∂FMF

∂mi
= −

∑
j

Jijmj − hi + T
1

2
ln

(
1 +mi

1−mi

)
= 0 (10)

and the second derivative, the Hesse matrix is positive
definite

∂2FMF

∂mi∂mj
= −Jij +

Tδij
1−m2

i

� 0. (11)

Equation 10 is the equation of state, which is an implicit
equation. We can also formulate a self-consistent equa-
tion:

mi = tanh

 1

T

hi +
∑
j

Jijmj

 (12)
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At high temperatures, the solution of this equation is
mi = hi/T ∀i, which is close to 0, but at lower temper-
atures, there can be more than one solution. If m(T )
is known one procedure to determine m(T − ∆T ) is to
use the self-consistent equation iteratively with the ini-
tial guess m(T ). This method requires the fewest func-
tion evaluations, but in many cases, under a certain tem-
perature, T ∗ the iteration will not converge but oscil-
late between two values. This temperature is usually not
the critical temperature. The critical temperature Tc is
only well defined if there is no external magnetic field.
In this h = 0 case the m = 0 solution is a minimum
as long as all the eigenvalues of the ∂i∂jF

MF(m = 0)
matrix from equation 11 are positive. That concludes
Tc = maxi(λi(J)). On the other hand equation 12 has
the form m = f(m), where the m = 0 solution is an at-
tracting fixpoint as long as the absolute value of all the
eigenvalues of the ∂ifj(m = 0) matrix is above 1. This
defines a T ∗ = maxi |λi(J)| temperatue. The only dif-
ference between Tc and T ∗ is the absolute value, hence
T ∗ ≥ Tc. If T ∗ > Tc, then starting the simulation at
high temperature we will reach first T ∗ and the simula-
tion breaks down. If the external magnetic field is finite,
then Tc is not defined in this sense, and T ∗ is unknown
before the simulation. In that case we have to examine
the eigenvalues of the

∂fi
∂mj

∣∣∣m(T )

=
(
1−mi(T )

)2 Jij
T

(13)

matrix. If at some T ∗ the largest absolute value is 1, then
the iteration will not converge anymore. In practice, as
we run the simulation, at some point, it breaks down,
even if ∆T is very small. To avoid this phenomenon, we
ought to use a gradient-based minimization.

IV. QUANTUM MEAN FIELD ANNEALING

A. Adiabatic theorem

Instead of the free energy and decreasing the tem-
perature, we can use quantum mechanics with a time-
dependent Hamilton operator and the adiabatic theorem
to determine the system’s ground state. The adiabatic
theorem asserts that if a quantum system is initially
at ground state, and the corresponding time-dependent
Hamilton operator changes sufficiently slowly, and there
is a gap between the eigenvalue and the rest of the Hamil-
tonian’s spectrum, then the system remains at the in-
stantaneous ground state [29, 30]. A useful application
of this theorem is to find the ground state of a compli-
cated Hamiltonian, i.e., the ground state of the initial
Hamiltonian (Hi) is easy to prepare, and the final opera-
tor (Hf) is the one whose ground state we are interested
in. In that case

H(t) = (1− s(t))Hi + s(t)Hf, (14)

where s(t) is a continuous, monotonic function, with
s(0) = 0 and s(TA) = 1. The time TA is the anneal-
ing time, which must be large. The easiest choice for
this is s(t) = t/TA.

In a real physical device, like the D-Wave system [19],
this is useful, but for a simulation on a classical computer,
it is impractical to simulate a large quantum mechanical
system. For example, if we have an Ising model with N
spins, then the Hilbert space is 2N dimensional, which
becomes soon untractable. Therefore we will use a mean
field approximation, which reduces the number of degrees
of freedom, at the price of losing precision.

B. Heisenberg model and the mean field annealing

The Heisenberg model is the quantum mechanical ver-
sion of the Ising model. The corresponding Hamilton
operator is

Hf = −1

2

∑
ij

Jijσ
z
i σ

z
j −

∑
i

hiσ
z
i , (15)

where σz is the Pauli z-matrix. Its eigenvectors are
| ↑〉 = ( 1

0 ) and | ↓〉 = ( 0
1 ) with eigenvalues 1 and −1

respectively. If there is external, uniform magnetic field
in the x direction too, then there is an extra term

Hi = −∆
∑
i

σx
i . (16)

This transverse term plays the same role as the entropic
term in equation 7. It is responsible for the mixing. The
initial ground state is

|Ψ0〉 =

N⊗
i=1

| ↑〉+ | ↓〉√
2

, (17)

which is a product state, and after the annealing the final
state is the ground state of equation 15 and from that we
can determine the minimal energy spin configuration of
equation 1.

For a given H(t) Hamiltonian, the state of the system
is governed by the Schrödinger equation.

i
d

dt
|Ψ(t)〉 = H(t)|Ψ(t)〉 (~ = 1) (18)

Initially the system is at ground state: |Ψ(t = 0)〉 =
|Ψg(t = 0)〉, where

H(t)|Ψg(t)〉 = Eg(t)|Ψg(t)〉. (19)

If the annealing time TA is large enough, then |Ψ(t)〉 ≈
|Ψg(t)〉. However, we do not have to solve the
Schrödinger equation if we are only interested in the
ground state. The energy, as a functional, is enough.

E[|Ψ〉; t] = 〈Ψ|H(t)|Ψ〉 (20)
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If this quantity is minimal for all t, then it defines a new
dynamics, but now we do not need TA to be large. Even
so we can use s instead of t, and change s from 0 to 1. At
s = 0, we know the system’s ground state, and for s > 0,
we want to stay on the minimal energy state.

So far we didn’t use any approximation, which means
the number of degrees of freedom is still large. To reduce
it we use the mean field approximation i.e. we look for
the state vector in a product form.

|Φ〉 =

N⊗
i=1

|φi〉 =

N⊗
i=1

(ci↓| ↓〉+ ci↑| ↑〉) (21)

with the constraint: |ci↓|2 + |ci↑|2 = 1. A useful
parametrization is

mz
i = 〈Φ|σz

i |Φ〉 = 〈φi|σz|φi〉 = |ci↑|2 − |ci↓|2

mx
i = 〈Φ|σx

i |Φ〉 = 〈φi|σx|φi〉 = c∗i↑ci↓ + c∗i↓ci↑

my
i = 〈Φ|σy

i |Φ〉 = 〈φi|σy|φi〉 = −ic∗i↑ci↓ + ic∗i↓ci↑

(22)

with real mx
i , my

i and mz
i and with the constraint:

(mx
i )2 + (my

i )2 + (mz
i )2 = 1. It is easy to show that

ci↑ and ci↓ can be choosen to be real, and in that case
my

i = 0. The energy terms are

Ef = 〈Φ|Hf|Φ〉 = −1

2

∑
ij

Jijm
z
im

z
j −

∑
i

him
z
i

Ei = 〈Φ|Hi|Φ〉 = −∆
∑
i

mx
i .

(23)

The parameters mx
i can be expressed as mx

i =

±
√

1− (mz
i )2. Initially mx

i = 1 and at the end of the
process it is zero and never becomes negative, so we can
choose the positive solution. The energy is now

E(mz; s) = s

−1

2

∑
ij

Jijm
z
im

z
j −

∑
i

him
z
i


+(1− s)(−∆)

∑
i

√
1− (mz

i )2

(24)

This equation is very similar to the statistical physical
free energy in equation 9. The parameter s plays the
role of the temperature. The large temperature is the
s = 0 and the low temperature is the s = 1. The relevant
difference is the last terms, but their purpose is the same.
The derivative divided by s is

∂E

s∂mz
i

= −
∑
j

Jijm
z
j − hi +

1− s
s

∆
mz

i√
1− (mz

i )2
= 0

(25)
Now the first term is the same as in equation 10, and
1−s
s ∆ is equivalent to the temperature. The entropic

and the transverse term are compared in figure 1. Close
to the origin, they are the same, and they both diverge
if mi goes to ±1, so they have the same functionality.
Various scientists used similar methods [34–36]. They

FIG. 1: Comparison of the entropy term of
statistical physical and the vertical term of

quantum mechanical approach

all contain the Ising term, which is initially small, then
becomes dominant, and another term responsible for the
mixing, and initially large then gradually vanishes.

Since the statistical and quantum mechanical approach
are equivalent we will use the latter in the following.
Given mz

i (s = 0) = 0 and we want to determine mz
i (s =

1). The mz(s) value is the solution of the E(mz; s) = min
equation, where we assume that the s 7→ mz(s) trajec-
tory is continuous. The derivative must be zero and be-
cause the solution is a minimum the Hesse matrix must
be positive definite.

∂2E

∂mz
i ∂m

z
j

= −sJij + (1− s)∆

(
δij√

1− (mz
i )2

+

(mz
i )2δij

(1− (mz
i )2)3/2

)
� 0

(26)

Without the h external magnetic field the Ising model
has a Z2 symmetry. That means the mz

i = 0 ∀i is a
solution to equation 25, and it is a minimum as long as
the smallest eigenvalue of the Hesse matrix is still above
zero. For the parameter s it concludes

s <
∆

λmax(J) + ∆
(27)

where λmax(J) is the largest eigenvalue of the matrix J .
This is the same as saying, that the critical temperature
at the statistical physics case is Tc = λmax(J). We can
set ∆ to 1 and rescale J so that its largest eigenvalue is
also 1. Now the trivial solution holds until s reaches 0.5.
Practically that means it is enough to start the simulation
from s = 0.5. In the simulation, once mz

i (s = 1) is
known, we round it to either 1 or -1. This gives us the
S spin configuration. Since the derivative of E(mz; s)
diverges as some mz

i approaches ±1 it is advantageous to
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set G1 G2 G3 G4 G5 G6
our best result 11624 11620 11622 11646 11631 2178
best known result 11624 11620 11622 11646 11631 2178

G7 G8 G9 G10 G11 G12 G22
2006 2005 2050 1999 560 554 13353
2006 2005 2054 2000 564 556 13359

TABLE I: G-set benchmark

use a different parametrization:

mz
i (ϑi) = cos(ϑi)

mx
i (ϑi) =

√
1− (mz

i )2 = sin(ϑi)
(28)

The derivative is now

∂E(ϑ; s)

∂ϑi
= s
(∑

j

Jij sin(ϑj) cos(ϑi) + hi sin(ϑi)
)

+(1− s)(−∆) cos(ϑ)

(29)

which is regular for all ϑi.

V. BENCHMARK

During the simulation, the Z2 symmetry is disadvanta-
geous because, without the external field, the system re-
mains in the mz

i = 0 solution forever. Choosing only one
component of h to be finite breaks this symmetry. Choos-
ing more components to be finite makes the final result
ambiguous, but that can even be useful. We can use this
field as noise and run the simulation many times. One
such distribution is at figure 2a. The examined graph
was the G11 from G-set [31], where the task was to find
the maximal cut. This is a random graph with 800 nodes
and 1600 links. The hi components are randomly gen-
erated from the unif(−A/λmax, A/λmax) uniform distri-
bution, where A is the amplitude. Two hundred trials
were generated for all amplitudes, and the step size was
∆s = 0.001. The mean value, the best value, and stan-
dard deviation are shown in figure 2b. For small ampli-
tudes, we have a high average CV with a small deviation.
For larger amplitudes, the average decreases, but the de-
viation increases, resulting in a higher maximal CV. If
the amplitude is too high, it becomes unlikely to obtain
a high CV.

We tested our algorithm with other Max-Cut problems
from the G-set. We focused on the smaller ones, i.e. the
largest was the G22 graph with 2000 nodes. The results
are summarized in table I, the last column shows the best
values we could find in the literature [11, 37–41]. In most
cases, our best result is the same as the best known; in
the rest, and it is still close.

(a) Empirical Cumulative Distribution of the
Cut Values of G11 for different external

magnetic field amplitudes

(b) Mean value, best value and standard
deviation

VI. CONCLUSION AND OUTLOOK

We have shown that the statistical physics and the
quantum mechanical approach are equivalent during the
mean field annealing. This is because the entropic term
in the free energy and the energy of the transverse term
in the Heisenberg model is very similar, as we have seen
in figure 1. We discussed that using the self-consistent
equation during the mean field annealing is impractical
because the iteration might not converge, but this prob-
lem does not exist if we use a gradient-based minimiza-
tion. Using the mean field annealing, we have solved
some of the famous G-set problems with good results.
This approximation is the most straightforward version
of the variational methods, and it follows that with more
sophisticated approximations which take into account the
correlation between the spins, we might achieve even
higher Cut Values, but that also means that they will
have more degrees of freedom.
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