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Abstract

As global population and income levels have increased, so has the waste generated as
a byproduct of our production and consumption processes. Approximately two billion
tons of municipal solid waste are generated globally every year — that is, more than half
a kilogram per person each day. This waste, which is generated at various stages of the
supply chain, has negative environmental effects and often represents an inefficient use
or allocation of limited resources.

With the growing concern about waste, many governments are implementing
regulations to reduce waste. Waste is a often consequence of the inventory decisions
of different players in a supply chain. As such, these regulations aim to reduce waste
by influencing inventory decisions. However, determining the inventory decisions of
players in a supply chain is not trivial. Modern supply chains often consist of numerous
players, who may each differ in their objectives and in the factors they consider when
making decisions such as how much product to buy and when. While each player
makes unilateral inventory decisions, these decisions may also affect the decisions of
other players. This complexity makes it difficult to predict how a policy will affect
profit and waste outcomes for individual players and the supply chain as a whole.

This dissertation studies the inventory decisions of players in a supply chain when
faced with policy interventions to reduce waste. In particular, the focus is on food
supply chains, where food waste and packaging waste are the largest waste components.

Chapter 2 studies a two-period inventory game between a seller (e.g., a wholesaler)
and a buyer (e.g., a retailer) in a supply chain for a perishable food product with
uncertain demand from a downstream market. The buyer can differ in whether he
considers factors affecting future periods or the seller’s supply availability in his period
purchase decisions — that is, in his degree of strategic behavior. The focus is on
understanding how the buyer’s degree of strategic behavior affects inventory outcomes.
Chapter 3 builds on this understanding by investigating waste outcomes and how
policies that penalize waste affect individual and supply chain profits and waste.

Chapter 4 studies the setting of a restaurant that uses reusable containers instead
of single-use ones to serve its delivery and take-away orders. With policy-makers
discouraging the use of single-use containers through surcharges or bans, reusable
containers have emerged as an alternative. Managing inventories of reusable containers
is challenging for a restaurant as both demand and returns of containers are uncertain
and the restaurant faces various customers types. This chapter investigates how the
proportion of each customer type affects the restaurant’s inventory decisions and costs.






Acknowledgments

The last few years have been a period of immense personal and intellectual growth.
Throughout this period, I was accompanied and supported by so many people and it is
impossible to do them justice in a brief write-up. First, I thank my supervisors, Benny
Mantin and Joachim Arts. Thank you to Benny Mantin for introducing me to the topic
of waste in supply chains — a topic that shaped my work — and for encouraging me to
go beyond the LCL by giving me opportunities to attend conferences and interact with
other researchers. I recall our Friday working sessions at your home, where you not only
offered me your research guidance as we reviewed manuscripts and results but you also
ensured I was well-nourished with cookies and coffee. Thank you to Joachim Arts for
sharing his seemingly endless well of technical knowledge and clarity of thought with
me. From brainstorming on how to prove a result, to trying to find the most precise
way to express an idea, to deciding what to order from Himalaya, to your encouraging
me when I faced roadblocks, I deeply enjoyed our interactions and feel so lucky to have
had the opportunity to work with you and learn from you.

Thank you to Anne Lange for always showing great interest in me both as a budding
researcher and a person. From helping me prepare for my first conference presentation,
to discussing ideas on how to improve the storyline of my manuscripts, to talking over
more casual coffees/walks, to most recently working together on a research project,
your support throughout the last years has made an immense difference.

Outside the LCL, I came across great mentors that helped shape my perspectives.
Thank you to Sandra Transchel and to Dorothee Honhon for taking an interest in
me, for encouraging me with my research, and for offering to review my manuscripts.
I deeply enjoyed our discussions on waste, specific research problems, the publishing
process, and other aspects of life. Thank you to Yossi Sheffi for being part of my
dissertation committee and for your valuable feedback on my research. Thank you to
Oviing Yilmaz, not only for your friendship, but also for your mentorship throughout
the PhD. At the beginning of a PhD, it is not easy to see what is up ahead in terms of
research, the publishing process, or a career in academia. You gave me an inside view
into what it is like to be a new Assistant Professor and how to navigate this world.

I thank the other students, faculty, and staff at the LCL. Nils Lohndorf, Cagil
Kogyigit, Sarah van der Auweraer, Laurens Deprez, Ganesh Balasubramanian, Neeraj
Podichetty, Jackie Brown, and Carla Rosen-Vacher, thank you for your interest in my
research and well-being and for sharing your advice and knowledge on various topics.
Melvin Drent, You Wu, Roozbeh Qorbanian, Bikey Seranilla, thank you for the many



shared times and experiences together as the first PhD students at the LCL.

As a non-traditional student who worked in industry for eight years before returning
to academia, the switch back to academia was a process in itself. Thank you to Giirhan
Kok and Serpil Sayimn for believing in me and giving me the chance to develop as a
researcher. This transition would not have been possible without you. I was very lucky
to be part of such a rich academic environment and caring community at Ko¢ University.
Thank you also to Sibel Salman for co-supervising my master’s project at Kog. Thank
you to my fellow classmates Nasrin Yousefi, Burak Gokgiir, Siamak Hayyati, Alireza
Kabir Mamdouh, Javad Lessan, and Emre Kiirtiil for your friendship and support.
Thank you also to Fernando Bernstein and Kevin Shang from Duke University, who
ignited my interest in pursuing a PhD in Operations Management after my MBA and
helped me understand what a PhD program in Operations Management entails and
what skills I needed to hone or refresh.

Thank you to Serdar Sar1 and his family for their immense generosity and both
emotional and material support during my time at Ko¢ and in Luxembourg. With
you, I found a home and family in Turkey. Thank you also to Mattie Wolters for your
friendship and support.

Nora Paulus and Nijat Hajikhanov, you were the first two non-LCL PhD students
that I met. Thank you for changing my entire experience both at the University and in
Luxembourg. Thank you also to Ana Montes and Miriam Fougeras for your friendship.
Leonardo Medrano Sandonas and Giancarlo Otero, you were my connection to Latin
America in Luxembourg and always reminded me to take things more lightly.

I thank my dear parents, Sherrilyn Becker and Felix Perez, for instilling in me a
love of learning from a very early age and for supporting me in my curiosity. Most
importantly, though, you loved me at every point of my life. You helped me grow as
a person and develop my values and ideas. You supported me throughout the many
situations we encountered, even when it was difficult for you. Thank you for listening
to me and encouraging me at times when I struggled to find encouragement on my
own. After 2.5 years of not seeing each other due to the COVID-19 pandemic, I am so
looking forward to seeing you again.

Finally, I thank Sven Reichardt. You are the best partner I could wish for and an
inspiration to me every day. You saw me through the trenches. You shared with me
the joys from the small victories along the way. Your smile and witty sense of humor
brought out the joy and lightness in some rather unusual and chaotic situations. You
consoled and encouraged me in the hardest moments, at times enlisting the help of our
loyal furry friends, Monkey and Mr. Elk, and your kind parents, Marita and Dieter
Reichardt. Without your love and support, completing this dissertation would not have
been possible. Now with this chapter closed, I cannot wait to embark on many new
adventures with you.



Contents

1 Introduction 1
2 Strategic Behavior in a Serial Newsvendor Setting 11
2.1 Imtroduction . . . . . . .. 11
2.2 Literature Review . . . . . . . . .. o 15
2.3 Model . . .. 18
2.4 Myopic and Forward-Looking Buyers under Constant Prices . . . . . . 21
2.4.1 Buyer’s Problem . . . .. ... ... ... ... .. 21

2.4.2  Comparison of Myopic Buyer and Forward-Looking Buyer . . . 23

24.3 Seller’'s Problem . . . . ... ... oo 24

2.5 Sophisticated Buyer under Constant Prices . . . . . . . . ... .. ... 26
2.5.1 Buyer’s Problem . . .. .. .. ... ... 0. 26

2.5.2 Seller’'s Problem . . . . . ... ... oo 32

2.6 Extension: Allowing for Different Prices . . . . . . . ... .. ... .. 33
2.6.1 Buyer’s Problem . . .. .. .. ... ... L. 34

2.6.2 Seller’'s Problem . . . . . ... ... oo 37

2.6.3 Optimal Seller Markdown / Markup Mechanism . . . . . . . .. 40

2.7 Conclusion . . . . . ... 43
Appendix 2. A Proofs . . . . .. ... 45

3 Who Should Pay for Waste? Buyer Foresight and Policy
Implications in a Serial Newsvendor Setting with Waste Costs 53
3.1 Introduction . . . . . . .. ... 54
3.2 Literature Review . . . . . . . . .. 58



3.3 Model . . . . 61

3.4 Model Analysis . . . . . . . . 63
3.4.1 Buyer’s Period 2 Problem . . . ... ... ... ......... 63
3.4.2 Buyer’s Period 1 Problem . . . ... ... ... ......... 64
3.4.3 Seller’'s Problem . . . . .. ... ... ... ... ... ... ... 65

3.5 Numerical Study . . . . . . .. ..o 66
3.5.1 No Seller Markdowns . . . . .. .. ... .. ... ........ 68
3.5.2  Seller Markdowns . . . . . . .. ... ... ... ... ... 78

3.6 Conclusion . . . . . . . ... 84

4 Managing Inventories of Reusable Containers for Food Take-Away

at a Restaurant 89
4.1 Introduction . . . . . . . .. L 90
4.2 Literature Review . . . . . . . . . .. 94
4.3 Model Description . . . . . . ... o 98
4.4  Optimal Inventory Balancing Policy and Balancing Frequency . . . . . 99
4.4.1 Optimal Inventory Balancing Policy . . . . . . . . ... ... .. 99
4.4.2 Optimal Inventory Balancing Frequency . . . . . .. .. .. .. 102

4.5 Performance Metrics . . . . . . . ... 103
4.6 Numerical Study . . . ... ... 104
4.6.1 Ratio of Demand to Returns . . . . . . ... .. ... ... ... 106
4.6.2 Proportion of Demand Coupled to Returns out of Total Demand 108
4.6.3 Scale of Demand and Cost of Supplier Visit . . . ... .. ... 111
4.6.4 Utilization of Dishwasher . . . . . . . ... ... ... ... ... 112
4.6.5 Underage Penalty . . . . . . . . . ... ... ... 113

4.7 Conclusion . . . . . . . . e 113
Appendix 4.A Distribution of Demand Between Supplier Visits . . . . . . . 116
Appendix 4.B  Computation of Expected Lost Sales Rate . . . . .. .. .. 117
5 Conclusion 119

Bibliography 123



List of Figures

2.1
2.2
2.3

24

2.5

2.6
2.7

3.1
3.2
3.3

3.4
3.5

4.1
4.2
4.3

4.4

Sequence of events . . . . .. ... 19
¢; 5(Q) for B =200,pp = 10,7 =9,py1 =py2=6,c=3 . ... .. .. 29
Marginal profit of the forward-looking ¢; and sophisticated buyer’s ¢;(Q)

decision in the constant pricing setting . . . . . . . .. ... .. ... 31

Numerical results for seller’s expected profit when facing each buyer type:

B =200,pp =10,r =9, py1 =pu2=6,c=3 . . ... ... ... ... 33
Comparison of ¢z, ¢i , and ¢j 5, when varying pyo for B = 100,pp =

10,r=8,py1=5,c=1. ... . ... ... ... 36
Varying pyo for B =210,pp = 10,7 =7, py1 =5,c=2 . . . . . .. .. 39
Optimal pricing for B = 100,pp =10,c=1 . . . . . . . .. ... ... 41
Sequence of events with waste costs . . . . . . . .. ... .. ... ... 62
Increase in waste-minimizing ¢ as wr increases . . . . . . . . .. .. .. 75

Pareto front for a supply chain with a myopic buyer and a
forward-looking buyer . . . .. ... oo oL 76
Increase in waste-minimizing 0 as wr increases under seller markdowns 83
Pareto front for different values of wy with seller markdowns in a supply

chains with a myopic and forward-looking buyer . . . . . . . .. .. .. 86

Dynamics of the reusable container system at the restaurant . . . . . . 98
Average cost rate as a function of the ratio of demand to returns ratio 7 107
Average total cost rate ¢* as demand to returns ratio 7 and

demand-return coupling n vary . . . . . .. ..o 110

Scale effects on average cost/demand fulfilled for a given supplier visit
cost B . L 112






List of Tables

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

4.1
4.2
4.3

Parameter settings for the first numerical study . . . . . . ... .. ..
Parameter settings for the second numerical study . . . . . ... .. ..
Numerical results for first experiment — supply chain with myopic buyer
(no seller markdowns) . . . ... ... Lo Lo
Numerical results for first experiment - supply chain with
forward-looking buyer (no seller markdowns) . . . . . . ... ... ...
Numerical results for second experiment — supply chain with myopic
buyer (no seller markdowns) . . . . . ... ... Lo
Numerical results for second experiment — supply chain with
forward-looking buyer (no seller markdowns) . . . . . . ... ... ...
Numerical Results for First Experiment — Supply Chain with Myopic
Buyer (Seller Markdowns) . . . . ... . ...
Numerical Results for First Experiment — Supply Chain with
Forward-Looking Buyer (Seller Markdowns) . . . ... ... ... ...
Numerical Results for Second Experiment — Supply Chain with Myopic
Buyer (Seller Markdowns) . . . . . .. ... ...
Numerical Results for Second Experiment — Supply Chain with
Forward-Looking Buyer (Seller Markdowns) . . . . ... ... ... ..

Input parameter values for test bed . . . . . . ... 0.
Numerical study results . . . . . ... ... ... ... ... ... ...
Effect of increasing the demand-return coupling n for different levels of

the demand to returns ratio 7 . . . . . . . ..o

69

70

72

73

79

80

84

85

106
106






Chapter 1
Introduction

Approximately two billion tons of municipal solid waste! are generated globally
every year (Kaza et al. 2018). The amount of waste generated as a byproduct of
our production, consumption, and disposal decisions has increased substantially over
the past century due to factors that include population growth and rising incomes
(Hoornweg & Bhada-Tata 2012, Kaza et al. 2018).

Waste is problematic for various reasons. First, depending on how waste is disposed
of, it can lead to negative externalities in the form of pollutants and toxins that affect
both human and animal life. Globally, approximately 33% of waste is openly dumped
and 40% is landfilled, making these the two most prevalent disposal methods (Kaza et al.
2018). While waste in landfills can be handled in a more controlled manner to diminish
the effects of toxins and pollutants compared to waste that is openly dumped, landfilling
does not come without its own share of negative environmental effects. For instance,
organic material, which forms a substantial proportion of landfilled waste and consists
mostly of food waste?, produces greenhouse gases as it decays. These gases include
carbon dioxide and the more potent methane. To put these effects in context, landfills

generate about 16% of all human-related methane emissions in the U.S., making it

Municipal solid waste refers to waste from residential or commercial sources that includes
commonly used items such as packaging, paper, glass, organic material (i.e., food residuals or grass
trimmings), electronics, batteries, and clothing (US Environmental Protection Agency 2021).

2In the U.S., for example, approximately 31% of landfilled waste consists of organic material, with
about 24% of landfilled waste consisting of food waste alone and the remainder of yard trimmings (US
Environmental Protection Agency 2022).
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the third-largest source of such emissions (US Environmental Protection Agency 2020).
Aside from organic waste, containers and packaging waste also constitute a substantial
proportion of landfilled waste®. Many of these containers and packaging items are made
out of plastic. Not only are many plastics not easily recycled, but plastic can also take
up to hundreds of years to degrade and releases toxins in the degradation process.

Second, waste often represents an inefficient use or allocation of resources. The
inefficient use and allocation of resources is perhaps most obvious in the context of
food waste. While approximately a third of food produced worldwide for human
consumption is lost or wasted (United Nations Food and Agriculture Organization
2011), hunger continues to be a reality for the nearly 800 million people in the world
who are undernourished (FAO et al. 2021). This situation suggests that food that may
still be suitable for consumption is not able to reach people in other tiers of the supply
chain who could consume this food and, as a result, is discarded as waste.

Third, in many supply chains such as in food supply chains, players that generate
waste often do not directly incur a cost for it or, if they do, the cost is usually low
enough to be negligible. As such, waste is often little but an inconvenience or an
afterthought. Even for players that are more environmentally-conscious, the processes
and the infrastructure that enable the diversion or appropriate disposal of waste may
not be available.

Given growing concerns about waste, policy-makers are taking a greater interest
in designing and implementing policies to reduce waste. Environmental policy-making
has traditionally been focused on controlling the use of common natural resources to

4 or controlling emissions from

avoid outcomes such as the ‘tragedy of the commons’
transportation, energy generation, and other production processes. FEnvironmental
policies consist of two broad categories of policies: command-and-control policies
and market-based policies (Callan & Thomas 2013). Command-and-control policies
establish laws or standards to control activities that have environmental consequences.

Examples include limiting or banning activities that have a negative environmental

3In the U.S., for example, containers and packaging waste account for more than 23% of landfilled
waste (US Environmental Protection Agency 2015).

4The ‘tragedy of the commons’ refers to a situation in which a good or resource that is available for
shared use by multiple agents ends up being depleted or otherwise unusable due to the uncoordinated
and unilateral use decisions of agents only seeking to maximize their individual benefit (Hardin 1968).



impact, setting reduction targets, or mandating the adoption of a technology or
product that is less detrimental to the environment. Market-based policies establish
economic incentives to encourage players in a supply chain to reduce the negative
environmental consequences of their activities. Examples include taxing products that
generate pollutants (the proverbial ‘stick’) or providing tax incentives or subsidies for
the adoption of practices that mitigate negative environmental effects (the proverbial

‘carrot’). Policy-makers may also implement a blend of both types of policies.

Many jurisdictions are setting targets and implementing regulations to reduce
different types of waste, including food waste, electronic waste, textile waste, and
packaging waste. The effectiveness of these policy interventions, however, ultimately
depends on the decisions that the players in a supply chain make to manage their
operations given these interventions. Modern supply chains are often complex and
decentralized, consisting of numerous players at various tiers. These players may be
heterogeneous in their objectives, in their costs, or in the factors they consider in
optimizing decisions such as how much product to buy and when. While each player in
the supply chain makes unilateral decisions in optimizing one or more objectives (e.g.,
maximizing profit, minimizing waste), these decisions frequently affect the decisions
of the other players as well. This complexity makes it difficult for policy-makers to
predict the effect that a policy intervention may have on individual players and across

the supply chain as a whole.

In this dissertation, we study the inventory decisions of different players in a
decentralized supply chain when faced with policy interventions to reduce waste. In
particular we look at waste reduction policy interventions in food supply chains. We
focus on the two most predominant types of waste in these supply chains: food waste
and packaging waste (US Environmental Protection Agency 2015). An understanding
of how policies affect inventory decisions and associated profit and waste outcomes, both
for individual players and for the entire supply chain, is crucial for policy-makers to set
reasonable targets and design effective policies that adequately consider the trade-offs
involved. If a policy intervention is not designed with these considerations in mind, it
can create significant friction for players who attempt to reduce their waste while still

remaining profitable and achieving service level targets. The policy intervention may
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also be simply ineffective an incentive may develop for players to find ways to push

waste to other players.

An increasing awareness about waste has led to a burgeoning literature in the
Operations Research (OR) / Operations Management (OM) community that deals
with waste. A substantial amount of literature exists on closed-loop supply chains.
These supply chains are characterized by a reverse flow of products from customers
to the manufacturer in addition to the traditional forward flow of product from the
manufacturer to customers. Remanufacturing systems (e.g., Fleischmann et al. 1997)
and repairable item systems (e.g., Guide Jr & Srivastava 1997) are some of the systems
studied in this literature. The closed-loop supply chain literature deals primarily with
products such as industrial machines or electrical equipment, which are characterized

by relatively high recyclability and high-value components.

More recently, there is a growing interest in lower-value or lower recyclability waste
streams such as food waste. Akkag & Gaur (2021) define an agenda for research on food
waste. Current studies focus on different aspects of the food waste problem. Akkas &
Honhon (2022) evaluate the effect of a retailer’s inventory issuing policy (i.e., FIFO vs.
LIFO) on waste. Kirci et al. (2018) consider the effect on waste of offering products in
predefined package sizes as opposed to offering them in bulk, which gives the consumer
the freedom to choose the exact purchase quantity. Ketzenberg et al. (2018) look at
optimizing expiration dates. In this stream of literature, however, there has been little
focus on how policy interventions to reduce waste affect the inventory decisions and
waste of players in supply chain individually or as a whole. This dissertation presents

a first step to fill this research gap.

The core of this dissertation comprises three chapters. In Chapter 2, we study a
two-period inventory game between a buyer and a seller in a supply chain for a limited
lifetime product, such as a perishable food product. The type of buyer that the seller
faces can differ in his degree of strategic behavior — that is, in the degree to which he
considers factors affecting future periods or the seller’s stocking decision in his purchase
quantity decision for each period. Our main interest in this chapter is to build the
analytical machinery to model the interaction between the buyer and the seller and to

understand how the buyer’s degree of strategic behavior drives his purchase quantity



and timing decisions and the seller’s stocking decisions. In Chapter 3, we then build on
this understanding of the inventory decisions of buyers with varying degrees of strategic
behavior to investigate associated waste outcomes and we extend our model to consider
policy interventions that penalize waste for the buyer and/or the seller. In Chapter 4,
we take a different perspective altogether by looking at the inventory decisions of a
restaurant that uses reusable containers in response to a policy intervention aimed
at reducing the use of single-use containers. While we do not explicitly model the
policy-maker in this dissertation, we investigate the inventory decisions of players in a
supply chain for any given level of the parameters that the policy-maker can influence.

We now discuss the research setting and contributions of these chapters in further detail.

In Chapter 2, entitled Strategic Behavior in a Serial Newsvendor Setting, we consider
a supply chain consisting of a seller (e.g., a wholesaler) and a buyer (e.g., a retailer) for
a perishable food product. The buyer serves a population of consumers with uncertain
aggregate demand in each of the two periods of the horizon, which coincides with the
product’s lifetime. The buyer can buy product from the seller at the beginning of both
periods and, depending on how much of his stock is demanded in the first period, he
may have leftover inventory that can be sold in the second period. The seller purchases
inventory to serve the buyer only once at the beginning of the horizon, before observing
the buyer’s demand. Because both the buyer and the seller make quantity decisions
before demand is realized, thereby solving a newsvendor problem, we call this supply
chain a serial newsvendor supply chain. Such a setting can be observed in practice, for

example, in the retail and hospitality industries.

In this serial newsvendor supply chain, a buyer may be strategic in two ways: () in
the degree to which he considers the remainder of the horizon and intertemporal effects
in his period optimization problem and (ii) in the degree to which he considers the
decision of other agents, namely the seller, in his period optimization problem. To
model the buyer’s degree of strategic behavior, we define three buyer types: a myopic
buyer, a forward-looking buyer, and a sophisticated buyer. A myopic buyer, who is
not strategic at all, does not consider intertemporal effects or the seller’s quantity
decision. A forward-looking buyer is strategic only in that he considers intertemporal

effects but does not consider the seller’s stocking decision. A sophisticated buyer is the
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most strategic buyer who considers both intertemporal effects and the seller’s stocking

decision.

Using a game-theoretical framework with the seller as the first-mover, we
characterize the purchase decisions of each buyer type and the stocking decision of
the seller facing each buyer type in a constant pricing setting. We find that a seller
facing a forward-looking buyer is better off than one facing a myopic buyer as the
forward-looking buyer demands more over the horizon. However, a seller facing a
sophisticated buyer is worse off than a seller facing a forward-looking buyer because the
sophisticated buyer’s cautious purchasing behavior induces the seller to take more risk
in his stocking decision. The seller is hence manipulated by the buyer to stock more
and the buyer benefits from the additional supply availability. To this end, the seller
is better off avoiding inventory level information sharing or making it harder for the
buyer to predict inventory levels. The content of Chapter 2 is based on Perez Becker
et al. (2021).

In Chapter 3, entitled Who Should Pay for Waste? Buyer Foresight and Policy
Implications in a Serial Newsvendor Setting with Waste Costs, we build on the serial
newsvendor model developed in Chapter 2. More specifically, we extend this model to
study how policies that impose a cost on waste at either or both tiers of the supply
chain affect overall supply chain waste given buyers with different degrees of strategic
behavior. We focus on two of the buyer types examined in Chapter 2: the myopic buyer

and the forward-looking buyer.

Given that the buyer and seller’s equilibrium inventory decisions are sensitive to
the buyer’s degree of strategic behavior, our first objective is to understand whether
different types of buyers imply different waste levels for a supply chain. Our second
objective is to understand whether it is more beneficial to tax the upstream or
the downstream agent in a supply chain and whether the effectiveness of a policy

intervention to tax waste is sensitive to the buyer type.

We find that buyers that consider factors that affect future periods in their period
quantity decisions are better for a supply chain, not only in terms of profit but also in
terms of waste. Imposing a waste cost at either echelon of the supply chain is effective

in reducing total waste, for a small decrease in profit for each agent. However, imposing



a tax on the seller is more effective in reducing total waste. We provide guidance to
support the decision-making process of a policy-maker in setting waste-reduction targets
to balance the trade-off between waste reduction and profit loss along the supply chain.
The content of Chapter 3 is based on Perez Becker et al. (2022b).

In Chapter 4, entitled Managing Inventories of Reusable Containers for Food
Take-Away at a Restaurant, we shift our attention from food waste to packaging waste.
Packaging waste from the food sector accounts for a substantial amount of waste. Given
increased regulatory pressure to reduce single-use packaging waste, some restaurants are
now using reusable containers for take-away and delivery orders. A third-party supplier
typically provides the reusable containers and visits the restaurant regularly to deliver

additional containers or collect excess containers for a fee.

While the use of reusable containers instead of disposable containers is an innovative
way to reduce packaging waste, it also comes with significant operational challenges.
With reusable containers, the restaurant has to manage a resource with both uncertain
demand and uncertain returns. It also faces customers with different effects on the
restaurant’s inventory levels. Customers may simply order a meal in a clean reusable
container, return a used reusable container, or do both. This last type of customers

generate a coupled demand and return.

The restaurant decides on the number of containers that are collected/delivered
when the supplier visits and the supplier visit frequency. We formulate this problem as
a continuous time Markov Decision Process. Through a numerical study, we study the
effect that different balances of demand and return intensities and their coupling have
on the average total cost of the restaurant. We find that greater demand-to-return
coupling reduces average costs, but the effects are most beneficial when the overall
demand and returns of the restaurant are balanced. The restaurant can reduce costs
by optimizing the supplier visit frequency in addition to the inventory level of clean
containers after the supplier visit. The choice of the level of the supplier visit cost
is important as smaller scale restaurants may be penalized by a larger supplier visit
cost, dissuading them from participating in reusable container systems. The content of
Chapter 4 is based on Perez Becker et al. (2022a).

The main findings and contributions of the three core chapters of this dissertation
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are summarized below:

1. We study the interaction between a seller and a buyer in a serial newsvendor

supply chain to understand how the degree of strategic behavior of a buyer affects

the buyer’s multi-unit purchase decisions and the seller’s multi-unit stocking
decision. We find that:

(a)

The seller earns more profit when he faces a buyer that considers
factors affecting future periods in his period purchase decisions (i.e., a
forward-looking buyer) but less profit when he faces a buyer that additionally
considers the seller’s supply in his period purchase decisions. The latter
buyer is strategically cautious in his period purchase decisions. This strategic
caution manipulates the seller into taking more risk in his stocking decision

over the horizon by stocking more.

The buyer benefits from considering the seller’s supply availability in
addition to factors affecting future periods when making period purchase
decisions. Because he manipulates the seller into stocking more, the buyer

is able to obtain more of the supply he seeks.

2. We extend the serial newsvendor supply chain model to investigate waste in

supply chains with buyer’s exhibiting different degrees of strategic behavior and

to understand the effect of a policy that penalizes the buyer and/or the seller for

waste in terms of profit and waste outcomes. We find that:

(a)

Both in terms of profit and waste, forward-looking buyers who consider
factors affecting future periods in their period purchase decisions are better
for supply chains than myopic buyers who only consider factors affecting the

current period.

Imposing a waste cost on either the seller (upstream agent) or the
buyer (downstream agent) are both effective interventions to reduce waste,
although imposing the waste cost on the seller is slightly more effective as
it limits the supply of the system and hence the possibility of waste. A

policy-maker may, however, be able to achieve better outcomes in terms of



both profit and waste by taxing both the buyer and the seller at possibly

different rates.

3. We study the inventory decisions of a restaurant manager that uses reusable

containers instead of disposable containers. We find that:

(a) When the supplier visits, the restaurant’s optimal inventory rebalancing
policy is a state-dependent policy in which the optimal inventory rebalancing
level depends on the number of dirty containers at the restaurant. The
restaurant minimizes costs by optimizing both the supplier visit frequency

and the inventory rebalancing policy.

(b) A larger proportion of customers with coupled demand and returns is
always beneficial to a restaurant. However, it is most beneficial when the
restaurant’s overall demand to returns ratio is balanced. It is more important
for the restaurant’s demand and returns to be balanced than for it to have

a large proportion of customers with coupled demand and returns.

The remainder of the dissertation is structured as follows. Chapter 2 studies the
inventory decisions in a serial newsvendor supply chain with multiple buyer types but
without policy interventions to reduce waste. Chapter 3 studies the effect of a policy
intervention that penalizes waste on waste and profit outcomes in this serial newsvendor
supply chain. Chapter 4 studies the inventory decisions of a restaurant that participates
in a reusable containers system in response to an effort by policy-makers to reduce

packaging waste. Chapter 5 concludes with a summary of the main results.






Chapter 2

Strategic Behavior in a Serial

Newsvendor Setting

2.1 Introduction

Increasing evidence suggests that economic agents exhibit varying degrees of strategic
behavior in multi-period environments (e.g., Li et al. 2014, Mak et al. 2014, Osadchiy
& Bendoly 2015, Soysal & Krishnamurthi 2012, Yilmaz et al. 2022). In such settings,
strategic behavior is manifested in the degree to which agents account for future
realizations of prices or inventory availability to guide their current decision-making
when facing wait-or-buy decisions. The study of strategic behavior, which started with
the seminal paper on durable goods monopolies by Coase (1972), led to a proliferating
literature on the interactions between sellers and buyers endowed with varying degrees of
strategic behavior. Many studies show that forward-looking buyers, who consider future
price realizations over a finite horizon when deciding on when to make their purchases,
strategically wait until prices are sufficiently low to purchase, thereby decreasing the
seller’s profit (e.g., Coase 1972, Bulow 1982, Aviv & Pazgal 2008). As a result, much of
the literature has focused on how sellers can mitigate the negative effects of strategic
behavior through pricing (e.g., dynamic pricing vs. price commitment) or inventory
(e.g., rationing, display format) as tactical levers.

The literature to date has almost exclusively focused on the inter-temporal game
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between a seller and one or more buyers when buyers purchase at most one unit of
a good. The single unit assumption is a reasonable assumption for goods that may
be bought by a potentially strategic end consumer, such as consumer electronics or
fast fashion items, but not as applicable for other types of settings where multi-unit
purchases typically occur. Multi-unit purchases are prevalent in practice in industries
such as grocery retail and hospitality. They are also prevalent at various tiers of a
supply chain — that is, not only do end consumers make multi-unit purchases but so do
retailers, wholesalers, and manufacturers. Consider a grocery store, for example, that
decides on how many units of each of its products to purchase from a wholesaler to
satisfy end consumer demand before this demand realizes. The wholesaler, in turn, also
decides on how many units of product to purchase from its upstream supplier so that
it can supply the grocery store. In such a situation, both the seller and the buyer make
quantity decisions under demand uncertainty of varying magnitudes, which exposes
them to demand mismatch risk. Since they each bear risk in their inventory decisions,
both agents may have an incentive to limit their risk through inventory tactics such as
rationing or changing the timing and quantities of their purchases. The seller also may

seek to limit risk through pricing tactics, such as markdowns or price commitments.

Despite the prevalence of multi-unit purchases in practice, only a handful of works
study the effect of strategic buyer behavior when multi-unit purchases are involved.
These works focus primarily on the seller’s pricing decisions. FElmaghraby et al.
(2008) characterize the optimal timing of markdowns in a multi-period horizon in an
auction setting when multi-unit purchases are possible. In a two-period setting with
a monopolist seller and a population of buyers, Jin et al. (2021) study the optimal
period prices when a buyer can purchase up to two units of a good. The authors find
that the equilibrium outcomes in multi-unit purchase settings differ from those in a
single-unit setting (e.g., unlike in single-unit purchase settings, the optimal first period

price increases with strategic behavior).

Unlike Elmaghraby et al. (2008) and Jin et al. (2021), we abstract away from the
pricing game and focus on the inventory game with multi-unit purchases. Specifically,
we examine a supply chain with an upstream seller and an intermediate buyer who

faces aggregate uncertain demand from downstream agents. To serve these downstream
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agents, the buyer purchases product from the seller before downstream demand realizes.
Similarly, to serve the buyer, the seller purchases product from her supply source both
before downstream demand realizes and before the buyer purchases. Since both the
buyer and the seller make quantity decisions before their respective demands realize,
they each may seek to limit their demand mismatch risk. The buyer’s perception of this
risk can be informed by the degree to which the buyer considers factors affecting future
periods or the seller’s supply availability in his purchase quantity decisions — that is,
by his degree of strategic behavior. Accordingly, we pose two main research questions:
(i) how do the inventory decisions of a buyer and seller differ when the buyer makes
multi-unit purchase decisions and how does the buyer’s degree of strategic behavior
affect these inventory decisions?, and (i) how is the seller’s profitability affected by the

buyer’s degree of strategic behavior given multi-unit buyer purchases?

To study these questions, we model a supply chain consisting of an intermediate
buyer and an upstream seller over a two-period horizon. Both of these agents are
newsvendors. In each period, the buyer faces independent aggregate uncertain demand
from a population of downstream consumers. The buyer purchases product from the
seller at the beginning of each period before downstream demand realizes and may
carry excess inventory over from the first to the second period. The seller purchases
product from an upstream supply source at the beginning of the selling horizon. Like
the buyer, the seller can carry inventory over from the first to the second period, but
cannot replenish. Hence, in deciding on a stocking quantity for the horizon, the seller
needs to consider the buyer’s second period purchase decision. In turn, the buyer’s
second period decision depends on the realization of demand the buyer observes in the
first period, which is unobserved by the seller. At the end of the selling horizon both

agents salvage excess product.

To model the effect of strategic buyer behavior, we define three buyer types: a
myopic buyer, a forward-looking buyer, and a sophisticated buyer. In defining these
buyer types, our view of strategic behavior focuses on two components: (i) whether
the buyer accounts for the entire horizon, and (%) whether the buyer accounts for the
seller’s actions. The myopic buyer is our most basic buyer who exhibits no strategic

behavior. He completely ignores the second period when buying in the first period.
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The forward-looking buyer accounts for the second period and optimizes his purchase
decisions over the horizon. Specifically, he considers the inter-temporal effects induced
by linking the two periods. The sophisticated buyer goes one step further than the
forward-looking buyer and additionally considers the seller’s stocking decision, and

hence potential inventory rationing, in his period purchase decisions.

Using backward induction to find the subgame perfect Nash equilibrium, we
characterize the buyer’s purchase decisions and the seller’s stocking quantity for a
supply chain with each buyer type. We first consider a setting in which prices are
constant across periods. This abstraction enables us to focus on the inventory game as
pricing no longer affects the buyer’s purchase timing. As an extension, we relax this
constant pricing assumption to test the robustness of our findings in a setting where
the period prices can be different but are still pre-announced. We then also investigate
optimal pricing policies if the seller is additionally able to set the first or second period

prices.

In the constant pricing setting, we find that the forward-looking buyer buys more
than the myopic buyer in the first period (as he accounts for the possibility to use
leftover inventory in the second period) and less than the myopic buyer in the second
period (as he has more leftover inventory). Over the horizon, though, forward-looking
behavior has a demand-enhancing effect and the forward-looking buyer demands as
much as or more than the myopic buyer. Due to this larger demand over the horizon,
the seller facing a forward-looking buyer stocks more than one facing a myopic buyer
and makes more profit. However, because the forward-looking buyer demands less in the
second period than the myopic buyer, a seller facing a forward-looking buyer may also
be more inclined to reduce second period overage risk by stocking less product relative
to the forward-looking buyer’s demand, resulting in stock-outs. For this reason, one
might expect the sophisticated buyer to buy more in the first period to encourage
the seller to stock more for the horizon. Our results show the opposite however: the
sophisticated buyer buys less than the forward-looking buyer in the first period. The
sophisticated buyer exhibits a strategic caution in his first period purchase decision,
which manipulates the seller into taking a greater risk with his supply decision and

stocking more over the horizon. Consequently, the seller makes less profit facing a
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sophisticated buyer compared to a forward-looking buyer. Therefore, the seller is
better-off facing buyers with some degree of sophistication but not the full degree of
sophistication. Importantly, these results persist when we relax the constant pricing
assumption.

This rest of the chapter is structured as follows. Section 2.2 briefly reviews the
literature. Section 2.3 describes the modeling approach. Section 2.4 formulates and
solves the decision problem for the myopic and forward-looking buyers and for the
seller facing these buyer types in a constant pricing setting. Section 2.5 carries out
the same analysis for the sophisticated buyer and for the seller facing this buyer in a
constant pricing setting. Section 2.6 extends the analysis to a setting in which the seller
can markup or markdown product in the second period and examines implications for
optimal markup and markdown policies. Section 2.7 concludes with our main findings

and future research directions. The proofs for all our results are relegated to Appendix
2.A.

2.2 Literature Review

This research most closely relates to the expansive literature on strategic consumer
behavior. Wei & Zhang (2018), Shen & Su (2007), and Elmaghraby & Keskinocak
(2003) provide comprehensive reviews of strategic consumer behavior, which include,
among others, specific aspects associated with strategic consumer behavior, such as
consumer behavior modeling and dynamic pricing.

The majority of the strategic behavior literature focuses on the interaction between
a seller and multiple atomistic buyers for a limited-lifetime product in a two-period
horizon (e.g., Aviv & Pazgal 2008, Cachon & Swinney 2009). The prices set by the
seller may follow either a pre-announced price path or may be dynamically set. In
these studies, buyers can be heterogeneous in terms of their valuation of the product,
which is modeled as a random variable, or willingness to wait, which is modeled by
a discount factor. It is usually assumed that the buyer buys at most one unit of the
product. The focus is then on when the buyer buys this one unit.

When strategic buyers are present, they may wait to buy the product in a lower-price
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period at the risk of facing a stock-out and potentially a discount to their profit. As
such, they engage in inter-temporal substitution. It is generally demonstrated that
forward-looking buyers hurt the seller as their expectations about future actions prove
to be detrimental to the optimal choices. When the seller prices the goods over time,
buyers expect the price to drop over time. Given their willingness to wait, these
buyers induce the seller to drop the price. As a result, much of the literature seeks
to understand the degree to which strategic consumer behavior affects seller profit and
how to mitigate the negative effects of this behavior. One tactic studied to counteract
strategic behavior has been price commitment by a seller (Aviv & Pazgal 2008) to
discourage strategic waiting. Other tactics are inventory rationing (Liu & Van Ryzin
2008, Zhang & Cooper 2008) and dynamic pricing (Levin et al. 2010) as a function of

the amount of seller inventory remaining.

Some studies have extended the number of tiers considered in their analysis to three
tiers and demonstrated that strategic consumer behavior may have positive effects
for sellers. Lin et al. (2018) study a model with a manufacturer, retailer, and end
consumers. They find that forward-looking behavior by end consumers always benefits
the manufacturer as the retailer reduces his price to discourage strategic waiting and,
as a result, sells more. The retailer may also benefit from forward-looking behavior
when end consumers are sufficiently patient and the manufacturer lowers his wholesale

price.

With the exception of a few works, multi-unit purchases have not been treated
in the literature. In an auction setting, Elmaghraby et al. (2008) study the optimal
pre-announced markdown mechanism when any number of markdown steps can be
implemented during the sales period and the seller has fixed capacity from the
beginning. Jin et al. (2021) revisit the setting of a monopolist seller and a mass
of buyers and allow the buyers to buy a second unit. They note that the marginal
valuation of the second unit is less than the first and find that, unlike in single-unit
purchase settings, a higher first period price is optimal when more strategic buyers are

present.

Despite the lack of treatment in the literature, buyers do face multi-unit purchase

decisions in practice. When the buyer is able to buy multiple units, several features
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of the traditional strategic consumer behavior problem change. First, if the buyer
has leftover inventory after the first period, he can carry over this inventory for use
in the second period, reducing his second period purchase quantity. The seller then
needs to consider the uncertainty of this carry-over into his stocking decision. This
notion of inventory carry-over relates to the research stream on consumer stockpiling,
which often assumes a durable good, as is the case, e.g., in Su (2007). Second,
the buyer can purchase the seller’s entire stock upfront in the first period (assuming
sufficient seller inventory). This upfront full quantity purchase can hurt the seller’s
profitability, especially if the seller cannot re-stock inventory during the horizon. Our
main contribution is to characterize the stocking decisions in the resulting inventory
game between a seller and a buyer in a supply chain when both face uncertain multi-unit
demands for a limited-lifetime product. Whereas much of the strategic behavior
literature focuses on pricing, our primary focus is on the inventory game between the
seller and the buyer. Similar to Zhang et al. (2019), we assume that the pricing of the

product follows an exogenously determined pre-announced price path.

Several studies have examined the effect of a seller revealing inventory information
and of a buyer taking into consideration the seller’s stocking decision when making
purchase decisions. The results of these studies give mixed directional insights as to
whether a seller should disclose inventory information. In a one-period model, Su &
Zhang (2009) show that a seller benefits from truthfully announcing his supply. Such a
quantity commitment has a demand-boosting effect as it enables consumers to better
assess supply availability, encourages them to buy from the seller, and increases their
willingness to pay. As a result, the seller can benefit from higher prices and increased
sales. Yin et al. (2009) compare two inventory display formats: one in which the
seller discloses inventory information by display his supply and another in which the
seller does not reveal inventory information and displays only one unit. They find
that displaying one unit creates a sense of scarcity and increases seller profits. Our
results are consistent with the view that the seller benefits from not revealing inventory
information. We find that a buyer who is able to accurately know the seller’s stocking
quantity and takes this quantity into consideration when making purchase decisions

(i.e., a sophisticated buyer) manipulates the seller into stocking more. The seller is thus
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better off facing a buyer with some degree of strategic behavior (i.e., forward-looking

buyer) but not the full degree of strategic behavior (i.e., sophisticated buyer).

2.3 Model

A seller (hereafter referred to as “she”) sells a product with a limited lifetime over a
two-period horizon. At the beginning of the horizon, she purchases () units of product
from an upstream agent at a unit production cost of ¢ > 0. In each period, the seller
sells this product at a unit sales price of pyy, t € {1, 2}, with py1, pu2 > ¢ (to ensure her
participation in the market). These unit sales prices are exogenous and pre-announced
at the beginning of the horizon.

At the beginning of each period, the buyer (hereafter referred to as “he”) seeks to
purchase quantities ¢, t € {1,2} from the seller. The buyer’s higher order frequency
compared to the seller’s reflects the fact that in multi-echelon settings it is common for
downstream agents to have higher order frequencies than their upstream counterparts
and that these order frequencies are nested within those of the upstream’s agent (e.g.,
Roundy 1985). The buyer faces uncertain demand in each period, denoted by the
random variables Dy, t € {1,2}, which each have a distribution F' and density f. The
buyer’s purchase quantity decisions are made before demand in period ¢ is realized.
If the demand realization in a period exceeds the amount of product the buyer has
on-hand, he purchases additional units exactly up to his demand realization from an
alternative source, albeit at a higher unit price of r. The buyer sells product to the
downstream market at a unit price of pp > 0, which is constant across both periods.
We assume that pp > r > py to ensure that the buyer participates in both the regular
market and the runout market. In the first period, if the demand realization is less than
the quantity of product on-hand, the buyer carries over leftover inventory y = (¢; —D;)*
into the second period at zero holding cost. In the second period, if the demand
realization is less than the quantity of product on-hand, because the horizon is ending,
any leftover inventory is discarded at zero salvage value. Similarly, for the seller, any

product not bought by the buyer during the horizon is discarded at zero salvage value.

The sequence of events is summarized as follows:
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6.

. The seller stocks ) units for the entire horizon, which she buys at a unit cost of

C.

. At the beginning of period 1, the buyer purchases ¢; units at a unit price of py ;.

. Period 1 demand, D1, realizes. If D; > ¢;, the buyer buys D; — ¢; units to

satisfy his remaining demand from the alternative source at a unit runout cost of
r. If Dy < q1, the buyer has leftover inventory of ¢; — D that he carries over to

period 2.

. At the beginning of period 2, the buyer buys g2 units at a unit price of pyo.

. Period 2 demand, D», realizes. Once again, if demand exceeds on-hand inventory,

the buyer buys (Ds — ((¢1 — D1)™ 4 ¢2)™ units from the alternative source at unit
runout cost of r. If demand is less than on-hand inventory, the buyer discards

any remaining units at a zero salvage value.

The seller discards any inventory not purchased by the buyer at zero salvage value.

This sequence of events is illustrated in Figure 2.1.

Seller Seller Seller
stocks @ carries over discards
units (@-q1)7 product
' !
' i
Buver Buyer Buyer Buyer Buyer Buyer
orders « satisfies carries over orders g, satisfies discards
units runout (g-Dy) units runout product
!
Demand H | Demand
D, realizes | | D, realizes ' |
I ' I
I h ' I
1 '
| v { ) ¥ { >
| I
( J \ J
[ [
Period 1 Period 2

Figure 2.1: Sequence of events

In line with the sequence of events, the decision-making problem is modeled as a

three-stage game. The seller is the first-mover and optimizes her stocking quantity @)

over the horizon. The buyer optimizes his period purchase quantities of ¢; and ¢,. The
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buyer’s demand distribution and cost parameters are common knowledge. For each of
the buyer types, we first solve for the buyer’s period 2 optimal purchase quantity, ¢;.
Then, we solve for the buyer’s period 1 optimal purchase quantity, ¢j. Finally, we solve
for the seller’s best response in terms of a horizon stocking decision @) given the buyer’s

optimal purchase quantity decisions ¢; and g¢;.

To study the effect of different degrees of strategic behavior on inventory decisions,
we define three buyer types: a myopic buyer, a forward-looking buyer, and a
sophisticated buyer. We use the subscript ¢ € {M, F,S} to denote the decisions
associated with each buyer type, where M denotes the myopic buyer, I’ denotes the
forward-looking buyer, and S denotes the sophisticated buyer. All three buyer types
decide on their period purchase quantities based on their perceptions of the trade-offs.
The myopic buyer optimizes each period individually and ignores inter-temporal
implications. In each period, he simply observes the period price and decides on a
purchase quantity for that period based on the amount of product he has on-hand and
knowledge of the distribution of downstream demand. The forward-looking buyer takes
into account inter-temporality by considering prices across periods, the ability to use
leftover inventory from period 1 in period 2, and the upcoming discarding of leftover
product at the end of the horizon at zero salvage value. He observes the pre-announced
prices for period 1 and period 2 and, using knowledge of his demand distribution and

other cost parameters, decides on a purchase quantity for each period.

Neither the myopic buyer nor the forward-looking buyer take into account the seller’s
optimal stocking decision in their optimization problems. Both buyer types assume
that the seller will have sufficient stock to satisfy their calculated optimal purchase
quantities in both periods. However, the seller may choose to stock a limited amount of
product, which may result in stock-out instances. In such cases, the buyer will buy more
units from the alternative supply source at a higher cost. Had the buyer known the
seller’s stocking quantity, he might have chosen different purchase quantities to induce
a different stocking behavior from the seller. The sophisticated buyer, in addition to
having the inter-temporal features of the forward-looking buyer, also considers upfront
how much stock the seller has for the horizon. It is as if the buyer is able to see the

seller’s supply at the beginning of the horizon.
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In Sections 2.4 and 2.5, we carry out the analysis of this model for each of the
buyer types in the constant prices setting in which the seller sets the same unit price
for the product in both periods, i.e., py1 = py2 = py. We build on these results in
an extension in Section 2.6 in which we allow the prices in periods 1 and 2 to differ.
For the derivation of our analytical results, we assume that D; and Dy are uniformly
distributed over the interval [0, B], where B > 0, and that they are independent.

2.4 Myopic and Forward-Looking Buyers under

Constant Prices

2.4.1 Buyer’s Problem

Both the myopic and forward-looking buyers face the same problem in period 2. That
is, for any given leftover inventory realization y; = (¢1; — D1)™ from period 1, a buyer
of type i = {M, F'} chooses purchase quantity ¢2; > 0 to maximize his period perceived

profit function, given by:

E[rp,i2(y:)] =ppE[min(Ds, ¢2; + y)] — puge; + (pp — r)E[(D2 — (g2 + v:)) 7). (2.1)

The first term captures the revenues from sales to the downstream market. The second
term captures the cost of product purchased from the seller. The third term captures
the net profit from sales of product purchased from the runout option. This problem

is a newsvendor problem with the following solution:

Proposition 2.1. In the constant pricing setting, in period 2, a buyer of type i =
{M, F} purchases ¢5; = (G2 — y;)" where y; = (¢f; — D1)" and ¢, = B(’”_pU).

r

The optimal period 2 purchase decision follows a base-stock policy, where ¢ is the
order-up-to level. This order-up-to level is the same regardless of the buyer type. The
differences between the myopic and forward-looking buyers emerge in their optimal

period 1 purchase decisions.
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Myopic Buyer

The myopic buyer maximizes his perceived profit for each period individually. That is,
he decides on a period 1 purchase quantity without considering the possibility of using
any leftover inventory from period 1 in period 2 and, more generally, the impact that
this decision will bear on his future decisions. In period 1, the myopic buyer’s problem is
to choose purchase quantity ¢; s > 0 to maximize his period perceived profit function,

given by:
Elrpma1] =ppEmin(Dy, ¢1.m)] — puvgim + (pp — )E[(D1 — q1m) 7] (2.2)

The maximizer of (2.2) is easily found:

Proposition 2.2. In the constant pricing setting, the myopic buyer purchases ¢ 5, =
B (Tfo) in period 1.

The optimal period 1 decision also follows a base-stock policy, where g7, is
effectively the period 1 order-up-to level. Since the trade-offs he considers are the
same in both periods, his order-up-to levels are the same. We summarize this result in

the following corollary:

Corollary 2.1. In the constant pricing setting, ¢; ,; = Ga.

Forward-Looking Buyer

In period 1, the forward-looking buyer maximizes his perceived profit across the entire
horizon. His problem is to choose a purchase quantity ¢; » > 0 to maximize his horizon

perceived profit function, given by:

E[mp,p1] =ppEmin(D1, ¢1.r)] — puai,r + (pp — 7)E[(D1 — q1,r) "]
+E[mp,ra((qr.r — D1)7)]. (2.3)

Compared to the myopic buyer’s period 1 problem, the forward-looking buyer’s profit
function incorporates an extra term to link the outcomes in both periods. Solving for

the first order conditions with respect to ¢; g, we obtain the following result:
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Proposition 2.3. In the constant pricing setting, the forward-looking buyer’s purchase

(Y

quantity in period 1 is given by ¢; p = B

2.4.2 Comparison of Myopic Buyer and Forward-Looking
Buyer

Comparing Propositions 2.2 and 2.3, we see that the forward-looking buyer buys more

than the myopic buyer in period 1, since \/r2 — p% = \/(r — pv)(r + pr). This leads

us to the following corollary:

Corollary 2.2. In the constant pricing setting, the forward-looking buyer buys more

than the myopic buyer in period 1 — that is, ¢j p > ¢7 /-

This result reflects the different trade-offs that each buyer type considers. The
forward-looking buyer knows that he can use leftover inventory from period 1 to satisfy
demand in period 2. Since py1 = pu,2, he has an incentive to buy more than the myopic
buyer in period 1 to hedge himself against paying the higher runout cost in case of high
period 1 demand. In effect, the forward-looking buyer shifts some of the quantity he

purchases in the second period to the first period:
Corollary 2.3. In the constant pricing setting, ¢j > 2.

Since qj p > G2, any leftover inventory from period 1 would only reduce his purchase
quantity in period 2 further. Because the forward-looking buyer buys more than the
myopic buyer in period 1, he carries over at least as much or more leftover inventory
than the myopic buyer into period 2 for any realization of D;. The forward-looking
buyer also buys at most as much as the myopic buyer in period 2.

A compelling question emerges: is the difference in the purchasing behavior of the
forward-looking and myopic buyers merely a shift in the timing of the purchases and
does the overall quantity purchased over the horizon remain the same across these
buyers? Or does one buyer type actually seek to purchase more than the other? Let
N; = ¢ ;+ (@2 —(¢i;,— D1)")" denote the demand that the seller faces from each buyer
type i € {M, F'} over the horizon. The total demand generated by the forward-looking
buyer exceeds the total demand generated by the myopic buyer for any given Dy,
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i.e. demand generated by forward-looking buyers stochastically dominates demand

generated by myopic customers. We have the following Lemma:

Lemma 2.1. In the constant pricing setting, for any given realization of Dy, the total
demand over the horizon for the seller facing a forward-looking buyer, N, is greater
than or equal to the total demand over the horizon for the seller facing a myopic buyer.
That is, Np > Ny,.

So the higher period 1 purchase quantity that we observe from the forward-looking
buyer in comparison to the myopic buyer is not only a shift in demand from the second
period to the first period, but in fact the forward-looking actually seeks to purchase as

much as or more than the myopic buyer.

2.4.3 Seller’s Problem

The seller’s problem is structurally the same regardless of the buyer type she faces. At
the beginning of the horizon, given the respective ¢; ; and g3 ; for buyer type i € {M, F},

the seller chooses order quantity ); > 0 to maximize her horizon profit, given by:

E[my:(Qs)] =pv min(q7 ,;, Qi) + prE[min(qs,;, Qi — 47 ;)] — cQi. (2.4)

The first and second terms of this profit function capture the revenue from sales in
each period to a buyer of type i. The third term captures the product wholesale costs
incurred by the seller. Note that, because the period prices are equal, equation (2.4)
can be written as E[m;(Q;)] = py min(N;, Q;) — cQ;.

Observe that the seller faces no uncertainty in the buyer’s period 1 purchase decision
as qj; does not depend on any random variables. Therefore, at optimality, the seller
stocks at least ¢y,. In fact, all the uncertainty the seller faces relates to the buyer’s
period 2 purchase decision. While the seller knows the distribution of downstream
demand in each period, the buyer’s purchase quantity in period 2 is a random variable
that depends on the period 1 demand realization through the buyer’s leftover inventory.
At optimality, since the buyer never buys more than his order-up-to quantity ¢ in
period 2, the seller would never stock more than g, for this period. Thus, ¢7; < QF <

qi; + 2. Solving for this constrained optimization problem, we obtain our next result:
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Proposition 2.4. In the constant pricing setting, when facing a buyer of type ¢ €

{M, F'}, the seller’s stocking quantity over the entire two-period horizon is given by:

- if B(2=2) + & < ai,
Gite EB(EE) v h 2l

Proposition 2.4 shows that the seller may ration her supply according to how the
risk she faces for the buyer’s purchase quantity in period 2 compares to the margin
she makes. The seller critical ratio ’% captures the seller’s relative margin. The first
subcase of ()f corresponds to a low margin setting. In this setting, the seller does not
take any risk on the buyer’s second period purchase quantity and stocks only enough
product to fulfill the buyer’s first period purchase quantity. The third subcase of @)}
corresponds to a high margin setting. In this setting, the seller stocks the maximum
quantity that the buyer could purchase over the horizon of g7 ; +@. The second subcase
of @F corresponds to a medium margin setting, in which the seller is willing to take
some risk on the buyer’s period 2 purchase quantity and buys a quantity between the
buyer’s minimum and maximum demand.

The seller solves a newsvendor problem using the distribution of the demand the
seller faces from the buyer, NV;, to determine (). Because the forward-looking buyer
generates stochastically larger demand than the myopic buyer (Lemma 2.1), the seller
facing a forward-looking buyer stocks as much as or more in equilibrium than a seller

facing a myopic buyer:

Lemma 2.2. In the constant pricing setting, in equilibrium, the quantity the seller
facing a forward-looking buyer stocks is greater than or equal to the quantity the seller

facing a myopic buyer stocks — that is, Q% > Q3.

This result differs from the common notion about sellers facing forward-looking
buyers. In the traditional literature, where forward-looking behavior induces the
seller to drop prices, the seller can counteract such behavior, which bears negative

consequences, by rationing supply (Liu & Van Ryzin 2008). By contrast, in our setting,
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the seller facing the forward-looking buyer not only brings more supply but also makes

as much as or more profit than when she faces a myopic buyer:

Proposition 2.5. In the constant pricing setting, in equilibrium, the seller’s profit
when facing a forward-looking buyer is greater than or equal to the seller’s profit when

facing a myopic buyer — that is, 7y r(QF) > Tuam(Qh)-

2.5 Sophisticated Buyer under Constant Prices

In the first two subcases for the optimal seller stocking quantity in Proposition 2.4,
the seller stocks less than the buyer’s maximum purchase quantity over the horizon of
qi v+ 2. Hence, the buyer may face a stockout at the seller, requiring him to satisfy his
demand at the higher priced runout option. In such a scenario, the buyer’s perceived
profit from his optimization problem will be greater than the actual profit he derives.
Such stockout scenarios form the motivation for studying the sophisticated buyer, who

does consider the seller’s optimal stocking decision.

2.5.1 Buyer’s Problem

In addition to considering the possibility of leftover inventory from period 1, the
sophisticated buyer also considers the possibility of stock-outs at the seller. That
is, recognizing the possibility of stock-outs, the buyer may shift demand to period 1,
possibly signaling to the seller to stock more. A dependence is then created between the
seller’s stocking decision ) and the buyer’s purchase quantities ¢; and g». To formulate
this problem, we need to expand our state space to include one more dimension for the
leftover supply at the seller after period 1. Let s = ) — ¢; denote the seller’s leftover
supply after the buyer’s period 1 purchase. The starting state in period 2 can then be
described in terms of the buyer’s leftover inventory and the seller’s leftover supply after
period 1 by the tuple (s, y). In period 2, with buyer leftover inventory realization y and

seller leftover supply s from period 1, the buyer chooses 0 < go(s,y) < s to maximize
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his profit:

E[mp,s2(s,y)] =ppE[min (Da, min (¢2(s,4),Q — ¢:(Q)) +y)]
— Pu min (QQ(Sa y)7 Q - ql(Q))
+ (pD - T’)E[(DQ - (min (Q2($>y)a Q — Ch(Q)) + y))ﬂ- (2-6)

In period 1, the buyer chooses 0 < ¢;(Q) < @ to maximize his profit function for the

entire horizon:

E[7p,51(Q)] =ppE[min (D1, ¢:(Q))] — pva1(Q) + (pp — r)E[(D1 — Q1(Q))+}
+E[Vas((Q = a1(@)7", (a1(Q) — D)) (2.7)

where Vb g(s,y) is the period 2 value function as given by Viog(s,y) =

maxg<gq,<s E[Tp,52(5, y)].

While both of these objective functions are similar to those of the forward-looking
buyer, the additional constraints requiring ¢» < s in period 2 and ¢; < @) in period 1 and
the dependence between the seller’s stocking decision and the buyer’s purchase decisions
make this problem more challenging to solve. Not only do the buyer’s purchase decisions
affect the seller’s stocking decision, but now the seller’s stocking decision also affects the
buyer’s purchase decisions, creating a feedback loop. The results of these derivations to

determine the sophisticated buyer’s optimal purchase quantities are summarized below:

Proposition 2.6. The sophisticated buyer’s purchase quantities in period 1 and

period 2 are given by:

Q, if Q <@
¢ 5(Q) = Q+B(p7U> — i\/(BPU +QT>2 +B(B(7” —pu)? - 2@“2), f@p<Q<4qgr+a
B(VE), i Q> qf p+ o

T



28 Chapter 2. Strategic Behavior in a Serial Newsvendor Setting

07 lfyZ(jz
qs,S(Say>: -y, fy<@py+s
s, ify+s<a

where ¢y 5 = B<T’fU>, y=(1.5(Q)" —D1)",and s = Q — ¢1.5(Q).

We illustrate the result for ¢f ¢(Q) in Figure 2.2. There are three subcases for
qi 5(@), which we discuss in decreasing magnitude of the seller’s Q. In the third subcase,
when @ is sufficiently large (i.e., above ¢}  + @), the buyer does not face a risk of seller
stock-out over the horizon. For any @) greater than ¢j r + @2, the sophisticated buyer
would never buy more in period 1, meaning that his period 1 purchase decision is
independent of () in this range. In fact, in this range, the sophisticated buyer buys
exactly as much as the forward-looking buyer in period 1. As the seller reduces @)
below ¢; - + 2, a risk of seller stock-out emerges and the buyer now needs to trade-off
units purchased in the first period and in the second period. This trade-off results in
the sophisticated buyer decreasing the amount he buys in the first period sooner and
more sharply than the forward-looking buyer does as () decreases. Once () reaches
the second period order-up-to level ¢,, the buyer purchases the entire stock in the first
period — since he would have bought this amount anyway in the second period, he buys
it upfront.

To better understand why the sophisticated buyer buys as much as or less in period 1
than the forward-looking buyer, even when the price is constant across periods, we turn
our attention to the marginal analysis of the sophisticated buyer as compared to that
of the forward-looking buyer. In Figure 2.3, we depict each buyer type’s perceived
marginal benefit of increasing his period 1 purchase decision by one unit, for any
given period 1 purchase decision and for any given demand realizations of D; and
D,y. Mathematically, the perceived marginal profit depicted in the figure is %{51’[&)
%(%)’DZ) for the sophisticated buyer. While the

forward-looking buyer does not consider () in deciding on ¢, the sophisticated buyer

for the forward-looking buyer and

does, hence the figure illustrates the trade-offs considered by the sophisticated buyer

for any given Q such that 1(Q) < Q < 1(Q) + &
Regions C, D, and E in Figure 2.3 are exactly the same for both buyer types.
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Figure 2.2: ¢ 4(Q) for B = 200,pp = 10,7 =9, py1 = py2 = 6,c =3

Suppose that the forward-looking buyer chooses any given ¢, € [0,B]. If the
realization of D; turns out to be sufficiently low (ie. 0 < Dy < (q1.r — @)*), the
buyer will have enough leftover inventory after period 1 that he does not need to
purchase any units in period 2. Then, depending on the realization of Dy, there are two
possibilities. If Dy is low enough that it can be satisfied with this leftover inventory (i.e.
less than max(q; r — D1, ¢2)), buying an additional unit of product in period 1 leads to a
perceived marginal loss of py (region C). But if D, is higher than this leftover inventory,
buying an additional unit of product in period 1 results in a perceived marginal saving
of r — py (region D). Note that this marginal saving occurs in period 2 through the
leftover inventory effects. Finally, if the realization of D; is in an intermediate range
(i.e. ¢ r is sufficient to cover D; but his leftover inventory is less than or equal to ¢2),
if he were to buy one more unit in period 1, this unit would be carried over into the

next period and deducted from the buyer’s order-up-to quantity in period 2. It does
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not make a difference whether the unit is bought in the first or in the second period as

the marginal profit is zero (region E).

The main difference in the marginal analysis for the sophisticated buyer compared to
that of the forward-looking buyer is that Region F is replaced by two different regions:
Region G and Region H. Both of these regions are regions of high demand realizations.
In region G, the realization of D; is so high that the buyer does not have leftover and
seeks to buy the full ¢; from the seller. Given the seller’s supply, he may or may not be
able to buy what he wants from the seller, but given the low realization of Dy he is able
to cover his needs in period 2 without incurring runout costs. If the buyer buys one
more unit in first period, he spends py; but saves the runout cost of r in that period.
The purchase of one more unit in period 1 reduces the seller’s supply and takes away
the opportunity to buy the unit from the seller in second period so the buyer saves py .
This means that in this region, the buyer ends up with a gain of r — py; in the first
period and py s in the second period, resulting in a marginal benefit of (r — py1) + pu2

(equal to r in the constant pricing setting).

In region H, the realization of D; is so high that regardless of whether the buyer
buys an additional unit in period 1 or not, he does not have any leftover at the end of
period 1. Accordingly, he seeks to buy ¢ units in period 2, but he may be limited by
the seller’s leftover supply, () — ¢;. Thus, if he buys one more unit in period 1, he pays
for one less unit of runout in that period, but then in period 2 he can buy one less unit
at py2 due to the seller’s supply constraint and instead incurs one more unit of runout
cost. This means that in this region, the buyer ends up with a gain of » — py; in the
first period but gives up r — py2 in the second period, resulting in a marginal benefit

of py2 — pu1 (equal to zero in the constant pricing setting).

For the forward-looking buyer, for high realizations of D, regardless of the realization
of Dy, we had Region F with a marginal saving of » — py. The attainment of this
marginal saving assumed infinite supply at the seller. Now, for the sophisticated buyer,
we have for the same high realizations of D7, Region G with a marginal benefit of r and
Region H with a marginal benefit of 0. The lower marginal savings for the sophisticated
incentivize the buyer to buy less in period 1 compared to the forward-looking buyer.

In a sense, the forward-looking buyer is overly optimistic in high ability to buy product
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Figure 2.3: Marginal profit of the forward-looking ¢; and sophisticated buyer’s ¢;(Q)
decision in the constant pricing setting

from the seller. We can summarize the comparison of ¢j ¢(Q) and ¢7 (@) for any given

@ in the following corollary:

Corollary 2.4. For any given (), the sophisticated buyer buys as much as or less than
the forward-looking buyer in period 1 - that is, ¢j ¢(Q) < ¢} (Q).

When we compared the forward-looking buyer to the myopic buyer, the proof to
demonstrate that the demand faced by the seller from a myopic buyer is greater than or
equal to that faced by the seller from a forward-looking buyer, i.e. Np > Nj; (Lemma
2.1). This proof relied on the fact that ¢  is strictly greater than ¢ 5, (Corollary 2.2).
In comparing ¢; ¢(Q) and ¢} (@) for any given @ we do not have this strict inequality,
which means we cannot analytically prove that Ng(Q) > Ng(Q).

The seller’s choice of () induces certain behaviors in the sophisticated buyer, but the
buyer’s choice of ¢;(Q) also induces certain behavior by the seller. We further explore
the delicate interplay between the buyer’s decisions and the seller’s order quantity in

the next subsection.
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2.5.2 Seller’s Problem

At the beginning of the horizon, given ¢j 4(Q) and ¢3(s,y), the seller chooses order

quantity ) > 0 to maximize her profit function:

Elmu.s(Q)] = puai s(Q) + puE[min(g; 5, @ — 47 5(Q))] — <@ (2.8)

The first order optimality condition with respect to () is not a polynomial. While
a closed-form expression for the roots exists, the expression does not lend itself to

interpretation. Nonetheless, we can obtain the following result:

Proposition 2.7. When facing a sophisticated buyer, there exists a (J§ that maximizes

the seller’s profit function, such that ¢ < Q5 < ] r + 2.

Not only do we narrow down the domain of () where ()% exists, but after numerically
evaluating numerous instances, we observe that the seller facing a sophisticated buyer
stocks as much as or more than a seller facing a forward-looking buyer despite the
lower first period purchase quantity of the sophisticated buyer. We summarize this

observation in the following conjecture:
Conjecture 2.1. Q¢ > Q%

Why is it that, even though the sophisticated buyer buys weakly less than the
forward-looking buyer for any given () in period 1, the seller facing the sophisticated
buyer stocks at least as much as or more than the seller facing a forward-looking buyer
over the horizon? The reason is that the seller knows that the sophisticated buyer’s
decision is influenced by her stocking quantity. The seller takes into account the buyer’s
best response function, which is non-decreasing in (). Specifically, we have that 0 <
%Qis(@) < 1.! The seller therefore stocks more to induce the sophisticated buyer,
who buys at least as much or less than the forward-looking buyer, to overcome his
strategic caution and buy more in the first period. In other words, the sophisticated
buyer’s strategic caution manipulates the seller into taking a greater risk in her stocking

decision by stocking more over the horizon. As a result, the sophisticated buyer benefits

IThis is provided in the proof of Proposition 2.7.
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from the seller’s larger stocking quantity and is better off profit-wise as he is able to
buy more of the product he wants from the seller.

Numerically, we also observe that in the range where Q* exists — that is, between
¢2 and ¢ p + @2 — the seller makes as much as or more profit facing a forward-looking

buyer than facing a sophisticated buyer. This ordering is illustrated in Figure 2.4.
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Figure 2.4: Numerical results for seller’s expected profit when facing each buyer type:
B = 2007pD - ].0,T = gapU,l = Pu2 = 6,0 =3

We formalize this numerical observation in the following conjecture:

Conjecture 2.2. E[myp(Q3))] < E[mys(Q%)] < Elnyp(QF)]

2.6 Extension: Allowing for Different Prices

Suppose that the second period price is lower than the first period price. To take
advantage of the lower price in the second period, the forward-looking buyer may shift
some of his first period purchase quantity to the second period. Would the magnitude
of this shift be large enough that the forward-looking buyer buys less than the myopic
buyer, both in the first period and throughout the horizon? Would the seller no longer

be better-off facing a forward-looking buyer? In this section, to investigate the effect of
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price differences between the two periods, we distinguish between the unit sales price
in period 1 and in period 2, py; and py o respectively, and consider both the markdown

and markup cases.

2.6.1 Buyer’s Problem

For any given leftover inventory realization y; = (¢1; — D)™ from period 1, a buyer of
type i = {M, F'} chooses purchase quantity ¢»; > 0 to maximize his period perceived

profit function, given by:

E[7p,iz2(y:)] =ppE[min(Da, q2; + vi)] — pu2gei + (pp — 1)E[(Ds — (g2 + v:))*]. (2.9)
Proposition 2.8 is the extension of Proposition 2.1 when py1 # pua:

Proposition 2.8. In the seller markdown/markup setting, in period 2, a buyer of type
i = {M, F'} purchases @i = (G2 — y;)T where y; = (g1: — D) and ¢ = B(H%)

Myopic Buyer

In period 1, the myopic buyer chooses purchase quantity ¢ > 0 to maximize his

perceived period profit function, given by:
E(mp 1] =ppE[min(Dy, ¢1)] — puagr + (pp — r)E[(D1 — q1) 7). (2.10)

Proposition 2.9 generalizes Proposition 2.2 when py; # pya:

Proposition 2.9. In the seller markdown/markup setting, the myopic buyer’s
purchases ¢} ), = B(w)

T

Recall that, in the constant pricing setting, the myopic buyer considers faces the
same trade-offs in both periods, resulting in identical order-up-to levels (Corollary 2.1).
Now, given price difference between periods, the trade-offs for each period are different,

shifting the purchase quantities to one period or another. In the case of a markdown,

T—PU,2
'

the relative underage cost for the second period, , is greater than that for the first
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period, H%, incentivizing the buyer to buy more in the second period. We summarize

this result, and its converse in case of a markup, in the following corollary:

Corollary 2.5. When pya < pu1, 47y < 2. When pya > pui, 41y > Go-

Forward-Looking Buyer
In period 1, the forward-looking buyer chooses a purchase quantity ¢; > 0 to maximize

his horizon profit function, given by:

E[rp,r1] = ppE[min(D1, ¢1)] — puagi + (pp — 1)E[(D1 — 1) "] + E[7p p2(¢n — D1) 7).
(2.11)

Following an analysis similar to that in the constant pricing setting, we obtain the next

result:

Proposition 2.10. The forward-looking buyer’s purchase quantity in period 1 is given
by:

r— ap T— r—
B PU,1 ’ if U2 > PU,1
q* o T—PU,2 T — T—pu,2
LE = r2—pf; =21 (pu,1—pU,2)
U2 U,1—PU,2 ep T— r—
B ( \/ ) ’ lf PU,2 < PU,1
r r r—py,2

Proposition 2.10 uncovers a difference in behaviors that emerges due to price

r—pu,1
T—pU,2

differences across periods. The ratios that define each subcase of ¢j p, i.e. and

TPU2 - capture the trade-offs of buying in the first period versus the second period.
These ratios are the relative underage costs out of the total mismatch costs for buying
in each period. These two subcases of ¢j j are illustrated in Figure 2.5.

The first subcase corresponds to a deep markdown scenario. When pyo is
significantly lower than py 1, i.e., pyo2 < r— \/m , the underage cost in period 2
is higher than that in period 1. Despite the lower period 2 price, the buyer benefits
from stocking slightly more already in period 1 to avoid runout in period 2. The idea
is that, if the buyer has to pay the runout cost, he prefers to do so period 1 instead of
in period 2. The second subcase of ¢j - corresponds to a shallow markdown /markup
scenario, which includes the constant pricing setting. As py. increases beyond the

threshold, i.e., pya > r — \/7(r — py1)), the underage cost in period 2 forms a smaller
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proportion of period 2 mismatch costs than the underage cost in period 1 does out of
the period 1 mismatch costs, so there is a dampening effect on the amount of product

the buyer buys in period 1.
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Figure 2.5: Comparison of @2, ¢i p, and ¢j , when varying py» for B = 100,pp =
10,7 =8,py1 =H,c=1

In the constant pricing setting, the order-up-to level in the first period was strictly
greater than that in the second period for the forward-looking buyer. Because the
seller’s prices were the same in both periods and lower than the runout option, the
forward-looking buyer was inclined to buy more product in period 1 in case demand
is high to avoid having to buy from the runout option. In the markdown/markup
setting, the relationship between the order-up-to levels in period 1 and period 2 depends
on the magnitude of the difference between the period prices. If the markdown is
sufficiently deep, the forward-looking buyer’s incentive to buy product in the first period
is diminished. Otherwise, the forward-looking buyer will buy more in period 1 than in

period 2. That is, the buyer’s first period decision depends on a threshold pyo:

Corollary 2.6. If pys < r — /7(r —py1) (deep markdown), ¢f p < q@. If pya >

7 —+/7(r —pya) (shallow markdown), ¢; - > @2. In case of a markup, ¢ » > .
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Comparison of Myopic Buyer and Forward-Looking Buyer

Regardless of the specific markdown/markup scenario, the forward-looking buyer still

buys more in period 1 than the myopic buyer:

Corollary 2.7. In the markdown/markup setting, the forward-looking buyer buys

more than the myopic buyer in period 1 — that is, ¢i p > ¢7 -

This result may seem somewhat counter-intuitive: given the reduced price in the
second period, one might expect the forward-looking buyer to buy less in the first
period than the myopic buyer who does not consider the price drop. However, as the
forward-looking buyer can use any leftover inventory in the second period, the risk
of buying more stock in the first period is mitigated. Using Corollary 2.7, we can
show that the demand-enhancing effect of the forward-looking buyer persists in the
markdown/markup setting. We can generalize Lemma 2.1 to the markdown/markup

setting:

Lemma 2.3. The demand for the seller facing a forward-looking buyer, denoted by
Np, is greater than or equal to the demand for the seller facing a myopic buyer — that
iS, N F Z N M-

2.6.2 Seller’s Problem

The seller’s profit function when she faces a buyer of type : = {M, F'} is:

Elmy,:(Qs)] :pU,1q>1k,i +PU,2E[miH(q;,ia Qi — qrz)] — Qi (2.12)

We derive a similar result for the seller’s stocking decision as before:

Proposition 2.11. In the markdown/markup setting, when facing a buyer of type

i € {M, F}, the seller’s stocking quantity over the entire two-period horizon is given
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by:
@ B(%) + @ <q,
Qi = B(") + @, a < B(MES) vk <dlita (2.13)
4+ a2, B(%) +3@ 24+ ¢

In a supply chain with a myopic buyer, because there is only one subcase for
the myopic buyer’s ¢j ,, (Proposition 2.9), there are three possible situations: low
seller margin (L), medium seller margin (M), and high seller margin (H). In a supply
chain with a forward-looking buyer, because there are two possible subcases for the
forward-looking buyer’s ¢j . (Proposition 2.10), there are six possible situations. We
combine the two subcases of Proposition 2.10 for the buyer’s ¢f . (deep markdown and
shallow markdown/markup) with the three subcases of Proposition 2.11 for the seller’s
Q3 (low margin, a medium margin, and high margin scenario). One of the resulting
situations (deep markdown, low seller margin) is ruled out as it requires the seller to earn
negative margin, negating his participation in the market. In summary, we have five
situations depending on the relationship between the relevant ratios of the buyer and
seller: (i) Deep markdown, medium seller margin (DM), (i) Deep markdown, high seller
margin (DH), (%ii) Shallow markdown/markup, low seller margin (SL), (iv) Shallow
markdown/markup, medium seller margin (SM), and (v) Shallow markdown/markup,

high seller margin (SH).

The differences in thresholds and in situations for a supply chain with a myopic
buyer and one with a forward-looking buyer make it challenging to compare how the
quantities purchased and stocked vary with pyo. As pyo increases for a given py 1,7,
and ¢, the situation in each supply change changes. We illustrate these changes for a

specific instance in Figure 2.6 for a supply chain with both buyer types.
In a supply chain with a myopic buyer, the top panel of Figure 2.6 illustrates the

effect of increasing pyo on @}, and ¢y ;. Since the buyer is myopic, his incentive to
buy in period 1 does not change as py2 increases so gy ), is constant. However, the
second period order-up-to quantity ¢, decreases as it becomes less favorable for the

buyer to buy in period 2. For the seller, at the lower values of py 2, the seller is in the
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Figure 2.6: Varying pygo for B = 210,pp = 10,7 = 7,py1 = 5,c¢ =2

medium margin range (situation M) and brings an intermediate amount of product. As
pu.2 increases sufficiently above ¢ (threshold shown), the seller enters the high margin
range (situation H) and stocks the maximum possible buyer demand over the horizon of
qi v T @2 For the rest of the range where py2 < 7, despite the diminishing incentive for
the buyer to buy in period 2, the seller’s margin is still high enough that she continues
to stock the maximum buyer demand.

For the same instance, in a supply chain with a forward-looking buyer, the lower
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panel of Figure 2.6 illustrates the effect of increasing py2 on Q% and ¢j . At lower
values of pyo, the seller is in the medium margin range and the buyer is in the deep
markdown range (situation DM). The buyer’s ¢ r increases in py» but is below g
because he has an incentive to wait until period 2 to buy at a significantly lower
price. The first threshold occurs when pyo becomes high enough that the buyer’s
incentive to buy in period 2 equals the buyer’s incentive to buy in period 1. At this
point, while there is a still a markdown in the second period, py 2 is not low enough to
discourage the buyer from buying more in period 1. The buyer has switched to being
in a shallow markdown/markup scenario, but the seller is still in the medium margin
scenario (situation SM). As pyo increases above py; and further, a second threshold
is reached, where the py 5 is so high that the quantities the seller expects the buyer to
purchase are not significant enough to induce the seller to bring more than the known
period 1 purchase quantity (situation SL). In this instance, for all ¢ < pya < r, the
seller always stocks less than the maximum quantity the forward-looking buyer would
buy over the horizon, which means that the buyer may face seller stock-outs as he may

not be able to buy the quantities that he seeks to buy from the seller.

CcTr
bu,1
QF > Q3. In fact, despite the price differences, we generalize Lemma 2.2 to the

For the instance illustrated in Figure 2.6, Q3 = @}, for pys < , otherwise

markup/markdown setting:

Lemma 2.4. In the markdown/markup setting, in equilibrium, the quantity the seller
facing a forward-looking buyer stocks is greater than or equal to the quantity the seller

facing a myopic buyer stocks — that is, Q% > Q3.
We can also generalize Proposition 2.5 to the markup/markdown setting:

Proposition 2.12. In the markdown/markup setting, in equilibrium, the seller’s profit
when facing a forward-looking buyer is greater than or equal to the seller’s profit when

facing a myopic buyer — that is, 7y r(Q5) > Tum(Qh)-

2.6.3 Optimal Seller Markdown / Markup Mechanism

What if the seller, in addition to choosing her stocking quantity for the horizon, could

set prices in period 2 or in both periods? Recall that the main competition for the seller
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is the runout option. For this reason, one might expect that it is optimal for the seller
to keep the price just below the runout option in one or even both periods. However,
marking up product increases the buyer’s overage cost in the second period, possibly
resulting in a lower purchase quantity that period and a gravitation of demand to the
first period, when the price is lower. While it is true that the buyer’s optimal period 2
price is below the runout cost, the degree to which it is below the runout cost varies
significantly.

Numerically, we investigate the seller’s optimal period 2 price, pj;,, for a fixed unit
production cost ¢ while varying the unit runout cost r and the seller’s unit period 1 price
pua. Our results indicate that there is a region where it is optimal to set py2 > pu1
for any given r and py; and another region where it is optimal to set pya < pyi. We

illustrate these results for an instance with a forward-looking buyer in Figure 2.7.
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Figure 2.7: Optimal pricing for B = 100,pp = 10,c =1

In Figure 2.7, for a given ¢, we vary r along the y-axis and py; along the z-axis.
The values in the interior of the plot are the percentage change between py; and
Pira, computed for each level of r and py;. Darker shades represent a higher optimal

period 2 price for the seller compared to the period 1 price (deeper markup) and lighter
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shades represent a lower optimal period 2 price compared to the period 1 price (deeper
markdown).
Along the diagonal, the runout cost r is equal to the first period price py;. When
r < pya (above the diagonal), the buyer only buys from the runout option in the first
period so the seller brings no supply for this period. Since the buyer buys exactly up
to his demand realization in period 1 from the the runout option, he has no leftover
from period 1 and seeks to purchase g, in period 2. As long as the seller prices pyo <7,
the seller can sell ¢; in period 2 and stocks ()} = ¢. In this region, the seller sets
_ ()

pira = - Although pj;, < py: in this region, it is only trivially a “markdown” as

the seller does not participate in the market in the first period.

When r > py; (below the diagonal), the buyer prefers to buy from the seller instead
of the runout option in period 1. In this region, either a markdown or a markup in
period 2 may be optimal for the seller depending on 7 and py ;. The dashed line is the
threshold where it is optimal to set the period prices equal. Below the dashed line, it is
optimal for the seller to set a higher price in the second period than in the first period.
Above the dashed line, the seller is better off setting a lower price in the second period
than in the first period. The optimality of markups is most apparent for higher values
of r and lower values of py ;. Hence, the darker shade at the bottom left corner of the
figure.

So far in this section we looked at a situation in which the seller’s first period price
is set exogeneously and the seller is able to set the second period price optimally. How
would the seller’s optimal price path for a given ¢ and r differ if she were able to set
both py1 and pyo optimally from the beginning of the horizon? The starred blue line
illustrates the jointly optimal pj;; and p;, for any given level of r and c. For lower
values of r (i.e., in this instance, up to around r = 4), it is jointly optimal to markup in
period 2 or keep the prices constant. As r increases, however, it becomes jointly optimal
to markdown in period 2 (i.e., in this instance, up to around r = 4). We summarize

this observation formally as follows:

Observation 2.1. There exists a threshold value of r below which it is jointly optimal
to set prices such that py; > pyo. Above this threshold, it is jointly optimal to set
prices such that py; < pyo.



2.7 Conclusion 43

2.7 Conclusion

In this chapter, we characterized the stocking decisions of a seller and an intermediate
buyer in a serial newsvendor supply chain when the buyer exhibits varying degrees of
strategic behavior. The degree of a buyer’s strategic behavior refers to the degree to
which the buyer considers (i) factors affecting future periods and/or (ii) the seller’s
optimal stocking decision in making his period purchase decisions. We modeled the
degree of a buyer’s strategic behavior by defining three buyer types: a myopic buyer
who considers neither of these factors, a forward-looking buyer who considers only the
first factor, and a sophisticated buyer who considers both factors. In the absence of
price differences between periods, we showed that, in comparison to the myopic buyer,
the forward-looking buyer shifts some of the quantity he would buy in the second period
to the first period as he knows he will be able to carry over any excess inventory. In
addition to this shift in the first period purchase quantity, however, the forward-looking
buyer also seeks to buy more units than the myopic buyer over the horizon. For this
reason, a seller facing a forward-looking buyer will stock as much as or more than the
seller facing the myopic buyer and will make a greater than or equal profit from the
forward-looking buyer than the myopic buyer. A buyer’s forward-looking behavior,
thus, can benefit a seller in such a supply chain.

Motivated by the observation that in some cases the seller does not stock the
maximum quantity that the buyer demands over the horizon, we introduced a third
buyer type called the sophisticated buyer. The sophisticated buyer additionally
considers both intertemporality and the seller’s stocking decision in his purchase
decisions. We find that in equilibrium the sophisticated buyer buys less than the
forward-looking buyer in the first period for any given seller stocking quantity (). The
sophisticated buyer’s strategic caution in his first period purchase decision effectively
induces the seller to take on a greater risk with her inventory stocking quantity
and bring more supply. As a result, the sophisticated buyer is better off profit-wise
being sophisticated instead of forward-looking. But the seller is better off profit-wise
facing a forward-looking buyer over a sophisticated buyer. If possible, the seller
should encourage a buyer to adopt some degree of strategic behavior and consider

inter-temporality (i.e., be forward-looking) but not to adopt the full degree of strategic
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behavior and consider the seller’s stocking decision (i.e., be sophisticated). To this end,
the seller should avoid inventory information sharing.

We then extended our study to allow for different prices across the periods, and
more specifically, to allow the seller to markdown or markup product from the first
period to the second period. Unlike in the constant pricing setting, the first period
purchase quantity of the forward-looking buyer follows a threshold policy depending
on the price difference. Despite the different prices, however, the results related to the
profit generated when facing a forward-looking buyer versus a myopic buyer from the
constant pricing setting persist. The forward-looking buyer still buys more than the
myopic buyer in the first period. He also still demands as much as or more product
from the seller over the horizon, which again results in a profit that is greater than or
equal to that generated by the myopic buyer. We then investigated the optimal price in
the second period assuming the seller can set this price upfront. Numerically we found
that, for a given runout cost, production cost, and first period price, it may be optimal
to markup or markdown product in the second period.

One interesting avenue for future research relates to coordination mechanisms. In
our present work, we examined the supply chain outcomes in a setting where no
coordination can occur. The outcomes under coordination and the optimal coordination
mechanism are a promising direction for a follow-up study.

To the best of our knowledge, our work is the first to consider buyer strategic
behavior in a serial newsvendor setting. Such serial settings are prevalent in supply
chains, and while ample evidence supports the notion that varying degrees of strategic
behavior are exhibited by human decision makers, such behaviors have received limited
attention in supply chain contexts. As such, this chapter paves the way for a potentially
rich research avenue that can build on our modeling framework. For example, another
possible extension includes the study of multiple buyers or multiple sellers, thereby

incorporating competition.
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Appendix 2.A Proofs

Proof of Proposition 2.1. E[rp,2(y;)] can be rewritten as E[mp.2(y;)] = ppE[Ds] —
pugei — TE[(D2 — (g2 + v:))"]. The first term is independent of g»;. The second
term is linearly decreasing in ¢o;. For any realization of D,, and for any given y;,
both E[(Dy — (g2 + %:))"] and E[((g2; + 1) — D2)*] are convex in ¢p;. As these
expectations are multiplied by negative coefficients, the third and fourth terms are

concave. Therefore, the critical point determined through the first order condition

dq‘;iE[WD,i,g(yi)] = %(%,i +y;) + 7 — py = 0 is the unique maximizer. O

Proof of Proposition 2.2. Similarly, E[rp 1] can be written as E[mp ar1] = ppE[D;] —
pudim — rE[(Dy — qia)T]. The first term is constant and does not depend on decision
variable g; »s. The second term is linearly decreasing in ¢ p;. For any given realization
of Dy, E[(Dy —q1,m)7] is convex in ¢; 5s. As this expectation is multiplied by a negative

coeflicient, the third term is concave. Therefore, E[mp 1] is concave in ¢; ps and the

critical point determined through the first order condition d(Ii]W]E[ﬂ-D’ v = (r—pu) —
rft =0 is the unique maximizer. O
Proof of Corollary 2.1. ¢i 5, = B(%) = (s. H

Proof of Proposition 2.5. Evaluating E[np ro(y)] for Dy ~ U0, B], we have that

E[WD,FJ(?J)] = (pD - 7") (%) —Puqz +7’(Q2 + y) - %(92 + ?J)Q- Plugging in this expression
fOI‘ E[WD,FQ(((]LF - D1>+)] n E[?prpyl((h,p — D1)+], we obtain E[?prpyl((h,p — D1)+] =

(pp —7)B+ (r —po)ar + (r — po)E[(@2 — (@0 — D1)")"] = 55E[((2 — (@0 — D1)")" +
(1 — D1)")?. To explicitly evaluate these expectation terms, we need to consider
two cases: (i) @@ > ¢ and (i) @ < q1. In case (i), E[(q2 — (1 — D1)")T] =

q1

@ — ¢ + 1] f (1) oy + ffbf(ﬂﬁl) dzy and E[((@2 — (¢ — D))" + (qn — D1)7)?] =

0 q
q1 B
[ @ f(x1)dzy + [ G f(x1)daq. Therefore, evaluating for Dy ~ U0, B, E[np r1(qi,r —
0 Q1
Dy)*) = (pp—r)B+(r—pv) (ql + G — %) —5505. The first order optimality condition
for ¢ is ﬁE[ﬂ'D7F71(qLF — D))t =(r—pv) — %ql = 0.

q1

In case (it), E[(¢2 — (@1 — D1)")*] = [ [@2— i +21)f(21) dzy + [ @2 f(21) dzy and

q1—@q2 Q
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Bl(@ — (0 = D7) + (@ = D) = [ (@ =Pl dnn+ [ i) do +

qu r1)dzy. Evaluating for Dy ~ U[0, B], E[Uy(¢1 — D1)*] = (pp — r)B + (r —

pU) <Q1 + 5% + G2 q“72> — L(ﬁ — q1q2 + q2>. The first order optimality condition

with respect to ¢ is %E[TFD ri(qr — Dl) =@ —pu)(1—%) - 55 — @) =0.

(r— pU) _ B2 (7”—71102U)2

Substituting g, = B(T_rp U) and simplifying, ¢? = 2B> . Clearly, as

7”27 2
¢1 > 0, we are interested in the non-negative root of this quadratic, ¢f = B (—”TPU)

Note, however, that there is a contradiction in the first case in which ¢ > ¢ as
gt =B>q = B(T*er>. Therefore, only case (i) holds. O

Proof of Corollary 2.2. Observe that qj, = B(%) = B(—”_pUT ”_”IJ) <
B(\/T’—pU\/T‘FPU) — B(Vrz_p%

T

> = ¢ , where the inequality follows because r > py >
O

Proof of Corollary 2.3. Since @ = g7 )y = B(%), the proof follows the same logical
steps as for Corollary 2.2. O

Proof of Lemma 2.1. By definition, a random variable X is stochastically greater than
or equal to another random variable Y — that is, X >4 Y — if, and only if, P(X <
z) > P(Y < x)Vr € (—o0,00) This form of stochastic dominance is called stochastic
dominance in the usual order or alternatively first-order stochastic dominance (Shaked
& Shanthikumar 2007). Observe that Np and Nj; are non-decreasing in ¢y and
q1,m respectively, hence Np > Ny for any realization of Dy because ¢f p > ¢ 5, by
Corollary 2.2. O]

Proof of Proposition 2.4. The seller’s profit function can be written as E[ry,;(Q)] =
(Pua = pu2)ai; + (pu2 — €)Q — woE[(Q — ¢i o — (22 — (g1 s — D1)™) ") *]. To evaluate
the last expectation term in E[7(Q)], we need to consider two cases for the relationship
between ¢ ,, and Ga: (i) G > qy pr and (11) Go < a -

In case (i), since @ > qj 57, G2 > (i py — D1)™ and the second inner truncation can

be eliminated as this term is always positive. We have E[(Q — ¢} 5, — (@2 — (¢] 3y —
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min(‘]i}\/ij_(h) Q_qz

D)")*] = / (Q = G — w)f(x)dry = [ (Q — @ — x1)f(21)dr; as at
0 0
optimality qj ,, < Q3 < ¢iy + G- Evaluating for Dy ~ U[0, B, E[n(Q)] = (pu1 —

pu2)qia + (Puz — €)Q — 5 (Q — 3@)*.
In case (i4), since @ < qj j, the second inner truncation cannot be eliminated. We

4 a2 Q-2
have E[(Q — iy — (G2 — (¢ oy — D1)T) )] = 6f (@Q—gin)f(x)dar+ [ (Q—
QT’M_(E

G2 — 1) f(z1)dzy. Evaluating for the uniform distribution of Dy, E[n(Q)] = (pv1 —
pu2)diar + (puz — 0)Q — 22 (%2 - @ - Q¢+ QT,M%)-

In both cases, the first order optimality condition for @) is the same: %E[W(Q)] =
(pug — ) — 22(Q — ¢2) = 0. The concavity of the objective function in both cases
can also be easily verified as sz]E[ 7(Q)] = ZF2Q < 0 since pyy, B and @ are strictly
positive.

Finally, as we are dealing with a constrained optimization problem, we account
for the requirement that the unique maximizer B(p 222 ) + @2 is indeed such that
G < @y < ¢y + G2 Note that the first of the three subcases of @}, does not
happen in case (i) as @ > qf 5, and B (p T c) > 0 therefore gf 5, is definitely less than
or equal to a quantity greater than gs.

For the seller facing the forward-looking buyer, the same reasoning as with the seller

facing the myopic buyer applies, only with the relevant ¢j i instead of g7 ;. O

Proof of Lemma 2.2. Since the seller determines Q* by solving a newsvendor problem

with demand Ng or Nj; when facing a forward-looking or myopic buyer respectively,
Qy = 1@2(“) and Qp = F 1<pU c) By Lemma 2.1, Q% > Q- ]

pbu p

Proof of Proposition 2.5. Observe that the seller solves a newsvendor problem with
the demand given by N,; or Np depending on the buyer type she faces. Therefore,
mom(Q) = prEmin(Q, Ny)] — @ and mpyrp(Q) = pyEmin(Q, Np)] — ¢Q. By
Lemma 2.1, E[min(Q, Ny)] < E[min(Q, Np)] for any Q € R*.  Therefore,
Tom(Qy) < mur(Qy) < 7mur(QF), where the second inequality holds due to the
optimality of Q% for my p. O

Proof of Proposition 2.6. To evaluate E[rpsi((¢1(Q) — D1)",Q)], observe that
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@ (Q)
EV2((Q@ — ai(@), (@(Q) — D)) = [ 1a(@Q — ¢1(Q),q:(Q) — 1) f(z1)dzy +

0
B

[ Va(@Q — q1(Q),0) f(x1)dxy. We first evaluate these two integrals for Dy ~ U0, B:
71(Q)

(pp — )2 +ry — =02, Y > G
Va(s,y) = < (pp — )8 + py + Bl=p0)” B—s<y<ip
(pp—7r) 2+ (r—pu)s+ry—55y+s)?% y<p-—s

For V5(s,0), only two subcases remain as one of the subcases was eliminated since gy
cannot be negative. In both of these subcases, the buyer has no leftover inventory and
seeks to buy the full ¢;. In the first subcase, the seller’s leftover supply is sufficient to
cover the buyer’s needs for period 2. In the second subcase, the seller’s leftover supply

is not sufficient.

Based on the relationships between ¢;(Q) and ¢, and ¢, and Q — ¢1(Q), we consider
four cases: (1) ¢1(Q) > @, 2 > Q@ — 1(Q), (1) ©(Q) < @, 2 > Q — @(Q), (1)
0(@) > @ & <Q—q(Q), () a(Q) <&, 2 < Q—q(Q). Cases (i) and (i) are
cases in which supply is limited as the seller’s remaining supply after the first period is

less than the order-up-to quantity in period 2.

In case (1), Bl ((0:(Q) ~ D", Q)] = (b~ r)B+ (1)@~ 3@~ (@) +
L (Q - u(@Q) + 2 |QF — 301(Q)PQ + ar(Q)°] + CF2 |29 — |, The first
order optimality condition with respect to ¢;(Q) is o Q)E[Ul(( @ (Q) — D), Q)] =

2 (Q) —q1(Q) — 501 (Q)Q + £Q — & = 0. The solution to this quadratic
is the root with the plus sign that does not Vlolate @ (Q) < B.

In case (1), E[mps1((1(Q)— D1)*,Q)] = (pD—T)B—i-(T pU)Q 35(Q—q1(Q))*+
FEQ+ o | F - 0(QPQ + 3n(Q)] — B — 0% Solving for the firs

6 r2
order optimality condition with respect to ¢;(Q), ¢:(Q)* = B+Q + %. Using the
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plus sign for this expression, ¢;(Q)* = B > ¢ = B<%> yields a contradiction as
we are in the case where ¢;(Q) < @2. Therefore, only the result using the minus sign

remains.

T case (i), Elmpsa(((Q) — D)%, Q)] = (oo — 1B + (r — pr)n(Q) + B2
B (r—py)® 1 (r—pu)? 71 (Q) —

6 r2 2 r
yields the same result that we obtained for the forward-looking buyer when ¢;(Q) > G.

In case (iv), Exps1((¢1(Q) — D1)*, Q)] = (pp — r)B + (r — pu)ar (Q) — “552¢3 +
B (r—pu)® Solving for the first order optimality condition, ¢;(Q)* = B<ﬂ2> = B.

2 T r—pU
However, since we are in the case in which g, > ¢1(Q), this result yields a contradiction

as (1(Q)* =B > gy = B(%). This case is eliminated. O

+5:¢1(Q)?. Solving for the first order optimality condition

Proof of Proposition 2.7. In optimality, the seller would never stock more than ¢ +
units since any additional units beyond this amount will not be purchased. At the same
time, the seller would never order a () less than ¢, as she could earn more profit by
increasing Q).

Note that E[rys(Q)] = (pv — 0)El¢is(Q) + (&2 — (61,5(Q) — D1)")")] — (pv —
OB[((¢ (@) + (@2 — (¢ (Q) — D) T)T) = Q)] = B[(Q — (¢ s(Q) + (2 — (41 5(Q) —
D1)*)*))"]. Recall that E[g} 5(Q) + ¢5,5(Q)] = ¢{.5(Q) + El(@ — (a15(Q) — D1)*)*)).
The first component is deterministic and concave in ) in the range of interest. The
second component is also concave. For the remainder of the terms we verify that there
is a single crossing point. If @ increases, as long as E[q] 4(Q) + ¢5,5(Q)]) does not
increase faster than the underage cost is decreasing, then a single crossing point exists.

For %qis(Q) =1- Qr_B(r_py) , we show that 0 < %qiS(Q) <

2
\/(BPU+QT) +B (B(T*pU)Q*QQﬂ)

1. Let 6 = Qr_B(r—py) . Suppose # > 1. Then, expanding and
(BZH'QT) +B <B(T—pu)2—2QT2>

rearranging, 0 > B?p?. However, by construction, B?*p? > 0 (contradiction). Therefore,

0 <1 and %qis(Q) > 0. Furthermore, since 6 > 0, %qis(Q) < 1. Further note that

%E[qg’s(Q)] = M(@ — 1) < 0. By construction, (T_T—pU) < 1. Since# <1,0-1<0

r

and %E[qiS(Q)] < 0. Hence, %E[qis + q}‘,s] =2(1-0)<1. O

o

Proof of Proposition 2.8. The same logic outlined in the proof for Proposition 2.1
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applies to the period 2 objective function modified for the respective period price:
Elmp,i2(y)] = ppE[min(Dz, g2 + y)] — pu2gz + (pp — r)E[(D2 — (a2 + )] O

Proof of Proposition 2.9. The same logic outlined in the proof for Proposition 2.2

applies to the period 1 objective functions modified for the respective period price:
E[7p 1] = ppE[min(Dy, ¢1)] — pvgr + (pp — 7)E[(D1 — 1) ] O

Proof of Proposition 2.10. Evaluating E[rp pa(y)] for Dy ~ UJ0, B], we have that
Elmp.r2(y)] = (pp— r)( )—p2q2+r( G2+Y)—55(q2+y)?. Plugging in this expression for
E[rp,p2(qi —D1)"] in E[np p1(qn — D1) "], we obtam Elmp,ri(q —D1)*] = (pp—7r)B+
(r—pu)a+(r—pu2)E[(G@ — (61 — D1)*)*] = 55E[((2 — (@1 — D1) ") " + (@1 — D1)*)?]. To

evaluate these expectations, we need to consider two cases: (i) g2 > ¢ and (i) ¢ < ¢1.
q1 B

In case (i), E[(@a — (@ — D1)")t] = f[q_g —q1 + @) f(z1) dey + [ Gof (1) dzy and

q1
E[((72 — (@ — D))" + (n — fq2 x1)dry + fq2 x1) dry. Therefore,

evaluatingforD1NU[O,B],E[WD7F71(q1—D1)] (pp— T)B—i—(r pua)+(r—pusa)(Ga—

2"2) — 55G5- The first order optimality condition for ¢ is d%]E[WD rilqn — Dy)T] =

r—pu1— (r—pu2)% = 0.
q1

In case (i), E[(¢2 — (1 — D))" = [ @2 — ¢ + 1] f(21) doy + fqgf(xl) dxq and

E[(@ — (@~ D)) + (@ — D)) = [ (@ — o f@)dn+ | @) de +
0 q1—q2

fq2 x1)dxy. Evaluating for Dy ~ UJ0, B], E[rp r1(q1 — D1)%] = (pp — r)B + (r —

pUl)Ch +(r—pu2) (23 +q2— q1q2> 35 (zqé + gg (ng% —i—cj%). The first order optimality

condition with respect to ¢; is d ]E[WD ri(gn— D)% = (r—pu1) — wq — 5553 +

75235 = 0. Substituting g, = B<#> and simplifying, ¢? = 2B?*—2%1 = pUI) _ plopua)®

r2

Clearly, as ¢ > 0, we are interested in the non-negative root of thls quadratic, ¢f =
B
V20 = pua)r = (r — pug)*.

Note that the condition for case (i) ¢ > ¢ <

r—pu,2 > T—PU,1
r — r—pu2’
. For the equivalence of these conditions

Similarly, the
T—PU2 r—pu,1
r—puU,2

in case (ii), note that @ < q1 & @& < ¢?. Then QBQ(P?QU’Q) < 2p2Pu) Gince

condition for case (i) @ < q & —2%2



2.A Proofs 51

0 < B2 QE: ZUS > ::zg‘; > LUz > (r= 7;“) Further note that the condition

2(7" PU, 1) > (T_pU,Q)
(=pua) = 7
and by the reasoning in the last sentence this condition is trivially met. O

for a real root for the quadratic in the optimality condition is that

Proof of Corollary 2.5. When py1 > puz, ¢y = B<H%> >y = B(%) as the

numerator r — py; is strictly less than the numerator r — pyo. When pyy < pua, the

opposite relationship holds. O
Proof of Corollary 2.6. For the first subcase of ¢} p, when =292 > ::z o, it directly
follows that ¢} = B(: ig;) <Gy = B<H%). For the second subcase of ¢} , when
Ly :_Z Z;, note that after some algebraic steps we can rewrite this condition as
T—ﬁUﬂ < \/T2—P?j,2_i7'(pU,1—pU,2)‘ Then, ti _ B(\/7“2—p?],2_i7’(PU,1—pU,2)> > gy = B<T—fU,2)
also directly follows. m
Proof of Corollary 2.7. For the first subcase of ¢j r, when s > ::Zg’;, it is easy
to verify that ¢ p = B(: Zj;) > Qi = B(H%) For the second subcase of ¢ r,
when =222 < L% note that the subcase condition of —2%2 < L0t Uz o
U2 T=pU,2 r
2_p2 __9 — .
VTP :(pU’l WEIPN 2rpa — p1 — Py > 0. Since © > pya, 2rpy — (pfo + Ph) >

2rps — (rp1 + pfa) > 0. Observe that ¢f p = L /r? — Pha — 2r(pua — pu2) =

B \/ AY +2rp2 ~Pb P > By/ w = ¢} »» Where the inequality holds because
the second Subcase implies 2rpy — ]0U71 — p2U72 > 0. O

Proof of Lemma 2.5. From Corollary 2.7, the proof follows the same logical steps as
the proof for Lemma 2.1. O

Proof of Proposition 2.11. The seller’s profit function can be written as E[r(Q)] =
(P — Pu2) @i v+ (Pr2 — €)Q — Pu2E[(Q — ¢ — (@2 — (g5 p — D1) 7)) ] To explicitly
evaluate the last expectation term in E[r(Q)], we need to consider two cases for the
relationship between ¢ ), and Ga2: (i) G2 > g7 5, and (ii) Ga < gf 5

In case (i), since @ > qj 57, G2 > (i py — D1)™ and the second inner truncation can

be eliminated as this term is always positive. We have E[(Q — ¢} 5, — (@2 — (¢] 3y —
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min(q} 5. Q—2) Q-
D))" = [ Q=& —w)f(x)dn = [ (Q— G —x1)f(x1)drr as in
0 0
optimality ¢7 ,; < Q3 < ¢j + q2. Evaluating for the uniform distribution of Dy,

E[r(Q)] = (pv1 — pu2)dip + (Pu2 — 0)Q — 55(Q — 32)*.
In case (i), since g < 47 ar> the second inner truncation cannot be eliminated. We

a7 a2 Q-2
have E[(Q — qf y — (G2 — (¢5 5y — D1)T) )] = bf Q= gin)f(x)dar + [ (Q—
QT,M_QQ

G2 — x1) f(x1)dx,. Evaluating for the uniform distribution of Dy, E[n(Q)] = (pu1 —
2 *2 B " _
pu2)aiag + vz — Q= %2 (5 = 5 — Qo + al ).
In both cases, the first order optimality condition for @) is the same: %E[W(Q)] =

(pus — ) — 22(Q — ¢2) = 0. The concavity of the objective function in both cases
can also be easily verified as %E[W(Q)] = 2Q < 0 since pyg, B and Q are strictly

positive.

Finally, as we are dealing with a constrained optimization problem, we account for

pPU,2

i ar + 2. Note that the first of the three subcases of @}, does not happen in case (i) as

the requirement that the unique maximizer B <M> + @2 is such that ¢f ,, < @} <

G2 > qi y and B (%) > 0 therefore ¢} ), is definitely less than or equal to a quantity

greater than . O]
Proof of Lemma 2.4. Follows same logical steps as in proof of Lemma 2.2. O]

Proof of Proposition 2.12. From Corollary 2.7 and Lemma 2.3, the same logic as
Proposition 2.5 applies. O



Chapter 3

Who Should Pay for Waste? Buyer

Foresight and Policy Implications in

a Serial Newsvendor Setting with
Waste Costs

In Chapter 2, we studied a supply chain consisting of a buyer and a seller for a product
with a limited lifetime. The buyer and the seller both face uncertain demand — the
buyer from the downstream market and the seller from the buyer. Whereas the buyer
can purchase product to serve the downstream market in each of the periods in a
two-period horizon, the seller only has one opportunity to purchase product at the
beginning of the horizon. This serial newsvendor supply chain model allowed us to
investigate how the multi-unit product purchase decisions of a buyer and a seller vary
depending on the degree of strategic behavior of the buyer. We found that different
buyer types make different purchasing decisions that induce different stocking decisions
in the seller. Moreover, it may be more beneficial for the seller to face certain type of
buyers. Specifically, a seller earns more profit when facing buyers that are ‘smart’ (i.e.
forward-looking) but not too ‘smart’ (i.e. sophisticated). A buyer on the other hand

earns more profit the ‘smarter’ he is. What about waste outcomes?

In this chapter, we push this analysis further by shifting the focus to waste outcomes.
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In particular, we build on the serial newsvendor model introduced in the previous
chapter and on the insights obtained on the equilibrium inventory decisions associated
with the different buyer types, to evaluate the effect that imposing a waste cost on the
buyer and/or the seller has on reducing waste. Such a waste cost can be thought of
as an increased disposal cost or a Pigouvian tax on units wasted. A waste cost that is
applied on the seller leads the seller to stock less over the horizon, de facto reducing the
possibility of waste. However, a waste cost applied on the buyer reduces the buyer’s
purchase quantities, signaling to the seller to stock less product. It is thus not clear a
priori where and in what proportion a waste cost is more effectively or to what extent
these decisions are sensitive to the buyer type in the supply chain.

We evaluate waste outcomes on both the individual agent level and the supply chain
level. To focus the analysis, we restrict our attention to two of the three buyer types

defined in the previous chapter: the myopic buyer and the forward-looking buyer.

3.1 Introduction

The United Nations Food and Agricultural Organization estimates that one-third of
food produced annually worldwide, approximately 1.3 billion tonnes, is lost or wasted
(United Nations Food and Agriculture Organization 2011)." In wealthier countries, a
substantial proportion of this food waste and loss occurs downstream in the supply
chain at the retailer and consumer levels. In the United States, 80% of food loss and
waste is generated at the retail and consumer levels (ReFED 2016).

Food waste is problematic from various perspectives. First, food production is a
highly resource-intensive process. Worldwide food production in itself uses 70% of
freshwater (Molden 2007), occupies 40% of land (Foley et al. 2005), and generates
between 19—29% of greenhouse emissions (Vermeulen et al. 2012). When food is wasted,
all the resources that went into producing that food are wasted. Second, although food
supply is globally sufficient, this supply is unevenly allocated and many people still

struggle with food security. Even in the European Union, 33 million cannot afford a

1“Food loss” takes place in the upstream food supply chain (production, harvesting, and processing
stages) whereas “food waste” takes place in the downstream food supply chain (distribution, retail,
and final consumption stages).
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quality meal every second day (European Commission 2020). The food lost or wasted
worldwide is sufficient to feed 2 billion people, twice the undernourished population
(Huber 2017). Third, food waste accounts for 8% of greenhouse gas emissions (Hawken
2017). Food waste discarded in landfills is particularly harmful as it generates methane
gas, which is 20 times more powerful than carbon dioxide in terms of the greenhouse
effect. Finally, the financial losses that result from not selling or consuming food
are significant. In the United States alone, consumer-facing businesses in total and
a household of four people lose about $57B and $1, 600, respectively, due to food waste
every year (ReFED 2016).

From a policy perspective, food waste reduction efforts are receiving more attention.
Many governments and inter-governmental organizations have set targets for food waste
reduction. In 2015, as part of its Sustainable Development Goals, the United Nations set
a target to reduce per capita food waste at the retail and consumer levels by 50% by 2030
(United Nations 2015). The European Union is committed to meeting this target. To
operationalize its commitment, the EU has implemented a standardized methodology
to measure food waste across the EU countries so that national baselines and targets
can be defined in 2022 and 2023 (European Commission 2020). Increasingly, we also see
examples of policy interventions that effectively impose a waste cost on businesses and
consumers. On the business side, for example, in 2016, France imposed a fine on retailers
and wholesalers for the disposal of perishables that are still fit for human consumption
(LOI 2016-138 du 11 février 2016 relative & la lutte contre le gaspillage alimentaire (1)
2016). On the consumer side, many jurisdictions have dedicated processes for discarding
organic waste, including some that operate on a ‘pay-as-you-throw’ (PAYT) system.
For instance, in South Korea in 2013, a process was implemented for households to
take their organic waste to weighing stations in large residential areas and be charged
accordingly. Alternatively, consumers can buy dedicated bags, which on average cost a
family of four $6 per week, to discard their food waste (Kim 2019). Other municipalities
with such PAYT systems include cities in the Netherlands, Seattle, and California. The
intent behind such systems is to increase consciousness at the agent-level about how

much waste is generated.

Imposing a waste cost on any agent in the supply chain effectively increases the
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agent’s over-stocking cost. An agent may respond with different tactics to an increased
over-stocking cost, depending on its position in the supply chain and its degree of
foresight. For instance, a seller facing a higher overage cost may stock less from the
beginning or may reduce the product price as it approaches its expiration date to
incentivize purchases from buyers. Whereas stocking less may reduce waste in the
supply chain, marking down product may enhance buyer demand and increase waste
at a lower echelon of the supply chain. Similarly, a buyer facing a higher overage cost
may buy less product or may change the timing of his purchase if he expects product

to be cheaper the next period.

When one agent best responds to another, a feedback loop is created. Take the
example of seller markdowns, which are one of the most prevalent mechanisms to reduce
excess inventory (Fisher & Raman 2010). If a buyer expects a lower price in later
periods, he may decide to limit the amount he buys now to take advantage of the
future lower price. If the seller marks down inventory, the buyer may delay his purchase,
reducing the seller’s incentive to stock inventory, thereby exposing the buyer to the risk
of stockout meaning he needs to source from an alternative, potentially more expensive
source. This interplay highlights the role of buyer behavior and the degree to which a

buyer accounts for future periods or for the seller’s decisions.

While a waste cost on either agent, as discussed earlier with the examples of South
Korea and France, may be effective in reducing waste for that agent, it is not clear a
priori whether such interventions reduce total food waste in the supply chain, and if so,
by how much. This leads us to our main research questions: First, should the upstream
or the downstream agent be taxed to reduce waste? Second, how is this decision affected
by the degree of foresight of the downstream agent? Third, how can a policy-maker set

waste reduction targets that trade-off waste reduction with profit loss?

To study these questions, we model a supply chain consisting of two agents — a buyer
and a seller — over a two-period horizon. Both of these agents are newsvendors. In each
period, the buyer faces independent aggregate uncertain demand from a population of
downstream consumers. The buyer purchases product from the seller at the beginning
of each period before downstream demand realizes and may carry excess inventory over

from the first to the second period. The seller purchases product from an upstream
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supply source at the beginning of the selling horizon. Like the buyer, the seller can
carry inventory over from the first to the second period, but cannot replenish. Hence, in
deciding on a stocking quantity for the horizon, the seller needs to consider the buyer’s
second period purchase decision. In turn, the buyer’s second period decision depends
on the realization of demand the buyer observes in the first period, which is unobserved
by the seller. At the end of the selling horizon both agents discard excess product and
pay a penalty for this product. This cost can be thought of as a disposal cost.

In modeling the effect of buyer behavior, we define two buyer types: a myopic buyer
and a forward-looking buyer. The myopic buyer is our most basic buyer who exhibits
no strategic behavior. He completely ignores the second period when buying in the
first period. The forward-looking buyer accounts for the second period and optimizes

his purchase decisions over the horizon.

Using backward induction, we characterize the buyer’s purchase decisions and the
seller’s stocking quantity for a supply chain with each buyer type. We conduct a
numerical study to understand to what degree the waste and profit outcomes in a
supply chain are influenced by different buyer behavior and whether imposing a waste
the buyer and/or the seller actually reduce overall waste in the system. We find that
both taxing the buyer and the seller reduces waste without a large decline in profit, but
taxing the seller is more effective. We also find that the amount of the tax burden that
should be placed on the buyer or the seller to minimize total expected waste is sensitive
to different buyer types. When the buyer is forward-looking, it is better to distribute
the tax more equally between the buyer and the seller. When the buyer is myopic, it

is better to place more of the tax burden on the seller.

Our contribution is two-fold. First, we provide valuable insights into how different
degrees of buyer foresight affect waste levels in a supply chain and how policy
interventions can be targeted to be more effective given different buyer types. Second,
we provide a tool to inform waste reduction targets and understand the degree to which
imposing a waste cost can help achieve those targets. As one of the first studies to the
best of our knowledge addressing policy interventions to reduce food waste, we pave

the way for future research in this area.

This rest of the chapter is structured as follows. Section 3.2 briefly reviews the
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literature. Section 3.3 describes the modeling approach. Section 3.4 formulates and
solves the decision problem for the myopic and forward-looking buyers and for the seller
facing these buyer types. Section 3.5 investigates the effect of imposing a waste cost of
a buyer or a seller through numerical experiments, with and without seller markdowns.

Section 3.6 concludes with our main findings and future research directions.

3.2 Literature Review

This research relates to three main literature streams: food waste, strategic consumer
behavior, and perishables inventory management. We briefly review each below.

First and foremost, this research contributes to the nascent but growing literature
on food waste. Akkas & Gaur (2021) review the literature and propose an OM research
agenda for food waste, which includes policy interventions to reduce food waste. Other
consolidation efforts include the reviews by Do et al. (2021) and He et al. (2018).

Despite the interest in policy interventions in practice, only a handful of works
focus on policy interventions to reduce waste. In a one-period model with deterministic
demand, Katare et al. (2017) study the interaction between a welfare-maximizing
policy-maker and a population of representative end consumers to determine the socially
optimal disposal tax. They also look at a substitute policy intervention of providing
subsidies for food-preservation capital, such as technology or education to enhance waste
consciousness. The authors find that a zero waste target would require an infinitely large
disposal tax and, as such, is not realistic. Taking a more supply chain-focused approach
in a deterministic demand setting, Beullens & Ghiami (2021) examine an EOQ system
with a supplier and retailer in which the retailer can reduce setup costs and/or reduce
the product deterioration rate. The authors highlight a conflict of incentives because
the supplier can benefit from the retailer ordering larger quantities and producing higher
waste as a result of higher deterioration. To address this conflict, they look at the effect
of imposing waste targets on the retailer and find they can be useful mechanisms to
reduce waste. They comment briefly on the imposition of taxes on retailers to reduce
waste by stating that they distort incentives, would have to be very high to have an

effect, and would lead to greater losses of supply chain profits. Our results, in contrast,
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show that taxes in fact do not have to be so high to have a significant waste reduction

effect and they do so without large profit losses.
Both Katare et al. (2017) and Beullens & Ghiami (2021) study situations with

deterministic demand. However, one of the main causes of food waste in the supply
chain is demand uncertainty. Our work contributes to the literature on food waste by
incorporating demand uncertainty into the interaction between a seller and a buyer.
More specifically, we model the decision-making of both the seller and the buyer using
a serial newsvendor framework. We then evaluate the waste and profit outcomes in the
supply chain to derive insights on the effect of imposing a waste cost on one or both

echelons in the supply chain.

The modeling framework we adopt is inspired by Kirci et al. (2018). In this chapter,
the authors study a supply chain with a retailer and end consumer population in which
a product can be offered in bulk (meaning that the consumer can purchase exactly as
much as he wants) and/or in pre-determined package sizes. The idea is that giving
consumers the choice to decide their purchase quantity exactly may reduce waste. In
this sense, the waste-reduction intervention is at the retailer level. The consumer’s
purchase decision is modeled as a one-period newsvendor problem. The authors study
the retailer’s pricing decision and the impact of the product format offered on waste.
While we do not study the format offering, we extend the one-period newsvendor model
to a two-period model to study the inter-temporal effects of imposing a tax on the buyer

or the seller in a system.

The study of the use of taxation as an instrument to reduce the production or
consumption of products with negative externalities is not new. Cachon (2014) looks
at the net effect in terms of carbon emissions in a system where retailers locate a large
store away from a consumer population (hence requiring driving) and in a system with
a small store located more centrally. He finds that the carbon cost would have to
be so high that taxing either agent would be impractical. Krass et al. (2013) study
how interventions such as taxes, subsidies, and rebates affect the choice between an
established technology and a newer greener technology and the effect on emissions
reductions. We study the policy intervention of imposing waste cost on agents along

the supply case and the effectiveness of such policies in reducing waste in the system.
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The second stream of literature that our work builds on is the literature on strategic
consumer behavior. Reviews of the strategic consumer behavior literature include Wei
& Zhang (2018), Shen & Su (2007), and Elmaghraby & Keskinocak (2003). This
literature focuses on the inter-temporal game between a seller and a buyer where buyers
can purchase at most one unit of a good. Given the negative impact on profitability
induced by strategic consumers, the literature is concerned with counteracting such
behavior. Liu & Van Ryzin (2008) examine inventory rationing whereas Levin et al.
(2010) examine dynamic pricing as strategies to counteract the negative profitability of

strategic consumer behavior.

While assuming that buyers purchase at most one unit is reasonable assumption
for purchases such as electronics and fast fashion, it is not a reasonable assumption
for purchases such as groceries (e.g., fresh produce). Only a handful of studies deal
with strategic consumer behavior when making multi-unit purchases. In an auction
setting, Elmaghraby et al. (2008) characterize the optimal timing of markdowns in a
multi-period horizon when multi-unit purchases are possible. In a two-period setting
with a monopolist seller and a population of buyers, Jin et al. (2021) study the optimal
period prices when a buyer can purchase up to two units of a good. They find that,
unlike in single-unit settings, strategic buyer behavior in multi-unit settings increases
the the optimal first period price. Moving away from pricing, Perez Becker et al.
(2021) focus on the inventory decisions of a seller and a buyer with varying degrees
of foresight. The authors find that, even when pricing is constant, the purchase and
stocking decisions are sensitive to buyer foresight. Using a similar model, the present
work extends this study to evaluate the impact of buyer behavior on waste and the
effectiveness of waste-reduction policies that impose a waste cost on agents at different

levels of the supply chain.

Finally, we also build on the literature on perishables inventory management. This
literature is rich and well-developed. Reviews of the perishables inventory management
literature include Nahmias (1982), Goyal & Giri (2001), Karaesmen et al. (2011), and
Bakker et al. (2012). On the OR side, most of this literature is concerned with modeling
product deterioration and determining optimal inventory policies that take into account

the age of different generations of a product that co-exist with each other. We do not
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model the deterioration process or account for products of different ages co-existing
with each other. Rather, we employ a streamlined inventory model of a perishable
good based on a serial newsvendor framework to study the interaction between a seller

and a buyer in a decentralized setting under policy interventions.

3.3 Model

A seller sells a perishable product with a fixed deterministic lifetime of two periods. She
has a single ordering opportunity at the beginning of the horizon and purchases ) units
of product from an upstream agent at a unit production cost of ¢ > 0. Each period,
the seller sells this product at a unit sales price of py,, t € {1,2}, with py1,pu2 > ¢
(to ensure her participation in the market). The unit sales prices py; and pyo are
exogenous and pre-announced at the beginning of the horizon. The seller can carry
over unsold product from period 1 into period 2, however, any unsold product at the
end of the horizon must be discarded. She incurs a unit waste cost of wy > 0 for each
discarded product.

At the beginning of each period, the buyer seeks to purchase quantities ¢;,t € {1,2}
from the seller. The buyer’s higher order frequency compared to the seller’s reflects the
fact that in multi-echelon settings it is common for downstream agents to have higher
order frequencies than their upstream counterparts and that these order frequencies
are nested within those of the upstream’s agent (e.g., Roundy 1985). The buyer faces
uncertain demand in each period, denoted by the random variables Dy, t € {1, 2}, which
each have a distribution F' and density f. The buyer’s purchase quantity decisions are
made before demand in period t is realized. If the demand realization in a period
exceeds the amount of product the buyer has on-hand, he purchases additional units
exactly up to his demand realization from an alternative source, albeit at a higher unit
price of r. The buyer sells product to the downstream market at a unit price of pp > 0,
which is constant across both periods. We assume that pp > r > py; for t = {1,2} to
ensure that the buyer participates in both the regular market and the runout market. In
the first period, if the demand realization is less than the quantity of product on-hand,

the buyer carries over leftover inventory y = (¢; — D1)™ into the second period at zero
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holding cost. In the second period, if the demand realization is less than the quantity
of product on-hand, because the horizon is ending, any leftover inventory is discarded.
Similar to the seller, the buyer incurs a unit waste cost of wy > 0 for product discarded.

The sequence of events is illustrated in Figure 3.1.

v

Seller Seller Seller
stocks @ carries over incurs
units (@-9,)" waste cost
i |
i '
Buver Buyer Buyer Buyer Buyer Buyer
ordc;s 4 satisfies carries over orders ¢, satisfies incurs
units runout (¢,-D;)* units runout waste cost
i | i |
' i i i
Demand | ! Demand ! !
D, realizes ' ' D, realizes ! |
i ' i i
| : + ) i .

! [
Period 1 Period 2

Figure 3.1: Sequence of events with waste costs

In line with this sequence of events, the decision-making problem is modeled as a
three-stage game. The seller is the first-mover and optimizes her stocking quantity @)
over the horizon. The buyer optimizes his period purchase quantities of ¢; and ¢,. The
buyer’s demand distribution and cost parameters are common knowledge. For each of
the buyer types, we first solve for the buyer’s period 2 optimal purchase quantity, ¢;.
Then, we solve for the buyer’s period 1 optimal purchase quantity, ¢j. Finally, we solve
for the seller’s best response in terms of a horizon stocking decision ) given the buyer’s
optimal purchase quantity decisions ¢; and g¢;.

To study the effect of different degrees of buyer foresight on inventory decisions, we
define two buyer types: a myopic buyer and a forward-looking buyer. The subscript
i € {M, F'} denotes the decisions associated with each buyer type, where M denotes the
myopic buyer and F' denotes the forward-looking buyer. Both buyer types decide on
their period purchase quantities based on their perceptions of the trade-offs. The myopic
buyer optimizes each period individually and ignores inter-temporal implications. In

each period, he simply observes the period price and decides on a purchase quantity
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for that period based on the amount of product he has on-hand and knowledge
of the distribution of downstream demand. The forward-looking buyer takes into
account inter-temporality by considering prices across periods, the ability to use leftover
inventory from period 1 in period 2, and the upcoming discarding of leftover product
at the end of the horizon. He observes the pre-announced prices for period 1 and
period 2 and, using knowledge of the downstream demand distribution and other cost
parameters, decides on a purchase quantity for each period. In Section 3.4, we analyze

this model for each of the buyer types.

3.4 Model Analysis

3.4.1 Buyer’s Period 2 Problem

The myopic and forward-looking buyers face the same problem in period 2. For any
given leftover inventory realization y; = (¢, — D1)" from period 1, a buyer of type
i = {M, F'} chooses purchase quantity g»; > 0 to maximize his perceived period profit

function, given by:

El[7mp.i2(yi)] =ppE[min(Da, ¢2; + )] — pu2ge,
+ (pp — 1)E[(Ds — (g2 + 4:)) "] — wpE[((g2 +y) — D2)"].  (3.1)

The first term is the revenue from sales of product purchased from the seller to the
downstream market. The second term is the cost of product purchased from the seller.
The third term is the net profit from sales of product purchased from the runout
option. The fourth term is the cost of waste incurred for excess inventory. Solving for

this newsvendor problem, in period 2, a buyer of type ¢ = {M, F'} seeks to purchase:

Y = (G —v;)" where go = F! TPz 3.2
G = (32 — yi)" where g o (3-2)
The optimal period 2 purchase follows a base-stock policy, where ¢ is the order-up-to
level and is the same regardless of the buyer type. The differences between the myopic

and forward-looking buyers emerge in their optimal period 1 purchase decisions.
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3.4.2 Buyer’s Period 1 Problem

In solving the buyer’s period 1 problem, we distinguish between the myopic and the

forward-looking buyer.

Myopic Buyer

Since the myopic buyer maximizes his perceived profit for each period individually, he
does not consider any implications of his period 1 decision on period 2. In period 1,
the myopic buyer’s problem is to choose purchase quantity ¢; 3 > 0 to maximize his

perceived period profit function, given by:

E[mp 1] = ppE[min(D1, ¢1.:m)] — puaqim + (pp — 7)E [(Dl — Q1,M)+] . (3.3)

Solving for (3.3), in period 1, the myopic buyer seeks to purchase:

G =F" (—r_p[“). (3.4)
’ T

The optimal period 1 decision also follows a base-stock policy, where g7, is

effectively the period 1 order-up-to level.

Forward-Looking Buyer

In period 1, the forward-looking buyer maximizes his perceived profit across the entire
horizon. His problem is to choose a purchase quantity ¢; » > 0 to maximize his horizon

perceived profit function, given by:

E[mp,p1] = ppE[min(Dy, q1,r)]—puigrr+(pp—r)E[(D1—q1,p) |+ E[mp, p2(q1,r—D1) 7))
(3.5)

Compared to the myopic buyer’s period 1 problem, the forward-looking buyer’s
profit function incorporates an extra term to link the outcomes in both periods. In

period 1, the forward-looking buyer seeks to purchase:

¢, p = argmax,  Elrp p1]. (3.6)
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3.4.3 Seller’s Problem

The seller’s problem is structurally the same regardless of the buyer type she faces. At
the beginning of the horizon, given the respective g7 ; and g5 ; for buyer type i € {M, F'},
the seller chooses order quantity ); > 0 to maximize her horizon profit. The seller’s

horizon profit is given by:

E[7y,i(Qi)] =pu,1 min(qy ;, Qi) + pr2E[min(gs;, Qi — q7 ;)] — cQ;
—wyE[(Q — (ﬁz + min(q;,m Q- QIz)))ﬂ (3.7)

The first and second terms of (3.7) are the revenues from sales in each period to a
buyer of type i. The third term is the product cost incurred by the seller. The fourth
term is the total waste cost from any product remaining after the second period, which

must be discarded.

Observe that the seller faces no uncertainty in the buyer’s period 1 purchase decision,
since ¢y ; does not depend on any random variables. Therefore, at optimality, the seller
stocks at least ¢7,;. In fact, the seller only faces uncertainty related to the buyer’s
period 2 purchase decision. While the seller knows the distribution of downstream
demand in each period, the buyer’s purchase quantity in period 2 is a random variable
that depends on the buyer’s leftover inventory, which in turn depends on his realized
demand in period 1. At optimality, since the buyer never buys more than his order-up-to
quantity ¢ in period 2, the seller would never stock more than g, for this period. Thus,
ai; < QF < ¢qi; + @ When facing a buyer of type i € {M, F'}, the seller’s stocking

quantity for the horizon is given by:
Q; = argmaxg, E[my,(Q;)]. (3.8)

The seller solves a newsvendor problem using the distribution of the demand the
seller faces from the buyer to determine ). The demand the seller faces from a buyer
of type i € {M, F'} over the horizon, denoted by NV;, is:

Ni=qi; + (@ — (¢i, — D1)")™. (3.9)
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Based on her willingness to take risk on the supply she brings for period 2, however,
the seller may not have sufficient inventory to satisfy the buyer’s period 1 and period 2
purchase decisions. The buyer’s effective purchase quantity for the horizon, denoted by
H;, is:

H; = q}‘,i + min (Q;k - Qim (2 — (CIIZ - D1)+)+) . (3.10)
Both waste and profit at the end of the horizon for the buyer and the seller are
consequently a function of both how much inventory the seller decides to bring as

well as of how much the buyer is actually able to buy. The seller’s waste when she faces
a buyer of type i = {M, F'}, denoted by SW;, is given by:

SW; = QF — H;. (3.11)
The buyer’s waste for a buyer of type ¢ = {M, F'}, denoted by BW}, is given by:
BW; = ((¢;; = D)* +min (Qf — 47 (& — (45, — D)*)7)) = D2) . (3.12)
Total waste in a supply chain of buyer type i = {M, F'}, denoted by TW;, is then:
TW; = SW; + BW;. (3.13)

Since both agents influence each other’s decisions, it is not clear a priori how buyer
behavior influences waste and profit outcomes. We explore these outcomes and the

effect of imposing a waste cost on either agent numerically in the next section.

3.5 Numerical Study

To ensure that the parameters for our instances are such that both the buyer and the
seller participate in the market (i.e., pp > > py1 > pu2 > ¢ > 0), we set pp = 10 and
all other parameters in relation to each other through parameter-specific multipliers,
i.e., r = app where o € {0.7,0.8,0.9}, py1 = Br where g € {0.4,0.5,0.6}, py2 = Opua
where § € {0.8,0.9, 1}, and ¢ = ypy 2 where v € {0.4,0.5,0.6}. The a and v multipliers

are calibrated to ensure that the total amount of waste and the distribution of waste
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between the buyer and seller are consistent with industry studies (e.g., ReFED 2016,
Van Donselaar & Broekmeulen 2012). Under these parameter settings, the seller’s profit
margin is 40 — 68% in period 1 and 40 — 60% in period 2. While such a profit margin
may seem high, it is reasonable in a supply chain with a seller with significant market
power. Dy and D, are Gamma distributed with mean p = 50 and coefficient of variation
CV €{04,0.8}2

To investigate the levels of waste and the effects of imposing a waste tax on either
agent in supply chains with different buyer types, we conduct two types of numerical
studies. In the first type of study, we set the values for the waste tax on the buyer
and the seller at an absolute level. The purpose of this study is to understand how the
level of the waste tax on each agent affects the level of waste in the supply chain under
each buyer type. The values for the waste tax on the buyer and the seller are given by
wp € {0,0.5,1,1.5,2} and wy € {0,0.5,1,1.5,2}, respectively. Table 3.1 summarizes
the parameter settings of this first type of study.

Input parameter No. of values Values

Buyer’s unit sales price, pp 1 10

Unit runout cost (r) multiplier, 3 0.7, 0.8, 0.9
Seller’s period 1 price (py,1) multiplier, 8 3 0.5, 0.5, 0.6
Seller’s period 2 price (py,2) multiplier, 6 3 0.8, 0.9, 1
Seller’s product cost (¢) multiplier, 3 0.4, 0.5, 0.6
Coefficient of variation of demand, C'V 2 0.4, 0.8

Seller unit waste cost, wy 5 0,0.5,1, 1.5, 2
Buyer unit waste cost, wp 5 0,0.5,1, 1.5, 2

Table 3.1: Parameter settings for the first numerical study

In the second type of study, we aim to better understand the degree to which taxes
should be imposed on each agent. To this end, we consider a situation in which the
policy-maker has a maximum absolute amount of tax he is willing to impose on both
agents combined. This combined tax is denoted by wr where wr = wy + wp. Let
denote the proportion of the tax imposed on the buyer, where ¢ € {0,0.25,0.5,0.75,1}.

The tax imposed on the buyer is then wp = dwr and the tax imposed on the seller is

2We also repeated these experiments with uniformly distributed demands, as a numerical extension
of Perez Becker et al. (2021) with waste. The findings are consistent to those with Gamma distributed
demands.
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wy = (1 — §)wy. We examine values of wy € {0,0.5,...,4.5,5} for a supply chain with

each buyer type. Table 3.2 summarizes the parameter settings of the second study.

Input parameter No. of values Values

Buyer’s unit sales price, pp 1 10

Unit runout cost (r) multiplier, « 3 0.7,0.8, 0.9

Seller’s period 1 price (py,1) multiplier, 3 3 0.5, 0.5, 0.6

Seller’s period 2 price (py,2) multiplier, 6 3 0.8, 0.9, 1

Seller’s product cost (¢) multiplier, 3 0.4, 0.5, 0.6

Coefficient of variation of demand, C'V 2 0.4, 0.8

Combined unit waste cost, wr 11 0,0.5,1,1.5,2,25,3,3.5,4,4.5,5
Buyer % of combined unit waste cost, ¢ 5 0, 0.25, 0.5, 0.75, 1

Table 3.2: Parameter settings for the second numerical study

We first summarize the findings of these studies for the case in which no seller
markdowns take place (i.e., # = 1). Then, to test for the impact of seller markdowns
on waste and whether the same findings hold in a scenario where seller markdowns take

place, we repeat the studies for the three levels of 6 referenced above.

3.5.1 No Seller Markdowns
Absolute Tax Levels

Based on the parameter values, 3 x 3 x 1 x 3 x 2 x 5 x 5 = 1,350 instances are
generated and the model is solved for each buyer type. The results of this experiment
for the myopic and forward-looking buyers are displayed in Table 3.3 and Table 3.4,
respectively. Specifically, these tables display the average across all instances for each
fixed value of the listed parameter.

The first observation is that the amount of waste, both for each agent and overall in
the supply chain, is sensitive to the buyer type. As measures of waste, we consider both
absolute waste and relative waste. Relative waste is defined as the ratio of expected
waste over the seller’s stocking decision Q*, in line with Kirci et al. (2018). On average,
the forward-looking buyer wastes more than the myopic buyer in both absolute terms
(7.29 vs. 5.09) and relative terms (8.89% vs. 6.63%). The intuition behind this result
is that the forward-looking buyer buys more than the myopic buyer from the seller

in period 1, knowing that he can still sell this product in period 2 or in case of high
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downstream demand in period 1. However, he is not actually able to sell as much as
he buys to the downstream market. Consequently, the seller facing the forward-looking
buyer wastes less than the seller facing the myopic buyer on both absolute terms (1.65
vs. 4.95) and relative terms (2.01 % vs. 6.45 %). Overall, however, the expected total
waste in a supply chain with a myopic buyer is greater than the expected total waste
in a supply chain with a forward-looking buyer in both absolute terms (10.05 vs. 8.94)
and relative terms (13.08% and 10.90%). Even though the myopic buyer wastes less,

the seller facing the myopic buyer wastes significantly more.

Avg Exp Waste Avg Exp Profit Avg Quantities
Parameter Value Count  Buyer  Seller Total Buyer  Seller Total q7 q2 Q*
0.7 450 4.87 4.78 9.65 513.75 111.85 625.60 43.88 39.92 75.99
el 0.8 450 5.10 4.96 10.07 445.61 129.10 574.72 43.88 40.32 76.87
0.9 450 5.30 5.12 10.42 37749 146.43 523.92 43.88 40.65 77.59
0.4 450 6.42 5.14 11.57 517.11 113.66 630.77 50.89 46.21 83.04
154 0.5 450 5.04 5.23 10.26 443.64 130.53 574.18 43.60 40.12 77.30
0.6 450 3.81 4.49 8.30 376.11 143.18 519.29 37.14 34.55 70.11
0.4 450 5.84 6.38 12.22 447.85 159.85 607.70 43.88 40.29 80.34
5 0.5 450 5.16 5.03 10.19 446.13  128.65 574.79  43.88 40.29 77.21
0.6 450 4.28 3.45 7.73 442.87  98.88 541.75 43.88 40.29 72.90
0 270 6.00 6.76 12.76 448.17 134.41 582.57 43.88 40.29 81.11
0.5 270 5.46 5.61 11.07 447.08 131.34 57841 43.88 40.29 78.60
wy 1 270 5.04 4.79 9.83 445.74  128.74 574.48 43.88 40.29 76.59
1.5 270 4.64 4.08 8.72 444.30 126.53 570.82  43.88 40.29 74.70
2 270 4.31 3.53 7.84 442.82  124.63 567.45 43.88 40.29 73.08
0 270 6.52 5.01 11.53 453.21 135.69 588.90 43.88 43.88 80.40
0.5 270 5.64 5.00 10.64 44898 131.83 580.80 43.88 41.82 78.34
wp 1 270 4.95 4.97 9.92 445.23  128.61 573.84 43.88 40.06 76.58
1.5 270 4.40 4.92 9.32 441.87 12591 567.77 43.88 38.53 75.06
2 270 3.96 4.86 8.82 438.81 123.61 562.42 43.88 37.19 73.71
v 0.4 675 4.30 4.27 8.57 494.96 152.84 647.81 47.47 44.88 86.96
0.8 675 5.88 5.64 11.52 396.28 105.41 501.69 40.28 35.71 66.68
All 1350 5.09 4.95 10.05 445.62  129.13 574.75 43.88 40.29 76.82

Table 3.3: Numerical results for first experiment — supply chain with myopic buyer (no
seller markdowns)

The second observation is that, directionally, the effects of shifting the parameters
of study on waste and profit outcomes are similar for both buyer types, suggesting
robustness of these effects to different buyer behavior. In terms of the waste-related
parameters, as wy and wp increase, expected total waste decreases with relatively small

losses to expected total profit. These results suggest that both instruments are effective
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Avg Exp Waste Avg Exp Profit Avg Quantities
Parameter Value Count  Buyer  Seller Total Buyer  Seller Total q; q2 Q*
0.7 450 7.11 1.56 8.67 526.27 135.09 661.37 77.10 39.92 81.38
@ 0.8 450 7.30 1.66 8.96 460.25 15545 615.70 77.58 40.32 82.09
0.9 450 7.46 1.74 9.20 394.29 175.86 570.15 77.97 40.65 82.68
0.4 450 9.88 1.42 11.29 529.83 136.68 666.51 84.46 46.21 88.40
B8 0.5 450 7.09 1.64 8.73 458.09 157.08 615.17  77.47 40.12 81.93
0.6 450 4.90 1.91 6.81 392.89 172.65 565.54 70.74 34.55 75.82
0.4 450 7.54 2.97 10.50 464.02 188.07 652.09 77.55 40.29 84.88
ol 0.5 450 7.27 1.38 8.65 459.98 155.13 615.10 77.55 40.29 81.64
0.6 450 7.07 0.61 7.68 456.81 123.21 580.03 77.55 40.29 79.63
0 270 7.60 3.37 10.97 464.82 157.30 622.12 77.55 40.29 85.61
0.5 270 7.38 1.99 9.37 461.70 155.99 617.70 77.55 40.29 82.96
wy 1 270 7.25 1.31 8.56 459.67 155.18 614.85 77.55 40.29 81.45
1.5 270 7.15 0.92 8.07 458.18 154.64 612.82 77.55 40.29 80.48
2 270 7.07 0.67 7.74 456.98 154.24 611.22 77.55 40.29 79.76
0 270 8.91 1.61 10.52 470.86 163.43 634.29 81.71 43.88 86.12
0.5 270 7.94 1.63 9.57 464.95 158.93 623.88 79.36 41.82 83.80
wp 1 270 7.15 1.65 8.80 459.71  155.00 614.72 77.31 40.06 81.80
1.5 270 6.50 1.68 8.18 455.03 151.54 606.57  75.50 38.53 80.04
2 270 5.95 1.70 7.65 450.80 148.45 599.26 73.89 37.19 78.49
cv 0.4 675 4.21 2.79 6.99 504.92 162.61 667.53 79.82 44.88 87.84
0.8 675 10.38 0.52 10.90 415.62 148.33 563.96  75.29 35.71 76.26
All 1350 7.29 1.65 8.94 460.27 155.47 615.74 77.55 40.29 82.05

Table 3.4: Numerical results for first experiment — supply chain with forward-looking
buyer (no seller markdowns)

for waste reduction. However, taxing the seller results in a sharper reduction in waste for
both buyer types. Taxing the seller reduces relative total waste from 12.82% to 9.71%
in a supply chain with a forward-looking buyer and from 15.74% to 10.73% in supply
chain with a myopic buyer. By comparison, taxing the buyer reduces the percentage of
expected total waste from 12.21% to 9.75% in a supply chain with a forward-looking
buyer and from 14.35% to 11.96% in a supply chain with a myopic buyer.

The greater effectiveness of taxing the seller can be explained by the mechanism
triggered by increases in wy. As wy increases, the seller immediately responds by
stocking less to limit her overage risk in period 2. The buyer’s purchase decisions are
unchanged, but his actual purchases may be limited by the seller’s supply and he may
need to buy more from the runout option, reducing his waste as well as his profit. As
wp increases, the purchase decisions of both buyers decrease, reducing demand for the

seller’s product and the seller responds by stocking less. However, the seller’s response
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is slower than when she is directly responding to an increase in wy.

Whereas increasing wy reduces total waste in similar magnitudes for both the
myopic and forward-looking buyer, increasing wp results in a greater reduction in total
waste for the forward-looking buyer. As wp increases, the myopic buyer buys less in
period 2 only, but the forward-looking buyer buys less in both period 1 and period 2,
reducing more sharply the demand for the seller’s product and the seller’s stocking
quantity. Increases in wp, hence, are more effective in reducing waste when the seller
faces a forward-looking buyer (i.e., same tax on buyer will have greater waste-reduction
effect).

Proportion of Tax Burden

Based on the parameter values, 3 x 3 x 1 x 3 x 2 x 11 x 5 = 2,970 instances are
generated and the model is solved for each buyer type. The results of this experiment
are displayed in Table 3.5 for the myopic buyer and Table 3.6 for the forward-looking
buyer.

On average, profit for the buyer and seller individually and profit in total decreases
in 0, the proportion of the tax imposed on the buyer. As ¢ increases and more
of the tax shifts to the buyer, two competing effects are observed: 1) the buyer’s
dampening demand for the seller’s product as his overage cost increases and 2) the
seller’s incentivization of supply as her overage cost decreases. When the buyer faces
a higher overage cost, his demand for the seller’s product decreases, and he buys more
instead from the runout option once downstream demand is certain. At the same time,
as 0 increases, the seller’s overage cost decreases and she has an incentive to offer more
supply. However, as she best responds to the buyer’s dampened demand, the quantity
of stock the seller offers is constrained by the buyer’s demand. The relative magnitudes
of these two effects determine the purchase and stocking decisions and the profit in the
system. On average, based on our test bed, it is the demand-dampening effect that
dominates. For a policy-maker, this result suggests that, from a profit perspective, it
may be better to impose a greater proportion of the tax burden on the seller than on
the buyer.

A more intricate story emerges for total waste, which is not monotonic in §. This
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Avg Exp Waste Avg Exp Profit Avg Quantities
Parameter Value Count  Buyer  Seller Total Buyer  Seller Total q; q2 Q*
0.7 990 4.69 4.65 9.34 512.21 110.92 623.13 43.88 39.51 75.12
@ 0.8 990 4.91 4.83 9.73 443.97 128.00 571.96 43.88 39.92 76.00
0.9 990 5.09 4.98 10.07 375.75 145.16  520.91 43.88 40.25 76.73
0.4 990 6.25 5.11 11.36 514.74 112.87 627.61 50.89 45.73 82.31
B8 0.5 990 4.82 5.05 9.88 441.99 12942 57142 43.60 39.73 76.36
0.6 990 3.62 4.29 7.91 375.19 141.79 516.98 37.14 34.22 69.19
0.4 990 5.59 6.18 11.77 446.27 158.37 604.64 43.88 39.89 79.33
ol 0.5 990 4.96 4.89 9.85 444.48 127.58 572.06 43.88 39.89 76.31
0.6 990 4.14 3.39 7.53 441.18 98.13 539.31 43.88 39.89 72.21
0 270 7.59 6.82 14.41 455.34  141.03 596.36  43.88 43.88 84.69
0.5 270 6.77 6.21 12.98 452.86 137.46 590.32  43.88 42.83 82.34
1 270 6.10 5.74 11.84 450.44 134.33 584.77 43.88 41.89 80.33
1.5 270 5.52 5.32 10.84 448.10 131.56 579.66  43.88 41.05 78.49
2 270 5.02 4.95 9.97 445.83  129.09 574.92 43.88 40.29 76.82
wp 2.5 270 4.59 4.63 9.23 443.63 126.88 570.51 43.88 39.60 75.30
3 270 4.22 4.34 8.57 441.51 124.89 566.39 43.88 38.96 73.90
3.5 270 3.90 4.08 7.98 439.45 123.08 562.53 43.88 38.37 72.61
4 270 3.62 3.85 7.46 437.45 12145 558.89 43.88 37.82 71.41
4.5 270 3.37 3.63 7.00 435.51 119.95 555.46 43.88 37.31 70.31
5 270 3.15 3.44 6.59 433.63 118.59 552.21 43.88 36.83 69.28
0 594 5.49 3.57 9.06 449.67 130.57 580.23 43.88 43.88 76.09
0.25 594 4.97 4.02 8.98 445.61 127.87 573.49 43.88 41.44 75.19
) 0.5 594 4.71 4.58 9.29 44297 126.74 569.72  43.88 39.53 75.14
0.75 594 4.63 5.36 9.99 441.37 126.83 568.20 43.88 37.97 75.87
1 594 4.69 6.56 11.25 440.26  128.12 568.38  43.88 36.65 77.47
cv 0.4 1485 4.12 4.18 8.31 493.58 151.72 645.31 47.47 44.56 86.24
0.8 1485 5.67 5.45 11.12 394.37 104.33 498.70  40.28 35.23 65.67
All 2970 4.90 4.82 9.72 443.98 128.03 572.00 43.88 39.89 75.95

Table 3.5: Numerical results for second experiment — supply chain with myopic buyer
(no seller markdowns)

non-monotonicity of total waste is related to the non-monotonicity in the seller’s
stocking decision, Q*. As J starts increasing from zero, the buyer’s demand-dampening
effect dominates over the seller’s supply-incentivizing effect and the seller stocks
less. This decrease continues until 0 reaches a threshold in which the seller’s
supply-incentivizing effect starts dominating and the seller’s stocking decision increases
again.  Seller’'s waste always increases in 9, but buyer’s waste may decrease or
increase depending on how the buyer’s demand compares to the seller’s supply. The
resulting non-monotonicity of total waste in ¢, in addition to the previously established
monotonicity of total profit in §, suggests that it may be possible to strike a balance that

reduces total waste without reducing profit as heavily by distributing the tax burden
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Avg Exp Waste Avg Exp Profit Avg Quantities
Parameter Value Count  Buyer  Seller Total Buyer  Seller Total q; q2 Q*
0.7 990 6.98 1.70 8.69 525.03 134.28 659.31 76.58 39.51 81.03
@ 0.8 990 7.16 1.77 8.93 458.81 154.51 613.33  77.07 39.92 81.70
0.9 990 7.32 1.83 9.15 392.68 174.81 567.49 77.47 40.25 82.27
0.4 990 9.70 1.54 11.24 527.94 135.81 663.76 83.87 45.73 87.96
B8 0.5 990 6.96 1.75 8.71 456.68 156.12 612.80 76.96 39.73 81.53
0.6 990 4.81 2.02 6.82 391.91 171.67 563.57 70.30 34.22 75.51
0.4 990 7.41 3.24 10.64 462.82 186.98 649.80 77.04 39.89 84.74
ol 0.5 990 7.12 1.43 8.55 458.40 154.16 612.56 77.04 39.89 81.14
0.6 990 6.94 0.63 7.57 455.31 12247 57777 77.04 39.89 79.13
0 270 9.27 3.23 12.50 47497 165.20 640.17 81.71 43.88 89.49
0.5 270 8.63 2.55 11.18 470.59 162.25 632.84 80.51 42.83 87.00
1 270 8.10 2.14 10.24 466.81 159.72  626.53  79.43 41.89 85.07
1.5 270 7.66 1.88 9.54 463.48 157.49 620.97 78.45 41.05 83.49
2 270 7.27 1.69 8.96 460.44 15549 615.93 77.55 40.29 82.12
wp 2.5 270 6.94 1.54 8.48 457.65 153.68 611.33 76.73 39.60 80.91
3 270 6.64 1.43 8.07 455.09 152.03 607.12 75.96 38.96 79.83
3.5 270 6.38 1.34 7.72 452.72  150.51 603.23 75.24 38.37 78.86
4 270 6.14 1.27 7.41 450.51 149.11 599.62  74.57 37.82 77.97
4.5 270 5.93 1.21 7.14 448.46  147.81 596.27 73.94 37.31 7717
5 270 5.74 1.16 6.91 446.55 146.59 593.14 73.35 36.83 76.43
0 594 8.68 0.86 9.53 467.92 16243 630.35 81.71 43.88 84.17
0.25 594 7.65 1.05 8.70 461.56 157.33 618.89 78.91 41.44 81.92
) 0.5 594 6.93 1.37 8.30 456.93 153.42 610.35 76.65 39.53 80.52
0.75 594 6.42 1.98 8.39 454.02 150.53 604.54  74.77 37.97 80.07
1 594 6.10 3.58 9.68 453.79 14897 602.75 73.16 36.65 81.66
cv 0.4 1485 4.09 2.79 6.88 503.41 161.98 665.39 79.49 44.56 87.33
0.8 1485 10.22 0.75 10.96 414.28 147.09 561.37 74.60 35.23 76.00
All 2970 7.16 1.77 8.92 458.84 154.53 613.38 77.04 39.89 81.67

Table 3.6: Numerical results for second experiment — supply chain with forward-looking
buyer (no seller markdowns)

between the buyer and the seller.

How, then, should a policy-maker determine the optimal distribution of the tax
burden? We begin this discussion by summarizing a few key observations on the
waste-minimizing 6. While the policy-maker may not wish or be able to set J at the
waste-minimizing level, examining this extreme case of the waste-minimizing ¢ allows
us to derive insights about the degree to which it is important to consider different
buyer types in making policy decisions. Figure 3.2 shows the effect of changing ¢ for
two levels of wr (i.e., wr = 2 on the left and wy = 4 on the right) in a supply chain
with a forward-looking buyer (top row) and a myopic buyer (lower row) respectively.

When wy = 2, the waste-minimizing 0 in a supply chain with a forward-looking buyer
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is one in which the buyer and the seller share the tax burden relatively equally. For
a supply chain with a myopic buyer, the waste-minimizing J is one in which the seller
has the entire tax burden. When wy = 4, the waste-minimizing 4 is one in which the
buyer carries more of the tax burden for a supply chain with a forward-looking buyer
and one in which the seller carries more of the tax burden in a supply chain with a
myopic buyer. The waste-minimizing ¢ is therefore not only sensitive to the level of wr

but also to the buyer type in the supply chain.

As the level of wr increases, the waste-minimizing 0 also increases, suggesting that
to minimize total waste the policy-maker should place a greater proportion of the waste
cost on the buyer. One possible reason for this increase in J is that, at higher levels of
wr, the seller faces such a high overage cost that she stocks so little compared to the
buyer’s demand that waste levels at the seller cannot be reduced much further. Any
reductions in total waste must then come from targeting the demand-dampening effect
by imposing more of the waste tax on the buyer. The buyer’s demand dampening has

a stronger effect than the seller’s supply disincentivization in reducing waste.

The waste-minimizing o does, however, increase more slowly in a supply chain with
a myopic buyer than in one with a forward-looking buyer. For any given level of
wr, a policy-maker seeking to minimize waste should place a greater proportion of
the tax burden on the buyer if he is forward-looking. This result is consistent with the
observation in the previous section that forward-looking buyers waste more than myopic
buyers and hence the policy-maker may need to motivate the forward-looking buyer
more to rethink his demand. In this sense, the myopic buyer is “blissfully ignorant” —
his lack of foresight actually allows him to benefit from a lower tax burden compared

to the forward-looking buyer.

The finding that the waste-minimizing ¢ depends on the level of wy highlights the
importance of setting ¢ and wy jointly. In doing so, the policy-maker needs to balance
the waste-minimization objective with the profit-maximization objective, making this
decision a bi-objective optimization problem. Figure 3.3 illustrates the Pareto frontier
in terms of the profit attained by the profit-maximizing purchase and stocking quantities
and the corresponding total waste for each level of wy for a myopic buyer on the left

(Figure 3.3a) and for a forward-looking buyer on the right (Figure 3.3b).



3.5 Numerical Study 75
T T T T T T I I I I I I
2 14 —e— Buyer = Seller - Total | | < 1471 —e—Buyer - Seller - Total | |
S 12| g 12) *
:q'é 10 .\.\k//. . :q'é 10 |
O ()
H 6 1 K| 6 a
) )
° 4 | &4 |
= 2 !/._/-/./. 1z 2 4.Z~/~/./. |
< <
0 | | | | | O I | | |
0 02 04 06 08 1 0 02 04 06 08 1
) o
(a) wr = 2, Forward-Looking Buyer (b) wr = 4, Forward-Looking Buyer
I I I I I I I I I I I I
*Q'Ji 14| —eo— Buyer —=— Seller —e—Total | | % 14 —e— Buyer —=—Seller —e—Total | |
= 12} 12 120 2
:q‘é 10 *”/./‘/. 8 E 10 8
Q Q
é °| | é °| k\’/// N
E| >4:: 1% 0l 7
; 5
2 4 e |
L )
> I = > - |
Z 2 =z 2
0 | | | | | | O | | | | | |
0 02 04 06 08 1 0 02 04 06 08 1
) 4]

(¢) wr = 2, Myopic Buyer (d) wr = 4, Myopic Buyer

Figure 3.2: Increase in waste-minimizing ¢ as wr increases
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Figure 3.3: Pareto front for a supply chain with a myopic buyer and a forward-looking
buyer

For any given level of wr, the shape of the Pareto frontiers differs significantly
depending on the buyer type. We begin the discussion with the forward-looking buyer.
For any value of w7 > 0, given the monotonically decreasing nature of total profit in 9,
the highest point vertically on the Pareto frontier corresponds to a 6 = 0. The second
highest point vertically corresponds to a 6 = 0.25. The ordering of the points vertically
continues in this increasing pattern until the lowest point vertically, which corresponds
to 6 = 1. The Pareto frontier is characterized by an inflection point, which occurs
between § = 0.5 and § = 0.75. Above this inflection point, a decrease in § results in
more profit and more waste. Below this inflection point, increasing 0 results in less
profit and more waste. All values of ¢ higher than the § corresponding to the inflection

point are thus dominated.

In contrast to the Pareto frontiers for the forward-looking buyer, the Pareto frontiers
for the myopic buyer are characterized by an inflection point that corresponds to a
significantly lower level of §. This inflection point occurs between § = 0.25 and § = 0.5.
Above this inflection point, lower values of 4 result in an increase in total profit at the
expense of a small increase in total waste. Below this inflection point, increasing d leads

to substantial increases in total waste whereas profit decreases slightly, stays constant,
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or even increases slightly. In a supply chain with a myopic buyer, for any given level
of wr, a much larger range of values for ¢ are dominated. This result suggests that a
policy-maker may have a narrower range of rational choices for § for any value of wr

in a supply chain with a myopic buyer.

Looking horizontally, across the Pareto frontiers corresponding to different wr,
we can make several observations. First, it is possible to improve on both the
waste-minimization and profit-maximization objectives. Examples of such Pareto
optimal pairs of wr and d can be found for supply chains with either type of buyer
but we illustrate with an example from a supply chain with a forward-looking buyer.
The second point from the top in the Pareto frontier of wy = 1 (corresponding to
d = 0.25) yields total profit of 629.29 and total waste of 9.99. The top-most point of
the Pareto frontier for wy = 2 (corresponding to § = 0) yields total profit of 630.07 and
total waste of 9.33. Comparing the outcomes for these two points, setting wr = 2 and
0 = 0 dominates setting wyr = 1 and § = 0.25. Second, a more aggressive policy with
higher values of wr may actually be inefficient. Compare the (wr,d) pairs (3,0.25) and
(5,1). The latter pair, corresponding to more aggressive policy intervention, results
in a total profit of 574.86 and total waste is 8.02. The former pair, a milder policy
intervention, results in a total profit of 614.03 and total waste of 7.84, outperforming

the latter pair.

As mentioned previously, for any wyr, the policy-maker may not wish to set ¢ at the
waste-minimizing level. One way in which this analysis can be helpful is by informing
possible waste reduction targets. Once again, we take the example of a supply chain
with a forward-looking buyer (Figure 3.3b). The benchmark total waste and total profit
levels without any policy interventions are 12.50 and 640.17, respectively. Suppose the
policy-maker is considering to set a target of 30% waste reduction, thereby reducing
total waste to at most 8.75. The policy-maker can choose among various alternatives,
one of which wr = 4 and § = 0, which reduces total profit by only 2%. Suppose
the policy-maker is instead considering to set a waste reduction target of 50%. Such
a waste-reduction target might be achieved by setting wr = 5 and § = 0.5, but the
8% reduction in total profit may be too much to pass politically. If the policy-maker

wishes to reduce waste to this degree, he may need to think of additional interventions
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that can help to this end. The horn-shaped areas are also useful for a policy-maker to
understand the boundaries of his decision. For instance, if a policy-maker would like
to set a waste target of 10 units, the boundaries of the horn-shaped area reveal that
he cannot promise the seller a profit level of more than approximately 630 but he can

ensure at least approximately 605.

3.5.2 Seller Markdowns

Markdowns are a tool for the seller to reduce her overage costs. In choosing a stocking
quantity for the horizon, the seller balances the risk of carrying too much stock for
the second period (the period driving the seller’s uncertainty) with the possible gains
from increased buyer demand resulting from lower prices in the second period. When
a policy-maker increases the waste cost on the seller thereby increasing overage costs,
the seller may respond by marking down product in the second period. How do seller
markdowns affect the magnitude and distribution of waste in the supply chain? Does
the optimal distribution of the waste cost change when the seller marks down? To

study these questions, we repeat the two experiments above with seller markdowns.

Absolute Tax Levels

In this experiment and the next, we include the parameter 6 € {0.8,0.9,1} to describe
the depth of the seller markdown. Based on all parameter values, 3 x 3 x 3 x 3 X 5 X
5 x 2 = 4,050 instances are generated and the model is solved for each buyer type. The
results of the experiment for the myopic and forward-looking buyers with markdowns
are displayed in Table 3.7 and Table 3.8, respectively.

Seller markdowns increase profit both at the individual agent and the supply chain
levels. This result may be a consequence of the relatively high margin environment
that the seller and buyer operate in. However, seller markdowns are detrimental to
waste reduction. Total waste on average is higher in both absolute and relative terms
in supply chains where the seller can markdown prices in the second period. In a
supply chain with a forward-looking buyer, total waste is 9.55 when seller markdowns

take place, compared to 8.94 when no seller markdowns take place. In a supply chain
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with a myopic buyer, total waste is 11.10 when seller markdowns take place, compared
to 10.05 when no seller markdowns take place. The result that seller markdowns are
detrimental to waste reduction is consistent with our expectations. When the seller
marks down, the buyer buys more in the second period and hence the seller stocks
more over the horizon. In this way, the seller not only shifts wastes to the buyer,
but she also creates the possibility for more waste in the system by stocking more.
However, the mechanism behind the increase in total waste in the case of each buyer
type is different and important to understand for deciding which instrument is more

suitable for waste reduction.

Avg Exp Waste Avg Exp Profit Avg Quantities
Parameter Value Count  Buyer  Seller Total Buyer  Seller Total q7 q2 Q*
0.7 1350 5.98 4.66 10.64 525.37 119.58 644.94 43.88 42.88 78.53
e 0.8 1350 6.28 4.85 11.13 459.11 137.97 597.07 43.88 43.35 79.50
0.9 1350 6.53 5.01 11.54 392.87 156.43 549.30 43.88 43.72 80.30
0.4 1350 7.52 5.01 12.53 528.52 121.65 650.17 50.89 48.92 85.23
B 0.5 1350 6.21 5.09 11.30 457.30 139.41 596.71 43.60 43.14 79.87
0.6 1350 5.05 4.43 9.48 391.52 15291 544.44 37.14 37.90 73.23
0.8 1350 7.50 4.71 12.21 473.01 146.59 619.60 43.88 46.40 82.09
0 0.9 1350 6.20 4.86 11.06 458.71 138.26  596.97 43.88 43.26 79.41
1 1350 5.09 4.95 10.05 445.62  129.13 574.75 43.88 40.29 76.82
0.4 1350 7.10 6.25 13.35 461.35 166.53 627.89 43.88 43.32 82.97
ol 0.5 1350 6.34 4.90 11.25 459.61 137.56 597.17 43.88 43.32 79.80
0.6 1350 5.34 3.38 8.72 456.38 109.88 566.25 43.88 43.32 75.56
0 810 7.39 6.79 14.18 461.89 143.17 605.06 43.88 43.32 84.13
0.5 810 6.73 5.54 12.26 460.70  140.12 600.82  43.88 43.32 81.38
wy 1 810 6.19 4.64 10.83 459.24  137.57 596.81 43.88 43.32 79.15
1.5 810 5.70 3.90 9.60 457.66 135.45 593.11 43.88 43.32 77.12
2 810 5.31 3.34 8.65 456.07 133.64 589.71 43.88 43.32 75.43
0 810 8.15 4.87 13.02 468.35 144.99 613.33 43.88 47.50 83.62
0.5 810 6.98 4.87 11.84 463.17  140.89 604.06 43.88 45.07 81.20
wp 1 810 6.07 4.85 10.92 458.61 137.46 596.07 43.88 43.03 79.15
1.5 810 5.35 4.83 10.18 454.55  134.55 589.10 43.88 41.27 77.39
2 810 4.77 4.79 9.56 450.89  132.07 582.96 43.88 39.73 75.85
cv 0.4 2025 5.15 4.16 9.30 510.67 159.65 670.32 47.47 47.07 88.83
0.8 2025 7.38 5.53 12.90 407.56 116.33 523.89 40.28 39.57 70.05
All 4050 6.26 4.84 11.10 459.11  137.99 597.10 43.88 43.32 79.44

Table 3.7: Numerical Results for First Experiment — Supply Chain with Myopic Buyer
(Seller Markdowns)

In a supply chain with a myopic buyer, as 6 decreases, relative buyer waste increases

more substantially (up to 7.88% from 6.63% without markdowns) while relative seller
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Avg Exp Waste Avg Exp Profit Avg Quantities
Parameter Value Count  Buyer  Seller Total Buyer  Seller Total q; q2 Q*
0.7 1350 6.83 2.39 9.22 531.11 144.03 675.14 73.19 42.88 82.07
@ 0.8 1350 7.04 2.53 9.57 466.04 165.75 631.79  73.58 43.35 82.90
0.9 1350 7.21 2.66 9.87 401.05 187.52 588.57 73.89 43.72 83.59
0.4 1350 9.47 2.11 11.58 533.78 146.08 679.86 80.78 48.92 88.63
B8 0.5 1350 6.82 2.50 9.32 463.80 167.47 631.27 73.48 43.14 82.66
0.6 1350 4.78 2.98 7.76 400.64 183.74 584.37 66.41 37.90 77.27
0.8 1350 6.88 3.36 10.24 473.10 175.54 648.64 69.31 46.40 83.86
0 0.9 1350 6.91 2.57 9.48 464.84 166.28 631.11 73.80 43.26 82.66
1 1350 7.29 1.65 8.94 460.27  155.47 615.74 77.55 40.29 82.05
0.4 1350 7.43 4.16 11.59 471.16 19545 666.61 73.55 43.32 86.47
y 0.5 1350 6.99 2.26 9.25 465.86 165.35 631.22 73.55 43.32 82.47
0.6 1350 6.65 1.17 7.82 461.19 136.49 597.67 73.55 43.32 79.63
0 810 7.60 4.84 12.43 472.77 168.54 641.31 73.55 43.32 87.79
0.5 810 7.19 3.05 10.24 468.39  166.62 635.01 73.55 43.32 84.23
wy 1 810 6.93 2.07 9.01 465.19 165.36  630.56  73.55 43.32 82.03
1.5 810 6.76 1.51 8.28 462.87 164.48 627.35 73.55 43.32 80.61
2 810 6.64 1.17 7.81 461.12 163.81 624.93 73.55 43.32 79.62
0 810 8.60 2.63 11.23 477.32  173.63 650.94 76.80 47.50 87.07
0.5 810 7.65 2.56 10.21 471.00 169.20 640.19  75.00 45.07 84.65
wp 1 810 6.89 2.51 9.40 465.44 165.32 630.76  73.39 43.03 82.58
1.5 810 6.26 2.48 8.74 460.51 161.88 622.39 71.94 41.27 80.78
2 810 5.73 2.46 8.19 456.08 158.80 614.87 70.63 39.73 79.20
cv 0.4 2025 4.27 3.67 7.94 514.54 173.25 687.80 74.19 47.07 89.65
0.8 2025 9.78 1.39 11.16 417.60 158.27 575.87 72.92 39.57 76.06
All 4050 7.02 2.53 9.55 466.07 165.76 631.83 73.55 43.32 82.86

Table 3.8:  Numerical Results for First Experiment — Supply Chain with
Forward-Looking Buyer (Seller Markdowns)

waste decreases slightly (down to 6.10% from 6.45% without markdowns). It is the
buyer’s waste that drives the increase in total waste in the supply chain. In contrast, in a
supply chain with a forward-looking buyer, as 6 decreases, relative buyer waste decreases
slightly (down to 8.48% from 8.89% without markdowns) but relative seller waste
actually increases more substantially (up to 3.05% from 2.01% without markdowns).
The increase in the seller’s waste drives the increase in total waste in the supply chain.
The fact that relative seller waste increases when the seller marks down in a supply
chain with a forward-looking buyer suggests that seller markdowns may actually be
counter-productive as a seller’s strategy to reduce waste. It also suggests that knowing
the buyer type is important for a seller when considering whether to mark down as

waste reduction strategy.
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Seller markdowns have a demand-enhancing effect on both buyer types. In period 1,
the myopic buyer buys the same amount of product and has the same amount of leftover
inventory, for any given realization of D, regardless of whether the seller marks down
or not. In period 2, the myopic buyer’s higher order-up-to level under seller markdowns
results in greater demand for the seller’'s product in comparison with the no seller
markdown setting. The demand-enhancing effect is not as straight-forward to identify
for the forward-looking buyer. Under seller markdowns, the forward-looking buyer
shifts some of the quantity he would buy in the first period to the second period. For
any given realization of Dy, since he buys less in period 1, he has less leftover than a
forward-looking buyer under no seller markdowns. In addition to having less leftover
inventory from period 1, he also has a higher order-up-to level, resulting in higher
demand for the seller’s product in period 2. Even though the forward-looking buyer’s
period 1 demand decreases, the increase in his period 2 demand is just sufficient for
the seller to stock slightly more (2.21% more at 6 = 0.8). The seller facing the myopic
buyer has a stronger response to the enhanced demand and she stocks 6.87% more at
0 = 0.8. Despite this stronger response in terms of the stocking quantity, the myopic

buyer’s demand is high enough that the seller’s relative waste decreases.

As in the setting with no seller markdowns, a waste tax on a buyer or a seller are
effective instruments in reducing relative total waste in the supply chain. However,
when the seller marks down, the same level of wy or wp has a slightly greater effect
in terms of waste reduction than when the seller does not mark down. In a supply
chain with a myopic buyer, as wy increases, relative total waste decreases from 16.85%
to 11.46% (drop of 5.39%) when the seller marks down compared to a decrease from
15.74% to 10.73% (drop of 5.01%) when the seller does not mark down. In a supply
chain with a forward-looking buyer, as wy increases, relative total waste decreases from
14.16% to 9.81% (drop of 4.35%) when the seller marks down compare to a decrease
from 12.82% to 9.71% (drop of 3.11%) when the seller does not mark down.

In comparison to taxing the seller, once again, taxing the buyer has a smaller waste
reduction effect. In a supply chain with a myopic buyer, as wp increases, relative
total waste decreases from 15.57% to 12.60% (drop of 2.96%) when the seller marks
down compared to 14.35% to 11.96% (drop of 2.39%) when the seller does not mark
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down. In a supply chain with a forward-looking buyer, as wp increases, relative total
waste decreases from 12.89% to 10.34% (drop of 2.56%) when the seller marks down
compared to a decrease from 12.21% to 9.75% (drop of 2.46%) when the seller does not

mark down.

Proportion of tax burden

Given that the myopic buyer’s waste increases when the seller marks down, it would
make sense for the policy-maker to impose a greater proportion of the cost of waste on
the buyer if the buyer in the supply chain is myopic. Conversely, since the seller’s waste
increases when the seller marks down in a supply chain with a forward-looking buyer,
it would make sense to impose a greater proportion of the waste cost on the seller in

this case. Our final experiment confirms this hypothesis.

Based on the parameter values, 3 x 3 x 3 x 3 x 2 x 11 x 5 = 8,910 instances are
generated and the model is solved for each buyer type. The results of the experiment
for the myopic and forward-looking buyers with markdowns are displayed in Table 3.9

and Table 3.10, respectively.

For any given level of wr, the waste-minimizing ¢ for the myopic buyer is equal to or
higher with seller markdowns than without seller markdowns. The waste-minimizing
0 for the forward-looking buyer is equal to or lower. In fact, the difference between
the waste-minimizing 0 for the myopic and the forward-looking buyers appears to
be shrinking. This shrinking is illustrated in Figure 3.4. From the policy-maker’s
perspective, this result suggests that knowing the buyer type is less important when

the seller marks down.

Figure 3.5 illustrates the Pareto frontier for each level of wy for a supply chain with
a myopic buyer under seller markdowns on the left (Figure 3.5a) and for a supply chain
with a forward-looking buyer on the right (Figure 3.5b). The area of the cone outlining
the possible outcomes at equilibrium and bounded by the extreme cases in which 6 =0
and 0 = 1 expands slightly, most likely as a consequence of the higher waste and profit
in the system with seller markdowns. Otherwise, the same insights derived in the case

in which the seller does not mark down still hold.
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Avg Exp Waste Avg Exp Profit Avg Quantities
Parameter Value Count  Buyer  Seller Total Buyer  Seller Total q; q2 Q*
0.7 2970 5.76 4.57 10.33 523.67 118.68 642.35 43.88 42.45 77.64
@ 0.8 2970 6.04 4.74 10.78 457.27 136.88 594.15  43.88 42.91 78.60
0.9 2970 6.28 4.89 11.17 390.92 155.18 546.09 43.88 43.29 79.40
0.4 2970 7.32 5.02 12.34 526.01 120.89 646.90 50.89 48.41 84.51
B8 0.5 2970 5.96 4.95 10.91 455.45 138.32 593.78 43.60 42.70 78.92
0.6 2970 4.79 4.23 9.02 390.39 151.53 541.92 37.14 37.53 72.21
0.8 2970 7.21 4.63 11.85 470.99 14554 616.53 43.88 45.92 81.17
0 0.9 2970 5.96 4.75 10.71 456.89  137.17 594.06 43.88 42.83 78.51
1 2970 4.90 4.82 9.72 443.98 128.03 572.00 43.88 39.89 75.95
0.4 2970 6.80 6.06 12.86 459.57 165.10 624.67 43.88 42.88 81.90
y 0.5 2970 6.10 4.80 10.90 457.77  136.51 594.29  43.88 42.88 78.89
0.6 2970 5.17 3.33 8.51 454.51 109.12 563.63 43.88 42.88 74.84
0 810 9.47 6.82 16.29 470.62 150.19 620.81 43.88 47.50 88.31
0.5 810 8.42 6.15 14.56 467.65 146.53 614.17 43.88 46.26 85.63
1 810 7.55 5.65 13.20 464.78 143.32 608.10 43.88 45.17 83.36
1.5 810 6.81 5.21 12.02 462.02 140.49 602.51 43.88 44.19 81.30
2 810 6.17 4.84 11.02 459.37  137.97 597.34 43.88 43.32 79.44
wr 2.5 810 5.63 4.52 10.15 456.82 135.72 592.54  43.88 42.52 77.76
3 810 5.16 4.23 9.39 454.36 133.70 588.06 43.88 41.79 76.23
3.5 810 4.75 3.98 8.73 451.99 131.87 583.86 43.88 41.12 74.83
4 810 4.40 3.75 8.15 449.70  130.22 579.92 43.88 40.50 73.54
4.5 810 4.09 3.55 7.63 44749 12871 576.19 43.88 39.92 72.35
5 810 3.81 3.36 7.17 445.34  127.33  572.67 43.88 39.38 71.25
0 1782 6.89 3.39 10.28 464.64 140.17 604.81 43.88 47.50 79.09
0.25 1782 6.15 3.85 10.00 459.42 137.04 596.46 43.88 44.64 77.82
1) 0.5 1782 5.77 4.46 10.23 456.00 135.52 591.52  43.88 42.44 77.58
0.75 1782 5.63 5.31 10.94 453.90 135.33 589.24 43.88 40.66 78.26
1 1782 5.68 6.65 12.33 452.46 136.50 588.96 43.88 39.17 79.99
v 0.4 4455 4.94 4.08 9.02 509.10 158.61 667.71 47.47 46.72 88.08
0.8 4455 7.11 5.38 12.49 405.47 115.22  520.69 40.28 39.04 69.01
All 8910 6.02 4.73 10.76 457.29 136.91 594.20 43.88 42.88 78.55

Table 3.9: Numerical Results for Second Experiment — Supply Chain with Myopic
Buyer (Seller Markdowns)

3.6 Conclusion

Buyer behavior is an important factor of consideration for a policy-maker when deciding
on interventions to reduce waste. In studying the interaction between a seller and a
buyer in a supply chain for a perishable food product, we find that different degrees
of buyer foresight affect the equilibrium stocking decision of a seller and the purchase
decisions of a buyer, which in turn determine the level of profit and waste in a supply

chain. ‘Smarter’ buyers (i.e., buyers with more foresight such as the forward-looking
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Avg Exp Waste Avg Exp Profit Avg Quantities
Parameter Value Count  Buyer  Seller Total Buyer  Seller Total q; q2 Q*
0.7 2970 6.71 2.54 9.25 529.78 143.11 672.89 72.72 42.45 81.73
a 0.8 2970 6.90 2.65 9.55 464.48 164.70 629.18 73.13 42.91 82.51
0.9 2970 7.06 2.75 9.82 399.30 186.36 585.65 73.46 43.29 83.16
0.4 2970 9.31 2.26 11.57 531.87 145.11 676.98 80.24 48.41 88.24
B8 0.5 2970 6.69 2.63 9.32 462.31 166.42 628.72 73.03 42.70 82.29
0.6 2970 4.68 3.06 7.74 399.37 182.65 582.02 66.04 37.53 76.87
0.8 2970 6.75 3.48 10.22 471.38 17444 645.82 68.93 45.92 83.45
0 0.9 2970 6.78 2.70 9.48 463.33 165.20 628.53 73.34 42.83 82.29
1 2970 7.16 1.77 8.92 458.84 154.53 613.38 77.04 39.89 81.67
0.4 2970 7.30 4.40 11.70 469.67 194.28 663.94 73.10 42.88 86.23
y 0.5 2970 6.86 2.36 9.22 464.35 164.30 628.65 73.10 42.88 82.06
0.6 2970 6.52 1.19 7.71 459.53 135.60 595.14 73.10 42.88 79.11
0 810 9.31 4.95 14.26 483.71 176.51 660.23  76.80 47.50 92.07
0.5 810 8.52 3.94 12.46 478.41 173.18 651.59  75.89 46.26 88.90
1 810 7.90 3.29 11.19 473.81 170.36  644.17  75.05 45.17 86.45
1.5 810 7.40 2.84 10.24 469.77 167.90 637.67 74.27 44.19 84.48
2 810 6.97 2.52 9.50 466.17 165.72 631.89 73.55 43.32 82.83
wr 2.5 810 6.62 2.28 8.90 462.94 163.76  626.69 72.88 42.52 81.42
3 810 6.31 2.10 8.41 460.00 161.97 621.97 72.25 41.79 80.19
3.5 810 6.03 1.96 7.99 457.31 160.32 617.63 71.66 41.12 79.09
4 810 5.79 1.84 7.64 454.81 158.80 613.61 71.10 40.50 78.11
4.5 810 5.58 1.75 7.33 452.48 157.39 609.86 70.58 39.92 77.21
5 810 5.38 1.67 7.05 450.30 156.06 606.36  70.07 39.38 76.39
0 1782 8.17 1.56 9.72 472.67 171.71 644.39 76.80 47.50 84.18
0.25 1782 7.28 1.79 9.07 466.51 167.11 633.63 74.64 44.64 82.25
1) 0.5 1782 6.67 2.17 8.84 462.27 163.62 625.89 72.84 42.44 81.17
0.75 1782 6.26 2.92 9.18 460.09 161.12 621.22 71.29 40.66 81.19
1 1782 6.09 4.82 10.90 461.04 160.06 621.09 69.94 39.17 83.53
v 0.4 4455 4.15 3.66 7.81 512.74 17242 685.16 73.94 46.72 89.06
0.8 4455 9.64 1.64 11.27 416.30 157.03 573.33  72.26 39.04 75.87
All 8910 6.89 2.65 9.54 464.52 164.72  629.24 73.10 42.88 82.47

Table 3.10: Numerical Results for Second Experiment — Supply Chain with
Forward-Looking Buyer (Seller Markdowns)

buyer) are actually better for a supply chain, not only in terms of profit but also in
terms of waste. While a forward-looking buyer demands more and wastes more, the
reduction in total waste in the supply chain is driven by the fact that a seller facing
a forward-looking buyer sells more of the product she stocks compared to the buyer’s
demand.

Applying a waste cost at either the higher and lower echelons of a supply chain
is an effective policy intervention to reduce waste. Either intervention can result in a

substantial reduction in waste at the expense of a small reduction in profit. Taxing
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Figure 3.5: Pareto front for different values of wy with seller markdowns in a supply
chains with a myopic and forward-looking buyer

the seller has a more direct and substantial effect on waste reduction, irrespective of
buyer type, because the seller immediately reduces the supply to the system, limiting
the possibility of waste. Taxing the buyer, however, is more effective when the buyer is
a forward-looking buyer. Unlike the myopic buyer who only reduces his second period
purchase quantity, the forward-looking buyer also reduces his first period purchase
quantity. The resulting stronger reduction in the seller’s stocking quantity reduces

waste for both agents.

To determine an appropriate waste cost, a policy-maker may perform an analysis
to quantify the externalities associated with food wasted (e.g., through techniques such
as life-cycle analysis) or may refer to the cost of disposal as a benchmark for the waste
cost. After determining the waste cost, the policy-maker may then look to apportion the
waste cost appropriately to different agents in the supply chain. The seller’s stocking
decision and total waste in the supply chain are not monotonic in the proportion to
which the buyer is taxed. This result indicates that a stronger intervention targeting

the buyer is not necessary, and may even be inefficient, in reducing waste.

The importance of setting both the waste cost and proportion apportioned to each

agent jointly as a policy-maker is highlighted by the fact that the waste-minimizing
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proportion of tax on the buyer increases as the tax level increases. For any given
level of taxation, a policy-maker seeking to minimize waste will need to apply a higher
proportion of the waste cost on the buyer if he is forward-looking than if he is myopic.
However, as the tax level increases, the seller facing either type of buyer reduces her
stocking quantity so much that it is more efficient to tax the buyer.

As a seller facing a higher overage cost may have an incentive to mark down product
close to expiration, we study the effect of seller markdowns on waste and implications
for policy interventions. While seller markdowns are beneficial for profit, they are
detrimental for waste.

Several promising avenues for future work can be identified. In this research, we
defined two buyer types according to their level of foresight. Neither of these buyer types
take into account the seller’s optimal stocking decision in their optimization problem.
Since both buyer types simply assume that the seller will have sufficient stock to satisfy
their calculated optimal purchase quantities in both periods, they can face reduced
profits when when this is not the case. Had the buyer known the seller’s stocking
quantity, he would choose different purchase quantities to induce the seller to stock
more. Whether this buyer type is associated with more waste in the supply chain and
what type of waste cost interventions are effective in reducing waste are questions we
leave for a future study.

Given that the focus of our research is on understanding how the degree of buyer
foresight affects equilibrium outcomes and influences the tax policy, we do not focus on
actually finding the optimal level of taxation. We leave this question to future studies.
Exploring mechanisms to coordinate the supply chain, not only for the profit outcomes
but also for the waste outcomes, is also an interesting direction of study.

Another aspect that we do not examine is the effect of competition on waste.
Competition is a driver for agents to stock more to ensure high availability levels and
hence most likely a driver for increased food waste. Models that incorporate more than
one seller or more than one buyer can expand on the degree to which taxing buyers or

sellers can reduce waste in a competitive landscape.






Chapter 4

Managing Inventories of Reusable
Containers for Food Take-Away at a

Restaurant

In addition to food waste, food supply chains also generate a substantial amount
of packaging waste. Reducing single-use packaging waste in the food take-away and
delivery sectors, in particular, has become an area of focus for policy-makers. Through
the application of surcharges on customers for purchasing a meal in a single-use
container or through mandates that ban single-use containers, policy-makers effectively

impose a penalty on the provision of meals in such containers.

Reusable containers have emerged as an alternative to single-use containers.
However, for restaurants, the management of inventory of reusable containers presents
numerous operational challenges. Some of these challenges are due to features that are
rather unique to this setting. In this chapter, we study how these features and other
system parameters (including those that can be influenced by the policy-maker) affect

the restaurant’s inventory decisions and costs.
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4.1 Introduction

Every minute McDonald’s uses 2.8 tons of single-use packaging to serve its customers
worldwide (Zero Waste France 2017). Every year Starbucks uses approximately seven
billion disposable cups worldwide (Lucas 2022). The food services sector generates
a substantial amount of single-use packaging waste. In Britain, lunches-to-go are
estimated to produce almost 11 billion items of single-use packaging waste annually
(Smithers 2019). The rapid growth of take-away and food delivery services over the
past years, facilitated by platforms and amplified by the COVID-19 pandemic, has
only exacerbated this problem. Since 2017, the food delivery sector alone has more
than tripled its revenues and is currently worth $150 billion USD globally (Ahuja et al.
2021).

Most single-use packaging waste cannot be recycled as it consists mainly of plastic
products or plastic-coated paper products (used in most disposable coffee cups) that
cannot be handled by the regular paper recycling process. As a result, much of
this waste landfilled (Schupak 2021). In the United States, single-use containers
and packaging in general account for more than 23% of the waste in landfills (US
Environmental Protection Agency 2015). This waste accounts for a significant amount
of carbon emissions. Single-use packaging waste that is not recycled or landfilled is
discarded into the environment, where it is left to degrade and interact with animal
life.

Given the detrimental environmental effects of single-use packaging in the food
sector, many jurisdictions are passing regulations to reduce its use. One type of
regulation is charging customers a fee for purchasing a product in single-use packaging.
For example, customers in the cities of Berkeley, California, and Vancouver, Canada
incur a surcharge of $0.25 USD ($0.25 CAD, respectively) per beverage purchased
in a disposable cup (Peters 2020, City of Vancouver 2022). In The Netherlands,
starting in July 2023, a similar measure that extends a surcharge to all single-use
plastic food packaging will come into effect (Netherlands Chamber of Commerce
2022). Some countries are going even further in their efforts to limit single-use
packaging. For example, from January 2023, restaurants in Germany will be required

to provide a reusable packaging alternative at no extra cost to the customer for
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products currently offered in single-use packaging. In Luxembourg, from January 2025,
take-out and delivery meals will only be served in reusable containers (Gouvernement
du Grand-Duché de Luxembourg 2022).

The implementation of reusable container systems in the food take-away and delivery
sector has become an active area of work for start-ups, public entities, and restaurant
chains. While a few restaurant chains run their own reusable container systems,
most reusable container systems are operated by a third-party supplier for a network
of restaurants. The business models behind these reusable containers systems are
rapidly evolving and highly diverse. An important question in the design of a reusable
container system is how to ensure that the system is efficient, effective, and economically
sustainable. Much of the diversity in business models for reusable containers systems
stems from the way different systems aim to address this question. Most third-party
suppliers and restaurants, for example, charge a deposit refundable upon return per
clean container. This deposit-based approach aims to minimize shrinkage in the
inventory of reusable containers by incentivizing returns. Some third-party suppliers
operate more technologically integrated systems, deploying an app or QR codes, that

enable restaurants and customers to easily track containers and deposits.

Setting system design and incentive questions to the side, however, the introduction
of reusable containers at a restaurant brings about multiple operational challenges that
may already be enough to dissuade a restaurant from participating in such a system
altogether. One of the main decisions for a restaurant using reusable containers is the
number of reusable containers to have on-hand. In particular, the restaurant faces a
variety of customers that affect the restaurant’s reusable container inventory level in
different ways and make this inventory level determination non-trivial. Some customers,
for example, only demand a clean reusable container with their order, reducing the
number of clean containers in the restaurant’s inventory. Other customers both demand
a clean container with their order and return a dirty container, effectively having a net
zero effect on inventory (after a lag time for cleaning the container before it can be
used again). To make returns easier for customers, many reusable container systems
are designed so that restaurants can also serve as drop-off points, meaning that some

customers only return dirty containers to the restaurant, increasing the inventory level of
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dirty containers. Hence, a restaurant that uses reusable containers faces both uncertain

demand and uncertain returns, making it difficult to control inventory levels.

In as much as the restaurant faces uncertain demands and returns, inventory
management of a reusable container system resembles a number of well-studied systems
in the closed-loop supply chain (e.g., repairable item and remanufacturing inventory
systems) or sharing economy (e.g., bike-sharing systems) literature. However, these
systems differ from the systems in our setting in two notable ways. First, in the
closed-loop supply chain literature, unfulfilled demand is typically backlogged and not
lost, unlike in our setting. Second, our setting includes customers that both demand
a clean container with their order and return a dirty container, resulting in a coupled
demand and return. These customers are present in addition to customers that only
demand a clean container for their meal (similar to a traditional forward flow supply
chain setting) and customers that only return a dirty container (similar to a traditional
reverse flow supply chain setting). Having a larger base of customers with coupled
demand and returns is likely beneficial to a restaurant as these customers each have
a net zero effect on the restaurant’s inventory, making the restaurant more internally
sustainable in terms of inventory levels and enabling the restaurant to reduce costs.
Such high coupling of demand and returns may occur, for instance, in a restaurant
with a relatively large loyal base of frequent customers who regularly order a meal
in a reusable container and return a previously used container at the same time. In
this sense, the existence of customers with coupled demand and returns may give a
restaurant using a reusable container system an advantage over other systems with
uncertain demands and returns. However, only a few works in the closed-loop supply
chain literature (i.e., Van der Laan et al. 1999, Kiesmiiller 2003) study systems in which
customers with coupled demand and returns co-exist with customers that only demand

or only return a product.

Our objective in this paper is to study the inventory decisions of a rational manager
of a restaurant that participates in a reusable container system and faces customers
that have different effects on reusable container inventory levels, including those that
generate a coupled demand and return. In particular, we address the following

questions: (i) what is the optimal inventory policy for the restaurant?, (ii) how does
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the degree of demand and return coupling affect this policy and the restaurant’s costs?,
and (7i7) how do other system characteristics affect the restaurant’s inventory decisions

and costs?

To answer these questions, we use a continuous-time Markov Decision Process to
model the inventory decisions of a restaurant participating in a reusable containers
system. In this system, every time the reusable containers supplier visits the restaurant
is an opportunity for the restaurant to rebalance its inventory if returns or demands
become too high by either giving excess clean containers to the supplier or receiving
additional clean containers from the supplier. We determine the restaurant’s optimal
rebalancing policy when the supplier visits and the supplier’s optimal visit frequency
from the restaurant’s perspective if the restaurant is able to decide on this frequency. We
model the degree to which customers’ demand and returns are coupled by defining three
customer streams: a stream of customers that only demand a clean container, a stream
of customers that only return a dirty container, and a stream of customers that both
demand a clean container and return a dirty container. Through a numerical study,
we investigate the sensitivity of the optimal inventory balancing policy, the optimal
supplier visit frequency, and the restaurant’s costs to changes in parameters including
the lost sales penalty (a cost parameter that is highly influenced by government policy
for single-use containers), ratio of demand to returns, proportion of demand coupled

with returns, scale of the restaurant, supplier visit costs, and dishwasher utilization.

We find that the optimal rebalancing policy is a state-dependent policy in which
the optimal rebalancing level depends on number of dirty containers at the restaurant.
We also find that the restaurant’s costs of operating a reusable container system can
decrease by optimizing both the rebalancing policy and the supplier visit frequency. In
terms of the effect of customers with coupled demand and returns on the restaurant’s
performance, our results support the intuition that greater coupling of demand to
returns allows the restaurant to decrease its expected total costs. This result holds
irrespective of the overall balance of demand and returns at the restaurant. However,
the effect of greater coupling of demand to returns is more substantial when overall
demand and returns at the restaurant are more balanced. This finding highlights

the relatively greater importance of maintaining an overall balance of demands and
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returns as a restaurant. The third-party supplier visit cost is an important lever in
making the system viable for a restaurant. Specifically, if a restaurant is mostly a
collector of dirty containers or a dispenser of clean containers, a third-party supplier
can make participating in the reusable container system more viable for the restaurant
by reducing its visit costs. A higher supplier visit cost may also disproportionately
penalize restaurants with lower demand for reusable containers. Through our modeling
of this new setting and our findings, we contribute to the literature on sustainable
inventory systems by deriving insights into the conditions that make it easier for a
restaurant to participate in a reusable container system and factors that policy-makers
and reusable container suppliers can influence to make participation more economically
sustainable and appealing for a restaurant.

This rest of the chapter is structured as follows. Section 4.2 briefly reviews the
literature. Section 4.3 describes the modeling approach. Section 4.4 formulates and
solves the restaurant’s optimal inventory balancing and optimal balancing frequency
decision problems. Section 4.5 describes the performance metrics for the restaurant.
Section 4.6 investigates the effect of varying different parameters on these performance
metrics through a numerical study. Section 4.7 concludes with our main findings and

future research directions.

4.2 Literature Review

The rapid growth in the food take-away and delivery sector has sparked an interest
in restaurant operations and take-away / delivery platform operations within the
Operations Management (OM)/ Operations Research (OR) community. Mao et al.
(2022) focus on the delivery challenges that platforms face, highlight opportunities for
future research, and provide a dataset that includes two-months of orders from an online
meal delivery platform operating in Hangzhou, China. Although platforms boost the
restaurant’s visibility and outsource delivery, these benefits also come at the cost of
greater congestion in the kitchen and a cut from the restaurant’s margins. Feldman
et al. (2022) and Chen et al. (2022) model the relationship between platforms and

restaurants and identify contract types that can coordinate the supply chain. Unlike
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these papers, we focus on the sustainability aspect of the rapid growth in food take-away
and delivery sector by studying a restaurant’s operations vis-a-vis a third-party supplier

that provides reusable containers as an alternative to single-use containers.

Reusable containers have been studied in the context of food production and
distribution systems in the past. Glock & Kim (2014), Glock (2017), and Accorsi
et al. (2022) study systems of reusable containers such as crates for transport of food
items between suppliers and retail stores. Taheri et al. (2021) study reusable container
systems for consumer goods products and focus on the role of incentives, particularly in
terms of the trade-off between durability of the containers and levels of deposit. These
studies examine a reusable containers system between a wholesaler and a retailer and

these systems are typically governed by contracts.

In terms of modeling, our work relates to the literature on inventory management
in closed-loop supply chains and in sharing economy applications. Closed-loop supply
chains are characterized by a reverse flow of products from the customer to the
manufacturer in addition to the forward flow from the manufacturer to the customer.
Reviews of closed-loop supply chain research include Guide Jr & Van Wassenhove
(2009), Fleischmann et al. (1997), and Souza (2013). Within the closed-loop supply
chain literature, repairable item inventory systems and remanufacturing / hybrid
production inventory systems have been extensively studied. In a repairable item
inventory system, the breakdown of an item in use by a customer triggers a return of the
item to the manufacturer for repair and an immediate demand for a new working item to
replace the defective item. If replacement items are not in stock, demand is backordered.
Because demand and returns are perfectly correlated, there is no uncertainty about the
quantity and timing of returns compared to demand. A review of research on repairable

item inventory systems is provided by Guide Jr & Srivastava (1997).

In a remanufacturing / hybrid production inventory system, a manufacturer can
produce a new product from scratch or remanufacture the product using recovered
materials. Product is recovered from the market once the customer has no further use
for the product, upgrades the product, or when the product reaches its end-of-life. A
common assumption in this literature is that demand is independent of returns (e.g.,
Fleischmann et al. 1997, DeCroix 2006, DeCroix et al. 2005). A few works, however,
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study systems in which uncertain demand and returns are correlated either in the same
time period or across time periods. For a periodic review hybrid production system
operating on a finite horizon, Kiesmiiller & Van der Laan (2001) model the relationship
between returns that occur in a current period and demands that occurred in a previous
period. They find that ignoring this time-dependence of demand and returns can result
in higher costs. For a continuous review hybrid production system, Van der Laan et al.
(1999) model a correlation between demand and returns in the same period as the
probability that a return will trigger an immediate demand. They evaluate the system
under two types of control policies and find that increased correlation between demand
and returns results in lower costs under either policy, but is especially beneficial when

the return rate is high.

While the literature on these closed-loop supply chain inventory systems provides a
background for our study, these systems are fundamentally different from the system
we study in several ways. First, demand that is not fulfilled is backordered. This
assumption is reasonable for specialized or expensive products such as equipment or
in a business-to-business context, but not for consumer products that can easily be
substituted by another product. Second, either customers generate perfectly coupled
demand and returns (as in the repairable item literature) or customers generate
demand and returns that are not explicitly related (as in the remanufacturing literature
excluding the above-mentioned exceptions). As such, it is not necessary to consider the
arrival of customers that are more diverse in terms of their impact on inventory levels
(namely the co-existence of customers that only demand a product or return a product
with customers that demand and return a product at the same time) and how the

balance of each of those customer types affects the overall system.

Sharing economy inventory systems — and in particular bike-sharing systems (see
Kabra et al. 2016, for an overview) — do resemble our problem setting more in that
demand can be lost. In a bike-sharing system, customers collect a bike at one station and
return it to the same or another station after a period of time, resulting in uncertainty
in both the timing and location of returns. If a bike is not available at a station, the
user may decide to take a bike from another station (resulting in a spillover of demand

to another location) or substitute biking altogether with another mode of transport
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(resulting in a lost sale). However, bike-sharing systems have other features that do
not translate well into our setting. First, demand and returns are never coupled (i.e.,
a return of a bike does not trigger demand for a bike). Second, bike-sharing system
operators, in addition to managing the inventory of bikes at each station, also must
manage the inventory of available docks for bikes to be returned. The number of docks
available limits the number of returns that can be accepted at each station. To deal with
imbalances between demand and availability for bikes and docks at individual stations
throughout the day, bike-sharing system operators reposition the bikes. The inventory
repositioning decisions in addition to the inventory placement decisions have been the
focus of many studies, especially as for realistically-sized applications solving for these
decisions can be computationally challenging, under different types of objectives or
focusing on different problem features (e.g., Raviv & Kolka 2013, Datner et al. 2019,
Shu et al. 2013). In summary, while bike-sharing inventory systems provide insights
into how to manage loss inventory systems with uncertain demand and returns, the

literature on this area is also limited in terms of its applicability to our setting.

Given that related inventory systems are different in several key ways from the
inventory system in our problem setting, our contribution is to model the unique
aspects of a restaurant that uses reusable containers instead of single-use containers
to serve its take-away and delivery orders. Specifically, we model a lost sales system
with uncertain demand and returns. In this system, customers that generate coupled
demand for a new product and returns of a used product co-exist with customers
that only demand a new product or customers that only return a used product. By
studying the restaurant’s inventory problem, we develop an understanding of how
the level of the cost parameters and the degree of demand and return coupling affect
the overall costs of operating such a system. Aside from assisting the restaurant,
this understanding can help policy-makers in assessing to what degree they should
encourage the use of reusable containers or third-party suppliers in designing systems

with the operational challenges of different types of restaurants in mind.
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4.3 Model Description

We consider a restaurant that stocks reusable containers for take-away and delivery
food products. The restaurant manages two types of inventory: inventory of clean
containers (denoted by z¢) and inventory of dirty containers (denoted by zp). Three
different types of customers visit the restaurant. Type 1 customers only demand a
meal in a reusable container. Type 2 customers both demand a meal in a reusable
container and return a dirty container, hence demands and returns are coupled. If no
clean containers are available, the type 2 customer still returns the dirty container.
Type 3 customers only return a dirty container. Customers of type ¢ € {1,2,3} arrive
to the restaurant according to a Poisson Process with rate \;.

All returns of dirty containers are accepted and processed by the restaurant’s
dishwasher. The time to wash one container has an exponential distribution with mean
p;t. For stability we require Ay + A3 < ju7. A third-party supplier of clean containers
operates the system. When the supplier visits, it can either provide more clean
containers or collect excess clean containers from the restaurant, thereby helping the
restaurant control the inventory of clean containers. The supplier visits the restaurant
according a Poisson process with rate ug. The visit frequency pg will be a decision

variable for the restaurant. Figure 4.1 illustrates the dynamics of the system.
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Figure 4.1: Dynamics of the reusable container system at the restaurant

The restaurant incurs a fixed cost k per supplier visit and a holding cost h per

container held per time unit. If the restaurant does not have any clean containers on
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hand when a customer demands a container, the restaurant incurs a penalty p for not
being able to satisfy the demand for a reusable container. This penalty represents the
negative consequences of a stock-out of clean reusable containers at the moment of
demand (i.e., a “lost sale”). In practice, this penalty could be as little as the cost of the
single-use container to pack the order instead the reusable one, the cost of decreased
customer trust in the restaurant’s commitment to sustainability, or the cost of customer
dissatisfaction in having to pay a surcharge for a disposable container. Or, it could be
as much as the cost of losing the sale of the food product altogether in jurisdictions
where single-use packaging is banned. In fact, the level of this penalty is the main
parameter that the policy-maker can influence in this model through regulations. The
system operates in continuous time over an infinite time horizon. The restaurant’s
objective is to minimize the long-run average cost rate by deciding on (i) the number
of clean containers that it should have in inventory after the supplier visits and (i7) the

supplier visit frequency.

4.4 Optimal Inventory Balancing Policy and

Balancing Frequency

4.4.1 Optimal Inventory Balancing Policy

The decision of how much inventory of clean containers to take from or give to the
supplier can be modeled as a Markov Decision Process (MDP) for any given supplier
visit frequency pp. The state of this MDP is the tuple (z¢,xp) € Ng where z¢ and zp
denote the inventory level of clean and dirty containers at the restaurant. The decision
in this MDP is the number of clean containers to have in inventory at the restaurant
after a visit from the supplier, where the action space is Ny. Note that, if we let y
denote the number of clean containers at the restaurant after a visit from the supplier
and if the restaurant is in state (z¢,zp) before the visit, then y — ¢ is the number
of clean containers taken from the supplier. A negative value of y — z¢ indicates that
clean containers were returned to the supplier.

To transform this continuous time MDP to a discrete time MDP, we use
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uniformization with v = Zle Ai+pr+ pp as the uniform transition rate and scale time
such that v = 1. The probability of transitioning from state (z¢,zp) to state (xf, 2')

under decision y € Nj is given by:

)
A, ifzp=(xc—1)T and 2/ = xp

Ay, ifzp=(rc—1)"and 2y =zp+1

As, ifap =zcand 2 =2p+1
p((zc,xp),y, (‘r/Cvx/D)) =9 ur, fap=zc+1,25=2p—1 and zp >0
wr, ifxp =x¢, 2y =xp,and zp =0

pe, ifxn =y and 2, =zp

0,  otherwise

The direct cost of being in state (z¢, xp) is given by h(zc+zp)+p(A+A2)[(xc = 0),
where [(x) is the indicator function of z. Observe that the number of dirty containers
at the restaurant xp is not affected by the choice of y but only by the rate of returns
A2 + A3 and dishwasher capacity p;. As such, the holding costs associated with dirty
containers are sunk costs and the relevant direct cost function can be written as h(z¢)+

p(/\l + )\2)]1(.730 = O)

A policy 7 : N2 — Nj is a decision rule that prescribes an action y to every possible
system state (x¢,zp). Policy 7 induces a stochastic process (XZ(t), X[ (t)) where
t € Np is the indexed time unit in the horizon. Let II be the set of Markovian policies.

The average cost rate of a given rebalancing policy 7 is given by

. I

g(r) = limsup ~E / RXE () + O\ + A)L(XE(E) = 0)dt | -
T—o0 T 0

We seek to minimize this average cost rate. We let ¢g* = inf 11 g(7) denote the optimal

average cost rate and 7* denote the optimal policy (i.e., g(7*) = ¢*) that achieves this

average cost rate.

For g* to exist and be finite, the Markov Chain induced by a Markovian policy

must have a stationary distribution. Different conditions to establish the existence of
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a stationary distribution are outlined in Puterman (2014). This MDP is unichain and
aperiodic because state (0,0) can be reached from any other state under any policy
and because it has a self-transition. Furthermore, observe that the number of dirty
containers in the restaurant (Xp) behaves as the number of customers in an M/M/1
queue with arrival rate Ao+ A3 and service rate p;, regardless of any inventory balancing
policy, because returns are always processed. The stability condition Ay + A3 < py
ensures that Xp has a stationary geometric distribution with dishwasher utilization
pr = (A2 + A3)/us as the parameter for any policy 7 (see Gross et al. 2008, for general
results on M/M/1 queues). When demand exceed returns, X¢ will have a stationary
distribution under any Markovian policy. When returns exceed demand, a Markovian
policy needs to return clean containers to the supplier at a rate of at least A\3 — A;.
Otherwise, X will have positive drift and build up. A policy that reduces clean
container inventory to any finite number during supplier visits will avoid this drift and
so an optimal policy will too. Thus, there is a large class of Markovian policies that
includes an optimal Markovian policy such that X will have a stationary distribution.
For the remainder of this study we will only look at such policies. Given this discussion,
there exists an optimal Markovian policy 7* and optimal cost rate g* that satisfy the

Bellman optimality equations:

V(ze,2p) + g° = h(ze + zp) + p(A + A) (e = 0) + MV ((zc — 1)F, 2p)
+ XV ((ze — D) 2p +1) + M3V (ze, zp + 1)
+ pull(xp =0)V(ze,zp) + uil(xp > 0)V(ze + 1,2p — 1)  (4.1)
+ ug myin V(y,zp) Y(zo,zp) € N3

where V(z¢, zp) is the relative value function.

Inspection of the last term on the right hand side of the Bellman equations (4.1)
reveals that for each possible number of dirty containers at the restaurant (zp), there
is an optimal number of clean containers that the restaurant wishes to have when the
supplier visits the restaurant. This observation is important and stated in the following

proposition.

Proposition 4.1. There exist state-dependent rebalancing levels y*(zp) for each
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number of dirty containers in the restaurant (xp) such that it is average optimal to
increase (decrease) the number of clean containers to y*(xp) when the supplier visits

the restaurant and the number of clean containers at this time is reset to x¢c < y*(xp)

(xc > y*(wp)).

We solve this MDP numerically using the value iteration algorithm. The numerical
evaluation requires us to set bounds for the state space variables z¢ and zp. Using
the fact that the dishwasher is an M/M/1 queue and the number of dirty containers
in the restaurant Xp is a geometrically distributed random variable with parameter
pr1, the upper bound for Xp is set at the value on the support of Xp that corresponds
to the 99th-percentile of this distribution. We need a different approach to bound X¢
since there can be a positive or negative flow of containers between the supplier and
the restaurant and unfulfilled demand is lost. As a proxy, we use the demand between

supplier visits, Dg, to compute an upper bound on the number of clean containers. The

A14Ao
A +Xe+uE

of this distribution is in the Appendix. Similar to the upper bound for Xp, we set the

distribution of Dg is a geometric distribution with parameter . The derivation

upper bound for X at the 99th-percentile of Dg.

4.4.2 Optimal Inventory Balancing Frequency

For a supplier visit frequency g, ¢*(ug) is the average lost sales penalty and holding
cost rate under an optimal balancing policy 7*. Given supplier visit cost k, the
restaurant incurs a total cost of kug for the supplier visits, meaning that the restaurant’s

relevant costs are

C(pp) = kup + 9" (1r).-

Whereas ¢g*(ug) decreases in pg, the supplier visit cost term increases in g, creating
a trade-off for the restaurant. The restaurant’s optimal supplier visit frequency is

py = argmin,  C(pg). We compute py; using a golden section search.
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4.5 Performance Metrics

In addition to the expected total cost rate g*, several other metrics are used to assess
the system’s performance. Because unfulfilled demand is lost, the expected lost sales
rate and the fill rate are important metrics to track. To clarify, we broadly use the
term lost sale to refer to a demand that cannot be met by providing a meal in a clean
reusable container, regardless of whether the meal itself can be sold in a disposable
container or not. We use that Poisson Arrivals See Time Averages (PASTA) (Wolft
1982) to evaluate the following performance metrics. The expected lost sales rate is
given by:
E[Loss] = P(Xe = 0)(A1 + Ag).

We compute this rate recursively. Details are provided in the Appendix. The fill rate,
denoted by [, is the ratio of the fulfilled demand to total demand in steady state and

is given by:
)\1 + /\2 — P(XC = 0)()\1 + )\2)
A1+ Ao

The restaurant can be a net receiver or giver of clean containers when the supplier visits.

B = —1-P(Xc = 0).

We define the flow as the long term demand for clean containers from the supplier. A
negative flow indicates a net outflow of clean containers from the restaurant to the
supplier whereas a positive flow indicated a net inflow of clean containers from the

supplier to the restaurant. The expected flow is given by:
E[FIOW] == )\1 + /\2 - ]P)(XC - O)(/\l + )\2) - ()\2 - )\3) - )\1 - P(XC = 0)()\1 + )\2) -+ >\3.

The final two performance metrics we track are the expected number of clean and
dirty containers at the restaurant. The expected number of clean containers at the
restaurant can be derived from the fact that in steady state the average total cost
9" = hE[Xc]| + p(A + A2)P(Xe = 0). The expected number of clean containers at the

restaurant is then:

F—p(M+X)P(Xe=0 * — pE|Loss
E[xe] = 2 p(M hz)(c ) _ 9 ph[ ]
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Using general results on the number of items in a M /M /1 queueing system, the expected
number of dirty containers at the restaurant is:
P1 A2 + A3

ElXp| = = .
Xo) L—pr  pr—XAx—2As

4.6 Numerical Study

As mentioned in Section 4.1, the uncertainty in both the demand for and returns of
reusable containers makes it more difficult for the restaurant to control inventory levels
than if it were just facing uncertainty in demand (i.e., as in the single-use containers
case). If the restaurant has too much demand relative to returns on average, it mostly
uses the supplier’s visit to obtain additional clean containers. If the restaurant has
too many returns relative to demand, it mostly uses the supplier’s visit to offload
excess containers. The overall balance of demand to returns at the restaurant is
a key characteristic of the restaurant’s reusable containers operations and it affects
the restaurant’s inventory decisions and costs. To control for possible differences
in inventory decisions and costs driven by differences in the balance of demand to
returns, we define the average demand to returns ratio 7 as a parameter that we vary

systematically in our numerical study, where

Mt
Ao+ A

(4.2)

A restaurant’s demand and returns are balanced when 7 = 1. When 7 > 1 (respectively
7 < 1), the restaurant has on average more (respectively less) demand for containers
than returns.

Since the restaurant faces customers that are heterogeneous in terms of their effects
on the inventory levels of reusable containers and one of the customer types it faces
generates coupled demand and returns, one question we set out to investigate is how the
proportion of coupled demand and returns out of total demand affects the restaurant’s
inventory decisions and costs. To do so, we define the average proportion of demand

that is coupled with returns n as a second control parameter in our numerical study;,
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where

N /\1+)\2.

Scaling effects, such as economies of scale or congestion effects, may result in

U (4.3)

inappropriate comparisons as they may drive differences in inventory decisions and
costs across systems. To control for such effects, we define a third control parameter
for the scale of the average demand for reusable containers at the restaurant, denoted
by x, where

K= A+ Aa. (4.4)

To generate the instances in our numerical study, we calculate \;,i € {1,2,3} for fixed
levels of 7, 1, k. Solving for the system of equations consisting of equations (4.2), (4.3),
and (4.4) we calculate \;,i € {1,2,3} as A\; = (1 — k)1, Ay = k7, and A3 = £ — Xs.

Note that the proportion of coupled demand and returns 7 is in fact limited by the
demand to returns ratio 7. That is, the greater the demand for reusable containers
relative to returns (the higher 7 > 1), the more that customers that only demand a
container but not return one (type 1 customers) dominate the overall demand relative to
customers that have coupled demand and returns (type 2 customers). Type 2 customers
help balance the restaurant’s inventory whereas type 1 customers reduce inventory,
tipping the overall demand and returns ratio so that demand outstrips returns. As
a result, for a given demand to returns ratio 7 > 1, some levels of 7 may not be
feasible. Mathematically, for such inconsistent 7 and 7 values, A3 becomes negative.
For example, for a restaurant with a 7 = 1.5, type 1 customers dominate to the extent
that the highest proportion of coupled demand and returns possible is 0.67. Otherwise,
A3 < 0. Therefore, in our selection of parameters, we restrict our settings for n and 7

to values that are feasible and consistent for all 7.

The last control parameter we define is the utilization of the dishwasher, p;. Using
the fact that the dishwasher behaves like an M /M /1 queue with utilization p; = %,
’\2:1’\3. Setting values for p; < 1 trivially

ensures that the stability condition Ay + A3 < py is met. Table 4.1 summarizes the

we calculate p; for fixed levels of p; from puy =

parameters for the numerical study.

Generating instances in this way yields a full factorial test bed of 1 x 4 x 4 x 5 x
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Input parameter No. of values  Values

Holding cost (per time unit per unit), h 1 1

Underage penalty (per unit underage), p 4 50, 100, 150, 200
Supplier visit cost, k 4 100, 200, 300, 400
Ratio of demand to returns, 5 0.8,0.9,1.0,1.1,1.2
Proportion of demand that is coupled with returns, n 5 0, 0.2, 0.4, 0.6, 0.8
Scale of demand, k 3 50, 75, 100
Dishwasher utilization, pr 4 0.6, 0.7, 0.8, 0.9
Total number of instances 4,800

Table 4.1: Input parameter values for test bed

5 x 3 x4 =4,800 instances. Table 4.2 summarizes the results of the numerical study.

Parameter Value  Count W g* gL gH E[Loss] E[Xc] E[Xp] E[Flow] J¢]

0.8 960 0.293  145.631 2.851 78.033 0.029 78.033 4.208 -18.779  1.000

0.9 960 0.193  110.895 5.075 63.241 0.052 63.241 4.208 -8.385 0.999

T 1.0 960 0.122 98.158 17.093 52.844 0.176 52.844 4.208 -0.176 0.998
1.1 960 0.283 170.035 30.145 79.556 0.332 79.556 4.208 6.486 0.995

1.2 960 0.408 223.511 35.082  100.730 0.385 100.730  4.208 12.115 0.995

0 960 0.263  159.757  20.663 82.041 0.222 82.041 4.208 -1.775 0.997

0.2 960 0.261  154.997 19.474 78.698 0.210 78.698 4.208 -1.763 0.997

n 0.4 960 0.260 149.985 18.191 75.132 0.196 75.132 4.208 -1.749 0.997
0.6 960 0.258  144.653  16.747 71.363 0.181 71.363 4.208 -1.734 0.997

0.8 960 0.257 138.838  15.172 67.171 0.165 67.171 4.208 -1.718 0.998

50 1600 0.212  124.189  15.825 62.007 0.171 62.007 4.208 -1.206 0.997

K 75 1600 0.262 151.017 18.198 75.609 0.196 75.609 4.208 -1.749 0.997
100 1600 0.306  173.732  20.125 87.027 0.217 87.027 4.208 -2.288 0.998

0.6 1200 0.260 148.798  17.971 74.077 0.194 74.077 1.500 -1.747 0.997

0.7 1200 0.260 149.119  17.993 74.376 0.194 74.376 2.333 -1.747 0.997

p1 0.8 1200 0.260 149.678  18.025 74.908 0.195 74.908 4.000 -1.748 0.997
0.9 1200 0.259  150.989  18.207 76.162 0.196 76.162 9.000 -1.749 0.997

50 1200 0.232  134.943 19.901 64.460 0.398 64.460 4.208 -1.951 0.994

100 1200 0.257  148.112  18.147 73.804 0.181 73.804 4.208 -1.735 0.997

p 150 1200 0.271  155.307 17.326 78.898 0.116 78.898 4.208 -1.669 0.998
200 1200 0.280 160.222  16.822 82.362 0.084 82.362 4.208 -1.637 0.999

All 4800 0.260 149.646  18.049 74.881 0.195 74.881 4.208 -1.748 0.997

Table 4.2: Numerical study results

4.6.1 Ratio of Demand to Returns

The results of the numerical study in terms of how the system metrics change as the

demand to returns ratio 7 changes are consistent with the intuition that a system in

which demands and returns are more balanced has lower costs. Indeed, the restaurant

minimizes its total costs when demand and returns are balanced, i.e., when 7 = 1.0.

When returns are higher than demand, the restaurant’s inventory of containers
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increases. Although the restaurant has fewer lost sales, the higher holding costs result
in an overall increase in total costs. When the supplier visits, the restaurant uses this
opportunity to offload clean containers to the supplier as can be seen by the negative
expected flow between the restaurant and the supplier.

In the opposite direction, as 7 increases further beyond 7 = 1.0 and the restaurant
faces more demand than returns, the restaurant is penalized from both the underage
and holding costs perspective. Not only do lost sales increase because of the additional
demand but holding costs also increase as the restaurant stocks more to avoid the high
underage penalty. The supplier’s visit is an opportunity for the restaurant to receive
an inflow of clean containers.

Figure 4.2 illustrates how the average cost rates vary with the demand to returns

ratio.
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Figure 4.2: Average cost rate as a function of the ratio of demand to returns ratio 7

The restaurant benefits from a more balanced demand to returns ratio in one more
way, namely that it allows the restaurant to reduce the fixed costs incurred from the
supplier visits. As 7 moves away from 1.0 in either direction, the optimal supplier visit

frequency p}, increases. The restaurant is less able to manage its inventory in a cost
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efficient manner internally from its demand and returns and more dependent on the
supplier for rebalancing. For the supplier operating the container system, it is crucial
to understand that this service must be designed in such a way that restaurants can
rely on the rebalancing, especially when demand and returns are not balanced.

In practice, it may be difficult for the restaurant to have balanced demand and
returns. However, if there is an imbalance between demand and returns, it is preferable
for the restaurant to have more returns than demand instead of more demand than
returns. This observation is likely a result of the relatively high underage penalty,
which is in line with reality.

Notice that, even in a balanced system, there is an average net outflow of clean
containers from the restaurant to the supplier when the supplier visits. This observation
is a consequence of the fact that unsatisfied demand is lost. The supplier, despite serving
the role of an inventory balancer in the system, is not able to balance demands and
returns. All returns are collected but not all demands are fulfilled, so in steady state,
fulfilled demand is lower than returns and the restaurant generates a net outflow of

containers to the supplier.

4.6.2 Proportion of Demand Coupled to Returns out of Total

Demand

The more demand and returns are coupled (i.e., the higher n), the easier it is for the
restaurant to balance its inventory levels locally. Both lost sales and holding costs
decrease, resulting in an overall decrease in the average total cost rate. The restaurant
mostly uses the supplier visits to reduce its inventory of clean containers, but it does
not reduce this inventory by much.

The fact that uj, is not more sensitive to changes in the proportion of coupled
demand is a more unexpected result. The restaurant’s improved ability to sustain its
operations internally when more of its demands are coupled with returns would suggest
that the restaurant does not need the supplier as much for rebalancing, leading to a
lower optimal supplier visit frequency. The results in Table 4.2 support this intuition,
but the decrease in u}, as 7 increases is modest.

One plausible explanation is that the benefit of an increased proportion of coupled
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demand and returns depends on the overall balance of demand to returns at the
restaurant. To investigate this relationship, we examine the restaurant’s performance
metrics for each level of the demand to returns ratio 7 as the proportion of coupled

demand 7 increases. The results are displayed in Table 4.3.

*

T n Count Wi g g5 9 E[Loss] | E[X¢] | E[Xp] | E[Flow] 8
0 192 0.292 | 149.495 3.894 81.102 0.040 81.102 4.208 -18.790 | 0.999
0.2 192 0.292 | 147.308 3.289 79.384 0.034 79.384 4.208 -18.784 1.00
08 | 04 192 0.293 | 145.320 2.735 77.800 0.028 77.800 4.208 -18.778 1.00
0.6 192 0.294 | 143.635 2.297 76.447 0.024 76.447 4.208 -18.774 1.00
0.8 192 0.294 | 142.397 2.043 75.433 0.021 75.433 4.208 -18.771 1.00
0 192 0.193 | 119.274 7.401 69.409 0.076 69.409 4.208 -8.409 0.999
0.2 192 0.192 | 114.897 6.195 66.260 0.063 66.260 4.208 -8.397 0.999
09 | 04 192 0.192 | 110.598 4.979 63.089 0.051 63.089 4.208 -8.385 0.999
0.6 192 0.193 | 106.555 3.837 60.058 0.039 60.058 4.208 -8.373 0.999
0.8 192 0.193 | 103.150 2.961 57.391 0.031 57.391 4.208 -8.364 1.000
0 192 0.137 | 117.781 | 22.086 65.768 0.228 65.768 4.208 -0.228 0.997
0.2 192 0.130 | 109.386 | 20.054 60.305 0.206 60.305 4.208 -0.206 0.997
1.0 | 04 192 0.123 99.907 17.699 54.017 0.182 54.017 4.208 -0.182 0.998
0.6 192 0.115 88.817 14.757 46.715 0.151 46.715 4.208 -0.152 0.998
0.8 192 0.108 74.897 10.871 37.417 0.111 37.417 4.208 -0.111 0.999
0 192 0.287 | 181.103 | 32.880 87.440 0.361 87.440 4.208 6.457 0.995
0.2 192 0.284 | 175.932 | 31.698 83.764 0.348 83.764 4.208 6.470 0.995
1.1 | 04 192 0.282 | 170.436 | 30.332 79.914 0.334 79.914 4.208 6.484 0.996
0.6 192 0.281 | 164.546 | 28.789 75.679 0.317 75.679 4.208 6.501 0.996
0.8 192 0.281 | 158.157 | 27.025 70.984 0.298 70.984 4.208 6.520 0.996
0 192 0.409 | 231.130 | 37.057 | 106.486 0.406 106.486 4.208 12.094 0.995
0.2 192 0.408 | 227.463 | 36.134 | 103.775 0.396 103.775 4.208 12.104 0.995
1.2 | 04 192 0.408 | 223.663 | 35.209 | 100.841 0.386 100.841 4.208 12.114 0.995
0.6 192 0.408 | 219.712 | 34.055 97.916 0.374 97.916 4.208 12.126 0.995
0.8 192 0.409 | 215.589 | 32.958 94.629 0.362 94.629 4.208 12.138 0.995

Table 4.3: Effect of increasing the demand-return coupling 7 for different levels of the
demand to returns ratio T

The largest benefit of increased coupling of demand and returns is realized when
demand and returns are balanced, i.e., 7 = 1.0. In this situation, increased coupling
of demand and returns enables the restaurant to be more internally sustainable and
to reduce the supplier visit frequency significantly. The restaurant needs to hold very
little inventory of clean containers when most customers bring the same number of
dirty containers as they demand when ordering take-away or delivery meals. In fact,
the restaurant only needs to hold enough clean containers to bridge the time required

to clean returned containers while serving customers with clean ones on the spot.
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The benefit of increased coupling of demand and returns decreases as the ratio
of demand to returns becomes more imbalanced in either direction. Because of the
imbalance of overall demand to returns, the restaurant hold higher levels of reusable
containers. In this case, the benefit of supply and demand being coupled is less
pronounced. Figure 4.3 illustrates how the expected total cost rate differs for each

level of 7 and 7.
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Figure 4.3: Average total cost rate g* as demand to returns ratio 7 and demand-return
coupling n vary

Another observation from Table 4.3 is that, even when controlling for differences
in the effect of coupled demand and returns at various levels of the demand to return
ratios, p} remains relatively stable, except for when overall demand and returns are
balanced. This observation suggests that, for systems that are not balanced, uj, is
robust to changes in coupled demand and returns and most of the adjustment occurs
in the optimal inventory balancing policy. Therefore, the value of optimizing pug as

the coupling of demand and returns varies is limited when demand and returns are
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imbalanced and a one-time optimization of ug for a given 7 may suffice.

4.6.3 Scale of Demand and Cost of Supplier Visit

More frequent supplier visits are required to rebalance a system with a higher scale
of demand. The reason for the more frequent rebalancing is that, as the restaurant’s
demand increases, the restaurant stocks more containers to meet the additional demand
but it also incurs more lost sales, making it harder for the restaurant to balance its
inventory through its local demand and returns.

As the scale of demand increases, all costs increase, but they increase by less
compared to the increase in scale. This observation suggests that larger restaurants
may benefit from economies of scale. One of the key decisions in designing a reusable
container system is the cost per supplier visit. A higher supplier visit cost k decreases
the optimal supplier visit frequency pj,. With less frequent supplier visits, lost sales
increase and the restaurant holds more inventory on average, either because it cannot
offload excess inventory as frequently or because it carries more in light of the less
frequent visits to satisfy demand.

Does a higher supplier visit cost affect restaurants of different scales equally? The
answer to this question is not immediately clear as larger scale restaurants incur higher
supplier visit costs from more frequent supplier visits and higher underage and holding
costs but also can divide these costs among more customers. To answer this question,
we examine the average cost per demand fulfilled (i.e., per meal served in reusable
container), which we compute as C'(u}y;)/(A + A2)(1 — P(X¢ = 0)). Figure 4.4 shows
the average cost/demand fulfilled as a function of scale for every level of supplier visit
cost k. The difference between the average cost/demand fulfilled when the supplier
visit cost k& = 400 (green curve) compared to when k& = 100 (blue curve) is greater
for a smaller scale restaurant than for a larger scale restaurant. More specifically, the
increase in demand at a larger restaurant is able to offset the increase in the supplier
visit cost by more than the increase in demand at a smaller restaurant. This observation
suggests that smaller restaurants are penalized more with a higher supplier visit cost
and highlights the importance of the choice of the supplier visit £ and its potential

impact on the decision of smaller restaurants to participate in a reusable containers
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system.
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Figure 4.4: Scale effects on average cost/demand fulfilled for a given supplier visit cost
k

4.6.4 Utilization of Dishwasher

The dishwasher utilization has a negligible effect on the cost of the system. Recall that,
since Xp behaves as the number of customers in an M/M/1 queue regardless of the
rebalancing policy, we dropped the holding cost of dirty containers as it is sunk. Note
however, that reducing utilization does significantly reduce the holding cost of dirty
containers. The number of clean containers is little affected by the utilization of the
dishwasher. This result is consistent with Burke’s theorem (Burke 1956) which says
that the departure process from an M/M/1 queue is a Poisson Process. Hence, the
arrival process of clean containers from the dishwasher is a Poisson process with rate

A2 + A3 in steady state regardless of the utilization.
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4.6.5 Underage Penalty

A higher underage penalty p results in a higher average total cost rate. To avoid lost
sales, both a higher supplier visit frequency and a higher inventory level are optimal.
The increase in the average total cost rate is driven by these higher supplier visit costs
and holding costs.

Policy-makers can influence the level of the underage penalty p through regulations.
For example, in jurisdictions that ban single-use containers altogether (the model that
Luxembourg and Germany are moving towards), the underage penalty for stocking-out
on a reusable container is high as it means that the restaurant is not able to make the
sale of the food item. In jurisdictions that charge a customer a surcharge for the use
of a disposable container, the underage penalty for the restaurant is likely much lower.
The restaurant’s decision to hold higher inventory levels of reusable containers when p
increases in response to such regulations shows that these regulations can help promote
the availability of reusable containers in restaurants. Our model can be extended to
study the sensitivity of the number of single-use containers displaced as a function of
the level of the underage penalty. Such an analysis can inform policy-makers in terms
of realistic target-setting for reductions of single-packaging waste from the food services

sector.

4.7 Conclusion

The increased popularity and availability of food take-away and delivery options has
contributed to a growth in single-use packaging waste. Policy-makers, start-ups, and
restaurants are introducing reusable container systems to reduce the demand for and
production of single-use packaging.

The design of reusable container systems is still evolving and many strategic and
operational issues remain to be resolved. At the very core of these systems, individual
restaurants need to decide on how many reusable containers to have on-hand and how
frequently the supplier should visit to help balance inventory. The uncertainty in
both demand and returns of reusable containers makes it difficult for the restaurant

to control its inventory levels. Additionally, restaurants cater to multiple customer
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types that have different effects on the inventory level of reusable containers at the
restaurant. Some customers only demand a clean container with their order (forward
flow of products), other customers only return used containers (reverse flow of products),
and some customers do both at the same time. This last set of customers have coupled
demand and returns and, because they have a net zero effect on inventory levels,
have the potential to balance the system. Our problem setting differs from related
settings previously studied in that it is a lost sales system where traditional forward
flow customers and reverse flow customers co-exist with customers with coupled demand

and returns.

We find that having a greater proportion of customers with coupled demand and
returns is always beneficial to a restaurant in that it allows the restaurant to better
control the inventory of containers internally. The restaurant is less dependent on the
supplier to balance its inventory and can reduce costs. However, just how beneficial
depends on the overall balance of demand and returns at the restaurant. The cost
reduction from increased coupling of demand and returns is most substantial when
overall demand and returns are balanced. Such a balance is likely to emerge, for
example, in a restaurant that has a base of loyal customers that frequently order from

the restaurant.

The restaurant can reduce costs by optimizing the supplier visit frequency as well
as the inventory balancing policy. From a system-design perspective, one important
decision for the supplier is the level of the supplier visit cost. A higher supplier visit cost
can disproportionately penalize restaurants with a smaller scale of demand for reusable
containers. Although the optimal supplier visit frequency is lower for a restaurant
with a smaller scale of demand, restaurants with a larger scale of demand are able to
distribute total costs across more demand than smaller restaurants. A high supplier
visit cost may thereby make it more difficult financially for smaller restaurants to use
reusable containers. Another important design decision for the policy-maker is the level
of the underage penalty. A policy-maker, through influencing the level of the underage
penalty for not having a clean reusable container available, can play a role in promoting
the use of reusable containers. A higher underage penalty encourages the restaurant to

stock more reusable containers.
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Many questions remain about how to design reusable container systems in the
food services sector and how to incentivize customers, restaurants, and the third-party
supplier to participate in the system. In this study, we put these questions to the
side and focused on a single restaurant’s inventory decisions to derive insights on how
a restaurant can manage its inventory of reusable containers. A similar analysis of
the inventory and visit frequency decisions for the reusable container supplier would
highlight the key trade-offs faced by the supplier and how a supplier may operate this
system. Another natural extension would be to analyze the operations of a network of
restaurants offering reusable containers and the reusable container supplier’s inventory

decisions.
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Appendix 4.A Distribution of Demand Between
Supplier Visits

Let S denote the time between supplier visits, then S is exponentially distributed with
mean ;ﬁ Let Dg denote the demand between supplier visits. Observe that demand
in a fixed interval of length s has a Poisson distribution with mean (A; + A\y)s. The
demand over an interval of random length S can be found by using the law of total

probability:

In the fourth line, we change the variable of integration to z = (A + u)s. The integral

at the end of this line the Gamma function, I'(x + 1). For integer z, I'(z + 1) = 2!, so

A1+A2

x! cancels out. Observe that Dg has a geometric distribution with parameter YR vy



4.B Computation of Expected Lost Sales Rate 117

Appendix 4.B Computation of Expected Lost Sales
Rate

Let U, (z¢,zp) be the expected lost sales rate after n events starting in state (z¢, zp),

where U, (z¢,xp) is given by:

Un(zc,zp) = (ze = 0)(A1 + A\2)
+ )\1(}1(30(; =0)U,_1(zc,zp) + Ll(xze > 0)\Up_1(zc — 1,xD))
+ Ay (H(:z:c =0)Up_1(zc,zp+ 1) + Lz > 0)Up—1(xc — 1,2p + 1))
+ ANUpn—1(zc,xp + 1)
+ ur (]I(:(;D =0)U,_1(zc,zp) + L(xp > 0)U,_1(xc + 1,2p — 1))
+ ueUn-1(y,(zp), ¥p),

where y;: (zp) € argmin, oy, Vo(y, zp) and V;, is defined recursively as

Vilzc,zp) = h(zc +xp) + p(A + X)) (e = 0) + MV, 1 ((xe — 1), 2p)
+ XV ((ze — D) op+ 1)+ AVia(ze, xp + 1)
+ puil(xp =0)Vooi (e, zp) + pil(xp > 0)V,—1(xe + 1,2p — 1)
+pug myin Voo1(y,xp) Y(zo,zp) € N2

For an optimal policy, the expected lost sales rate is:

E[Loss] = lim U,_1(z¢,2p) — Un(ze, Xp)

n—o0

for any (z¢,rp) € N2.






Chapter 5
Conclusion

In this dissertation, we studied the inventory decisions of players in decentralized food
supply chains when faced with policy interventions to reduce waste. While we did
not explicitly model the decisions of a policy-maker, through policy interventions,
the policy-maker influences the parameters that factor into the optimization problems
that these players solve in managing their operations. A better understanding of the
decisions made by players at different levels of the supply chain and possible frictions

they face can inform policy-makers in the design of more effective policy interventions.

In Chapter 2, we introduced a serial newsvendor supply chain as an approach to
model the multi-unit inventory decisions of a buyer and a seller when the buyer can
exhibit different degrees of strategic behavior. To investigate the effect of a buyer’s
strategic behavior, we defined three buyer types. The myopic buyer exhibits no strategic
behavior in that he does not consider factors that affect other periods or the seller’s
stocking decisions when making his period inventory decisions. The forward-looking
buyer is more strategic in that he considers factors affecting other periods in making
period inventory decisions. The sophisticated buyer is the most strategic buyer who
considers both factors affecting other periods and the seller’s stocking decision in making
his period inventory decisions.

We showed that the equilibrium inventory decisions and profit outcomes are sensitive
to the degree to which a buyer is strategic. The seller makes the most profit when

he faces a forward-looking buyer. The seller benefits from the demand-enhancing
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effect of a buyer that considers factors affecting other periods in his period inventory
decisions. Although sophisticated buyer behavior also has a demand-enhancing effect,
the sophisticated buyer’s strategic caution in his purchase decisions manipulates the

seller into bringing more supply and taking more risk in his stocking decision.

In Chapter 3, we extended the analysis of a serial newsvendor supply chain to
investigate waste outcomes when a buyer exhibits varying degrees of strategic behavior.
In particular, we focused the analysis to two types of buyers: the myopic buyer and the
forward-looking buyer. We then studied the effect of policies that penalize waste by
imposing a waste cost on the seller and/or the buyer. We showed that, while applying
a waste cost on either the seller or the buyer can both be effective policy instruments
to reduce waste, better outcomes in terms of profit and waste may be attainable if a

tax is applied on both agents at possibly different rates.

In Chapter 4, we shifted our focus to the effect of policy interventions to reduce
single-use packaging waste in the food take-away and delivery sector. Given increasing
regulations that effectively penalize the use of single-use packaging in this sector,
reusable containers have emerged as an alternative. However, managing inventories
of reusable containers comes with numerous operational challenges for a restaurant.
Both the demand for and supply (i.e., returns) of reusable containers are uncertain.
Forward-flow customers that only demand a clean container and reverse-flow customers
that only return a used container co-exist with customers that generate a coupled
demand and return by both demanding a clean container and returning a used one at

the same time.

We found that having a greater proportion of customers that generate a coupled
demand and return is always beneficial to a restaurant in that it allows the restaurant
to better control the inventory of containers internally and reduce all types of costs.
However, the largest cost reductions from increased coupling of demand and returns
is most substantial when the overall demand and returns are more balanced. The
restaurant can reduce costs by optimizing both the supplier visit frequency and
the inventory rebalancing policy during the supplier visits. From a system-design
perspective, one important decision is the level of the supplier visit cost as a higher

supplier visit cost can penalize smaller restaurants.
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Various promising directions for future work exist. The incorporation of pricing,
modeling the decisions of policy-makers, and modeling competition or at least the
decisions of multiple players at each tier of a supply chain are a number of ways that
our analysis of the settings in this dissertation can be enriched. For example, the study
of the interaction between a buyer and a seller in a serial newsvendor supply chain
when a policy-maker penalizes waste for the buyer and/or the seller can be enriched
by allowing the seller to set prices in either or both periods. It is possible that a seller
faced with a waste cost decides to increase the price of the product sold and pass on
this waste cost to the buyer. Such a situation is likely to hurt the buyer the most who
may respond by reducing his purchase decisions thereby decreasing the product he has
available for sale to the downstream market and profits. The effect on the seller and the
entire supply chain is not clear a priori. On the one hand, the seller may be relatively
unaffected as he passes the burden of the tax to the buyer and the seller’s waste may
be unaffected as well. On the other hand, the lower purchase quantities of the buyer
may be a sufficiently strong signal for the seller to stock less, earning less profit but

still decreasing the possibility of waste on the system.
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