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Detailed parametric analysis and measurements are required to reduce building energy usage while
maintaining acceptable thermal conditions. This research suggested a system that combines Building
Information Modeling (BIM), machine learning, and the non-dominated sorting genetic algorithm-II
(NSGA II) to investigate the impact of building factors on energy usage and find the optimal design. A plu-
gin is developed to receive sensor data and export all necessary information from BIM to MSSQL and
Excel. The BIMmodel was imported to IDA Indoor Climate and Energy (IDA ICE) to execute an energy con-
sumption simulation and then a pairwise test to produce the sample data set. To study the data set and
develop a prediction model between building factors and energy usage, 11 machine learning algorithms
are used. The best algorithm was Group Least Square Support Vector Machine (GLSSVM), later employed
in NSGA II as the building energy consumption fitness function using Dynamo software. An NSGA II
multi-objective optimization model is designed to reduce building energy consumption and optimize
interior thermal comfort (measured by the predicted percentage of dissatisfied (PPD)). The Pareto front
is calculated, and the optimum point approach is used to find the best combination of building envelope
characteristics, HVAC setpoints, shading parameters, lighting, and air infiltration. The feasibility and
effectiveness of the developed framework are demonstrated using a case study of an upper secondary
school building in Norway; the results show that: (1) The GLSSVM has a unique capacity to forecast build-
ing energy use with high accuracy: R2 of 0.99, an RMSE of 1.2, MSE of 1.44, and MAE of 0.89; (2) Building
energy consumption and thermal comfort may be successfully improved by the GLSSVM-NSGA II hybrid
technique, which reduces energy consumption by 37.5% and increases thermal comfort by 33.5%,
respectively.

� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

There is no doubt that buildings play a substantial role in the
overall energy use and consequently the rate of global warming.
The construction industry accounts for 40% of the EU’s total energy
consumption and 40% of the EU’s total emissions of greenhouse
gases (GHG) [1,2]. Non-residential buildings (including holiday
houses), for example, account for about 62% of the total building
stock in Norway [3], and 40% of the total energy use in buildings
(where residential and non-residential buildings account for 40%
of the Norwegian total energy use) [4]. In addition, energy usage
in Norway’s non-residential sector has increased by around 31%
since 1990, whereas residential building energy use has increased
by about 9% [4], highlighting the critical need to improve the
energy performance of this building type. Building energy effi-
ciency is considerably more difficult in cold climate nations due
to harsh temperature conditions and high heating demands, con-
tributing 40% to 60% of total national energy usage [5]. Hence,
energy efficiency techniques should be explored in various sectors
to achieve comprehensive sustainable development, including the
construction sector [6].

The location climate, building layout, building scale, building
envelope and ventilation impact how much energy a building con-
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Nomenclature

AE Actual energy value
ANN Artificial neural network
ANOVA Analysis of variance
API Application Programming Interface
ASHRAE American society of heating, refrigerating and air-

conditioning engineers
BACnet Building automation and control networks
BEM Building energy management
BIM Building information modeling
BMS Building management system
BOT Building ontology topology
COBie Construction operations building information exchange
DNN Deep neural network
DT Decision tree
ELN Elastic net
FFNN Feed forward neural network
FM Facility management
GA Genetic algorithm
GB Gradient boosting
GBDT Gradient boosted decision trees
GBM Gradient boosting machines
GLSSVM Group least square support vector machine
GMDH Group method of data handling
GMM Gaussian mixture modelling
GPR Gaussian process regression
HVAC Heating, ventilation, and air conditioning
IFC Industry foundation classes

IoT Internet of things
KNN K-nearest neighbors
LR Linear regression
LSSVM Least squares support vector machine
LSTM Long short-term memory
MARS Multivariate adaptive regression splines
ML Machine learning
MLR Multiple linear regression
n,i,j Numbers
NN Neural network
NSGA Non-dominated Sorting Genetic Algorithm
OLS Ordinary least squares
PE Predicted energy value
PMV Predicted mean vote
PPD Predicted percentage of dissatisfied
RF Random forest
RMSE Root Mean Square Error
RNN Recurrent neural networks
SSN Semantic sensor network
SVM Support vector machine
SVR Support vector regression
URL Uniform resource locator
VAV Variable air volume
XGB Extreme gradient boosting
y Output, number
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sumes [7]. Most essential among them is the building envelope
since its design defines how a building will respond to external
conditions [8]. For building performance optimization, building
shape, facade form, and facade construction are the three main fac-
tors to consider during the early optimization stages. All of these
factors are included in a building’s form: its orientation, its shape,
the layout of its rooms, as well as its controllable characteristics in
digital building form. The window-wall layout [9,10], single-
window size [11], and shading component size [12] comprise the
facade form variables. Glazing insulation, light transmission, and
opaque envelope insulation are some of the factors in facade con-
struction [13–15]. In addition, building envelope heat transfer
accounts for over half of the energy utilized by non-residential
buildings’ heating, ventilation and air conditioning systems (HVAC)
during the year [16]. Therefore, building envelope characteristics
integrated with HVAC setpoints must be optimized in light of the
acute energy scarcity to decrease energy consumption in future
building operations.

On the other hand, when examining the energy efficiency of
buildings, the thermal comfort and well-being of inhabitants are
essential factors to consider, especially in educational and office
buildings where indoor climate affects students’ and employees’
performance. It becomes considerably more difficult when the goal
is to increase the energy performance of the building towards zero
energy buildings (ZEB) while still providing thermal comfort [17].
However, improved interior climatic conditions may increase
energy use. For this reason, an extensive number of studies have
examined the influence of various building parameters on the
energy performance of buildings using a variety of methodologies,
including data-driven methods [18], optimization techniques [19],
and a mix of both approaches [20,21]. According to [22], optimiza-
tion approaches may employ machine learning techniques and
algorithms, such as genetic algorithms, to identify the ideal param-
eters for a given building, which is the focus of this paper.
2

Eventually, utilizing building products as optimization variables
to conduct building performance optimization procedures might
improve the accuracy of performance evaluation and speed up
the implementation of the results. However, a significant challenge
with the optimization process is the disagreement between the
optimization outcomes and the project’s basic modulus. Uncer-
tainty about building performance and variables might lead to con-
siderable discrepancies between possible solutions and results
from optimizations. As a result, this study will use the IDA ICE soft-
ware to simulate the imported Building Information Modeling
(BIM) model and create a batch of energy consumption data, there-
fore presenting a way for obtaining a sufficient data set on building
energy usage. To get energy consumption data, however, the usage
of BIM + IDA ICE requires that parameters be defined, and the data
is calculated using a simulation, which is wasteful when the data
sample size is increased for design optimization. As a result, more
complex and efficient algorithms are required to accurately antic-
ipate energy consumption under various combinations of charac-
teristics in a building’s envelope design parameters, which are
obviously missing.
2. Literature review

The literature review in this paper focuses on building energy
simulation in combination with BIM, Machine learning (ML),
multi-objective optimization, and visual programming, which are
the methodologies utilized to design the integrated system pre-
sented in this paper.
2.1. Visual programming

BIM is the process of creating and managing digital representa-
tions of a building’s physical and functional attributes [23]. An
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integrated database of coordinated information may be utilized to
examine different performance criteria in a BIM model, such as
architectural, structural, energy, acoustical, and lighting [24]. Fur-
thermore, performance-based design using BIM is becoming more
common in the building design disciplines [24,25].

The currently available research on building energy perfor-
mance analysis uses BIM as the central data model for various
energy simulation tools such as EnergyPlus [26–28], TRANSYS
[28], and IDA ICE [29]. Using Industry Foundation Classes (IFC) to
solve interoperability concerns is a frequent strategy in this sort
of studies. However, performance-based design is more successful
when BIM and parametric modeling are combined. For example,
[25] developed ThemalOpt, a thermal simulation and optimization
tool based on BIM. To improve previous studies, designers require a
simple visual way to set up building parameters using robust open-
source Multi-objective optimization (MOO) algorithms.

Visual programming interfaces can replace complex conven-
tional coding with a visual metaphor of connecting small blocks
of independent functionalities into a whole system or procedure,
which designers can use to implement their sophisticated design
intent (e.g., through the use of conditional statements in paramet-
ric BIM) [30]. Thanks to visual programming, it is possible to build
computer programs visually instead of textually, where non-
programmers or inexperienced programmers may find a more
visual style of programming more straightforward to comprehend.
McNeel Rhinoceros� and Autodesk Revit� both include visual pro-
gramming tools called Grasshopper and Dynamo, respectively.

According to the studies above, this research was conducted
using Revit and Dynamo, which differ from Grasshopper in that
designers have used them for a more extended period. Many
new possibilities open up for designers working in Rhino or Revit
thanks to Grasshopper and Dynamo, built on Python’s visual pro-
gramming language. Using Dynamo, Revit users do not have to
master the Revit API to construct automation routines for the soft-
ware [31]. As a result, the learning curve for new users of Revit is
much shorter, which means more customization options for them.
In contrast to typical Revit tools, Dynamo allows designers to
explore iterative frameworks in the context of a BIM tool by allow-
ing users to construct systematic linkages to alter model elements
and parameters. In addition, Dynamo can be connected with extra
libraries like MOO that can be used for the optimization process.
2.2. Integration of building performance data with BIM

In the construction industry, building information modeling
(BIM) is a shared knowledge resource for information about a facil-
ity that serves as a solid foundation for choices throughout its life
cycle, defined as the period from its inception until its end of life
phase. The advancement of BIM technology and its ever-
increasing use in the construction sector have resulted in the pro-
gressive expansion of various types of information linked to build-
ings carried by BIM during the past few decades [32]. Researchers
and practitioners have also sought to apply BIM in the context of
building life-cycle analysis [33,34], among other things. When it
comes to energy efficiency and environmental optimization design,
there is a significant difficulty; namely, the BIM framework was
not designed to integrate building performance information and
data as rapidly as is necessary. These difficulties include data loss
during an encounter, a lack of appropriate data standards, and
highly severe technological challenges [35,36]. The absence of per-
formance data (such as energy consumption and occupant com-
fort) integration capabilities has significantly hampered building
information modeling (BIM) adoption in sustainable building
design. As a result, a BIM-based data management and application
framework for sustainable buildings must be established urgently.
3

The consequences of a lack of such framework are noticed
throughout the whole life of the buildings. In the Architecture,
Engineering, and Construction (AEC) industry, where data is often
constrained to heterogeneous silos and seldom accessed beyond
their native area [37], significant difficulties surround data integra-
tion. Increased operating costs and eventually poor building per-
formance are two of the problems that may result [37].

The methodology of Building Information Modelling (BIM) has
facilitated the flow of information during the design and construc-
tion phases. However, during the operating phase, this interchange
remains a difficulty. BIM may be thought of as a central store for
building data accessible to all project stakeholders throughout
the project’s lifecycle. However, BIM is simply one silo of informa-
tion within the larger context of the business, and other pertinent
data must also be exploited to improve both the building and the
organization [38]. As a result, a system is required that can support
a variety of building schemes, dimensions, purposes, configura-
tions, and communication protocols such as BACnet that originate
from disparate hardware installed throughout the building and
owned by disparate supplier firms [39,40].

Additionally, establishing ways for integrating BIM data into the
building energy system has grown crucial as open data standards
such as COBie [41] and IFC (Industry Foundation Classes) [42]
emerge. A possible approach is to use suitable semantic web stan-
dards, which control the creation of ontologies and provide a more
lightweight solution than monolithic data interchange techniques
[43]. For instance, the BrickSchema adds a semantic framework
to the description of physical, logical, and virtual assets [44]. Sen-
sors are defined in the Semantic Sensor Network (SSN) ontology as
components of a system deployed in a building with specifiedmea-
surement capability [45]. The Building Topology Ontology (BOT),
which enables the representation of any building’s topology [46].
However, there is a lack of research on using ontology techniques
to integrate BIM, energy management, and thermal comfort data in
one framework.

In this work, a plug-into integrate sensors data in BIM is devel-
oped. In addition, BRICK, BOT, and SSN ontologies are used based
on COBie data to help retrieve information from an IFC model,
transfer data into the COBie data standard, and provide BIM data
into energy systems to address data exchange and interoperability
challenges.

2.3. Artificial intelligence of building energy consumption

With the development of computer technology, artificial intelli-
gence (AI) has attracted increasing attention as a flexible and accu-
rate data-driven method. Machine learning (ML) technology is
widely used in building analysis, modeling, and prediction [47].
ML algorithms have self-learning capabilities and can rapidly
search for optimal solutions, making them suitable for solving
complex nonlinear problems [48,49]. Several studies have used
machine learning for building energy consumption predictions
[50,51]. Other researchers developed new ML models to overcome
the inequality constraints of the conventional ML models; for
example, the least-squares support vector machine (LSSVM) has
been used to overcome the abnormal regression in Support vector
machine (SVM) [52,53].

Table 1 summarizes a few studies that used machine learning to
predict building energy consumption, including some of the most
used Regressionmethods like SVR, LR, and DT. Out from the Table 1,
it is obvious that investigating the best energy use prediction
remains a complex task, as there is no general agreement on the
most suitable algorithm for energy prediction. Hence, in this
research, the selected ML algorithms combine the most utilized
algorithms and hybrid algorithms that are yet to receive much
attention in energy prediction. This paper will use 11 machine



Table 1
Summary of machine learning approaches used in literature to predict the energy consumption of buildings.

Reference Algorithm type Description

[54] ANN, SVM, LR This paper focuses on applying new models to solve prediction challenges and improving model parameters or input
samples for improved performance.

Other factors of load prediction are broken down into meteorological conditions, building attributes, and occupancy
behavior in the study.

[55] SVM, ANN, Decision trees, Data
driven models

This study examines the scopes of prediction, data attributes, and pre-processing data methods, including machine
learning algorithms for prediction and performance metrics for assessment.

[56] ANN, SVM, Hybrid ANN, Hybrid
SVM

According to this study, artificial intelligence is the most appropriate strategy for managing nonlinear elements since it
can deliver higher predicting performance.

A hybrid of two forecasting methods, as opposed to a single forecasting approach might potentially produce more exact
findings than a single forecasting method.

[57] ANN, SVM, Ensemble model, LR The authors evaluate AI-based building energy prediction approaches, focusing on ensemble models.
The ideas and applications of multiple linear regression, artificial neural networks, support vector regression, and

ensemble prediction models have been covered. This paper also discusses the benefits and drawbacks of each model
type.

[58] LR, FFNN, SVR, LS-SVM and
others

Seven machine learning approaches were evaluated on two different data sets. The authors evaluated each approach’s
pros, drawbacks, and technical advantages.

The results indicate that LS-SVM is the optimal approach for estimating the future energy usage of each home.

[59] RNN, LSTM Models for medium- to long-term projections of power consumption patterns in commercial and residential buildings
are proposed in this work using two innovative deep RNN with LSTM models.

Compared to a 3-layer multi-layered perceptron (MLP) model, the suggested RNN model fails to estimate aggregate
load profiles over a 1-year time horizon.

[60] Hybrid NN-SVM A unique method for forecasting hourly energy load in a short time, as well as forecasting the daily consumption for the
upcoming months, is presented in this paper.

The technique is based on the NN-SVM with RGA optimization. Based on the findings, this new technique thoroughly
depicts daily and weekly load changes and a reliable prediction of upcoming month consumption with high accuracy.

[53] ANN, SVR, LS-SVM, GPR, GMM This paper aims to provide an innovative hybrid modeling technique for estimating residential building energy use.
This study combines data-driven techniques with forward physics-based models.

The analysis described here predicts power consumption using five-minute interval data. The results of the final data
analysis suggest that hybrid modeling is marginally superior to conventional data-driven methods for hourly

forecasting.

[61] DNN, RF, SVR, GBM, XGB, MLR,
ELN

The potential of deep learning in building cooling load prediction is investigated using seven different algorithms. The
results demonstrate that the extreme gradient boosting (XGB) technique demonstrates superior prediction to other

methods.

[62] DNN, ANN, GB, SVM, KNN, DT,
LR

The accuracy of nine machine learning approaches for forecasting yearly energy usagewas examined in this study. DNN
outperformed other models in predicting energy usage. ANN, GB, and SVM are also consideredefficient prediction

methods in this study.

[52] SVM, ANN, LSSVM,GMDH,
GLSSVM

This study demonstrates that NN and SVM are the most often employed artificial intelligence models in building energy
use prediction. A GMDH-LSSVM hybrid model was suggested in this research, and it was discovered to have a promising

forecasting potential when applied to different time series forecasting areas.

[63] OLS,RF, SVR, GPR,NN, MARS This study puts a variety of machine learning algorithms to the test in the context of ”building performance
simulations.” the results show that GPR generated the most accurate models in general, followed by NN and MARS.
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learning algorithms, including LR, ANN, SVM, GPR, DNN, RF, XGB,
NN-SVM, LSSVM, GMDH, and GLSSVM. The results from those algo-
rithms will be compared, and the most accurate one will be used
for the optimization process.
2.4. Optimization algorithm

In general, reducing energy usage is not enough to optimize
building design. The ideal design option must also suit indoor cli-
mate criteria [64]. However, in building design, energy consump-
tion and indoor climate are important but opposing goals.
Considering that, determining the ideal design becomes challeng-
ing due to the various parameters and tactics involved in the opti-
mization process [65]. Therefore, this study obtains the ideal
design parameters for a building envelope using a multi-
objective optimization approach with energy consumption and
thermal comfort as objective functions. The genetic algorithm
(GA), invented by Holland [66], is one of the most extensively used
multi-objective optimization algorithms [67]. However, The GA
can not preserve population variety while keeping exceptional
individuals from the parent generation [68]. Srinivas and Deb
devised a nondominated sorting genetic algorithm (NSGA) in
4

1994 to solve the GA’s disadvantages and minimize the overpro-
duction of offspring [69]. Due to the computational complexity of
NSGA, the optimization outcomes are not significantly improved
compared to GA. Debra et al. proposed, therefore, an NSGA II
[70]. NSGA II can quickly find the optimal solution, perform selec-
tive sorting, and retain the superior individuals from the parent
generation in the offspring to form a set of nondominated Pareto
optimal solutions [71]. Thus, NSGA II is implemented in this study
as the multi-objective optimization of building energy usage. NSGA
II will be implemented through visual programming (Dynamo)
using Optimo, which is a multi-objective optimization tool that
allows Dynamo users to apply evolutionary algorithms to solve
issues with single and multiple objectives [72].
2.5. Combine machine learning with a multi-objective optimization
algorithm

An appropriate fitness function for NSGA II is required to speed
convergence and locate the optimum solution. Empirical formulae
or computer simulations are usually used to determine the fitness
functions. Zhang constructed mathematical models that serve as a
fitness function for a genetic algorithm based on empirical formu-
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lae to optimize the parameters [73]. Naderi et al. used EnergyPlus
to improve the design and control characteristics of a smart shad-
ing blind [74]. Bruno et al. utilized the minor yearly energy usage
and minimum construction cost from EnergyPlus as fitness func-
tions [75]. However, the empirical equations cannot be changed
to unique building circumstances, and calculating the fitness val-
ues of several individuals using simulation software is computa-
tionally costly while reducing optimization efficiency. In order to
overcome the restrictions of the previously utilized fitness func-
tions, it was recommended that ML be used to develop a surrogate
model of simulation software as the fitness function of the opti-
mization method [63]. Lin et al. employed neural networks to gen-
erate thermal comfort and overall energy consumption
metamodels [76]. Nasruddin et al. used an artificial neural network
and a multi-objective GA to optimize the operation of a two-chiller
system in a building [77]. Wang et al. used Gradient Boosting Deci-
sion Trees (GBDT) to generate building performance metamodels
[78]. In conclusion, intelligent algorithms as fitness functions can
increase optimization algorithms’ adaptability and efficiency [79].
The current work provides a multi-objective optimization
approach for building energy consumption that combines machine
learning and NSGA II.

Out from that, following are the primary research questions: (1)
How to use simulation tools to simulate the BIMmodel and acquire
energy consumption data for the ML model? (2) How to create an
ML model that connects the building’s energy usage to the primary
influencing elements of the building envelope? (3) In terms of
building energy consumption and thermal comfort, how can the
ideal solution be established using NSGA II in visual programming
(Dynamo)?.

The current work proposes a multi-objective optimization
approach that integrates machine learning with NSGA II via
Dynamo to enable intelligent prediction and optimization of build-
ing energy usage. The ML model is trained and validated to create a
fast estimating building energy use model based on IDA ICE simu-
lation data. The optimization target is then set to the surrogate
model for energy consumption and the empirical formula for ther-
mal comfort. Finally, multi-objective optimization is performed
using the NSGA II through Dynamo. Thus, the originality of our
work comes from the fact that it investigates the interaction of
building envelope elements with HVAC systems and parameters
with other critical design variables through the optimization pro-
cess, which was previously unexplored in literature. The novel
aspects of this research are as follows: (1) Develop a plug-in in
Revit that can receive sensor data (temperature, pressure etc.) from
the equipment in a school building in Norway and use this data to
validate the IDA ICE model. (2) Developing a multi-objective opti-
mization framework for concurrently improving a building’s
energy performance and indoor comfort, which can increase the
viability of energy consumption optimization solutions. (3) Using
machine learning as the fitness function to alleviate the difficulties
of traditional prediction methods in terms of accuracy and effi-
ciency. (4) Using visual programming to create a hybrid technique
for predicting and optimizing a building’s energy performance and
other functions, which make it easier to feedback the optimization
results in BIM model as well as the building’s management system
to increase its sustainability.
3. The proposed framework

This paper provides a novel multi-objective optimization strat-
egy for reducing energy consumption in buildings while simulta-
neously increasing occupant comfort. The framework to enhance
the building energy consumption data generated by IDA ICE was
developed using eleven machine learning algorithms and the NSGA
5

II technique. The flow chart for the suggested framework is
depicted in Fig. 1. This framework comprises five stages, which will
be discussed in further detail in the following sections.

3.1. Data collection for optimization process

This stage represents the blue box in Fig. (1). The initial stage of
the proposed framework consists of preparing the BIM model for
data extraction as well as the development of a plug-in that
streams sensor data from the HVAC system and rooms in buildings
into the BIM model, transforming the BIM model into a database
that contains all of the information required to carry out the opti-
mization process. It is necessary to confirm that the BIM model has
all the geometric and thermal characteristics required for the com-
putation as part of the preparation procedure. An accurate BIM
model of the structure in issue should be accessible to facilitate
data extraction throughout the data extraction procedure. For
buildings without a BIM model, laser scanning [80] or 2D drawings
can be used to create the building envelope elements.

3.1.1. Data gleaned from the BIM model
In this paper, the BIM model will be used in two different ways:

as input for the simulation process and as a way of visualizing the
outcomes of the simulation. A database of BIM models from which
all of the relevant data is retrieved is required for the optimization
framework to function correctly. As a result, it must be carefully
modeled, and all of the required thermal and geometric character-
istics of the building envelope elements must be correctly allocated
to the different elements. According to the definition of the level of
development (LOD) [81], it is advised to have a BIM model with a
LOD of 300 or above in order to extract both the thermal and geo-
metric data associated with the proposed framework. Autodesk
Revit� 2022 [41] will be used in this study as a BIM authorizing
tool because of its accessibility to researchers and its incorporation
into an open-source visual programming environment (Dynamo)
[82,83].

IFC (Industrial Foundation Classes (Fig. 2)) and COBie (Construc-
tion Operations Building Information Exchange are information
exchange specifications for the lifetime capture [84,85] in the
energy management and optimization process. The IFC file struc-
ture includes geometric information as well as object classes, rela-
tions, and resources. IFC may contain various semantic data, such
as construction component costs and timelines [86]. COBie can also
give information on the functioning and administration of projects
[41] in real-time. As a result, whereas IFC may give geometric and
semantic information in BIM models, COBie should include more
information, such as location data, asset details, documentation,
and graphical data, among other things.

COBie needs spatial information (space characteristics) for two
reasons: (1) Space objects are critical for managing space, occu-
pants, and energy. (2) Spaces are necessary for equipment location.
Additionally, the BIM model’s element ID (included in COBie) will
be used as a differentiating characteristic for extracting elements
for optimization and when pushing optimization findings back into
the BIM model and replacing the original element with the opti-
mized one.

As a result, this paper used a COBie extension for Revit to
extract the necessary information from BIM models for optimiza-
tion and transmit it to the building’s energy management system.
A semantic approach will then transform heterogeneous building
data sources into semantically enhanced knowledge.

3.1.2. Integrate sensor data in BIM model
Several sensors have been installed in various rooms and HVAC

systems across the building. Air and water supply and return tem-
peratures, flow rates, energy consumption, control system set-



Fig. 1. Overview of the multi-objective optimization process.

Fig. 2. Part of IFC schema that describes the correlations between energy simulation parameters..
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points, humidity, CO2, and outdoor air temperature are all mea-
sured using these sensors. Access to these sensors required first
gaining access to the BMS, which enabled us to monitor and record
all of the essential data. However, it was not feasible to immedi-
ately extract the BMS system’s data. As a result, with the assistance
of a development team, it was required to implement a BACnet
Restful API [87] on top of a standard BMS. In this work, Postman
software [88] has been used to obtain JSON files [89] from BMS
using the API built and then convert them to Excel using Python
programming language. Hence, we have an automated procedure
6

to retrieve real-time data and update the excel file continually.
Additionally, the Regio controller governs the temperature of a
room and the functioning of other systems in the space. Fig. 3
shows the control system.

As a next step, Windows Presentation Foundation (WPF) pro-
gramming [91] in Microsoft Visual Studio Community 2019 was
used to develop a Revit plugin to read the real-time sensor data
and save them to MSSQL database while keeping BIM up to date.
In addition, a threshold was added to the plugin to give colors of
the room based on occupant comfort conditions in the building.



Fig. 3. An illustration of the control system [90].

Fig. 4. Sensor management in Revit using the developed plugin.
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Several sensors blocks were used in BIM to receive the sensor data
and visualize them. Fig. 4 shows the sensor block.

In this study, we chose to utilize a laser scanner to scan certain
zones in order to appropriately represent them in Revit because
the available BIM model does not have all of the necessary infor-
mation. In order to do this, we employ (TOP GLS2000 [92]), and
the point clouds that are extracted have been treated in Autodesk
ReCap before being sent to Autodesk Revit.
7

3.2. Energy consumption simulation

This stage represents the yellow box in Fig. (1).

3.2.1. Building energy consumption simulation using IDA ICE
Several building energy performance tools, such as EnergyPlus

[93], TRNSYS [65,94], and IDA ICE [95,96], are commonly used in
literature for building performance and optimization.
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According to the research stated above, building envelope and
HVAC system characteristics need to be taken into account when
optimizing a building for energy efficiency and thermal comfort
simultaneously. Despite this, optimizations in the literature did
not consider various envelope components, control techniques,
and HVAC setpoints.

As a result, the novelty of our paper is to investigate the inter-
action of building envelope factors with HVAC systems and param-
eters with other essential design variables through the
optimization process, which was missing in the literature. This
was accomplished by integrating the IDA ICE software with
machine learning algorithms and optimization techniques to
improve energy performance considering occupants’ comfort
conditions.

In this study, nineteen variables are taken into account, includ-
ing window size, temperature, U-values, airflow, and other ele-
ments vital to a building’s performance but challenging to
analyze and pinpoint in the early phases of design [97,98]. The
annual energy demand delivered to the building for heating, cool-
ing, ventilation, and lighting is considered an output measured in
kWh/m2 floor space for each simulation. The district heating net-
work system was used for heating while electricity was used for
cooling where both have a daily profile. The Revit BIM model is
imported into SimpleBim to preprocess it and then to IDA ICE once
the primary impact parameters have been determined. According
to the project’s real scenario, building specifications and ambient
variables are configured to simulate the energy consumption.

3.2.2. Pairwise testing for obtaining energy data set
The great potential for energy savings is made possible in large

part by the work of building designers. Engineers and architects
utilize a variety of metrics to evaluate a building’s environmental
effect while also ensuring that it meets standards for indoor cli-
mate, including energy demand, CO2 footprint, thermal comfort,
daylight, and expenses [99]. Building geometry, insulation thick-
ness, glazing qualities, and HVAC systems may all be varied to
identify viable solutions by the design team. Because of the vast
number of possible configurations for these factors, it is difficult
and time-consuming to thoroughly examine the design options
and come up with solutions that are both rational and able to sat-
isfy all criteria. Aside from that, the majority of energy simulation
software is computationally intensive. Because a single simulation
might take minutes to perform, executing dozens or millions of
simulations impedes widespread design analysis and optimization
adoption [63].

Although supercomputers and cloud computing may be able to
solve the computational problem of simulation, the cost of super-
computers is prohibitive, and the time it takes to complete thou-
sands of simulations is still considerable in cloud computing
[100]. This study will thus employ an orthogonal experiment from
pairs testing to generate a batch of energy consumption data [101].
This paper uses the pairwise tool to build an orthogonal experi-
ment based on the specified value range of design requirements
to get energy consumption data sets. The machine learning model
is then trained on various distinct building energy consumption
data sets, each based on a particular design.

3.3. Energy consumption prediction

This stage represents the brown box in Fig. (1). Eleven machine
learning algorithms will be examined to predict building energy
consumption, as specified in Section 2.3, based on their popularity
and recommendations in the researched literature (Table 1). We
compare these algorithms on the same dataset in this work
because all of the methods we choose have not been explicitly
compared on a single dataset in previous research. We did not
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include all of the techniques shown in the Table 1 because it would
be too overwhelming; instead, we picked the algorithms that show
better performance than those included in the same table. Each
approach has several options that impact accuracy as well as com-
puting effort. Fitting methods, tuning parameters, and convergence
criteria are examples. We attempt to find the most significant set-
tings based on the theoretical foundation and program documenta-
tion. Furthermore, the energy consumption prediction framework
will consist of four main stages as follows: (1) Data preprocessing,
(2) Feature Selection, (3) Model development (training, validation
and testing), and (4) Model evaluation, as shown in Fig. 5.

3.3.1. Data preprocessing
Although data preparation is time-consuming and computa-

tionally costly, it is the first step in machine learning [102]. It is
necessary to perform this step to ensure that the preparation will
not result in inaccurate data throughout analysis [55]. The dataset
must be cleaned and normalized as part of the data preparation
procedure. Outliers and missing data are removed during the data
cleaning procedure. The mean value of each column is used to fill
in the gaps in the data. However, to minimize confusion and com-
plication in the model development process, all occurrences of
missing values in the building dataset (due to faulty equipment
or inadequate technicality during the recording of the values) were
removed from the database. The data pretreatment practice of data
normalization also reduces the impact of dimensions, as many fea-
tures have unrelated dimensions. For example, one input variable
may have values from 0.5 to 1, whereas another may have values
from 1000 to 10,000. Scale discrepancies between the numbers
in a model might cause issues. To prevent issues with model build-
ing, samples are normalized to a unit norm. The sklearn python
module normalizer normalized the building and meteorological
datasets [103]. The use of the StandardScaler approach ensures
that separate samples’ eigenvalue dimensions have no bearing on
the prediction efficiency and accuracy [104,105].

3.3.2. Feature selection
Feature selection is crucial when employing machine learning

techniques because it filters out redundant and noisy data during
the training process. The noisy data was found in numerous condi-
tion indicators, including (1) energy usage, (2) supply air tempera-
tures, (3) chiller and heater water temperature sensors, and so on.
This data from sensors will help us to confirm the outcomes of our
IDA ICE simulation model and to define the correct ranges for opti-
mization process that reflect the real building as accurate as
possible.

Data reduction minimizes redundant information, whereas fea-
ture selection eliminates undesired features from a dataset. When
the data is cleaned, the low-variance and noisy elements are
removed, and the use of data normalization reduces the size dis-
parity between the different data sets. SVM and Analysis of Vari-
ance (ANOVA) will be combined in this study to select the
feature importance [106]. ANOVA-SVM is used to improve the clas-
sifier’s performance by analyzing the variance of each feature. Each
subgroup test’s accuracy score and the distance between each data
point and its decision boundary are calculated using the ANOVA-
SVM technique. The ANOVA-SVM method generates data for each
feature’s distance to its decision boundary, and the closer each fea-
ture is to the barrier, the more crucial it is.

3.3.3. Model development
According to Section 2.3, eleven supervised machine learning

algorithms based on regression are used to forecast annual energy
consumption., namely, LR, ANN, SVM, GPR, DNN, RF, XGB, ANN-
SVM, LSSVM, GMDH, and GLSSVM. The Deep Neural Network
(DNN) is a feed-forward neural network with three hidden layers



Fig. 5. Prediction framework flowchart.
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and 10 neurons in each layer with lambda = 0.1, whereas the ANN
has just one hidden layer and 10 and 100 neurons. The activation
’ReLU’ and the optimizer ’Adam’ were used. Furthermore, SVM
was built with the following parameters: 1.0 value of C (a hyper-
meter in SVM used to manage error, where a low C indicates a
low error), 1.6 value of Epsilon (defines a margin of tolerance).
The kernel function substantially impacts the SVM’s prediction
accuracy; it should be chosen suitably for different prediction
models based on the study’s features. The Gaussian kernel is a
radial basis kernel with outstanding anti-interference properties.
As a result, the prediction model in this work is based on the Gaus-
sian kernel function, which is expressed as follows [107]:

Kðxi; xÞ ¼ e
ð� xi�yk k2

2r2
Þ ð1Þ

Where xi is the input variable, y is the output variable, and r2 is
the width parameter.

Grid search was used to find c and r2 [108]. GLSSVM has the
exact parameters of LSSVM and GMDH since it is a hybrid model
of both. Furthermore, the least square regression loss function,
0.1 learning rate, and 100 estimators were also used to create the
XGB model. With 30 estimators, a random forest (RF) was created.

Following data preparation, the learning algorithms are fed the
selected variables based on feature importance ranking. Eighteen
factors are fed into this forecasting algorithm from three different
systems, including BIM models, BMS systems, and IoT sensor net-
works, and based on pairwise testing. A combination of data from
the IoT sensors, the BMS system’s data, and BIM data will be
employed in the prediction process to determine the ranges for
pairwise testing and extend it to include more possible combina-
tions. The machine learning models’ inputs will consist of nineteen
variables as they have the most impact on the energy consumption
in buildings (out from the literature review and the ANOVA-SVM
method in Section 3.3.2 to choose the most critical factors): (1)
U-value, external wal, (2) U-value, windows, (3) U-value, ground
floor, (4) U-value, roof, (5) air supply, (6) window to wall ratio,
(7) solar Heat Gain Coefficient (SHGC), (8) load (people and equip-
ment), (9) load (lighting), (10) activate shading, (11) reflectance,
(12) night ventilation, (13) shading factor, (14) air Infiltration,
(15) supply air temperature setpoints, (16) supply water tempera-
ture setpoints, (17) supply water temperature to radiators, (18)
return water temperature from radiators, (19) Heat exchanger Effi-
ciency. The output of this prediction process is the annual energy
consumption of the building.

Well-trained models can be used to forecast future energy
usage and will be used as objective function for the optimization
process. Machine learning models are trained using datasets for
the required variables (input datasets from sensor data and pair-
wise testing (Section 3.2.2)), which result in prediction models.
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The input datasets are divided into three groups using a random
distribution: (1) 80 percent for model training, (2) 10% for valida-
tion, and (3) 10% for testing the models.

3.3.4. Model evaluation
The following indicators are used to assess each model’s perfor-

mance: R-Squared (R2), Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and Mean Squared Error (MSE). The MSE
and RMSE are the most commonly used assessment methods for
energy consumption prediction among all the methodologies given
[109,110]. The difference between expected and actual values at
each point in a scatter plot is calculated using Mean Absolute Error
(MAE). The mean squared error (MSE) measures the squared differ-
ence between the estimated and actual values. The Root Mean
Squared Error (RMSE) is a statistic for calculating the disparities
between an estimated value and the model’s perceived value. R-
Squared (R2) checks the degree of fit between anticipated and
actual values; however, R2 produces the best results when close
to 1.0. The closer the score is to zero, the better the performance,
and the higher the value, the poorer the performance for MAE,
MSE, and RMSE.

Eqs. (2)–(5) produce MAE, MSE, RMSE, and R-squared,
respectively.

MAE ¼ 1
n

Xn
i¼1

AEi � PEij j ð2Þ

MSE ¼ 1
n

Xn
i¼1

ðAEi � PEiÞ2 ð3Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðAEi � PEiÞ2
vuut ð4Þ

R2 ¼ 1�

Xn

i¼1

ðypredict;i � ydata;iÞ2

Xn
i¼1

ðydata;i � ydataÞ2
ð5Þ
3.4. Multi-objective optimization based on NSGA II

This stage represents the purple box in Fig. 1.

3.4.1. Objective functions
In this work, the conventional mathematical functions, usually

used as an objective function for optimization algorithms, are
replaced by the energy consumption regression prediction meth-
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ods in Section 3.3.3. These methods can resolve that a specific for-
mula cannot express the complex nonlinear relationship between
the input variables and the output objectives.

The second object function considered in this work is indoor
thermal comfort, which expresses how pleased most occupants
are when they are in a controlled indoor environment. PMV and
PPD are two significant indices of thermal comfort in this area, rep-
resenting the degree to which indoor occupants perceive the ambi-
ent temperature according to the human body thermal reaction
[111]. In the PMV, there are seven assessment levels, ranging from
�3 to + 3, with positive and negative values denoting hot and cold
temperatures accordingly, with values closer to zero representing
higher degrees of thermal comfort. As soon as the PMV is estab-
lished, the PPD may be calculated to estimate the percentage of
thermally unsatisfied occupants in a building. Overall, PPD identi-
fies the proportion of persons expected to have local discomfort (0
to 100 percent).

The Eqs. ()()()()(6)–(9) for the thermal comfort indicators (PMV
and PPD) are developed according to ISO 7730 [112].

PMV ¼ ð0:303 � e0:036�M þ 0:028Þ � L ð6Þ

L ¼ðM�WÞ�0:00305 � ð5733�6:99 � ðM�WÞ�PaÞ�0:42ðM�W�58:15Þ
�0:000017ð5867�PaÞ�0:0014 �M � ð34�TaÞ�3:96 �10�8 �Fcl � ððTclþ273Þ4

�ðTrþ273Þ4Þ�Fcl �hc � ðTcl�TaÞ
ð7Þ

Tcl ¼35:7�0:028 � ðM�WÞ�0:155 � Icl � ð3:96 �10�8 �FclððTclþ273Þ4
�ðTrþ273Þ4ÞþFcl �hc � ðTcl�TaÞÞ

ð8Þ

PPD ¼ 100� 95 � e�0:03353�PMV4�0:2179�PMV2 ð9Þ
Where: M stands for metabolic rate (W/m2), L for body thermal

load, W (W/m2) stands for external work, Ta (�C) is the indoor air
temperature, Tcl (�C) is the clothing surface temperature, Pa
(kPa) is the partial vapor pressure, and fcl(-) is the clothing surface
area factor. In addition, Tr (�C) represents the average radiation
temperature of envelope, Icl (m2K/W) represents the thermal resis-
tance of clothing. EN 15251 [113], and Norwegian building details
421.501 [114], which are based on a human body heat balance
equation and subjective thermal feeling, have also been used to
find the parameters of PPD and PMV.

A further relation exists between the mean radiant temperature
of the building envelope (Tr) in Eq. (8) and the thermal perfor-
mance of the building envelope, which can be expressed as in
Eqs. (10), and (11) based on [112,115]:

Tr ¼ T1 �A1þT2 �A2þ���þTN �AN
A1þA2þ���þAN

¼

Xk

1

ðAnj �TnjÞ

Xk

1

Anj

ð10Þ

Where: Anj and Tnj are the building envelope’s surface area and
temperature, respectively.

T ¼ Ta � k � Ta� Tout
a

ð11Þ

Where: Ta is the indoor air temperature, Tout is the outdoor
temperature, k is the heat transfer coefficient of the envelope,
and a is the heat transfer coefficient of the inner surface of the
envelope.

The mean radiant temperature can then be written as follows:

Tr ¼ ½Awalls �Ta �Uwalls �ðTa�ToutÞ
a �þ½Awindows �Ta �Uwindows �ðTa�ToutÞ

a �þ½Aroof �Ta �Uroof �ðTa�ToutÞ
a �

AwallsþAwindowsþAroof
ð12Þ
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To include window to wall ratio, Awalls, and Awindows can be writ-
ten as follows:

Awalls ¼ Awalls þ Awindows
AwallsþAwindows

Awalls

¼ Awalls þ Awindows

1þ Awindows
Awalls

ð13Þ

Awindows ¼
ðAwallsþAwindowsÞ

Awalls
� Awindows

ðAwallsþAwindowsÞ
Awalls

¼
ðAwalls þ AwindowsÞ � Awindows

Awalls

1þ Awindows
Awalls

ð14Þ

By replacing the Eqs. (12)–(14) in the PMV Eq. (6), and consid-
ering Tr = f (Uwall;Uroof ;Uwindows;Uwindows=walls), the final equation of
PMV and building envelope can be expressed as follows:

PMV ¼ð0:303 �e0:036�M þ0:028Þ � ½ðM�WÞ�0:00305 � ð5733�6:99 � ðM�WÞ�PaÞ
�0:42ðM�W�58:15Þ�0:000017ð5867�PaÞ�0:0014 �M � ð34�TaÞ
�3:96 �10�8 �Fcl � ððTclþ273Þ4 �ðf ðUwall;Uroof ;Uwindows;Uwindows=wallsÞþ273Þ4Þ
�Fcl �hc � ðTcl�TaÞ�

ð15Þ
3.4.2. Pareto front solution using NSGA II in Dynamo
In this section, the first step is to transmit real-time sensor data

from the building to the BIM model in Autodesk Revit using the
previously described plugin that relies on virtual sensor blocks
with the following characteristics: Date, Temperature, Humidity,
Energy, and PMV attributes. Real-time streaming from IoT devices
keeps these characteristics’ values current in the BIM model.

Dynamo’s optimization technique uses NSGA II in the Optimo
package to compute the best Pareto solution in the second phase
(Fig. 6). The objective (fitness) functions from the machine learning
model (Section 3.4.1.), and PMV are mapped to Dynamo using a
python script because the Dynamo API allows for python nodes.
In order to make the dynamic PMV output more understandable,
a color range function was used.

For the NSGA II, the typical binary tournament selection, cross-
over, and mutation operators are used. The starting population list
is sorted using non-dominance fitness values in the optimization
process nodes. The offspring population list’s fitness values are allo-
cated the sameway as the original population list’s. The current off-
spring population list is coupled with previously established best
non-dominated solutions to ensure elitism. The best non-
dominated solutions are chosen for the following iteration. The
Generation Loop runs until the designer’s limit is reached. The Par-
eto Optimal Set is constructed as an output of the optimization loop
(Fig. 8), and the initial solution lists and population lists formed
during the optimization process are exported as CSV files. The user
can utilize the exported data for further processing.The method for
obtaining a Pareto front using the NSGA II is shown in Fig. 7.

In the third phase, the optimal results from NSGA II are used to
replace Revit elements (using their ID in the COBie file) and control
the indoor climate to keep PMV between �0.1 and + 0.1.

3.5. Data integration

COBie is an information exchange specification used to gather
and distribute data throughout its lifecycle. Despite this, there is
still a difficulty with compatibility between IFC and COBie because
their data structures differ from the data syntax of BIM models.
COBie spreadsheets are used to import data from BIM models that
have been pre-selected based on user-defined parameters into a
spreadsheet program. The names of characteristics in COBie
spreadsheets are typically different from the names of characteris-
tics found in FM and BEM system data, which might cause
confusion.

Currently, RDF may represent a variety of different types of
building data. Much of this information is first provided in native



Fig. 6. An overview of NSGA II method in Dynamo.

Fig. 8. The Pareto front’s ideal solution.
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data formats, which may then be transformed to RDF using a vari-
ety of data converters now available on the market. For the sake of
this research, we do not want to use the integration of BIM, BEM,
and FM for evaluation purposes, but rather to make our framework
as generic as feasible; we concentrate on three essential ontolo-
gies: Brick, BOT, and SSN, which are based on COBie and IFC data
respectively.

Using these ontologies, it is possible to characterize building
components and relate them to sensors as system elements with
specialized measurement capabilities. Using a modular approach,
the sensors and domain may be split down into readily digestible
information, with obvious connections to other ontologies that
are accessible to enable network definition, measurement, and
other functions. Python was utilized in this project to automate
the mapped method.
4. Case study

4.1. Building description

Tvedestrand secondary school (a case study model illustrating
the configuration of Norway’s secondary school building) was con-
sidered. The building consists of a three-story structure with a total
11
construction area of 9759.2 m2 and a total building volume of
33746.7 m3. The school has approximately 130 employees and
500 students; however, the building is designed for 690 students
and 140 employees. Each person occupies around 11 m2 of floor
area. Most students are 16–19 years old, while the staff is between
22–67 years old. In this study, students and employees were trea-
ted equally regarding thermal comfort.

The building envelope features, the lighting system, the HVAC
system, and the setpoints were selected for an educational facility
that complied with the Norwegian building code TEK10 [116]. In
order to acquire the building energy consumption simulation
model, the BIM model of the educational building is generated in
Revit and SimpleBim and then imported into IDA ICE to be used
in the simulation (Fig. 9). The zone multiplier function in IDA ICE
is used to shorten the computational simulation time by simplify-
ing redundant zones in the building.

Table 2 shows the general information regarding the reference
case building. The building has a total of 144 zones. This building
has a total external wall area of 2103.0 m2 and a total window area
of 670 m2. Furthermore, the shading system for the windows was
made out of vertical fins. The building windows have vertical fins
with a thickness of 10 mm, and a depth of 250 mm. The spacing
between those fins is 500 mm. For larger window areas, a lower
window U-value should be used to comply with National Building
Code (TEK 10) requirements to minimize excessive building energy
consumption for space heating and cooling. All properties were
selected using TEK 10. So, all the initial values in Table 2 come from
TEK 10 standard and have been confirmed with the facility man-
ager. However, since we used the pairwise test to generate the
inputs for the optimization process (within the boundary condi-
tions), the initial values do not affect the optimization results.
According to the standard NS 3031 [117], domestic hot water
(DHW) usage was chosen based on the standardized value for edu-
cational buildings. Table 3 shows the central HVAC system’s fea-
tures in the reference building.

Table 4 illustrates the internal heat gain values and profiles
(Occupancy, illumination, and equipment) implemented in IDA
ICE based on the NS 3031 Norwegian standard. Climate data were
obtained from the ASHRAE IWEC 2 database [118] for Kjevik, Kris-
tiansand, where the average yearly outdoor temperature was
roughly 9.2 �C. In this study, the PPD was calculated by taking into
account the occupancy patterns in the building (07.00–19.00),
room type (office, classroom, group room, labs, and lunchroom),
and holiday weeks (Week 26–32 and week 52). Usage pattern in
rooms with several people is based on NS3031 with some adjust-
ments concerning room function.



Fig. 7. The NSGA II flowchart.

Fig. 9. Simulating the energy consumption of Tvedestrand secondary school in Norway using IDA ICE.

Table 2
Original values of building envelope data used as input values in IDA-ICE.

Parameter Initial value

External wall U-value (W/(m2.K)) 0.15
Roof U-value (W/(m2.K)) 0.11

External window, doors and glass U-value (W/(m2.K)) 0.8
Ground floor U-value, W/(m2.K) 0.06

Normalized thermal bridge (W/(m2.K)) 0.03
Airtightness n50 (1/h) 0.35

External shading strategy Qsol (klux) >40
Internal wall U-value, W/(m2.K) 0.62

gt , Solar Heat Gain Coefficient (SHGC) 0.34 (3 layers glass)
Shading factor 0.2
Reflectance 0.55
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Based on the parameters given in the above tables, the building
net energy consumption of the original design solution is calcu-
lated using IDA ICE to be as the Table 5.
4.2. Sensor data and interoperability

In this case study, several sensors were placed to monitor the
building’s rooms and HVAC systems. These sensors include NTC-
12 K-sensors for temperatures, PTH-3202-DR for pressure, TTH-
6040–0 for outdoor temperature, and the IVL10 temperature-
sensitive airflow transmitters. In addition to sensors that monitor
air and water supply and return temperatures, energy usage, con-



Table 3
The reference educational building’s HVAC systems.

Operation Features

Ventilation system The used system is a mechanical
balanced ventilation system with a
rotary heat recovery system with an

efficiency of 85%.
Specific Fan Power (SFP) related to air

volumes, during operating time
[kW/(m3/s)]

1.4

Schedules of ventilation system
operation

Monday-Friday: 12 h/day (07.00–
19.00)

Average supply airflow rates of the
ventilation system

2.48 l/(m2.s) for the occupied zones
and 0.81 l/(m2.s) for the unoccupied

zones (no equipment)
Heating system District heating system, with

efficiency of 90%
Cooling system Centralized water cooling for AHU

supply air
Room temperature set point for

heating and cooling [�C]
21 for heating and 24 for cooling

Supply air temperature during
operating time winter/summer

[�C]

21/19

DHW use 5 kWh/(m2.year)
Night ventilation 0.36 l/((m2.s)

Table 4
Internal heat gains values of occupants, lighting, and equipment.

Internal heat gain Comment

Occupants: the building is occupied
from 07.00 to 19.00

Activity level is considered to be 1.2
met which is 108 W/person. The

usage then depends on the room type
(office, classroom, group room, labs

and lunchroom).
Usage pattern in rooms with several
people is based on NS3031 with some
adjustments with regard to room

function.
Holiday weeks are also based on

NS3031 and during the holiday week
there are no heat loads are present.
Holiday weeks are: week 26–32

(summer holiday), week 52
(Christmas).

Lightning during the occupied period
[W/m2]

3

Equipments during the occupied
period considering no load in
unoccupied zones [W/m2]

4

Table 5
Total net energy demand calculated for the studied building (the initial case). The
mechanical ventilation system cooled the zones because there was no local space
cooling system.

Energy Energy consumption
(kWh/year)

Energy consumption
(kWh/m2.year)

Room heating 87080 8.92
Ventilation heat 43680 4.47

Hot water 116760 11.96
Fans 101360 10.39

Pumps 25760 2.63
Lighting 86240 8.84
Technical
equipment

111720 11.45

Room cooling – –
Ventilation cooling 23520 2.41

Net energy
consumption

596120 61.07
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trol system setpoints, humidity, and CO2. Regio controllers have
also been used to regulate blinds, lighting, humidity, CO2 levels,
etc. The major goal of the sensor data is to validate the outputs
of the original IDA ICE model and to establish the boundary condi-
tions for the optimization process’s input variables. The proposed
framework in this study operates for any building based on the
ontologies used in this paper. BRICK, BOT, and SSN ontologies are
created based on COBie data and used to get information from an
IFC model, transfer data into the COBie data standard, and offer
BIM data to energy systems to handle data exchange and interop-
erability issues (see Section 3.5. Data integration). Modeling frame-
work between sensor data and simulation technique is depicted in
Fig. 10,11.

4.3. Inputs for the optimization process

The optimization process took a wide range of input variables
into account, divided into two groups, as indicated in Table 6.
The most significant characteristics in the literature guided the
selection of the initial set of variables related to the building envel-
ope and shading. The HVAC parameters and setpoints were in the
second category of variables. The optimization of the latter vari-
ables in combination was absent from the literature, and no
research investigated the combined control of these two types of
variables for the optimization process. There were more than 40
variables that can be included in this optimization process based
on the literature; however, by using the ANOVA-SVMmethod (Sec-
tion 3.3.2), the most important variables have been taken into con-
sideration, as can be seen in Table 6.

4.4. Dynamo for the machine learning and optimization

We first generate all the possible combinations of the decision
variables, ending with 1,236,912 combinations. However, using
the pairwise test, the combinations were reduced to 8000 and cov-
ered all possible solutions more effectively. We use every combina-
tion as input for IDA ICE and run one simulation based on that
combination to get the annual energy consumption. It took around
16 days to finish all simulations. The final database, which includes
the 8000 combinations and the corresponding energy consumption
(Fig. 12), is fed into the machine learning algorithms using visual
programming.

The visual programming environment enables the design space
to be described rapidly, interactively, and correctly. The Dynamo
process for this case study can be shown in Fig. 13. Table 6 and
its ranges are used to define the decision variables in this work-
flow. The python script node will take the decision variables as
inputs for the machine learning model and NSGA II process. So,
rather than installing Python on its own, it can now be utilized
as a part of Dynamo (embedded). It will be much easier to incorpo-
rate the optimization findings straight into a BIM model. Ten-
sorFlow and Sci-kit libraries must be loaded correctly for the
python scripts node to function effectively. Figure shows a portion
of the python script node’s code. The second stage uses Optimo
nodes (Fitness Function Results, Generation Algorithm, etc.) to
transfer the best machine learning model to the NSGA II nodes
for the optimization process. Packages of nodes are used to imple-
ment parametric performance analysis using BIM to optimize ther-
mal comfort and energy analysis. When the run iteration number
surpasses the designer’s specified limit, the generation loop contin-
ues to perform the generating and sorting operations in a loop.
Then, the results can be saved to an Excel file or MSSQL database



Fig. 10. The process from data input to the simulation procedure.
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containing all of the optimization variables and their performance
analysis findings. The next step is to replace the existed elements
in the BIMmodel with the optimized one and visualize the thermal
comfort results of each room in the BIMmodel using the clockwork
library. The last step is to build a user interface (Fig. 13) that the
final user can use to easily control the decision variables ranges
and constraints using the Data-Shapes library.
4.5. Annual energy consumption prediction results

The outcome analysis revealed significant findings between the
selected models in this research. In Section 3.3.4, it is mentioned
that models with values closer to zero for MAE, MSE, and RMSE
are good predictive models, while values closer to one for R-
squared generated the most outstanding results. In this study,
GLSSVMwas the best effective model for forecasting annual energy
consumption. LSSVM and GMDH, which has not received much
attention in energy prediction, emerged as two and the third-
best predictive model. The hybrid algorithm ANN-SVM comes in
fourth place, outperforming the other algorithms. Even though it
takes a longer time for training, GPR surpasses ANN, SVM, DNN,
XGB, LR, and RF. The XGB and LR-based models have the worst per-
formance but take the least time to train. Table 7 shows the predic-
tion models in terms of performance indexes and time. Fig. 14
shows the results based on Table 7 algorithms, where the x-axis
is the true values while the y-axis is the predicted values. The blue
points in Fig. 14 are the observations, and the black lines are the
predictions. The proposed GLSSVM energy consumption prediction
model has the highest accuracy and the best prediction results of
all existing models. This is due to its hybrid model’s technique
compared to other methods that mostly depend on one model
only. The GLSSVM combines the GMDH with the LS-SVM
[52,119]. The LS-SVM model forecasts the output signal using the
input data of the innovative hybrid forecasting model, which the
GMDH model chooses. Every pair of the two input variables is con-
sidered in every layer, and the polynomial function does the
regression for each pair [120]. Together with the input variables,
the output data of the GMDH model (which has the lowest error)
is utilized as input for the LS-SVM model. The GLSSVM method is
run through three to five iterations or until the output data has
the least amount of error [121]. The GLSSVM model also performs
better than the ANN-SVM hybrid model. This is obviously because
GLSSVM depends on LSSVM, an improved version of SVM that
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makes the prediction faster, and the GMDH neural network, which
selects an optimal structure of model or network until it finds the
best one compared to ANN, which has a fixed structure. As a result,
the its regression relationship can be used as the fitness function of
multi-objective optimization, resulting in better achievement of
optimization objectives.
4.6. Multi-objective optimization using NSGA-II

Building energy consumption reduction and improved thermal
comfort are two of the optimization goals for NSGA-II. In this work,
the NSGA-II adaptive mutation feature improves the variety of the
GA solutions and widens the GA’s search space by setting the pop-
ulation type as a double vector. As the population size and number
of iterations are critical to the convergence of NSGA-II optimiza-
tions, the values of these parameters are presented in Table 8.
According to Fig. 15, the NSGA-II optimization is carried out, and
the Pareto optimum front, which comprises 37 optimal solutions,
is obtained, from which we can find the following:

According to Fig. 15, thermal comfort is inversely proportional
to a building’s energy use. The predicted percentage of dissatisfied
(PPD) improves slowly with a rapid decrease in building energy
usage. However, when the building’s energy usage is further
reduced, the PPD rises dramatically, making it impossible to
achieve both objectives simultaneously.

To put it another way: The results show that the Pareto opti-
mum solutions’ energy consumption and PPD are often less than
50 kWh/m2.year and 9%, respectively, compared to the original
design solution’s 61.17 kWh/m2 and 18.5%. According to these
findings, NSGA-II solutions can simultaneously reduce the build-
ing’s energy consumption and enhance thermal comfort.

It is shown in Table 9 that the optimal set of input parameters
was found following optimization. There is a wide range of build-
ing envelope parameters in the best options. There are 3 points in
Fig. 15 where the building envelope parameters and objective
function values are shown in Table 9. According to the table, all
options on the Pareto optimum front have different values for
the building envelope parameters. By looking at the table below,
several characteristics, such as roof U-value, exterior window U-
value, and window-to-wall ratio, have varying values that influ-
ence energy usage and indoor thermal comfort.

The lighting load was maintained to a minimum during the
optimization phase, while the heat exchanger efficiency was max-



Fig. 11. Weather data (a), Supply air temperature ranges between 16 to 30 (�C) for
�10 and 9.2 (�C), and between 13 to 22 (�C) for 25 (�C) (b), and supply water
temperature ranges between 45 and 90 (�C) for �10 and 9.2 (�C), and between 15
and 40 (�C) for 25 (�C) (c).

Table 6
Input parameters for the optimization procedure.

Input parameters Value Note

U-value, external wall [W/
m2.K]

0.12,
0.14,
0.16,

0.18, 0.2
U-value, windows [W/m2.K] 0.75, 0.8,

0.85, 0.9
U-value, ground floor [W/m2.

K]
0.08,
0.10,

0.13, 0.16
U-value, roof [W/m2.K] 0.08,

0.10,
0.13, 0.16

Minimum air supply (l/m2.s) 0.5–2 min–max
Window-wall-ratio (WWR %) 30–90 min–max

gt , Solar Heat Gain
Coefficient (SHGC)

0.25,
0.32,

0.43, 0.5
Load (lighting) (W/m2) 2, 4, 6, 8
Activate shading (klux) 38, 45,

52, 61,
70, 100

Reflectance 0.4, 0.55,
0.65, 0.78

Night ventilation (l/m2.s) 0.3–4 min–max
Shading factor 0.2, 0.3,

0.4, 0.5,
0.6, 0.8

Air Infiltration 0.06,
0.07, 0.1

HVAC
Supply air temperature

setpoints in AHU (?)
Fig. 11a
and

Fig. 11b

Three outside air temperature
values were considered: �10,
9.2 (the average value), and 25

Supply water temperature
setpoints from the central

heating system (?)

Fig. 11c Three outside air temperature
values were considered: �10,
9.2 (the average value), and 25

Supply water temperature to
radiators (?)

(45,
55,65, 70)

Heat exchanger Efficiency in
AHU

(0.55,
0.75,
0.85)
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imized. This was because improving the lighting system and heat
exchanger efficiency reduced building energy consumption while
having a minor impact on thermal comfort.

A modest window to wall ratio was selected for the minimum
energy usage and the most significant thermal comfort situations,
suggesting that this parameter was a competing element for opti-
mizing thermal comfort and lowering energy consumption simul-
taneously. Building exterior walls with low U-values was favored
in all cases. The highest thermal comfort satisfaction scenarios pre-
ferred the roof with the lowest U-value.
15
Fig. 16 depicts the AHU’s ideal supply air temperatures and air-
flow rates, as well as the central heating system’s supply water
temperatures. As a result of the reference building’s optimization,
comparable variations in supply air temperature and supply water
temperature were selected for various instances (Figs. 16a,
16b,16c, and 16d) in order to reduce energy consumption and
increase thermal comfort.

In addition, the best solution is found using the ideal point
approach. The ideal point coordinates created by the optimal val-
ues of building energy consumption and PPD are shown in
Fig. 17 at (6.2, 22.9).

Out of the results we reached in our case study, The following
can be found:

1. After NSGA-II optimization, the building’s energy consumption
is much reduced. There is a 37.5% decrease in overall building
energy consumption after optimization from 61.07 kWh/m2.
year with the original case to 22.9 kWh/m2.year, proving that
multi-objective optimization favorably reduces building energy
consumption.

2. After NSGA-II optimization, the building’s thermal comfort is
increased. As an indicator of howwell a building’s thermal com-
fort has been improved by multi-objective optimization, the
PPD went from 18.5%, with the original values of the building,
to 6.2%, which is a drop of 33.5%.



Fig. 12. Output annual energy consumption distribution from IDA ICE based on pairwise combinations..

Fig. 13. The steps taken to develop optimization and machine learning models in Dynamo..

Table 7
Energy consumption prediction results based on several machine learning models.

Model RMSE R-Squared MSE MAE Training time (seconds)

LR 5.65 0.84 31.94 4.06 4.77
ANN (one layer 10 neurons) 3.19 0.95 10.23 2.30 8.10
ANN (one layer 100 neurons) 1.88 0.98 3.54 1.41 38.10

SVM 2.35 0.97 5.56 1.79 13.01
GPR 1.94 0.98 3.80 1.46 92.83
DNN 2.05 0.98 4.23 1.57 9.26
RF 3.93 0.92 15.47 2.87 2.06
XGB 5.33 0.86 28.43 3.79 2.52

ANN-SVM 1.29 0.99 1.67 0.95 25.34
LSSVM 1.25 0.99 1.56 0.91 5.22
GMDH 1.27 0.99 1.62 0.95 22.68
GLSSVM 1.20 0.99 1.44 0.89 14.03
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3. A comparison of building envelope characteristics before and
after optimization shows that the thermal performance of
envelopes, notably the wall, windows, and roofs, is critical to
energy-saving and thermal comfort.

5. Discussion

A Pareto-optimal front may be generated using NSGA II for
multi-objective building energy consumption optimization and
16
the ideal point approach to arrive at the optimum solution for
building energy consumption and thermal comfort. When we com-
pare the optimal solution of building’s parameter values to the
original solution, we discovered that each parameter’s value
changes, albeit to varying degrees.

Several previous studies have been conducted on building
energy consumption and thermal comfort optimization [124–126
,111,127,129,129–135,71]. Those studies focused on specific
parameters that affect building energy consumption. However,



Fig. 14. Machine learning models results based on Table (7) algorithms, where the blue points represent the observations from the simulation results, and the black line
represents the prediction. Also, the vertical axis represents the predicted value while the horizontal axis represents the true value: (a) Linear Regression (LR), (b) Artificial
Neural Network (ANN) with one layer and 10 neurons, (c) Artificial Neural Network (ANN) with one layer and 100 neurons, (d) Support Vector Machine (SVM), (e) Gaussian
Process Regression (GPR), (f) Deep Neural Network (DNN), (g) Random Forest (RF), (h) Extreme Gradient Boosting (XGB), (i) Artificial Neural Network-Support Vector Machine
(ANN-SVM), (j) Least Square Support Vector Machine (LSSVM), (k) Group Method of Data Handling (GMDH), (l) Group Least Square Support Vector Machine (GLSSVM)..

Table 8
Multi-objective NSGA-II optimization parameters.

Parameter Value

Population type Double vector
Population size 40

Mutation function 0.8
Crossover function 0.02
Stopping criteria Generations = 400
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non of these studies conducted a comprehensive system of factors
influencing the building energy consumption and thermal comfort.
Our research combined 19 variables from the building envelope
and HVAC system, including shading factor, SHGC, reflectance,
and air infiltration. In addition, in this study, we validate the sim-
ulation results with real sensor data from the building, which is
17
seldom done in the literature. Furthermore, in this study, a huge
database has been generated to cover various possible solutions
for the optimization process. We have also developed an ontology
framework so that the suggested framework in this research can be
applied to any building. What is unique in this study is that it
implemented all the frameworks in the BIM environment so that
it can interact with the BIM environment immediately and stream
the best solution in both directions (to and from BIM).

Regarding the results of our research, the GLSSVM has a unique
capacity to forecast building energy use with high accuracy, which
has not been investigated on such a database with many variables
or compared to this number of machine learning algorithms. Other
studies focus most on ANN, SVM, and other ordinary methods that
can not reach the accuracy of GLSSVM when it comes to such a
database using a reasonable time to run the model compared to



Fig. 15. The Pareto front of energy consumption optimization, where points (1) and (3) represent the anchor points that refer to the optimal points of the individual objective
functions and the worst value for the other objective function in multi-objective optimization [122]. Point (2) refers to the knee point, which indicates the most satisfactory
solution but not the ideal one [123]. Every blue point in the figure represents a possible solution..

Table 9
Optimized parameters from points 1,2,3 in Fig. 15, except HVAC setpoints.

Parameter 1 2 3

U-value external wall [W/m2.K] 0.12 0.12 0.12
U-value window [W/m2.K] 0.75 0.9 0.9
U-value roof [W/m2.K] 0.08 0.08 0.16

WWR (%) 36.82 31.94 59.89
SHGC 0.43 0.25 0.25

Lightning [W/m2] 8 8 8
Activate shading (klux) 70 70 61

Night ventelation [l/m2.s] 0.7 0.7 0.5
Heat exchanger efficiency 0.85 0.85 0.85

Shading factor 0.5 0.3 0.3
Air infiltration 0.07 0.06 0.06
Reflectance 0.65 0.4 0.4
PPD (%) 6.2 6.5 9

Energy (kWh/m2.year) 77.8 26.2 22.9
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other hybrid methods (e.g., ANN-SVN). Using GLSSVM, we could
replace the 16 days of simulations with 14 s of prediction, which
is not stated in any similar research.

The results also show that the GLSSVM-NSGA II hybrid tech-
nique can reduce energy consumption by 37.5% and increase ther-
mal comfort by 33.5%, respectively. Chen et al. [134] have used a
similar approach using the hybrid machine learning model and
NSGA II. However, they use only 54 combinations of variables com-
pared to 8000 in our case. Their research was also limited to 6 vari-
ables related to building envelope. In addition, the BIM model in
this study was only used to import the 3D model to the simulation
software. However, our results agree with [134] that the external
wall U value is the most important factor in the optimization.
Seghier et al. [133] developed a framework using Dynamo to
extract data from the BIM model, apply NSGA II in MATLAB and
stream the results back to the BIM model. Even if the idea of using
visual programming is similar in both research, we first used a
more user-friendly interface integrated with the BIM authoring
tools (plug-in in Revit�) to extract all the necessary information
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from the BIM model and apply all the processes inside Dynamo
without needing to use MATLAB. We also included more variables
and used machine learning to simplify the simulation process and
understand the building performance. Rahmani et al. [72] devel-
oped a new optimization library inside Dynamo so that the opti-
mization process can happen inside Dynamo, the same as we did
in our research; however, no machine learning was applied in
Dynamo as a fitness function in addition to the limited variables
that been taken into account. They also did not integrate real-
time sensor data with BIM in their study. All of the above studies
have not used Brick, SSN, and BOT ontologies to generalize their
framework so that it can be applied to several buildings.

As a result, the optimization technique suggested in this study
gives valuable insights into the value of various control methods
of HVAC setpoints change in enhancing building energy
performance.

In addition, the operating temperature is enhanced throughout
winter and summer operations, saving a significant amount of
energy following the optimization. We have attempted to follow
the Norwegian building regulation TEK10 and the standard NS-
EN 15251:2007 by taking the solutions that fulfill the PPD criterion
of less than 10%. Using Table 9, it can be shown that the most
remarkable results were achieved when shading factors, air infil-
tration, reflectance, SHGC, and interior temperature setpoints were
taken into consideration.

It is also fascinating to talk about the building’s cost-
effectiveness in light of the data linked to energy savings. As a
result of the optimization procedure, the building’s energy con-
sumption was reduced significantly compared to the reference
building. Eventually, the decrease in operational costs due to
improved building energy performance may be the most signifi-
cant factor in the facility’s total life cycle costs. If the cost-
effectiveness of other systems and materials were also taken into
account, this substantial energy-saving might not be achieved.
We recommended a wide range of solutions, including shading
devices and HVAC setpoint adjustments, that may enhance build-
ing energy performance at a minimal investment cost.



Fig. 16. (a) optimal supply air temperature from AHU, (b) optimal supply water temperature, (c) optimal ventilation supply airflow rate during the cooling season, and (d)
optimal ventilation supply airflow rate during the heating season..

Fig. 17. The optimal solution based on the ideal point.
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Another point is that our case study is a secondary school serv-
ing older students (16–20 years). However, the important question
is, can the PMV formulas ((6), (7), (8), and (9)) be used in other
educational settings where the occupants are younger?

The PMV model’s relationships between metabolic rate, skin
temperature, and thermal comfort may not be the same for chil-
dren. Fanger’s original study on thermal comfort did not include
any children. For this reason, Fanger stated that further research
was needed to see if these equations could be applied to children
[136]. In the same line, several research shows that children are
less sensitive to temperature changes than adults [137–139]. The
high level of exercise can explain these findings among children
and the wide range of activity levels during education.

The clothing insulation and metabolic heat production can be
estimated, but practical methods are not accurate and affect the
uncertainty in the final thermal sensation prediction to a large
extent. Improving the methods to determine clothing insulation
and metabolism can improve the accuracy and quality of PMV-
based predictions for children [140–142].

Out from that, there is no evidence that the PMV approach can
be used to predict the thermal sensation of children in a classroom
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accurately. Hence, to estimate PMV accurately, more data and
details are required.
6. Conclusions

This study provided a multi-objective optimization framework
based on BIM and machine learning-NSGAII intelligent algorithms,
as well as a related application to minimize building energy con-
sumption and increase thermal comfort by examining various
building factors. An integrative optimization technique incorporat-
ing the building envelope, glazing parameters, HVAC setpoints,
shading variables, and air infiltration was used for this aim.

This paper proposes a framework with four primary steps: (1)
Receive all building sensor data in the BIMmodel using a Revit plu-
gin and export this information to MSSQL and Excel to be used in
validation of the simulation model in IDA ICE and have a good
insight into actual sensor values. BIM data have also been extracted
as a COBie and integrated with the building management system
using several ontologies. (2) The established BIM model is
imported into the IDA ICE, and a pairwise test is conducted to
obtain an adequate sample dataset of building energy consumption
through simulation; (3) Several machine learning models are
trained on the sample dataset to establish a nonlinear mapping
between the energy consumption and influencing factors; GLSSVM
was the best algorithm in terms of R2, RMSE, MSE, and MAE; and
(4) A GLSSVM-NSGAII multi-objective optimizing algorithm The
effectiveness of the suggested technique was ultimately confirmed
using a case study of a secondary school building in Tvedestrand,
Norway, which was modeled in accordance with the Norwegian
building standard TEK10. Given the circumstances, the hybrid
GLSSVM-NSGA-II has proven to be the better method for enhanc-
ing the building’s environmental protection and indoor comfort.

Several significant conclusions can be drawn: (1) The GLSSVM
approach can accurately estimate building energy consumption
based on the thermal characteristics of the building, with a R2 of
0.99, RMSE of 1.20, MSE of 1.44, and MAE of 0.89, compared to
other models. (2) The GLSSVM-NSGAII model is very efficient for
multi-objective optimization in reducing building energy con-
sumption and enhancing interior thermal comfort. The ideal design
approach reduces energy consumption by 37.5% and enhances
thermal comfort by 33.5% compared to the initial design solution.
(3) The exterior wall U-value should be in focus throughout the
energy-efficient design of the building envelope, followed by the
U-values of roofs, windows, and the window-to-wall ratio. On
the basis of the novel GLSSVM-NSGAII multi-objective technique,
building energy consumption and thermal comfort performance
can be enhanced by implementing design modifications prior to
construction. It is supposed to aid in the selection of building mate-
rials and designs. (4) The appropriate shading factor, SHGC, reflec-
tance, and activation were determined by solar radiation and air
infiltration on the outer side of the windows. Other input parame-
ters acquired for the optimal solution included the best envelope
settings and the most efficient heat exchanger in the AHU. The next
step was to alter the ventilation supply air temperature and flow
rate in the AHU, as well as the supply water temperature from
the central heating plant to the local radiators.

Efforts to increase building efficiency and thermal and visual
comfort can be pursued in the future. After the simulations have
been run, post-processing daylight and Computational Fluid
Dynamics (CFD) simulations may be used to examine additional
aspects of thermal and visual comfort. The best location for the
shade device must be determined using dynamic visual comfort
criteria, such as daylight autonomy or usable daylight illuminance.
Instead of comparing the average value of thermal and visual com-
fort indices before and after optimization, this is an intriguing sit-
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uation to analyze the spatial distribution of these characteristics.
For on-site power production, it is required to examine the impact
of photovoltaic panel (PV) panels at the construction site. A closer
look at shading and window opening controls, as well as the effects
of interior air temperature, CO2, direct sunlight, and wind velocity
setpoints, will be necessary to understand the control model of
windows and shading in greater depth. As part of the optimization
process, visual comfort must be considered. This necessitates the
inclusion of additional factors, such as the window-to-floor area
ratio.
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