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Abstract
The low-to-high confinement mode transition (L–H transition) is one of the key elements in
achieving a self-sustained burning fusion reaction. Although there is no doubt that the mean
and/or oscillating radial electric field plays a role in triggering and sustaining the edge transport
barrier, the detailed underlying physics are yet to be unveiled. In this special topic paper,
the remarkable progress achieved in recent years is reviewed for two different aspects: (i) the
radial electric field driving procedure and (ii) the turbulent transport suppression mechanism.
Experimental observations in different devices show possible conflicting natures for these
phenomena, which cannot be resolved solely by conventional paradigms. New insights obtained
by combining different model concepts successfully reconcile these conflicts.

Keywords: L-H transition, radial electric field, radial current, turbulent transport, cross phase,
turbulence trapping

(Some figures may appear in colour only in the online journal)

1. Introduction

Magnetically confined plasmas, typified by tokamaks and stel-
larators, are non-equilibrium open systems, in which inherent
sources and sinks of particles, momentum, and heat exist in
the system. One of the ultimate industrial applications of high
temperature magnetically confined plasmas is thermonuclear
fusion energy development. To realize a sustainable nuclear

3 This special topic paper is dedicated to the memory of Professor Sanae-I.
Itoh (2019 Plasma Phys. Control. Fusion 62 020101).

Original Content from this work may be used under the
terms of the Creative Commons Attribution 3.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

reaction in a fusion plant, one has to achieve a sufficiently
high plasma performance with a tolerable heat exhaust for
the plasma-facing components. Increasing the heat input with
the aim to raise the plasma temperature leads to confine-
ment degradation [1] which is considered to be brought about
by plasma turbulence, resulting in unacceptable heat flow to
the material divertor. Meanwhile, a spontaneous transition to
the suppressed turbulence state with improved plasma con-
finement occurs by applying intense heating power above a
threshold value [2]. Plasmas before and after this confine-
ment transition are called the L-mode state and the H-mode
state, respectively, and have different physical properties. The
H-mode plasma is the prototypical example of the dissipat-
ive structure spontaneously formed in the open system [3]
and has an attractive nature suitable for use in controlled

1741-4326/20/095001+19$33.00 1 © 2020 IAEA, Vienna Printed in the UK

https://doi.org/10.1088/1741-4326/ab7a67
https://orcid.org/0000-0001-5669-1937
mailto:kobayashi.tatsuya@nifs.ac.jp
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-4326/ab7a67&domain=pdf&date_stamp=2020-07-22
https://creativecommons.org/licenses/by/3.0/


Nucl. Fusion 60 (2020) 095001 Special Topic

thermonuclear fusion reactors [4]. Therefore, unveiling the
background physics of the L–H mode transition is desirable
from both the academic and industrial points of view.

Since the first discovery of the L–H transition [5], the
underlying physics of the transition have been investig-
ated intensively. The important role of the radial electric
field bifurcation for the L–H transition has been pointed
out theoretically [6, 7], and the existence of the negative
radial electric field structure localized at the plasma periphery
was spectroscopically measured in the H-mode [8, 9]. Fur-
ther understanding of confinement improvement was achieved
through turbulence measurement. Across the L–H transition,
the turbulence fluctuation amplitude was found to be reduced,
which is considered to be responsible for the suppression of
turbulent transport [10–15]. A sheared radial electric field or
sheared E×B flow [16] was regarded as the major factor for
turbulence amplitude suppression, which stretches turbulence
eddies out causing thermalization or turns the turbulence into
the large scale mean flow [17–19]. This prevailing concept is
referred to as the shear-amplitude paradigm in this paper.

Despite the continuous effort that has steadily advanced our
understanding of the background physics of the L–H trans-
ition, some open questions still remain [20]. In this paper, two
of these questions are focused upon. The first open question is
how the radial electric field is driven. Several theoretical con-
cepts for the radial electric field driving mechanism at the edge
region have been proposed, and experimental validation for
these models has been an active research topic. Nevertheless,
a comprehensivemodel that can cover awide range of observa-
tions has not yet been acquired, although some plausible case
studies for validation of various model concepts have been
reported in different plasma regimes or experimental devices.
The second open question is how the turbulent transport is
quenched by the non-uniform radial electric field structure.
This transport suppression occurs in a wide radial range of
the plasma, not only in the sheared radial electric field region
but also in the shear-less part, i.e. at the bottom of the Er-well
structure or the core region. Recent observations have shown
that some ingredients beyond the shear-amplitude suppression
paradigm are necessary to capture the whole picture of the
transport suppression across the transition.

In this paper, we review recent experimental observations
and theoretical and numerical works to examine the two open
questions raised above, aiming towards establishing a compre-
hensive model of the L–H transition. Accordingly, sections
2 and 3 are dedicated to topics regarding the radial electric
field drive and the turbulent transport suppression, respect-
ively. The last subsections in sections 2 and 3 discuss the
issues remaining for future study. A summary of the paper is
provided in section 4.

2. Radial electric field driving mechanism

Naturally, plasma is regarded as quasi-neutral. But in real-
ity, there are several mechanisms through which a toroidal
plasma can form the radial electric field structure by itself [21].
First, classical concepts for the possible candidates for the
radial electric field excitation are presented in this section, and

then key experimental implications that provide a perspect-
ive for model validation are introduced. Considering these
bases, cutting-edge results of experimental observations and
numerical simulations are reviewed. Finallly, an open issue for
quantitative model validation, i.e. the relative dielectric con-
stant in toroidal plasmas involving inertia enhancement, is dis-
cussed.

2.1. Classical concepts of radial electric field driving in
toroidal plasmas

In this paper, two major categories of the radial electric field
driving mechanism are discussed. The first category is the
radial electric field excitation due to different trajectories of
ions and electrons that induce radial charge separation. The
neoclassical bulk viscosity [7, 22] is one of the representative
concepts in this category. The neoclassical bulk viscosity is
predicted to induce excess ion current in the radial direction

JBVi =−enDp

[
n′

n
+ γj

T ′

T
− e
T
(Er−BθV||)

]
exp(−X2), (1)

where γj= 3/2 in the plateau regime, the prime denotes the
radial derivative, and Dp = (π/2)(ϵtqρiT/reB) is the charac-
teristic diffusivity. Other quantities are as follows: e is the
electron charge, n is the plasma density, T is the plasma tem-
perature, Bθ is the poloidal magnetic field, V|| is the parallel
velocity, ϵt is the inverse aspect ratio, q is the safety factor,
ρi =

√
mT/eB is the ion gyro-radius, and ρp = qϵ−1

t ρi is the
ion poloidal gyro-radius. This ion current initiates the radial
electric field excitation, and when the excited radial electric
field balances with the gradient terms and the parallel velocity
term, the ion current disappears. The normalized radial electric
field X is defined as

X≡ ρpeEr/T. (2)

The exponential function exp(−X2) rapidly goes to zero once
the normalized radial electric field exceeds unity.

Only at the edge can the ion particles escape from the
confinement magnetic field due to its larger radial excursion,
which excites the negative radial electric field [6, 7]. The mag-
nitude of this ion orbit loss current is predicted to be

JLCi = enνiiρp exp(−X2), (3)

where νii is the ion–ion collision frequency. The outward ion
current is reduced when the normalized radial electric field
exceeds unity. The above two currents are functions of the kin-
etic profile and its gradient, therefore these radial currents can
vary in the profile time scale.

The second category of the radial electric field excitation
is that related to the turbulence dynamics. The well known
fluid Reynolds stress for the poloidal flow drive can be cat-
egorized here. The zonal flow is excited by the fluid Reynolds
stress via the modulational instability process [23–27], which
is considered to play an important role in the predator–prey
dynamics [28], as will be discussed in detail below. In mag-
netized plasmas, the radial electric field and the poloidal flow
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are related through the E×B motion. The equivalent radial
current can be quantified as

Jv∇v
i =−enω−1

ci r
−1 ∂rΠrθ

∂r
, (4)

where ωci is the ion-gyro angular frequency [29].
Another possibility is the wave convection of momentum.

This produces excess electron flux at the edge, while in the
core this is compensated by ions. The intuitive expression of
this radial current is given as

JWC
e−i =−enDeρ

−1
p (−λ−X), (5)

where λ=−ρpn−1n′ is the normalized inverse density gradi-
ent length and De is the typical turbulent diffusivity [6]. The
radial currents related to turbulence dynamics can change
quickly with the turbulence time scale, which is one of the
major differences from the radial currents in the first category.

The charge separation due to these radial currents induce
the radial electric field of

− ϵ⊥ϵ0
∂Er
∂t

= JBVi + JLCi + Jv∇v
i − JWC

e−i − JCXi + Jother, (6)

where Ji CX is the charge exchange current damping term and
ϵ⊥ is the relative dielectric constant of the plasma [21]. For
quantitative model validation, what model is used as the relat-
ive dielectric constant in toroidal plasmas is essential [30–33],
which will be discussed below. Imbalance among the current
terms in equation (6) in the L-mode induces radial electric field
growth, which breaks the steady state condition and pushes the
plasma into the H-mode.

The radial currents induced by other possible mechan-
isms and external operations, Jother, are also worth consider-
ing. For example, the MHD mode involving magnetic island
activities can create an enhanced electron loss channel by
short-circuiting the nested magnetic surfaces [34, 35]. As a
result of this electron loss, the negative radial electric field
structure in the H-mode is weakened and concomitant con-
finement degradation occurs. Another important factor for
the current balance equation is the radial current induced by
external biassing [36–40]. In these cases, the finite radial cur-
rent applied externally is balanced by other terms in equa-
tion (6) in the stationary state, as predicted in [41]. The E×B
flow is accelerated by the Jr ×B force of the bulk radial plasma
current that flows in the opposite direction to the externally
applied current to satisfy the balanced current condition.

2.2. Possible bifurcation in toroidal plasmas

As discussed above, the ambipolar particle fluxes, i.e. the
radial currents, are nonlinear functions of the radial elec-
tric field. By balancing them in the steady state condition of
∂Er/∂t= 0, the bifurcation conditions of the radial electric
field were explored. For example, Itoh and Itoh found an Er
bifurcation by balancing the ion orbit loss flux and the wave
convection flux [6]. In this case, more than two intersections of
the ion orbit loss flux curve and the wave convection flux curve
at different Er values were pointed out as possible steady state

conditions. Meanwhile, Shaing and Crume Jr found another
type of bifurcation by comparing the ion orbit loss flux and
the neoclassical bulk viscosity flux [7].

A different way to reach the H-mode, the so-called
predator–prey model, was proposed by Kim and Diamond
[28]. This model is not based on the condition ∂Er/∂t= 0,
but adopts a dynamic interplay among turbulence, zonal flow,
and mean flow. As a result of the interplay, a consecutive
sequence of L–H transitions and H–L back-transitions, the so-
called limit cycle oscillation, occurs between the turbulence
and zonal flow, which gradually steepens the edge pressure
gradient. Once the pressure gradient driven mean flow reaches
a threshold value, the turbulence and the zonal flow are totally
quenched and the H-mode transition occurs.

Another type of bifurcation mechanism based on the trans-
port flux equation nonlinearly depending on the radial electric
field shear was proposed by Staebler and co-workers[42]. A set
of system equations is closed by assuming that the radial elec-
tric field is generated by gradients, and a bifurcation is repro-
duced by choosing a specific range of coefficients.

2.3. Key experimental observations

In order to achieve a comprehensive understanding of the
radial electric field excitation mechanisms, numerous exper-
iments have been performed. In this subsection, some of the
key experimental observations that are useful for validating
theoretical models are introduced.

First, let us consider the time scale of the radial elec-
tric field excitation, in which an important role of turbu-
lence at the transition is implied. Figure 1 shows the radial
profiles of the radial electric field and the pressure gradi-
ent before and immediately after the transition measured by
electrostatic probes in DIII-D [43]. Although the radial elec-
tric field profile shows a significant change before and after
the transition, the pressure gradient profile remains almost
identical. Figure 2 shows the relation between the E×B shear-
ing rate ωE×B = (r/q)d[(q/r)(E/B)]/dr and the ion temperat-
ure gradient across the L–H transition in JT-60U [44]. Around
t∼ 5.1 s, where forward and back transitions occur, the value
of ωE×B jumps without being accompanied by any change in
the ion temperature gradient. These two observations clearly
show that the radial electric field can change before the density
profile or the temperature profile change. The L–H transition
can occur in a very short time scale in O(10 µs) to O(100 µs)
[15]. This time scale is clearly the turbulence time scale, and
seems not to be the profile time scale. The density profile and
the temperature profile start to form a pedestal structure after
the excited radial electric field suppresses the turbulent trans-
port.

Once the transition is initiated, the radial electric field pro-
file continues to develop until it subsides with some satura-
tion mechanisms. Next, we discuss where the radial electric
field finally settles in the H-mode. Figure 3(a) shows the radial
profile of the radial electric field in the H-mode in ASDEX-
Upgrade [45]. The radial profile of the radial electric field is
evaluated using charge exchange recombination spectroscopy
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Figure 1. Radial profiles of (a) the radial electric field and (b) the
pressure gradient before and immediately after the transition.
Reprinted from [43], with the permission of AIP Publishing.

Figure 2. Relation between the E×B shearing rate and the ion
temperature gradient across the L–H transition. Reprinted figure
with permission from [44], Copyright 2010 by the American
Physical Society.

through the radial force balance equation

Er =
∇pj
Zjenj

−Vθ, jBϕ +Vϕ, jBθ, (7)

where the subscript j denotes the ion species of interest, p is
the ion pressure, Z is the ion charge, Vθ and Vϕ are the ion
poloidal and toroidal rotation velocities, and Bθ and Bϕ are
the poloidal and toroidal magnetic fields, respectively. In addi-
tion, the radial electric field profiles predicted by a theoretical
model [46] and by a numerical code [47], and the pressure
gradient term in equation (7) are shown. It is proven that the
neoclassical theory can account for the main features of the
radial electric field structure.

Also in ASDEX-Upgrade, it was shown that the radial elec-
tric field value settles at a specific threshold value determ-
ined by neoclassical theory at the transition in a wide range of
plasma parameters (figure 3(b)) [48]. This observation indic-
ates the crucial role of neoclassical theory in maintaining
the radial electric field structure in the H-mode. It is gener-
ally accepted that the threshold power of the L–H transition
strongly depends on the plasma density, and has a minimum
value at the specific range of the density [49, 50]. Nevertheless,
the threshold neoclassical radial electric field shows no plasma
density dependence, providing a unique physical criterion for
the L–H transition condition. The input power that is necessary
for exciting the threshold neoclassical radial electric field is
therefore considered to strongly depend on the plasma density,
and probably suggests different paths to achieve the threshold
value below and above the density minimum.Moreover, turbu-
lence is often totally quenched and the transport level decays
down to the neoclassical level in the H-mode [51] so that the
turbulence originating part of the radial electric field cannot
remain essential.

There are two contradictory aspects at a first glance, i.e. the
important role of the turbulence in accounting for the fast time
scale of the transition and the converging feature of the radial
electric field to the neoclassical value in the steady state H-
mode. These can be reconciled by considering possible com-
binations of multiple driving mechanisms that may reproduce
the complex transition sequence. Hereafter, model validation
methods taking into account different combinations of mul-
tiple concepts will be introduced from recent experimental and
numerical works.

2.4. Recent model validation efforts

The first case is from the JFT-2M data analysis study
[29, 52, 53]. The electrostatic potential and the electron dens-
ity at four radial locations were simultaneously measured with
a heavy ion beam probe (HIBP) [54, 55]. From the obtained
dataset, equation (6) was directly examined, as was first per-
formed in the heliotron CHS [56]. Figure 4 shows the rela-
tion between the normalized radial electric field and the radial
current across the L–H transition [29]. The black curve is the
trajectory of the experimental observation and the red curve is
the Er driven by the neoclassical current (equation (1)) and the
ion orbit loss current (equation (3)). The experimental value of
the radial current is estimated by Jr =−ϵ⊥ϵ0∂Er/∂t, where Er
is evaluated as the radial difference of the electrostatic poten-
tial directly measured by the HIBP. The confinement states of
the plasma are indicated by the labels at the top of the figure.
The transition sequence seen in the experimental trajectory is
as follows: when the plasma is in the L-mode, the normalized
radial electric field X= ρpeEr/T is close to zero and the radial
current oscillates around zero. At the transition, the positive
radial current is excited, leading to charge separation, which
deepens the negative radial electric field. The positive radial
current peaks at 3− 4 A/m2, and decreases towards zero. At
X ∼ 1 and Jr ∼ 0, the plasma is considered to be in the H-
mode. A few milliseconds later, another transition occurs that
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Figure 3. (a) Radial profile of the radial electric field profiles, experimentally measured and theoretically predicted. (b) Density dependence
of the threshold neoclassical radial electric field. Reproduced courtesy of IAEA. Figure from [48]. Copyright 2011 IAEA.

Figure 4. Relation between the normalized radial electric field and
the radial current across the L–H transition. Reproduced from [29].
CC BY 4.0.

further enhances the negative radial electric field, but it is bey-
ond the focus of this paper. At the first transition, the sum of
the neoclassical bulk viscosity and the ion orbit loss approx-
imately accounts for the experimental value. However, there
is a significant mismatch in the L-mode, where the theoret-
ical models overestimate the radial current of∼5 A/m2. If one
admits that the model expressions of equations (1) and (3)
are valid, there must be a negative radial current component
that compensates the excess positive radial current. The radial
current that is equivalent to the fluid Reynolds stress force
(equation (4)) is directly estimated by the turbulence meas-
urement and it is found to play a minor role in the L-mode. As
another candidate, the wave convection process (equation (5))
is examined and found to possibly account for the L-mode cur-
rent balance.

A scenario of the radial electric field excitation at the L–
H transition is deduced as follows. In the L-mode, the radial

current balance is satisfied by three components, by the neo-
classical bulk viscosity current Ji BV, the ion orbit loss current
Ji LC, and the wave convection current Je−i

WC, i.e.

− ϵ⊥ϵ0
∂Er
∂t

= JBVi + JLCi − JWC
e−i = 0. (8)

As described in [6], the magnitude of the turbulence diffusivity
in equation (5) is sensitive to the radial electric field. Once
the radial electric field grows above a certain value, Je−i

WC

is suppressed and the current imbalance is enhanced, which
facilitates further growth of the radial electric field, i.e.

− ϵ⊥ϵ0
∂Er
∂t

= JBVi + JLCi −�
�JWC
e−i ̸= 0. (9)

The excited radial currents through the neoclassical process
and the ion orbit loss process are suppressed when the nor-
malized radial electric field X approaches unity.

When the applied heating power is marginal with respect
to the threshold power for transition, the limit cycle oscillation
(LCO), is frequently observed in many toroidal plasmas [57–
70]. The LCO phase provides a chance to investigate the basic
mechanism of the radial electric field excitation thanks to its
repetitive nature, which offers multiple independent events for
statistical approaches. Some of them are considered to be con-
sistent with the predator–prey model [28], in which the com-
bination between the turbulence contribution and the profile
contribution for the radial electric field drive plays a role. Fig-
ure 5 shows the time evolution of the L–H transition involving
the LCO in DIII-D [60]. Once the LCO is triggered, an oscil-
lation with nearly constant frequency is observed in the Dα

emission signal, which is regarded as repetitive transport bar-
rier formation and deformation. Panels (a) and (b) in figure 5
show the E×B velocity shearing rate ωE×B and its pressure
gradient driven part ωE×B dia. The LCO is driven by the radial
electric field shear oscillation. In the beginning, the radial elec-
tric field shear oscillation is considered to be turbulence driven
zonal flow. Only a minor contribution of the pressure gradient
driven part to the LCO is seen. However, in the later phase

5
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Figure 5. Time evolutions of (a) the E×B shearing rate, (b) the diamagnetic part of the E×B shearing rate, and (c) the Dα emission
intensity. Reprinted figure with permission from [60], Copyright 2012 by the American Physical Society.

of the LCO period, the pressure gradient driven part gradu-
ally increases. At the transition to the H-mode, the LCO disap-
pears and only the pressure gradient driven part remains. The
turbulence driven zonal flow assists the growth of the pres-
sure gradient driven mean radial electric field by regulating
the turbulent transport in the LCO phase, as predicted in [28].
This is regarded as a synergetic relation between the zonal flow
and the pressure gradient driven mean radial electric field. A
similar discussion of zonal flow production was addressed at
the L–H transition that involves no LCOs [50, 71–74]. It was
stated that the turbulence is quenched when the zonal flow pro-
duction rate exceeds the effective growth rate of turbulence.
A detailed parameter scan experiment for examining the role
of the Reynolds stress driven radial electric field was recently
performed in DIII-D [75].

Another example of the mean flow generation mediated by
turbulence dynamics was reported in the LCO involving the
high frequency branch of the zonal flow, the geodesic acoustic
mode (GAM), in ASDEX-Upgrade [58]. Figure 6 compares
the mean part of the shearing rate (τ−1

M ), the oscillating part of
the shearing rate (τ−1

O ), and the turbulence decorrelation rate
(τ−1

c ). In the I-phase, which refers to the time period in which
the LCO emerges, the oscillating part of the shearing rate dom-
inates over the mean part, and behaves very similar to the
turbulence decorrelation rate. This means that the turbulence
activity is regulated by the GAM during the I-phase. Mean-
while, themean part of the shearing rate is gradually enhanced.
Across the I-phase to H-mode transition, the mean part of the
shearing rate eventually turns over the oscillating part, and lim-
its the turbulence amplitude growth. With the assistance of the
turbulence driven part of the radial electric field that can vary
with a fast time scale such as the LCO frequency, the trans-
port barrier can be developed by the gradient driven part of
the radial electric field with its own time scale.

Recently, edge transport barrier formation was successfully
reproduced using a first-principles-based global electrostatic
gyrokinetic code, XGC1, in a realistic edge geometry of toka-
mak plasmas [76, 77]. In this study, it is proposed that the syn-
ergism between the Reynolds force and the ion orbit loss force
comprehensively explains the time evolution of the shear flow
structure formation, as shown in figure 7. The edge transport
barrier formation is forced to occur by applying a sufficiently
high heating input. Bifurcation is initiated by the oscillating
fluid Reynolds force that induces the GAM at the edge, as
shown in figure 7(a). The GAM seems to mitigate the turbu-
lent transport that results in the edge temperature growth. As
a result, the ion orbit loss force gradually grows and finally
overtakes the Reynolds force (figure 7(b)). In the final stage
of transport barrier formation, the sheared radial electric field
structure is maintained by the ion orbit loss force that can
endure even after the turbulence is quenched.

In the situation where the transition time scale is not very
fast, it was demonstrated that the neoclassical process can
solely account for the radial electric field excitation [64, 78].
In ASDEX-Upgrade, the diamagnetic velocity was found to
approximately meet the spectroscopically measured E×B
velocity oscillation in the LCO phase, as shown in figure 8
[64]. The authors claimed that the neoclassical contribution
dominates over other factors. Insufficient drive of the fluid
flow by the Reynolds force in the LCO phase was also poin-
ted out in NSTX [79]. In the fluid simulation EMEDGE3D,
the bulk part of the E×B flow kinetic energy was supplied by
the neoclassical force (figure 9) [78]. In this case, the Reynolds
force is responsible for both the high frequency fluctuation and
for the sink of the macroscopic flow. According to the clas-
sification by Terry [19], these observations are grouped into
the two-step transition, where the radial electric field is main-
tained by turbulence-force-free bifurcation mechanisms, and
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Figure 6. Time evolution of the mean and oscillating radial electric field shearing rates and the turbulence decorrelation rate. Reprinted
figure with permission from [58], Copyright 2011 by the American Physical Society.

Figure 7. Time evolution of (a) the Reynolds force and (b) the
orbit loss force across the edge transport barrier formation.
Reprinted figure with permission from [76], Copyright 2017 by the
American Physical Society.

the turbulence suppression by the excited radial electric field
structure occurs afterwards.

A different aspect of the LCOs, their strong magnetic fluc-
tuation nature, attracts much attention. A coherent poloidal
field fluctuation in LCO was reported in ASDEX-Upgrade
and other devices [65–67]. These observations share a unique
characteristic of the oscillating spatial structure, that is the up-
down asymmetric m= 1 magnetic oscillation, where m is the
poloidal mode number of the oscillation. Figure 10 shows a
schematic view of the the poloidal magnetic probe array and
the time evolution of the poloidal magnetic field fluctuation
in the LCO phase. The poloidal magnetic field oscillation is
regarded as the parallel current oscillation. It was proposed
that the up–down asymmetry of the parallel current oscilla-
tion can be explained by the Stringer spin-up mechanism [80].
A Lotka–Volterra-type set of equations that describes the sys-
tem evolution can be obtained from that model, on which the

Figure 8. Relation between the E×B velocity and the diamagnetic
velocity at three different radial positions in the limit cycle
oscillation period. Reproduced courtesy of IAEA. Figure from [64].
© 2017 EURATOM.

LCO arises. The robustness of this interpretation is also shown
by the fact that the experimentally measured LCO frequency
agrees with the Stringer spin-up relaxation frequency. Another
type of H-mode transition involving the LCO stimulated by
a quasi-coherent electromagnetic oscillation was also repor-
ted in HL-2A [81]. Note that this type of coherent magnetic
field oscillation is not always observed in LCO activity. For
example, the case in [63] does not show a strong magnetic
oscillation at the LCO frequency.

2.5. The role of the relative dielectric constant in toroidal
plasmas in quantitative model validation

For the quantitative model validation based on the equation of
motion or the current equation (6), it is essential to consider
what model should be used as the relative dielectric constant
in toroidal plasmas, ϵ⊥. The magnitude of ϵ⊥ can be derived
as follows [3]: Starting from a cylindrical geometry with the
confinement magnetic field B in the axial direction, the time
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Figure 9. (a) Spatiotemporal evolution of the edge E×B velocity and (b) time evolution of the different energy sources of the E×B flow.
Reproduced courtesy of IAEA. Figure from [78]. Copyright 2015 IAEA.

Figure 10. (a) Schematic view of the the poloidal magnetic probe array and (b) time evolution of the magnetic field fluctuation at the LCO
phase. The probe locations in (a) and the signals in (b) are related by different colors and labels on the curves. Reproduced courtesy of
IAEA. Figure from [65]. © 2016 EURATOM.

varying radial electric field causes the polarization current

Jpol =
nm
B2

∂Er
∂t

. (10)

The polarization current shields the growth of the radial elec-
tric field on the one hand, and drives the Er×B poloidal flow
by the Jpol ×B force on the other hand. Assuming that Er and
Jpol are constant on the equiradial surface, a combination of
Gauss’s law and the charge continuity equation gives

− ϵ0
∂Er
∂t

= Jpol +
∑

J, (11)

where
∑
J corresponds to the sum of the radial currents that

induce the radial charge separation, i.e. the right hand side
of equation (6) in the case of toroidal geometry. Substituting

equation (10) into equation (11) gives

− ϵ⊥ϵ0
∂Er
∂t

=
∑

J (12)

with the relative dielectric constant for cylindrical plasmas

ϵ⊥ = 1+
c2

v2A
, (13)

where vA = B/
√
nmµ0 is the Alfvén speed. According to [30–

33, 82], in toroidal plasmas the effective mass of the ion fluid
is enhanced by

Mtor = 1+
1.6q2
√
ϵ⊥

(14)

8
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Figure 11. The role of the relative dielectric constant in toroidal plasmas for poloidal flow excitation: (a) illustration of poloidal flow and
toroidal flow coupling via the finite divergence, (b) the radial profile of the GAM excitation rate by the Reynolds stress (γRS, blue) and that
directly fitted by the GAM fluctuation energy (γKGAM , black), and (c) the time evolution of the Reynolds stress and the radial electric field
during the LCO phase. (b) Reprinted figure with permission from [86], Copyright 2018 by the American Physical Society. (c) Reprinted
figure with permission from [62], Copyright 2013 by the American Physical Society.

in the banana regime and by

Mtor = 1+ 2q2 (15)

in the plateau regime. Typically in the tokamak edge, Mtor ∼
O(10) due to q≫ 1. The relative dielectric constant of the tor-
oidal plasma becomes

ϵ⊥ = 1+Mtor
c2

v2A
. (16)

The cause of the inertia enhancement is the finite divergence
of the poloidal flow in the toroidal plasma, i.e. ∇·V⊥ =
−2 R−1 sinθVθ [31]. When the flow frequency is much smal-
ler than the GAM frequency, ω ≪ ωGAM, this finite divergence
is compensated by the toroidal return flow along the mag-
netic field line, V|| = 2qcosθVθ. The up–down asymmetric
poloidal flow divergence and the streamlines of the poloidal
flow and the return flow are illustrated in figure 11(a). As a
result, the poloidal momentum is transferred into the toroidal
momentum, which leads to the enhanced effective inertia. In
the high frequency regime ω ∼ ωGAM, the poloidal flow diver-
gence can be the up–down asymmetric density perturbation of
the GAM. A stationary toroidal flow that has a fundamental
feature of the toroidal return flow is actually observed in dif-
ferent devices [44, 83].

The importance of the finite inertia enhancement in equa-
tion (14) or equation (15) for the relative dielectric constant
in toroidal plasmas is quantitatively presented using data for
the GAM dynamics [84, 85] and those of the LCO dynam-
ics [62, 63] in JFT-2M. Figure 11(b) shows the radial profile
of the GAM excitation rate by the Reynolds stress and that
directly obtained by the rising time scale of the GAM fluc-
tuation energy [86]. Here the horizontal axis corresponds to
the radial distance from the last closed flux surface, r− a. At

r− a∼−3 cm, two excitation rates independently obtained
overlap, showing that the Reynolds stress plays the major role
in the GAM excitation at this location. Here, the GAM driving
force by the Reynolds stress is estimated based on the equa-
tion ofmotionwith no inertia enhancement, i.e.Mtor = 1, since
the time scale of interest is high enough, ω ∼ ωGAM [87]. This
observation implies that the estimation of the absolute value
of the Reynolds stress is valid.

In the same discharge, the GAM disappears and the LCO
takes over in a few hundred milliseconds before the L–H trans-
ition. Note that LCO with a small amplitude, and therefore not
involving transitions to the deep H-mode, is sometimes spe-
cifically called ‘small amplitude LCO’ (SALCO) [70]. The
LCO activity in JFT-2M [62, 63], as described in detail below,
can be defined as SALCO. In the LCO phase, oscillations in
the E×B velocity and the Reynolds stress at a nearly con-
stant frequency are observed. Figure 11(c) shows the condi-
tionally averaged waveform in these quantities [62]. The equa-
tion of motion with the inertia enhancement factor takes the
form Mtormn∂V̂E×B/∂t=−mnr−1∂rΠ̂rθ/∂r+ · · ·, where ···
indicates additional effects, such as the collisional damping
term [21]. The expected oscillatory E×B velocity, which is
induced by the oscillatory Reynolds stress at the angular fre-
quency ofωLCO, is evaluated as δ|V̂E×B| ∼ |Π̂rθ|L−1M−1

tor ω
−1
LCO,

where L is the scale length of the Reynolds stress change.
Substituting parameters |Π̂rθ|L−1 ∼ 7× 106 m/s2,ωLCO ∼ 3×
104 s−1, L ~ 1 cm, andMtor ∼ 20 for q∼ 3 provides the expec-
ted amplitude of modulation δ|V̂E×B| ∼ 15 m s−1. Since the
modulation amplitude of the E×B velocity in the LCO is
∼500 m s−1, the Reynolds stress driven part is only a minor
contribution to the total flow modulation. Instead, if Mtor =
1 is used, the conclusion completely reverses: δ|V̂E×B| ∼
300 m s−1 is obtained so the Reynolds stress driven part will
account for the bulk part of the oscillatory E×B velocity in
the LCO.

9



Nucl. Fusion 60 (2020) 095001 Special Topic

This inertia enhancement effect is quantitatively assessed
by a fluid-type transport code, showing the validity of the
model described above [88]. Figure 12 shows the time evol-
utions of the radial electric field driven by the radial current of
the high-energy ion transport. The simulations were run both
in the toroidal geometry and in the cylindrical geometry to
examine the impact of the toroidicity on the inertia enhance-
ment effect. In the toroidal geometry, the time constant of the
radial electric field variation is much larger compared to the
cylindrical case. This is due to a large relative dielectric con-
stant at a finite q value of∼1.1 at the mid-radius, where a finite
inertia enhancement of 1+ 2q2 ∼ 3.63 is anticipated for the
toroidal geometry case. The simulation shows that the time
constant in the toroidal geometry is 3.59 times larger than that
in the cylindrical geometry case, confirming the necessity of
taking into account the neoclassical inertia enhancement factor
in the relative dielectric constant.

As discussed in [21], the poloidal flow divergence can also
be compensated by the radial flow. Direct measurement of the
relative dielectric constant in toroidal plasmas might be chal-
lenging but it is highly desirable for validating the model of
the inertia enhancement factor.

2.6. Discussion

In this paper, a variety of radial electric field excitation mech-
anisms were described, considering possible combinations of
different concepts. The interpretations of these examples are
fairly case dependent, and to pursue a comprehensive model
the detailed comparison and unification of different case stud-
ies are essential. As a first step, the phenomenological classi-
fication of essential mechanisms in different parameter ranges,
e.g. below or above the bottom density point in the rolling-over
L–H power threshold diagram or the isotope mass dependent
threshold power [49, 50], seems to provide a perspective.

Considering the fact that the radial electric field settles on
the neoclassical value [45, 48], a fundamental question arises.
As shown in [45], the net fluid flow, which is the sum of the
E×B flow and the ion diamagnetic flow, stays at rest in the H-
mode. Indeed, the E×B flow of the neoclassical radial electric
field is expected to be of a similar magnitude to the ion dia-
magnetic flow but directed towards the electron diamagnetic
direction. For the turbulence suppression, equivalent but sign
independent roles of the E×B flow and the ion diamagnetic
flow are considered, which makes both flows effective [89]. In
a different model, the impact of the electron diamagnetic effect
on the turbulence linear growth rate is discussed [90]. Critical
investigation through experiments or numerical simulations of
this issue is anticipated in the future for further understanding
of the role of the radial electric field in turbulent transport sup-
pression.

3. Turbulence transport suppression mechanism

This section is initiated by discussing the limitations of
the shear-amplitude suppression paradigm addressed in a
pioneering work in DIII-D [43]. Motivated by the necessity for

new ingredients, recent experimental and theoretical results
focusing on the important roles of the turbulence cross phase
and the turbulence spatial redistribution induced by the radial
electric field non-uniformity are presented to push the physical
understanding beyond the paradigm.

3.1. Limitations of the shear-amplitude suppression paradigm

As the turbulent transport regulation mechanism in the H-
mode, turbulence amplitude suppression by radial electric field
shear is acknowledged as being of major importance [17].
However, there are some counterexamples showing the lim-
itations of the shear-amplitude suppression paradigm. For
example, figure 13(a) shows the radial profile of the relat-
ive turbulence amplitude in the Ohmic H-mode phase from
the Ohmic phase. It is defined as Ĩ(H)/̃I(OH), where Ĩ(H)
and Ĩ(OH) are the turbulence amplitudes of any quantity in
the Ohmic H-mode phase and the Ohmic phase, respectively.
Circles and triangles correspond to plots for the density fluc-
tuation and the potential fluctuation, respectively. The solid
curve shows the radial electric field profile where the red
shaded area indicates the Er-well bottom region. Figure 13(b)
shows the particle flux profile. Focusing on the radial electric
field shear region, i.e. both sides of the Er-well bottom, both
the density fluctuation amplitude and the potential fluctuation
amplitude are significantly reduced, which results in the trans-
port suppression. However, at the Er-well bottom, the density
fluctuation amplitude reduction is only modest, and the poten-
tial fluctuation is even amplified. Even though the fluctuation
amplitude reduction is not substantial, the particle flux can be
reduced through the cross phase alternation, since the turbu-
lent particle flux is defined in the form of

Γr = B−1|ñ||ϕ̃|γnϕkθ sinαnϕ, (17)

where |ñ|, |ϕ̃|, γnϕ, αnϕ, and kθ denote the density fluctu-
ation amplitude, the potential fluctuation amplitude, the cross
coherence and the cross phase between them, and the poloidal
wavenumber, respectively [91]. Looking at figures 13(c) and
(d), it is found that the particle flux quench after the H-mode
transition at the Er-well bottom region is attributed to the cross
phase alternation. The cross phase effect seems to be more
essential in particular at a location where the radial electric
field shear is not remarkably strong. Experimental activities
focusing on the cross phase were also reported for different
toroidal plasmas [92–94]. In early studies, the impact of the
sheared radial electric field on both the fluctuation amplitude
and the cross phase were theoretically modelled [89, 95] and
the experimental validation of these models was performed in
a basic experimental device [96, 97]. In this paper, the import-
ance of the cross phase behavior is addressed from another
aspect, that is the decoupled dynamics of the cross phase with
respect to the amplitude evolution, which has lately been dis-
cussed experimentally and theoretically.

In the presence of a non-uniform radial electric field
structure, it is anticipated that the mutual nonlinear inter-
action between the radial electric field and the turbulence
results in a spatial redistribution of the turbulence profile.
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Figure 12. Time evolution of the radial electric field driven by the fast ion radial current in the toroidal geometry and the cylindrical
geometry. Reprinted from [88], Copyright 2016, with permission from Elsevier.

Figure 13. Radial profiles of (a) the radial electric field and the relative turbulence amplitude in the density fluctuation and the potential
fluctuation with respect to the values in the Ohmic phase and (b) the particle flux. Frequency decomposed spectrum of (c) the particle flux
and (d) the cross phase between the density fluctuation and the potential fluctuation. Reprinted from [43], with the permission of AIP
Publishing.

Since the Er-well structure has both the shear region and the
curvature region, the different roles of those structures on
the turbulent transport regulation are investigated intensively
[41, 98, 99]. Moreover, it is predicted that radially propagat-
ing radial electric field structures such as the zonal flows or
the GAMs can lead to the spatial transmission of a turbulence
clump, as reported in a the global gyrokinetic simulation code
GYSELA [100]. Figure 14 shows the spatiotemporal evolu-
tion of the turbulence diffusivity in the presence of an ener-
getic particle source. There are three different phases in the
system evolution: (A) the energetic particle source is applied
to a quasi-stationary turbulence regime, (B) a transport barrier
is triggered at r/a> 0.5, and (C) nonlinear interaction between

the energetic particle driven GAMs (EGAMs) and turbulence
occurs. In particular, in phase (C), the turbulence clump penet-
rates into the transport barrier region because a portion of the
turbulence is trapped by the radially propagating EGAMs.

Note that some previous models, including the predator–
prey model, are based on the spatial integration in the scale of
the radial electric field structure. Therefore neither the differ-
ent roles of the shear and curvature of the radial electric field
nor the turbulence trapping by the radial electric field structure
can be treated in those frameworks. To overcome those points,
a new theoretical mode that is not based on spatial integration
was developed recently [101, 102]. In this model, the interac-
tion between the radial electric field and turbulence is locally
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Figure 14. Spatiotemporal evolutions of turbulence diffusivity.
Reprinted figure with permission from [100], Copyright 2013 by the
American Physical Society.

described so that the turbulence trapping can be treated. Often,
experimental model validation is based on the local measure-
ment of the radial electric field and the turbulence. Therefore a
spatially non-integratedmodelmight better describe the exper-
imental situation. In the subsection below, newly obtained
understanding based on this model is discussed.

3.2. Decoupled dynamics of the cross phase from the
amplitude evolution

One of the interesting results was reported from the TJ-K stel-
larator experiment [103]. In this device, a pair of 64-pin pol-
oidal Langmuir probe arrays is installed in two different tor-
oidal sections to simultaneously measure the fine structure of
the zonal flow and the turbulent transport. One of the probe
arrays is shown in figure 15(a). By using these probe arrays,
the zonal average can be performed for the particle flux oscil-
lation and the potential oscillation, from which the interac-
tion between the net particle flux and the zonal potential can
be discussed. Figure 15(b) is the conditionally averaged time
evolution of the global particle flux variation and the zonal
potential. Before the zonal potential bursts, the turbulence
particle flux increases to nonlinearly drive the zonal potential.
At the moment of the zonal potential burst the particle flux is

suppressed, and the state of the suppressed particle flux con-
tinues for ∼0.1 ms even after the zonal potential returns back
to the original level.

In order to decompose the contributions of each factor
in equation (17), the wavenumber spectra of the ion satura-
tion current fluctuation, the potential fluctuation, the particle
flux, and the cross phase between the density fluctuation
and the poloidal electric field fluctuation are shown in fig-
ures 15(c)–(f ), respectively. Note that the π/2 cross phase
between the density fluctuation and the poloidal electric field
fluctuation makes the particle flux zero, because the phases
of the poloidal electric field and the potential differ by π/2.
The cross coherence between the density fluctuation and the
poloidal electric field fluctuation changes only little, thus is
not shown here. Before the zonal potential bursts, the tur-
bulence amplitudes in both the ion saturation current fluc-
tuation and the potential fluctuation increase, which results
in increased particle flux. The cross phase also changes to
enhance the particle flux. At the time instant of the zonal
potential burst, the turbulence amplitudes stay at the aver-
aged values and do not contribute to a particle flux change.
Meanwhile, the cross phase approaches π/2, playing the main
role in the particle flux suppression in this time period. After
the zonal potential burst ceases, all components behave to
reduce the particle flux that keeps the particle flux level lower
compared to the averaged value. Overall, the cross phase
responds to the zonal potential variation prior to the turbulence
amplitude.

Another example showing the decoupled dynamics
between the cross phase and the turbulence amplitude
was reported from the JFT-2M tokamak experiment [104].
Figure 16 shows the time evolutions of the radial electric
field, the relative density fluctuation amplitude, the cross
phase between the density fluctuation and the potential fluc-
tuation, and the particle flux measured at the Er-well bottom
across the L–H transition. Here, the particle flux disappears
when the cross phase between the density fluctuation and
the potential fluctuation is zero. The poloidal wavenumber
of the turbulence is also moderately reduced across the L–H
transition, contributing a further transport reduction. In order
to avoid a large uncertainty brought about by the poloidal
wavenumber evolution, the poloidal wavenumber in the L-
mode is used here to obtain the time evolving particle flux
using equation (17). Therefore, the value in figure 16(d) cor-
responds to the possible upper boundary of the particle flux.
Immediately after the radial electric field grows negatively,
the density fluctuation amplitude quickly responds with the
time scale of O(0.1 ms). A prompt reduction of the particle
flux is brought about by this amplitude reduction of the tur-
bulent density fluctuation. However, the density fluctuation
amplitude quickly recovers afterwards, and its net reduction is
only moderate. Meanwhile, the cross phase between the dens-
ity fluctuation and the potential fluctuation changes slowly
with the time scale of O(1 ms). In the later phase, where the
density fluctuation amplitude level recovers, the particle flux
remains reduced thanks to the cross phase reduction. Clear
time scale separation between the amplitude suppression and
the cross phase reduction implies the existence of different
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Figure 15. (a) Schematic view of the poloidal Langmuir probe array, (b) the conditionally averaged time evolution of the particle flux
variation and the zonal potential, (c)–( f ) the wavenumber spectra of the ion saturation current fluctuation, the potential fluctuation, the
particle flux, and the cross phase, respectively. In (c)–( f ), the black curve shows the averaged spectra and the curves with different color
correspond to the spectra at the time instance indicated by the vertical lines in (b). Reprinted figure with permission from [103], Copyright
2013 by the American Physical Society.

underlying mechanisms. In particular, the turbulence amp-
litude is determined by nonlinear saturation, while the cross
phase is equivalent to the source of the linear instability, i.e.
the incomplete adiabatic response of electrons with respect to
the potential fluctuation in the case of the resistive drift wave.
Curiously, the order of changes here is opposite to the case of
TJ-K, in which the cross phase responds prior to the fluctuation
amplitude.

Further discussion of the turbulence particle flux reduction
in JFT-2M concerns its spatial distribution. Figure 17 shows
the radial profiles of the radial electric field, the particle flux,
the relative density fluctuation amplitude, the potential fluctu-
ation amplitude, and the cross phase between the density fluc-
tuation and the potential fluctuation in the L-mode phase and
in the H-mode phase. As shown in figure 17(b), the turbulent
particle flux is reduced in a wide radial region. The different
role of the radial electric field non-uniformity is explored by
dividing the entire peripheral region into sub-regions. The
two regions with green shading correspond to the inner shear
region (−2.2< r− a<−1.5 cm) and the outer shear region
(−0.5 < r− a< 0 cm). In addition, there is the curvature region
(−1.5< r− a<−0.5 cm) indicated by the orange shading
between these two shear regions. Moreover, a further inside
region (r− a<−2.2 cm) is characterized by very low shear or
curvature of the radial electric field. Across the L–H transition,
the density fluctuation amplitude is substantially suppressed at
both the inner shear region and the outer shear region, while
the variation is only moderate in the curvature region. For the
potential fluctuation amplitude, the reduction is visible only
in the inner shear region. It approximately stays unchanged in
the curvature region, and is even enhanced in the outer shear

region. The cross phase approaches zero in the inner shear
region and the curvature region, and in the outer shear region
it becomes negative. Combinations of different components
account for the overall particle flux suppression observed in a
wide range of the radius.

Interestingly, in the further inside region, all the com-
ponents behave so as to reduce the particle flux with very
low shear or curvature of the radial electric field. A similar
observation was reported in an early study [13]. The turbu-
lence amplitude reduction at the region where the radial elec-
tric field structure is not substantially large can be explained
by the turbulence spreading theory [105–107]. Experimental
assessments of the turbulence spreading concept were recently
reported [62, 108, 109]. The turbulence spreading is an import-
ant concept which is expected to explain a long-standing mys-
tery, the prompt confinement improvement over a wide region
of plasma at the L–H transition [14].

To understand the decoupled behavior of the turbu-
lence amplitude and the cross phase a dynamic model was
developed, as reported in [110]. Starting from the trapped
electron mode (TEM) turbulence model [111], the following
expression for the cross phase dynamics is obtained:

∂αnϕ,k
∂t

=

[
1+

3
2
ηe

]
kyβk cosαnϕ,k−ωk−νβk sinαnϕ,k+INL,k,

(18)
where αnϕ,k is the cross phase between the density fluctuation
and the potential fluctuation, βk = |ϕk|/|nk| is the amplitude
ratio of the potential fluctuation to the density fluctuation, ωk
is the fluctuation angular frequency, the subscription k indic-
ates the wavenumber of interest, ηe = Ln/LTe is the ratio of the
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Figure 16. Time evolutions of (a) the radial electric field, (b) the
relative density fluctuation amplitude, (c) the cross phase between
the density fluctuation and the potential fluctuation, and (d) the
particle flux measured at the Er-well bottom across the L–H
transition. Reproduced from [104]. CC BY 4.0.

density gradient length to the temperature gradient length, and
ν is the de-trapping rate for trapped electrons. The nonlinear
contribution due to the E×B advection is given as

INL,k =
1

|nk|2
Im[n∗k (vE ·∇n)k]. (19)

Here, time and space are normalized by ρsc−1
s and ρs, respect-

ively, where ρs is the ion sound gyro-radius and cs is the ion
sound speed.

Utilizing this model, the impact of the pump wave-zonal
flow interaction on the cross phase of the pump wave is dis-
cussed. Figure 18(a) presents a diagram of the model frame-
work. The situation considered in the model is as follows. First
a pump TEM turbulence interacts with a linearly stable seed
zonal flow that generates two sidebands. The sidebands couple
with the pump TEM turbulence to nonlinearly drive the zonal
flow. At the same time, the nonlinear interaction between the
sidebands and the zonal flow occurs, which reacts back to the
pump TEM turbulence. The LCO dynamics with and without

considering the finite cross phase effect are plotted in fig-
ure 18(b). In the results of the simulation, a decoupled dynam-
ics of the pump TEM wave amplitude and the cross phase is
demonstrated as a trajectory that is not on a flat plane.

3.3. Turbulence spatial redistribution induced by the radial
electric field non-uniformity

A model for the dynamic interaction between the radial elec-
tric field structure and the turbulencewas developed [101, 102]
in the framework of the wave kinetic theory [112]. Aiming at
treating the turbulence trapped by the radial electric field struc-
ture, the phase-space dynamics of the turbulence is accounted
for. The evolution of turbulence can be described by

∂Nk

∂t
+ {ωk,Nk}= γLNk−∆ωN 2

k , (20)

where Nk is the dimensionless wave action density, ωk is the
turbulence angular frequency, γL is the linear growth rate, and
∆ω is the nonlinear decorrelation rate. Here, time and space
are normalized by ρsV

−1
d and ρs, respectively, where Vd is the

diamagnetic drift velocity. In particular for the drift wave tur-
bulence, Nk and ωk are given as

Nk = (1+ k2x + k2y)
2|ϕk|2, (21)

and

ωk =
ky

1+ k2x + k2y
+ kyV̂y, (22)

respectively, where kx is the radial wavenumber, ky is the pol-
oidal wavenumber, ϕk is the normalized turbulence electro-
static potential, and V̂y is the poloidal velocity modulation in
a macro–or meso-scopic E×B flow structure. In the nonlin-
ear saturation phase of the turbulence, i.e. γLNk−∆ωN 2

k = 0,
the equi-frequency plane in the phase-space corresponds to the
constant of motion. In the presence of the E×B flow struc-
ture, the turbulence frequency contour in the phase-space is
distorted by the Doppler shift and then the turbulence trapping
occurs.

Two applications of the wave kinetic theory for the inter-
action between the turbulence and the EGAM [101] and that
between the turbulence and the turbulence driven GAM [102]
are demonstrated in the rest of this subsection. The schematic
view of the former case is given in figure 19(a). The turbu-
lence is set to be unstable only on the left side of the simu-
lation region, while a stationary mean flow structure that sta-
bilizes the turbulence is placed in the rest of the region. An
EGAM propagating radially outward is applied externally .
Note that the energy exchange between the EGAM and the
turbulence need not be considered since the EGAM is not
excited by the turbulence, which simplifies the situation. The
result of the numerical examination of the model is shown in
figure 19(c). Due to existence of the EGAM flow structure,
the Doppler shifted turbulence frequency (white contour lines)
has island structures in the phase-space, inside which the tur-
bulence is trapped. Since the EGAM propagates radially out-
ward, the trapped turbulence penetrates into the linearly stable
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Figure 17. Radial profiles of (a) the radial electric field, (b) the particle flux, (c) the relative density fluctuation amplitude, (d) the potential
fluctuation amplitude, and (e) the cross phase between the density fluctuation and the potential fluctuation in the L-mode phase and in the
H-mode phase. Reproduced from [104]. CC BY 4.0.

Figure 18. (a) Schematic diagram of the parametric interaction between the pump TEM turbulence, the zonal flow, and two sidebands, and
(b) limit cycle oscillation between the pump wave amplitude, the zonal flow amplitude, and the cross phase. The blue and black curves show
the models with and without the phase mismatch effect, respectively. Reproduced from [110]. © IOP Publishing Ltd. All rights reserved.

region, x > 20. This concept of the turbulence trapping by the
EGAM structure can give an explanation for the observation
in the GYSELA simulation shown in phase (C) of figure 14.
This result suggests that an attenuation of the transport bar-
rier by the interaction between a radially propagating E×B
flow structure and the turbulence is possible depending on the
propagating direction.

A similar numerical investigation is performed for the tur-
bulence driven GAM as well. In this case, the GAM excitation
by the turbulence and the phase-space interaction between the
GAM and the turbulence are simultaneously considered. The
energy equations of the GAM and the turbulence are given as

∂V̂2
y

∂t
=WG + 2µGV̂y

∂2V̂y
∂x2

, (23)

and

∂⟨Nk⟩k
∂t

+
∂

∂x
⟨vgNk⟩k =Wturb + ⟨γLNk⟩k−⟨∆ωN 2

k ⟩k (24)

where µG is the viscosity for the GAM, vg ≡ ∂ωk/∂kx is the
turbulence group velocity, and ⟨∗⟩k ≡

´
∗(1+ k2x + k2y)

−1dkx is
the wavenumber integration. The GAM energy gain and the

turbulence energy loss are given as

WG =−2V̂y
∂Πxy

∂x
(25)

and

−Wturb =−
[ˆ

2kxky
(1+ k2x + k2y)2

Nkdkx

]
∂V̂y
∂x

= 2Πxy
∂V̂y
∂x

,

(26)
where Πxy is the fluid Reynolds stress. The simulation result
in the GAM saturation phase is shown in figure 20, where
the periodic boundary condition in the x direction is used.
As shown in figure 20(a), the turbulence clump is trapped
by the GAM at the location where the E×B flow is directed
towards the electron diamagnetic drift direction. The energy
exchange between the GAM and the turbulence is presented
in figure 20(b). The GAM gains energy at which the curvature
of the GAM is strong while the turbulence loses energy at
which theE×B shear of the GAM is strong. Although the spa-
tial distributions ofWG and −Wturb differ from each other, the
spatially integrated energy budget balances between the GAM
and the turbulence, i.e.

´
WGdx=−

´
Wturbdx. The turbulence

propagation rate is represented by the second term of the left
hand side of equation (24), whose spatial distribution is shown
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Figure 19. (a) Schematic view of the turbulence trapping by the
EGAM in the presence of the transport barrier, (b) spatial profile of
the turbulence linear growth rate, and (c) the phase-space
distribution of the dimensionless turbulence action density and
contour of the equi-frequency plane. Reproduced from [101]. CC
BY 4.0.

in figure 20(c). Since the turbulence propagation rate and the
energy exchange terms are in the same order of magnitude,
all these terms are essential for predicting the turbulence spa-
tial redistribution induced by the E×B flow structure. Note
that the spatial integration of equations (23) and (24) provides
the well-known predator–prey model [28], where the turbu-
lence propagation rate term disappears. The turbulence trap-
ping by the radial electric field structure is an explanation of
the enhancement or the moderate reduction of the turbulence
amplitude at the curvature region [43, 104, 113].

A similar approach using a different model was reported
in [114]. Here, the Hasegawa-Wakatani fluid model [115] is
used to describe the spatial redistribution of the drift wave tur-
bulence in the presence of the enforced sinusoidal zonal flow
structure. As shown in figure 21(a), in the case that the given
zonal flow amplitude is large enough, the turbulence is local-
ized where the zonal flow curvature is negatively maximum
both in the linear growth phase and the nonlinear saturation
phase of the turbulence. This result agrees with that obtained
with the wave kinetic theory, as discussed above [101, 102].
Around the location where the zonal flow curvature is pos-
itively maximum, the cross phase between the density fluc-
tuation and the potential fluctuation is negatively enhanced,
which stabilizes the drift wave and drives the negative particle
flux simultaneously.

Different roles of the shear and the curvature of the radial
electric field for both the turbulence amplitude redistribution
and the cross phase modification are found. Further investig-
ation of the turbulent transport quench at the edge transport
barrier region is an interesting direction to provide an inter-
pretation for the detailed observation of the radial electric field
and the particle flux in JFT-2M (figure 17) [104].

3.4. Discussion

The contrasting results from TJ-K [103] and JFT-2M [104]
regarding the dynamics in the turbulence amplitude and the
cross phase are an interesting topic for discussion. Recent
numerical simulation works showed that the cross phase modi-
fication can occur due to the electromagnetic effect in a toka-
mak edge, which is a possiblemechanism that can dynamically
vary the cross phase. Even without a large β ≡

(
p/(B2/2µ2

0)
)
,

the electromagnetic turbulence can play a role because of a
large q or a large inverse scale length L−1

⊥ at the tokamak edge,
since the ratio of the electromagnetic part to the electrostatic
part in the parallel electric field fluctuation is approximated

as
(
qRL−1

⊥
)2
β [116]. It is shown that as the electromagnetic

effect becomes significant, the cross phase is gradually altered
[117, 118]. Immediately after the L–H transition, the pedestal
structure is quickly formed and the importance of the electro-
magnetic turbulence component can accordingly rise through
an increase of L−1

⊥ . Superposition of the electrostatic fluctu-
ation and the electromagnetic fluctuation can cause a com-
plex time evolution of the turbulence amplitude and the cross
phase that strongly depends on the edge plasma parameters.
The impact of the electromagnetic fluctuation on the turbu-
lence driven E×B flow is also discussed [119].

Recently, the parallel flow shear driven instability was
investigated theoretically [120] as a candidate for the inward
particle pinchmechanism in the type-III ELMdynamics [121].
As the free energy of the parallel flow shear driven turbulence
is the toroidal return flow shear in the H-mode, which has been
discussed in the subsection 2.5, the up-gradient particle flux
can be driven without violating the law of entropy increase
[122]. Intensive assessments of the elementary process of the
parallel flow shear driven instability were conducted in a basic
linear plasma device [123, 124]. This idea can be applied to
consider the different time scale of the turbulence amplitude
reduction and the cross phase alternation. Once the excited
radial electric field at the L–H transition secondarily stimu-
lates the parallel flow shear driven instability through the tor-
oidal return flow, competition against the original instability is
thought to occur. As a result, the cross phase is altered with a
delayed time scale compared to the prompt turbulence amp-
litude suppression. Detailed practical assessment is left for
future research.

4. Summary

In this special topic paper, recent progress on the role of the
mean and oscillating radial electric field in the L–H transition
was reviewed. It was shown that the radial electric field driving
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Figure 20. (a) Phase-space distribution of the dimensionless turbulence action density and (b) spatial distribution of the GAM waveform,
and spatial profiles of (c) the GAM energy gain and the turbulence energy loss and (d) the turbulence propagation rate. Reprinted from
[102], with the permission of AIP Publishing.

Figure 21. Spatial distributions of (a) the turbulence kinetic energy
and (b) the sine of the cross phase between the density fluctuation
and the potential fluctuation at different time instances in
the presence of the enforced sinusoidal zonal flow. Reproduced
from [114]. © IOP Publishing Ltd. All rights reserved.

procedure has apparent conflicting characteristics: the quick
evolution in the turbulence time scale and the eventual settling
on the diamagnetic value. These points were reconciled by
combining different models of the radial electric field excit-
ation based on the turbulence driven component and on the
profile driven component.

Another point focused upon was the turbulent transport
suppression mechanism. It was pointed out that the turbulence
particle flux behavior in the presence of the well-shaped radial
electric field structure cannot be fully featured by the shear-
amplitude suppression paradigm. Two additional concepts
were proposed, i.e. the cross phase alternation and the turbu-
lence redistribution induced by the interaction with the radial
electric field structure. In particular, the different time scales
seen in the turbulence amplitude suppression and the cross
phase alternation that impact on the particle flux behavior
across the L–H transition were presented. A new modeling
activity based on the wave kinetic framework that can treat the
spatially decomposed turbulence–radial electric field interac-
tion was introduced as a key concept to investigate the spatial
redistribution of the turbulence in the H-mode.
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