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Daniel Baptista SDEs death rates models: the Portuguese case

Abstract

In recent years, the increasing life expectancy of the world population (which is most commonly

seen in first-world countries), due to increased availability to prescribed medication, quality of

health care services and quantity of health care institutions, combined with a sharp decrease in

birth rates along time has proven to be a challenging problem for governments worldwide. Both of

these factors put at risk the sustainability of state funded welfare programs (e.g. social security)

and also lead to a decrease in productivity, available workforce and tax revenue in the near future.

With the tendency for these problems to worsen in the next decades, it is of paramount importance

to estimate the extension of human life in order to analyse the severity of this phenomena.

Stochastic differential equations have been used recently to model the evolution of death rates.

In fact, such models have some advantages compared to the deterministic ones since we can input

random environmental fluctuations and evaluate the uncertainty in forecasts.

Instead of the usual cohort analysis, we propose a cross-sectional analysis of mortality by apply-

ing stochastic differential equations models, which we wish to model to the Portuguese population,

describing death rates trends for all ages and for both genders.

The main goal of this work is to apply and compare stochastic differential equations death

rates models (Geometric Brownian motion, Stochastic Gompertz model) separately for each age

and gender with independent standard Wiener processes and forecast Portuguese death rates until

the year 2030.

Keywords: Death rates; Geometric Brownian motion; Stochastic Gompertz model; Stochastic

Differential Equations; Forecasting.
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Resumo

Nos últimos anos, o aumento da esperança média de vida da população mundial (que é habit-

ualmente observada em páıses de primeiro mundo), devido ao aumento do acesso a medicamentos

com receita médica, qualidade dos serviços relacionados com cuidados de saúde e quantidade de

instituições de saúde, em conjunto com um forte decréscimo registado nas taxas de natalidade ao

longo do tempo provou ser um problema desafiante para governos de todo o mundo. Estes fatores

colocam em risco a sustentabilidade dos programas de assistência social financiados pelo Estado

(como por exemplo a segurança social) e podem causar uma descida na produtividade, mão-de-

obra dispońıvel e receita fiscal no futuro próximo. Com a tendência destes problemas agravarem-se

nas próximas décadas, é da maior importância estimar o prolongamento da vida humana com a

finalidade de analisar a gravidade dos fenómenos referidos.

As equações diferenciais estocásticas têm vindo a ser usadas recentemente para modelar a

evolução de taxas de mortalidade. De facto, este tipo de modelos apresentam algumas vanta-

gens quando comparados aos modelos determińısticos, visto que podemos introduzir flutuações

ambientais aleatórias e avaliar a incerteza nas previsões.

Em vez da habitual análise por coorte, propomos uma análise transversal da mortalidade através

da aplicação de modelos de equações diferenciais estocásticas, que desejamos modelar para a pop-

ulação portuguesa, descrevendo as tendências das taxas de mortalidade para todas as idades e para

ambos os géneros.

O principal objectivo deste trabalho é aplicar e comparar modelos de equações diferenciais

estocásticas de taxas de mortalidade (movimento Browniano Geométrico, modelo de Gompertz es-

tocástico) separadamente para cada idade e género com processos de Wiener padrão independentes

e efetuar as previsões das taxas de mortalidade portuguesas até ao ano 2030.

Palavras-Chave: Taxas de Mortalidade; Movimento Browniano Geométrico; Modelo de Gom-

pertz estocástico; Equações Diferenciais Estocásticas; Previsões.
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1 Introduction

1.1 Evolution of human mortality in Portugal

In Portugal, and in the majority of western countries, the age structure of the population has

been changing, marked by an increase of ageing population due to the combined effect of decreasing

birth rates and increasing life expectancy throughout the years. According to the projections of the

Portuguese resident population between the years of 2018 – 2080, the ageing population (individuals

aged 65 years or higher) will represent about 37% of the resident population in 2080, considering

the expected scenario (Instituto Nacional de Estat́ıstica (2020)). After analysing the data obtained

from the Portuguese census performed in the year 2021 (PORDATA (2021)), the ageing population

currently represents about 23% of the resident population, meaning that in the next decades the

proportion of the ageing population in relation with the resident one has the tendency to increase

over time (even doubling in some regions of the country).

However, if it’s certain that the mortality risk increases in relation with the age of the individual,

mortality rates have been plummeting worldwide. This fact has led to the study of factors, both

intrinsic and extrinsic, that can explain this evolution. Types of models, deterministic or more

recently, stochastic models, have been tested giving rise, namely, to comparative studies to assess

which is the best model to apply in this context (see Booth & Tickle (2008) and George et al.

(2003)). For all these reasons, and despite the fact that human mortality is a demographic variable

that has been studied exhaustively, the main objective of this dissertation is to apply models of

stochastic differential equations (SDEs) that, through cross-sectional analysis of the mortality data

over time, allows us to estimate the future tendency of the decreasing death rates phenomenon for

all age groups and for each gender, and to compute step-by-step (SS) forecasts and long term (LT)

forecasts.

The data related with the Portuguese death rates and used throughout this work was obtained

from the HMD (Human Mortality Database (2022)), which corresponds to the gross death rates

and represents the division between the number of deaths (total for a country in a given time

period for all causes of death) and an estimate of the resident population (which corresponds to

the population exposed to death risk in the same age interval). In this work we will be using

200 time series, with an annual frequency, available for the years 1940 – 2020 for 100 annual age

groups (ages 0 – 99) and for both genders. For example, age 0 (which corresponds to the first

age analysed) refers to individuals who died in the first year of life and we denote, respectively, as

F0 and M0 the death rates of females and males at age 0 (this method is used similarly for the

remaining ages).

In Demography, it’s common for data to be available by cohort (in a longitudinal perspective

through time). A cohort represents a set of individuals born in the same year and that are followed

throughout their lives. In this case, where a longitudinal approach is used over time, there is no

distinction between age and calendar year. Therefore, it’s very difficult to model all ages of the

human life span, as it’s necessary a very high number of parameters for this purpose1.

For the purpose of this approach, see the data representation in Figure 1. The curve describes

the evolution of mortality in the various phases of the arch of life. In this case, the year 1994

1Often more than eight for each cohort, because the mortality trajectory is very irregular.
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was fixed, but the shape, usually described in the literature as “bathtub-shaped curve”, has not

changed significantly over time despite the reduction in infant mortality and greater longevity in

the last few decades.
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Figure 1: Death rates of the Portuguese population (female gender on the left and male gender
on the right), longitudinal representation (ages 0 to 99) for the year 1994.

Alternatively, the cross-sectional approach we follow makes sense, as we consider events that,

over time, affect all ages. Among others, we highlight, on the positive side, changes in living

conditions of a socio-economic nature or advances in medicine and increased quality of health care

services and number of health care institutions (such as hospitals, clinics and among others). Also,

climate changes that generate extreme phenomena or other catastrophic situations can globally

affect the Portuguese population, in this case increasing mortality risk.

The phenomenon thus described has a strong decreasing tendency in the period under analysis

as seen in Figure 2. In almost all ages, the death rates are higher in males than in females, although

with a different evolution at each age.
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Figure 2: Death rates of individuals aged 66 along time (on the left for the female gender and on
the right for the male gender) from 1940 to 2020.

The results and methods are illustrated by the death rates of the Portuguese population. We

consider that they reflect the behaviour of mortality in countries that have already undergone the

demographic transition (regarding the evolution of mortality in the context of the demographic

transition in Portugal and worldwide see, for instance, Morais (2002)).

Furthermore, throughout this work, we divided each time series related with the observed death
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rates of the Portuguese Population (which have 81 observations and are related with the observed

death rates documented in each year of analysis, from 1940 to 2020), into two subsets: Observed

death rates between the years 1940 – 2009 for model adjustment and between the years 2010 –

2020 for forecast validation.

Before concluding this subsection, we also call attention to the fact that, in Demography, the

variable “force of mortality” is often the object of study, in most cases represented as µ. Being i a

certain age, we have that µi = − ln (1− qi), with qi denoting the death rate of an individual aged

i of a given gender (these questions are frequent in the construction of life tables and are described

exhaustively, for instance, in Namboodiri & Suchindran (1987) and Preston et al. (2004)). If we

consider that the death rate is constant between the exact ages of i and i + 1 and in a given

timeline (annually, for example), we approximate qi by the value of the force of mortality µi (on

the subject of mortality statistics measures see also Keyfitz & Caswell (2005) and Mcgehee (2003)).

In reality, the average deviation between µi and qi is quite small (estimated to be around 10−5) in

most of the ages (in the period under analysis, it increases only from age 85 above). In Figure 3

both values corresponding to the observed death rate and force of mortality (µ), between the time

period of 1940 – 2020, for an individual aged 23 of the male gender. Since, as previously stated,

the difference between the values of the death rate and the force of mortality of a given individual

is extremely small, in Figure 3 it’s not easily perceptible the lines of the analysed variables, since

they overlap one another in most of the years, from 1940 to 2020.
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Figure 3: Observed death rates vs force of mortality (µ) of an individual aged 23 of the male
gender, from 1940 to 2020.

3



Daniel Baptista SDEs death rates models: the Portuguese case

1.2 Modelling human mortality with stochastic differential equations:

brief overview of the literature

The future evolution of life expectancy is uncertain, due to external factors and to the uncer-

tainty itself in the evolutionary trend of death rates as a demographic phenomenon. Since the 19th

century, with the first studies by Gompertz, much has changed in the approach to this problem,

which has been extensively investigated throughout the last few decades.

Originally, such models did not incorporate uncertainty - it was introduced through the con-

struction of mortality tables as seen in Mendes (2004) and Mexia & Corte-Real (1995), studying

a generation or cohort. It was only when this need was recognized, that the first stochastic (or

probabilistic) models were developed, which emerged especially since the 1990s, mainly from the

perspective of actuaries, economists and investment banks (Li (2007)). Of these, the Lee-Carter

model, in Lee & Carter (1992), is undoubtedly the most well known, with many applications and

variations (see, for example, Lee (2000) or Life Office Mortality Comitee (2007), in which a sum-

mary of the results of it’s application is made, or Bravo et al. (2010) related to mortality predictions

in Portugal).

With a long application in the study of financial markets behavior, SDEs, whose Black-Scholes

model (1970s) has stimulated research and the development of applications to other areas of sci-

ence, have been widely used in modelling population growth (see Braumann (2008) and references

contained in Brites (2017), Brites & Braumann (2019) and Brites & Braumann (2020)). Recently,

SDEs models variant of the Ornstein-Uhlenbeck model started to be applied in Portugal, which

also incorporate a term with an environmental random component, to demographic data, namely

in the longitudinal study of mortality or in the construction of dynamic mortality tables. See, for

example, their use in the construction of prospective mortality tables, actuarial applications and

longevity risk coverage in Bravo (2007) and Bravo & Braumann (2007) or, along the same lines,

studies on dynamic tables, applied to death rates in Spain on Debón et al. (2008).

These models allow the implementation of randomness, which translates the effects of envi-

ronmental variations in the coefficients (thus, they are more realistic), and it’s possible, from the

solution of the equation, to infer on it’s probability distribution. From the few references found in

the literature related to the use of SDEs to model human mortality, and from the perspective of

the study of cohorts, we highlight the recent model by Jevtic et al. (2013), for a mortality surface

and using factor analysis, also the model by Park (2008), in which, to obtain the probability of

survival, the mortality force is estimated using factor analysis of mortality through a diffusion

process with jumps, and the model of Yashin et al. (2007), in which mortality is a function of risk

factors, which changes with age and are translated by a SDE with jumps translated by standard

independent Wiener processes.

Although the set of discrete-time models of the Lee-Carter type, which generally incorporate the

stochastic component in a single term, proves to be good in the short run (the parameters generally

need to be readjusted for medium-long term predictions), the recent SDEs models bring additional

advantages, as they associate uncertainty with the dynamics of the process. Their construction is

based on deterministic models of ordinary differential equations, while incorporating the effect of

environmental variability in the evolution of death rates.

The SDEs models that we propose to apply are intended to be simple and flexible (although

4
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with different parameters by age and gender). Assuming that the demographic system does not

evolve independently from the economic and environmental systems (Mishra (2008)), death rates

have stochastic fluctuations as a function of the “environment” in a broad sense (as we have

mentioned previously). In addition, to the environmental (or systematic) randomness, observed

death rates also have an associated sampling error (demographic randomness), which is not object

of study in this dissertation. This is an error which, in relative terms, is small and therefore is

not treated, since it has some significance only at older ages (because the “sample”, meaning, the

population at risk, has a small size in comparison with younger ages).

In a previous approach, already mentioned in Bravo (2007), longitudinal models of SDEs were

used, in order to explain the evolution of a fictional cohort (age and time evolve together) and good

results were obtained for older ages. However, the longitudinal approach has limitations, because

a restricted time/age period has to be selected from the outset, given the very complex behaviour

of the death rate relative to the age of a given individual when considering the entire human life

span. The cross-sectional over time approach, used throughout this work, on the contrary, models

the evolution of the death rate of a certain age (fixed over time), which has a relatively constant

behaviour.

Therefore, as the data shows a dynamic evolution of death rates over time (and not merely in

a sample), it makes sense to build and apply models with a random environmental component,

hence the use of SDEs models. About the potential use of these models, where one seeks to explain

mortality variability in a simple and credible way for planning purposes (e.g., pensions, savings,

health plans, or insurance), we can also convert the results into derived variables, such as life

expectancy or survival rates, random variables that also depend on the environmental conditions,

studying complementary or related problems and even introducing explanatory variables outside

the scope of the mortality system.

1.3 Dissertation’s objectives and structure

Considering the problem that was the starting point for this research (as explained in subsection

1.1), this work seeks to answer the following questions: what is the future medium/long term

trend of the Portuguese population death rates by age and gender?, and, in particular, how do the

forecasts given by SDEs models behave if we consider the correlation effect between death rates of

different genders, for the same age, and between different ages considering the same gender?

As for the dissertation’s structure, this work is comprised of 4 chapters. In the first chapter,

we present the motivational aspects that led to the identification of the problem and selection of

the methodology, then provided a brief overview of the literature related to stochastic mortality

models in order to contextualize the topic.

On the second chapter, we briefly present a conceptual and methodological exposition about

the theory behind SDEs, which is necessary for the development on the subsequent chapter.

The third chapter, which is the core of this work, is related with modelling the death rates of

the Portuguese population through SDEs models. The models used are the Geometric Brownian

motion (GBM) and the Stochastic Gompertz model (SGM). In addition, will be treated, using

examples, the statistical aspects of model selection, estimation and forecasting, as well as their

confidence intervals. As for the calibration of the SDEs models, the maximum likelihood (ML)

5
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method will be used to estimate the parameters (by age and gender). Considering model validation,

beyond comparison between both models used, measures of performance evaluation and the study

of predictive capability will be used (the mean squared error (MSE) for comparison and validation

purposes).

In Chapter 4, we summarize the main conclusions from this dissertation and make some con-

siderations about future work. Furthermore, the data related to the observed death rates of the

Portuguese population, by age and gender, between the years of 1940 to 2020 is stored in an ex-

cel file titled “Death Rates 1X1.xlsx” which is available for download here:2 https://drive.google.

com/drive/folders/1fTLCkfCstzivHGvA6ezvHXMB s9ZE9is?usp=sharing.

Also all the results obtained in this dissertation were computed using the R programming

language (available, with free access, in http://www.r-project.org). The R code related with this

dissertation is publicly available and can be found here: https://github.com/DanielBaptista99/

Stochastic-Differential-Equations-Death-Rates-Models-The-Portuguese-Case.git.

2In order to use the data provided by the HMD we had to do a few adjustments. First we had to remove the
ages 100 – 115 since these are not analysed in this dissertation, second we had to copy-transpose each of the death
rates in sheet “Folha1” because in this format it’s easier to run the R code. Furthermore, there seems to be some
errors in the data provided by the HMD since in some cases the death rates will be equal to zero (which is highly
unlikely). In these cases we computed the average between the previous and next year in order to obtain a more
suitable value of the death rate (the death rates in which this adjustment was done are marked with the colour
yellow).
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2 Topics on stochastic differential equations

2.1 Introduction

We present below a brief exposition of concepts, properties and numerical aspects concerning

the theory related to SDEs. All these topics, some of which are based on probability theory or

originated from mathematical analysis, are exhaustively stated and demonstrated in the reference

bibliography, namely in Karlin & Taylor (1981), Arnold (1992), Nicolau (2001), Øksendal (2003),

Braumann (2005), Bravo (2007), Li (2007), Müller (2007), Skiadas (2010), Lagarto (2014) and

Brites (2017).

2.2 Stochastic processes

Beforehand, we consider that the phenomenon we are going to study is not purely deterministic,

because by observing, in our case, the death rates (by age and gender) and their variations over

time, we find that they suffer random fluctuations that we cannot predict, meaning that they

feature stochastic behavior. These processes can be modelled using sets of r.vs that describe the

system under study at each moment of time, t, with t ∈ T (usually, T = R+
0 or T = N0, i.e, in

continuous or discrete way), and which also depend on chance, ω, with ω ∈ Ω, where Ω represents

the set of all possible outcomes of an event (or random event) or possible states of nature (in a

broad sense), susceptible of disturbing this same phenomenon. Our main goal is to insert a noise

source in our models in order to capture or better explain the random variability of a given process

over time. The phenomenon described in this way, which translates the evolution of a set of r.vs,

{X(t)}, with t ∈ T , is a stochastic process (s.p) indexed by T , which we denote by X(t). A s.p

is also a function X(t, ω) defined on T × Ω. Setting ω as a fixed value results in a non-random

function of t, which we call trajectory or sample path of the process (meaning different values

of ω generate different trajectories). Following the same pattern as the literature mentioned in

the previous subchapter, we will denote throughout this dissertation X(t, ω) as X(t). From now

on, we assume T = [0,+∞[, so the s.p, is in continuous time, and also the state variable X(t) is

continuous (since the variable can change it’s value at any instant of time and can take any real

value). A s.p indexed by T is a group of r.vs, all of them defined on the same probability space

(Ω,F ,P), with P denoting the probability measure and F denoting a σ-algebra on Ω.

A filtration Ft, with t ∈ T , is a set of σ-algebras of F such that s ≤ t =⇒ Fs ⊆ Ft. A s.p

X(t) with t ∈ T , is adapted to this filtration if X(t) is Ft-mensurable for all t ∈ T . The process

X(t) is adapted to it’s natural filtration, Ft = σ(X(s) : 0 ≤ s ≤ t), where Ft is the σ-algebra

generated by the present and past of X(t). Furthermore, we say that X(t) is a s.p with:

� independent increments if and only if for all n ∈ N0 and for all t = 0, 1, . . . , n ∈ T , the

random variables X(1)−X(0) ,. . . , X(n)−X(n− 1) are independent.

� stationary increments if and only if for all s, t ∈ T such that s < t, the distribution of

X(t)−X(s) depends only on the duration t− s.

In addition, X(t) is a second order process if and only if for all t ∈ T : E[X(t)2] < +∞. Further-
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more, X(t) is a Ft martingale3 if:

� X(t) is adapted to the filtration Ft.

� E[|X(t)|] < +∞

� ∀s ≤ t: E[X(t)|Fs] = X(s) almost surely.

There are several classifications for s.ps, depending on the characteristics of the defining r.vs,

the set T considered, and the state space. Therefore, it should be noted that all s.ps we will use

in this dissertation, as well as the solutions of the presented SDEs, can be considered Markov

processes. The standard Wiener process, W (t), fundamental for the construction of SDEs (since

it can describe the accumulated effect of environmental fluctuations of a given phenomenon, up to

a certain time t considered) is an homogeneous Markov process.

The standard Wiener process was first discovered by the English botanist Robert Brown4, when

he observed the random movements of small particles of pollen immersed in liquid in the year 1828.

Later, in 1900, Louis Bachelier, in his thesis “Théorie de la Spéculation” (Bachelier (1900)) used

the Brownian motion to model the evolution in the price of financial assets along time. However

Bachelier’s remarkable work was far ahead of his time and was not appreciated during his lifetime,

since, in the eyes of the French mathematical elite, Bachelier was considered of lesser importance.

In 1905, Albert Einstein justified this movement with the constant collision between the particles

and the surrounding liquid molecules and characterized it by a stochastic process that would come

to be called Wiener process. Finally, in the year 1918, the first mathematical definition of the

term appeared through the mathematician Norbert Wiener. A very interesting description on the

history of the standard Wiener process can be found in Nelson (2021).

Let’s denote B as a Borel set, such that B ∈ B, with B denoting the Borel σ-algebra which

represents the smallest σ-algebra that contains the intervals in T . X(t) is a Markov process if, for

all s, t ∈ T with s < t and for any Borel set,

P [X(t) ∈ B|X(u), 0 ≤ u ≤ s] = P [X(t) ∈ B|X(s)].

This property, usually known as the Markov property, states that, knowing the present value of

the process, it’s future values are independent from past values. If a Markov process has stationary

transition probabilities (in time), this is,

P [X(t+ τ) ∈ B|X(s+ τ) = x] = P [X(t) ∈ B|X(s) = x],

then it’s called an homogeneous Markov process.

A s.p X(t) with second order moments is called a diffusion process if it verifies the Markov

property and if, additionally, almost certainly exhibits continuous trajectories, for ϵ > 0, x ∈ R
and s ∈ [0, t] ⊂ T , with uniform convergences, the limits

lim
∆→0+

Ps,x[|X(s+∆)− x| > ϵ]

∆
= 0,

3When the considered filtration coincides with the natural one, X(t) is simply called martingale.
4For this reason, the standard Wiener process is described in some literature as the standard Brownian motion,

or simply Brownian motion, and is often denoted as B(t) instead of W (t).
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lim
∆→0+

Es,x

[
X(s+∆)− x

∆

]
= a(s, x),

lim
∆→0+

Es,x

[
(X(s+∆)− x)2

∆

]
= b(s, x),

where Ps,x denotes the conditional probability to which X(s) = x and Es,x denotes the conditional

mathematical expectation to which X(s) = x. This definition can be generalized to second-order

processes. The functions a(s, x) and b(s, x), which correspond, respectively, to the infinitesimal

moments of first and second order, are called the drift coefficient (or infinitesimal average) and the

diffusion coefficient (or infinitesimal variance). If these coefficients do not depend on t, then the

diffusion process is said to be homogeneous.

The standard Wiener process (W (t)) is an homogeneous diffusion process and has the following

properties:

� W (0) = 0 almost certainly;

� W (t) has a normal distribution with mean zero and variance t ,with t ∈ T (meaning, W (t) ∼
N (0, t));

� the increments W (t) − W (s) (with 0 ≤ s < t and t ∈ T ) have a normal distribution with

mean zero and variance t− s (meaning, (W (t)−W (s)) ∼ N (0, t− s));

� the increments W (t)−W (s) (with 0 ≤ s < t and t ∈ T ), on non-overlapping time intervals,

are independent;

� Cov[W (s),W (t)] = min(s, t);

� W (t) is a martingale;

� W (t) is a Markov process.

2.3 Stochastic differential equations

Ordinary differential equations have been extensively used to model the behaviour of dynamical

time-dependent phenomena in various scientific areas. Such dynamics can often be characterized

by the rate of change of a variable X(t) and denoted as

dX(t) = f(t,X(t))dt, X(0) = X0. (2.1)

Usually, a SDE is obtained from an ordinary differential equation, such as Equation (2.1), to

which we add a noise term, in order to describe the random fluctuations that affect the phenomenon

under study. Assuming that the accumulated effects of these random fluctuations up until time t

can be described by a standard Wiener process, W (t), then the SDE can be denoted as

dX(t) = f(t,X(t))dt+ g(t,X(t))dW (t), X(0) = X0. (2.2)

We assume X0 to be a r.v independent from W (t), and that f and g are real functions. A solution

9



Daniel Baptista SDEs death rates models: the Portuguese case

for X(t) = X(t, ω) from Equation (2.2) is a s.p that solves the integral equation

X(t) = X(0) +

∫ t

0

f(s,X(s))ds+

∫ t

0

g(s,X(s))dW (s), (2.3)

more explicitly

X(t, ω) = X(0, ω) +

∫ t

0

f(s,X(s, ω))ds+

∫ t

0

g(s,X(s, ω))dW (s, ω), (2.4)

with the defined integrals as we will describe next.

Let’s denote F (s, ω) = f(s,X(s, ω)) and G(s, ω) = g(s,X(s, ω)). The integral
∫ t

0
F (s, ω)ds can

be considered, for each fixed ω, as a Riemann integral. However, the integral
∫ t

0
G(s, ω)dW (s, ω)

cannot be considered as a Riemann-Stieltjes integral since different sums of Riemann-Stieltjes

converge to different limits. We work with non-anticipative functions G(s, ω) with a finite norm

L2, that is, (||G||2)2 = E[
∫ t

0
|G(s, ω)|2ds] < +∞. The function G(s, ω) is non-anticipative if it’s

jointly measurable in s and ω and it’s independent from future increments of the standard Wiener

processes. For G ∈ L2 we use the Itô’s integral, which is defined as the limit in quadratic mean of

the sums of Riemann-Stieltjes, that is,

l.i.m.
n→+∞

n∑
k=1

G(tk−1)(W (tk)−W (tk−1)),

where 0 = t0,n ≤ t1,n ≤ . . . ≤ tn,n = t, with n ≥ 1, are breakdowns of the interval [0, t] whose range

tends to 0 when n → +∞. Notice that the Riemann-Stieltjes sums use as an intermediate point

the initial point of each breakdown interval. Other choices of intermediate points would generate

other integral types, but the choice that was made (non-anticipative), which leads to the Itô’s

integral, has the main advantage of generating rather interesting properties of the integral. This

definition can be extended to non-anticipative functions of class G such that
∫ t

0
|G(s)2|ds < +∞

almost certainly.

The leading researcher, either for the definitions or to what has come to be known as stochastic

calculus, was Kiyoshi Itô, Japanese mathematician who developed, in the 1940s, the basis for the

SDEs theory. Identifying almost identical functions, L2 is an Hilbert space. Of the properties

related with stochastic integrals, we highlight the following, considering the integration interval

[0, t], a, b ∈ R and G,G1, G2 ∈ L2 :

�

∫ t

0

dW (s) = W (t)−W (0);

�

∫ t

0

(aG1(s) + bG2(s)) dW (s) = a

∫ t

0

G1(s)dW (s) + b

∫ t

0

G2(s)dW (s);

� E

[∫ t

0

G(s)dW (s)

]
= 0;

� E

[(∫ t

0

G(s)dW (s)

)2
]
= E

[∫ t

0

G2(s)ds

]
;

� E

[∫ t

0

G1(s)dW (s)

∫ t

0

G2(s)dW (s)

]
= E

[∫ t

0

G1(s)G2(s)ds

]
.
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Analysing Equations (2.3) and (2.4), if f and g satisfy the adequate properties (see, for

example, Braumann (2008)), the solution exists, is unique and is a diffusion process with drift

coefficient a(s, x) = f(s, x) and diffusion coefficient b(s, x) = g2(s, x). When f and g do not

depend on time, as it occurs in this dissertation, the SDE is said to be autonomous and it’s

solution is an Itô’s diffusion.

2.4 Itô’s formula

A process X(t) presented as a variation of Equation (2.4), in which f(s,W (s, ω)) = F (s, ω)

and g(s,W (s, ω)) = G(s, ω), meaning,

X(t, ω) = X(0, ω) +

∫ t

0

F (s, ω)ds+

∫ t

0

G(s, ω)dW (s, ω), X(0, ω) = x0,

independent from W (t) and F , G mensurable in s and ω, which verify, almost certainly,

�

∫ t

0

G2(s)ds < +∞,

�

∫ t

0

|F (s)|ds < +∞,

is called an Itô process. Let’s assume, from onwards, that X(t) is an Itô process. If Y (t) =

h(t,X(t)), with h(t, x) being a function of class C1,2 (that is, with first order partial derivative

continuous at t and second order partial derivative continuous at x), then Y (t) = Y (t, ω) is still

an Itô process. The Itô’s formula (which refers to the differentiation of a composite function rule

or chain rule), is given, relative to Y (t), as:

dY (t) =
∂h(t,X(t))

∂t
dt+

∂h(t,X(t))

∂x
dX(t) +

1

2

∂2h(t,X(t))

∂x2
(dX(t))2. (2.5)

Furthermore, the following properties are related with Itô’s formula and are used:

� (dt)2 = 0,

� dtdW (t) = dW (t)dt = 0,

� (dW (t))2 = dt.
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3 Stochastic differential equations death rates models

3.1 Introduction

In the cross-sectional analysis of human mortality, we consider that one must take into account

the random fluctuations of the environmental conditions, to which SDEs are used to model the

death rates of the Portuguese population, considering the age and gender of the individuals under

analysis in this work.

From the merely preliminary analysis of the observed death rates of the Portuguese population,

in the sense of finding the first results to make the dissertation’s plan feasible, we observed that

relatively simpler models (with two or three parameters) allow us to obtain encouraging results

(which, even, portray the variability of death rates at older ages, generally more difficult to model,

and enable us to measure forecasts). In this work, we adjusted two stochastic differential equations

death rates models, the GBM and the SGM, to the observed death rates, which are analysed in

the following subsections.

3.2 The Geometric Brownian motion (GBM)

The GBM is a s.p usually used to model the price of stocks and other economic variables. This is

also the solution for the SDE commonly known as the Black-Scholes model (also, in some literature,

designated as the diffusion equation of Black-Scholes), with µ and σ representing, respectively, the

mean growth rate and volatility of a given r.v. The SDE representing the GBM is

dX(t) = µX(t)dt+ σX(t)dW (t), σ > 0, X(0) = x0. (3.1)

In this case, X = X(t) can represent the price of a given financial asset along time t, but this

equation has various applications, not limited to only modelling economic variables, since it can

also be used to model population growth, as seen in Brites (2010), as well as other variables in

various areas of science. Integrating Equation (3.1) we obtain

X(t) = X(0) + µ

∫ t

0

X(s)ds+ σ

∫ t

0

X(s)dW (s).

Furthermore, we can solve the SDE (3.1) in order to obtain the equation that defines X(t), by

applying the Itô’s formula (2.5). Let’s assume, for this case, that Z(t) = ln(X(t)) and subsequently

that h(t, y) = ln(y) and Z(t) = h(t,X(t)). After applying Itô’s formula, we get
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dZ(t) =
∂ ln(X(t))

∂t
dt+

∂ ln(X(t))

∂X(t)
dX(t) +

1

2

∂2 ln(X(t))

∂X(t)2
(dX(t))2

=
∂ ln(X(t))

∂X(t)
dX(t) +

1

2

∂2 ln(X(t))

∂X(t)2
(dX(t))2

=
1

X(t)
dX(t)− 1

2

1

(X(t))2
(dX(t))2

=
1

X(t)
(µX(t)dt+ σX(t)dW (t))− 1

2

1

(X(t))2
σ2(X(t))2dt

= µdt+ σdW (t)− 1

2
σ2dt

=

(
µ− 1

2
σ2

)
dt+ σdW (t).

From the above, we conclude that dZ(t) = (µ − 1
2σ

2)dt + σdW (t). Then, we can solve this

equation in order to obtain X(t) by integrating dZ(s) in the time interval [0, t] with
∫ t

0
dZ(s) =

ln(X(t))− ln(X(0)), i.e.,

ln(X(t))− ln(X(0)) =

∫ t

0

(
µ− 1

2
σ2

)
ds+

∫ t

0

σdW (s)

=

(
µ− 1

2
σ2

)∫ t

0

ds+ σ

∫ t

0

dW (s).

Following these computations, we notice that ln(X(t))− ln(X(0)) can be rewritten as

ln

(
X(t)

X(0)

)
=

(
µ− 1

2
σ2

)
t+ σW (t).

From this equation we can finally have a solution for the s.p X(t) (known as the GBM) which will

be equal to

X(t) = X(0) exp

{(
µ− 1

2
σ2

)
t+ σW (t)

}
, X(0) = x0. (3.2)

Let’s consider that the death rates of the Portuguese population follow a GBM and assume,

as a starting point for modelling, Equations (3.1) and (3.2). In this regard, notice that, in fact,

when observing the death rates of the Portuguese population throughout time, it appears to have

a decreasing linear trend, as was previously seen in Figure 2. From onwards, let’s assume Xk(t) to

be the death rate of a given individual aged i − 1 with i = {1, . . . , 100} and gender j with j = 1

if the individual in question is female and j = 2 if it’s male, on instant t, with k = i+ 100(j − 1)

in order to cover all ages in the arch of life for both genders. To simplify the reading we use

throughout this section X(t) = Xk(t), applying the model to each age and gender. Assume also

that the initial condition X(0) = x0 is known. If we denote Y (t) = h(t,X(t)) = ln
(

X(t)
x0

)
, with

X(t) denoting the same result shown in Equation (3.2), h(t, x) = ln
(

x
x0

)
is a strictly increasing

function of class C2 in x. Applying the Itô’s formula in (2.5) we can obtain the SDE
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dY (t) = Rdt+ σdW (t), Y (0) = 0, (3.3)

with R = µ− σ2

2 . Notice that since we are using X(t) instead of Xk(t), the same reasoning can be

implemented to the model’s parameters, which we could have denoted as Rk and σk representing,

respectively, the average growth rate of Yk(t) and the effect of random fluctuations on mortality

dynamics.

The solution for Equation (3.3), for each age and gender in instant t, is given by

Y (t) = Rt+ σW (t), (3.4)

which follows a normal distribution with mean Rt and variance σ2t, that is,

Y (t) ∼ N
(
Rt, σ2t

)
, (3.5)

where X(t) has a log-normal distribution with expected value E[X(t)] = x0 exp{Rt}. Therefore,

we can write Equation (3.4) in it’s original form as

X(t) = X(0) exp{Rt+ σW (t)}, X(0) = x0.

Furthermore, notice that Equation (3.3) is an autonomous SDE and that it’s solution (3.4) is an

Itô’s diffusion and an homogeneous diffusion process with drift coefficient R and diffusion coefficient

σ2.

3.2.1 Estimation

From (3.5) we obtain the probability density function (p.d.f), f(t, y), of Y (t) which is given by

f(t, y) =
1√
2πV t

exp

{
−1

2

(y −Rt)2

V t

}
, V = σ2.

Let tn = t0 + n, n = 0, 1, . . . , N , represent the years in which the death rates of the Portuguese

population were observed, for each age and gender (in this case, all series have the same dimension).

Considering Y (t0) = 0 and

Y (tn) = Y (tn−1) +R(tn − tn−1) + σ(W (tn)−W (tn−1)), (3.6)

the process Y (tn) conditioned by Y (tn−1) has normal distribution with mean Y (tn−1)+R(tn−tn−1)

and variance V (tn − tn−1), since Y (tn−1) is independent from W (tn) − W (tn−1). Thus, the

transition p.d.f of Y (t) between tn−1 and tn is given by

f(Y (tn)|Y (tn−1)) =
1√

2πV (tn − tn−1)
exp

{
−1

2

(Y (tn)− Y (tn−1)−R(tn − tn−1))
2

V (tn − tn−1)

}
. (3.7)

Notice that R and V are, respectively, the mean and variance of the logarithm of the death

rates returns, ln
(

X(tn)
X(tn−1)

)
= Y (tn) − Y (tn−1). The parameter vector denoted as p = (R, V ) can

be estimated by applying the ML methodology. Since Y (t) is a Markov process, the log-likelihood
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function, L, given the observed values Y (t1), . . . , Y (tN ), can be written as

L(p|Y (t1), . . . , Y (tN )) =

N∑
n=1

ln (f(Y (tn)|Y (tn−1))

= −N

2
ln (2πV )− 1

2

N∑
n=1

ln (tn − tn−1)

− 1

2V

N∑
n=1

(Y (tn)− Y (tn−1)−R(tn − tn−1))
2

2V (tn − tn−1)
.

Furthermore, we can obtain the explicit expressions of the ML estimators of p (see Brites (2010)),

by solving the following system of equations
∂L(y;p)

∂R |R̂,V̂ = 0

∂L(y;p)
∂V |R̂,V̂ = 0,

obtaining, for tn − tn−1,

R̂ =
Y (tN )

tN
,

and

V̂ =
1

N

N∑
n=1

(Y (tn)− Y (tn−1)− R̂(tn − tn−1))
2

tn − tn−1
.

Since, here, the death rates of the Portuguese population are annually rates, we can therefore

assume that tn − tn−1 = 1, which simplifies significantly the computations. This simplification is

valid for all models applied to the data set and displayed in the following subsections.

To obtain the confidence intervals, CI, for R and V , we can take into account the asymptotic

properties of the ML estimators. According to Pestana & Velosa (2002), the Fisher information

matrix is

F =


−E

[
∂2L
∂R2

]
−E

[
∂2L

∂R∂V

]
−E

[
∂2L

∂V ∂R

]
−E

[
∂2L
∂R2

]
 =


tN
V 0

0 N
2V 2

 .

In turn, the variance of each one of the parameters in p̂ are given by the diagonal values of

the inverse of F . For each parameter in p we can then obtain an approximation of the confi-

dence interval limits assuming a confidence level (1− α)× 100%, denoted by CI(1−α)×100%, using(
p̂± z1−α

2

√
V̂ ar[p̂]

)
, where V̂ ar[p̂] represents the estimated variance of p with it’s parameters

replaced by the ML estimates. More specifically, the respective asymptotic CI, for R and V , are

given by the following expressions

CI(1−α)×100%(R) =

R̂± z1−α
2

√
V̂

tN

 ,
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and

CI(1−α)×100%(V ) =

V̂ ± z1−α
2

√
2V̂ 2

N

 ,

where zq denotes the q-quantile of the standard normal distribution. In this case, we can also

compute the exact confidence intervals, CIe(1−α)×100%, using the exact distributions, as shown in

Brites (2010), which are defined as

(R̂−R)

√
N − 1

N

tN

V̂
∼ t(N−1)

and
NV̂

V
∼ χ2

(N−1),

where t(N−1) represents the t-student distribution and χ2
(N−1) represents the chi-squared distribu-

tion, in both cases with N − 1 degrees of freedom. Thus, the exact confidence intervals for both R

and V are given by the following expressions

CIe(1−α)×100%(R) =

R̂± t1−α
2 ;(N−1)

√
N

(N − 1)

V̂

tN


and

CIe(1−α)×100%(V ) =

(
NV̂

χ2
1−α

2 ;(N−1)

,
NV̂

χ2
α
2 ;(N−1)

)
,

where tq;(N−1) represents the q-quantile of the t-student distribution with N−1 degrees of freedom

and χ2
q;(N−1) represents the q-quantile of the chi-squared distribution also with N − 1 degrees of

freedom.

If we have observed values up to a given time tN , with Y (tN ) = ytN , and want to obtain a

forecast for a given time t > tN , considering that Y (t) is a Markov process, we have

E[Y (t)|Y (t1), . . . , Y (tN )] = E[Y (t)|Y (tN )].

From Equation (3.6), we get

Y (t)|Y (tN ) ∼ N

(
Y (tN ) +R(t− tN ), V (t− tN )

)
.

Therefore, we can use for the LT forecasts in each age, for t > tN ,

Ŷ (t) = Ê[Y (t)|Y (tN ) = ytN ] = ytN + R̂(t− tN ), (3.8)

where Ê(·) represents the approximated value of the mathematical expectation. Since, we do not

know the exact value of R, we replace it by it’s ML estimate, R̂.

The step-by-step (SS) forecasts are estimated following the same reasoning as in (3.8). However,

we update t and the last observed value, as well as the parameter estimates, each time we progress

one step in time (in the case of this work, one year).

16



Daniel Baptista SDEs death rates models: the Portuguese case

Finally, using the Monte Carlo simulation method, we obtain an approximation of the forecast

error distribution, Ŷ (t)− Y (t), as well as the forecasting confidence intervals. From (3.7), we get

the mean and variance of Y (tn)|Y (tn−1) = ytn−1
. We used, for each age and gender, the ML

estimates in p and simulated a sufficiently large number of trajectories Y (t), say r (in this case,

we used r = 2000). This way, we obtained up to a certain year tN the ML estimates, for each

one of the r replicas simulated, a new parameter vector p, the forecasts Ŷ (t) (for t > tN ), the

forecasting errors Ŷ (t) − Y (t), as well as the empirical mean and variance of these in the group

of the r replicas, in order to estimate the mean and variance of the forecasting error.

Let’s denote Mt and Vt the respective empirical means and variances. We can obtain an

approximation of the limits of CI(1−α)×100%, for a certain age and gender considered, by applying(
Mt ± z1−α

2

√
Vt

)
.

3.2.2 Results

We adjusted the GBM to the observed death rates of the Portuguese population, for each one

of the ages selected from the arch of life (ages 0 to 99) and for each gender. For this purpose,

we used the variable Y (t) = ln
(

X(t)
X(0)

)
, with X(t) denoting the expected death rate at time t and

X(0) denoting the first observed death rate of a given individual (in this case, the death rate of

year t = 0 is the one related to the year 1940, which was the first year analysed in this work).

Figures 4 and 5 illustrate the estimated parameters of the model used, respectively R̂ and V̂ ,

which represent a different estimated parameter for each age and gender, as well as the asymptotic

confidence intervals, CI, and exact confidence intervals, CIe, associated with each parameter. If

we analyse the behaviour of the estimated parameters, we conclude that parameter R̂ has a small

increasing tendency, which is more noticeable in the first ages analysed, increasing at a very slow

pace after age 20. Furthermore, we also conclude that, although the values of R̂ have an almost

similar pattern (increasing tendency in relation with age of the individual), the same cannot be said

when considering the estimated parameter V̂ , since it displays more fluctuations between each age,

which is most noticeable when analysing the ages between 18 and 30 and after age 95 (particularly

in individuals of the male gender), thus displaying a totally different pattern when compared to

R̂. As for the asymptotic confidence intervals, CI, and exact confidence intervals, CIe, for each

parameter R and V , we used a confidence level of 95% in order to compute their values. For each

parameter, the results of CI95% and CIe95% are also depicted in the figures below.

For both parameters, the asymptotic and exact confidence intervals have identical values (on the

figures shown in the next page, the representation of both confidence intervals almost overlap each

other in most ages for both genders), therefore, there are no substantial advantages related with

the use of exact confidence intervals in this work. The confidence intervals range of R and V are

approximately proportional to
√
V and to V . This fact explains the bigger range in the confidence

intervals of R compared to the confidence intervals of V . Furthermore, considering parameter R,

it explains also the massive range in the confidence intervals when analysing individuals aged 95,

or more, of the male gender.
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Figure 4: Estimates of R (R̂) of the GBM, CI95% and CIe95% values, for each age and gender
(female gender on the left and male gender on the right).
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Figure 5: Estimates of V (V̂ ) of the GBM, CI95% and CIe95% values, for each age and gender
(female gender on the left and male gender on the right).

The results related with adjustments and forecasts of the death rates where reversed to it’s

original scale, X(t), instead of Y (t). In Figure 6 we illustrate the adjustment (fixing σ = 0 in

Equation (3.4) and replacing it’s parameters with the ML estimates) and forecast results, in this

case, for a 15 year old male. Figure 7 shows, respectively, the simulated death rates between the

periods of 1940 – 2020 and 2009 – 2020. These simulated death rates where used in order to

compute the asymptotic confidence intervals, CI, with a confidence level of 95% for the long term

adjustments, as seen in Figure 6.

We recall that we used for the adjustment the observed death rates obtained between the years

1940 – 2009, and set aside the remaining ones (2010 – 2020) for forecasting. Notice that we have

chosen to also represent these values in Figure 6 (top) related with adjusted and forecasted values,

since they reflect additional information to the error estimate, which stems from the comparison

between the tendency and forecasts of the GBM. Generally speaking, the results obtained from the

application of the GBM are quite satisfactory, since the model fits well the observed death rates

and provides plausible forecasts.

18



Daniel Baptista SDEs death rates models: the Portuguese case

1940 1960 1980 2000 20200.
00

00
0.

00
10

0.
00

20
0.

00
30

Year

D
ea

th
 R

at
es

Observed
Adjustment/Forecast

2010 2012 2014 2016 2018 2020

0e
+

00
2e

-0
4

4e
-0

4

Year

D
ea

th
 R

at
es

Observed
SS Forecasts

2010 2012 2014 2016 2018 2020

0e
+

00
2e

-0
4

4e
-0

4

Year

D
ea

th
 R

at
es

Observed
LT forecasts
CI 95% Simulation

Figure 6: GBM adjustments (for 1940 – 2020) and forecasts (for 2021 – 2030) for a 15 year old
male (shown on top); SS and LT forecasts (for 2010 – 2020) with asymptotic CI95% (on the

bottom).
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Figure 7: Simulated death rates between the years 1940 – 2020 (on the left side) and between the
years 2009 – 2020 (on the right side), using the GBM (with r = 2000) for a 15 year old male.

Furthermore, in order to measure the “goodness” of the adjusted values, we used as a quanti-

tative criterion the mean squared error (MSE). In an overall analysis of the results obtained, both

adjusted and forecasted values are better fitted (according to the criterion mentioned above), in

data series related with the female gender. In Figures 8, 9 and 10 we illustrate the respective MSE

for each age and gender and also for each method used (LT and SS).

19



Daniel Baptista SDEs death rates models: the Portuguese case

0 20 40 60 80 100

0.
00
0

0.
00
5

0.
01
0

0.
01
5

0.
02
0

0.
02
5

0.
03
0

Age

M
S
E

_
_
Female
Male

0 1 2 3 40e
+
00

3e
-0
4

6e
-0
4

Age

M
S
E

10 20 30 40 50 60 700.
0e
+
00

2.
0e
-0
5

Age

M
S
E

70 75 80 85 90 95 1000.
00
0

0.
01
5

0.
03
0

Age

M
S
E

Figure 8: MSE of the adjusted death rates obtained from the GBM, for each age and gender. On
the top: representation for all ages. On the bottom: amplification for the groups of ages (0 – 4),

(5 – 68) and (69 – 99).
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Figure 9: MSE of the LT forecasts obtained from the GBM, for the time period between 2010 –
2020, for each age and gender. On the top: representation for all ages. On the bottom,

amplification for the groups of ages (0 – 4), (5 – 68) and (69 – 99).
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Figure 10: MSE of the SS forecasts obtained from the GBM, for the time period between 2010 –
2020, for each age and gender. On the top: representation for all ages. On the bottom:

amplification for the groups of ages (0 – 4), (5 – 68) and (69 – 99).
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The difference in the performance of the model between genders is more noticeable after the

age of 40 (which corresponds to a set of ages where, throughout time, the mortality pattern of the

male gender undergoes an inflexion relative to the prevailing overall downward trend). Also after

the age of 90, in both genders, yet more significant in the male gender, the model is not capable of

replicating the variability of the death rates time series and of obtaining an adequate adjustment,

hence the sharp increase in the MSE values, as illustrated in Figure 8. However, and despite the

MSE of the forecasts being extremely high when considering older ages (90+ years) in comparison

to other ages (as seen in Figures 9 and 10), the model can still, when dealing with older ages,

provide some forecasts to be considered, since they tend strongly towards the observed death rates

series averages (see Figure 11).
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Figure 11: Adjustment of the GBM with LT (on top) and SS (on the bottom) forecasts (2010 –
2020) for the ages 49 (on the left) and 99 (on the right) of the male gender.

3.3 The Stochastic Gompertz model (SGM)

Considering the research topic related to this work, an example of a deterministic model, which

can translate the Gompertz law for mortality, can be denoted by

dX(t) = bX(t) ln

(
a

X(t)

)
dt, (3.9)

where X(t) represents the death rate (which changes throughout time) of a group of individuals

of a given age and gender (which, for now, are fixed), a denotes the asymptotic death rate and b

is an approach rate to the asymptotic regimen.

For calculation convenience, let’s use Y (t) = ln(X(t)) and A = ln(a). Thus, we can obtain an

equivalent equation from (3.9)

dY (t) = −b(A− Y (t))dt. (3.10)

To obtain the SGM, we add in (3.10) a noise source, ϵ(t), where dW (t) = ϵ(t)dt is a white

noise (WN). The standard Wiener process, W (t), reflects the accumulated effect of the “environ-
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mental” disruptions which are present in the mortality phenomenon up until a given time t, and

the coefficient σ measures the intensity of the environmental variability arising from the random

disruptions which affect the variable Y around it’s dynamic tendency. This way, we obtain the

autonomous SDE

dY (t) = −b(A− Y (t))dt+ σϵ(t)dt = −b(A− Y (t))dt+ σdW (t), (3.11)

with initial value Y (0) = ln(X(0)) = y0, which we assume to be known.

Considering the generic form of a SDE presented in (2.2), in this case, for a s.p Y (t), let

f(t, y) = −b(y−A), g(t, y) = σ, and write Z(t) = ebt(Y (t)−A). The solution of (3.11) is obtained

by applying the Itô’s formula (shown in (2.5)), with h(t, y) = ebt(y −A) and Z(t) = h(t, Y (t)), to

which we get

dZ(t) =
∂h(t, Y (t))

∂t
dt+

∂h(t, Y (t))

∂Y (t)
dY (t) +

1

2

∂2h(t, Y (t))

∂Y (t)2
(dY (t))2

=
∂ebt(Y (t)−A)

∂t
dt+

∂ebt(Y (t)−A)

∂Y (t)
dY (t) +

1

2

∂2ebt(Y (t)−A)

∂Y (t)2
(dY (t))2

= bebt(Y (t)−A)dt+ ebtdY (t) +
1

2
0(dY (t))2

= bebt(Y (t)−A)dt+ ebt(−b(Y (t)−A)dt+ σdW (t))

= bebt(Y (t)−A)dt− bebt(Y (t)−A)dt+ ebtσdW (t)

= ebtσdW (t).

Integrating, in the interval [0, t], we get∫ t

0

dZ(s) =

∫ t

0

ebsσdW (s),

to which the result of the integral will be

Z(t) = Z(0) + σ

∫ t

0

ebsdW (s).

Inverting the transformation Z(t) = ebt(Y (t)−A), we get

ebt(Y (t)−A) = y0 −A+ σ

∫ t

0

ebsdW (s),

to which the result of the following integral will be

Y (t) = A+ (y0 −A)e−bt + σe−bt

∫ t

0

ebsdW (s).

Considering that the integral function is deterministic,
∫ t

0
ebsdW (s) has a normal distribution with

mean 0 and variance
∫ t

0
(ebs)2, i.e,

N
(
0,

∫ t

0

(ebs)2ds

)
= N

(
0,

σ2

2b
(1− e−2bt)

)
,
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wherefore

Y (t) ∼ N
(
A+ (y0 −A)e−bt,

σ2

2b
(1− e−2bt)

)
.

From Y (t) = ln(X(t)), the solution for X(t) is

X(t) = exp

{
A+ (ln(x0)−A)e−bt + σe−bt

∫ t

0

ebsdW (s)

}
.

The deterministic monomolecular model (from the early 19th century), originally proposed in

order to describe a first order irreversible chemical reaction, also known as the Mitscherlich model

in the scientific fields of plant nutrition and soil fertilisation, can be represented as

dY (t) = b(A− Y (t))dt. (3.12)

It’s solution, assuming Y (t0) = y0 (known) is

Y (t) = A− (A− y0) exp {−b(t− t0)} .

When considering the scientific field of plant nutrition, the evolution of the growth rate through-

out time, dY (t)/dt, where we assume that Y (t) is a measurement of biomass, proportional to the

difference between a maximum, or asymptotic, biomass and the biomass formed in the meantime,

with b denoting the proportionality constant. If we want, the model in (3.12) can be rewritten in

a generalized way, setting dY c(t)
dt = b(ac − Y c(t)) (in the following examples, we always use c = 1).

This model is the source of other models (as seen in Brites (2010)), that can be obtained through

transformations, by using a variable Y (t) = h(X(t)), in which h is a monotonous function of class

C1. An example, is the deterministic Gompertz model, that can be represented as

d ln(X(t)) = b (ln(a)− ln(X(t))) dt,

considering Equation (3.12), and setting Y (t) = h(X(t)) = ln(X(t)) and A = h(a) = ln(a).

The SGM, which we will discuss in more detail in the next pages, is obtained by adding to the

deterministic Gompertz model, represented in (3.12), a WN process that approximates the random

fluctuation of the Portuguese population death rates (by age and gender).

Let’s consider, as in Subsection 3.2, the simplification of notation X(t) = Xk(t), for the death

rates of individuals of a given age i − 1 and gender j, with k = i + 100(j − 1), on time instant

t. Let Y (t) and A defined as in (3.12), that is, Y (t) = ln(X(t)) and A = ln(a), the SGM can be

represented as

dY (t) = b(A− Y (t))dt+ σdW (t), Y (t0) = y0, (3.13)

with y0 denoting the assumed known initial condition, W (t) is the standard Wiener process and

A = ln(a), where a denotes the mean rate of asymptotic mortality, b denotes the velocity of

approximation to asymptotic regimen and σ denotes the intensity of the random environmental

fluctuations. Note that several h transformations were experimented, according to the recommen-

dations in the reference literature (see, for example, Sokal & Rohlf (1998)), in order to reduce the

variance of the observed death rates series and to try to obtain series with a more linear or smooth

curved pattern, so as to facilitate modelling, but in fact the logarithmic transformation, used more
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frequently to model the growth rates of several variables related with the scientific field of biology,

proved to be the most advantageous for this dataset.

The solution of (3.13), for each age and gender, on time instant t, is

Y (t) = A+ (yt0 −A) exp {−b(t− t0)}+ σ exp {−bt}
∫ t

t0

exp {bs} dW (s). (3.14)

Considering t0 = 0, the equation above can be rewritten as

Y (t) = A+ (y0 −A) exp {−bt}+ σ exp {−bt}
∫ t

0

exp {bs} dW (s),

meaning Y (t) follows a normal distribution with expected value

A+ (y0 −A) exp {−bt}

and variance

σ2

(
1− exp {−2bt}

2b

)
,

that is,

Y (t) ∼ N
(
A+ (y0 −A) exp {−bt} , σ2

(
1− exp {−2bt}

2b

))
.

Equation (3.13) is an autonomous SDE. In turn, it’s solution, (3.14), is an Itô’s diffusion and

an homogeneous diffusion process with drift coefficient a(y) = b(A − y) and diffusion coefficient

b(y) = σ2.

3.3.1 Estimation

Assume that t0 = 0 and let tn = n, n = 0, 1, 2, . . . , N , denote the years in which the death

rates of Portuguese population, by age and gender, were observed. The transient p.d.f of Y (tn)

given Y (tn−1) is

fY (tn)|Y (tn−1)(yn) =
1√
2πs2

exp

{
−1

2

(yn − µ)2

s2

}
,

where

µ = E[Y (tn) | Y (tn−1)] = A+ (Y (tn−1)−A) exp {−b(tn − tn−1)}

and

s2 = V ar[Y (tn) | Y (tn−1)] = σ2

(
1− exp {−2b(tn − tn−1)}

2b

)
.

The parameter vector, p = (A, b, σ), can also be estimated using the ML methodology. Hence,

L(p|Y (t1), . . . , Y (tN )) =

N∑
n=1

ln
(
fY (tn)|Y (tn−1)(yn)

)
= −N

2
ln (2π)− N

2
ln (s2)− 1

2

N∑
n=1

(Y (tn)− µ)2

s2
.

(3.15)
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To obtain p̂ one needs to compute 
∂L(y;p)

∂A |Â,̂b,σ̂ = 0

∂L(y;p)
∂b |Â,̂b,σ̂ = 0

∂L(y;p)
∂σ |Â,̂b,σ̂ = 0.

Fixing b̂ (and following the same reasoning as in Brites (2010)), since it’s not possible to obtain

explicitly the expressions for the three parameters, we get

Â =

N∑
n=1

Y (tn)− Y (tn−1) exp
{
−b̂(tn − tn−1)

}
1 + exp

{
−b̂(tn − tn−1)

}
 N∑

n=1

1− exp
{
−b̂(tn − tn−1)

}
1 + exp

{
−b̂(tn − tn−1)

}
−1

and

σ̂ =

2b̂

N

N∑
n=1


(
Y (tn)− Â− (Y (tn−1)− Â) exp

{
−b̂(tn − tn−1)

})2
1− exp

{
−2b̂(tn − tn−1)

}



1
2

Assume, without loss of generality, that tn − tn−1 = 1, since the observed death rates of the

Portuguese population, obtained from the HMD, are analysed on an annual basis. It follows, from

the equations shown above, defining Â as a function of b̂, such that Â = ζ1(̂b), and defining σ̂ as

a function of both Â and b̂, such that σ̂ = ζ2(Â, b̂). Thus we obtain a new function, L∗, with the

same optimal values as the log likelihood function defined in (3.15), but which depends solely on

the parameter b and can be written in the following way

L∗(b|Y (t1), . . . , Y (tN )) = −N

2
ln

(
ζ2(ζ1(b), b)

2

2b

)
− 1

2

N∑
n=1

ln(1− exp{−2b(tn − tn−1)})

− b

ζ2(ζ1(b), b)2

N∑
n=1

(
(Y (tn)− ζ1(b)− (Y (tn−1)− ζ1(b)) exp{−b(tn − tn−1)})2

1− exp{−2b(tn − tn−1)}

)
.

(3.16)

The ML estimator of b, for each age and gender, is obtained by minimizing the symmetric of

(3.16), using, for that effect, the R built-in function optimize. This method, described in Franco

(2003), and applied in the same way on Brites (2010), uses L∗ instead of L to compute the ML

estimators of the parameter vector p, and is particularly useful when it’s difficult to find an explicit

expression for the estimators, with the main advantage of being computationally efficient (without

resorting to more complicated numerical methods of implementation). Once we obtain b̂, the ML

estimators Â and σ̂ are obtained, respectively, from Â = ζ1(̂b) and σ̂ = ζ2(Â, b̂).

To obtain an approximation of the confidence intervals for the parameters, we assume that

we are in an asymptotic regimen, considering the ML estimation properties, and we also do, an

approximation of the Fisher information matrix by computing the symmetric of the inverse of the

Hessian matrix, from whose diagonal we obtain an approximation of the variances related with

the estimated parameters. Considering a parameter p and it’s ML estimator, p̂, an approximation

of the confidence interval, CI(1−α)×100%, can be obtained the same way as described in the GBM
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case, by using (
p̂± z1−σ

2

√
V̂ ar[p̂]

)
,

where V̂ ar[p̂] represents an estimate of the parameter variance obtained from the inverse of the

Hessian matrix using the method described above. If we have observations up until a given time

tN and want to obtain forecasts until a certain time t, with t > tN , considering that Y (t) is a

Markov process, we have that

E[Y (t)|Y (t1), . . . , Y (tN )] = E[Y (t)|Y (tN )].

Since

Y (t)|Y (tN ) ∼ N
(
A+ (Y (tN )−A) exp{−b(t− tN )}, σ2

(
1− exp{−2b(t− tN )}

2b

))
,

we can use for the LT forecasts, considering each age and gender,

Ŷ (t) = Ê[Y (t)|Y (tN ) = ytN ] = Â+ (ytN − Â) exp
{
−b̂(t− tN )

}
, (3.17)

where Ê(·) represents the approximated value of the mathematical expectation, replacing the exact

values of A and b by it’s ML estimates, respectively, Â and b̂.

The SS forecasts are estimated the same way as in (3.17) however, we update t and the last

observed value, as well as the parameter estimates, each time we progress one step in time (in the

case of this work, one year).

With the forecasts obtained, if we wish to compute the confidence intervals of the forecasting

errors, given by Ŷ (t)− Y (t), we can use, as an alternative to the Monte Carlo simulation method

presented in the previous subsection, the Delta method to estimate the variance of the forecasting

errors (see Casella & Berger (2002) and Pestana & Velosa (2002)). This method is used in order

to estimate the expected value and variance of the parameter functions, using, for that effect,

the estimates of the expected value and variance of the parameters. In (3.13), we denoted A =

h(a) = ln(a), whence, in order to reverse to it’s initial parameter a, we, here too, can use the Delta

method, by using a function g, such that, g(A) = h−1(A) = exp{A}, to obtain, in particular, the

limits of CI(1−α)×100% from the expressions g(Â)± z1−α
2
ġ(Â)

√
V̂ ar[g(Â)], where ġ represents the

derivative of g.

Notice that, for the application of this method, function g has to be differentiable, since this

method is based on the Taylor series expansion of that same function (in this case, we use only

the linear term), through a generalization of the central limit theorem. Concerning the forecasting

errors of the GSM, applying to each age and gender, we make (as shown in Brites (2010))

Ŷ (t)− Y (t) = gt(Â, b̂, S) = Â+ (Y (tN )− Â) exp
{
−b̂(t− tN )

}
−A− (Y (tN )−A) exp{−b(t− tN )} − σ exp{−bt}S

(3.18)
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where S =
∫ t

tN
exp{bs}dW (s) has a normal distribution, with null mean and variance equal to(

exp{2bt}−exp{2btN}
2b

)
. From the application of the Delta method it follows that

E[Ŷ (t)− Y (t)] ≈ gt(A, b, 0) = 0,

and

V ar[Ŷ (t)− Y (t)] ≈ E

[(
(Â−A)

∂gt(A, b, 0)

∂A
+ (̂b− b)

∂gt(A, b, 0)

∂b
+ S

∂gt(A, b, 0)

∂S

)2
]
,

whereas the variance can be broken down in two terms: a term VP , which corresponds to the

variability of the parameter estimation errors, and a term VE , associated to the variability due to

the random environmental fluctuations (through the stochastic integral). We can then obtain an

approximation of the variance in the form of

V ar[Ŷ (t)− Y (t)] ≈ VP + VE ,

with

VP = (1− Eb
N )2 V ar[Â] + (Y (tN )−A)(t− tN )2E2b

N V ar[̂b]− 2(Y (tN )−A)(t− tN )Eb
N Cov[Â, b̂],

where

EN = exp{−b(t− tN )},

and

VE =
σ2

2b

(
1− E2b

N

)
.

The variances and covariance in VP can be obtained (approximated values) using the inverse

matrix of the symmetric of the empirical Fisher information matrix.

3.3.2 Results

Just like in the previous subsection, related to the GBM, it was possible to adjust the SGM

to the data regarding the observed death rates of the Portuguese population, for each age selected

from the arch of life (0 – 99 years) and for each gender. For this purpose, we used, in this specific

case, the variable Y (t) = ln(X(t)), with X(t) denoting the expected death rate at time t.

In Figure 12, it’s illustrated the values of the SGM parameters, a, b and σ, for each age and

gender. Recall that we estimated the value A = ln(a), but we choose to display the parameter

in it’s original scale, a, which represents the average asymptotic death rate (geometric average).

Furthermore, in the same figure, we illustrate the values of the SGM parameters with the last 10

ages excluded (the plots related with these are easily identified, since the age axis only takes values

between 0 and 90, while in the first case it takes values between 0 and 100), in order to show in

more detail the behaviour of each estimated parameter when analysing adult ages and make it

possible to better understand the shape described in each graph (mainly with regard to parameter

b).
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Figure 12: SGM parameter estimates (a, b and σ) for each age and gender (female in grey and
male in black), including plots in which the last 10 ages are excluded.

In fact, the results obtained regarding the model’s estimated parameters are not surprising, con-

sidering the knowledge, obtained from past research projects and articles, about the phenomenon

under study. Hence, a, which represents the asymptotic death rate, increases in relation with the

age of the individual, presenting much higher values when analysing the last ages from the arch of

life, in which the probability of death is higher.

Parameter b can informally be translated as a measure of the speed of approach to the asymp-

totic regimen. In this case, displays an upward trend, when analysing the first ages of the arch of

life (from 0 to 14), followed by a sharp decrease at age 15, and representing several increases and

decreases between the years of 16 – 80 but remaining at a level fluctuating, on an average basis,

around the value of 0.05 for both genders. After age 80, the estimated values of b increase up to,

respectively, twenty and six times it’s average values, for the male and female gender.
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As for σ, this parameter is associated with the stochastic integral term of the model and

measures the intensity of random fluctuations of the environment upon observed death rates. The

estimated values present an upward trend in the first ages analysed (which concern children and

young people). After age 18, there is a slow decrease in these values, stabilising only between

the ages of 60 and 80, after which the pattern described by the parameter shows a new increasing

tendency, which translates the susceptibility of the last ages analysed from the arch of life, in which

any random event may cause death.

Figure 12 also suggests a greater variability of parameter estimates between consecutive ages

for b and σ compared to a. When we observe the pattern of these estimates as a function of age,

although it’s similar in both genders, in a and b, the estimated values are higher in the male gender

than the female one, while the opposite occurs in parameter σ.

Similar to what we have shown for the GBM, we also can, for the SGM, obtain the confidence

intervals, CI, for the parameters, considering the asymptotic properties of ML estimation and the

approximation of the Fisher information matrix by the symmetrical of the Hessian matrix.

In Figure 13 we illustrate the estimated values, in the original scale of the data, of the ad-

justment (by fixing σ = 0 and replacing the model’s parameters by it’s ML estimates) and of the

forecasts for 21 years (from 2010 to 2030) on top. We also show in detail the SS and LT forecasts

(for 11 years, from 2009 to 2020) for the death rates, with associated CI, obtained from the Monte

Carlo simulation method (which we already used and applied in the GBM case in a similar way).

Globally, the results of the application of the SGM are quite satisfactory. Considering the

quality of the adjustment, both the adjustment itself and the forecasts are generally better in the

female gender (as it occurred in the GBM). This difference between genders is more significant

after the age of 80 (as seen in Figures 14, 15 and 16). Therefore, and similarly to the results

obtained in the previous subsection regarding the GBM, the SGM also seems adequate to model

this type of data, considering the promising results obtained so far.
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Figure 13: SGM adjustments (for 1940 – 2020) and forecasts (for 2021 – 2030) for a 29 year old
female (shown on top); SS and LT forecasts (from 2010 – 2020) with asymptotic CI95%

(respectively, on the left and right, on the bottom).
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Figure 14: MSE of the adjusted death rates obtained from the SGM, for each age and gender.
On the top: representation for all ages. On the bottom: amplification for the groups of ages (0 –

4), (5 – 68) and (69 – 99).
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Figure 15: MSE of the LT forecasts obtained from the SGM, for the time period between 2010 –
2020 for each age and gender. On the top: representation for all ages. On the bottom:

amplification for the groups of ages (0 – 4), (5 – 68) and (69 – 99).
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Figure 16: MSE of the SS forecasts obtained from the SGM, for the time period between 2010 –
2020 for each age and gender. On the top: representation for all ages. On the bottom:

amplification for the groups of ages (0 – 4), (5 – 68) and (69 – 99).
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3.4 Comparison of the results from both models

Recall that the main goal of this work is to capture evolutionary trends in the time series

related with the Portuguese death rates, for each age and gender. In this subsection, we compare

the results of the two SDEs models applied in the previous subsections (GBM and SGM).

In the course of this research, we have considered (and experimented) variations of GBM and

SGM (other transformations of variables, reduction of the time horizon to a stable period for each

series, or, instead, separating and estimating the parameters according to the possible phases of

the time horizon under analysis). Not recognizing significant advantages, in terms of results, of

these alternative models, we have opted to present the results obtained by applying these two SDEs

models as described in the previous subsections.

We recall that it was possible to adjust both models and to compute forecasts for all annual

age groups from 0 to 99 years old for both genders. We consider that both models present realistic

forecasts with values in the same order of magnitude and with close MSEs, which do not allow

us to state, in a preliminary analysis, that, one model is generally better than the other. Figure

17 illustrates the application of the two SDE models for age 23 and for both genders (results are

presented at the original data scale).
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Figure 17: Comparison between the GBM and SGM adjustments with LT forecasts for the age 23
of the female gender (on the left side) and for the male gender (on the right side).

We selected this age (23 years), because it’s the typical example of the behaviour of the esti-

mated values, both in terms of adjustment and of forecasting trend, which distinguishes the GBM

from the SGM. Thus, for most ages, and for both genders, the adjustment can be represented by

an image similar to the one on the left side of Figure 17, since the observed death rates present a

near constant downward trend (opposite to what happens in the male case). Note that the curve

estimated by the GBM only follows the variability of the series at the beginning and end of the

adjustment period, whereas the SGM, although it does not follow the observed death rates curve

in the first years, it captures the variability of the series earlier than the GBM. On the right side

of Figure 17, the exception to this behaviour is noticeable. Sensitively between the ages of 17 and

37 a “hump” effect occurs in the male gender (in this case, between 1970 and 1999, but this time

period can vary depending on the age under analysis) which reflects an increase in mortality in

this age group and which causes the main difference in the pattern of mortality between genders.
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In terms of forecasts, for most ages (except for ages after 85, where the forecasts have no signif-

icant trend, as they tend towards the series average), the GBM underestimates with a decreasing

trend (more or less strong, depending on age), while the SGM overestimates with an increasing

trend (as can be seen in Figure 17).

Although the performance of neither model stands out explicitly from one another, if we analyse

for both models the difference between their respective MSEs, for each age and by gender, the

GBM presents advantages over the SGM. In fact, both for the adjustment (exception for some

ages, mostly between 25 and 49 years old and also after 85 years old, in the male gender) and

SS or LT forecasts (in this case the exceptions are even more occasional and mainly in the last

two or three ages) there is a tendency that the error associated to the GBM is lower than the one

associated to the SGM.

Figures 18 to 23 depict the differences, for all ages and for each gender, between the MSE

associated with the GBM and the SGM, i.e, MSEGBM − MSESGM , for the adjustments, SS

forecasts and LT forecasts. Note that due to the order of magnitude of the error estimates, which

are often very close and small for several ages, the differences are multiplied by 10000.
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Figure 18: Difference (×10000) between the MSEs associated with the death rates adjustment of
the GBM and SGM, for each age of the female gender.
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Figure 19: Difference (×10000) between the MSEs associated with the death rates adjustment of
the GBM and SGM, for each age of the male gender.
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Figure 20: Difference (×10000) between the MSEs associated with the SS forecasts (from 2010 to
2020) of the GBM and SGM, for each age of the female gender.
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Figure 21: Difference (×10000) between the MSEs associated with the SS forecasts (from 2010 to
2020) of the GBM and SGM, for each age of the male gender.
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Figure 22: Difference (×10000) between the MSEs associated with the LT forecasts (from 2010 to
2020) of the GBM and SGM, for each age of the female gender.
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Figure 23: Difference (×10000) between the MSEs associated with the LT forecasts (from 2010 to
2020) of the GBM and SGM, for each age of the male gender.
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4 Conclusions

As Benjamin Franklin once said “The only two certainties in life are death and taxes”. However

it happens that the probability of someone dying, although certain, has been decreasing during the

last few decades for individuals belonging to any age group and any gender, at least in Portugal,

according to the data provided by the HMD. The decreasing death rates phenomenon is both a

blessing (assuming that one values his own life) and a curse, since these decreasing probabilities

of mortality combined with the low birth rates observed in the last few decades put a strain in

governments worldwide (including the Portuguese one) specially regarding the sustainability of

public services and welfare programs.

Thus, explaining by means of a statistical model, the evolutionary trend of the death rates of

the Portuguese population over time and computing forecasts, by age and gender, with associated

error margins, seems pertinent to us, specially in the current economic and social context and

considering the general phenomenon of population ageing.

It’s well known that there is no consensus as to which is the best model to explain mortality.

There are advantages in the use of different approaches, depending on the purpose for which they

are intended. Here, we proposed to perform a cross-sectional analysis of mortality over time and

model the death rates associated to each age and gender using SDEs. Furthermore, we intended to

explain, in a single model, the mortality over the entire life span (and for both sexes) and compute

forecasts.

Given the results obtained, we can conclude that the use of stochastic differential equations

death rates models (at least the GBM and SGM) replicate, almost exactly, the decreasing death

rates phenomenon observed thus far (meaning they adjust well to the data regarding the mortality

in the Portuguese population). Furthermore, both models present realist forecasts with values in

the same order of magnitude and with relatively small MSEs, which did not allow us to state, in

a preliminary analysis, which model was generally better.

However, in Section 3.4, when the models were compared to one another, it was concluded that

the GBM outperforms the SGM in almost all age groups for both genders considering the difference

of the MSEs between the models in both SS and LT forecasts. In fact, even when only considering

the adjustment, the GBM in most of age groups outperforms the SGM (only in individuals aged

80 or more years for both genders, the SGM outperforms the GBM).

Also, and without surprise, the SS forecasts present a smaller forecasting error when compared

to the LT forecasts. This, of course, is logical since in the case of SS forecasts, we update t and

the last observed value, as well as the parameter estimates, each time we progress one step in time

(in our case, 1 year), meaning, the forecasts will be more accurate, given the added information

available and used, than those of the LT forecasts.

In summary, our initial goal was to explain the evolutionary trend of mortality in the Portuguese

population and, considering the models applied, we verify that the results of the application of this

methodology are satisfactory. However, we accept the hypothesis that there may be one or more

variables (we do not know which ones, because they may or may not be observable) that are likely

to affect the probability of death in a group of individuals (of the same or different ages and of the

same or different genders) in a certain period of time. We believe that the improvement of this
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type of models involves extracting even more information from the data of the populations under

study, making parameter estimation more flexible and thus improving it’s overall performance.

Regarding considerations about future work, we assume that, naturally, the next step could

be to apply the proposed models to population data from other countries with different time

horizons and analyse their performance. Such exercise could also include variations in the models

now proposed and applied, such as the introduction of regime shifts or jumps (to better capture

extreme values of mortality).

Another aspect that we consider of interest would be to study the phenomenon from the

perspective of magnitudes derived from or complementary to mortality, such as life expectancy, for

instance, or to study the time it takes for given death rate to reach a predefined reference value.

Furthermore, and considering only the death rates of the Portuguese population, we could

select and apply, to the data provided by the HMD, other types of stochastic models and compare

them to the ones applied throughout this work. The stochastic models that could be applied,

given the mortality data available, are the Auto Regressive Integrated Moving Average model

(ARIMA) or even the Vector Auto Regressive Integrated Moving Average model (VARIMA), since,

from a preliminary analysis of the mortality data regarding the Portuguese population, there is

a decreasing trend throughout time (from the year 1940 until the year 2020) and these type of

models are easily able to detect this trend and compute accurate forecasts.

Another type of stochastic model we could apply is the Binomial Generalized Linear Model (or

GLM who belongs to the Binomial family). This type of model has the advantage of computing

forecasts for the death rates of the Portuguese Population, using explanatory variables such as

economic variables (GDP, unemployment rate, mean and median salary of the population), envi-

ronmental variables (how much has rained during the year, mean temperature recorded, number

of natural disasters and/or forest fires recorded) and even healthcare variables (number of med-

ical appointments, number os surgeries performed, general quality of healthcare services) among

several others that can be used, since the models we discussed previously cannot use this type of

information. Of course the major downside for this type of models is the quantity of information

it requires in order to compute the forecasts (therefore it may not be a wise choice to study the

use of this type of models, without first having a solid database with all the values related with

these explanatory variables).
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