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Abstract18

Precise and accurate estimates of abundance and demographic rates are19

primary quantities of interest within wildlife conservation and manage-20

ment. Such quantities provide insight into population trends over time21

and the associated underlying ecological drivers of the systems. This22

information is fundamental in managing ecosystems, assessing species23

conservation status and developing and implementing effective conser-24

vation policy. Observational monitoring data are typically collected on25

wildlife populations using an array of different survey protocols, depen-26

dent on the primary questions of interest. For each of these survey27

designs, a range of advanced statistical techniques have been developed28

which are typically well understood. However, often multiple types of29

data may exist for the same population under study. Analysing each30
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data set separately implicitly discards the common information contained31

in the other data sets. An alternative approach that aims to optimise32

the shared information contained within multiple data sets is to use a33

“model-based data integration” approach, or more commonly referred to34

as an “integrated model”. This integrated modeling approach simultane-35

ously analyses all the available data within a single, and robust, statistical36

framework. This paper provides a statistical overview of ecological inte-37

grated models, with a focus on integrated population models (IPMs)38

which include abundance and demographic rates as quantities of interest.39

Four main challenges within this area are discussed, namely model spec-40

ification, computational aspects, model assessment and forecasting. This41

should encourage researchers to explore further and develop new practical42

tools to ensure that full utility can be made of IPMs for future studies.43

Keywords: abundance, ecological insight, integrating data, multiple surveys44

1 Introduction45

A key goal in the study of wildlife populations is often to estimate abundance46

and important demographic rates (e.g. recruitment and survival) of species47

and how these variables change over space and time. Accurate and precise esti-48

mates of such quantities lay the foundation of determining abundance trends49

and the ecological dynamics of species and thus are necessary for effective con-50

servation planning and management in the face of ongoing global change [1].51

For example, inferences demonstrating changes in a population’s abundance,52

and the mechanisms behind such change, can aid in decisions on how to halt53

declines or manage the invasion of deleterious species [2–4]. As inferences on54

wildlife population parameters need to take into account a variety of processes,55

including imperfect detection of species, extreme heterogeneity in and among56

environments, and the movement and clustering of individuals, a variety of57

data collection and analysis frameworks have been developed over the last58

century to provide the relevant and necessary metrics on wildlife populations59

[5–7].60
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A range of data are collected on wild populations with the specific bio-61

logical questions, as well as logistical constraints, shaping the distinct types62

of data that are collected. Often, several types of data are collected on a sin-63

gle population or species within close proximity, as different researchers may64

be interested in multiple aspects of a particular study system. Historically,65

each data set would be analysed separately, with perhaps estimates from one66

analysis being used in another or biological interpretations compared, again67

depending on the questions of interest and data types available. However, sepa-68

rate analyses of available data sources discard valuable information that could69

improve the estimation of the biological quantities of interest, for example, by70

increasing the precision of parameter estimates [8], permitting the estimation71

of confounded parameters [9], and/or correcting for sampling biases in one or72

more data sources [10].73

An alternative approach, which optimises the shared information contained74

within multiple data sets, is to use “model-based data integration”. Model-75

based data integration (or data integration, for short) is an umbrella term76

that refers to any modelling technique that simultaneously analyse all available77

data within a single, robust, statistical framework (e.g., data fusion, inte-78

grated data models). The development of data integration methods over the79

last three decades has grown almost exponentially [11–13], as these approaches80

can greatly reduce uncertainty of parameter estimates [14], make possible the81

estimation of parameters that are inestimable from a single data source (e.g.,82

emigration and mortality [15]), and expand the spatiotemporal scope of infer-83

ence [16]. Of note is that an individual data set may provide no additional84

information on the particular quantity of primary interest; however, by pro-85

viding direct information on other model parameters, this can, in turn, lead to86
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the ability to estimate a previously confounded parameter and/or an improved87

estimate of the quantity of interest [17].88

In this paper, the ideas associated with integrated modelling are described89

and several associated outstanding statistical challenges discussed, with a spe-90

cific focus on integrated population models (IPMs). While data integration91

approaches aim to estimate a variety of population processes (e.g., species92

distributions, abundances), IPMs specifically focus on the simultaneous esti-93

mation of both population abundance and demographic rates within a single94

analytical framework. IPMs may integrate across many types of data, typ-95

ically including (but not limited to): 1) abundance, counts, and/or census96

data to inform temporally varying population sizes and/or trends, 2) produc-97

tivity data to inform (annual) reproduction rates (e.g., nest records), and 3)98

capture-recapture-recovery-type data used to inform (seasonal, annual, and/or99

stage/age) survival.100

[1, 18] provide an overview of common types of available data included in101

IPMs and associated component models that may be applied. Such models may102

be improved via the inclusion of environmental covariate data [19, 20]. IPMs103

have also recently been developed combining data sets (possibly the same type104

of data) across different species [21–23], although this work is fairly new and105

still under development.106

The first use of integrated approaches within ecology were applied to stock107

assessments within the fisheries industry [12]. However, IPMs gained promi-108

nence in the wider ecological community over two decades ago [7, 19, 24]109

when the approaches were applied to terrestrial species, usually birds. This110

early work combines state-space modelling of census data with the analysis111

of capture-recapture-recovery-type data, exploiting the shared demographic112

parameters between the two modelling techniques. There has been substantial113
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advancement over the last decade in particular expanding analyses to popula-114

tions of birds, mammals, and amphibians [25]. However, widespread adoption115

of IPMs by the ecological community is hindered by technical statistical and116

implementation challenges. The aim of this paper is to provide a statistical117

overview of IPMs, including the identification of many outstanding statistical118

challenges within this area, which in turn will encourage researchers to inves-119

tigate these issues and develop innovative and practical approaches to ensure120

that IPMs are able to reach their full potential within ecological studies.121

2 Integrated Data122

The fundamental concept of an integrated data approach is to estimate the123

ecological parameters of interest using all available information within a single124

and robust analysis. In particular, it is envisaged that there are multiple data125

sources that each provide information on the given ecological system/popula-126

tion of interest. For example, this may relate to multiple data sets collected on127

the same species but using different data collection survey techniques, or data128

sets relating to (potentially interacting) multiple species within the same geo-129

graphical location, or even data sets that are separated geographically and/or130

temporally. In all cases, it is assumed that the different data sets provide131

information, either directly or indirectly, on some mechanism within the given132

ecosystem of interest.133

Mathematically, suppose there are n distinct data collection surveys, lead-134

ing to associated data sets xi, for i = 1, . . . , n. Combining these data sets135

leads to the integrated data x = {x1, . . . ,xn}. Given an associated model for136

these data, the associated global likelihood of the observed data is written as137

fG(x; θ), here θ denotes the set of all model parameters across the different138
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data collection processes. The form of this likelihood is now considered in more139

detail, assuming different dependent structures for the observed data.140

2.1 Conditionally independent data141

Assuming that the different data sets are independent of each other, condi-142

tional on the associated model parameters, the global likelihood, fG(x; θ) can143

simply be expressed as,144

fG(x; θ) =

n∏
i=1

fi(xi; θ),145

146

where fi(xi; θ) denotes the likelihood of the observed data xi, i = 1, . . . , n. In147

general, this substantially simplifies the model specification, since each likeli-148

hood is constructed independently for each data set. In practice, it is assumed149

that there are some model parameters that are common across the different150

data sets, motivating an integrated data analysis approach. Conversely, if the151

model parameters are non-overlapping across the different data collection pro-152

cesses, so that θ = {θ1, . . . ,θn}, where θi ∩ θj = ∅ for i 6= j, the likelihood153

reduces to,154

f(x; θ) =

n∏
i=1

f(xi; θi).155

156

In this special case, analysing the joint likelihood is equivalent to simply157

analysing each data set independently of each other, and there is no benefit158

gained in considering an integrated approach. Thus, for the remainder of the159

paper it is assumed that the likelihood does not decompose into independent160

individual components, but the individual likelihoods for the different data161

sets share (at least) some parameters.162
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The conditional independence structure of the global likelihood also has an163

interesting interpretation within a Bayesian analysis. Without loss of generality164

suppose there are two independent data sets, so that n = 2. The posterior165

distribution can be expressed as,166

π(θ x) ∝ fG(x; θ)p(θ) (1)

= f1(x1; θ)f2(x2; θ)p(θ)

(since x1 and x2 are independent given model parameters, θ)

∝ f1(x1; θ)π(θ x2).

In other words the posterior distribution of the parameters given all the167

available data can be re-expressed as the posterior distribution of the param-168

eters given data set x1, with an associated prior distribution equal to the169

posterior distribution of the parameters, given data set x2. This observation170

has practical model-fitting implications (see Section 3.2), and immediately171

extends to a more general number of data sets, n > 2.172

2.2 Dependent data173

In most cases, individual data sources are not independent of each other. Con-174

sequently, the joint likelihood of the dependent data sets, fG(x; θ), cannot be175

simplified. In the presence of both dependent data sets (x1, . . . ,xk) and inde-176

pendent data sets (xk+1, . . . ,xn), the joint likelihood of all available data can177

be expressed in the form,178

fG(x; θ) = fg(x1, . . . ,xk; θ)

n∏
i=k+1

fi(xi; θ),179

180
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where fg(x1, . . . ,xk; θ) denotes the joint likelihood over the dependent data181

sets. Dependent data may arise due to the same individuals being studied in182

the given data collection surveys and hence resulting data sets. For example,183

this occurs in the case of capture-recapture and tag-recovery data. The same184

individuals appear in both the capture-recapture and tag-recovery data (e.g.185

following individuals being marked they may be observed at future periods186

both alive and dead), and the joint capture-recapture-recovery likelihood needs187

to be considered [26–30]. Alternatively, and particularly for populations that188

are geographically closed, census data combined with marked individuals (such189

as capture-recapture data) will often involve the same individuals in both sets190

of survey data [31]. As a final dependent data example, data may be collected191

on multiple interacting species within an area (and possibly data from different192

monitoring schemes) [21–23].193

In practice data sets may be assumed to be approximately (conditionally)194

independent within an analysis, even when it’s not strictly the case, as this195

dramatically simplifies the likelihood expression i.e. the global likelihood can196

be decomposed into the product of the individual likelihoods for each data set.197

The impact of assuming independence between dependent data sets has been198

examined using simulation, see for example [32–34]. From their studies, which199

combined count data with demographic data, they concluded that the amount200

of information contained in the demographic data relative to the survey data201

influenced the magnitude of the effect of violating the independence assump-202

tion. In particular, the simplest and most immediate effect was an inflated203

level of precision on the model parameters; with biases also observed in some204

cases, albeit generally small. As described in [32] such explorations have typ-205

ically focused on specific types of data being combined and the outcomes are206
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often used as justification that dependence has little effect on parameter esti-207

mates. However, a more general exploration of this area is required, especially208

as the types of data being included in IPMs is rapidly expanding.209

To avoid the issues of potential bias and/or over-confidence in the preci-210

sion of the parameter estimates that may arise due to the same individuals211

appearing in multiple data sets (so that the data are non-independent) one212

approach has been to partition the individuals into the different data sets,213

so that they only belong to a single data set. This removes the dependence214

as individuals are no longer common to multiple data sets, but reduces the215

amount of information in each individual data set due to the reduced sample216

size. For example, [35] consider this approach for combining constant effort217

(mist-netting) count data and capture-recapture data, where the same indi-218

viduals are recorded in both survey methods. The data were partitioned at219

the geographical site level, with approximately half the sites allocated to the220

constant effort data; and the other half for the capture-recapture data. Within221

their application, they concluded that the split data integrated analysis led to222

substantially improved precision of the parameter estimates compared to the223

analysis of only the constant effort data; and only marginally wider credible224

intervals compared to considering an integrated analysis assuming the data225

were independent. However, we note that in many situations, data may be226

limited, and the approach requires some knowledge relating to their overlap or227

dependence (e.g. individuals may be uniquely identifiable). In practice, there228

is a trade-off between the removal of potential dependence and the associated229

reduction of information with the data. A sensitivity analysis, using different230

data components may help gain some insight into this trade-off. Further, and231

in general, the robustness of the results to splitting the data can be assessed232
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by considering different data splits, which for [35] appeared to be minimal for233

their application.234

3 Integrated Population Models235

Ecological time-series data of species abundance are a very common input236

within IPMs, as they provide direct information on abundance as well as the237

(indirect) demographic processes. State-space models provide a structured way238

of describing such time series data and can be viewed as a special case of a wider239

class of models known as hidden process models [18, 36–39]. These models can240

be described via two separate processes: (i) the state process that describes241

the evolution of the true underlying (unobserved) state-vector corresponding242

to true abundance over time; and (ii) the observation equation that links the243

elements of the state vector to the observed data at each time point. Given244

the prominence of these data within IPMs, their general structure of them is245

briefly described.246

Suppose observed data correspond to a multivariate time series over dis-247

crete time events, t = 1, . . . , T , which are denoted by y = {yt : t = 1, . . . , T},248

with each observation yt a vector containing K elements. The observed data249

are related to an m×1 vector, αt, known as the state vector via the observation250

equation,251

yt = Ztαt + εt,252
253

for t = 1, · · · , T , where Zt denotes an K ×m matrix and εt an K × 1 vector254

corresponding to the observation error. In general, the elements of αt are not255

observable, but are assumed to be first-order Markovian, such that the state256

equation can be expressed in the form,257
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αt = T tαt−1 + ηt,258
259

where ηt denotes an m× 1 vector corresponding to the system process error.260

For ecological applications the state vector, αt, often relates to the number261

of individuals in particular age (and/or state) classes. The matrix, T t, governs262

the evolution of the state-vector from occasion t to occasion t+ 1, and is typi-263

cally expressed as a function of demographic parameters, such as the survival264

probabilities, fecundity rates and/or migration rates. The formation of T t can265

be fairly straightforward for state vectors of small dimension, however it is266

often useful to decompose the formation of T into intermediate sub-processes,267

such as survival, ageing, recruitment etc [37, 40].268
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269

Example:

Following [19], consider a two-age class population. Let α1,t denote the number

of individuals in their first-year of life and αa,t denote the number of individuals

older than 1 year (i.e. “adults”) at time t. A possible state-equation for this

population is given by

 α1

αa


t+1

=

 0 ρφ1

φa φa


t

 α1

αa


t

+ ηt+1,

for t = 1, . . . , T − 1, where φ1,t denotes the probability of first-year survival,

φa,t denotes the probability of adult survival and ρt denotes the productivity

parameter at time t. The system process error (often referred to as demographic

stochasticity [41]), ηt+1 will typically assumed to have mean zero, with some error

structure, such as Poisson for age 1 and Binomial for those older than 1 year.

If only adult individuals are observed during a census count, the corresponding

observation equation may be expressed as,

yt = ( 0 1 )

 α1

αa


t

+ εt,

for t = 1, . . . , T , with εt ∼ N(0, σ2), and observation error parameter σ2.

270

A closed form likelihood for state-space models is only available when271

specifying either (i) a linear and Gaussian model, or (ii) where the state272

vector is discrete-valued, leading to a hidden Markov model (HMM). See273

[39] for further discussion. The information contained within the temporal274

abundance data alone may be relatively weak, in terms of the demographic275

parameters, which may be strongly correlated and/or even confounded. Thus,276
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such abundance data are often integrated with additional forms of data that277

provide information on more of the demographic parameters. For example,278

capture-recapture-type data may be used to provide information on survival279

probabilities; or nest-record data for productivity rates. For such data, the280

associated likelihood functions may often be expressed in closed form. How-281

ever, combining these different forms of data within an integrated modelling282

approach lead to a number of additional challenges and modelling consider-283

ations. Four practical challenges associated with the application of IPMs to284

ecological data are summarised in Table 1. Existing work that begins to address285

some of these challenges are discussed in Sections 3.1-3.4 before discussing286

potential avenues for further research in Section 4.287

[Table 1 about here.]288

3.1 Challenge 1: Model specification289

For any given data set, and specified ecological question or hypothesis, the290

first step in the data analysis pipeline involves specifying a statistical model to291

describe the observed data. This requires knowledge of both the data collec-292

tion process and associated ecological system being studied. This information293

permits the construction of the statistical model, given appropriate assump-294

tions, and the associated likelihood function to be derived [1, 42–44]. However,295

for IPMs, there are multiple observation processes, each associated with the296

different datasets, and typically either multiple system processes (which may297

interact with each other) and/or more complex system processes. Conse-298

quently, IPMs lead to additional considerations within the model specification.299

One such consideration has already been discussed in Section 2 in relation to300

the specification of the joint likelihood function of the data and whether the301

data sets can be regarded as independent, conditional on the associated model302
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parameters. However, due to the combining of the different data sets, further303

care is needed in terms of the interpretation (or equivalence) of the parameters304

associated with the system process(es).305

For multiple data sets the relationship between the parameters associated306

with each data set needs to be considered with some care. In practice, there307

will be some parameters for which there is direct information from only one308

data set; and other parameters for which there is direct information from two309

(or more) data sets. For example, suppose that there are n = 2 data sets. The310

set of parameters can be decomposed as follows: θ = {θ1,θ2,θ1,2}, where θj311

corresponds to the parameters uniquely associated with the model for data312

component j = 1, 2; and θ1,2 denotes the parameters for which there is direct313

information contained in both data sets. For simplicity the parameters for314

which there is direct information from multiple data sets (i.e. θ1,2 in this315

example) are referred to as the common parameters across the given data sets.316

For example, consider integrated count data with ring-recovery data (x1 =317

count data; x2 = ring-recovery data) with model parameters θ corresponding318

to demographic survival probabilities, φ, and fecundity rates, ρ; and associated319

observation process parameters corresponding to recovery rates, λ (for the320

ring-recovery data), and observation error variance, σ2 (for the count data).321

Then, θ1 = {ρ, σ2}; θ2 = λ and θ1,2 = φ (see, for example, [19] for further322

discussion in relation to this particular example). Note that for the special case323

of conditionally independent data sets the joint likelihood (for n = 2) can be324

written as,325

f(x; θ) = f1(x1; θ1,θ1,2)f2(x2; θ2,θ1,2),326
327

with the immediate extension for n ≥ 3 data sets.328
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In considering the general model construction and parameter specification329

there are two particular points to emphasise:330

1. The parameters that are common to different data sets must have the same331

interpretation across these different data sets; and332

2. Considering the joint likelihood of the integrated model may permit the333

estimation of previously confounded parameters.334

The first point requires knowledge of the different data sets and associated335

modelling assumptions. In particular, parameters that appear to be common336

to multiple data sets may have slightly different (possibly nuanced) defini-337

tions. For example, consider two data sets which each provide information on338

the survival probabilities of the species of interest. However, there may still be339

assumed differences in relation to the interpretation of these survival param-340

eters. For example, true survival (i.e. non-mortality) as opposed to apparent341

survival allowing for other departures from the study site, such as permanent342

migration [30]; or where the survival probabilities are specified over different343

geographical locations and/or temporal periods [45]. In practice, it may be of344

ecological interest whether given parameter(s) are equal across the different345

data sets, providing ecological insight into the systems, leading to poten-346

tial model selection (or hypothesis testing) within the statistical analysis (see347

Section 3.3). Given the parameter is common across data sets, applying an348

integrated modelling approach typically leads to improved precision of the349

parameter, due to the increased information available on the parameter [45].350

Note that, perhaps somewhat ironically, having “similar” but distinct351

parameters for the different data sets (as for true and apparent survival above),352

can be very useful in IPMs as this can lead to the estimation of parameters that353

are confounded when only considering the individual data sets. To illustrate354

this mathematically, return to the simple two data set example. Suppose the355
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model processes for data set, x1, are a function of a true survival probability S,356

and for data set, x2, this is a function of apparent survival probability, φ, which357

is confounded with permanent migration from the study site. Let γ denote the358

probability of permanently migrating from the study site, so that φ = (1−γ)S.359

Then S ∈ θ1,2 and γ ∈ θ2, with φ now a derived parameter, calculated as a360

function of these terms [15, 30, 46]. More generally, however, parameters that361

are confounded when considering a single data set, may be estimable when362

combined with additional, relevant information. For example, fledgling sur-363

vival and first year survival are confounded for ring-recovery data if rings are364

applied to chicks in the nest and rings are recorded at the (coarse) annual level.365

However, additional nest record data may provide direct information on the366

fledgling survival, which when combined with the ring-recovery data permits367

direct estimation of the first year (post-fledgling) survival [47]. Alternatively,368

count data is often focused on the number of (adult) breeding birds, often369

leading to the associated model with first year survival and productivity con-370

founded. An IPM, incorporating additional capture-recapture/ring-recovery371

data, permits the estimation of first-year survival, and hence the estimation of372

productivity rates [7, 19, 48]; or additional nest-record data provides data on373

productivity rate, and in turn the first-year survival rates [49].374

3.2 Challenge 2: Computational aspects375

To combine data sources together, as previously discussed, IPMs typically376

require a more indepth and/or complex model structure than the analy-377

sis of data sources individually. While each model component of an IPM378

taken independently may be easily fitted to data in a standard framework,379

their integration with abundance data expressed within a state-space model-380

ing framework often leads to additional computational challenges [39]. This381
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increased complexity leads to greater computational requirements in terms of382

algorithm complexity, run times, and memory load. For example, standard383

MCMC (data augmentation) techniques that are widely used in practice, can384

require days or even weeks to run IPMs on desktop computers using dedi-385

cated black-box software, such as JAGS [50]. The computational burden is386

such that it becomes difficult – if not impossible – to go through the usual387

modelling strategy of starting simple and adding complexity, or to fit several388

models and compare corresponding ecological hypotheses (see Section 3.3).389

Note that the most recent software like Nimble [51] allows choosing and cus-390

tomising MCMC algorithms which may help optimising time computation for391

specific components of IPMs. Here we describe two alternative strategies that392

are often applied to address the computational model-fitting challenges.393

Consideration of separate IPM components394

When building IPMs, for the case of conditionally independent data sets, it395

is common practice to go through building each data component separately396

before combining them [52]. This approach focuses on each individual com-397

ponent in turn and provides a natural approach to identifying the associated398

computational burden by identifying a possible bottleneck, and optimising the399

fitting of the corresponding component. A bottleneck most naturally occurs400

when the model is specified via unobserved (latent) variables, such as state-401

space models for abundance/count data (with unobserved population sizes,402

possibly over several (st)ages); multi-state capture-recapture models (such403

that states are unknown when an individual is unobserved); or individual404

heterogeneity model (with unobserved random effect terms).405

More generally, several approaches have been developed to improve com-406

putational times for individual model components. This often involves imple-407

menting strategies that lead to faster evaluations of the likelihood function.408
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For example, [53] marginalise the likelihood, removing the latent states from409

the model, and hence decreases the number of parameters to be estimated.410

Similarly, for multi-state capture-recapture models [29, 54] marginalise the411

likelihood to provide closed form expressions via efficient sufficient statistics,412

further facilitating its efficient calculation. These marginalisation approaches413

lead to more complex (observed-data) likelihood functions, compared to the414

augmented (complete-data) likelihood with additional latent variables. The415

marginal likelihood can be maximised directly within a frequentist framework;416

or needs to be evaluated substantially fewer times when using a Bayesian417

Markov chain Monte Carlo (MCMC) implementation leading to faster compu-418

tational time and typically better mixing, compared to a latent variable data419

augmentation implementation.420

Alternatively, approximate likelihood approaches may be applied to dif-421

ferent modelling components. For example, state-space models, using linear422

and/or Gaussian approximations for the system and observation processes,423

permits the use of the fast and efficient Kalman filter algorithm [55] to evalu-424

ate the likelihood function. Alternatively, (at least for system processes of low425

dimension), a coarse discretisation (or “binning” approach) may be applied426

to the system states, leading to an HMM approximation [56–58]. In partic-427

ular, [59, 60] used binning to deal with the large number of possible states428

for the state vector of population abundance, and showed that this numerical429

approximation performs well compared to the Kalman filter approximations430

and MCMC simulations. Further [60] proposed a semi-complete data likeli-431

hood approach [61] to improve computational efficiency of fitting more complex432

state-space models using a combined data augmentation and numerical inte-433

gration scheme. They also demonstrated improved computational efficiency434
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using a binning approach, with minimal impact on the estimation of the param-435

eters. Overall, dealing with an intractable likelihood for general state-space436

models limits computational model-fitting tools, and more research is needed437

in that direction [39, 62].438

Full IPM likelihood evaluation439

An alternative to considering the separate IPM components, is to optimise the440

evaluation of the full IPM likelihood. Note that this is, in general, necessary441

when the data are dependent, as the likelihood cannot be factored into the442

separate components, but can also be applied to the conditionally independent443

case. In general this process may also involve optimising the evaluation of444

each separate data component as well. One general approach for the likelihood445

specification is to formulate the IPM (possibly via a suitable approximation) as446

an HMM, with multiple observation processes, and potentially multiple system447

processes [63]. Formulating the IPM in this framework opens access to the448

available toolbox of efficient algorithms to fit HMMs that have been specifically449

developed to improve computational efficiency. See [64] for further discussion450

of pitfalls and opportunities of HMM approximation to general state-space451

population dynamics models.452

Exploring another possibility, [65] proposed an efficient methodology for453

fitting IPMs in a Bayesian framework. In particular they exploited the inte-454

grated model structure to reduce the computational cost of the algorithm by455

reducing the number of times the likelihood needed to be evaluated. More456

specifically, a delayed acceptance approach was implemented, where the com-457

putationally intensive part of the likelihood, corresponding to the state-space458

model for the count data, was only evaluated if the proposed parameter value459

in the MCMC algorithm was evaluated to be “good” in terms of the fast data460

likelihood component relating to the capture-recapture-recovery-type data.461
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For data sets that are conditionally independent, a further step-wise pro-462

cess can be applied when considering the full IPM likelihood. Recall that the463

joint posterior distribution of the parameters can be expressed as the product464

of the likelihood of a single data set, say x1, with prior equal to the posterior465

distribution of the parameters given the other data sets (Equation 1). For this466

case, where the associated prior is of standard form, the model-fitting is sim-467

plified to consideration of data set x1, given the posterior distribution of the468

parameters given the other data sets. This approach has been adopted by, for469

example, [66] and [67] where x1 corresponded to multi-state capture-recapture-470

recovery data and x2 to multi-state radio-tagging data, with the common471

parameters between the data sets the survival and state-transition probabili-472

ties. However, in many cases, the posterior distribution π(θ x2) may not be473

of standard distributional form. In this case the posterior distribution may474

be approximated, for example, by specifying (independent) distributions with475

parameters determined using a moment-matching approach with the posterior476

summary statistics.477

3.3 Challenge 3: Model assessment478

Assessment for ecological models, encompassing both relative goodness-of-fit479

using model selection/comparison strategies, and absolute goodness-of-fit are480

both well grounded with standard procedures available in a practitioner’s481

toolkit. However, model assessment for IPMs, combining multiple data sets482

within the same model-fitting process, is relatively underdeveloped.483

Model selection484

The potential model space for integrated models can be very large. For exam-485

ple, demographic parameters may be time or state dependent and/or depend486

upon individual or time-varying covariates. In addition, error structures within487
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a state-space model for longitudinal time series can vary over time and/or488

space. The combination of different parameter dependencies and/or error489

structures often leads to a large number of possible models that may be fit-490

ted to the data. Individually fitting all such possible models to data can be491

time consuming or even simply infeasible, in practice. This typically leads to492

the use of a step-wise search algorithm over the model space [45]. Due to the493

lack of robust model selection appoaches for IPMs, ad-hoc step-wise model494

selection approaches are often applied separately to the different modelling495

components, either at the parameter level or data set level. For example, the496

structure of an IPM may be investigated step-wise using the data set(s) which497

contains the most information about a parameter (in terms of precision). This498

approach is applied by [19] when combining ring-recovery and count data, with499

the model selected using the ring-recovery component for the survival compo-500

nent (common to both data sets); with subsequent parameter dependence for501

the productivity for the count model determined, conditional on the survival502

dependence already selected. Implementing such search algorithm strategies,503

however, can lead to different results when compared to model selection con-504

ducted on the global, integrated, model and a suboptimal model being selected505

[68].506

For some forms of data, such as capture-recapture-recovery-type data,507

model selection using standard information criteria (or adaptations of infor-508

mation criteria to account for small sample sizes or overdispersion) generally509

appears to work well [69]. However information criteria do not appear to510

perform as well for HMMs and/or state-space models, particularly where com-511

peting models differ in terms of the dimension of the (unobserved) state vector.512

For example, information criteria have been shown to overestimate the number513
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of states within HMMs [70]. Information criteria within the Bayesian frame-514

work have also been applied to IPMs, such as the DIC [14, 71] and WAIC [72].515

Although easy to compute, there has been no formal evaluation of the perfor-516

mance of these criteria for IPMs. Specific information criteria for state-space517

models have been proposed (see for example [73]), however these are compu-518

tationally intensive and their extension to state-space models when integrated519

with other models, as in an IPM, has not been investigated. As an alternative,520

[74] propose a step-wise approach to determine the dimension of the state vec-521

tor (representing the age-structure of the population), and hence number of522

states required in the state vector, within an IPM framework and provides a523

starting-point for further research in this area.524

Within the Bayesian framework there are a number of standard model selec-525

tion tools (see [75] and [76] for general guidance) which can be implemented in526

an IPM setting. Models can be quantitatively compared via posterior model527

probabilities, or Bayes Factors [77]. There are typically two particular chal-528

lenges in their use relating to (i) their estimation; and (ii) their sensitivity to529

prior distributions specified on the model parameters. To estimate posterior530

model probabilities, reversible jump (RJ)MCMC has been applied in rela-531

tion to the dependence structure of parameters, such as time and/or covariate532

dependence [48, 76]. One particular attraction of RJMCMC is that only a sin-533

gle MCMC chain needs to be run, as the MCMC chain is able to move over534

the model space. However, the RJMCMC algorithm can be difficult to imple-535

ment in the general case and requires bespoke code, limiting its application in536

practice; although for the special case of variable selection, such as covariate537

selection for given demographic parameters, an indicator variable approach538
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can be applied [51, 76, 78]. Alternatively, for state-space models, [65] consid-539

ered an approach using sequential Monte Carlo samplers that permitted the540

calculation of posterior model probabilities across a set of different IPMs.541

Approaching model selection separately for each component of an IPM is542

attractive for its simplicity since bespoke model selection approaches which543

have been optimised for a particular data type can be used. However, iden-544

tifying a model as being the best from a candidate model set does not mean545

that the model actually fits the data well, and for IPMs in particular, even if546

individual components of the IPM fit well this does not necessarily mean that547

the overall IPM fits well. Therefore, assessment of fit of the overall IPM (as548

well as assessment of the appropriateness of any modelling assumptions made)549

is an essential step in an IPM analysis.550

Absolute goodness-of-fit551

Absolute goodness-of-fit tests for ecological models can be particularly use-552

ful for understanding disparities between the simplifying statistical model553

for a given system and the associated dynamics of the population under554

study. Gaining insight into potential lack of fit, can provide ecological under-555

standing and lead to improved ecological models. However, techniques for556

assessing absolute goodness-of-fit typically differ across the types of data557

(and models) available. For example, absolute goodness-of-fit techniques for558

capture-recapture-recovery-type models are fairly advanced, including diag-559

nostic goodness-of-fit tests which link the detection of lack of fit with a560

determination of the likely biological underlying cause of the inadequacy of the561

model [79–81]. However, goodness-of-fit assessment for ecological state space562

models is substantially more limited. The appropriateness of the Gaussian563

assumptions made underlying the use of Kalman filter recursions can be inves-564

tigated through diagnostic checks of normality of the prediction errors arising565
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from the recursions, but are unlikely to help guide adaptation of the model to566

improve fit [19]. To date, where such goodness-of-fit tests do exist, they are567

considered separately for each type of data and not at the integrated level.568

One approach, often referred to as posterior predictive checks, is to con-569

sider the evaluation of a discrepancy measure between the observed data and570

data simulated from the fitted model. For example, in a Bayesian framework,571

this leads to the idea of a Bayesian p-value, where multiple data sets are572

simulated from the posterior distribution of the model and compared to the573

observed data to see if these are “similar”. See [82] for further discussion, and574

additional Bayesian approaches. Similarly, in a frequentist setting, the idea575

of calibrated simulation has been proposed, which implements a parametric576

bootstrap to obtain simulated data sets which are subsequently compared to577

the observed data via a given discrepancy measure [83]. In general, Bayesian578

p-values and calibrated simulation rely on the specified discrepancy measure,579

and conclusions may vary dependent on the specific measure used. Further,580

for different types of data sets, one may wish to consider different discrepancy581

measures, which leads to further challenge when combined within an integrated582

framework.583

3.4 Challenge 4: Forecasting584

Forecasting ecological population sizes or trends is of particular interest within585

conservation management and, driven by the ecological incentive, there exist586

tools for forecasting across wide-ranging time scales. For instance, short-term587

forecasting tools are typically used in the regular management and conser-588

vation of a species, for example, in the fisheries industry to regulate annual589

harvest capacity of waters [84, 85]. In contrast, long-term forecasting tools590
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are especially useful for prioritising vulnerable species for conservation inter-591

vention [86], evaluating the viability of a population of a reintroduced species592

[87, 88], and in projecting the minimum effort needed to locally eradicate an593

invasive species [2]. Despite the rapid growth in technological tools for mea-594

suring, monitoring and analysing species data, robust methods of ecological595

forecasting are still an underdeveloped area [84]. One of the biggest hindrances596

to forecasting the future trajectories of animal populations (regardless of time597

scale) is the limited amount of data available for precise inference on how598

environmental variables influence demographic parameters. High precision on599

estimates of covariate effects is critical for prediction, since forecast errors will600

magnify over time. Thus, when parameter precision is poor, forecasts will be601

rendered effectively useless ([89] demonstrate this point with climate predic-602

tions). However, by increasing the amount of data available for inference via603

integrated modelling techniques, it is possible to improve the precision of demo-604

graphic parameters and their relationships to covariates and thus alleviate605

some uncertainty in species’ projections [3, 90].606

Various time-series methods have been applied to ecological data to inform607

decision-making on short-term time scales (days to years), such as random-608

walk, autoregressive (AR-1) and moving average (MA-1) models [91–93].609

However, such standard time-series techniques often require large datasets,610

which may be available for example for finance and climate, but rare in ecolog-611

ical settings and particularly so in newly established research or conservation612

initiatives.613

Long-term forecasting is often used to assess the possible fates of pop-614

ulations. Such forecasts underpin Population Viability Analysis (PVA), a615

procedure of estimating the probability that a species will persist for a cer-616

tain amount of time [94–96]. By coupling IPMs with PVA, predictions of617
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demographic parameters can be improved by specifically incorporating mul-618

tiple sources of uncertainty in a unified framework. This may be particularly619

useful when forecasting populations of multiple interacting species with dis-620

parate data types. For example, this has been used to identify components of621

multi-species population cycles and evaluate the efficacy of different manage-622

ment strategies such as assessing how removals of one species may affect the623

population viability of the other [3]. Other work that has used IPMs within624

a PVA include, but are not limited to, forecasting future salmon populations625

in response to fishery exploitation [85], and predicting the population effects626

after environmental trauma such as large oil-spills [97].627

An emerging area in ecological forecasting couples population models with628

climate projections to forecast populations over a number of decades [98, 99].629

The main assumption behind such approaches is that species will respond to630

future climate conditions similarly to their responses in the past. This is par-631

ticularly useful for providing evidence for practitioners of how populations632

may respond to certain climate scenarios and enables long-term risk assess-633

ment of species status. For example, [100] provided projections of the monarch634

butterfly population based on a range of climate change scenarios. However,635

whilst these environmental-based techniques provide useful insights into the636

future, they are not without their issues [101]. As the projection duration637

increases so does uncertainty in the parameter estimates and forecasts, espe-638

cially if the future climate scenario is significantly different from the past and639

current [102]. Further, these forecasting methods simply involve iterating the640

process model for as long a time as needed past the observation period. How-641

ever, when a population is rapidly changing and/or available retrospective data642

sets contain relatively short time frames of data, methods of iterating forward643

may not be very meaningful since the parameter estimates may be estimated644
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from unstable or rapidly changing populations (for example, when reintroduc-645

ing a species). Thus there is a need for dynamic models that can incorporate646

statistical non-stationarity [103].647

In general one of the main reasons for inaccurate forecasting is a lack of648

available data and of methods accounting for multiple sources of uncertainty.649

IPMs may alleviate these issues, thus improving forecasts, by pooling informa-650

tion across data sources. In other words, the precision of parameter estimates651

in relatively data-poor sources can be improved by borrowing information from652

richer data sources [85].653

4 Discussion654

IPMs provide a statistically robust approach for integrating multiple sources of655

data, making use of all available information. Understanding the dependence656

between the multiple different forms of data sets and associated relationships657

will continue to lie at the interface of ecological data science. Close collab-658

oration between ecologists and statisticians is essential in order to construct659

biologically meaningful and statistically robust models. Further, there are660

additional challenges in relation to interpreting meaningful results, including661

rigorous goodness-of-fit assessment, and use of the associated model outputs662

to inform conservation management, for example, via future predictions that663

include propagating the associated parameter uncertainties. Further, efficient664

computational algorithms and user-friendly software are critical for the mod-665

els to be widely applied in practice. The outstanding challenges of the different666

aspects of applying and interpreting IPMs relating to: model specification;667

computational aspects; model assessment; and forecasting are discussed before668

final concluding remarks are provided.669
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Model specification670

A range of challenges arise in the different components of the model spec-671

ification. In particular, the form of available data is continually evolving,672

particularly with advances in technology [104]. For example, citizen science673

data collection continues to grow in popularity [105, 106] and eDNA data col-674

lection is increasingly being used due to its capability to detect multiple species675

from water or air samples [107]. Remote sensing technology such as drones are676

providing finer-scale aerial survey data of animals [108], satellite earth obser-677

vation data over fine scales of 30-50cm are becoming available across larger678

geographical areas and acoustic recording technology is enabling monitoring of679

elusive marine species [109], from which machine learning techniques can pro-680

vide population count estimates [110]. The associated statistical models and681

tools are being developed for these new forms of data, but additional issues682

arise with incorporating such data into IPMs due to differences, for exam-683

ple, in relation to quality, quantity and scale [111, 112]. New challenges arise684

relating to how data of potentially very different geographical scales may be685

integrated. For example, where a large data set of “poor” quality (i.e., low686

information content) may be combined with small data set(s) of “high” qual-687

ity within a robust and rigorous framework; and how the relative information688

can be computed across varying scales and levels of missing/incomplete data.689

Simple evaluation of the relative information in component data sets within690

an IPM has been proposed through evaluation of generalised variances [113].691

However there is a need for exploration of whether likelihood components could692

be weighted to reflect the varying quality of the available data.693

Considering multi-species predator-prey models provides new insight into694

the dynamics of the wider ecosystem, as opposed to an individual single-species695

study [22, 23]. However, it is necessary for equilibrium conditions to be assessed696
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for valid interpretation of output from such models [114]. Understanding how697

more complex models such as these can be incorporated within the general698

IPM framework will provide greater flexibility and potential for such data699

integration, with direct implications for wildlife management and conservation.700

Further, as different forms of data are collected, and combined within701

IPMs, additional statistical models will be constructed. Even for relatively702

well-studied types of data and associated “standard” biologically sensible mod-703

els, due to the specific observed data, this may lead to identifiability issues704

and confounded parameters that cannot be reliably estimated. Such issues705

are increasingly likely to arise with increasingly complex data. Analytic tools706

exist to determine if the model is parameter redundant and if so the estimable707

parameters of a model [115]. However these typically only consider each indi-708

vidual (independent) model component associated with a particular type of709

data. Identifying parameter redundancy increases in complexity as the mul-710

tiple types of data are combined within an IPM, so that analytic techniques711

may quickly become computationally infeasible and unable to scale to complex712

models. Formal determination of estimable parameters have been identified713

for the combination of count and ring-recovery data [9], but more practical714

exploration of identifiability, potentially with the use of numerical techniques715

[78, 116] may be required in practice.716

Computational aspects717

Modern model-fitting to data typically reduces to a computational problem:718

either a numerical optimisation problem to obtain the MLE of the parameters;719

or an MCMC sampling problem, in order to be able to obtain an estimate of the720

posterior distribution of interest. Additional issues arise, for example, when an721

associated likelihood component is not available in closed form (as for general722
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state-space models or in the presence of missing data), or where the likeli-723

hood is computationally expensive to evaluate. Such computational challenges724

often lead to specialised algorithms being developed. However, in general, this725

requires additional coding experience and is bespoke to the particular prob-726

lem being addressed. More general and easy-to-use computational solutions727

that can be applied to a wide suite of integrated models and applications are728

required for wider dissemination and impact.729

Approximate likelihood approaches are an interesting alternative that730

can alleviate the computational expense of IPM components. For exam-731

ple, constructing capture-recapture-recovery type likelihoods in terms of732

maximum-likelihood estimates and corresponding variance-covariance matrix733

using a multivariate normal approximation has been shown to work well734

in an IPM framework [117]. This provides a potential mechanism for spe-735

cialised (optimised) computer packages to be applied to specific data types,736

which can then be combined with other data sets within an IPM frame-737

work. This has been extended further for an IPM combining census data738

with capture-recapture-type data. In this case a further approximation was739

made, assuming independence between the estimated MLEs of the parameters740

from the capture-recapture data (i.e. assuming a diagonal variance-covariace741

matrix) within the multivariate model approximation [45]. This suggests that742

published model estimates may be more widely used within an integrated743

framework, to reduce the computational burden and widen the potential appli-744

cation of IPMs, and the Bayesian framework through informative priors seems745

like a natural solution to do so. However, the application of such approxima-746

tions to date has been relatively limited, with further investigation required747

to more fully explore their potential and also associated limitations (see also748

additional model assessment challenges).749
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As data sets increase in size and/or models become more complex addi-750

tional efficient computational optimisation or sampling algorithms may be751

required. For example, by making use of structural properties of the likeli-752

hood function that may lead to improved optimisation algorithms; or reducing753

the size of the data set by considering subsamples of the data and correct-754

ing the associated posterior estimates [118]. Further, it may be possible to755

take advantage of the flexibility of Bayesian black-box software such as Stan756

[119] and Nimble [120] which permit customisation of the algorithms. This757

approach requires more intricate knowledge of the software, but the effort758

can substantially improve the model-fitting process [121, 122] and is usually759

more accessible than alternatives such as C(++) [123]. Understanding the rela-760

tionship between the different components of an IPM may suggest potential761

techniques for efficient model-fitting [65]. Alternatively, general likelihood-free762

approaches have been developed for fitting complex models, such as approx-763

imate Bayesian computation (ABC; [124]) and synthetic likelihood [125].764

Exploring how such techniques may be applied to IPMs, is a potentially765

interesting avenue of future research.766

Model assessment767

Various model selection approaches have been implemented for IPM analyses,768

including the use of standard information criteria [45], and model struc-769

ture being determined by the most informative data set [19]. However, these770

approaches are limited since they have only compared models with the same771

length of state vector. [74] proposed an approach for selecting the appropriate772

age-structure for given model parameters in an IPM, which requires compari-773

son of models with state vectors of different dimensions. However, this study774
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was limited to selecting only age-structure and so extending the ideas to addi-775

tional dependence structures such as time, state and/or covariate dependence776

is as yet largely untested.777

Further, simultaneously considering the multiple types of dependencies778

(for example, age, time, covariate etc.) on the different model parameters is779

an additional challenge, both increasing the number of combinations of pos-780

sible models that may be considered and also potentially the complexity of781

the models under consideration. Additionally, the performance of standard782

statistical approaches have not been fully explored for IPMs. This suggests783

potential avenues, including, for example, investigating regularisation methods784

for model selection (such as Lasso), and the use of weakly informative priors785

[126]. Similarly, for absolute goodness-of-fit assessments, the calibrated simu-786

lation approach discussed in Section 3.3 may be applied for detecting a lack787

of fit within IPMs. [127] investigated the calibrated simulation approach and788

existing diagnostics goodness-of-fit tests for capture-recapture data to detect789

specific departures from the fitted model and the diagnostic tests performed790

well when under scenarios of substantial departure from model assumptions791

and large sample size (e.g. density-dependence, immigration, capture hetero-792

geneity). However, where data are more sparse there was less power to detect793

mis-specified IPMs.794

More generally, many ecological models, including longitudinal counts over795

time and demographic data such as capture-recapture-recovery-type data, can796

be expressed within an HMM framework [18]. Such models naturally extend to797

IPMs as demonstrated by [59]. Thus, model assessment techniques developed798

for HMMs may be considered more generally for such IPMs. In particular,799

[70] investigated different techniques for determining the number of latent800



Springer Nature 2021 LATEX template

Integrated Population Models: Achieving their Potential 33

states within HMMs which could assist model selection for IPMs, in rela-801

tion to determining the age-dependence structures, for example. Alternatively,802

[128] developed a diagnostic goodness-of-fit test to determine whether the pro-803

posed latent structure in an HMM for partially-observed capture-recapture804

data was appropriate based on the observed data. The specification of com-805

ponents of IPMs all within the related state-space modelling framework also806

potentially suggests the use of forecast variance for goodness-of-fit assessment807

[129]. Developing these approaches, and in particular extending them to mul-808

tiple observation and/or system processes, provide future directions for the809

associated model assessment challenges of IPMs.810

Approximate likelihoods for different model components of IPMs may be811

used to deal with the computational challenges, or where the raw data may812

not be available. However, when using estimates and their associated variance-813

covariance matrix to approximate the likelihood function as a component814

within an IPM it is not possible to change the structure of the parameters815

within that approximate likelihood function. Therefore, the potential model816

space is restricted due to the use of the approximate likelihood and hence it817

would seem sensible that such a restriction should potentially be penalised for818

within the model selection of an IPM. However, no formal evaluation has yet819

been conducted to address what penalties should be imposed.820

New statistical developments for model assessment of IPMs need to be prac-821

tical, in terms of feasibility when the computational time for fitting an IPM is822

taken into account, and accessible to the wide user-community of IPMs. Thus,823

any new approaches developed need to be compatible with software that indi-824

viduals are using to fit IPMs and users need to be aware of potential limitations825

of what the methods can be used to diagnose. Additionally, considerable effort826

needs to be made toward disseminating research and encouraging uptake from827

wider audiences.828
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Forecasting829

One major avenue of future research within forecasting is the quantification830

and reduction of prediction uncertainty. Failure to account for uncertainty831

when making decisions in ecology can lead to poor management and policy832

decisions. In short-term forecasts, reduction in uncertainty may be possible by833

iteratively updating forecasts in light of new data by gaining feedback, assess-834

ing effectiveness, and adapting models [84, 130, 131]. Long-term forecasting835

tools which use climatic data to predict abundance [100, 132] can experience a836

non-linear increase in uncertainty as the projection duration increases and their837

predictive skill can often vary because of the complex interactions between838

climate and population dynamics [133]. By decomposing the sources of uncer-839

tainty, [98] determined that the largest contributor was sampling variance.840

However, this can be easily reduced through larger sample sizes, or combining841

data sources i.e. through the use of an IPM. In addition, [101] suggests that842

parameter uncertainty can be reduced, over the near and long term, by collect-843

ing targeted data to better understand mechanistic links. Another possibility,844

which is useful when resources are limited, is to optimise sampling design by845

investigating the cost-benefit of certain data collection methods i.e. assessing846

whether the benefit of using more expensive monitoring methods are worth847

their possible reduction in uncertainty. Currently, there exists literature on848

optimising sampling design of specific data types such capture-recapture [134]849

and occupancy studies [135]. However, optimising sampling design in studies850

where multiple data types are integrated is a relatively unexplored area.851

For multi-species systems, ensemble ecosystem modelling (EEM) [136, 137]852

provides a quantitative method for forecasting abundances in the future. EEM853

integrates species interaction networks and simulations of population models854

using the Lotka-Volterra equations as a standard predator-prey model. This855
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technique is specifically designed for predicting the abundance of interact-856

ing species after a predator reintroduction and is useful for assessing whether857

there will likely be any significant change in species abundance between858

pre- and post-reintroduction estimates. Whilst this allows for assessing large859

scale species networks, it can be computationally challenging when a network860

exceeds 10 species. Long-term forecasting EEM can typically only provide sug-861

gestions of possible scenarios and future states of system with associated risk862

and it does so with uncertainty, however EEM presents these uncertainties in863

a systematic way making it easier for end-users to make decisions [138]. One864

interesting possibility of future research could be to use the techniques of EEM865

within an IPM framework. For example, by using the species interaction net-866

works of EEM within an IPM to forecast populations in multi-species systems.867

Conversely, it would also be worthwhile investigating whether the use of IPMs868

within an EEM framework helps to improve estimates.869

Finally, emerging work combining integrated population models with inte-870

gral projection models (referred to as IPM2) allows individual heterogeneity in871

demographic rates to be included within an IPM [139]. This improves forecast-872

ing accuracy by allowing subtle individual-level mechanics to drive population873

dynamics. Further development and investigation of such approaches provide874

interesting avenues of research in this area.875

Conclusion876

With the recent advances in data collection technology it is now possible877

to collect data at a range of spatial and/or temporal scales as well as from878

individual-based data collection towards community-level data collection. The879

IPM framework provides an adaptable and flexible approach that can accom-880

modate the different scales and upscale to provide a community-level statistical881

modelling approach. Overcoming the different statistical challenges for IPMs882
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presented within this paper will ensure that appropriate statistical methods are883

available for extracting intricate level information from the available data sets.884

As data collection technology and ecological theory continues to evolve, it is885

essential that the associated statistical developments keep pace and, crucially,886

are made accessible to a wide range of users. Raising awareness and utility of887

such tools will permit rigorous data-driven conservation decision-making.888
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TABLES 57

Challenge Existing Work Future Avenues
Model specification Ecological knowledge (system pro-

cess); Sampling methods (observa-
tion process); Dependence struc-
ture; Parameter interpretation; Con-
founded parameters.

New forms of data; Accounting for
variability in quality/quantity of dif-
ferent datasets; Dealing with data
across different geographical/tem-
poral scales; Model identifiability
and parameter redundancy; Multi-
species and associated issues.

Computational Optimisation of computational
times for each component separately
through likelihood marginalisation
and approximation; Formulation of
IPMs as HMMs and use of associated
machinery.

Approximate likelihood approaches;
Scalability of algorithms; General
and easy-to-use computational solu-
tions; Alternative software solutions
for IPM implementation (besides
Jags).

Model assessment Step-wise model selection; most
informative data set; posterior model
probabilities; RJMCMC; diagnostic
goodness-of-fit tests; Bayesian p-
values; calibrated simulation.

Regularisation methods; HMM
methodology; forecast variance;
approximate likelihood approaches;
software development.

Forecasting Time-series methods; Popula-
tion viability analysis; Climate
projections; Ensemble models.

Quantifying and reducing uncer-
tainty; Optimising sampling design;
Combining IPM with ensemble mod-
els; Coupling IPMs with integral pro-
jection models (IPM2).

Table 1 Table summarising four practical challenges associated with the application of
IPMs to ecological data, the existing work which addresses them and the future avenues of
research.
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