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Abstract 

 

Understanding why species have restricted ranges is important to developing a conservation 

evidence base. The Blue-crowned Laughingthrush Pterorhinus courtoisi (BCLT) is a Critically 

Endangered passerine with an officially recorded population of c.320 birds found in northeast 

Jiangxi Province, China. It occurs in colonial, cooperative breeding groups close to villages and 

agricultural habitat, making it difficult to understand why it is not more widespread across 

other human-modified landscapes in China, and scant evidence exists explaining why the 

species is restricted to a small area or why the population remains small. 

I combined, contrasted and analysed existing data, including two independently collected 

monitoring datasets, and citizen science data. Results showed the BCLT population may be 

42.8% higher and occupy more breeding sites than previously believed. A species distribution 

model (SDM) showed BCLT occurrence is linked to annual temperature range, precipitation 

during the breeding season and land cover. I also conducted systematic interviews across the 

BCLT range at 39 villages. Results revealed two villages where BCLT may breed (but not 

officially recorded), the first evidence of recent trapping of the BCLT in southeast China, and 

regions which should be prioritised for conservation efforts. I also found an association 

between BCLT breeding sites and local landscape changes. 

Previous research into BCLT habitat associations have compared relatively few breeding sites 

and not accounted for the wider mixed agricultural mosaic. I quantified habitat preferences 

with resource selection functions across 39 villages, comparing the home range and nest site 

scales. Nesting sites were significantly more likely to contain large broadleaved trees or stands 

of bamboo, fir or mixed forest, and be on flatter slopes. This supports past work linking BCLT 

to mature broadleaved trees, but also nuances past assumptions about BCLT nesting habitat. 

To understand influences on range at the landscape scale, I compared seven SDM model 

algorithms and two pseudo-absence methods, using a land cover map with eight types, and 

k-fold cross validation. I showed that BCLT occurrence is linked to precipitation during the 

breeding season and in landscapes with higher tea plantation. This may be related to the 
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presence of mature trees and non-crop vegetation in tea plantations across the study region, 

with implications for landscape policy. 
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red, Maxent = green, MARS = turquoise. Land cover values correspond as follows: broadleaf 

forest = 0.00, vegetable garden = 0.14, other forest = 0.28, tea plantation = 0.42, rice paddy 

= 0.57, bush/scrub = 0.71, settlement/road = 0.85, water = 1.00. Values are decimals due to 

the raster conversion process. 

Figure 4. Projections for all model algorithms using a). the hull-based method and b). 

presence point based method. Projections are unavailable for the FDA models. 

Supplementary Information 

Figure S1. Example field survey sheet used to collect ground-truthed data for remote sensing 

image classification. 

Table S1. Land cover categories, their definitions, and quantities of data points per category 

from a field survey in May 2019. Data collected are intended to classify remote sensing 

imagery. 
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Figure S2. Methods of generating pseudo-absence points (two types of buffer): (a) convex-

hull based and (b) presence-point based. 

Figure S3. Correlation plot of the final numerical environmental variables chosen for inclusion 

in the species distribution model. Land cover is excluded as it is categorical. 

Figure S4. Correlation plot all environmental variables considered for inclusion in the species 

distribution models. 

Table S2. Environmental predictor variables included in the species distribution model. 

Table S3. Mean user’s, producer’s and balanced accuracy (%) of random forest supervised 

classification of eight land cover types. 

Figure S5. AUC estimates with 95% CIs, from models using all data. (a) hull-based method and 

(b) presence-based method. 

Figure S6. Tea plantations surrounded by mature trees and other non-crop vegetation at Blue-

crowned Laughingthrush breeding sites and other sites in Wuyuan and Xiuning counties. 
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perspectives and ideas from early career researchers’ People and Nature, In Press 
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Royal Holloway University of London Undergraduate Teaching Assistant (2018-2019) 

Royal Veterinary College MSc Facilitator (2018-2021) 
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Wider outreach: 

Highgate Primary School (2018) 

ZSL Zoo Nights (2018) 

Caomen Primary School, China (2019) 

Article in XinHua News (2019) 

Article in The Zoologist (2020) 

ZSL Biology Week (2020) 

 

Conference presentations and posters: 

Blue-crowned Laughingthrush Global Species Management Plan Meetings (2018, 2019, 

2020, 2021) (presentation) 

Royal Holloway Biological Sciences Symposium (2018, poster) and (2020, presentation) 

ZSL Annual Science Symposium (2019, 2020; presentation) 
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Definitions 

 

AOO – Area of Occupancy, defined as ‘the area within its ‘extent of occurrence’ which is 

occupied by a taxon, excluding cases of vagrancy. The measure reflects the fact that a taxon 

will not usually occur throughout the area of its extent of occurrence, which may contain 

unsuitable or unoccupied habitats’ (IUCN 2012). 

ANN – Artificial Neural Network 

AUC – Area Under the Curve 

BRT – Boosted Regression Tree 

CART – Classification and Regression Tree 

Chinese Cultural Revolution – A socio-political revolution in China that took place between 

1966 and 1976. It was marked by the violent removal of societal aspects deemed as 

bourgeois or superstitious (Coggins 2012). 

CI – Credible Interval 

DBH – Diameter at Breast Height 

EAZA – European Association of Zoos and Aquaria 

eBird – eBird.org is the world’s largest biodiversity-related citizen science project, 

documenting georeferenced bird sightings across the globe, with more than 100 million bird 

sightings contributed each year. 

ELPD – Expected Log Pointwise Predictive Density 

EOO – Extent of Occurrence, defined as ‘the area contained within the shortest continuous 

imaginary boundary which can be drawn to encompass all the known, inferred or projected 

sites of present occurrence of a taxon, excluding cases of vagrancy’ (IUCN 2012). 

EVI – Enhanced Vegetation Index 

FDA – Flexible Discriminant Analysis 

Fengshui forests – Patches of mature forest grown deliberately close to villages in China, 

particularly across southern China. They form part of ancient, cultural beliefs around 

maintaining energy flow in the land and harmony between earth and the cosmos (Coggins 

2003). 

GAM – Generalised Additive Model 

GBM – Generalised Boosting Model 

GLMM – Generalised Linear Mixed Model 
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Great Leap Forward – Period in Chinese history between 1958 and 1961 characterized by 

rapid industrialisation and deforestation of large swathes of the country, including the loss 

of fengshui forests (Coggins 2012). 

INLA – Integrated Nested Laplace Approximation 

IUCN – International Union for the Conservation of Nature 

Landsat – Landsat is a moderate spatial-resolution satellite program run by the National 

Aeronautics and Space Administration (NASA), representing the longest continuous global 

record of the Earth’s surface, running since the early 1970s. 

LEK – Local Ecological Knowledge 

LOOCV – Leave-One-Out Cross Validation 

MARS – Multiple Adaptive Regression Splines 

Maxent – Machine-learning software used for modelling species niches and distributions; it 

is a portmanteau of ‘maximum entropy’. 

MCA – Multiple Correspondence Analysis 

NASA-MODIS/Terra – MODIS stands for ‘Moderate Resolution Imaging Spectroradiometer’; 

it is a remote sensor aboard the Terra satellite, collecting satellite imagery which are 

available for free. The Terra satellite has been in operation since 1999. 

NDVI – Normalized Difference Vegetation Index 

NGO - Non-Governmental Organisation 

NUTS – No-U-Turn Sampler, an algorithm for Bayesian model updating used by Bayesian 

platform Stan. 

PCA - Principal Component Analysis     

QGIS – Free and open source geographic information system programme. 

RF – Random Forest 

ROC – Receiver Operating Curve 

RSF – Resource Selection Function 

SAFE Project – Stability of Altered Forest Ecosystems Project 

SDM – Species Distribution Model 

SRTM – Shuttle Radar Topography Mission 

USGS – The United States Geological Survey 

WikiAves – Citizen science website for birdwatchers in Brazil 

WorldClim – Database of high spatial resolution global bioclimate data. 
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Xeno Canto – Online archive of bird audio recordings from around the world, available for 

free. 

ZIP GAMM – Zero-Inflated Poisson Generalised Additive Mixed Model 

ZGAP – Zoological Society for the Conservation of Species and Populations 
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1. Introduction 

 

1.1 Restricted geographic ranges as a correlate of extinction risk 

With biodiversity loss occurring at an alarming rate (IPBES, 2019), extinction risk and drivers 

have been increasingly studied to understand where these declines may be mitigated (Brook, 

Sodhi and Bradshaw, 2008). Four distinct processes were initially identified as responsible for 

the decline and ultimate extinction of species, known as the ‘Evil Quartet’ (Diamond, 1989): 

habitat loss, overexploitation, introduced species and secondary extinctions (subsequent 

extinctions following the extinction of a species, where dependencies exist between species). 

More recently, understanding of extinction drivers has grown more nuanced with 

acknowledgement of the roles also played by disease, climate change and stochastic factors 

(Carroll, 2007; Brook, Sodhi and Bradshaw, 2008). In addition, research has expanded to 

consider extrinsic factors both separately to, and in synergy with, intrinsic biological traits 

associated with increased risk, such as slow life history, low population density and high 

trophic level, with extinctions occurring non-randomly across taxa, determined 

phylogenetically (Purvis et al., 2000; Higgins, Bond and Pickett, 2001; Fagan and Holmes, 

2006). Frequently, species declines are a result of multiple extrinsic and intrinsic drivers acting 

synergistically to amplify the rate at which such declines occur (Brook, Sodhi and Bradshaw, 

2008), with extinction drivers disproportionately affecting geographically restricted, locally 

uncommon species (Dickman, Pimm and Cardillo, 2006). For example, it is believed that 

habitat loss, secondary extinctions and introduced species together have been the cause of 

significant decline in many pollinator species worldwide (Potts et al., 2010). Climate change 

also exacerbates other extrinsic drivers such as habitat loss (Jetz, Wilcove and Dobson, 2007) 

or disease (Pounds et al., 2006). However, while extinction processes, both intrinsic and 

extrinsic, are important to understand, it is of more pressing concern in practical conservation 

management to understand current extinction risk to individual species. 

When assessing the overall threat of extinction to a species, a restricted geographic range is 

considered a key factor (Mace et al., 2008). Restricted geographic range size constitutes 

Criterion B of the IUCN Red List Categories and Criteria (IUCN, 2012), one of five criteria (A-E) 

on which species’ threat status are judged. In addition to range size, the Red List factors into 
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its assessments the decline rate of a population and population size as part of a quantitative, 

criterion-based process (Mace et al., 2008). The thresholds as defined by the IUCN (2012) for 

restricted geographic ranges under the Red List threatened categories are given in Table 1. 

Table 1. Area thresholds for ‘Extent of Occurrence’ (EOO) and ‘Area of Occupancy’ (AOO) for the three Red List 

Threatened categories as defined by the IUCN (2012). 

Threat Category Geographic range 

Critically Endangered EOO less than 100 km2, AOO less than 10 km2 
Endangered EOO less than 5,000 km2, AOO less than 500 km2 
Vulnerable EOO less than 20,000 km2, AOO less than 2,000 km2 

 

Along with the interaction between small geographic range size and extinction risk, species 

with small ranges also tend to have slow life history, low population density and high trophic 

level (Purvis et al., 2000), which are characteristics associated with risk. However, a restricted 

range alone does not necessarily imply a high level of threat (Gaston, 1994). When small range 

is associated with other risk factors such as a small population size, fragmentation, high rates 

of decline and other indicators of risk (all of which have a strong evidence base within 

theoretical and empirical studies), range restriction does indeed qualify as a strong indicator 

(Mace et al., 2008). Islands are by their nature small and/or restricted in size, thus island 

species are perceived as being at higher risk of extinction, with half of the 724 recorded animal 

extinctions in the last 400 years occurring on islands, especially for birds (Mulongoy et al., 

2006). Proportionally fewer island species with ranges between 1,000 and 100,000km2 are 

considered threatened, however, when compared to similar continental species with 

equivalent range sizes (Manne, Brooks and Pimm, 1999). This is thought to be because island 

species tend to be locally common compared to their range restricted mainland counterparts.  

Restricted geographic range sizes are underpinned by many different biotic and abiotic 

processes (Gaston 2003). These processes do, however, form something of a continuum. On 

one end, ‘naturally’ range restricted taxa may exist as relics from the last Ice Age glaciation 

(e.g. Saimaa ringed seal, Phoca hispida saimensis, Sipilä, 2003) or represent habitat specialists 

(e.g. Charco Palma Pupfish, Cyprinodon veronicae, Valdes Gonzales 2019). An example of a 

more extreme habitat specialist is Nymphaea thermarum; now Extinct In The Wild, this water 

lily had adapted to life in a single hot spring in Rwanda (Fischer et al., 2019). Another example 

of a ‘naturally’ restricted range is the Critically Endangered Iriomote cat Prionailurus 

bengalensis iriomotensis, an island endemic, with a naturally small range of 284 km2 (Izawa 
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and Doi 2015). These examples illustrate how some species can occupy tiny ranges regardless 

of human impacts. However, many other species are not naturally range restricted, but have 

ranges restrictions mediated by people.  

In contrast to naturally small ranges, some species formerly occupied a large area but now 

have a heavily reduced range as a result of human activities. The widespread but now Critically 

Endangered Yellow-breasted Bunting Emberiza aureola (BirdLife International 2017), for 

example, once bred across the northern Palearctic from north-west Europe through far 

eastern Asia. This bird has recently undergone a steep decline and is now thought to have 

disappeared from Belarus, Finland, Ukraine and parts of Russia, largely as a result of hunting 

(BirdLife International 2017). The range is thought to have retracted by at least 5,000 km 

between 1980 and 2013 (Kamp et al., 2015). Further down the human-driven end of the 

continuum, the Endangered Ethiopian Bush-crow Zavattariornis stresemanni was found to 

persist only in an area stretching just 160 km from north to south, and 100 km from east to 

west. The species requires a specific climate envelope with suitable human-modified 

vegetation (BirdLife International 2021; Donald et al., 2012), so is restricted by a blend of 

human-driven and natural factors. Donald et al. (2012) posited that prior to human 

agricultural systems in the region some 8,000 years ago, the climate envelope may have been 

larger and the open areas the species currently relies upon may have occurred naturally. 

Other species with restricted ranges are considered ‘refugee species’, where current ranges 

occupy not optimal habitat, as previously thought, but suboptimal habitat where they persist 

away from hunting or predation. One such example is the Lord Howe Island Woodhen 

Tricholimnas sylvestris, which originally bred on coastal flats, and became restricted to 

montane areas to prevent predation by feral pigs (Miller and Mullette, 1985). Such examples 

highlight the complex and differing factors that can regulate restricted ranges, and why 

isolating their causes has a bearing on how to approach conserving these species. 

Assessing whether a species’ range is restricted naturally or by human activities is, therefore, 

critical for understanding the species’ level of threat. Understanding levels of threat allows 

appropriately planned conservation measures to be designed and targeted at the drivers of 

extinction, as conservation is intended for threatened, not unthreatened species (IUCN 2012). 

As with Nymphaea thermarum, some species naturally occur in a small area. In this case it 

would be inappropriate to channel conservation funds into expanding its range, as its threats 
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are of a different nature (Juffe 2010). In contrast, the Hainan Gibbon Nomascus hainanus was 

once widespread across lowland forest on Hainan Island, but is now confined to a single 

population found within a 15km2 intact forest fragment, thus restricted entirely by human 

impacts (Chan et al. 2005; Zhou et al., 2005; Zhang et al., 2010). These gibbons, therefore, are 

species that are strong contenders for conservation actions through potential expansions of 

their current range, to approximate their historical distribution. Similarly, Echo Parakeets 

from the island of Mauritius ‘were once widespread in the native forests’ (Jones, 1980, p. 

351), but deforestation began after colonisation in the 1600s and by 1980, 2% of the island 

was covered by native vegetation and the parakeets were restricted to a small patch of forest. 

The precise factors leading to a restricted range are not always straightforward to determine. 

For example, the Takahe’s (Notornis mantelli) native habitat was the subject of lengthy 

debate. On the New Zealand mainland it occupies isolated alpine habitats; and Mills, Lavers 

and Lee (1984) determined that the Takahe is a habitat specialist and native to alpine regions 

with a range reduced by late Pleistocene expansion of forests. This was challenged by (Bunin 

and Jamieson, 1995) who concluded that the Takahe had been native to lowland streams and 

forest margins, with numbers initially declining due to habitat destruction some 800-1000 

years ago. 

1.1.1 Proximate vs ultimate factors 

Species may decline due to ultimate factors (such as habitat loss) which are then exacerbated 

by proximate factors (such as disease and stochastic factors) (Hernández et al., 2013). For 

example, the Echo Parakeet (Psittacula echo) of Mauritius saw its native habitat destroyed by 

European settlers after their arrival in the 17th century (Jones, 1980). Once the population 

was heavily diminished and restricted to the remaining native forest, this became vulnerable 

to factors such as cyclones, as well as competitive interactions with Ring-necked Parakeets 

(Psittacula krameria). Another island species, the Lord Howe Woodhen, also fell into decline 

following the arrival of European settlers, but was gradually driven to the most remote 

mountain regions through predation by introduced feral pigs (Miller and Mullette, 1985). The 

population dropped to just 10 breeding pairs, at which point it was vulnerable to extinction 

through high adult mortality. After large-scale extinction drivers reduced the Woodhen 

population to being small and vulnerable, proximate factors such as storms and normal 

predation events had a magnified effect on the remaining individuals (Caughley, 1994). 
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1.2 Species range research techniques 

The conservation needs of any given species can be clarified through understanding 

influences on its geographic range and population size, by combining and analysing 

environmental factors and extinction drivers. Typically, current research aims to determine if 

a species’ current range is determined naturally, or has been modified by anthropogenic 

factors. To achieve this, it should be established if factors such as habitat loss (at various 

spatial scales), or overexploitation, contributed to the present range; additionally, it should 

be determined if past ranges used to be larger (Chatterjee, Tse and Turvey, 2012; Chen et al., 

2018; Yang et al., 2018). A challenge faced is a lack of past evidence of range: the Echo 

Parakeet was described in eyewitness accounts from the 1870s (Jones, 1980) and the Hainan 

gibbon has historic records of its distribution dating back to 1688 (Zhou et al., 2005). Despite 

this challenge, past geographic ranges are important to establish, as these can indicate how 

‘natural’ a species’ current range is (Jones, 1980), and can be deduced with both historical 

records (Ali et al., 2017; Chen et al., 2018) and subfossil data (Bunin and Jamieson, 1995). 

However, the approach often used to understand species’ ranges includes combining 

systematic surveys of threatened species with remote sensing data and/or ground-truthed 

habitat surveys (Jones, Linsley and Marsden, 1995; Jeganathan et al., 2004; Dechner, 2011; 

Peck et al., 2011; Donald et al., 2012; De Lima et al., 2016) which can track a species’ ecological 

niche, or land cover changes over time.  For example, for the hirola (Beatragus hunteri), an 

antelope with population declines since the 1970s, Ali et al. (2017) combined ground survey 

data and aerial surveys with a classified land map, and compared the species’ decline with 

changes in tree cover revealing the mechanisms driving sustained low populations of this 

ungulate. Direct ecological observations can also inform nesting or feeding behaviour, which 

can explain ranges on smaller spatial scales (Oppel et al., 2004; Oppel et al., 2004; Walker, 

Cahill and Marsden, 2005; Ni et al., 2018) 

Increasingly, studies have also begun incorporating the knowledge of the local people - local 

ecological knowledge (LEK) - taken from interviews, to aid in determining species distributions 

and both current and historical threats (Menon et al., 2010; Turvey et al., 2010; 

Ravaloharimanitra et al., 2011; Nash, Wong and Turvey, 2016). LEK can provide novel insights 

into conservation parameters, such as information on threats or past range not detected by 

standard ecological techniques. One example is research performed on the Critically 
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Endangered cao vit gibbon (Nomascus nasutus), rediscovered in 2002 in northern Vietnam (La 

et al., 2002) and again in southern China (Chan et al., 2008). Fan et al. (2011) interviewed local 

elders to piece together forest and other land-use changes that had occurred within living 

memory. This revealed changing local levels of timber extraction throughout the 20th century, 

constant clearing of land for agriculture, as well as mass-production of charcoal in the gibbon 

habitat from the mid-1990s until 2005; this information was relevant to understand the 

specific unsustainable threat processes that had contributed to the species’ decline and small 

population size. Locals suggested that at least two gibbon groups disappeared during the 

charcoal-making period (Fan et al., 2011). 

1.2.1 The importance of spatial scales 

When studying ecological relationships in reference to species’ ranges, it is important to 

consider these at different spatial scales, such as regional/landscape, species’ home ranges 

or nest sites, across which biotic and abiotic factors may influence ranges in different ways 

(Jones, 1980; Lockyer et al., 2015). Varying from fine to coarse scale, measurements may 

reveal different habitat associations (Fattebert et al., 2018) or different food availability 

(Sherley et al., 2017) for species; for example, different scales reveal varying impacts of 

organic farming (Gabriel et al., 2010). Different ecological patterns occur over multiple spatial 

scales, for example, microclimate over fine spatial scales and tree communities over larger 

spatial scales (Ewers et al., 2011). These varying patterns may also affect range restricted 

species: if it is not understood how factors change or shift in importance across scales, key 

factors determining range restriction may be missed. For example, human activity and food 

availability were the best predictors of habitat selection at finer spatial scales for the Cross 

River Gorilla (Gorilla gorilla diehli), helping explain why the species has a fragmented 

distribution (Sawyer and Brashares, 2013). 

 

1.3 The conservation crisis across China 

China is recognised as one of the most biologically diverse countries: according to Xie et al. 

(2015) it ranks eighth of the world’s top 12 megadiverse countries, despite being located 

mainly away from the tropics, with 6,347 species of vertebrate (14% of global species) and 

over 30,000 higher plants (10% of global species). Whilst China has been heavily populated 
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by humans for millenia, there have been intensifying landscape changes occurring over the 

past 400 or so years (Elvin 2004). Large population increases and mass migration took place 

in South China from 1700 onwards, and huge areas of forest were converted to cultivated 

land in southern China (Marks 1998), culminating in parts of Guangdong and Guangxi 

provinces experiencing severe fuelwood shortages in the early 19th century. These changes 

coincided with the decline or loss of many species within the same region and time period, 

including megafauna such as tigers and elephants, and smaller taxa such as giant centipedes. 

Across China more broadly, range restrictions have occurred for once common and widely 

distributed species, such as pangolins (Yang et al., 2018), gibbons (Chatterjee, Tse and Turvey, 

2012), and snub-nosed monkeys (Li, Pan and Oxnard, 2002). All now have highly restricted 

ranges: for example, snub-nosed monkeys were once distributed across 11 Chinese provinces, 

and were abundant around the Yangtze River, but as of 2002, only five extant populations 

remained at high elevations (Li, Pan and Oxnard, 2002). Many of these species are now 

confined to mountainous habitat, as lower-elevational habitats were more accessible to 

expanding human populations and so were historically converted into agricultural land to a 

greater degree, with current ranges not necessarily representing optimal habitat (Nüchel et 

al., 2018; Kerley et al., 2020). In tandem with expanding human populations and habitat loss, 

wildlife exploitation exacerbated many of these declines. For example, trade in wild animal 

products was encouraged by the government for sale at Foreign Trade Stations between 

1950s–1980s (Coggins 2017). Additionally, species such as Chinese Pangolin (Manis 

pentadactyla) have been substantially reduced due to demand for their parts, with the 

species now classed as Critically Endangered on the IUCN Red List and with a heavily 

contracted distribution (Yang et al., 2018). Similarly, heavy trapping pressure across the East 

Asian Flyway in China for the Yellow-breasted Bunting (Emberiza aureola) led to a dramatic 

population decline and range contraction (Kamp et al., 2015). 

 

 

1.4 Asian songbird crisis 

An ancient culture of bird keeping and rapid human population growth during the 20th century 

has led to a songbird crisis across Southeast Asia (Sykes, 2017), with Indonesia at the 
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epicentre, where it has gained the most attention (Nijman et al., 2021). In South-East Asia, 

over 1,000 wild bird species are traded as caged birds, including species of Laughingthrush, 

Mynas, Bulbuls, and Leafbirds (Lee et al., 2016) amongst numerous other taxa. Trapping of 

wild birds heavily affects at least 26 globally threatened species in Indonesia alone, and 36 

Asian songbirds were assessed as threated on the IUCN Red List as of 2022 (BirdLife 

International 2022). The recognised plight of a few species including the Blue-crowned 

Laughingthrush (Pterorhinus courtoisi), Bali Myna (Leucopsar rothschildi) and Javan Green 

Magpie (Cissa thalassina) led concerned conservationists and zoos to form the EAZA 

‘Threatened Songbirds of Asia Working Group’ (Collar et al., 2012), which became the 

Threatened Asian Songbird Alliance in 2015 (Sykes, 2017). The phenomenon is now dubbed 

the ‘Asian Songbird Crisis’ (Lee et al., 2016; Shepherd and Cassey, 2017). In China, wildlife, for 

example the Chinese Hwamei (Garrulax canorus; Dai and Zhang, 2017; Shepherd et al., 2020) 

is traded as a pet or caged bird. Bird and pet markets have been recorded in many cities across 

China, e.g. Guiyang, Beijing, Guangzhou, Kunming and Shenyang (Zhang, Hua and Sun, 2008; 

Huo et al., 2009; Dai and Zhang, 2017; Cheng, 2019; Fiennes et al., 2021), and the country was 

one of the main exporters of birds between 1998-2007 (Nijman, 2010). However, wild animal 

trade monitoring in China is weak, making assessment of the extent of the trade and impacts 

on species difficult (Zhang, Hua and Sun, 2008), and overall knowledge of the extent of 

Chinese wildlife trade, including the pet songbird trade, is very low (Fiennes et al., 2021). 

1.5 Fengshui forests 

Fengshui forests (fengshuilin) are patches of mature broadleaved or coniferous trees found 

close to villages, in many instances representing remnants of native subtropical forest. Found 

across southern China, fengshui forests have high cultural and spiritual importance, 

representing the achievement of harmony between earth and the cosmos for rural 

communities and affecting traditional village spatial planning (Coggins, 2003). They also 

perform more functional ‘ecosystem services’ roles, such as preventing soil erosion, acting as 

wind barriers, and providing non-timber forest products such as medicinal plants (Zheng et 

al., 2009; Coggins et al., 2018). They can exist as individual trees (fengshuishu) situated within 

villages, through to more substantial stands of trees many hectares in size (Coggins, 2003). 

Fengshui forest presence has been identified through Chinese scientific literature and 

fieldwork surveys across China, in seven provinces across southern China and one further 
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north, in Shandong (Figure 1). These stretch from Yunnan in the west to Anhui, Jiangxi and 

Fujian in the east, and may exist in as many as 14 provinces (Chen et al., 2018). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Viewed as ‘feudal superstition’ and representing a source of valuable timber, many fengshui  

Viewed as ‘feudal superstition’ and representing a source of valuable timber, many fengshui 

forests were destroyed during Chairman Mao’s political reign (1949– 1976) (Coggins, 2003). 

This particularly occurred during the Great Leap Forward (1958-1961) and the Cultural 

Revolution (1966-1976). In fact, Tang et al. (2012) found the current existence of fengshui 

woods positively correlates with increasing distance from urban areas. In more remote areas, 

local people were reportedly able to persuade government officials that the trees were in fact 

‘scenic forests’, providing protection from the wind, preventing soil erosion, and giving shade 

during field labour (Coggins, 2003). The fact that they received such strong civil protection 

during this period of political upheaval demonstrates their high cultural importance to local 

people. Fengshui forests often exist in landscapes otherwise dominated by fir and bamboo 

plantations which lack the floral diversity of the former subtropical forest, the habitat which 

once covered much of southern China (Figure 2). Fengshui forests in Fujian Province have 

been shown to harbour rare and threatened tree species such as Chinese hemlock (Tsuga 

longibracteata) and Chinese yew (Taxus chinensis) (Coggins, 2003). A recent review of 

fengshui forest research across Chinese language literature (Chen et al., 2018) found that 

Figure 1. Counties in China identified by both fieldwork (in black) and literature (in grey) as containing fengshui 

forests. Province and county names and listed below the map. Figure taken from Chen et al. 2018. 
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fengshui forests have demonstrably higher tree species diversity than other types of 

secondary forests or plantations. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Map of the original vegetation regions covering China. Much of southern China was dominated by 

subtropical broadleaved evergreen forest. Figure taken from Coggins et al. 2012. 

 

These native forest patches today face threats from market forces, dwindling adherence to 

traditional belief systems and urbanisation (Coggins, 2003). Wuyuan County, Jiangxi Province 

in China leads a new approach towards fengshui forests in China, with the local government 

affording state protection to many, designating them ‘small protected areas’ or ‘baohu 

xiaoqu’ (Figure 3; Hong et al. 2003; Wilkinson et al. 2004). This system has now been rolled 

out at the provincial level in Jiangxi (C. Coggins 2018, personal communication). 
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Figure 3. Fengshui forest from Wuyuan County, Jiangxi Province (Rosalind Gleave). 

 

 

 

 



 

35 
 

1.6 Contemporary rural landscapes in China 

Many studies have highlighted the importance of landscape heterogeneity, or mixed-mosaics 

in agricultural landscapes, in supporting biodiversity (Fuller, Hinsley and Swetnam, 2004; 

Gabriel et al., 2010; Fahrig et al., 2011), with agricultural intensification in Europe strongly 

linked to declines in bird communities (Donald, Green and Heath, 2001). In China, this 

importance is no different, with richness and abundance of bird communities explained by 

quantities and heterogeneity of non-crop vegetation (Li et al., 2020). Landscapes across rural 

Asia commonly feature densely populated and intensively managed ‘village landscapes’ (Ellis, 

2004) which are composed of agroecosystems, forests and settlements for local income and 

usage (Figure 4). In China, however, these rural landscapes have experienced a shift from 

traditional to modern farming practices, which have been driven by both technical 

developments and political reforms from the late 1970s onwards, with a transition from 

integrative approaches such as intercropping and rice-fish systems, which supported 

reasonably high biodiversity levels, to a loss of landscape heterogeneity and increase of 

synthetic fertilisers and pesticides (Liu, Duan and Yu, 2013). Similarly, a comparison of land 

use at two villages on the Yangtze river plain between 1955 and 1977 showed large changes, 

relatable to national-level agricultural policies (Baudry, Yu and Liewan, 1999), with a loss of 

wetlands and increase in rice paddy fields. Urbanisation has also driven dramatic land use 

changes over recent decades. Between 1984-2012, urban land space increased by 1.53%, and 

loss of ecological land-space was highest in eastern China around Jiangsu and Zhejiang 

provinces (Wang, He and Lin, 2018). Overall, changes over the past 100 years to the rural 

landscape across China have been significant, and are likely to continue to be in the future. 
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Figure 4. Heterogenous vegetation in cropland around a village in Wuyuan County, Jiangxi Province (Rosalind 

Gleave). 

 

1.7 The Blue-crowned Laughingthrush 

The Blue-crowned Laughingthrush is a Critically Endangered colonially-breeding passerine, 

with its remaining known breeding populations restricted to northern Jiangxi Province, China. 

Its estimated Extent of Occurrence (EOO) is approximately 610 km2 (BirdLife International 

2017) which is sufficiently small to qualify this species as threatened under the IUCN’s Red 

List framework (IUCN 2012). Its estimated Area of Occupancy (AOO), however, is unknown. 

Within this range, breeding populations are highly fragmented, with approximately only 13 

known breeding sites in recent history (L. Gardner 2018, personal communication), and its 

population of mature individuals is considered in decline, altogether qualifying it for Critically 

Endangered status under criterion C2a (i,ii) (BirdLife International 2018). C2a (i) is ‘no 

subpopulation estimated to contain more than 50 mature individuals’ and (ii) is ‘at least 90% 

of mature individuals in one subpopulation’ (IUCN 2012). This is due to the Blue-crowned 

Laughingthrushes’ small population size and overall decline, coupled with small, fluctuating 

subpopulations. The species has, since the late 1980s, been a topic of recurring discussion 
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and study. Below, I outline what is currently known about Blue-crowned Laughingthrushes 

including their taxonomy, locations, breeding habitat requirements, behaviour, possible 

threats and past conservation actions. 

1.7.1 Existing information on the Blue-crowned Laughingthrush 

1.7.1.1 Taxonomy 

The Blue-crowned Laughingthrush species is part of the family Leiotrichidae 

(Laughingthrushes and allies). This entire family previously sat within Timaliidae (Asian 

babblers), and there is no sexual dimorphism (Collar, 2006). Individuals are about 24.0 cm in 

total body length (23.8 – 24.6 cm) (Long et al. 2004), with an average mass of 40-50 g for 

captive birds (L. Gardner 2018, personal communication) (Collar, Robson and Sharpe, 2019). 

When first discovered from two skins collected in September 1919, in Wuyuan County, Jiangxi 

Province (Figure 5) (Menegaux 1923), Pterorhinus courtoisi was recognised as a distinct 

species (under the genus Garrulax); however, this was subsequently revised and the Blue-

crowned Laughinghthrushes described from Wuyuan in 1919 were for many years considered 

a subspecies of the relatively common Yellow-throated Laughingthrush Pterorhinus galbanus 

(Berlioz 1930). The nominate form of this latter species was found in India and Myanmar 

(Figure 5). During this period Blue-crowned Laughinghthrushes were more commonly 

referred to as ‘Courtois’s Laughingthrush’ (Figure 6). A second subspecies was described from 

specimens collected during 1956 in Simao district, Yunnan Province, China, called Garrulax 

galbanus simaoensis (Figure 5) (Cheng and Tang 1982). Following several birds turning up in 

consignments of mixed wild birds in Europe (Long et al., 2004; Pasini et al., 2004) there was 

renewed interest in the two Chinese subspecies. Based on morphometric scoring, Pterorhinus 

courtoisi courtoisi and Pterorhinus courtoisi simaoensis were eventually split from Pterorhinus 

galbanus and renamed the ‘Blue-crowned Laughingthrush’ (Collar 2006). Genetic work 

conducted between 2004-2007 did not give support for the separation of P. courtoisi and P. 

simaoensis from P. galbanus based on mitochondrial CO1 gene sequencing (Dunning 2007); 

however, recent analysis of four nuclear genes did give support for independence of P. 

courtoisi from P. galbanus on a genetic basis (Liu 2019). 

The Yellow-throated Laughingthrush was first listed as endangered in the Red List of Chinese 

Species Volume 1 (Wang and Xie, 2004); then subsequently, as the Blue-crowned 
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Laughingthrush, it was listed as critically endangered in the Red List of Chinese Species 

Volume 2 (Wang and Xie, 2009). No reports were made of Blue-crowned Laughingthrushes as 

having been seen in the wild by any ornithologist or birdwatcher following collection of the 

type specimens in 1919. After wild Blue-crowned Laughingthrushes turned up in captive bird 

collections in Europe, however, concern for this species grew and many attempts to locate 

wild populations were made during the 1990s, funded by zoo consortium ZGAP, finally 

locating a breeding population in 2000 (Hong et al. 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Map showing type localities of Pterorhinus galbanus (Manipur, India), Pterorhinus courtoisi simaoensis 

(Simao, China) and Pterorhinus courtoisi courtoisi (Wuyuan, China). Taken from Wilkinson et al. 2004. 
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Figure 6. Colour plate of the Blue-crowned Laughingthrush, Pterorhinus courtoisi. Taken from Menegaux 

(1923). 
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1.7.1.2 Locations 

Today, P. c. courtoisi breeds in northern Jiangxi Province; P. c. simaoensis was briefly sighted 

in Yunnan Province in 2005 (Richardson 2005) but since appears to have been extirpated after 

more than a decade of failed searches for a remnant population (He et al., 2017). The 

landscape in Wuyuan, Jiangxi is described by He (1994) and Richardson (2005) as consisting 

of non-native conifer plantation, bamboo plantation and secondary sub-tropical forest 

growing on the low hillsides. In addition, small stands of large, mature, broadleaved trees 

grow on hillsides or flank rivers (Figure 7). Intensive agriculture is present in the valleys 

consisting of rice paddies, oilseed rape, tea plantations and vegetable gardens. 

 

Figure 7. Typical Wuyuan County landscape (Rosalind Gleave). 

 

1.7.1.3 Breeding sites 

Much of the information to date about Blue-crowned Laughingthrush feeding behaviour and 

breeding site selection exists in grey literature rather than peer-reviewed articles. These 

include field reports from NGOs such as Hong Kong Bird Watching Society and Durrell Wildlife 
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Conservation Trust, as well as annual field report and census counts by Prof. Fenqi He of the 

Chinese National Academy of Sciences. Unstructured observations are provided in a series of 

Chinese-language papers on feeding and breeding behaviour (He and Xi 2002; Hong et al., 

2006; Liao et al., 2007; Liu et al., 2016). Few systematic or structured observations have been 

made that are subject to any statistical analysis, with the exception of Zhang et al. (2017), 

Huang et al., (2018) and Liu et al., (2020). Most reports or studies on the Blue-crowned 

Laughingthrush are on the Wuyuan population; a small number of sources mention only 

anecdotal data from Simao, Yunnan (He, 1994; Wilkinson et al. 2004). 

Most reports or studies on the Blue-crowned Laughingthrushes concur with each others’ 

primary findings. Blue-crowned Laughingthrush breeding sites are reported as being close to 

rivers and human habitation (Richardson 2005) and below 100 m elevation (Hong et al. 2004, 

Wilkinson et al. 2004). Blue-crowned Laughingthrushes are reported as staying in their 

breeding sites from April to July (Yu 2003, Zhang et al. 2017). Arrival time at these sites is 

influenced by the weather, with birds arriving earlier in a warmer spring. Departure from the 

breeding sites is reported as synchronous (Yu 2003) or as a few days after the young have 

fledged (Zhang et al., 2017). The species has appeared to show a strong, though not 

necessarily exclusive, breeding site association with stands of fengshui forests (Hong et al. 

2003; Yu 2003; Liao et al., 2007). Hong et al. (2003) commented that ‘it is interesting to 

speculate whether the subspecies has evolved some form of obligate relationship with human 

settlements during the breeding season, or whether their current breeding sites are simply a 

consequence of the fact that the only large, old trees now left occur around villages’. These 

forest stands are known to have deep cultural value and have been locally protected for 

centuries (Coggins, 2003). 

Tree species selected for nesting are varied. Nesting trees are predominantly mentioned as 

subtropical broadleaf species, including Chinese Sweet Gum (Liquidambar formosana) 

(Richardson 2005; Hong et al., 2006; Liao et al., 2007; Zhang et al., 2017; Huang et al., 2018), 

Camphor (Cinnamomum camphora) (Richardson 2005; Hong et al., 2006; Liao et al., 2007; 

Zhang et al., 2017), Chinese Ash (Pterocarya stenoptera) (Liao et al., 2007; Zhang et al., 2017, 

Huang et al., 2018), Chinkapin (Castanopsis sclerophylla) (Hong et al., 2006) and Hackberry 

(Celtis sinensis) (Richardson 2005; Zhang et al., 2017; Huang et al., 2018). Other tree types 

recorded as used for nesting include Bamboo (Phyllostachys heterocycla) (Hong et al., 2006; 
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Zhang et al., 2017), fruit trees (Richardson 2005; He et al., 2017), conifers (He and Xi 2002; 

Richardson 2005; He et al., 2017), Sweet Osmanthus (Osmanthus fragrans) (Richardson 2005; 

Wilkinson et al., 2004; Zhang et al., 2017) and palms (Trachycarpus fortunei) (He et al., 2017), 

although nesting in these trees is reported as being less common. 

Wilkinson et al. (2004) gave Blue-crowned Laughingthrush nest heights as normally being 4-

15 m from the ground. Yu (2003) and Hong et al. (2003) both described the birds as nesting 

in large, ancient trees, and He et al. (2017) and Huang et al. (2018) described the birds as 

nesting in tall trees. Richardson (2005) corroborated these findings, with nest heights 

described as 3-16 m and a consistent association with large, mature trees. However, He et al. 

(2017) mentioned occasionally finding nests only 1.5 m from the ground. Blue-crowned 

Laughingthrushes were observed by Liao et al. (2007) as roosting away from the nesting sites 

(excepting those adults brooding eggs), in dense secondary broadleaf forests or shrubs 

between 100 – 950m from the nests. 

Blue-crowned Laughingthrushes are often found breeding in colonies of between 10-80+ 

birds (F. He 2018, personal communication). Birds have occasionally been observed feeding 

chicks from other pairs (Yu 2003). Cooperative breeding behaviour was reported by 

Richardson (2005) and Wilkinson et al. (2004, 2010) with pairs within colonies breeding 

simultaneously, and having helpers at the nest. Cooperative breeding behaviour was further 

studied in captive birds (Liu et al., 2016), finding that all adult birds participated in brooding, 

despite not all males having the opportunity to mate with females. Breeding success data are 

scarce, with scant data available from Jiangxi Agricultural University: three to four eggs are 

typically laid in each clutch and nesting success rates are as high as 80-90% (W. Zhang 2018, 

personal communication). It is clear Blue-crowned Laughingthrushes breed colonially, mostly 

in tall, broadleaved trees, close to human settlements; what is not clear is whether this 

constitutes an obligate breeding habitat. 

1.7.1.4 Behaviour 

Behaviourally, Blue-crowned Laughingthrushes are described in anecdotal field observation 

by Yu (2003) as gregarious, and typically active around the upper storey of fengshui woods, 

making frequent contact calls whilst foraging. Yu (2003) stated that during different surveys, 

the birds foraged both under the woodland canopy and close to the ground. Others reported 
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the canopy layer was used most often from April to June, with a peak in May (Liu et al., 2020). 

The birds have also been observed feeding on insect larvae caught from a tree trunk, and on 

fruits (Figure 8). Non-systematic feeding observations were carried out by Richardson (2005), 

describing the birds as foraging for ‘small larvae, flies, moths and small wild fruits’. This author 

also observed that insect supplies seemed plentiful near water and human waste. Foraging 

for invertebrate prey becomes reportedly more important when feeding chicks (W. Zhang 

2018, personal communication) a strategy common to many bird species (Wilson et al., 1999; 

Anderson, 2006).  

 

 

Figure 8. Blue-crowned Laughingthrush foraging for invertebrates (Rosalind Gleave). 

 

Blue-crowned Laughingthrush have been described as foraging in vegetable gardens 

(Richardson 2005; Hong et al., 2006; Liao et al., 2007; He et al., 2017; Liu et al., 2020), tea 

gardens (Hong et al., 2006; Liao et al., 2007), shrubs and bushes (Liao et al., 2007) and rice 

paddies (Richardson 2005). A recent study by Liu et al. (2020) investigated habitat use with 

radio telemetry, tagging a total of 17 birds. They found woodland was significantly preferred 

by Blue-crowned Laughingthrush, and that shrub/grass areas and vegetable plots were used 
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relatively more than other habitats (including residential areas, other farmland, water and 

sandy beaches) except woodland. Collectively these observations indicate that Blue-crowned 

Laughingthrushes utilise a wide variety of food sources and prey items, and are unlikely to be 

extreme habitat or diet specialists, though they do show preferences for areas of woodland, 

vegetable plots and scrub. 

1.7.1.5 Threats 

Numerous threats to the Blue-crowned Laughingthrush have been reported since its 

rediscovery in the wild. These threats comprise both the risk of extinction to the Blue-

crowned Laughingthrush population in the absence of targeted conservation measures, as 

well as stochastic events which affect its long-term persistence. It is possible that Blue-

crowned Laughingthrushes were also once much more widespread, given the populations of 

P.courtoisi and P.c. simaoensis are each other’s closest relatives, and would in theory have 

once had greater connectivity; therefore, their numbers may have declined widely due to 

broad-scale factors. Thus, in their present situation, with a very small population, they are 

particularly vulnerable to proximate threats such as local human disturbance and flooding. 

In terms of overexploitation, the subspecies Pterorhinus courtoisi simaoensis from Yunnan 

Province is thought to have become locally extinct through trapping for the bird trade (He 

1994): over 400 birds are estimated to have been taken from the wild between 1987 - 1992, 

based on interviews with local trappers in Yunnan and Guangxi provinces (Wilkinson and He 

2010). Referring to the Wuyuan subspecies Pterorhinus courtoisi courtoisi, Yu (2003) 

commented that ‘even small-scale trapping which focuses on the breeding site of the 

Laughing Thrush could completely extirpate the only known population’. According to local 

stakeholders, bird trapping activity is thought to be largely restricted to the Blue-crowned 

Laughingthrush population once found in Yunnan Province, with no current evidence of 

trapping in Jiangxi (Wilkinson et al., 2004; Wilkinson and He, 2010) although two individual 

birds from a market in Hong Kong were traced back to Wuyuan (Yu 2003). Past or present 

trapping in Wuyuan has not been investigated in the field. Past occurrence of trapping in 

general is supported by the fact that the Blue-crowned Laughingthrush was rediscovered by 

encountering individuals through the international bird market (Yu 2003). Certainly, poaching 

to fuel the songbird trade remains a widespread issue across Asia, where wild songbird 

keeping is embedded in the culture. 
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Habitat loss may be playing a role in restricting Blue-crowned Laughingthrush population size 

and/or range, and certainly the species does appear to be selective over breeding sites; 

however, robust evidence for habitat loss representing an ultimate cause of decline is lacking. 

The Blue-crowned Laughingthrush’s association with the Wuyuan landscape, which has been 

described as 70% forested and possessing large, old trees near villages (Hong et al., 2003), 

points to a potential combination of factors which may be missing in other parts of southern 

China; however, the landscape in Wuyuan is also overall similar to other agricultural rural 

landscapes across other parts of southern and eastern China (Ellis, 2004). In the last known 

locality of Pterorhinus courtoisi simaoensis, Wilkinson et al. (2004) described the area as 

having depleted natural habitat, with few remaining trees.  

Large-scale habitat destruction has taken place across much of southern China in the last two 

millennia, with vast replacement of original forests for plantations of chiefly fir, pine and 

bamboo between 1000-1700 CE across much of Jiangxi, Anhui and Zhejiang provinces and 

surrounding regions (Miller 2020). Later, massive population growth and land reclamation, 

with removal and continual suppression of  large areas of former forest, occurred in southern 

China between the 17th and 19th centuries (Marks 1998), with this pattern culminating in 

widespread severe timber shortages across China by the 18th and 19th centuries (Elvin 2004). 

There was a concomitant loss or severe range reduction of many animal species including 

snub-nosed monkeys (Rhinopithecus) (Li, Pan and Oxnard, 2002), gibbons (Turvey, Crees and 

Di Fonzo, 2015), Asian elephants (Elephas maximus), Peacocks Elvin (2004) and South China 

tiger (Panthera tigris amoyensis) (Marks 1998); many of these declines were also 

accompanied by aggressive or targeted hunting. 

In terms of other extinction drivers, there is no evidence to support the idea that introduced 

species and secondary extinctions may be playing a role in Blue-crowned Laughingthrush 

decline. Other threats have been described as directly human-mediated, with urban 

development and associated disturbance having already caused breeding site abandonment 

(Wilkinson and Gardner, 2011; He et al., 2017), through processes including river channel 

repair, highway construction, and housing construction. Wuyuan has been promoted as a 

popular destination for Chinese domestic tourists since the late 1990s, building its brand as 

‘the most beautiful countryside in China’ (Zhou, 2014, p. 228). This has seen ongoing 

development of holiday resorts in the county (Yu 2003). Tourists are also drawn to the area 
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in spring by mass blooms of rapeseed flowers, which for this reason are supported by local 

authorities (Fu et al., 2016), with unknown impacts on local wildlife. Increasing visits by 

wildlife photographers have even led to the abandonment of individual Blue-crowned 

Laughingthrush nests (Zhang et al., 2017). Increased traffic flow stemming from tourism 

development next to a breeding site was also observed to cause a change in Blue-crowned 

Laughingthrush behaviour, and road building and urban development are considered 

responsible for destruction of nesting habitat and disturbance for one or more breeding sites 

(Wilkinson and Gardner, 2011; He et al., 2017).  Although no other explicit record of tourist 

development has been shown to negatively impact Blue-crowned Laughingthrushes, the area 

is promoted as a tourist region with many plans for resorts near Wuyuan Town (Yu 2003). 

Indeed, I witnessed the construction of multiple tourist resorts throughout the region during 

field visits in 2018 and 2019, and the landscape appears to be changing rapidly (R. Gleave, 

pers. obs.). Without proper planning, this activity could well pose a serious future threat. 

There appears to be a tension between environmental protection and economic development 

in the region, mirroring similar situations in national parks and other protected areas across 

China (Wang et al., 2012). 

Stochastic events have also been implicated in affecting Blue-crowned Laughingthrush 

populations. For example, the most recent of these is flooding along the Le’An river, along 

which many Blue-crowned Laughingthrush breeding sites are found, which is thought to have 

caused Blue-crowned Laughingthrush to abandon a breeding site (F. He 2019, personal 

communication). Southern China experiences seasonal flooding each year, but 2017 saw 

catastrophic flooding which heavily damaged multiple Blue-crowned Laughingthrush 

breeding sites (FloodList 2017; L. Gardner 2018, personal communication). Another example 

is bird killing by local children (Yu 2003), and predation has been observed by Chinese 

Goshawks (Accipiter soloensis) and squirrels (Yu 2003), and with both Red-billed Blue Magpies 

(Urocissa erythrorhyncha) and Pallas’ squirrels (Callosciurus erythraeus) being described as 

having aggressive interactions with the Blue-crowned Laughingthrushes at one breeding site 

(Richardson 2005). 

1.7.1.6 Conservation action 

A few key conservation actions have been taken for the Blue-crowned Laughingthrush. In 

terms of policy and/or legislation, the most notable is the creation of ‘Mini Protected Areas’ 
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in Wuyuan County (Hong et al., 2003; Wilkinson et al., 2004). Some of these overlap with 

known Blue-crowned Laughingthrush breeding sites, also protecting habitat for many other 

bird species (Hong et al., 2003). However, more recently, calls have been made for China to 

cover gaps in national protected areas which do not cover all Blue-crowned Laughingthrush 

breeding sites (Li et al., 2021). At the national level, Blue-crowned Laughingthrush received 

no official state protection until 2020, when it was added to China’s list of protected animals 

under the highest protection, Class I (Ministry of Agriculture and Rural Affairs of the People’s 

Republic of China 2021); this list had been largely unchanged since 1988 (China Dialogue 

2020), before the species’ ‘rediscovery’.  

On the ground, education work with local people in Wuyuan has taken place by raising public 

awareness of birds, as well as engaging students in bird conservation, with a particular focus 

on the Blue-crowned Laughingthrush (HKBWS 2011). Several talks on Blue-crowned 

Laughingthrush were also delivered to schoolchildren at an event at Caomen Primary School 

in May 2019 (near a well-known Blue-crowned Laughingthrush breeding site) by Panji Zheng, 

Daochang Liu, Rosa Gleave and Yikang Liu (Figure 9). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Rosa Gleave and Yikang Liu deliver a talk to primary schoolchildren at Caomen School as part of the 

international day of biodiversity, run by Wuyuan County Wildlife Protection Society. 

Zhang et al. (2017) identified that disturbance from photographers was causing Blue-crowned 

Laughingthrushes at their Shimen island breeding site to nest higher up in trees compared to 

less disturbed sites. Visitors to Shimen island are now required to procure a research permit 
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before entering the island, which prevents most photographers from entry. Photographers 

are now in effect restricted from photographing, except from the opposite riverbank from the 

main nesting area (R. Gleave personal observation).  

1.7.1.7 Knowledge gaps 

Although much information has been gathered on Blue-crowned Laughingthrush basic 

biology, ecology and threats since its rediscovery, there are still many key unanswered 

questions on this rare bird. The Blue-crowned Laughingthrush’s geographic range, habitat and 

elevation when first discovered in 1919 is unknown; the type specimen of Pterorhinus 

courtoisi came with no information about its location beyond “Ouyuen” (Wuyuan), the county 

in which it is still found (Menegaux 1923). All other specimens are thought to come from 

subspecies Pterorhinus courtoisi simaoensis via a limited number of wild, or many captive, 

animals, and so very little is known about the habitat that Blue-crowned Laughingthrushes 

occupied when first discovered. Additionally, it is unclear whether there are key biotic or 

abiotic differences between Blue-crowned Laughingthrush breeding sites and non-breeding 

sites. Richardson (2005) observed that breeding sites may not necessarily be optimal or 

specifically chosen. The Blue-crowned Laughingthrushes in Wuyuan may represent remnants 

of a species that once bred more widely, with breeding sites instead chosen through site 

fidelity (Greenwood, 1980; Brown, Roche and Brown, 2017) or even lack of suitable sites 

(Miller and Mullette, 1985).  

For the Blue-crowned Laughingthrush, information on its range prior to its formal scientific 

discovery in 1923 is strikingly absent. Studies on primate declines (Li, Pan and Oxnard, 2002; 

Turvey, Crees and Di Fonzo, 2015) give insight into general social and environmental changes 

across southern China during the last 400 years which may help understand the past scenario 

for Blue-crowned Laughingthrushes. Rapidly increasing human population densities, the 

expansion of cultivation and an increase in hunting is linked to fragmented and isolated 

populations of monkeys and gibbons, and these patterns could conceivably also be linked to 

the decline of other Chinese species. 

If Blue-crowned Laughingthrushes are occupying a range that is neither ancestral nor optimal 

(in some way restricted by the actions of people), there may be any combination of the 

following factors. First, a positive association on any scale with habitats that are the climax 
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vegetation type for the region, which in southern China may include, but are not restricted 

to, subtropical broadleaf forest (Figure 2) or scrub. Second, outside of their current range 

there may be past records, either written (in the form of gazeteer records or otherwise) or as 

part of local ecological knowledge (LEK), of habitat alteration and high human population 

levels, that are higher than within their range. If, however, the Blue-crowned 

Laughingthrushes’ current range is ecologically ‘natural’, there could be differences between 

the landscape within their range and the landscape outside, due to differences in habitat that 

are not ecologically altered or mediated by humans: for example, an association with specific 

regionally endemic tree species or a natural climatic envelope, and an absence of other 

human-driven limiting factors. 

1.7.1.8 Non-breeding season 

A key unknown in Blue-crowned Laughingthrush ecology is where the species occurs outside 

of its breeding season each year (He and Xi 2002; Yu 2003; Hong et al., 2003; Wilkinson et al., 

2004; Zhang et al., 2017). As potential threats during this period could have an important 

bearing on population dynamics, this gap in knowledge is important to fill. Anecdotal reports 

suggest that the species might overwinter in secondary forests in the Wuyuan region (He 

1994; Yu 2003; Wilkinson et al., 2004; He et al., 2017). All suggestions are based on verbal 

reports of sightings in winter by local people (Table 2). 

Richardson (2005) also put forward that this may be the case. To this end, Richardson (2005) 

reported attempts in 2004 to attach a tracker device to two birds, hoping to record their 

movements post-breeding season, but this ultimately failed. They then planned to track at 

least 10 individuals in July 2005; however, there is no available report on whether this took 

place, or what the outcome was. Since then, no further attempts to track the birds beyond 

breeding sites have been mentioned in the literature. It is recognised as an important 

requirement; however as strong political and practical sensitivities exist around such invasive 

work on a Critically Endangered species in mainland China this information would be best 

obtained through more indirect means such as social surveys. 
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Table 2. Anecdotal reports of Blue-crowned Laughingthrush sightings from during the non-breeding season. 

Date of non-breeding 
season report 

Location given Number of birds Source 

Winter 1991 Longshancun 4-5 He (1994) 
Winter 1991 Kongcuncun 4-5 He (1994) 
Winter 1991 Daijia 4-5 He (1994) 
8 November 1997 Dawu, Changkeng & 

Dongwu around the Beilei 
Valley 

2 Wilkinson et al. 
(2004) 

December 2002 Wuyuan County A few Yu (2003) 

 

1.7.1.9 Relationship to fengshui forests 

As discussed earlier, Blue-crowned Laughingthrushes have intriguingly shown a strong 

positive relationship between their breeding sites and local ‘fengshui forests’ (Yu 2003, Hong 

et al., 2003, Hong et al., 2006). These appear, at least superficially, to represent key breeding 

habitat for the species. This association surprised even the team of researchers who 

rediscovered the species in the wild, who stated: ‘In fact, although we had thought we had 

surveyed all the potential habitats available for this laughingthrush in Wuyuan County in 

previous years, we failed to find any trace of the bird. However, while we were counting and 

identifying the large, old trees occurring around villages in 2000, the bird was suddenly and 

very surprisingly, right in front of us!’ (Hong et al., 2003). Given this strong, but anecdotal, 

association between stands of fengshui forest and Blue-crowned Laughingthrush breeding 

sites, it is important to quantify this potential relationship in helping to make landscape-level 

decisions about land management to benefit the Blue-crowned Laughingthrush in the future. 

As such, a deeper understanding of the past and current cultural value of these sites may be 

crucial to securing the long-term persistence of these birds in the Chinese landscape, which 

is undergoing rapid changes.   

1.7.1.10 Involvement in the Global Species Management Plan 

The Blue-crowned Laughingthrush has been in captivity since the late 1980s. The captive 

European population has been officially managed by Laura Gardner (formerly of ZSL London 

Zoo, now based at Wildwood Trust) since 2002-2003, annually publishing the European 

Studbook; this was approved as an International Studbook in 2012 (WAZA 2022). In 2015, the 

studbook was promoted to the status of European Endangered Species Programme (EEP), and 
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as of 2018, the EEP population comprised 171 individuals in 39 member institutions (including 

ZSL London and Whipsnade zoos), plus four private members. The Asian zoos (including 

Nanchang Zoo in mainland China, which manages a population of the Wuyuan subspecies 

only) housed 39 birds across three institutions (WAZA 2022). The initiative is referred to as 

the Global Species Management Plan (GSMP), which convenes annually to manage the 

international captive breeding programme and share knowledge regarding optimal rearing of 

Blue-crowned Laughingthrush, but also liaises with Chinese partners in Wuyuan regarding in-

situ Blue-crowned Laughingthrush conservation. Until 2017, the GSMP coordinated funding 

of annual census counts performed by Prof Fenqi He, as well as negotiating the renewal of a 

Memorandum of Understanding with the Wuyuan County Forestry Bureau (also referred to 

as Jiangxi Wuyuan National Forest Bird Nature Reserve Management Office). This PhD reports 

to and feeds into the in-situ conservation plans of the GSMP, and is part-funded by several of 

its member institutions. 

1.7.1.11 Collaboration with Jiangxi Agricultural University 

This PhD project collaborates, in addition to the above relationships, with a research group 

led by Dr Weiwei Zhang at Jiangxi Agricultural University, based in Nanchang, Jiangxi Province. 

Dr Zhang carries out annual research projects alongside undergraduate and graduate 

students on Blue-crowned Laughingthrushes, including annual census counts, surveys of 

breeding success and predation experiments. Dr Zhang has supported my research 

throughout the project, giving input into my study design, helping with logistics and hosting 

me at Jiangxi Agricultural University. 

 

1.8 Thesis aims and overview 

Chapter 2 details background information on the main study site at Wuyuan County, Jiangxi 

Province, including its geography, environmental history, avifauna and the ongoing impact of 

tourism. A discussion of methodological approaches taken throughout the research is also 

given here. 

Chapter 3 collates and integrates all pre-existing information on the Blue-crowned 

Laughingthrush, carrying out analyses to better understand consistencies of independent 

counts over time, their long-term population trend, and biotic and abiotic factors across 
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southern China associated with their spatial distribution. This aimed to help identify other 

potential unknown sites where the species might occur. A comparison of surveyed sites 

between independent observer groups was also conducted. 

Chapter 4 examines local ecological knowledge of local landscape change, recognition of Blue-

crowned Laughingthrush, and potential threats to this species and other birds. We also assess 

how known information on the Blue-crowned Laughingthrush compares to local knowledge. 

The aim was to associate landscape changes with Blue-crowned Laughingthrush presence and 

absence, better understand threats to the species, and explore whether this information 

could help identify priority areas for conservation of the species. 

Chapter 5 focusses on habitat selection of the Blue-crowned Laughingthrush at the breeding 

site and nesting site scales. This was with the aim of characterising breeding or nesting sites 

versus control sites, and better understanding whether the species is restricted by local-scale 

habitat selection. 

Chapter 6 investigates more robust species distribution modelling of the Blue-crowned 

Laughingthrush, through comparison of multiple model algorithms, rigorous validation and 

inclusion of a fine-scale land cover map based on past reported Blue-crowned Laughingthrush 

habitat associations. This aimed to help elucidate whether the species’ range is restricted by 

bioclimatic or abiotic factors at a coarse scale. 

Chapter 7 discusses the wider implications of the findings detailed in Chapters 3-6 through 

contextualisation within regional and global settings, and gives recommendations for future 

avenues of research. 
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2. Introduction to Study Site and General Methods 

 

“The most beautiful countryside in China” – Chen Fuli 

 

In this chapter, I present a short history, geography, and ecology of the study region, Wuyuan 

County in Jiangxi Province, China, and surrounding regions, of relevance to the Blue-crowned 

Laughingthrush. I then give detail on general methods used for later chapters, mostly 

Chapters 5 and 6 but also 3 and 4. 

 

2.1 The Study Region 

2.1.1 Wuyuan County 

Breeding locations of the Blue-crowned Laughingthrush have, to date, only ever been 

recorded in Wuyuan and Dexing counties, Jiangxi Province, China (Figure 1). The fieldwork for 

this project was undertaken in northeast Jiangxi Province and southern Anhui Province, China. 

Wuyuan County, Jiangxi Province (coordinates 29°01′~29°34′N and 117°22′—118°12′E) is 

central to this research, as it is given as the location of the type specimen for the Blue-

crowned Laughingthrush from 1919, and where the Blue-crowned Laughingthrush was 

‘rediscovered’ in the wild (Menegaux 1923). It has an area of 2,947.51 km2 (Shi 2017) and a 

population of 360,000 (He et al., 2014). Wuyuan’s northern section is connected to the 

Huangshan mountains via the Wulong mountains, and its southern section to the Hauiyu and 

Wuyi mountains (Huang et al., 2018). Wuyuan County contains many rivers, chiefly the Le’An, 

which is a tributary of the Rao. The Le’An originates from the Dayu and Wulong mountains in 

the north of Wuyuan County, and has many tributaries scattered across Wuyuan (Huang et 

al., 2018). 

In terms of climate, Wuyuan County is located within the subtropical region, and is humid and 

warm, with a relative humidity of 83% (He et al., 2014) and four distinct seasons. It has an 

average annual precipitation of 1330.3 mm, average annual temperature of 17.7°C, an 

extreme high temperature of 41.0°C and an extreme low of -11.0°C (He et al., 2014). The rainy 

season occurs from April to July, accounting for 61% of the annual rainfall, and sees frequent 
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flooding (Huang et al., 2018). The landscape is dominated by hills and mountains (He et al., 

2014), with mountain peaks in the north of Wuyuan reaching 800-1600m, and in the central 

and southern parts of county reaching 200-500m, but with an overall average elevation of 

100-150m (Huang et al., 2018). The county is estimated to have a forest coverage rate of 

82.0%, with 48.0% of the forest area constituting native broadleaved forests (Hong et al., 

2006). In terms of agriculture, Wuyuan County produces green and chrysanthemum tea, 

oilseed rape (the last two attracting tourists to the region with their yellow flowers in spring; 

Zhou, 2014), rice, vegetables and commercial forestry (Richardson 2005). 

 

 

Figure 1. Map of the core study area, Wuyuan County, Jiangxi Province, and surrounding counties in Jiangxi, 

Anhui and Zhejiang provinces. Thick black lines show provincial boundaries. UTM coordinates given. 
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2.1.2 Avifauna of Wuyuan 

Wuyuan County has a reputation for being popular with birders, who are particularly drawn 

by species such as the Blue-crowned Laughingthrush, Pied Falconet (Microhierax 

melanoleucos) and Mandarin Duck (Aix galericulata). Wuyuan also supports many bird 

species in general, with records of 302 species belonging to 63 families (He et al., 2014), and 

with 51 of those species belonging to the first and second order list of national protected 

species (Shi 2017). It straddles two biogeographic realms (Palearctic and Indo-Malayan) and 

is located along the East Asian bird migration route (He et al., 2014).  Yu (2003) recorded 111 

species during a short visit, mostly from surveying fengshui forest and secondary woodland, 

noting Wuyuan as one of the best areas for birds in southern China. Richardson (2005) 

reported seeing 27 bird species at Blue-crowned Laughingthrush breeding sites in Wuyuan, 

including three species of Woodpecker, Silver Pheasant (Lophura nycthemera) and Dollarbird 

(Eurystomus orientalis). Internationally, parts of Wuyuan County are designated as a Key 

Biodiversity Area (Key Biodiversity Area Partnership 2022) and an Alliance for Zero Extinction 

site (Alliance for Zero Extinction 2022) due to populations of the Blue-crowned 

Laughingthrush and the Scaly-sided Merganser (Mergus squamatus). 

 

2.1.3 Environmental History of Wuyuan 

Wuyuan County was part of Huizhou Prefecture from the Tang dynasty (740 CE), becoming 

part of Jiangxi Province after 1949 (Zhang, Long and Zhao, 2019). Huizhou was at the epicentre 

of forestry practices which developed from the 11th to the 18th centuries in southern China, 

where hundreds of thousands of hectares of subtropical broadleaf forest were gradually 

clear-cut and replaced with hand-planted, often single species plantations of Chinese fir 

(Cunninghamia lanceolata) and bamboo, designated as taxable ‘forest’ acreage (Miller, 2020). 

Wuyuan had 46% of its land recorded as taxable forest in 1315 (Miller, 2020). Patterns of 

forest have changed across China over time, with a low of 8.6% forest coverage in 1949, which 

increased to 20% in 2012, although about a third of this is thought to be conifer plantation 

(Coggins et al., 2012). 

According to Hong et al. (2006), until the 1950s Wuyuan was: ‘still full of mountains with big 

trees and clear streams, and vegetation was dominated by typical mid-subtropical evergreen 
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broad-leaved forests’. After this, much of these forests were cleared and replaced with 

conifer plantation forests dominated by pine and fir. Different logging bans were in place in 

Wuyuan during the 1980s-1990s to stem ‘natural’ forest loss (Hong et al., 2006). In addition 

to a loss of native forests in the hills, there was a loss of fengshui forest in Wuyuan in the 

1950s and 1960s during the Great Leap Forward and Cultural Revolution, with records of 

state-ordered fengshui forest loss in various villages across Wuyuan (Coggins, unpublished 

data). 

2.1.3.1 Mini protected areas in Wuyuan 

From 1993, the Wuyuan County Government began designating the traditionally preserved 

village fengshui forests as ‘small protected areas’ (baohu xiaoqu). As of December 2005, the 

county had 119 fengshui forest reserves (Shi 2017; Huang et al., 2018). Some of these overlap 

with Blue-crowned Laughingthrush breeding sites (Wilkinson et al., 2004). 

2.1.3.2 History of Blue-crowned Laughingthrush breeding sites 

Histories are not available for all known Blue-crowned Laughingthrush breeding sites, but 

information is available for some. For example, Zhongyun was a breeding site within a 

government administrative compound. This was originally called the ‘Qilin Pavilion’ (Wu 

Family Ancestral Hall) and was surrounded by ancient trees, then later demolished during the 

20th century to make the government compound. Only a handful of the original trees remain 

(Hong et al., 2006). Another, Taibai, lost ‘scenic’ (fengshui) forests to the expansion of 

residential buildings and vegetable plots (Hong et al., 2006). 

2.1.3.3 Blue-crowned Laughingthrush Local Education 

The Blue-crowned Laughingthrush today is a feature of local education. It is part of a major 

exhibit at the local wetland museum in Wuyuan Town, the main town of Wuyuan County 

(Figure 2a,b), and has been drawn by local schoolchildren on a series of murals near to a key 

breeding site (Figure 2c,d). 
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Figure 2. (a) Sign featuring the Blue-crowned Laughingthrush at the wetland museum in Wuyuan Town, (b) detail 

from an artwork on the Blue-crowned Laughingthrush at the wetland museum, (c) and (d) both murals drawn 

by local schoolchildren of Blue-crowned Laughingthrush, close to their best-known breeding site. 
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2.1.4 Tourism in Wuyuan 

Wuyuan County has been a famous domestic tourism destination in China since the late 

1990s. During the 1980s, several films and TV shows showed Wuyuan as having beautiful 

scenery, generating growing interest in the county. Then, in 1993, photographer Chen Fuli 

held an exhibition in Hong Kong showcasing ‘most beautiful countryside in China - Wuyuan’ 

(Zhou, 2014). After this, the tourism industry in Wuyuan was more formally cemented, 

establishing a tourism bureau in 1998. In 2013, the county received up to 1000 million visitors 

(Zhou, 2014). The county has thus generally been a focus of investment and 

commercialization for the tourist industry leading to ongoing development works such as 

building tourist resorts and road infrastructure (Zhang, Long and Zhao, 2019). Some of these 

have already impacted or potentially impacted Blue-crowned Laughingthrush breeding sites, 

for example road construction at Hexi, and highway construction at Shimen (He et al., 2017). 

More recently, modification of riparian forest habitat took place at Majia, a former Blue-

crowned Laughingthrush breeding site, in 2019. Ground vegetation was cleared to make way 

for series of upmarket hotel cottages, but the nearby fengshui forest trees were retained as 

part of the aesthetic appeal of the site (R. Gleave pers. obs.). This could potentially alter the 

habitat sufficiently to deter future breeding of Blue-crowned Laughingthrushes. However, this 

breeding site had not been used by Blue-crowned Laughingthrush since 2001 by this point (F. 

He 2019, personal communication). 

 

2.2 General Methods 

2.2.1 Research journey 

My journey began with a BSc in Biology (2005-2008), followed by several years of working to 

save up the substantial funds needed to carry out voluntary work as a research assistant on 

Ludwig’s Bustard (Neotis ludwigii) in South Africa (2011) and then carry out an MSc in 

Conservation Science at Imperial College London (2012-2013). My MSc research took place at 

the SAFE project, a large-scale ecological experiment in Malaysian Borneo investigating 

changes in ecological processes at different spatial scales when tropical rainforest is 

converted to oil palm plantation, leaving behind forest fragments. My work focussed on the 

removal rates of seeds from the forest floor across a disturbance gradient, from old growth 
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forest to secondary forest to oil palm plantation, comparing the relative input from 

vertebrates (i.e. rodents) to invertebrates (i.e. ants). This work was published as part of a 

larger paper in 2015, in Nature Communications. Whilst in Malaysia, I was hospitalised with 

an unknown, but severe illness, and on my return to the UK my digestive health was severely 

and possibly permanently altered. 

Following this MSc, I worked at a medical non-profit while volunteering on the committee for 

Bristol Nature Network and for Avon Wildlife Trust (2014-2016). After unsuccessfully applying 

for a PhD, I joined BirdLife International (2016-2018) as their Partner Relations Officer, then 

also Conservation Evidence (2017-2018) as acting Managing Editor of their journal. At BirdLife 

I worked alongside Dr Nigel Collar who became my mentor and nurtured my ongoing wish to 

carry out a PhD. Quite by chance, this Blue-crowned Laughingthrush PhD became available, 

which I mentioned to Nigel - who it turned out had a very long-term involvement with the 

Blue-crowned Laughingthrush, even splitting it taxonomically from the Yellow-throated 

Laughingthrush into a single species in 2006. I began the PhD in 2018, and carried out a 

scoping trip to Wuyuan in the same year. During this scoping trip, I met my Chinese 

collaborators at Jiangxi Agricultural University, and familiarised myself with a number of Blue-

crowned Laughingthrush breeding sites. I carried out my first full field season in 2019. I had 

secured funding from the Association of Zoos and Aquariums for a second field season in 

2020; however, I was unable to carry this out due to the COVID-19 pandemic. However, I had 

luckily collected a large amount of data in 2019, enabling me to perform analyses for my 

research questions. Although, had I been able to collect further data, I could have expanded 

my geographic coverage for Chapters 4 and 5, visiting other surrounding counties in China. I 

was also unable to conduct interviews or habitat surveys at a new breeding site, which I was 

only made aware of on my return from China, as well as at one last eBird location. 

The chronic health condition I developed during my MSc fieldwork has still not gone, and 

affects every aspect of my life and day to day tasks, including throughout my PhD. However, 

I have been taking on additional work throughout my PhD to fund my private treatment, 

including as a facilitator on an MSc course for the Royal Veterinary College, a teaching 

assistant at Royal Holloway, an event volunteer at London Zoo, and at a food market, which 

has developed my personal and professional growth in other ways. I have researched and 

implemented strict lifestyle changes which, alongside treatment, have resulted in large 
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improvements in my health, especially when comparing the beginning of my PhD to now, 

which I consider the second biggest achievement in the last four years, only after this thesis. 

 

2.2.2 Data collection 

My research has involved a variety of data types and analyses, which are designed to 

complement one another. 

Chapter 3 focussed on pre-existing Blue-crowned Laughingthrush data, so used existing 

monitoring data, data available from online citizen science websites, and freely available 

online remote sensing data that did not depend on any field-based data collection. I searched 

and/or approached the following citizen science data sources: eBird, Xeno Canto, HBW Alive 

and Oriental Bird Images. I asked Terry Townshend and Chinese collaborators about Chinese 

equivalents; however, they were unable to give me any suggestions. Despite this, I did by 

chance discover Bird Report, a Chinese website. Only eBird had location information that a) 

contained sufficiently precise metadata to provide accurate locations and b) were novel 

locations, not well-known breeding sites. Other data obtained were from Google Earth Engine 

(via USGS), Remap-App and WorldClim. 

Chapter 4’s data were collected by a team of two undergraduate and postgraduate students 

from Jiangxi Agricultural University, a high school student from Nanchang, and fifteen local 

high school students from Wuyuan and Dexing counties, who had all recently completed their 

gaokao (final) examination and were aged 18 or over. These assistants were spread unevenly 

across two months of data collection, and all were volunteers. Interview pilots were 

conducted with two volunteer assistants. All assistants were trained in interview methods 

and were initially supervised by a more experienced assistant once newly trained. Data were 

collected in June and July 2019. 

Chapter 5’s data were collected by a local high school student, a postgraduate volunteer, a 

high school student from Nanchang, and me. I piloted habitat survey techniques at some of 

same villages where Chapter 4 pilots took place. Assistants were trained in habitat survey 

methods and supervised by me. Data were collected in June and July 2019. 



 

71 
 

Chapter 6 used ground-truthed land cover data collected by an undergraduate at Jiangxi 

Agricultural university, a high school student from Nanchang and me, working in a pair along 

stretches of quiet road, using an e-bike as transport. These data were used to validate land 

cover classification in Google Earth Engine. I also used the Blue-crowned Laughingthrush 

location data used in Chapter 3, as well as many of the same remote sensing data sources 

(Google Earth Engine and WorldClim). Data were collected in April - May 2019. 

 

2.2.3 Interviews 

Social science methods can deliver distinct benefits compared to standard ecological 

techniques (Turvey et al., 2014; Nash, Wong and Turvey, 2016). Questionnaire surveys are 

likely the most broadly used method to gather social data in conservation, as they can be 

adapted to different contexts and cultures (Newing 2011). They can be standardised, allowing 

comparison among large numbers of participants across large geographical areas, and 

permitting quantitative analysis (Newing 2011), and can also be delivered face to face in cases 

of illiteracy. However, they are sensitive to the precise wording of questions, and may lack 

the ability to obtain a more in-depth understanding of issues (Newing 2011). 

Piloting the questionnaires for the Blue-crowned Laughingthrush took place in seven villages 

in Wuyuan County, with a total of 40 interviews, carried out by two research assistants. Both 

assistants were trained on interview techniques beforehand, and I created a protocol 

document for future assistants based on lessons learned through this piloting process. Pilot 

villages were different to those included in final sampling design to ensure we were not 

repeating interviews with the same participants. The main issue raised by piloting was that 

many of the older respondents (>70 years old) could only speak the local Wuyuanhua dialect, 

not Mandarin (standard simplified Chinese). Unless addressed, this may have impacted the 

sample of people we were able to interview, missing older residents. The solution to this was 

to recruit high school students from the local area as volunteers, many of whom were able to 

speak fluent Wuyuanhua. Also, it is possible that respondents’ more exaggerated claims of 

seeing Blue-crowned Laughingthrush (such as ‘all year round, every day’) were given more 

often when I was present for interviews, plus I tended to attract larger groups of people which 

interfered with the interviewing process. To counter this, I was not present for any interviews, 
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instead collecting habitat data in the same village at the same time. Questions on last Blue-

crowned Laughingthrush encounters were placed before questions on threats to birds, which 

may affect subsequent threat-related answers, if participants perceived the bird to be special 

in some way. I chose to do so as I was more concerned about Blue-crowned Laughingthrush 

identification, recall, and likelihood of volunteering information on sensitive behaviours being 

negatively affected if questions were placed the other way around. 

All interview questions were translated by a research assistant and checked by another native 

Chinese speaker. All research assistants except one were from Jiangxi Province. No census 

information is available in China so I could not carry out probability sampling in selecting 

respondents, instead sampling by walking through villages and nearby farmland and 

encountering people at ‘random’. Data collection had a cross-sectional study design, with the 

sample aiming to represent the population of the study area (Newing 2011). 

2.2.4 Ethical considerations for working with human subjects 

Ethical approval was obtained from the Royal Holloway, University of London ethics 

committee (reference no. 1536-2019-02-21-16-10-PEBA015). Prior to commencing interviews 

in villages, approval was also sought from village leaders.  For each respondent, my assistants 

and I gave an opening statement explaining the purpose of the research: we stated we were 

from Jiangxi Agricultural University, conducting a study on the birds and landscape of that 

region, and that we wanted to learn more about the local environment from them. I obtained 

free, prior and informed consent from each respondent, and all respondents were assured 

their answers were anonymous and that they could stop the interview at any time. At the 

start of interviews, our assistants reassured respondents that there were no incorrect 

answers, that we just wanted to hear about their experiences, and always gave the option of 

‘don’t know’ answers. Research assistants introduced themselves as local students, and this 

positionality (aided further by involving high school students from the local area) helped 

respondents feel comfortable giving us information. Respondents were unwilling to give 

interviews at a small number of villages, where we were informed that local governments had 

either acted in an exploitative manner towards them or failed to act when they voiced their 

concerns over local issues. However, respondents at most villages were very welcoming and 

open in their readiness to be interviewed and their responses. In fact, in general, respondents 
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did not appear reluctant to share potentially sensitive information on bird trapping during the 

pilot survey or main interviews.  

Permission was granted by the relevant local government office (Jiangxi Wuyuan National 

Forest Bird Nature Reserve Management Office), with full transparency given over methods 

(they were shown a copy of the questionnaire). The government office gave us logistical 

support, including a local driver and contact with local schools as a source of volunteer 

assistants. However, no local officials joined any interviews, to prevent influencing responses. 

No raw data to the individual or village level was or will be shared with authorities, to protect 

participants; data will be shared with authorities as summary reports only. Finally, research 

assistants that contributed significant amounts of data collection are included as co-authors, 

and all others will be appropriately acknowledged (Brittain et al., 2020). 

2.2.5 Habitat data 

The study of avian habitat use and selection has been studied for many years (Grinnell, 1904; 

Svärdson, 1949). Earlier theories were dominated by models correlating aspects of habitat 

and species abundance. These later became models involving density dependence (‘ideal-free 

distribution’ and ‘ideal-despotic distribution’ models; Fretwell and Lucas 1969; Fretwell 

1972), then later into studies that factor, for example, how landscape structure can influence 

how ‘ideal’ or ’free’ animals are while selecting habitats across landscapes (Karr and 

Freemark, 1983; Petit and Petit, 1996). The conceptual frameworks and terminology of 

researchers can be inconsistent in terms of 1). the meaning of habitat use vs selection, 2). 

contextualisation of outputs in terms of behaviour, and 3). the scale or order of the study. I 

will address 1). and 3). below. 

2.2.5.1 Habitat use and selection: definitions 

Habitats can be thought of as ‘regions in environmental space’ (Hirzel and Le Lay, 2008) made 

up of different environmental variables. These variables may be dynamic or static, and 

positively or negatively related to use. Habitat use is defined as ‘the way in which an individual 

or species uses habitats to meet its life history needs’ (Block and Brennan, 1993, cited in 

Jones, 2001, p. 557) and describes the actual distribution of individuals’ across habitats 

(Hutto, 1985). It can also be defined as ‘the quantity of that [habitat] component utilized by 

the consumer in a fixed period of time’ (Johnson, 1980, p. 66). Habitat selection is ‘a 
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hierarchical process of behavioural responses which may result in the disproportionate use 

of habitats to influence survival and fitness of individuals’ (Hutto, 1985; Block and Brennan, 

1993, cited in Jones, 2001, p. 557). It is also thought of as the ‘process in which an animal 

chooses that component [habitat]’ (Johnson, 1980, p. 66), with use being considered selective 

if the habitat use is disproportionate to availability. Also, patterns of habitat use are 

considered ‘the end result of habitat selection processes’ (Jones, 2001, p. 557). A key implicit 

assumption of habitat preference studies is that all habitat within an available region is equally 

accessible, with habitat ‘selection’ and ‘preference’ terms often used synonymously (Beyer et 

al., 2010). Beyer et al. (2010) also used selection as a species’ behaviour in choosing a habitat, 

with preference trying to quantify selection given a habitat unit’s availability; but this does 

not automatically reflect the underlying process. Selection also has ‘a connotation of 

understanding complex behavioural and environmental processes’ (Jones, 2001, p. 557).  

There are two main ways that habitat selection is tested for breeding birds with territorial 

systems (Jones, 2001): 

1). Comparing used with unused habitat, where ‘used’ is habitat currently occupied 

by the study species 

2). Comparing used with available habitats, where ‘available’ is all habitat in a 

specific area, including the habitat currently in use by the study species 

Johnson (1980) considered the used/unused habitat comparison as less informative than the 

used/available comparison. Logistic models can be used to estimate the probability of use for 

used/unused comparisons, creating a ‘resource selection probability function’ (Manly et al., 

2002). However, a species’ absence from a given habitat does not automatically imply 

avoidance of the habitat, as many nonhabitat-related factors can influence habitat selection 

in birds. For example, population demographics and density can have big effects on whether 

habitats are used or not (Wiens, 1989; Haila et al., 1996, cited in Jones, 2001, p. 558). 

Used/available tests are preferable as they facilitate inferences about choice. However, this 

can be an issue as habitat availability measures are very difficult; availability means the 

accessibility of resources and habitat, as well as the amount (Wiens, 1989; Hall et al., 1997, 

cited in Jones, 2001, p. 558). 

 



 

75 
 

2.2.6 Modelling techniques 

In terms of modelling these testing frameworks, for used/unused samples, logistic models can 

be used to estimate the probability of use. Outputs from this are referred to as a ‘Resource 

Selection Probability Function’ (Manly et al., 2002). Resource Selection Functions (RSFs) are 

defined as any function that is proportional to the probability of the use of a resource unit by 

an organism (Manly et al., 2002). For used/available samples, exponential models are often 

used to evaluate ‘the relative probability of use’ (Johnson et al., 2006, cited in Beyer et al., 

2010, p. 2248) and fitted using logistic regression (Manly et al., 2002). 

Generalised linear mixed models (GLMMs) can accommodate several data issues: bias from 

unequal sample sizes, variation in preference among individuals of a species, and lack of 

independence in location data that is temporally correlated (Gillies et al., 2006; Hebblewhite 

and Merrill, 2008; Fieberg et al., 2009, 2010; McLoughlin et al., 2010). However, the sampling 

design of available habitat has ramifications for the interpretation of these models. There is 

some debate around the appropriateness of using logistic (binomial) regression to estimate 

RSFs from use/availability data. For example, Keating and Cherry (2004) claim that logistic 

regression is often misapplied when modelling habitat selection, in terms of issues with 

interpretation and sampling design. According to them, there are three main sampling 

designs: 

• Random (e.g. if nests are common and easily seen, choose random trees in a forest 

and record both characteristics and whether tree contains a nest) 

• Case-control (e.g. if nests are uncommon but easily seen, to ensure the final sample 

has adequate number of nest trees) 

• Use-availability (if only presence can be determined reliably, and nests are cryptic) 

The key differences between these sampling designs is as follows, using trees and nests in a 

forest as an analogy: a random design gives a sample that contains nest and non-nest trees in 

approximate proportion to their occurrence in the forest; case-control gives a sample of nest 

and non-nest trees, but the relative proportions of each are determined by the researcher, 

and might not reflect the underlying population; use-availability gives a random sample of 

nest trees, and a second random sample taken from all trees in the forest, but it is not known 

if the trees in the second sample contained nests. 
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Case-control sampling is best evaluated in terms of odds ratios, which can be difficult to 

interpret in the context of a given problem. Odds ratios can be interpreted as an RSF, but only 

an approximation, with validity resting on the assumptions that probability of use is small for 

all habitats. If this goes above 0.10, the probability of use will be over-estimated (Zhang and 

Kai, 1998). 

2.2.6.1 Spatial scales 

Spatial and temporal scales influence how availability of habitat is perceived (Orians and 

Wittenberber, 1991, cited in Jones, 2001, p. 558). Johnson (1980) defined four orders of 

habitat selection that acknowledge its hierarchical nature and provides a useful empirical 

framework for habitat studies. The natural ordering of habitat selection processes are defined 

by Johnson (1980) as follows: 

• 1st order selection: the geographic range of a species 

• 2nd order selection: the home range of an individual organism, or a social group or 

colony 

• 3rd order selection: how various habitat components are used within the home range 

• 4th order selection: if 3rd order selection denotes a feeding site, then the foraging of 

food items from those available gives the 4th order scale 

In my research, Chapter 5 looks at second and third order habitat selection of the BCLT, while 

Chapters 3 and 6 looks at first order selection. My second and third order sampling design 

made use of quadrats randomly distributed within larger circular sampling units around each 

village or settlement (Figure 3). 
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Figure 3. Diagram of (a) a square habitat survey quadrat. Each quadrat is centred around a specific tree, and the 

diameter at breast height (DBH) and species of each tree over 2m high was taken. The approximate percentage 

(to the nearest 5%) was given for each of a set of land cover types within the quadrat; (b) a circular survey 

boundary around each survey village or settlement. Fifteen quadrats were randomly generated within each 

circle. Second order analyses compare circles as survey units (with quadrats replicated within each unit, and 

third order analyses compare the individual quadrats as nesting or non-nesting quadrats, regardless of circular 

boundary. 
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2.2.7 Remote-sensing data 

To date, no research has been performed on distribution of the Blue-crowned Laughingthrush 

at the landscape scale. First, I looked at its distribution using pre-existing information, without 

visiting the field for ground-truthed data, using a simple land cover map and with a single 

model algorithm, Maxent (Chapter 3). Next, I used field data collected in China to build a more 

complex land cover map, which complements habitat analyses performed at smaller spatial 

scales (Chapter 5) to use in a more robust species distribution model procedure (Chapter 6). 

2.2.7.1 WorldClim climatic data 

A set of 19 bioclimatic variables are available from the WorldClim website. These were 

developed to represent the kinds of seasonal trends relevant to the physiological constraints 

of different species and are widely used for species distribution modelling. The variables are 

averaged between the years 1970-2000 (Fick and Hijmans, 2017). I downloaded the highest 

resolution available (30 arc seconds), and all 19 variables, and checked collinearity separately 

across my two study extents for Chapters 3 and 6. 

2.2.7.2 Elevation 

Digital elevation data are available through Google Earth Engine via the Shuttle Radar 

Topography Mission, provided by NASA (SRTM; Farr et al., 2007). SRTM was flown aboard the 

space shuttle Endeavour between February 11-22nd, 2000, and represents a near-global set 

of land elevations. I used the V3 product, which has a resolution of 1 arc-second 

(approximately 30m). 

2.2.7.3 Vegetation indices 

Vegetation indices are designed to enhance sensitivity to characteristics of vegetation in 

remote sensing, whilst reducing factors such as atmospheric effects and soil reflectance (Fang 

and Liang, 2014). Two of the most commonly used indices are Normalised Difference 

Vegetation Index (NDVI; Rouse et al., 1974) and Enhanced Vegetation Index (EVI; Liu and 

Huete, 1995). NDVI enhances the contrast between soil and vegetation, and EVI was 

developed to optimize the signal in regions with high biomass or dense vegetation, hence its 

use for our study in subtropical China. 
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2.2.7.4 Land cover 

Habitats can be mapped through categories of land cover and can be derived from pre-made 

maps or through customised land classification procedures. Both land cover and vegetation 

indices were derived from Landsat 8 Surface Reflectance imagery (Chapter 3) and Sentinel-2 

(Chapter 6), through the Google Earth Engine platform (Chapter 3 and 6) and the Remap App 

tool for land cover (Chapter 3). Landsat 8 is 30m resolution, with five visible and near-infrared 

spectral bands, and two thermal infrared bands. Sentinel-2 is 10m resolution with three 

visible spectral bands, three red edge, one near-infrared and two short-wave infrared bands 

(Aschbacher and Milagro-Pérez, 2012). 

As fitting SDMs to a large number of environmental predictors can give misleading outcomes, 

it is best to avoid this by defining a small number of predictors which are likely to be 

biologically relevant to the species in question (Peace-Higgins and Green, 2014).  

 

2.2.8 Land classification methods 

Classifications are used to quantify landscape features for different types of analysis. They 

involve taking imagery of a defined area, deciding on a classification scheme (defining the 

classes), collecting training and validation data, classifying the imagery, then assessing 

classification accuracy. The objective in my case is to better understand the relationship 

between Blue-crowned Laughingthrush occurrences or range and different types of habitat 

or land cover, through use of a land cover map in a species distribution model. Automated 

classification methods use computer algorithms to classify pixels. Automated classification 

methods fall into two categories: supervised and unsupervised. Unsupervised methods do 

not require training data: users specify the number of classes they want to identify and the 

algorithm divides the pixels by spectral information alone, into clusters of similar pixels. These 

are typically used for exploratory analyses. In recent years, machine learning algorithms have 

gained popularity as they do not require a priori information and are robust to large feature 

spaces, plus they can combine categorical with continuous data (Wegmann et al., 2016). 

 

 



 

80 
 

2.2.8.1 Supervised classification 

Supervised classification is defined by Wegmann et al. (2016) as follows: supervised classifiers 

use training data which are sample pixels of the classes to be classified. The algorithm uses 

these pixels to ‘learn’ the characteristics of those classes from their predictor values and uses 

that knowledge to classify all unlabelled pixels. Predictor values can be spectral bands as well 

as Vegetation Indices. I am using a supervised algorithm as I want to classify specific, pre-

determined land cover types, and have prior knowledge of my study landscape as well as 

ground-truthed validation data. 

2.2.8.2 Types of supervised classifier algorithm available in Google Earth Engine 

Classification and Regression Trees (CART) (Breiman et al., 1984): involves construction of a 

decision tree: a cascading system of asking questions of the data based on spectral values 

until the most probable class is reached. However, there are disadvantages to using a single 

tree, including some inaccuracies with new data. 

Maximum Entropy (Maxent) (Berger, Della Pietra and Della Pietra, 1996): is a machine 

learning algorithm, which is often employed when users have relatively little training data 

compared to the number of variables they have. Maxent attempts to find the best probability 

distribution that satisfies various constraints. It also selects the probability distribution with 

the highest amount of entropy possible. 

Minimum Distance (Wacker and Landgrebe, 1972): determines the mean of all the different 

classes. When classifying a new pixel, it works out which mean reflectance value for each land 

cover class is closest. The algorithm can cause issues as it does not consider the shape and 

distribution of groups of land cover data. However, this can be corrected through using 

Mahalanobis distance which corrects for data distribution. 

Support Vector Machine (SVM) (Burges, 1998): tries to find the optimal line in feature space 

that separates the different classes, by maximising or equalising the distance between the 

two closest observations. The machine part creates new dimensions to separate more 

complex classes (through transformations, such as squaring axes), but also classifies through 

regressions. Users need to specify which type of SVM to use, as well as what kernel to use to 

split classes (the default is linear, and other options include polynomial, sigmoid etc.). 
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Random Forest (RF) (Breiman, 2001): involves multiple tree classifiers. It incorporates a factor 

of randomness into its decision making. Each decision tree contains a random component, 

and when new pixels are classified, it is done so by all of the decision trees in the ‘forest’. The 

class that the most trees predict is selected for that pixel. 

NaiveBayes (Kononenko, 1991; Hand and Yu, 2001): determines the odds of pixels having a 

certain value and being assigned a certain land cover class. It then compares the probabilities 

of all the variables for being part of the different classes. It assumes that features are 

conditionally independent of one another. 

I selected RF for my land cover classification, and compared its performance to CART, due to 

their relative ease of use without specifying optimal parameters based on a priori knowledge 

(unlike SVM - https://developers.google.com/earth-engine/guides/classification). Also, these 

methods are non-parametric so less sensitive to the distribution of input data (Friedl and 

Brodley, 1997). CART and RF have previously been shown to perform highest for classification 

of other habitat types in Landsat imagery (Lee et al., 2016). 
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2.2.9 Species Distribution Modelling 

Species distribution modelling was used to describe the climate and habitat associations of 

the Blue-crowned Laughingthrush at the landscape scale in Chapter 3 and Chapter 6. For 

Chapter 6, I used the R package biomod2 (Thuiller et al., 2009). All model algorithms available 

for biomod2 are given in Table 1. 

2.2.9.1 Modelling techniques 

Table 1. Model algorithms available in biomod2. 

Biomod2 name 
(abbr) 

Other name 
(abbr) 

Data Type Reference Use in 
chapter? 

Y/N 

Generalised Linear 
Model (GLM) 

NA Presence/Absence Statistical, 
Regression 

McCullagh 
and Nelder 
(1989) 

Y 

Generalised 
Additive Model 
(GAM) 

NA Presence/Absence Statistical, 
Regression 

Hastie and 
Tibshirani 
(1990), Yee 
and Mitchell 
(1991) 

Y 

Generalised 
Boosting Model 
(GBM) 

Boosted 
Regression 
Trees (BRT) 

Presence/Absence Machine 
learning 

Ridgeway 
(1999) 

Y 

Classification Tree 
Analysis (CTA) 

Decision Tree 
Analysis (DT), 
Regression 
Tree Analysis 
(RTA) 

Presence/Absence Machine 
learning 

Breiman et al. 
(1984) 

N 

Artificial Neural 
Networks (ANN) 

NA Presence/Absence Machine 
learning 

Ripley (1996) N 

Surface Range 
Envelope (SRE) 

BIOCLIM Presence only Profile 
matching 

Busby (1991) N 

Flexible 
Discriminant 
Analysis (FDA) 

Mixture 
Discriminant 
Analysis 
(MDA) 

Presence/Absence Statistical Hastie et al. 
(1994) 

Y 

Multiple Adaptive 
Regression Splines 
(MARS) 

NA Presence/Absence Statistical, 
Regression 

Friedman 
(1991) 

Y 

Random Forest 
(RF) 

NA Presence/Absence Machine 
learning 

Breiman 
(2001) 

Y 

Maximum Entropy 
(Maxent.Phillips) 

NA Presence/Background Machine 
learning 

Phillips et al. 
(2006) 

Y 

Maximum Entropy 
(Maxent.Phillips.2) 

NA Presence/Background Machine 
learning 

Phillips et al. 
(2006) 

N 

 

 

 



 

83 
 

2.2.9.2 Short description of each model type 

2.2.9.2.1 Generalised Linear Model (GLM) 

GLMs have been used extensively as SDMs due to their good statistical foundation and 

capability in modelling ecological relationships (Austin, 2002) with multiple predictors. They 

fit parametric terms with a combination of linear, quadratic and/or cubic terms, and use a link 

function to describe how the mean of the response variable (Y) depends on linear predictors, 

and a variance function describing how Y’s variance depends on its mean (Franklin 2009). 

GLMs can be fitted to presence/absence, count or ordinal data. Logistic regression is the most 

common form of GLM in SDMs using presence-absence data. 

2.2.9.2.2 Generalised Additive Model (GAM) 

GAMs use non-parametric, data-defined smoothers, fitting non-linear relationships between 

predictors and response (Elith et al., 2006; Franklin 2009), with the coefficients of a GLM 

replaced by a smoothing function. They are more capable of modelling complex shapes of 

ecological responses than GLMs. Spatial predictions are made by importing new data (entire 

GIS datasets, with values for every pixel), predicting using existing software, and exporting 

the results as a GIS map (Franklin 2009). However, GAMs cannot be used to calculate species 

responses in terms of tolerance or optimums (Hirzel et al., 2002) and as they are additive, it 

is difficult to add interaction terms. Despite this, they usually out-perform GLMs in SDMs 

(Meynard and Quinn, 2007), but GAMs often do not make accurate predictions outside of the 

ranges of the predictors upon which they are built (Pearce-Higgins and Green 2014). 

2.2.9.2.3 Multiple Adaptive Regression Splines (MARS) 

MARS is viewed as a generalization of stepwise linear regression, suitable to problems with 

many predictor variables, or as a modified regression tree approach (Franklin 2009). Its use 

of piecewise splines gives it a similarity to GAMs (Franklin 2009), and its coefficients are 

estimated for sections of the model between inflection points (knots) along the range of a 

predictor. Initially, a large model is fit, which is then pruned (made less complex) by iteratively 

removing basis functions which add the least to model fit. MARS is computationally fast for 

large and complex datasets, and more straightforward for spatial prediction than GAMs. 
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However, local variations in the data can bias results, leading to a loss of predictive power 

when extrapolating to new data (Franklin 2009). 

2.2.9.2.4 Generalised Boosting Model (GBM) & Classification Tree Analysis (CTA) 

GBMs, also known as Boosted Regression Trees (BRT), are a type of Decision Tree (DT). 

Decision tree models aim to partition, or divide, data into homogenous sub-groups (nodes) 

based on thresholds within ranges of predictor variable values, according to different classes 

or response variables (Franklin 2009). This occurs as three stages: 1). tree growing, 2). tree 

stopping and 3). tree pruning (Olden, Lawler and Poff, 2008). GBMs deal well with categorical 

predictors, interactions and threshold responses; however, they can also be unstable and 

have lower prediction accuracy than other methods, so new methods have been developed 

to counter this. BRTs create DTs many times (e.g. 30-80) without pruning and performing 

model averaging on the results, known as ‘bagging’. ‘Boosting’ then refers to how each 

observation does not have equal weighting but instead has a higher probability of selection if 

it was misclassified by previous models (Ridgeway, 1999). A portion of the data are held ‘out 

of each sample’ and used to evaluate the model. GBMs are unique among ensemble tree 

models as they are sequential. 

2.2.9.2.5 Random Forests (RF) 

RFs are another type of decision tree ‘bagging’ that builds many de-correlated trees, which 

are then averaged (Hastie et al., 2009). Many trees are developed from data subsets, as 

before, but now each split in the tree model is then developed with a random subset of the 

predictor variables. Many trees (500-2000) are grown without pruning, and then these 

predictions are averaged. Again, a test sample is held back for assessing model error, and 

variable importance. 

2.2.9.2.6 Artificial Neural Networks (ANN) 

Neural networks are large family of models based on the derivation of new, composite 

variables which are linear combinations of predictor variables; these then model the response 

as a non-linear (often logistic or sigmoidal) function of these composite variables, within a 

‘hidden layer’. They are, in essence, non-linear statistical models (Hastie et al., 2001). ANNs 

are two-stage classification/regression models. For classifying k classes, there are k units in 
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the output layer: for species occurrence (single class), then there is one unit in the output 

layer. Overfitting these models is prevented through limiting the number of iterations during 

the estimation procedure through cross-validation. Experience is needed to estimate these 

models: the user must decide the starting values for weights, number of hidden layers and 

other parameters. ANNs can be more difficult to operate than other modelling methods for 

SDMs, and have a steep learning curve. 

2.2.9.2.7 Maximum Entropy (Maxent) 

Maximum entropy is the principle from information theory/statistical mechanics that 

probability distributions with maximum entropy (the most spread out and closest to uniform), 

subject to known constraints, is the best approximation of an unknown distribution. This is 

because it makes no assumptions about unknowns, and agrees with everything that is known. 

In SDMs, the estimated distribution is derived from the multivariate distributions of habitat 

conditions that are associated spatially with species occurrence records. When applied to 

presence only data, Maxent has a higher predictive accuracy than other methods in 

comparisons, and it was designed for presence only data and to overcome issues with small, 

undesigned samples (Franklin 2009). 

2.2.9.2.8 Surface Range Envelope (SRE) 

SRE, also known as BIOCLIM, was one of the first species distribution modelling software 

systems. It creates a minimum rectilinear envelope around all presences (or 95% of them) 

giving a binary classification of suitable/unsuitable habitat (Franklin 2009). SRE is simple and 

recently used for applications such as planning species reintroductions (Pearce and 

Lindenmayer, 1998) and determining potential distributions of widespread species (Zhao et 

al., 2006). 

For my research, I left out three modelling techniques, as these are considered unlikely to 

improve the results, based on the available literature: SRE (BIOCLIM) due to its weaker 

performance (Elith et al., 2006); ANN, as it is not easily interpretable, requires experience to 

fit effectively, and is disconnected from the underlying biological mechanisms (Franklin 2009); 

and CTA, as both BRT and RF show improvements on a single decision tree modelling process 

(Franklin 2009; Prasad, Iverson and Liaw, 2006). 
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2.2.9.3 Model evaluation 

The available Blue-crowned Laughingthrush location data are not necessarily fully 

representative of its prevalence in the environment: there is likely to be some bias towards 

where the species is already known to occur, resulting in uneven field data collection with 

biased sampling across the known range. Therefore, to assess model performance, a model 

metric is required which is insensitive to species prevalence. Area Under the Curve (AUC) of 

the receiver-operating characteristic (ROC) is a measure of prediction accuracy (Hanley and 

McNeil, 1982) that is independent of a single threshold; conversely, threshold-dependent 

measures are sensitive to species prevalence (Franklin 2009). AUC typically indicates the 

proportion of time that a random selection from the positive (true positive or sensitivity) 

group will score higher than a random selection from the negative (false positive or 1-

specificity) group (Fielding and Bell, 1997). However, for my dataset, which is composed of 

presence and pseudo-absences, AUC must be interpreted as the probability that a model 

scores a random presence site higher than a random background site (Phillips et al., 2009). 

AUC values of >0.9 indicate good model performance, 0.5-0.7 moderate performance, and 

<0.5 poor performance (Franklin 2009). 

As I had a small amount of location data available for the Blue-crowned Laughingthrush, I was 

unable to use ‘out-of-sample’, independent validation data. However, other techniques exist 

to instead partition sample data into ‘training’ and ‘test’ samples. These include 

bootstrapping (sampling, with replacement), jack-knifing (n – 1 partitions, used for training) 

and k-fold partitioning (k – 1 partitions, pooled for testing). These approaches all experience 

trade-offs between model accuracy (large training samples) and lower variance in the 

estimate of error (large testing samples), which can be overcome using repeated instances of 

model partitioning and fitting (Fielding and Bell, 1997). Training and test points are typically 

randomly assigned per model run; however, this approach is associated with the risk of spatial 

autocorrelation (Pearce-Higgins and Green 2014), as it may select training and testing 

locations that are geographically close together. 

I used the approach carried out by Bladon et al. (2019, 2021), partitioning my presence and 

pseudo-absence data into radial partitions. I chose three partitions due to the small number 

of available species presence records, and spread these spatially across my study region to 
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achieve an equal number of points per partition, but resulting in very different numbers of 

pseudoabsences. Panels were created by splitting the study area from the Blue-crowned 

Laughingthrush range centre. The range centre was based on the simple mean and the x and 

y coordinates of all presence records; this showed less bias towards more distant, northern 

records than a range centre based on the geodesic centroid of the convex hull around all 

records, or a geodesic centroid of different sized cells. I started from due north and split the 

area into roughly equal partitions, then adjusted these until presence locations were 

distributed as equally per partition as possible. 
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3. Re-writing the baseline: integrating monitoring and 

citizen science data to guide conservation for the 

Blue-crowned Laughingthrush Pterorhinus courtoisi 

 

Rosalind A. Gleave, Sarah K. Papworth, Steven J. Portugal, Fenqi He, Weiwei Zhang, Tao Liu, 

Yingyu Su, Bai Mo, Laura Gardner & Samuel T. Turvey 

3.1 Abstract 

Evidence is needed to develop and monitor appropriate conservation actions, with key 

components of baseline data including population trends, and factors explaining spatial 

distribution. However, although important for developing an evidence base, monitoring data 

are often not collected using standardized protocols, and might be unable to track population 

trends accurately. Blue-crowned Laughingthrushes (BCLT; Pterorhinus courtoisi) are a 

Critically Endangered colonially breeding passerine found only in southeastern China, but 

there is little understanding of their true population trends or why their breeding range is 

highly restricted. By combining, contrasting and analysing two independently collected 

monitoring datasets from 2000-2017, we gained important new insight into BCLT population 

trends, and bioclimatic and abiotic influences on their spatial distribution. We found that the 

long-term BCLT population trend has not changed significantly over time, and that the total 

population in 2017 may be 42.8% higher than previously thought. Independent counts at the 

same sites showed minimal observer differences, but only 60% of known breeding sites were 

monitored by both sets of observers. Breeding site occupancy increased over time, although 

this may be due to changes in survey effort. A species distribution model using both 

monitoring data and independently available citizen science data indicates that BCLT 

presence is associated with annual temperature ranges between 30-34°C, elevation between 

0-400m, and mean precipitation of 600-1000mm in the wettest quarter (impacting the BCLT 

during their breeding season). The model also identifies suitable regions outside the known 

BCLT breeding range that should be surveyed for additional breeding sites. Our results show 

that integrating and analysing multiple sources of pre-existing data on threatened species can 

provide key information into their long-term population trends and better understanding of 

their environmental requirements.  
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3.2 Introduction  

Evidence in conservation is required for developing effective management frameworks, and 

for avoiding unwanted outcomes from interventions (Sutherland et al., 2004, McCarthy & 

Possingham, 2007; Nichols & Williams, 2006; Travers et al., 2019). However, threatened 

species are often poorly understood and lack robust baseline data on population size and 

dynamics, distribution, and/or threats from which to design effective conservation action. 

Accurate characterisation of population trends is especially important for the management 

of threatened species (Joseph et al., 2006), with inaccurate estimates potentially limiting the 

ability to determine the effectiveness of management actions (Wiest et al. 2018). These 

inaccuracies can lead to inappropriate assessment within metrics such as the Red List Index 

(Connors et al., 2014; Fox et al., 2019), or even potentially allowing species to decline or 

become extinct before effective conservation responses can be implemented (Collar 1998). 

Understanding the factors that underpin spatial distributions of threatened species is also 

crucial to developing appropriate conservation actions, especially for highly range-restricted 

species; these can be caused by drivers as wide-ranging as climate, habitat specialisms, 

habitat loss or overexploitation (Jones, Linsley and Marsden, 1995; Zhou et al., 2005; Donald 

et al., 2012; Monadjem et al., 2019; Colyn et al., 2020). 

Many long-term monitoring programmes have been established with the goal of accurate 

population trend detection (Durant et al., 2007, Sauer et al. 2013). Effective long-term 

monitoring programmes should have clear objectives and consistent methods, address 

defined questions, and possess adaptive sampling designs capable of detecting change (Field 

et al., 2007; Lovett et al., 2007). For some threatened species, long-term monitoring datasets 

may already exist in the form of unpublished grey literature, such as government or 

consultant reports and student projects, forming valuable and potentially untapped resources 

(Awan, Buner and Kingdon 2015). However, monitoring data are frequently collected within 

frameworks lacking one or many of the above traits (Reynolds, Thompson and Russell, 2011; 

Lindenmayer et al., 2012). Studies that do not follow recommended requirements can result 

in limited or biased data which are unusable, have low statistical power, or contain 

inaccurately perceived trends (Field et al., 2007). A lack of statistical power can be particularly 



 

96 
 

critical when dealing with threatened species with already low numbers. With a rigorous 

analytical process, it can often be possible to detect underlying ecological signals in such 

datasets that can feed back into and refine monitoring protocols (Field et al., 2007; Holland 

et al., 2012). However, few studies have yet employed rigorous analytical approaches when 

trying to interpret non-systematically collected monitoring data for species of conservation 

concern. 

Spatial presence data may also be available for threatened species from multiple sources, 

including both published scientific sources and grey literature. Presence data can be modelled 

alongside environmental data to understand species’ niches or distributions at a variety of 

spatial scales (Elith and Leathwick, 2009). Species Distribution Models (SDMs) have been a 

common tool in recent decades for understanding the determinants of restricted species 

ranges (Araújo & Guisan 2006), and can use readily available remote sensing data (Bradley & 

Fleishman 2008). SDMs extrapolate species distribution information both spatially and 

temporally, investigating which environmental variables (e.g. bioclimatic or land cover) 

correlate with species presence. Important applications for SDMs include providing 

explanations for the causal determinants of a species’ range (Rodríguez et al. 2007), as well 

as predicting current or future distributions (Hamazaki, 2002; Menon et al., 2010; Bladon et 

al., 2021).  

However, whereas larger sample sizes (n≥50) have a positive effect on SDM accuracy 

(Hernandez et al., 2006), threatened species can suffer from limited data from which to 

estimate distributions or environmental associations (Chen et al., 2018). To maximise model 

accuracy through increased sample size and geographic coverage, monitoring datasets can be 

supplemented with secondary data available from sources such as citizen science activities 

(Tulloch et al., 2013; Lees and Martin, 2015; Tiago, Pereira and Capinha, 2017). Citizen science 

data have many potential benefits, including new records of rare species (Bonney et al., 2009; 

Dickinson, Zuckerberg and Bonter, 2010) and large datasets over broad geographic areas 

(Tulloch et al., 2013), but can also be affected by low estimate precision (Snäll et al., 2011), 

uneven survey effort, errors within records (Robertson, Cumming and Erasmus, 2010), and 

taxonomic misidentification (Tiago, Pereira and Capinha, 2017). However, despite these 

potential issues with data integrity, citizen science data can generate usable predictions for 

species distributions (Coxen et al., 2017; Tiago, Pereira and Capinha, 2017); and combining 
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data from citizen science projects with other data sources has revealed a range of novel 

conservation insights for many threatened species (Lees and Martin, 2015; Lees, 2016; Giovos 

et al., 2018; Yang et al., 2018; Giovos et al., 2019).  

A species that would benefit from critical assessment of existing data sources is the Blue-

crowned Laughingthrush (BCLT; Pterorhinus courtoisi), a brightly coloured passerine with an 

extremely restricted breeding range. The only known extant population breeds in northern 

Jiangxi Province, China (He et al. 2017) and its historical distribution is unknown (Wilkinson et 

al. 2004), as its type specimen was collected from a locality within its current limited range 

(Menegaux 1923). A second population known from Yunnan Province, usually recognised as 

the separate subspecies P. courtoisi simaoensis (although see Collar et al. 2019), is now 

regarded as extirpated (Wilkinson and He 2010; He et al. 2017). As BCLT breed next to villages 

and agricultural habitat (Richardson 2005; He et al. 2017), it is unclear why the species is not 

more widespread across other human-occupied and modified landscapes in southern and 

central China (Ellis, 2004). The BCLT is Critically Endangered (BirdLife International 2018) with 

a maximum estimated population size of 348 individuals at five known breeding sites in 2017 

(He et al. 2017, BirdLife International 2018). Its Red List status is precautionary, based upon 

the species having a small, fragmented known range, and a very small population that may 

still be in decline (BirdLife International 2018). While the species has only ever been recorded 

breeding in northeast Jiangxi, the possibility of overlooked breeding sites does exist (Hong et 

al. 2006; BirdLife International 2018). 

Long-term monitoring data on spatial and temporal BCLT population dynamics have been 

collected since 2000, with two independent survey datasets available from different teams. 

Additional opportunistic BCLT observations are also available from a citizen science database 

(eBird.org). However, these data have not yet been integrated or assessed within a robust 

quantitative analytical framework, and previous assessments of BCLT population trends have 

been based on simple plots of raw data. Furthermore, there have been no studies on BCLT 

landscape-scale biotic and abiotic requirements associated with these available presence 

records, with ecological investigations limited to small-scale studies of breeding sites (Zhang 

et al., 2017; Huang et al. 2018; Liu et al., 2020). This limited assessment of available data 

represents a possible barrier to understanding the species’ biology and ecology, thus 

hindering the possibility of developing a successful implementation plan for population 
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recovery. A better understanding of BCLT population trends and ecological requirements 

could also be used to inform a more robust Red List assessment for the species. 

This study investigates whether combining and contrasting different pre-existing data sources 

and analytical approaches has the potential to contribute to effective conservation 

management of the BCLT, through: (a) establishing a better understanding of its long-term 

population trends; (b) establishing a better understanding of its biotic and abiotic 

requirements at the landscape scale, based on its breeding range; and (c) identifying other 

potential locations to search for previously unknown breeding sites. Our findings provide a 

strengthened evidence-base for this poorly-known species, and also provide a template for 

maximising the information-content of other highly threatened populations through critical 

evaluation of existing sources. 

3.3 Methods 

3.3.1 Datasets 

3.3.1.1 Census datasets 

The Jiangxi population of BCLT is only known from two adjacent counties in northeastern 

Jiangxi Province, China (Figure 1): Wuyuan County (29°14’53”N, 117°51’43”’E) and Dexing 

County (28°55’50”N, 117°35’41”E). Two BCLT census datasets are available for these counties: 

(1) dataset collected by Fenqi He (henceforth ‘HFQ’) in 2000-2017; (2) dataset collected by 

Weiwei Zhang (henceforth ‘ZWW’) and her MSc students in 2012-2017. Both observer groups 

performed counts at 12 breeding sites. 

The HFQ dataset was collected through annual field visits during the BCLT breeding season 

(between April and July) (Yu 2003; Zhang et al., 2017; Liu et al., 2020). For the first few years 

of the census, a core area around sites 1-3 (Table S1, Supplementary Information) was 

surveyed, as the principal focus of the researchers was on BCLT breeding ecology. During 

c.2006-2007, a wider search was performed for new breeding sites at locations within 

Wuyuan and Dexing counties and in adjacent regions of southern Anhui and western Zhejiang 

provinces considered to contain potentially suitable habitat (Figure 1). In subsequent years, 

the same sites in Wuyuan and Dexing counties were surveyed, with additional areas also 

surveyed each year; HFQ searched for nine breeding colonies each year, and searched for new 
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sites if these colony were not located where they had previously been found. HFQ looked 

actively for new breeding sites and discovered new locations across a wide area, but did not 

record sites that are very close to other known ones, possibly because search effort stopped 

after nine colonies were identified. BCLT breeding colonies were detected near the start of 

the breeding season both visually and acoustically, as they have distinctive contact calls that 

are easy to distinguish in the field (F. He, 2019, personal communication). Once breeding sites 

were confirmed, counts were made of all adult birds present at the site; counts were 

performed at this time of year because BCLT flocks tend to move between trees or vegetation 

patches as a single group at the beginning of the breeding season, flying in a ‘follow the leader’ 

formation that facilitates more precise counts (F. He 2019, personal communication). A 

subsequent visit to these sites was also typically made later in the breeding season, to re-

confirm that the birds were indeed breeding based on the location of active nests.  

The ZWW dataset was collected by checking for the presence of breeding birds at all past 

BCLT breeding sites known to the research group, by visually looking for nests. Searches also 

took place on an annual basis between April and July. Sites surveyed each year were based 

on sites previously discovered by HFQ; no potential new breeding sites were systematically 

checked or monitored, although opportunistic checks were made of sites if BCLT were heard 

in passing. This observer group did not actively searching for new colonies but instead 

typically spent longer periods in small geographical areas, increasing the likelihood that new 

local sites could be discovered opportunistically.  

Neither set of bird counts were conducted following a standardised survey methodology. In 

each dataset, the sum of the counts from each site was treated as a total population count (a 

census) for each year, or absolute numbers of individuals, rather than a sample. No birds 

possessed colour rings or other ways to mark or recognise individuals. The census datasets 

were georeferenced to the scale of specific villages within or adjacent to which BCLT were 

recorded as breeding, providing presence-only data. No data are available on survey effort, 

detectability, absence of birds from all visited sites during any survey years, or specific survey 

dates for each annual survey. These datasets were integrated by holding discussions with 

each observer group to ascertain exact locations, then developing a new numbering system 

(Table S1, Supplementary Information).  
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3.3.1.2 Citizen science data 

We collated all georeferenced BCLT location records available on www.eBird.org. eBird is a 

global data portal for birdwatchers to input their bird sightings to the benefit of researchers 

(eBird 2019). We interpreted all records as accurate identifications, as the BCLT is a highly 

distinctive species that is difficult for reasonably competent birdwatchers to confuse with 

other locally occurring species. A request was made to eBird for sensitive and protected 

location data from the online platform, recovered records of 41 BCLT sightings; these were 

predominantly from Wuyuan County, with a single sighting reported in southern Anhui 

Province (Figure. 1). Records at all locations dated from 2008-2018, and were all recorded 

during the BCLT breeding season (April to June); however, as these are past records, we 

cannot confirm whether these individuals were observed at breeding sites or were passing 

through the landscape.  

 

 

Figure 1. Blue-crowned Laughingthrush occurrence records from annual census (blue), eBird.org (yellow) 

and the lead author’s own opportunistic sightings in the field in 2018 and 2019 (black). Records are 

distributed across three counties in Jiangxi and Anhui provinces, China. 

http://www.ebird.org/
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3.3.1.3 Opportunistic sightings 

Six sightings of BCLT away from known breeding sites were made by R. Gleave during June 

2018 and July 2019. All were localities based along the Le’An river in Wuyuan and Dexing 

counties (29.107-29.108, 117.80-117.82). 

3.3.1.4 Environmental layers 

Administrative provincial and county boundaries were downloaded from WorldMap 

(available at http://worldmap.harvard.edu/chinamap/; Guan et al. 2012). Nineteen 

bioclimatic variables were obtained from the WorldClim global climate database 

(http://www.worldclim.org/; Supplementary Information, Table S2 & S3) (Fick and Hijmans, 

2017). To avoid model overfitting, raster layers were clipped to the study extent (96.164, 

124.289, 21.462, 31.099) in QGIS, and 2,000 random points were generated in a shapefile of 

the same extent. Values were extracted from each raster layer using the ‘Point Sampling Tool’ 

plugin, which were saved to CSV format, then checked for collinearity within the corrplot 

package in R (Wei & Simko 2021). Variables were excluded that had a coefficient of correlation 

>0.7 (Green 1979; Supplementary Information, Figure S1 & S2). As including higher numbers 

of predictors can lead to misleading correlations, it is better practice to identify a small 

number of predictors which are likely to have relevance to the study species (Pearce-Higgins 

and Green 2014). Five bioclimatic variables that were not strongly intercorrelated were 

selected for inclusion in models (annual mean diurnal range, annual temperature range, mean 

temperature of wettest quarter, precipitation seasonality and precipitation of wettest 

quarter; Table S3, Figures S1 & S1; Supplementary Information), which represent indices of 

temperature and precipitation either annually or during the BCLT breeding season.  

Land cover classifications were obtained using the Re-Map App land tool (available at 

https://remap-app.org/; Murray et al. 2017), which combines Landsat imagery and Google 

Earth Engine technology. Users can manually select pixels from pre-processed Landsat images 

according to self-selected and generated categories, which are then used by the tool’s 

algorithm to classify land types. Land cover types classified for our study area were forest, 

agriculture, human settlement and water. Exposed rock in mountainous areas (which 

represent remote areas relatively unaltered by human activity and surrounded by forest) was 

http://worldmap.harvard.edu/chinamap/
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classified as forest to prevent it from being classified as human settlement; however, this 

formed a minimal proportion of the study area. 

Elevation data were generated from NASA Shuttle Radar Topography Mission (SRTM) Digital 

Elevation imagery at a resolution of 1 arc-second (approximately 30m) using Google Earth 

Engine (Gorelick et al. 2017). Imagery was clipped to the study extent. NDVI was generated 

from USGS Landsat 8 Collection 1 Tier 1 Top of Atmosphere Reflectance imagery, also using 

Google Earth Engine. NDVI data were also calculated in Google Earth Engine (see Additional 

Methods, Supplementary Information). 

3.3.2 Population Trend Analysis 

BCLT population trends were investigated using the two census datasets. Median values of 

the census data were taken where data were presented as range of values (e.g. 40-50). If the 

median was a fraction, the lower integer of the two possible values was taken (e.g. if the 

median value was 44.5, the value would be taken as 44). All values were treated as 

conservative; for example, where ‘70+’ was given, this value was treated as ‘70’. Any ‘?’ 

values, where BCLT were detected at a site but the observer was unsure if the birds were 

breeding, were treated as ‘NA’ values. 

The mean and standard error of differences between census counts were calculated 

(comparing identical sites within identical years) to measure precision between datasets. A 

simple linear model of the differences was used to explore differences between the two sets 

of count data, with difference between survey counts modelled as a function of breeding site 

and year. The two datasets were then pooled together to fill any gaps in surveying. Where 

observer groups showed a difference between counts at a given site and year, the highest 

count was used; data were never summed together for this purpose. Separate and pooled 

survey counts and breeding site occupancy were then plotted over time. 

Analysis of BCLT population trends over time were then carried out on the combined dataset 

using R version 4.0.2 (R Core Team, 2020). Exploratory plots of BCLT population counts 

suggested that temporal trends may not be linear, so additive models were used as they 

permit the modelling of non-linear relationships (Wood, 2006). A random intercept for the 

site variable was also included in analyses as recommended by Harrison et al. (2018), to 
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account for non-independent error structures generated by repeated measures at the same 

breeding sites.  

A Bayesian zero-inflated poisson generalised additive mixed model (ZIP GAMM) was built in 

order to model data from all 15 breeding sites (as defined by census surveys). Data 

exploration showed that data contained a high proportion of zeros (65%), with an uneven 

percentage of zeros from year to year (14-71%). ZIP models are a form of hurdle model, which 

model ‘true’ zeros (when habitat is unsuitable) versus ‘false’ zeros (due to observer or animal 

error, i.e. when observers failed to detect birds, or when birds were not present at the time 

of survey but would typically be present; Zuur 2014). BCLT are rare, colonial breeders with an 

uneven dispersion across the study area (He et al., 2017), and thus they will not necessarily 

occupy all suitable breeding habitat, meaning that the dataset is expected to contain a high 

proportion of zeros. The ZIP GAMM was fitted using the Bayesian inference framework 

Integrated Nested Laplace Approximation (INLA; Rue, Martino & Chopin 2009). We used the 

ZIP term ‘zeroinflatedpoisson1’ family, which uses all observations of the response variable 

in the model (not just those over 0). The mean probability across years of recording birds at 

any individual site was 61%; this value was fairly consistent across most sites (Figure S3, 

Supplementary Information), and so the model used a constant zero probability parameter. 

Default priors were used. 

Model equation: Bird_count ~ Intercept + s(Year) + (1|Site)  (count part of the model) 

                                   Bird_count ~ Intercept + Year                          (binary part of the model)   

A separate frequentist GAMM was also fitted to the data (see Frequentist GAMM, 

Supplementary Information). 

3.3.3 Species Distribution Modelling 

Species distribution modelling was conducted using Maxent v 3.4.0 (Maximum Entropy; 

(Bonney et al., 2009, Phillips et al. 2006, Phillips 2017) to understand which environmental 

variables show a relationship with BCLT presence. Maxent is a machine-learning method 

suitable for use with presence only data and performs well even with low sample sizes 

(Phillips, Anderson and Shapire, 2006; Papeş and Gaubert, 2007). Model performance of 

SDMs is known to decrease quickly for sample sizes below 20 (Stockwell and Peterson, 2002), 
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so we combined the existing census data (21 locations) with 41 georeferenced BCLT records 

from eBird with sufficiently accurate metadata for inclusion in the SDM, with our own 

additional opportunistic field observations from the 2018 and 2019 breeding seasons (six 

additional locations); this gave a sample of 68 records. There is no risk of including duplicate 

records within this analysis, as Maxent automatically removes spatial duplications from within 

the same grid cell (Phillips 2017), in this case approximately 1km x 1km, the smallest sampled 

resolution of our environmental input layers. 

Environmental rasters were re-projected to the projection system long/lat, WGS 84, and 

extended to the same geographic extent (96.164, 124.289, 21.462, 31.099), using NA values 

to fill in any gaps. This extent was chosen to cover southern China south of the Yangtze River, 

and inclusive of the former known range of P. courtoisi simaoensis in Yunnan. All rasters were 

extended to the same resolution, using the BIO2 (annual temperature range) raster as the 

reference layer (resolution: 30 arc seconds, or 1km x 1km) to reduce computation/processing 

time. All datasets were then re-extended to ensure they were not influenced by sampling, 

and were written as ASCII files. 

Geographic distribution of the BCLT was related to the seven environmental variables by 

fitting an SDM model to the presence data in Maxent, and generating 10,000 background 

points (the default value). Due to high cloud cover over the area containing BCLT presence 

points, the NDVI layer was removed as it was unable to contribute sufficient data points to 

the model. All variables were continuous except for land cover (categorical). The model was 

set to a cumulative output, with a random test percentage of 25% and a regularization 

multiplier of one. A jackknife test was run to measure which variables were most important 

to the model. The ability of the model to discriminate between occupied and unoccupied 

regions was estimated from the area under the curve (AUC) of the receiving operator 

characteristic (Fielding & Bell, 1997; Phillips, Anderson and Shapire, 2006). Model fit was 

assessed from the regularised training gain. 
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3.4 Results  

3.4.1 Combination and comparison of census counts 

Both sets of survey observers independently surveyed 12 BCLT breeding sites. As each group 

used different naming or labelling systems, the two sets of breeding sites seemed superficially 

to be identical. Some of these surveyed breeding sites contain spatially separated locations 

which have been combined together for census counts, as they were considered by observers 

as part of the same breeding colony. However, we found that when the two datasets were 

integrated, they in fact covered a total of 15 known BCLT breeding sites, with nine that 

overlapped between both sets of observers, and six (three per group) that were only known 

by a single observer group (Figure 2). HFQ exclusively surveyed sites 4, 12 and 13, two of 

which are relatively distant from other breeding sites. ZWW exclusively surveyed sites 14, 15 

and 16, all of which are relatively close to other breeding sites (they are in villages adjacent 

to previously known breeding sites; Figure 2). In total, these datasets together included 19 

spatially separate breeding locations (Figure 1); several breeding sites reported by both HFQ 

Figure 2. Locations of Blue-crowned Laughingthrush breeding sites based on census data from both HFQ and 

ZWW (dots show number of sites as surveyed, including geographically separate locations combined 

together). Yellow dots show censused breeding sites surveyed by both observer groups, blue dots surveyed 

by HFQ only, and grey dots by ZWW only. 
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or ZWW (2+3, 7, 9, 13; Figure 1) actually comprise more than one village located close 

together. 

There is a negligible difference in overall counts per site and per year made between the two 

observer groups between 2012-2017 (mean = -0.06, SE = 2.72). Most counts by each group 

were identical, with some small differences and few larger differences between counts 

(Figure 3). ZWW’s and HFQ’s mean counts were 40.37 and 40.31 respectively (Table S4, 

Supplementary Information). There were no significant differences between survey counts 

at any sites except Site 7, where ZWW’s and HFQ’s mean counts were 94.5 and 73.0, 

respectively, based on a simple linear model (Adjusted R2 = 0.008, p=0.05, df = 31). This 

difference in counts is likely to be due to ZWW’s observer group discovering an additional 

breeding site at an adjacent village close to site 7, but including these counts as part of site 7 

rather than as a separate breeding site (W. Zhang 2018, personal communication).  

Markedly different trends are apparent when population trends are broken down by 

individual breeding sites (Figure 3). Consistent breeding populations are a feature of some 

sites (sites 2+3, 5, 7 and 8), whereas other sites contain either seemingly transient populations 

(site 4, 6) or insufficient prior history to reconstruct temporal patterns (sites 10-16).  
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The raw data from the pooled datasets show an increasing positive trend over time, 

suggesting an overall increase in population size (Figure 4). The number of occupied breeding 

sites also increased over time (Figure 4), from two breeding sites in 2000 to nine breeding 

sites occupied by 2017. However, these increases may represent changes in survey effort 

rather than a genuine trend, as more sites were surveyed in 2017 than 2007 (Figure S4, 

Supplementary Information). Pooled data suggest the population could be as high as 497 

individuals across all nine occupied breeding sites in 2017, although it is possible that some 

birds might have travelled between sites and were double counted. 

 

Figure 3. Blue-crowned Laughingthrush census count data broken down by individual breeding site, from 

years 2000-2017. Yellow dots shows counts by HFQ, blue dots show counts by ZWW. 
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3.4.2 Population trend over time 

3.4.2.1 Bayesian ZIP GAMM 

The mean values from the Bayesian ZIP GAMM also show little overall change in BCLT 

abundance over time from 2000 to 2017 (Figure 5). The ZIP GAMM shows an increasing trend 

in log abundance due to year during the early survey period (2000-2003), followed by a 

varying but overall decreasing trend (2004-2014) and then a steeply increasing trend (2015-

2017). The ZIP GAMM fits better to observed values in later years compared to earlier years, 

with a narrower 95% credible interval (Figure 5). 

Figure 4. Overall Blue-crowned Laughingthrush numbers when datasets from HFQ and ZWW data were 

pooled to fill in gaps (left-hand y axis). The higher value from either set of counts was taken, and data from 

any overlooked breeding sites were included. The right-hand y axis shows number of occupied breeding sites 

per year. Grey bars show the total number of individuals, and black dots show the number of occupied sites. 
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3.4.3 Species Distribution Model 

Following removal of duplicates, the Maxent model was built using 28 BCLT point localities, 

(many of the eBird points were duplicate locations from well-known breeding sites). AUC was 

0.999 (Table 1) indicating excellent model fit. In the model, the four variables making the 

highest contributions to the model were annual temperature range, land cover, precipitation 

of the wettest quarter and elevation, which collectively made a 95.8% relative contribution 

to the model (based on individual increases in training gain made by each variable). The other 

three variables made contributions as follows: mean temperature of the wettest quarter 

(4.3%), and precipitation seasonality and annual mean diurnal range did not contribute to the 

model (0.0%). Annual temperature range was the predictor with by far the highest 

permutation importance (Table 1), with the response curve from the univariate model 

suggesting a high likelihood of occurrence with annual temperature ranges between 30-34°C, 

Figure 5. Summary of the marginal effect of year generated by a ZIP GAMM between 2000 and 2017 based on 

survey data from all 16 Blue-crowned Laughingthrush breeding sites, showing the estimated effect of year on 

log abundance. The shaded area represents the 95% credible interval. The dotted line runs through the y 

intercept at zero; above shows an increasing trend, below a decreasing trend. 
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below which the likelihood of occurrence dropped close to zero (Figure S5, Supplementary 

Information). BCLT also have a higher likelihood of occurrence in areas with a mean 

precipitation of 600-1000mm during the wettest part of the year, which occurs during the 

BCLT’s breeding season, and at elevations between 0-400m, above which the likelihood of 

occurrence dropped close to zero. Land cover had a high relative contribution, however did 

not give a land type with higher predicted occurrence. The variable with highest gain (training 

data only) when used in isolation was land cover, indicating that this variable contained the 

most useful information by itself. This relationship inverted to a negative gain when used with 

test data only (Figure S6, Supplementary Information). 

In the Maxent model, areas of moderate likelihood of BCLT occurrence (threshold >1.6) are 

present in Jiangxi, Anhui, Zhejiang, Fujian, Hunan and Hubei provinces (Figure 6). All of 

Yunnan Province, including the location of the extirpated P. c. simaoensis population, showed 

no predicted conditions of occurrence (Figure 6). The AUC statistic for the test data was 0.995 

(SD = 0.001), suggesting that the model has a good measure of separability so can distinguish 

between areas with and without BCLT. The difference in AUC between training and testing 

data was 0.004, suggesting minimal overfitting. The model’s prediction is statistically 

significant at all given cumulative thresholds (p<0.001), meaning that test points perform 

better than a random prediction with the same fractional predicted area.  
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Table 1. Relative contributions of the highest contributing environmental variables to the Maxent model for the 

Blue-crowned Laughingthrush.  

 % Contribution Permutation 

importance 

Model 1 (AUC = 0.999, regularised training gain = 4.880) 

BIO7 (Annual Temperature Range) 31.8 22.7 

Land Cover (Forest, Human settlement, Agriculture, Water) 28.4 0.0 

BIO16 (Precipitation of Wettest Quarter) 22.3 9.3 

Elevation 13.3 52.3 

BIO8 (Mean Temperature of Wettest Quarter) 4.3 15.7 

BIO15 (Precipitation Seasonality) 0.0 0.0 

BIO2 (Annual Mean Diurnal Range) 0.0 0.0 

Table shows the contributions to the final model made by each variable. Two measures of model contribution 

are given for each variable: % contribution is estimated heuristically from the variable’s contribution to the 

model, and dependent on the path selected for the model run. Permutation importance is the estimated random 

permutation of the values of each variable among both presence and background training points, then 

measuring the resulting decrease in training AUC. This value is only dependent on the final model, not the path, 

with a large value indicating high reliance on that variable. Values for both measures are given as percentages. 
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3.5 Discussion 

This study is the first rigorous assessment of all known presence and population data collected 

to date on the Blue-crowned Laughingthrush. Our findings underline the importance of 

combining and investigating the information-content of all available data sources for 

threatened species to strengthen conservation knowledge-bases and identify knowledge gaps 

(Mogensen et al., 2021), and to not make assumptions about whether independently 

collected datasets are duplicates or identical. Importantly, this approach reveals that the BCLT 

population may be as much as 42.8% higher than the highest previous population estimate of 

348 birds, which was based on just one of the datasets (He et al. 2017). 

Figure 6. Representation of the Maxent model for the Blue-crowned Laughingthrush, showing a cumulative 

output that predicts suitable conditions above a threshold in an approximate range of 1-20 (yellow-orange). 

Warmer colours indicate areas with better predicted conditions. The red polygon indicates the known range 

of subspecies P. courtoisi, and red dots indicate the last reported locations of P. c. simoaensis. 
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A comparison of the two existing long-term monitoring datasets for the BCLT shows that not 

all occupied breeding sites were surveyed over the 2000-2017 monitoring period: neither 

observer group counted all active breeding sites in each year, with 40% of the total number 

of sites only known to each single group of observers. Our analysis shows that where identical 

breeding sites were surveyed by the two observer groups, relatively consistent counts were 

made, as shown by the lack of statistically significant differences between most overlapping 

portions of the two datasets. The increase in occupied breeding sites per year may 

superficially indicate an ongoing population increase for the species, however, it can be 

unwise to interpret data at face value in this manner, as this pattern could also be explained 

as a function of observer groups discovering new breeding sites, either through increased 

survey effort or opportunistically. We ultimately cannot test between these hypotheses due 

to the lack of associated data on survey effort. Overall, in view of the high proportion of sites 

known only to single observer groups, it is reasonably likely that other undiscovered breeding 

sites may also exist, and may have been active during the recent census period. Indeed, a 

flock of 43 BCLTs was spotted but not found breeding in 2007 (He et al. 2017). These findings 

highlight that existing census data should be interpreted as a minimum estimate or 

underestimate of the current global BCLT population, thus raising a cautious note of optimism 

for the status of the species. 

The ZIP GAMM analysis indicated little overall change in BCLT population trend over time, 

although there was evidence for an increasing trend in later years, when more breeding sites 

were located. However, it is still uncertain whether this trend represents a true population 

recovery. While the ZIP GAMM modelled ‘true’ and ‘false’ zeros (absences at breeding sites), 

and captures the effect of differences between sites, the increasing trend quantified in later 

years may partly be an artefact of ZWW discovering more breeding sites during that period, 

in effect increasing survey effort. The IUCN assessment for the species, which is based only 

upon HFQ’s census data, considers the species to have a ‘decreasing’ trend based on the 

number of mature individuals, and infers a past population decline ‘owing to low productivity 

and the threat of building developments to several colonies’ (BirdLife International 2018). 

However, merging the two existing census datasets suggests a maximum count that appears 

to increase over time, reaching 497 individuals in 2017. This count could meet the threshold 

for downlisting the species to Endangered on the Red List based on the current assessment 
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criterion C2a(i,ii): the existing Critically Endangered status is based on the ‘very small, 

fragmented known range and extremely small known population which is likely to be 

declining owing to a number of threats’ (BirdLife International 2018). However, our data 

suggests a possible stable or increasing population trend (IUCN 2012) and the discovery of 

additional breeding sites, which could justify downlisting. However, caution is recommended 

in retaining the existing Red List status assessment until the nature or severity of 

anthropogenic threats are better known, as has been recommended for other threatened 

species in similar situations (Shaw et al., 2016), as well as the implementation of a new survey 

protocol which more clearly distinguishes between true population trends and an artefact of 

survey effort. 

Combining data sources and exposing them to rigorous analysis has previously been used to 

uncover potential new sites for threatened species (Menon et al., 2010; Giovos et al., 2018; 

Giovos et al., 2019), understand their landscape-scale environmental requirements (Bladon 

et al., 2018), and even determine unknown migration and movement patterns (Lees and 

Martin, 2015; Lees, 2016). Using location data from existing monitoring datasets, citizen 

science sources and opportunistically collected field data, we found evidence that there may 

be large regions of potentially suitable habitat for BCLT across southern China. As analysis of 

available monitoring data provides evidence of ‘overlooked’ breeding sites, other nearby 

regions outside their current known range may therefore be appropriate to survey for 

possibly unknown BCLT breeding colonies. Potential BCLT habitat is identified in much of 

northern and central Jiangxi, as well as western Zhejiang, southern Anhui and Hubei, and 

small parts of northern Fujian provinces, suggesting that more of these regions could be 

focused on for exploratory searches for BCLT. In addition, combining and contrasting 

independently collected monitoring datasets, if available, can reveal new population trends 

and overall abundance. Our findings that additional breeding sites were not counted has 

implications for data biases: for example, site-selection bias, which can exaggerate the rate 

of species declines (Fournier, White and Heard, 2019).  

The species’ key requirements at the landscape scale are moderate annual temperature 

ranges, moderate rainfall during the breeding season and low elevation (31.8%, 22.3% and 

13.3% contributions to the model, respectively). This may suggest the BCLT is more likely to 

breed in landscapes at lower elevation and in areas that are alternately both wetter and drier, 
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and with greater and lesser extremes of temperature than surrounding landscapes. Low 

elevation may be linked to the BCLT breeding near lowland villages and rivers (Richardson 

2005), and the breeding season temperature and rainfall values may reflect either a specific 

climate envelope, or the conditions found across Wuyuan and surrounding areas, which are 

defined by ecological barriers to the north and south in the Huangshan and Wuyi mountains, 

respectively (Hong et al. 2006). Land cover was also an important determinant of habitat 

suitability (28.4% contribution), although its impact on model performance is somewhat 

contradictory: it had a negative test gain, meaning that the model performs better without 

inclusion of this variable, but the model without it also had decreased gain, suggesting that 

land cover contains more information that is not present in other variables. One possible 

explanation for this apparent contradiction is that BCLT tend to be found in close proximity 

to villages within the species’ breeding range; however, there are no BCLT data associated 

with the many villages outside its range, countering model predictions. 

A potential limitation of this study is that as available BCLT occurrence data cover an 

extremely narrow geographic range, the high AUC statistic obtained for our model may 

partially be an artefact of this spatial restriction, and does not necessarily indicate that the 

model has a good fit to the data (Phillips 2017). In addition, this model is predictive of the 

data available for the current-day range of the BCLT; therefore it does not necessarily 

represent a fundamental ecological niche, and may instead represent only those 

environmental conditions associated with locations where individuals have managed to 

survive. These are wider issues that potentially affect all SDM studies for highly range-

restricted species (Zhou et al., 2005; Fisher, 2011; Chatterjee, Tse and Turvey, 2012; Kerley et 

al., 2020). SDMs often assume that occupied habitat represents a set of optimal conditions 

for a given species (Hirzel and Le Lay, 2008); however, remnant surviving populations of many 

species might instead occupy ecologically suboptimal habitat where human pressures are 

reduced, and where they have become ‘refugee’ species (e.g. European bison Bison bonasus, 

Hainan gibbon Nomascus hainanus, Lord Howe Woodhen Tricholimnas sylvestris; (Miller and 

Mullette, 1985; Caughley, 1994; Zhou et al., 2005; Cromsigt, Kerley and Kowalczyk, 2012; 

Turvey, Crees and Di Fonzo, 2015). In our model, the locations where P. c. simaoensis was last 

reported from Yunnan Province are predicted to have low likelihood of occurrence, 

suggesting that either this subspecies was capable of tolerating different conditions, or that 
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the surviving population in Jiangxi Province represents an incomplete snapshot of the species’ 

fundamental niche. It might therefore be appropriate to interpret our SDM as indicating a 

minimum estimate of where suitable BCLT habitat might occur. Furthermore, Maxent relies 

on making accurate predictions through unbiased sampling data (Dudík, Schapire & Phillips, 

2005); however, our data were not sampled systematically and so are likely to contain biases 

in their representation of suitable environmental conditions for the species. Nevertheless, as 

our primary aim was to prioritise regions outside the BCLT’s known breeding range for future 

searches, rather than to characterise its precise ecological niche, our findings remain useful 

within this context. Whereas this study uses a single SDM approach, SDM outputs from 

different modelling approaches have been shown to be highly variable (Pearson et al., 2006; 

Buisson et al., 2010; Bladon et al., 2018), and comparing multiple SDMs in the future will be 

important to gain the most robust inferences about potential BCLT range. 

Although our analyses were able to provide new insights into BCLT population size and trends, 

we strongly recommend standardising future BCLT surveys, and in particular recording all 

absences, survey effort and dates, and estimating detectability and other sources of bias, as 

this will allow a robust assessment of true population change in the future. Attempting to 

measure an annual ‘true census’ for the BCLT should form a part of ongoing monitoring 

efforts, as this is a rare and threatened bird species with a restricted range (Sutherland, 

Newton and Green, 2004); our analyses show the influence of new sites on inferred 

population trends, so that capturing all breeding sites in a survey would give more reliable 

estimates. Census and sampling approaches could be combined in future under a carefully 

designed sampling strategy, censusing a core area and sampling areas outside of the known 

range (Sutherland, Newton and Green, 2004). We also support future searches for more BCLT 

breeding sites and presence locations in general, and recording all instances of finding them 

(not just breeding sites), as this will aid future efforts to understand the species’ distribution 

in relation to environmental changes or any conservation efforts. In our analysis, a simple 

metric of land cover containing four classes was shown to be an important variable; however, 

land cover patterns across southern China are complex and varied (Frolking et al., 1999; Liu, 

Duan and Yu, 2013; Zhou, Lee and Goodale, 2018), and so we also recommend looking in finer 

detail at land cover types to predict BCLT occurrence across the Chinese landscape.  
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Our investigative approaches demonstrate the conservation utility of even incomplete and 

biased monitoring datasets which were not explicitly collected for quantitative analysis. These 

benefits are especially strong when multiple datasets are combined, allowing identification 

of data gaps and overlap. However, our findings also highlight the need to use analyses which 

account for variation between sites (hierarchical models, mixed effects) and are capable of 

handling high levels of zero-inflation. Bayesian analysis using a ZIP GAMM was a good 

approach for handling the data, as this can incorporate data for all sites and revealed a 

complete population trend, giving additional benefits in comparison to the approach used by 

Holland et al. (2012). In a similar study, Carvalho et al. (2020) were able to better model zero-

inflated aphid population data using a Bayesian approach in comparison to a frequentist 

GAM. We also recommend checking citizen science data (local or global) as a source of 

location data for SDMs. Our findings suggest that for other species with limited available 

distribution records or monitoring data, it may be possible to locate informative citizen 

science data, which can provide important new ecological insights such as augmenting the 

extent of known ranges. This supports other work such as Bradsworth et al. (2017) and Biddle 

et al. (2021) in demonstrating the potential importance of combining monitoring and citizen 

science records in understanding species distributions. Indeed, species of particular interest 

to the public (e.g. visually attractive and uncommon birds such as the BCLT) are more likely 

to be reported in citizen science datasets than more common species (Geldmann et al., 2016). 

Citizen science datasets are commonly used in conservation assessments in UK, Europe, 

Australia and North America (Snäll et al., 2011; Bradsworth et al., 2017; Coxen et al., 2017; 

Fattebert et al., 2018; Rose, Halstead and Fisher, 2020), and have been used increasingly in 

the Global South (Lees and Martin, 2015; Biddle et al., 2021), however this is a relatively novel 

approach in China (Duan et al., 2020). Birdwatching is a growing pursuit in China (Walther and 

White, 2018), and any resulting citizen science represents an underutilised resource in this 

and similar countries, where baseline census data on many threatened bird species remains 

relatively poor. 

In this study, combining and analysing different existing monitoring datasets and building 

SDMs both support the need to search for more BCLT breeding sites, and to re-design 

standardised monitoring protocols with quantitative modelling in mind. Our findings also 

support the need to reassess the BCLT’s Red List status once a broader systematic survey of 
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the species has been performed, and all ongoing anthropogenic threats have been 

determined. Finally, future work should carry out multiple SDMs for the BCLT on more 

complex land cover data. More widely, this case study shows the value of contrasting and 

combining all available datasets for threatened species and using analytic approaches capable 

of modelling all monitoring sites, to potentially re-write species’ baselines without the need 

for further field-based data collection. This approach can achieve a better understanding of 

long-term population trends and biotic requirements at the landscape scale, help to identify 

sites for potential future surveys, and identify existing data gaps and where existing data 

collection practices have room for improvement. 
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Supplementary Information 
Table S1. The integration of the site labelling systems developed by HFQ and ZWW, the corresponding names of 

the villages where breeding sites were located, and a new numbering system developed for my own analysis. 

HFQ_Label ZWW_Label New_Label 

1 A 1 

2_3 B 2+3 

4 NA 4 

5 C 5 

6 D 6 

7 E 7 

8 F 8 

9 G 9 

10 H 10 

11 I 11 

12 NA 12 

13 NA 13 

NA J 14 

NA K 15 

NA L 16 
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Table S2. All WorldClim bioclimatic variables not included in the Blue-crowned Laughingthrush species 

distribution model. 

Variable name Variable meaning Variable source 

BIO1 Annual Mean Temperature WorldClim.org 
BIO3 Isothermality (quantifying how 

large the day-to-night 
temperatures oscillate relative 
to annual oscillations) 

WorldClim.org 

BIO4 Temperature Seasonality WorldClim.org 
BIO5 Max Temperature of Warmest 

Month 
WorldClim.org 

BIO6 Min Temperature of Coldest 
Month 

WorldClim.org 

   
BIO9 Mean Temperature of Driest 

Quarter 
WorldClim.org 

BIO10 Mean Temperature of Warmest 
Quarter 

WorldClim.org 

BIO11 Mean Temperature of Coldest 
Quarter 

WorldClim.org 

BIO12 Annual Precipitation WorldClim.org 
BIO13 Precipitation of Wettest Month WorldClim.org 
BIO14 Precipitation of Driest Month WorldClim.org 
BIO17 Precipitation of Driest Quarter WorldClim.org 
BIO18 Precipitation of Warmest 

Quarter 
WorldClim.org 

BIO19 Precipitation of Coldest Quarter WorldClim.org 
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Table S3. Environmental and bioclimatic variables used in Blue-crowned Laughingthrush species distribution 

modelling. 

Variable name Variable meaning Variable source 

BIO2 Annual Mean Diurnal Range 
(the mean of the monthly 
temperature ranges) 

WorldClim.org 

BIO7 Annual Temperature Range WorldClim.org 
BIO8 Mean Temperature of Wettest 

Quarter 
WorldClim.org 

BIO15 Precipitation Seasonality 
(measure of the variation in 
monthly precipitation totals 
over the course of the year) 

WorldClim.org 

BIO16 Precipitation of Wettest 
Quarter 

WorldClim.org 

DEM Digital Elevation Model. 
Elevation in metres 

Google Earth Engine (via 
USGS) 

NDVI Normalised Difference 
Vegetation Index of Landsat 8 
imagery 

Google Earth Engine (via 
USGS) 

Land cover classification Classification of Landsat 8 
imagery into four land cover 
types: forest, water, human 
settlement, agricultural land 

Re-map App.org 
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Figure S1. Correlation plot of all candidate numerical covariates for inclusion in Maxent model. 
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Figure S2. Correlation plot of all final numerical covariates for inclusion in Maxent model. 
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Additional Methods 

Citizen science data sources 

The audio recording website Xeno Canto also provided data on bird sightings; however, the 

location metadata was too imprecise for inclusion in the model. Other websites checked 

included HBW Alive, Bird Report (Chinese website) and Oriental Bird Images. However, 

images of BCLT on these sites were all from the two best known breeding sites or are of 

captive birds in zoos, thus not adding to the pool of unique locations in the wild.  

NDVI processing 

In Google Earth Engine, images were filtered by spatial area, and temporally between 1 

February and 1 September 2019, to represent the BCLT breeding season but also allow a wider 

time window to identify the least cloudy images. Images were filtered to include only those 

with cloud cover of 40% or less; they were built into a composite using a maximum value 

function, and cloud and cloud shadow was removed using a cloud mask function. NVDI was 

then calculated from the data. Additional pre-processing was avoided due to the likelihood of 

introducing additional biases to the data (Young et al., 2017). 

Frequentist GAMM 

Relative abundance of BCLT over time was modelled using a frequentist generalised additive 

mixed model (GAMM). Due to irregular sampling of breeding sites over time, it was necessary 

to only include sites where at least four mostly consecutive years of surveying had been 

conducted (i.e. there were no gaps of >1 years between surveys). This method was adapted 

from Holland et al., (2012) and fitted using the mgcv package (Wood 2006). Eight breeding 

sites met these criteria for inclusion in the analysis. Year of survey was included as the sole 

fixed covariate, and was fitted with a smoothing function to allow non-linear changes in 

population over time. Site was included as a random intercept in the model, as more than five 

sites were included and this provided sufficient factor levels (Harrison et al., 2018). 

Model equation: Bird_count ~ s(Year) + (1|Site) 

An initial model, fitted with a Poisson error distribution, showed clear heterogeneity within 

the model residuals, so response counts were standardised following the methods of Holland 

et al., (2012) and Zuur et al., (2009). Each time series was broken down by site, then the mean 
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was subtracted and divided by the standard deviation to scale data into the same range 

without removing temporal trends. This approach generated a continuous numeric variable 

with a Gaussian distribution. 
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Figure S3. Probability of observing Blue-crowned Laughingthrush at any given breeding site, per year. Red lines 

show the probability per site, averaged over time. Black dots show years in which presence or absence of 

breeding Blue-crowned Laughingthrush were detected. 
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Frequentist GAMM 

Year of survey was not significantly related to the standardised number of individuals counted 

at eight breeding sites from 2000 to 2017 (p = 0.49) (Table S1A), suggesting that relative BCLT 

abundance has not changed overall during this monitoring period. Predicted values from the 

frequentist GAMM suggest a slight overall decline in the BCLT population over this period 

(Figure S2A). In contrast, the smoother curve shows an increasing trend during the early 

survey period (2000-2005), a subsequent decreasing trend (2006-2014), and then another 

slight increase (2015-2017) (Figure S3A). 

 

Table S1A. Model outputs for the frequentist poisson GAMM. 

Model Explanatory 

variable 

e.d.f. F p-value 

Change through 

time 

S(Year) 1 0.465 0.497 

 

 

 

 

 

 

 

 

Figure S2A. The standardised number of Blue-crowned Laughingthrushes predicted to be counted between 2000 

and 2017 by a GAMM based on survey results from eight breeding sites. Shaded areas represent the 95% confidence 

interval for predicted values. Actual standardised count data are also given for each monitoring site included in the 

model. 
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Differences between ZIP GAMM and frequentist GAMM 

The two population trend analyses show similar results, with both indicating little overall 

change in BCLT population trend. The GAMM showed a slight, non-significant overall 

decreasing trend, but this analysis was only able to use data from 50% of breeding sites, so 

has a limited ability to capture full population dynamics. In contrast, the ZIP GAMM includes 

all known breeding sites and is thus more likely to represent the most accurate trend, showing 

a more pronounced increasing trend in later years, when more breeding sites were located.  

 

 

 

 

 

 

 

Figure S3A. Blue-crowned Laughingthrush population trend over time (2000-2017) as estimated by a 

frequentist GAMM. 
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Table S4. Total bird counts from Years 2012-2017 for all breeding sites combined; total counts for all sites and 

years where both observer groups had made counts. 

 

 HFQ ZWW 

Total BCLT counts 1,814 1,817 

Mean of counts 40.31 40.37 
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Figure S4. Proportion of occupied to counted breeding sites during each year of the Blue-crowned 

Laughingthrush census, 2000-2017. Bars are calculated on the following bases: black bars are where site counts 

were not performed (as the observers observed Blue-crowned Laughingthrushes but were unsure of breeding 

activity) are classed as ‘NA’ values, and therefore not treated as ‘counted’. Grey bars are these same site counts 

classed as ‘0’ (rather than NA) and therefore treated as ‘counted’ sites. 
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Figure S5. Univariate response curves from Maxent model for (a) annual temperature range (b) land cover, (c) 

precipitation of the wettest quarter and (d) elevation. 
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Figure S6. Jackknife tests of variable importance for final Maxent model, showing (a) training gain (b) test gain 

and (c) AUC on test data. 
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4. Local ecological knowledge can detect breeding 
locations, landscape changes and threats associated 
with the Critically Endangered Blue-crowned 
Laughingthrush Pterorhinus courtoisi in China 
 

Rosalind A. Gleave, Sarah K. Papworth, David Bauman, Steven J. Portugal, Weiwei Zhang, 

Yikang Liu, Xiaojin Cheng, Zhiming Cao & Samuel T. Turvey 

 

4.1 Abstract 

Designing conservation interventions for rare species can be hindered by a lack of relevant 

data. Local ecological knowledge (LEK) can provide rapid, cost-effective baseline data across 

large spatial and temporal scales, giving insights missed by traditional ecological approaches. 

The Blue-crowned Laughingthrush (BCLT) Pterorhinus courtoisi is a Critically Endangered 

passerine found only in southeastern China, with no available data explaining why its breeding 

range is highly restricted or why the population is so small, as it occurs in a human-occupied 

forest-agricultural landscape seemingly undifferentiated from surrounding environments in 

southern China. We conducted the first systematic, range-wide interviews on the BCLT 

(n=519) to collect novel information from local respondents on the species’ temporal and 

spatial distribution, and on possible threats and landscape changes associated with its 

presence or absence. Recognition of BCLT was moderate, with 44.6% of respondents 

reporting having seen a BCLT and with sightings within the last 18 months occurring across 

the entire study landscape. Sightings of BCLT were higher in the breeding season; sightings 

during the non-breeding season were more likely to be away from breeding sites. Nine 

(56.25%) breeding villages were confirmed as such by LEK data, and two villages reported 

nesting BCLTs where no breeding had been previously recorded. Trapping BCLTs was reported 

across the study landscape, mostly dated within the last 10 years and linked to people from 

urban centres. Trapping BCLTs and lack of fengshui forest were associated with sites where 

BCLTs did not breed, while breeding sites were associated with increases in vegetable 

gardens, and other sites within the species’ range were associated with decreases in 
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bush/scrub. This is the first evidence of ongoing bird trapping as a threat to the BCLT, and 

remedial measures are urgently required across the region. We demonstrate that LEK thus 

here identifies potential threats, new breeding sites, and landscape changes correlated with 

presence or absence of local breeding sites. 

Keywords: local ecological knowledge, China, laughingthrush, Pterorhinus courtoisi, 

trapping, landscape change, Asian songbird crisis 

4.2 Introduction 

The aim of halting biodiversity decline and extinctions must be underpinned by an 

understanding of species’ status and threats (Williams, Balmford and Wilcove, 2020). 

Diagnosing the mechanism(s) responsible for species declines, low population sizes or range 

restrictions is critical. While range restriction is an indicator of threat (Mace et al., 2008), 

understanding whether it is driven by natural or anthropogenic processes like habitat loss 

(Zhou et al., 2005) or exploitation (Yang et al., 2018) is pivotal. Designing interventions when 

threats are poorly understood risks inefficient use of money and time (Sutherland, Newton 

and Green, 2004), population collapse (Caughley, 1994) or other unintended consequences 

(Larrosa, Carrasco and Milner-Gulland, 2016). Key to addressing such threats is understanding 

the nature of their spatiotemporal patterns and dynamics, and their relationship with 

population declines (Turvey et al., 2013; Zöckler et al., 2016).  

Identifying specific threats and population constraints can sometimes be difficult with 

standard ecological surveys, necessitating the identification of alternative approaches to 

provide conservation evidence (Turvey et al., 2014). One such potential resource is Local 

Ecological Knowledge (LEK), an important source of data representing first-hand information 

obtained from people’s interactions with, and observations of, their environment (Newing 

2011). LEK can provide information on the current and past status of target species through 

information on last sightings and occurrences, as well as associated human-wildlife 

interactions and conservation-relevant patterns of local awareness, perceptions and attitudes 

(Turvey et al., 2010, 2014). LEK has been used for establishing baseline information on key 

population parameters for threatened species and identifying anthropogenic-related threats 

(Turvey et al., 2013; Parry and Peres, 2015; Archer et al., 2020). These insights can inform 

interventions such as the establishment of protected areas (Archer et al., 2020). LEK has been 
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used to inform conservation efforts for several easily identifiable species of mammals (Nash, 

Wong and Turvey, 2016; Turvey et al., 2017; Archer et al., 2020; Zanvo et al., 2020) and other 

large charismatic vertebrates or economically important taxa, such as for spatial conservation 

planning including future reintroductions or restocking (Chen et al., 2018). LEK has also 

previously given insights into levels of bird ownership and trapping (Biddle et al., 2021) and 

some bird population declines (Mallory et al., 2003).  

A system where LEK could prove beneficial is for threatened songbirds where no clear threat 

has been identified. Multiple Asian songbird species have been nearly driven to extinction in 

the wild by trade (Eaton et al., 2015; Shepherd et al., 2016; Nijman et al., 2017; Heinrich et 

al., 2021). Threats to songbirds are considered high in China, with over-hunting and wildlife 

trade a major threat to Chinese biodiversity (Nijman 2010). Songbird markets take place in 

many Chinese cities (Huo et al. 2009; Dai and Zhang, 2017; Cheng, 2019), and there is 

widespread and ongoing domestic hunting and trade of wildlife for use and sale within China 

(Martinez and Lewthwaite 2013; Zhou et al., 2014; Kamp et al., 2015). However, these threats 

are not fully understood, with patchy knowledge of wildlife hunting and general consumption 

(Liang, Cai and Yang, 2013; Cheng, 2019) and weak animal trade monitoring (Zhang, Hua and 

Sun, 2008).  

One highly threatened Chinese songbird is the Blue-crowned Laughingthrush Pterorhinus 

courtoisi (hereafter BCLT). This species has a breeding population restricted to a small part of 

northeast Jiangxi Province, a subtropical region ranging from 50 to 1,600 m in elevation, and 

with its core breeding population in Wuyuan County (coordinates 29°01’-29°35’N, 117°22’-

118°11’E) (Hong et al. 2006; He et al. 2017). It is classified as Critically Endangered by the IUCN 

(BirdLife International, 2018), due to its restricted, fragmented range (estimated extent of 

occurrence 610 km2) and small population, estimated to be 323 individuals in 2016 (He et al. 

2017). The extent of its past range is unknown, but a second population, sometimes treated 

as a distinct subspecies, P. c. simaoensis, was known from Yunnan Province, southwestern 

China (approximately 2,000 km from Jiangxi), but is now considered extinct (He et al. 2017). 

Captive collections have existed since the 1990s, after BCLTs appeared in international trade 

(Long et al. 2004; Pasini et al. 2004), and the species now breeds in zoos in Europe, North 

America, Hong Kong and mainland China. However, almost all of these captive individuals are 

thought to be P. c. simaoensis (He 1994; Wilkinson et al. 2004; Wilkinson & He 2010a). 
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Although a single report of captive birds in Hong Kong during the 1990s was traced back to 

Wuyuan (Yu 2003), there is no recent evidence of trapping for trade affecting BCLTs in Jiangxi 

(Yu 2003; Richardson 2005; Wilkinson & He 2010b). Indeed, there have been no recent 

reports of BCLTs in either international or domestic trade.  

BCLTs in Wuyuan are colonial and cooperative breeders, with colonies nesting near or within 

villages (Wilkinson et al. 2004). Their breeding landscape is characterised by low forested hills 

and agricultural riverine valleys dominated by rice, oilseed rape and tea plantations, 

interspersed with small villages surrounded by vegetable plots (Richardson 2005; He et al. 

2017) and village fengshui forests (mature broadleaf or mixed forest stands found close to 

villages that have been locally protected for centuries; Coggins et al., 2012). BCLT frequently 

nest in the latter habitat (Hong et al. 2003; Wilkinson et al. 2004) as well as bamboo, fruit 

trees and fir (He et al. 2017; Zhang et al. 2017), and forage mainly within broadleaf forest 

(including but not limited to fengshui forest), bush/scrub plots, tea plantation and vegetable 

plots during the breeding season (Yu 2003; Hong et al. 2006; Wilkinson and He 2010b; He et 

al. 2017; Zhang et al., 2017; Liu et al., 2020). As this landscape is broadly similar to other 

human-occupied landscapes across much of southern and central China, it is unclear why the 

BCLT is not more widespread. Building developments and road traffic are known to have 

affected BCLT breeding sites in Jiangxi, even causing their abandonment (He et al. 2017), but 

it is unknown whether local patterns of land use differ between areas occupied and adjacent 

ones unoccupied by BCLT, which could potentially be a factor restricting the species’ present 

distribution. Moreover, it is not known where BCLTs spend their non-breeding season, 

although anecdotal reports suggest this may be in nearby hills and mountains, possibly as far 

south as Wuyishan National Nature Reserve, 120 km south of Wuyuan (Yu 2003; Cheng and 

Lin 2011; He et al., 2017). 

Recent conservation-oriented research has looked at BCLT habitat use (Shi 2017, Huang et al. 

2018, Liu et al., 2020) and responses to disturbance by tourists (Zhang et al., 2017a), but the 

potential information-content of LEK for informing BCLT conservation has hitherto not been 

investigated. This type of research has never been carried out explicitly to conserve specific 

bird species in China, thus has the potential to collect new information for this species and 

help establish this approach for Chinese birds. The BCLT is a distinctive and attractive species 

both visually and aurally, suggesting that it must be familiar to many people living within its 
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home range. Furthermore, it is now a species of local cultural and socio-economic 

importance, attracting photographers to its long-term breeding sites (Zhang et al., 2017a) and 

featuring on local murals throughout the region (R. Gleave pers. obs.). 

Here, we explore the ability of LEK to provide information on three issues pivotal to the 

conservation of BCLT: (1) can LEK identify new BCLT breeding sites and BCLT seasonal 

distributions; (2) can LEK identify reported threats and habitat changes potentially associated 

with BCLT presence and absence; and (3) can LEK identify priority areas for further research 

and conservation (e.g. sightings outside the known range, and/or areas of high potential 

threat). This baseline information is needed to design targeted interventions to address 

potential drivers of BCLT population or range restriction. By investigating the extent to which 

LEK can provide conservation-relevant data on key management parameters such as 

distribution and threats for a highly threatened passerine, our findings also provide broader 

lessons on using LEK to gather pertinent data on other species that have not traditionally been 

the focus of research using social-science methods. 

 

4.3 Methods 

4.3.1 Field survey 

Community-based surveys were conducted between 4 June and 31 July 2019 in Wuyuan, 

Dexing and Leping counties, Jiangxi Province, and Xiuning County, Anhui Province, which 

encompass the total known geographic range of the BCLT (data from unpublished censuses, 

2000‒2017, and from citizen science website www.eBird.org; F. He 2019, personal 

communication), and also include nearby unsurveyed and unoccupied regions (Figure 1). We 

digitised and labelled over 900 villages in southern China using the Google Satellite plugin, 

QGIS version 2.18 (Las Palmas; QGIS Development Team 2021). Villages were digitised within 

(1) a core area comprising a 725.93 km2 minimum convex polygon (MCP) generated in QGIS 

around all recorded BCLT presence locations, and (2) a 25 km buffer area around the core 

area (Figure 1). 

We conducted interviews in 18 villages where BCLT are known to breed or have bred in 2000‒

2017 (unpublished data; F. He 2019, personal communication), and in a further series of 21 
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‘control’ villages with no previously recorded evidence of BCLT breeding. Our sample of 18 

active or former BCLT breeding sites included all known breeding sites except one (which we 

were only aware of later). We selected control villages by (1) targeting all those within 1 km 

of known BCLT localities reported on eBird (n=6) or in field reports (n=3; He 1994), and (2) 

randomly picking another 12 from within the combined core and buffer polygons. There were 

no significant differences between breeding and control villages within a set of basic 

characteristics (Mann-Whitney U Test): approximate number of buildings (W = 143, p = 0.14), 

distance to main road (W = 105, p = 0.91), distance to river (W = 124, p = 0.51), and elevation 

(W = 89, p = 0.43), taken from a Google Satellite layer within QGIS.  

Figure 1. The distribution of sampled villages depicted as coloured circles. Shaded areas cover the counties of 

Wuyuan, Dexing, Leping (Jiangxi Province) and Xiuning (Anhui Province). Thick black lines demark the boundaries 

between provinces. The polygons show the Extent of Occurrence (EOO) drawn around known Blue-crowned 

Laughingthrush breeding sites, the Minimum Convex Polygon (MCP) drawn around all known Blue-crowned 

Laughingthrush sightings (including those from eBird), and the outer polygon shows the 25km buffer region 

around the MCP.  

 

A target number of ≥10 interviews were conducted per village, based on the threshold of data 

saturation for interviews (Guest et al., 1995). Household plans for villages were unavailable, 
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so respondents were recruited through random encounters in villages and surrounding 

farmland. Village leader(s) or, if unavailable, other appropriate individuals were first located 

to grant permission for our research and to give information on village population size 

(number of individuals or families). Individuals below the age of 18 were not interviewed. 

Respondents were interviewed irrespective of sex or occupation. 

Interviews were conducted in Mandarin or local dialect (Wuyuanhua), and recorded on paper 

in Mandarin, by volunteer field assistants from Jiangxi Agricultural University or local high 

schools. All interviewers received prior training. Each new interviewer was initially supervised 

by R.Gleave or another more experienced interviewer. Pilot interviews were conducted in 

May‒June 2019 (n=40) and questions then modified to improve data collection. Our research 

was explained at the start of each interview, with consent given verbally beforehand and in 

writing afterwards. Respondents were informed that their responses were anonymous, that 

they could stop the interview at any time, and that they could decline to answer a question 

without explanation. Research was permitted by Jiangxi Wuyuan National Forest Bird Nature 

Reserve Management Office, and project design was approved by the Royal Holloway, 

University of London ethics committee (reference no. 1536-2019-02-21-16-10-PEBA015). 

A standard questionnaire comprising 52 closed and open-ended questions was used in all 

interviews, which took 15‒20 minutes to complete (see Figure S1, Supplementary 

Information). Following questions collecting basic demographic information, respondents 

were asked about landscape changes around their village over their lifetime. Landscape types 

included in the interview were: rice paddy, vegetable gardens, tea plantation, oilseed rape, 

fir forest, pine forest, bamboo forest, fengshui forest, broadleaf forest, bush/scrub, and fruit 

trees. Example photographs of these land use types were shown as necessary. Subsequent 

questions sought information on local population changes, number of houses, road, bridge 

and highway construction, and use of chemicals on crops. 

Respondents were then asked if they recognised the BCLT (藍冠噪鹛, languan zaomei) and 

four locally common bird species (MacKinnon and Phillipps 2018): Chinese Hwamei Garrulax 

canorus (画眉, huamei), Masked Laughingthrush Pterorhinus perspicillatus (黑脸噪鹛, heilian 

zaomei), Light-vented Bulbul Pycnonotus sinensis (白头鹎, baitoubei) and Eurasian Tree 
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Sparrow Passer montanus (麻雀, maque). Species were always mentioned in the order listed 

above, with the BCLT last. Respondents were asked if they recognised each bird based on its 

standard Mandarin or Wuyuanhua name, then shown colour photographs of each species 

(Figure S2, Supplementary Information; all obtained through Google Images marked as 

‘labelled for non-commercial reuse’) and asked if they recognised and/or could name them. 

All the species are sexually monomorphic. Finally, respondents were played an audio 

recording of a wild BCLT call, recorded by R.Gleave in July 2018. Most respondents were 

expected to recognise sparrows, which are locally abundant (Gleave, Zhang, Liu pers. obs. 

2019) and were thus included as a positive control. Including a range of species was intended 

to allow comparisons, e.g. to assess respondents’ ability to identify BCLT in relation to their 

knowledge of other species, and also functioned to obscure the possible importance of a 

single species within the interview, making it more likely that respondents might disclose 

sensitive knowledge or activities associated with BCLTs (Turvey et al., 2015). 

Respondents who recognised BCLT were asked if they had ever seen one; those who had done 

so were then asked about their last BCLT encounter, including time of year, location, breeding 

activity, and flock size based upon four simplified images of different-sized bird flocks (see 

Figure S3, Supplementary Information): ‘small’ = two birds, ‘medium’ = 10, ‘large’ = 18 and 

‘very large’ = 40. All respondents were asked final questions about bird-related threats and 

conservation, including awareness of local bird capture and killing, and awareness of legal 

protection. If respondents could identify BCLT we also asked about specific captures of BCLT. 

If respondents had knowledge of BCLT captures, we attempted to follow up with a key 

informant interview, asking additional questions on trapping location and methods and the 

identity of trappers. 

4.3.2 Analysis 

4.3.2.1 Interview data processing 

Interview data were translated from Mandarin to English by a single assistant fluent in both 

languages. All BCLT last-sighting dates were converted to calendar years where possible 

(Table S1, Supplementary Information); all dates that could not be converted due to lack of 

precision were excluded from analysis of last-sighting dates (n=149 retained). For the 

purposes of analysis, a new core area comprising a convex hull around all recorded BCLT 
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breeding locations from 2000‒2017 (F. He 2019, personal communication) was created in 

QGIS (area = 725.93 km2), referred to as the Extent of Occurrence (EOO; Figure 1). A buffer 

region of 25 km2 distance around the EOO was created, for comparison of villages between 

the two regions. 

4.3.2.2 Quantitative analysis 

All analyses were performed in R version 3.5.2 (R Core Team 2021). Chi-squared (or Fisher’s 

exact) tests were used to investigate differences between: (1) breeding and control villages 

and between villages in the EOO and buffer region in the number of respondents who could 

recognise BCLT from its standard common name, a photo or audio recording; (2) these same 

villages, in the number of recent (2018‒2019) reports of BCLT sightings or in flock sizes; (3) 

breeding (spring‒summer) and non-breeding (autumn‒winter) seasons in the number of 

BCLT sightings in breeding and control villages. 

Five regression models were built to investigate the relationship between reported land use 

changes and human threats on five different metrics of BCLT presence and absence. Variables 

influencing whether responses came from a breeding or a control village, or within the EOO 

or in the buffer area, were investigated using generalised linear models (GLMs) with a 

binomial error structure (logit link), as response variables are binary. Respondents reported 

past BCLT breeding activity in two villages with no previous record of breeding, so two 

separate ‘breeding/control’ models were built, alternately assigning these villages as either 

‘breeding’ or ‘control’ to compare model outputs. Variables influencing whether a respondent 

had ever seen a BCLT, or had seen a BCLT within the previous 18 months, were investigated 

using generalised linear mixed models (GLMMs), again with a binomial error structure. A 

Bayesian inference framework was used (Stan via R package brms; Bürkner 2017) to account 

for the unbalanced design of the data, and to capture and report model coefficient 

uncertainty. 

Multiple Correspondence Analysis using the factoextra package (Kassambara and Mundt 

2020) was performed on landscape change variables, aiming to reduce the number of 

covariates necessary in the models. However, because a low proportion of the total variance 

was described by the first few axes (axes 1‒4: 19%), with little associated variability, 

covariates were not separated for the models (Figure S4, Supplementary Information). All 



 

152 
 

GLMM models included varying intercepts for Interviewer (to account for between-data 

collector variation) and Village (to account for between-site variation). For each covariate, 

factors were re-levelled so the reference level was either ‘No’ or ‘No change’, generating 

more biologically plausible baselines for interpretation. For all models, variation in 

respondent demographics between response types was investigated using either chi-squared 

tests (occupation, sex) or univariate GLMs (age) with a Gaussian error structure using the lme4 

package in R (Bates et al., 2015), where each response variable was treated as a binary 

predictor. 

4.3.2.3 BCLT breeding responses 

For breeding/control and EOO/buffer models, all responses within entire spatial locations 

(villages) were allocated an identical binary output. This generated significant levels of 

autocorrelation (Spatial autocorrelation in models, Supplementary Information) and 

pseudo-replication. To remove this from models, we split each predictor (all categorical) into 

separate factor levels, with each factor level treated as a new, separate variable. Individual 

GLMs were then run based on these factor levels. This process was repeated for each of the 

a priori selected categorical predictor variables. Variables for inclusion in the models 

(increases/decreases/no change in or lack of: bamboo, fengshui forest, bush/scrub, tea 

plantation, and vegetable gardens, and building or not of new roads, awareness or not of 

people trapping BCLTs) were chosen a priori based on existing literature and basic data 

exploration (Table S2, Supplementary Information); all these variables had past evidence for 

impacting breeding BCLT, or potential to influence BCLT populations (Yu 2003; Hong et al. 

2006; Wilkinson and He 2010b; He et al. 2017; Zhang et al. 2017; Liu et al. 2020).  

The responses from each village for each factor level were summed and scaled (subtracting 

the variable mean, then dividing by the variable standard deviation) to improve running of 

the model (Zuur et al. 2009; McElreath 2016). Collinearity between each factor level was 

checked using the R package corrplot (Wei and Simko 2021), running pairwise correlations 

and a threshold of 0.70 (Wei and Simko 2021), with all correlations below this level. Factor 

levels where responses were not deemed useful for later inference were excluded from 

analysis. These were mostly ‘do not know’ responses, except for awareness of people catching 

BCLT (response could indicate withholding of sensitive information) and increase in fengshui 
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forest (even if this habitat type increased within living memory, the trees might not yet be 

mature enough to typify this land type). 

4.3.2.4 BCLT sighting responses 

To lower risks of model overfitting, statistical biases from unsupervised addition of covariates, 

and stepwise variable selection issues (Mundry and Nunn, 2009; McElreath 2020), we 

compared a global model to a set of four reduced models (Table 1), used to find a more 

parsimonious model, and to examine different key combinations of habitat change and threat 

covariates. For BCLT sightings, our global model contained the same covariates as 

breeding/EOO models to enable direct comparison. The first two reduced models contain 

fewer habitat covariates (removing change in tea plantation and then bush/scrub, as these 

showed weaker importance for breeding BCLT), the third contains the two ‘threat’ covariates 

(new roads and trapping), and the fourth contains all habitat covariates. For recent BCLT 

sightings, our global model covariates were the same as for the model of all BCLT sightings, 

but excluding changes in fengshui forest, bush/scrub or new roads (linked by evidence to BCLT 

breeding sites as opposed to general distribution), and including reported types of caught 

birds (to examine the effect of catching songbirds, gamebirds/waterfowl and sparrows/other 

birds locally considered as pests). Model comparison was performed using Leave-One-Out 

(LOO) cross-validation: dividing the dataset into a series of ‘folds’, removing a single 

observation each time, and predicting each fold after training the model on the rest of the 

dataset (McElreath 2020). We used regularising priors to limit the risks of overfitting for slope 

coefficients (McElreath 2020).  

To test and potentially control for spatial autocorrelation in the model residuals, models were 

run both with and without a Gaussian process regression. This technique allows the varying 

effects of ‘village’ to be treated as a continuous category by incorporating the spatial 

coordinates of surveyed villages, hence correcting for the fact that geographically close 

villages may share more similar features than expected from independent observations (e.g., 

topography; McElreath 2020). We present the model with the best expected out-of-sample 

predictive accuracy, as well as outputs from alternative candidate models with similar 

accuracy. 
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Bayesian updating of the model parameters was performed through the No-U-Turn Sampler 

(NUTS) in Stan, using the R package brms (Bürkner 2017). Models were fitted using 3,000 

iterations on four chains, with 1,500 warm-ups per chain to optimise the sampler prior to 

sampling. Model convergence was checked using Rhat values, and posterior distributions 

were handled and visualised using the R package tidybayes (Kay 2022). All models converged 

and had a sufficiently high Effective Sample Size. Posterior predictive checks were performed 

for all models to assess how well each model retrodicted the real observations using tidybayes 

(Kay 2022). We only report covariates with a coefficient posterior 90% credible interval not 

encompassing zero, i.e., with a 90% mass probability either lower or higher than zero. 
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able 1. Global and reduced GLMMs for investigating Blue-crowned Laughingthrush sighting responses in relation 

to habitat change and human threat covariates. Model specification uses R notation. 

 Respondent seen BCLT Respondent seen BCLT within last 18 

months 

Global model 

(random 

intercepts) 

Seen_BCLT ~ Catching_BCLT + 

Fengshui_forest_change + 

Veg_garden_change + Tea_plant_change 

+ Bamboo_change + Bushscrub_change + 

Roads + (1|Village) + (1|Interviewer) 

Recently_seen_BCLT ~ Catching_BCLT + 

Tea_plant_change + Veg_garden_change + 

Types_caught_birds + Bamboo_change + 

(1|Village) + (1|Interviewer) 

Reduced model 

1 

Seen_BCLT ~ Catching_BCLT + 

Fengshui_forest_change + 

Veg_garden_change + (1|Village) + 

(1|Interviewer) 

Recently_seen_BCLT ~ Bamboo_change + 

Tea_plant_change + Veg_garden_change + 

(1|Village) + (1|Interviewer) 

Reduced model 

2 

Seen_BCLT ~ Catching_BCLT + 

Fengshui_forest_change + 

Veg_garden_change + Bamboo_change + 

Bushscrub_change + (1|Village) + 

(1|Interviewer) 

Recently_seen_BCLT ~ Tea_plant_change + 

Types_caught_birds + (1|Village) + 

(1|Interviewer) 

Reduced model 

3 

Seen_BCLT ~ Catching_BCLT + Roads + 

(1|Village) + (1|Interviewer) 

Recently_seen_BCLT ~ Tea_plant_change + 

Types_caught_birds + (1|Village) + 

(1|Interviewer) 

Reduced model 

4 

Seen_BCLT ~ Fengshui_forest_change + 

Veg_garden_change + Bamboo_change + 

Tea_plant_change + Bushscrub_change + 

(1|Village) + (1|Interviewer) 

Recently_seen_BCLT ~ Catching_BCLT + 

Types_caught_birds + (1|Village) + 

(1|Interviewer) 
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4.4 Results 

We interviewed a total of 519 respondents in 39 villages across four counties (Wuyuan = 281; 

Dexing = 189; Leping = 16; Xiuning = 33) with a mean of 13.3 interviews per village. Twenty-

five of our villages were within the EOO, 14 within the buffer region. Not all respondents 

answered all questions asked (n=23). Respondent demographics are shown in Table S3, 

Supplementary Information. Based on given population estimates, 1.1% of the population at 

target locations were surveyed. Most respondents lived in the target survey village (95.2%, n 

= 494) and, of those, most had been residents their whole lives (80.1%, n = 396). The mean 

amount of time that people had lived in their villages was 49.9 years (SD = 19.4, n = 516). 

4.4.1 Local bird species identification 

Recognition of different bird species ranged from 27.8% to 82.9% by photo, and 2.1% to 86.1% 

by name, with sparrows the most widely recognised in both categories (Figure 2). Three out 

of the five species were better recognised by photo than name (Figure 2), possibly because 

interviewers used standardised common names rather than local names. Variations in bird 

species names given are shown in Local bird names, Supplementary Information. 
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Figure 2. Proportion of respondents who recognised each of five local bird species by either photograph or 

standard common name. 

 

4.4.2 BCLT recognition 

In total, 44.96% (n=232/516) of respondents reported recognising BCLT from either name, 

photo or audio recording (Figure S5, Supplementary Information), with 11.63% (n=27/232) 

recognising the name, 78.44% (n=182/232) recognising the photo, and 60.34% (n=140/232) 

recognising the recording. Of these 232 respondents, 69.4% (n=161) recalled the last time 

they saw the species in the wild (other respondents could not recall seeing them or had only 

seen the species on TV). No respondents recognised BCLT from their standard name in control 

villages (n=0/162) or the buffer region (n=0/186), with this being statistically different in 

breeding villages (X2 = 27.55, df = 1, p = >0.001) and in the EOO (X2 = 15.86, df = 1, p = >0.001). 

There was significantly higher recognition of BCLT by respondents from a photo in the EOO 

(46.09%, n=130/282) compared to the buffer region (30.41%, n=52/171) (X2 = 10.26., df = 1, 

p = 0.001), but no significant difference between breeding (43.56%, n=105/241) compared to 

control (36.32%, n =77/212) villages (X2 = 3.18, df = 1, p = 0.07). There was no significant 

difference between respondents who recognised BCLT from the auditory recording in 

breeding (32.69%, n = 68/208) compared to control (39.56%, n=72/182) villages (X2 = 2.89, df 
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= 1, p = 0.08), or in the EOO (34.01%, n=83/244) compared to the buffer region (39.04%, 

n=57/146) (X2 = 0.79, df = 1, p = 0.37). 

4.4.3 BCLT sightings 

Of the 232 respondents who recognised BCLT, 45.68% (n=106) had seen one within the last 

18 months, or recently (Figure S6, Supplementary Information). There was no significant 

difference in the proportions of respondents in breeding villages who had seen a BCLT 

recently (48.57%, n= 51) compared to those in control villages (42.63%, n = 55) (X2 = 0.89478, 

df = 2, p = 0.6393), or in the EOO (50.00%, n = 73) compared to the buffer region (37.50%, n 

= 33) (X2 = 3.4846, df = 2, p = 0.175). Respondents at breeding sites reported more recent 

mean last sighting dates (2016, n = 77) than those at control sites (2013, n = 74), and at sites 

in the EOO (2015, n = 98) than in the buffer region (2012, n = 53). 

4.4.4 Season 

Frequencies of BCLT sightings varied between seasons (X2 = 56.32, d.f. = 3, p = <0.001), with 

more respondents reporting last seeing BCLTs in spring or summer (breeding season; 75.2%, 

n = 161) compared to autumn or winter (non-breeding season; 24.76%, n = 53). Some 

respondents (n = 26) gave more than one season for their last-sighting information. 

Seasonality of last sightings was close to being significantly different between breeding and 

control villages (X2 = 7.42, d.f. = 3, p = 0.059), with a higher proportion of last sightings in 

breeding villages made during the breeding season (breeding villages = 75.90%, control 

villages = 63.70%), and a higher proportion of sightings in control villages made during the 

non-breeding season (breeding villages = 14.81%, control villages = 29.84%; Figure 3). 
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Figure 3. Spatial distribution of sampled villages, showing the proportion of respondents who recognised Blue-

crowned Laughingthrush that last saw the species in (a) the breeding season (spring/summer) or (b) the non-

breeding season (autumn/winter). Pink = breeding villages, blue = control villages.  

 

 

(a) 

(b) 
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4.4.5 Flock size 

Of respondents who recalled the flock size of their last BCLT sighting 64.00% (n=90) stated 

they had seen a ‘small’ flock, 15.71% (n=22) a ‘medium’ flock, 14.28% (n=20) a ‘large’ flock, 

and 5.71% (n=8) a ‘very large’ flock. A higher but non-significant proportion of respondents 

saw a ‘small’ flock in control villages, outside the EOO, with more respondents seeing a 

‘medium’, ‘large’ or ‘very large’ flock in breeding villages and within the EOO (p= 0.10). The 

spatial distribution of these respondents is shown in Figure 4. 

 

Figure 4. Spatial distribution of sampled villages, showing proportion of respondents who reported seeing 

different-sized flocks in breeding (pink) and control (blue) villages. (a) ‘small’ flocks, (b) ‘medium’ flocks, (c) 

‘large’ flocks, (d) ‘very large’ flocks. 
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Figure 5. Percentage of respondents reporting a change in different land use types around their home villages 

during their lifetime in (a) breeding villages and (b) control villages. Blue bars show an overall percentage of 

people reporting an increase in a land type, and pink bars show an overall decrease. 

 

 

(b). 
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4.4.6 Breeding reports 

A total of 14 respondents across 11 villages had seen BCLTs nesting near their village; of these 

villages, nine (56.25%) were known breeding villages, and two (‘village 1’ and ‘village 2’) were 

previously unknown breeding sites. In village 1 (in the buffer region, near a past eBird 

sighting), birds were reported nesting in camphor trees within the village. In village 2 (in the 

EOO, also near a past eBird sighting, and close to other breeding sites), they were reported 

nesting in old trees in a field. Respondents reporting past or present BCLTs nesting in their 

village did not provide exact locations but stated that the trees used were ‘high trees’, ‘fruit 

trees’, ‘huge trees near the village’, ‘old trees’, ‘Camphor trees’ (Cinnamomum camphora), 

‘Pomelo trees’ (Citrus maxima), ‘Chinese yew trees’ (Taxus chinensis), and ‘all kinds of trees’. 

4.4.7 Landscape changes and threat activity 

Across the whole study landscape, respondents reported various changes 

(increases/decreases/lack of) in different land use types around their home villages during 

their lifetime (Figure 5; Table S4, Supplementary Information). In addition, 81.5% (n=423) 

reported a change in the number of houses in their village, with 99.1% reporting an increase, 

and 72.1% (n=374) reported new roads being built during their lifetime. Furthermore, 85.0% 

(n=440) reported the use of chemicals on crops around their village; of these, 51.6% (n=268) 

reported that the amount of chemicals used had changed over their lifetime, 56.7% (n=152) 

of whom reported an increase. 

As many as a quarter (25.5%; n=129/506) of respondents had heard of people catching birds 

from the wild. Of these, 24.8% (n=32) reported birds being caught by villagers, 56.6% (n=73) 

by outsiders, and 8.5% (n=11) by both villagers and outsiders. Respondents reported a mean 

last bird catching date of 2014 (range 1995–2019). Types of bird, reasons for catching and 

methods of catching are given in Table S5, Supplementary Information. Nearly a tenth (9.3%; 

n=48/514) of respondents had heard of people killing wild birds. Bird-killing events were 

reported with a mean last date of 2007 (range 1970–2019). When asked whether people in 

their county kept songbirds, 6.5% (n=34) said yes. Of these, 47.1% (n=16) said people bought 

birds from others or received them as gifts from friends.  
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Figure 6. Locations where Blue-crowned Laughingthrushes have been reported as being caught (blue squares) 

and where Blue-crowned Laughingthrushes were sighted by at least one respondent during the breeding season 

(spring‒summer) between 2014‒2019 (green circles). Villages are shown in groups, with some physically close 

pairs of villages grouped together as one. Polygons and names indicate Chinese counties. 

When asked whether they had heard of anyone catching BCLT from the wild, in 10 villages 

across all four counties, 3.3% (n=16/487) of respondents said yes: Wuyuan (n=6 respondents), 

Dexing (n=4), Leping (n=3), and Xiuning (n=3) (Figure 6). Five of these villages were outside 

the EOO, and two were in Xiuning County, Anhui Province, a region that has not been 

surveyed regularly for BCLT. All 16 respondents reported having seen a BCLT. Six said BCLT 

were caught ‘to sell’, six said they were caught ‘for fun’, ‘to keep’ or because ‘their voice is 

lovely’, and four said they did not know or gave no details. Respondents had heard of BCLT 

being caught at intervals between the spring of 2019 and 15 years earlier; seven reports dated 

from within the previous 10 years, with a mean reported last catching event in 2012. Five 

respondents did not give a date. Nine of the villages where BCLT were reported as being 
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caught also had at least one respondent reporting a BCLT sighting both within the previous 

five years (2014‒2019) and during the breeding season (spring‒summer) (Figure 6). 

Some respondents gave additional qualitative information on bird catching/trapping activity. 

At a village in Wuyuan County, two respondents stated that ‘someone came here to capture 

the blue-crowned laughingthrush and sell for a high price’ and ‘someone came here 

specifically to capture the blue-crowned laughingthrush’. Other respondents at multiple 

villages in Wuyuan County generally stated, post-interview, that people came from the 

copper mine area near the town of Sizhou, Dexing County, in order to trap wild birds; two 

respondents specifically stated that ‘people in the copper mine area would come here to 

catch birds’. In Xiuning County, one key informant interview revealed the respondent 

previously saw one or two people trapping BCLT and Hwamei in the forested hills near his 

village. By their accents, the respondent could tell they were from Huangshan City. They had 

come to trap birds once or twice a year for the previous several years, netting members of a 

flock using a caged bird as a lure. No direct evidence of BCLT trapping was observed, but 

reports of Hwamei trapping and keeping were corroborated by our observation of a caged 

Hwamei near one BCLT breeding site. 

When asked whether BCLT is a protected species, 17.1% of respondents (n=89) said yes, 

34.9% (n=181) said no, and 47.2% (n=245) did not know. 

4.4.8 Effects of land use change and threats on BCLT sightings and breeding sites 

BCLT sightings were more likely to be reported by men than by women (X2 = 6.048, df – 1, p 

= 0.013). Respondents were more likely to be farmers in control villages than in breeding 

villages (X2 = 5.255, df = 1, p = 0.022), and more likely to be older inside the EOO than in the 

buffer (p=0.05), or in control villages than in breeding villages (p=0.01).  

Respondents who had seen a BCLT were more likely to report awareness of people catching 

BCLTs according to the optimal candidate model (Figure 7a). In contrast, respondents who 

had seen a BCLT were less likely to report having no vegetable garden, an increase in 

bush/scrub, and not knowing whether either fengshui forest or bush/scrub amounts changed 

over their lifetime, according to the next most plausible candidate models (Figure S7, 

Supplementary Information). Respondents who had recently seen a BCLT were also more 

likely to report awareness of people catching BCLTs, according to the optimal candidate 
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model (Figure 7b), and less likely to report having no tea plantation, according to the next 

most plausible candidate model (Figure S8, Table S6, Supplementary Information). In 

addition, within the GLMM models, the village-level and interviewer-level parameters of 

deviation from the average intercept did not encompass zero, indicating important between-

village and between-interviewer variation, with models containing some variance that cannot 

be explained by the fixed effects (Figure 7a & b). 
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Figure 7. Interval plot showing the 90% credible intervals (CI, represented by black horizontal lines) for the 

posterior distribution of each factor level, in relation to (a) whether respondents had seen a Blue-crowned 

Laughingthrush or (b) whether respondents had seen Blue-crowned Laughingthrush within the previous 

18 months. Coloured circles within each line represent the estimate. Predictor levels are considered 

significant if the CI does not encompass zero on the x axis. Plot displays the optimal candidate models. 

Variables in the model are: road building, and awareness of people catching Blue-crowned Laughingthrush. 

(a) 

(b) 
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Breeding villages were less likely to have reports of people catching BCLT than control villages 

(Table 2), and more likely to report decreases in bush/scrub and increases in vegetable 

gardens (Table 2). Control villages were more likely to have no reported fengshui forest. When 

villages with uncertain breeding status were included in the model as breeding rather than 

control villages, results varied only slightly (Table S7, Supplementary Information), with 

breeding villages positively associated with respondents reporting no change in tea 

plantation, and no significant relationship with reported changes in vegetable garden. 

Respondents within the EOO were more likely to report a decrease in bush/scrub, and less 

likely to report an increase in bamboo forest, no change in bush/scrub, or increase in road 

building (Table 2). 

Table 2. Outputs from a series of univariate Bayesian GLMs for breeding vs control villages, and EOO vs buffer 

villages. Variables where the 90% credible interval (CI) range does not overlap with zero represent the equivalent 

of statistically significant. 

Response Breeding/control EOO/buffer 

Covariate   

Bamboo forest change Estimate 90% CI range 

(lower/upper) 

Estimate 90% CI range 

(lower/upper) 

More -0.33 -1.13 – 0.42 -1.04 -2.06 - -0.19 

No change -0.21 -1.02 – 0.54  0.25 -0.57 – 1.12 

Less  0.44 -0.26 – 1.25  0.08 -0.67 – 0.89 

No bamboo forest -0.45 -1.38 – 0.37 -0.47 -1.36 – 0.39 

Catching BCLT     

Do not know -0.29 -1.16 – 0.49 -0.75 -1.61 – 0.00 

No -0.38 -0.33 – 1.19  0.20 -0.60 – 1.07 

Yes -0.89 -2.01 – 0.00 -0.63 -1.59 – 0.22 

Fengshui forest change     

No change  0.09 -1.08 – 0.45 -0.25 -1.03 – 0.53 

Less -0.21 -0.73 – 0.93 -0.50 -1.28 – 0.24 

No fengshui forest -1.26 -2.52 - -0.19 -0.66 -1.57 – 0.18 

Bush/scrub change     

More  0.22 -0.79 – 1.20 -0.43 -1.38 – 0.43 
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No change -2.02 -3.79 - -0.61 -1.60 -2.82 - -0.55 

Less  2.78  1.16 – 4.93  1.28  0.19 – 2.56 

No bush/scrub  0.56 -0.40 – 1.63  0.42 -0.65 – 1.68 

Tea plantation change     

More -0.36 -1.27 – 0.43 -1.06 -2.14 - -0.17 

No change  0.68 -0.13 – 1.55  0.01 -0.87 – 0.88 

Less  0.15 -0.72 – 1.03 -0.36 -1.25 – 0.53 

No tea plantation -0.12 -0.97 – 0.75 -0.76 -1.73 – 0.13 

Roads     

Yes  0.23 -0.48 – 0.98 -0.14 -0.88 – 0.59 

No -0.65 -1.49 – 0.09 -0.76 -1.61 – 0.00 

Vegetable garden change     

Less -0.18 -0.99 – 0.55 -0.14 -0.88 – 0.61 

More  0.88  0.05 – 1.96  0.13 -0.67 – 1.02 

No change -0.65 -1.57 – 0.15 -0.69 -1.51 – 0.06 

No vegetable garden  0.47 -0.30 – 1.27  0.12 -0.68 – 0.96 

 

4.5 Discussion 

This study provides the first large-scale, systematically-collected LEK dataset for the Blue-

crowned Laughingthrush (BCLT). With previous data on the species limited to site-scale 

observations, our comprehensive analysis of these new LEK data provides important insights 

into distribution and seasonal occurrence of the BCLT, as well as identifying direct threats and 

patterns of habitat change across its range associated with local BCLT presence or absence. 

This study also supports the usefulness of LEK in gathering rapid, wide-scale and novel data 

(Nash, Wong and Turvey, 2016; Archer et al., 2020) and demonstrates its application in 

informing conservation measures for distinctive passerines. 

Our LEK data are consistent with existing baseline data on the BCLT. Just under 45% of 

respondents across our study area recognised the species, with no recognition by name 

outside breeding sites or its breeding range (EOO), and higher recognition by photo within its 

EOO. Mean last sighting dates were more recent at breeding sites and within the EOO; this 
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may reflect the long presence of BCLT at breeding sites during the breeding season, or more 

opportunistic observations of BCLT being made in the EOO during the breeding season, with 

flocks showing mobility close to villages immediately prior to breeding and upon fledging (F. 

He 2019, personal communication; R.Gleave pers. obs.). The accuracy of using LEK to identify 

known BCLT breeding sites was nearly 60%, and where breeding BCLTs were reported, 

respondents described nesting trees that were consistent with previous data on nesting sites 

(He and Xi 2002; Hong et al., 2006; Zhang et al., 2017; Huang et al., 2018). Whereas small 

flocks were reported across the whole study landscape, more larger-sized flocks typical of 

breeding colonies (colony sizes typically range between 20‒80 birds; He et al., 2017) were 

seen within the EOO. This approach therefore has value for providing accurate data on BCLT 

presence and breeding activity, although we acknowledge that it may be more effective when 

combined with other techniques, such as species distribution modelling and bird surveys. 

BCLT sightings were made year-round and across the entire study landscape, including 

outside of their known breeding range. Reported sightings of BCLT were higher overall in 

spring/summer (breeding season) than in autumn/winter (non-breeding season), although 

this may reflect the fact that our interviews took place during the summer. Similarly, more 

sightings during the breeding season were made at breeding sites, although these 

occurrences are non-independent: sightings are more likely to be recent (and during the 

breeding season) at active breeding sites. However, the numerous reported BCLT sightings 

from the non-breeding season support previous suggestions that BCLTs spend the non-

breeding season in a broadly similar geographical area to the breeding season, but away from 

breeding sites (He et al., 2017). Notably, recent (2014‒2019) sightings were also reported 

outside of the known breeding range in Xiuning County, Anhui Province during the breeding 

season, highlighting the importance of conducting further surveys for the species in this 

region to investigate the possibility of a wider breeding distribution than currently recognised. 

Importantly, our respondents also identified two potentially overlooked BCLT breeding sites. 

One site was located within a few miles of a known long-term breeding site, so it is possible 

that the respondent was reporting seeing the birds nesting at this established site. However, 

BCLTs have also been recorded as nesting at several other adjacent villages in the same area 

along a river, several of which were initially overlooked by census observers, which lends this 

new finding plausibility. The other site was outside the known breeding range, along the same 
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river network as many of the other riparian breeding sites and in an area with a substantial 

number of fengshui forest trees. Although these sites have not yet been independently 

verified, our findings thus suggest that future wider-ranging surveys could reveal yet more 

potential breeding locations.  

Known threats to the Jiangxi population of the BCLT have previously been confined to 

disturbance through increased vehicle traffic (He et al., 2017), photographers (Zhang et al., 

2017a) and construction of infrastructure (He et al., 2017), with trapping only acknowledged 

once in the late 1990s (Yu 2003). However, our results indicate that bird trapping is relatively 

widespread in the study region, with trapping of BCLTs occurring across their range and 

multiple BCLT trapping events reported within the last 10 years. However, this evidence 

shows there is a relatively widespread knowledge of trapping in the region, not evidence of 

trapping itself. This has been previously undocumented and may be more common than 

previously considered, and the extent of this requires empirical investigation. 

Our results show that trapping is significantly more likely to be reported in villages where 

BCLTs have been seen, or seen within the previous 18 months, but is significantly less likely 

to be reported at specific BCLT breeding sites. These findings might indicate that trappers, if 

they do occur, are drawn to the general region where BCLT are found, but that existing 

breeding sites may confer some protection; it is also possible that some BCLT breeding 

colonies have been eliminated through trapping, and/or that BCLT will not breed where 

trapping occurs. Wuyuan County has a reputation for high bird diversity and abundance which 

could attract trappers for other species (He et al., 2014), however, trappers may also be 

attracted chiefly by the BCLT given its popularity with photographers (Zhang et al., 2017a). 

Alternatively, trapping may be underreported at breeding sites. BCLT trapping is reportedly 

not carried out by local rural communities, but instead by people from outside of the local 

area; in particular, respondents from Xiuning, Wuyuan and Dexing counties reported that 

individuals from nearby urban centres were carrying out songbird trapping near their villages. 

This is consistent with the suggestion that the Huizhou region (Wuyuan and neighbouring 

parts of Anhui) traditionally lacked a culture of caged bird keeping, in contrast to many other 

parts of China (D. Liu, 2019, personal communication). Concerningly, awareness among 

respondents of the BCLT’s protection status was low, highlighting the need for targeted 

conservation awareness-raising based on locally-relevant approaches (Qian et al., 2021).  
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Although relatively few people reported awareness of BCLT trapping, it has previously been 

suggested that few trapping events would be needed to have a large impact on BCLT colonies 

(Yu 2003). In other bird species, a fine line exists between sustainable and unsustainable 

harvest (Valle et al., 2018), and even those traded in low numbers are thought to be in slow 

decline (Nijman et al., 2021). Awareness of people catching BCLT was significant in most 

models, and in optimal models for both GLMMs, lending support for the importance of this 

variable on different metrics of BCLT presence. Trapping could potentially restrict the 

breeding range of BCLTs and suppress population recovery, even if BCLT trapping was 

infrequent and opportunistic rather than targeted. Our key informant interviews suggested 

that trappers in Xiuning County were trapping both BCLT and Hwamei; the latter species is 

traded in large numbers throughout Southeast Asia (Shepherd et al., 2020), and thus could 

be a main target species. However, domestic trade is also a significant issue for Asian 

songbirds (Zhang, Hua and Sun, 2008; Dai and Zhang, 2017; Nijman et al., 2017; Wang, Leader-

williams and Turvey, 2021). In parrots, trapping risk is highest where birds are most abundant 

in the wild, where they are easiest to catch and sell, and where demand is high (Pires and 

Clarke, 2012), which might explain why people who reported seeing BCLT were more likely to 

be aware of trapping. Further investigation into the wider distribution and prevalence of BCLT 

trapping, potentially using specific interview techniques such as the unmatched count 

technique for investigating sensitive behaviours (Hinsley et al., 2019, 2021), is thus an urgent 

priority for future conservation research.  

In addition to revealing the previously overlooked threat of trapping, our results also show 

evidence of overall changes to the study landscape, with respondents widely reporting 

increases in houses, bamboo, bush/scrub, broadleaf forest and fir tree forest, and decreases 

in pine forest, fengshui forest, tea plantation and vegetable gardens around their villages over 

their lifetime. It is important to acknowledge the potential for overlap in meaning between 

some responses; for example, ‘less’, ‘no change’ and ‘none of that land type’ might all possibly 

be used to mean ‘none left’ by respondents in some contexts, particularly for tea plantation 

and fengshui forest, where in many places most or all of these land types had disappeared 

during respondents’ lifetimes. Decreases in, rather than initial lack of, tea plantation and 

fengshui forest may therefore be more common than our data suggest. However, several 

reported habitat changes are correlated in our models with varying likelihood of BCLT 
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occurrence across the landscape. These should thus be considered as a useful signal of 

potential drivers of population decline or factors influencing population growth and 

dynamics, with implications for landscape management to support BCLTs. Additionally, 

respondents reported the use of agricultural chemicals across the study landscape, with 

nearly a third reporting an increase during their lifetime; pesticides have been linked to losses 

of farmland birds such as the Javan Pied Starling Gracupica jalla (Van Balen and Collar, 2021). 

Vegetable gardens were more likely to be perceived as increasing at breeding sites, and 

respondents who had seen a BCLT were less likely to report a lack of vegetable garden. This 

supports existing evidence that vegetable gardens are used disproportionately to other 

habitats except woodland by BCLTs for foraging (Liu et al., 2020). There is some evidence that 

vegetable plots are declining across Wuyuan County, sparking concerns over potential loss of 

available foraging habitat (He et al., 2017). Bush/scrub decreases were more likely to be 

reported at both breeding sites and within the EOO. This habitat typically consists of patches 

dominated by cogongrass (Imperata cylindrica) or a shrubby form of bamboo (Pleioblastus 

amarus), both of which are common on abandoned farmland and recently clear-cut woodland 

(R.Gleave pers. obs.). This gives nuance to recent findings from breeding sites that BCLTs 

disproportionately use shrub/grass plots compared to most other habitat types (except for 

woodland) (Liu et al., 2020). Further differences in patterns of land use change associated 

with varying likelihood of local BCLT occurrence may be specific to breeding sites, and not the 

entire breeding landscape. Perceived change in fengshui forest showed no difference 

between EOO and buffer regions, but BCLT breeding sites were less likely to have a reported 

absence of fengshui forest. This potentially suggests that fengshui forests are more important 

for individual breeding sites than as a feature across the EOO, and supports previous findings 

that this habitat is a common feature of breeding sites, even if these trees are not always 

used as nesting sites (He et al., 2017; Zhang et al., 2017b). Finally, road building has been 

linked to BCLT disturbance (He et al., 2017), but roads were more likely to be reported being 

built within the EOO compared to the buffer region. This finding might reflect the fact that 

Wuyuan County has seen more infrastructure development due to a recent regional increase 

in tourism (Zhang, Long and Zhao, 2019), and most breeding sites happen to be in Wuyuan 

(He et al., 2017), but it raises concerns about future increases in disturbance to BCLTs. Until 

the 1950s, Wuyuan County was dominated by old subtropical broadleaf forests (Hong et al., 
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2006) and village fengshui forest loss has been recorded at multiple breeding sites, making 

way for roads and buildings (Hong et al., 2006). In recent years, fengshui forests have received 

greater protection across Jiangxi Province (Zheng 2003; Yan 2014), but it is unclear whether 

this policy is spreading to neighbouring provinces, which may be critical for BCLT dispersal 

beyond Jiangxi. Fengshui forests still face threats in the form of changing cultural values, 

urban sprawl and infrastructure (B. Chen et al., 2018). 

Although our results are based on respondents’ memories and perceptions rather than direct 

evidence, respondent ability to recognise BCLTs was relatively high across the study landscape 

(at similar levels to other locally common songbirds), and our study provides possible new 

insights into why BCLTs only breed in a restricted area of northeast Jiangxi. Our data revealed 

two possible new breeding sites, and highlighted southern Anhui as an important new area 

to target breeding bird surveys and associated conservation efforts to counter potential 

trapping. These results also suggest that respondents who manage farmland have the 

potential to play a future role in citizen science monitoring and community-based 

conservation initiatives. Furthermore, trapping may be more widespread than previously 

suspected and should not be discounted as a past threat; instead, it should be given full 

consideration alongside other potential current threats to the species. Respondents showed 

an awareness of trappers and whether they were local people or outsiders, suggesting the 

potential for community-based conservation, with local people acting as an early-warning 

system of trapping activity carried out by external actors. Our results thus demonstrate that 

LEK can make an important contribution to understanding potential reasons behind species’ 

low population size or range restriction, and can also provide new insights for future 

conservation action for the BCLT. We also demonstrate that LEK represents a good data 

source for uncommon birds, countering suggestions that it is more appropriate for large or 

common species (Nyhus, Sumianto and Tilson, 2003). 

4.6 Conclusion 

Our data suggest that BCLT in southeast China are both more widespread around our study 

landscape, as well as under greater threat from trapping, than previously thought (Wilkinson 

and He 2010b). Given the dire circumstances of widespread songbird declines across Asia due 

to trade (Sykes, 2017), this potential threat needs to be addressed across the BCLT’s range as 

a matter of priority. Wider survey work is needed to better establish the distribution of BCLT 
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sightings and the co-occurrence of trapping, as well as to investigate the possibility that BCLTs 

are found all year round across our study landscape. Subpopulations of breeding birds may 

yet be undocumented, and birds may be affected by trapping throughout the year. Equally, 

landscape management also has implications for BCLT conservation, with support for past 

observations that both fengshui forests and vegetable gardens are associated with breeding 

BCLT. Habitat loss and overexploitation of wildlife populations form a common synergy in 

driving species loss (Symes et al., 2018), and these effects are notoriously difficult to unpick 

(Brook, Sodhi and Bradshaw, 2008; Ni et al., 2018). Further declines of these land types should 

be prevented across the wider region, including outside of Jiangxi Province. Our LEK results 

can be used to inform this work, and show that LEK can provide important insights into 

correlates of BCLT presence and absence, its temporal and spatial distribution, and local 

people’s interactions with this Critically Endangered species. 
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Supplementary Information 

 

Figure S1. English language copy of the final questionnaire used during data collection in June-July 2019. 

 

Date: 

Interview number: 

Name of Interviewer: 

Location: (Village name, Village group, County name, Province name) 

 

 

 

Opening Statement: “We are local scientists from Jiangxi Agricultural University, conducting 
ecological/environmental research. We are conducting a study on the birds and landscape of this 
region and would like to ask you some questions for our studies. We have a questionnaire that takes 
about 15 minutes to complete. Information that you tell us will be completely confidential, we will 
not write down your name, and you will not be identified – we just want to try to learn more about 
the local environment from you.” 
 

Section 1 

1). Are you prepared to participate in this survey and answer the following questions? 

 YES / NO 

 

2). Are you:  

Male / Female? 

 

3). How old are you? 

 

 

 

4). Do you live in this village?  

YES / NO 
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5). (If NO to Q4) which village do you live in? 

 

 

 

6). How many years have you lived in your home village? 

 

 

 

a). If you have not always lived in your home village, where did you live before? 

 

 

 

7). What is your occupation? 

 

 

 

8). How many people live in your household? 

 

 

 

Section 2 

9). Has the landscape around this village changed over your lifetime?  

YES / NO / DON’T KNOW 

a). If YES, please briefly describe what has changed 

 

 

 

10). Does this village have its own fengshui forest / fengshui tree? 

YES / NO / DON’T KNOW 
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a). If YES, where is it/they? 

 

 

 

For Questions 11-20 show respondent images of habitat type if they are unsure what is 

meant. 

 

11). During your lifetime, has the amount of rice paddy changed in and around this village? By this I 

mean, all the land that is used by your village and not shared with any neighbouring villages. 

YES/NO/DON’T KNOW / THERE ARE NO RICE PADDIES 

a). If YES, is there MORE or LESS ride paddy now? 

 

b). If YES, by how much has amount of rice paddy changed? 

 

c). If YES, when did this happen? 

 

 

d). If YES, where did this happen? 

 

e). If YES, do you know why this happened? 

 

 

12). During your lifetime, has the amount of vegetable gardens changed in and around this village?   

YES / NO / DON’T KNOW / THERE ARE NO VEGETABLE GARDENS 

a). If YES, is there MORE or LESS vegetable garden now? 

 

b). If YES, by how much has amount of vegetable garden changed? 

 

c). If YES, when did this happen? 

 

d). If YES, where did this happen? 
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e). If YES, do you know why this happened? 

 

 

 

13). During your lifetime, has the amount of tea plantation changed in and around this village?   

YES / NO / DON’T KNOW / THERE ARE NO TEA PLANTATIONS 

a). If YES, is there MORE or LESS tea plantation now? 

 

b). If YES, by how much has amount of tea plantation changed? 

 

c). If YES, when did this happen? 

 

d). If YES, where did this happen? 

 

e). If YES, do you know why this happened? 

 

 

14). During your lifetime, has the amount of oilseed rape field changed in and around this village?   

YES / NO / DON’T KNOW / THERE IS NO OILSEED RAPE FIELD 

a). If YES, is there MORE or LESS oilseed rape field now? 

 

b). If YES, by how much has amount of oilseed rape field changed? 

 

c). If YES, when did this happen? 

 

d). If YES, where did this happen? 

 

e). If YES, do you know why this happened? 
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15). During your lifetime, has the amount of fir tree forest changed in and around this village?   

YES / NO / DON’T KNOW / THERE IS NO FIR TREE FOREST 

a). If YES, is there MORE or LESS fir tree forest now? 

 

b). If YES, by how much has amount of fir tree forest changed? 

 

c). If YES, when did this happen? 

 

d). If YES, where did this happen? 

 

e). If YES, do you know why this happened? 

 

 

16). During your lifetime, has the amount of pine tree forest changed in and around this village?   

YES / NO / DON’T KNOW / THERE IS NO PINE TREE FOREST 

a). If YES, is there MORE or LESS pine tree forest now? 

 

 

b). If YES, by how much has amount of pine tree forest changed? 

 

c). If YES, when did this happen? 

 

d). If YES, where did this happen? 

 

e). If YES, do you know why this happened? 

 

 

17). During your lifetime, has the amount of bamboo forest changed in and around this village?   

YES / NO / DON’T KNOW / THERE IS NO BAMBOO FOREST 
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a). If YES, is there MORE or LESS bamboo forest now? 

 

b). If YES, by how much has amount of bamboo forest changed? 

 

c). If YES, when did this happen? 

 

d). If YES, where did this happen? 

 

e). If YES, do you know why this happened? 

 

 

18). During your lifetime, has the amount of feng shui forest changed in and around this village?   

YES / NO / DON’T KNOW / THERE IS NO FENG SHUI FOREST 

a). If YES, is there MORE or LESS feng shui forest now? 

 

 

b). If YES, by how much has amount of feng shui forest changed? 

 

c). If YES, when did this happen? 

 

d). If YES, where did this happen? 

 

e). If YES, do you know why this happened? 

 

 

19). During your lifetime, has the amount of broadleaved forest changed in and around this village?   

YES / NO / DON’T KNOW / THERE IS NO BROADLEAVED FOREST 

a). If YES, is there MORE or LESS broadleaved forest now? 

 

b). If YES, by how much has amount of broadleaved forest changed? 
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c). If YES, when did this happen? 

 

d). If YES, where did this happen? 

 

e). If YES, do you know why this happened? 

 

 

 

20). During your lifetime, has the amount of bush/scrub changed in and around this village?    

YES / NO / DON’T KNOW / THERE IS NO BUSH/SCRUB 

a). If YES, is there MORE or LESS bush/scrub now? 

 

b). If YES, by how much has amount of bush/scrub changed? 

 

c). If YES, when did this happen? 

 

d). If YES, where did this happen? 

 

e). If YES, do you know why this happened? 

 

 

21). During your lifetime, have the number of fruit trees changed in this village? 

YES / NO /DON’T KNOW / THERE ARE NO FRUIT TREES 

a). If YES, are there MORE or LESS fruit trees inside the village? 

 

b). If YES, how much has this changed? 

 

c). If YES, when did this happen? 
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d). If YES, why did this happen? 

 

 

22). Has the number of people in this village changed in your lifetime?  

YES / NO / DON’T KNOW 

a). If YES, are there MORE or FEWER people now? 

 

 

b). If YES, by how much has the number of people changed? 

 

c). If YES, when did this happen? 

 

c). If YES, do you know why this happened? 

 

 

23). Has the number of houses in this village changed in your lifetime?  

YES / NO / DON’T KNOW 

a). If YES, are there MORE or FEWER houses? 

 

b). If YES, by how much has the number of people changed? 

 

c). If YES, when did this happen? 

 

d). If YES, do you know why this happened? 

 

 

24). Have any roads been constructed in or near this village in your lifetime?  

YES / NO / DON’T KNOW  

a). If YES, when did this happen? 
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b). If YES, where did this happen? 

 

c). If YES, do you know why this happened? 

 

 

25). Have any bridges been constructed in or near this village in your lifetime?  

YES / NO / DON’T KNOW 

a). If YES, when did this happen? 

 

b). If YES, where did this happen? 

 

c). If YES, do you know why this happened? 

 

 

26). Have any highways been constructed near this village in your lifetime? 

YES / NO / DON’T KNOW 

a). If YES, when did this happen? 

 

b). If YES, where did this happen? 

 

c). If YES, do you know why this happened? 

 

 

 

27). Do people in this village use chemicals on their crops? 

YES / NO / DON’T KNOW 

a). If YES, what types of chemicals are used? 

 

b). If YES, which crops are they used on? 

 

c). If YES, why are they used? 
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d). If YES, how often are they used? 

 

28). (If YES to Q27) Has the use of chemicals on crops around this village changed in your lifetime? 

YES / NO /DON’T KNOW 

a). If YES, are there MORE or FEWER chemicals? 

 

b). If YES, how much has this changed? 

 

c). If YES, when did this happen? 

 

d). If YES, why did this happen? 

 

 

29). Have there been any other changes to the landscape around here during your lifetime? 

 

 

 

 

 

Section 3 

30). Have you ever seen a Hwamei / Hua mei? 

YES / NO / DON’T KNOW 

 

30). Have you ever seen a Masked Laughingthrush / Heilian zaomei?  

YES / NO / DON’T KNOW 

 

31). Have you ever seen a Light-vented Bulbul / Baitou bei?  

YES / NO / DON’T KNOW 

 

32). Have you ever seen a Sparrow / Ma que?  
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YES / NO / DON’T KNOW 

 

33). Have you ever seen a Blue-crowned Laughingthrush / Languan zaomei?  

YES / NO / DON’T KNOW 

 

34). (Show interviewee a series of photographs – includes Blue-crowned Laughingthrush, Sparrow, 

Masked Laughingthrush, Light-vented Bulbul, Hwamei) 

a). Do you recognise this bird? (Hwamei) 

YES / NO / DON’T KNOW 

i) If YES, what is it called? 

 

 

 

b). Do you recognise this bird? (Light-vented Bulbul) 

YES / NO / DON’T KNOW 

i) If YES, what is it called? 

 

 

c). Do you recognise this bird? YES / NO / DON’T KNOW (Sparrow) 

i) If YES, what is it called? 

 

 

d). Do you recognise this bird? YES / NO / DON’T KNOW (Masked Laughingthrush) 

i) If YES, what is it called? 

 

 

e). Do you recognise this bird? YES / NO / DON’T KNOW (Blue-crowned Laughingthrush) 

i) If YES, what is it called? 

 

 

35). (Play recording of Blue-crowned Laughingthrush flock) Do you know which bird this is? 
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YES / NO / DON’T KNOW 

a). If YES, what is it called? 

 

 

If respondent recognises Blue-crowned Laughingthrush by name, image or sound then ask 

them Questions 36-46. If not, go straight to Question 47. 

 

36). When was the last time you saw a Blue-crowned Laughingthrush?  

 

 

 

37). How often have you ever seen a Blue-crowned Laughingthrush?  

 

 

 

 

38). (If YES to Q37) Do you remember what time of year (spring, summer, autumn, winter) you last 

saw a Blue-crowned Laughingthrush? 

 

 

a). Where was the last place you saw a Blue-crowned Laughingthrush? (describe nearest 

village) 

 

b). What type of land did you see it on (select one from each list) 

i). FIELD / FOREST / FENG SHUI FOREST  

ii). VILLAGE / RIVER  

iii). HILLSIDE / VALLEY 

 

c). How many birds did you see? 
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d). Did the group of birds look like….? (Show 4 pictures of different-sized flocks and ask 

interviewee to pick one) 

SMALL / MEDIUM / LARGE / VERY LARGE / DON’T KNOW 

 

39). Were the Blue-crowned Laughingthrushes nesting? 

YES / NO / DON’T KNOW 

a). If YES, which tree(s) did they nest in? 

 

 

b).  If YES, have you seen them nest before? 

 

 

40). When was the first time you saw a Blue-crowned Laughingthrush? 

 

 

 

41). How many Blue-crowned Laughingthrush do you think there are around this village?  

 

 

42). Do you know any stories, myths, legends, traditions or customs about the Blue-crowned 

Laughingthrush?  

YES / NO / DON’T KNOW 

 

 

43). Do you think that the numbers of wild Blue-crowned Laughingthrush have changed in your 

lifetime?   

YES / NO / DON’T KNOW 

a). if YES, are there:  

MORE / LESS 

b). If LESS, approx. by how much have they decreased? 

 

 



 

194 
 

c). If LESS, approx. when did they decrease? 

 

 

d). If LESS, why do you think they decreased? (what caused it) 

 

 

44). Have Blue-crowned Laughingthrushes disappeared from any specific areas/places?  

YES / NO / DON’T KNOW 

a). If YES, where have they disappeared from? 

 

 

45). (If YES to Q44) In places where Blue-crowned Laughingthrushes used to be found but aren’t 

anymore, do you know what happened to make the birds disappear?  

YES /NO / DON’T KNOW 

a). If YES, what made the birds disappear? 

 

b). If YES, when did this happen? 

 

 

46). What do you think are the main threats to the Blue-crowned Laughingthrush? 

 

 

 

 

 

 

Section 4 

47). Have you ever heard of anyone catching birds from the wild?  

YES / NO / DON’T KNOW 

a). If YES, what types of birds are caught? 
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b). If YES, why are they caught? 

 

c). If YES, how are they caught? NETS / TRAPS / OTHER 

 

d). If YES, when is the last time you heard of this happening? 

 

e). If YES, is this done by local people or people coming from outside the village? 

 

f). If YES, how often does this happen? 

 

g). If YES, what happens to the birds once they are caught? 

 

 

48). Have you ever heard of anyone killing wild birds?  

YES / NO / DON’T KNOW 

a). If YES, what types of birds are killed? 

 

b). If YES, why are they killed? 

 

c). If YES, how are they killed? GUNS / POISON / STONES / OTHER 

 

d). If YES, when is the last time you heard of this happening? 

 

 

 

49). Do people keep songbirds in cages in this county?  

YES / NO / DON’T KNOW 

a). If YES, approximately how many people? 

 

b). If YES, what types of bird are kept? 
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c). If YES, where do they get the birds from? 

 

d). If YES, do you keep any songbirds in cages? 

 

 

50). How many people have you heard of catching birds from the wild?  

 

 

 

51). Have you ever heard of anyone catching a Blue-crowned Laughingthrush from the wild?  

YES / NO / DON’T KNOW 

a). If YES, why was it caught? 

 

b). If YES, how was it caught? 

 

c). If YES, when was the most recent time this happened? 

 

d). If YES, how often have you heard of this happening? 

 

 

 

52). Do you know if the Blue-crowned Laughingthrush is a protected species?  

YES / NO / DON’T KNOW 

a). If YES, what is its protection status?? 
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Figure S2. Bird species images used in the questionnaire. 

Masked Laughingthrush Pterorhinus perspicillatus 

 

Eurasian Tree Sparrow Passer montanus 
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Blue-crowned Laughingthrush Pterorhinus courtoisi 

Chinese Hwamei Garrulax canorus 
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Light-vented Bulbul Pycnonotus sinensis 
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Figure S3. Flock sizes used in questionnaire. 

‘Small’ flock 

 

‘Medium’ flock 
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‘Large’ flock 

 

 

‘Very large’ flock 
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Table S1. Questionnaire data processing protocol, listing examples of main response types and how these are 

processed/standardised. 

Reporting format Example Method of conversion to direct calendar year 

Direct calendar year 1984 Already in correct format for analysis 
Time elapsed/number of 
years ago 

“20 years ago” Number of years before 2019 

Specified multi-year 
range 

“Five or six years ago 五六年

前” / “Wu liu nian qian” 

Equal probability of being randomly assigned to any 
calendar year within given range 

End date only (1) “Before 2000” Equal probability of being randomly assigned to any 
calendar year in the reported decadal interval (e.g. 
between 1991 and 1999 for this example) 

End date only (2) “Over 10 years ago” Equal probability of being randomly assigned to any 
calendar year in the reported decadal interval (e.g., 
between 10 and 19 years ago for the given example) 

Start date only (1) “Since 2015 2015年后”/ 

“2015 nian hou” 
 
 
 

Taken conservatively as earliest year after the one 
given by respondent (e.g. 2016 in this example) 

Start date only (2) “Recent 2 decades” Equal probability of being randomly assigned to any 
calendar year in the reported decadal interval (e.g., 
between 10 and 20 years ago for the given example) 

With reference to 
national, local or 
personal events 

“Since the reform and 
opening-up (1978)” 
 
“Since the great cultural 
revolution” 
 
 
“When the highway was 
built” 

Equal probability of being randomly assigned to any 
calendar year in the reported decadal interval, when 
date of reference event can be determined (with given 
example, within the 10 years after 1978 (1978 – 1988) 
 
Refer to the date that respondent gave as the local 
event; otherwise, discard. 
 

Vague, general “years ago”, “recent years”, 
“many years ago” , 
“when the interviewee was 
young”, 
“When the interviewee was 
a child”, “childhood” 
 
“a few years ago” 
‘several years ago ji nian 
qian’ 

Qian ji nian 前几年 

Treat ‘recent years’ as equal probability of being 
randomly assigned calendar year within last decade. 
‘When the interviewee was a child’, calculate the first 
18 years of their life.  
 
‘A few years ago’ or ‘several years ago’ – too vague, 
discard. 
 

Incremental change “year by year 逐年”/ 

Every year” 
 
“All the time” 

Put down as last year (2018) 
 
 
Discard 

 

NA = 267 

Don’t know = 54 

Where respondents reported seeing a Blue-crowned Laughingthrush within the last 18 

months, some answered ‘Do not know’ or the reported last-sighting date could not be 

converted to a calendar year. These responses were excluded from analysis (n=87). 
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(a) 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 

 

Figure S4. Multiple Correspondence Analysis (MCA) (a) scree plot showing the percentage variance explained by 

each MCA dimension and (b) the correlation between each variable and MCA principal dimensions 1 and 2. 
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Spatial autocorrelation in models 

All models were initially run as frequentist binomial GLMMs. Models showed significant 

spatial dependency within residuals, likely resulting from the tendency for breeding villages 

to be clustered relatively close together, and from comparing spatially discreet landscapes in 

an irregular formation (e.g. comparing respondents inside and outside of the EOO). 

Autocorrelation within models was initially tested using the check_autocorrelation function 

from the performance package (Lüdecke et al. 2020) and spatial autocorrelation was tested 

using moran.test on the model residuals from the package spdep (Bivand, Pebesma, & Gómez-

Rubio, 2013; Bivand & Wong, 2018).  

However, the frequentist GLMMs ultimately could not be run. For the response type 

(binomial) with categorical predictor variables and high levels of spatial autocorrelation at 

multiple scales, the most appropriate approach would have been to fit each model with 

optimised Moran’s Eigenvector Maps (MEMs; Dray et al. 2006; (Bauman, Drouet, Dray, & 

Vleminckx, 2018; Bauman, Drouet, Fortin, & Dray, 2018). However, too many MEMs were 

needed (35+) in order to remove spatial autocorrelation, each of which added an extra 

predictor variable to the dataset, thus requiring more degrees of freedom than the data 

possessed and/or making the model unstable. This remained the case even when noise was 

added to the spatial coordinates through the jitter function in R. A distance-based 

autocovariate approach was also tried (Dormann et al., 2007) however this failed to 

adequately remove spatial autocorrelation. So, a Bayesian approach was used instead as this 

addresses spatial autocorrelation through fundamental differences in the way Bayesian and 

frequentist statistics are calculated, especially using MCMC (McElreath 2016).  
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Table S2. All variables considered for inclusion in final models. Black ticks show variables a priori included in final full models.  

Predictor 
Type 

                                                                              Variable Predictor Data format Description of dependent 
variable and hypothesised 
relationship 

Variable 
type 

Examples from 
literature/reason 
for inclusion 

  Breeding 
status 
(Unsure 
villages = 
Non-
breeding) 

Breeding 
status 
(Unsure 
villages = 
Breeding) 

Within 
EOO or 
outside of 
EOO 

Recently 
seen BCLT 
(last 18 
months) 

Seen BCLT     

Land use Rice paddy change      Categorical 
(nominal - More, 
Less, No change, 
None of land type) 

Change in amount of rice 
paddy in or around the 
respondent’s village, over 
their lifetime.  

Fixed  

 Tea plantation 
change 

     Categorical 
(nominal - More, 
Less, No change, 
None of land type) 

Change in amount of tea 
plantation or around the 
respondent’s village, over 
their lifetime.  

Fixed Significant chi-
squared result 
Zhang et al. 
(2017) 

 Oilseed rape change      Categorical 
(nominal - More, 
Less, No change, 
None of land type) 

Change in amount of oilseed 
rape in or around the 
respondent’s village, over 
their lifetime.  

Fixed Significant chi-
squared result 

 Vegetable garden 
change 

     Categorical 
(nominal -More, 
Less, No change, 
None of land type) 

Change in amount of 
vegetable garden in or 
around the respondent’s 
village, over their lifetime.  

Fixed Zhang et al. 
(2017) 

 Fir tree forest 
change 

     Categorical 
(nominal – More, 
Less, No change, 
None of land type) 

Change in amount of fir tree 
forest in or around the 
respondent’s village, over 
their lifetime.  

Fixed He & Xi (2002) 

 Pine tree forest 
change 

     Categorical 
(nominal - More, 
Less, No change, 
None of land type) 

Change in amount of pine 
tree forest in or around the 
respondent’s village, over 
their lifetime.  

Fixed He & Xi (2002) 

 Fengshui forest 
change 

     Categorical 
(nominal - More, 
Less, No change, 
None of land type) 

Change in amount of 
fengshui forest in or around 
the respondent’s village, over 
their lifetime. BCLTs have 

Fixed Yu 2003, Hong et 
al. 2006, Zhang 
et al. (2017) 
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been recorded as nesting in 
fengshui trees. 

 Broadleaf forest 
change 

     Categorical 
(nominal - More, 
Less, No change, 
None of land type) 

Change in amount of 
broadleaf forest in or around 
the respondent’s village, over 
their lifetime.  

Fixed Zhang et al. 
(2017) 

 Bamboo forest 
change 

     Categorical 
(nominal - More, 
Less, No change, 
None of land type) 

Change in amount of 
bamboo forest in or around 
the respondent’s village, over 
their lifetime.  

Fixed Significant chi-
squared result 
Zhang et al. 
(2017), Liu et al. 
(2020) 
 

 Bush/scrub change      Categorical 
(nominal - More, 
Less, No change, 
None of land type) 

Change in amount of 
bush/scrub in or around the 
respondent’s village, over 
their lifetime.  

Fixed Significant chi-
squared result 
Liu et al. (2020) 

 Fruit trees change      Categorical 
(nominal - More, 
Less, No change, 
None of land type) 

Change in amount of fruit 
trees in or around the 
respondent’s village, over 
their lifetime. BCLTs have 
been recorded as nesting in 
fruit trees. 

Fixed Richardson 2005, 
Zhang et al. 
(2017), He et al. 
(2017) 

 Number of people 
change 

     Categorical 
(nominal - More, 
Less, No change) 

Change in number of people 
living in respondent’s village, 
over their lifetime. 

Fixed Human 
disturbance 
mentioned as 
important factor 
at breeding sites 
by Zhang et al. 
(2017), He at al. 
(2017 

 Number of houses 
change 

 
 
 

 
 
 

 
 

 
 

 Categorical 
(nominal - More, 
Less, No change) 

Change in number of houses 
in respondent’s village, over 
their lifetime.  

Fixed Zhang et al. 
(2017), He at al. 
(2017 

 Use of chemicals 
change 

     Categorical 
(nominal - More, 
Less, No change) 

Change in use of chemicals 
on land in and around 
respondent’s village, over 
their lifetime. 

Fixed  
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 Roads      Categorical 
(binary  – Yes/No) 

Whether or not new roads 
were built in or around 
respondent’s village, over 
their lifetime.  

Fixed Significant chi-
squared result 
Zhang et al. 
(2017), He at al. 
(2017 

 Bridges      Categorical 
(binary  – Yes/No) 

Whether or not new bridges 
were built in or around 
respondent’s village, over 
their lifetime.  

Fixed Zhang et al. 
(2017), He at al. 
(2017 

 Highways      Categorical 
(binary  – Yes/No) 

Whether or not new 
highways were built in or 
near respondent’s village, 
over their lifetime.  

Fixed Zhang et al. 
(2017), He at al. 
(2017 

Threat Catching birds – 
Yes/No 

     Categorical 
(nominal) 

Whether or not the 
respondent has ever heard of 
anyone catching birds from 
the wild. Areas or villages 
with higher number of 
respondents reporting bird 
catching may affect where 
BCLTs choose to breed, as 
BCLTs could be at greater risk 
of capture. 

Fixed 
effect 

 

 Catching birds – 
Types 

     Categorical 
(nominal) 

If the respondent has heard 
of people catching wild birds, 
what types of birds are 
caught. Areas or villages 
reporting more/higher 
proportions of songbirds 
caught may have fewer, 
declining or no BCLT, and so 
may differ between where 
BCLTs are and are not found. 

Fixed 
effect 

 

 Catching birds – 
Reason 

     Categorical 
(nominal) 

If the respondent has heard 
of people catching wild birds, 
why birds are caught. Birds 
caught for sale may be 
intended for the caged bird 
trade, which is thought to 
have led to the extirpation of 

Fixed 
effect 
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BCLTs in Yunnan province. 
Areas or villages reporting 
more birds being caught for 
sale may have fewer, 
declining or no BCLT, and so 
may differ between where 
BCLTs are and are not found. 

 Catching birds – 
Who 

 
 
 
 
 

  
 
 
 
 
 
 
 

  Categorical 
(nominal) 

If the respondent has heard 
of people catching wild birds, 
who catches the birds 
(villagers or outsiders). If 
birds are being caught by 
outsiders, this may indicate 
this is for the commercial 
bird trade. 

Fixed 
effect 

 

 Killing birds - 
Yes/No 

     Categorical 
(nominal) 

Whether or not the 
respondent has ever heard of 
anyone killing wild birds. 
BCLTs may be affected by 
bird killing activity.  

Fixed 
effect 

 

 Killing birds - Types      Categorical 
(nominal) 

If the respondent has heard 
of people killing wild birds, 
what types of birds are killed.  

Fixed 
effect 

 

 Keep songbirds – 
Yes/No 

     Categorical 
(nominal) 

If the respondent reports 
that people keep songbirds in 
cages in their county.  

Fixed 
effect 

 

 Keep songbirds – 
Where from 

 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

  Categorical 
(nominal) 

If the respondent reports 
that people in their county 
keep caged songbirds, where 
they get them from (catch 
from the wild, or buy from 
others). If more people buy 
from others, this may 
indicate a functioning local 
bird trade, and could affect 
where BCLTs breed (they 
may avoid or be negatively 
affected in areas where there 
is an active songbird trade). 

Fixed 
effect 
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 Catching BCLTs – 
Yes/No 

 
 
 

 
 

 
 
 

  Categorical 
(nominal) 

If the respondent has heard 
of anyone catching a BCLT 
from the wild. Areas where 
this happens may deter BCLT 
from breeding there, and so 
may differ between areas 
where they are and are not 
found. 

Fixed 
effect 

 

External Estimated village 
population size 

     Continuous 
(numeric) 

The number of people living 
in the respondent’s village. 
Population size could 
influence land use practices 
and patterns, which could in 
term affect the likelihood of 
BCLTs choosing a village as a 
breeding territory. 

Fixed  

 Village  
 
 

    Categorical 
(nominal) 

The village in which the 
interview was carried out. 
Villages are included as a 
random effect to account for 
non-independence in the 
data. 

Random 
effect 

 

 Interviewer  
 
 

   
 

 

 
 

 

Categorical 
(nominal) 

This will be included in 
models to account for bias. 

Random 
effect 
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Table S3. Demographic characteristics of interview respondents. 

Demographic characteristics Variable Number of respondents 

Sex Male 272 (52.4%) 
 Female 247 (47.6%) 
Age Age range + (mean) 18-93 (55.8) years 
Occupation Farmer 296 (57.0%) 
 Housewife 33 (6.3%) 
 Unemployed  34 (6.5%) 
 Retired 20 (3.8%) 
 Professional 22 (4.2%) 
 Shop worker 20 (3.8%) 
 Businessperson 17 (3.3%) 
 Official 14 (2.7%) 
 Manual worker 13 (2.5%) 
 Clerical worker 9 (1.7%) 
 Student 9 (1.7%) 
 Miscellaneous worker 32 (6.1%) 
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Local bird names 

Names for sparrow were given by many respondents as ‘Ma Que 麻雀’ (common name), or 

‘Tou Liang 偷梁, a local name meaning ‘grain thief’ (Terry Townshend pers. comm. 2020). Of 

the 182 respondents who recognised the BCLT from a photo, 26.4% (n=48) were able to give 

an ‘appropriate’ name for the species, including ‘Lan Guan Zao Mei’, ‘Huang Hou Zao Mei 黄

喉噪鹛’, ‘Huang Zhu Niao 黄竹鸟’, ‘Huang Li Niao 黄鹂鸟’, ‘Huang Niao 黄鸟’, ‘Huang Mei 

Niao 黄眉 鸟’,‘ Bao Chun Niao/Spring-announcing bird 报春鸟’  and ‘Huang Niao Mei 黄鸟眉

’. Many of these names are variants of ‘yellow bird’, which may refer to its colouring or its 

former species name of ‘Yellow-throated Laughingthrush/黄喉噪鹛’. The remainder of 

respondents either did not know the name, or called it a Hwamei, woodpecker, or ‘Zhua Yu 

Niao抓鱼鸟’ (‘catching fish bird’, suggesting confusion with kingfishers, which may have 

similar colouring).  The species was re-named ‘Blue-crowned Laughingthrush/蓝冠噪鹛’ in 

2006 and it is therefore not unexpected that many local people still use its old name. Although 

‘Hua mei 画眉’ strictly refers to Garrulax canorus, in local dialects and popular culture the 

term may also be used as a general term for various birds, including Laughingthrushes (Terry 

Townshend, personal communication 2020). Thus, local people may not be confusing BCLTs 

with other species and may simply be using a more general term such as ‘thrush’. 
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Figure S5. Number of respondents who recognised the Blue-crowned Laughingthrush by either its name, an 

image or a sound recording of the birds calling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6. Proportion of respondents reporting the year they last saw a Blue-crowned Laughingthrush. 
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Table S4. Changes in land types around respondent home villages: overall percentage of respondent reporting 

(a) an increase or decrease, and (b) no change/absence of land types. 

(a) 

Land type Overall Percentage Number of respondents 

Houses 80.0% 419 

Bamboo 48.2% 250 

Bush/scrub 39.1% 203 

Broadleaf forest 23.1% 145 

Fir forest 20.4% 181 

Fruit trees 4.2% 74 

Oilseed 0.2% 127 

Pine forest -16.7% 144 

Fengshui forest -17.5% 103 

Tea plantation -39.1% 203 

Vegetable garden -43.5% 226 

Rice paddy -58.6% 304 

 

(b) 

Land type No change (%) Absence of land type (%) 

Houses 16.57 NA 

Bamboo 31.41 7.89 

Bush/scrub 27.17 7.71 

Broadleaf forest 35.84 14.06 

Fir forest 31.02 9.05 

Fruit trees 25.05 47.01 

Oilseed 31.60 14.06 

Pine forest 24.85 29.67 

Fengshui forest 51.06 19.46 

Tea plantation 11.17 38.92 

Vegetable garden 42.39 1.73 

Rice paddy 23.51 1.73 

 

 

 

 

 

 

 

 

 

 



 

214 
 

Table S5. General types of birds, reasons for catching or killing, and methods for catching and killing birds. 

Caught birds Killed birds 

Types Reasons Methods Types Reasons Methods 

Gamebirds & 
waterfowl 

Songbirds 

Sparrows & 
pests 

Eat 

Sell  

Protect crops 

Entertainment 

Cage 

Hand 

Net 

Slingshot 

Trap  

Sound recording 

Whistle 

Gamebirds & 
waterfowl 

Sparrows 

Eat 

Entertainment 

Protect crops 

Guns 

Poison 

Slingshot 

Net 

Stick 

Stones 

Suffocated 
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Table S6. Leave-One-Out Cross Validation differences between Expected Log Pointwise Predictive Density (ELPD) 

scores and Standard Error scores of the ‘Seen BCLT’ and ‘Recently seen BCLT’ GLMMs. Moment matching was 

performed on the LOO cross validation for values with a pareto k value of >0.7, which indicates outlier 

observations which have a disproportionate effect on the model and make estimating out-of-sample accuracy 

difficult. ‘_gp’ denotes a Gaussian process model. Optimal models highlighted in bold. 

 Seen BCLT Recently seen BCLT 

Model name ELPD diff. SE diff. ELPD diff. SE diff. 

brms_fit_1 -8.9 7.5 -16.2        6.1 

brms_fit_2 -1.0        5.1    -3.2 5.2   

brms_fit_2_gp NA NA -2.5 5.4   

brms_fit_3 -2.7 6.8 -7.8 4.8 

brms_fit_3_gp NA NA -6.4 5.0   

brms_fit_4   0.0 0.0 -1.4 3.7 

brms_fit_4_gp NA NA -0.4 4.0 

brms_fit_5    -6.0 7.9 0.0        0.0   

brms_fit_5_gp NA NA 0.0        1.1   
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Figure S7. Interval plot showing the 90% credible intervals (CI), represented by the black lines, for the posterior 

distribution of each factor level, in relation to whether respondents had seen a Blue-crowned Laughingthrush. 

Coloured circles within each line represent the estimate. Predictor levels are considered significant if the CI does 

not encompass zero on the x axis. Plot displays the third most optimal candidate model (within -2.7 ELPD). 

Variables in the model are: vegetable garden change, fengshui forest change, awareness of people catching Blue-

crowned Laughingthrush, bush/scrub change, and bamboo forest change. 
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Figure S8. Interval plot showing the 90% credible intervals (CI), represented by the black lines, for the posterior 

distribution of each factor level, in relation to whether respondents had recently seen a Blue-crowned 

Laughingthrush. Coloured circles within each line represent the estimate. Predictor levels are considered 

significant if the CI does not encompass zero on the x axis. Plot displays the second most optimal candidate 

model (within -0.4 ELPD). Variables in the model are: types of birds caught, change in tea plantation. 
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Table S7. Outputs for breeding model variations, and the EOO models. 

Response Breeding/control (unsure 
villages = control) 

Breeding/control (unsure 
villages = breeding) 

EOO/buffer 

Covariate    

Bamboo forest 
change 

Estimate 90% CI range 
(lower/upper) 

Estimate 90% CI range 
(lower/upper) 

Estimate 90% CI range 
(lower/upper) 

More -0.33 -1.13 – 0.42 -0.36 -1.12 – 0.35 -1.04 -2.06 - -0.19 

No change -0.21 -1.02 – 0.54 -0.27 -1.04 – 0.49  0.25 -0.57 – 1.12 

Less  0.44 -0.26 – 1.25  0.22 -0.47 – 0.97  0.08 -0.67 – 0.89 

No bamboo 
forest 

-0.45 -1.38 – 0.37 -0.15 -0.92 – 0.60 -0.47 -1.36 – 0.39 

Catching BCLT       

Do not know -0.29 -1.16 – 0.49 -0.41 -1.25 – 0.39 -0.75 -1.61 – 0.00 

No -0.38 -0.33 – 1.19 -0.42 -0.35 – 1.29  0.20 -0.60 – 1.07 

Yes -0.89 -2.01 – 0.00 -1.09 -2.32 - -0.12 -0.63 -1.59 – 0.22 

Fengshui forest 
change 

      

No change  0.09 -1.08 – 0.45  0.28 -0.53 – 1.14 -0.25 -1.03 – 0.53 

Less -0.21 -0.73 – 0.93 -0.46 -1.29 – 0.30 -0.50 -1.28 – 0.24 

No fengshui 
forest 

-1.26 -2.52 - -0.19 -1.28 -2.45 - -0.29 -0.66 -1.57 – 0.18 

Bush/scrub 
change 

      

More  0.22 -0.79 – 1.20 -0.06 -0.93 – 0.77 -0.43 -1.38 – 0.43 

No change -2.02 -3.79 - -0.61 -1.12 -2.27 - -0.16 -1.60 -2.82 - -0.55 

Less  2.78  1.16 – 4.93  1.54  0.48 – 2.84  1.28  0.19 – 2.56 

No bush/scrub  0.56 -0.40 – 1.63  0.10 -0.73 – 0.97  0.42 -0.65 – 1.68 

Tea plantation 
change 

      

More -0.36 -1.27 – 0.43 -0.48 -1.40 – 0.34 -1.06 -2.14 - -0.17 

No change  0.68 -0.13 – 1.55  0.84  0.05 – 1.79  0.01 -0.87 – 0.88 

Less  0.15 -0.72 – 1.03 -0.10 -0.97 – 0.77 -0.36 -1.25 – 0.53 

No tea 
plantation 

-0.12 -0.97 – 0.75 -0.16 -1.05 – 0.68 -0.76 -1.73 – 0.13 

Roads       

Yes  0.23 -0.48 – 0.98  0.09 -0.67 – 0.68 -0.14 -0.88 – 0.59 

No -0.65 -1.49 – 0.09 -0.51 -1.31 – 0.18 -0.76 -1.61 – 0.00 

Vegetable 
garden change 
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Less -0.18 -0.99 – 0.55 -0.45 -1.30 – 0.29 -0.14 -0.88 – 0.61 

More  0.88  0.05 – 1.96  1.07 -1.30 – 0.29  0.13 -0.67 – 1.02 

No change -0.65 -1.57 – 0.15 -0.67 -1.59 – 0.17 -0.69 -1.51 – 0.06 

No vegetable 
garden 

 0.47 -0.30 – 1.27  0.73 -0.05 – 1.64  0.12 -0.68 – 0.96 
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5. Seeing the wood for the trees: using resource 

selection functions at multiple spatial scales to inform 

conservation of the Critically Endangered Blue-

crowned Laughingthrush Pterorhinus courtoisi 

 

Rosalind A. Gleave, Sarah K. Papworth, David Bauman, Steven J. Portugal, Weiwei Zhang, 

Yurong Yu, Samuel T. Turvey 

 

5.1 Abstract 

The Blue-crowned Laughingthrush (BCLT; Pterorhinus courtoisi) is a Critically Endangered 

cooperative breeding bird found in subtropical southeastern China. Breeding sites are 

associated with mature broadleaved forests, villages, and rivers, and are situated within 

agricultural mosaic landscapes, but it is unclear why the species is not more widely distributed 

across similar landscapes in southern China. Breeding habitat use has previously been 

investigated only at a few breeding and control (non-breeding) sites, focussed on comparing 

patches of broadleaved forest within the existing breeding range. We quantified the BCLT’s 

habitat preferences by comparing fine-scale vegetation measures and topographical and 

remote sensing data at 39 villages within and beyond its known breeding range, applying 

resource selection functions at both the nest and breeding site scales (range: 100m2 – 

0.346km2). Overall, we find little evidence of habitat differences between breeding and 

control sites across the study landscape. However, nesting sites were significantly more likely 

to contain broadleaved trees of larger diameter at breast height (DBH), stands of bamboo, 

conifer or mixed forest, and to be situated on areas of lower slope incline, and sites outside 

of the breeding range were at significantly higher elevation. Our results generally support, 

but further nuance, previous studies of BCLT habitat preference, and suggest that the species 

shows strongest habitat preference at the nest site scale. 

Key words: Resource selection function, habitat selection, laughingthrush, Pterorhinus 

courtoisi, China 
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5.2 Introduction 

Reliable information on species’ ecological requirements forms a core component of 

conservation (Luck, 2002; Hayward et al., 2006), allowing conservation managers to 

effectively address any major factors driving species decline or restricting recovery 

(Sutherland et al., 2004). One key ecological requirement is species’ habitat use or preference, 

knowledge of which is essential for effective conservation planning (Caughley, 1994). 

Information on this ecological parameter can inform habitat management plans (Oppel et al., 

2004), protected area design (Roberts et al., 2010; Beatty et al., 2014) and species 

reintroductions (Van Schmidt et al., 2014). Determining which habitats are used 

disproportionately compared to those that are available also provides fundamental 

conservation-relevant information on the degree to which habitat availability restricts 

species’ ranges (Behnke, Pejchar and Crampton, 2016). This is key to revealing the importance 

of habitat loss versus other factors as determinants of the current status of threatened 

species (Mellanby et al., 2008). 

Resource Selection Functions (RSFs) are an important tool in elucidating species’ habitat 

requirements, defined as probabilities of use for resource units of different types (Manly et 

al., 2002). RSFs have been applied to a broad range of ecological questions, including drivers 

of species’ geographic ranges (Aldridge et al., 2008; Brambilla et al., 2009) and spatial 

predator-prey interactions (Courbin et al., 2013). Within this framework, ‘habitat preference’ 

is defined as the likelihood of a habitat or resource being selected if offered on an equal basis 

to others (Johnson, 1980). Habitat preference operates at multiple hierarchical biologically-

relevant scales, which can be assessed separately (Manly et al., 2002; Meyer and Thuiller, 

2006). These scales, all of which may be investigated using RSFs, encompass the species’ 

geographic range (landscape, 1st order), the breeding site of an individual or group (home 

range, 2nd order), and specific parts of home ranges such as nesting or foraging sites (3rd order; 

Johnson, 1980). Many studies now investigate habitat selection at multiple scales to inform 

conservation management (Oppel et al., 2004b; Walker, Cahill and Marsden, 2005; Donald et 

al., 2012; Sawyer and Brashares, 2013) as habitat selection may be scale-dependent (Johnson, 

1980; Gustine et al., 2010; Sawyer and Brashares, 2013), which has a bearing on planning for 

habitat restoration, land-use policy, translocations and other applications (Currie et al., 2003; 
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Colyn et al., 2020). However, there is still a lack of studies applying RSFs at multiple scales to 

extremely rare species with limited datasets. 

The Blue-crowned Laughingthrush (BCLT; Pterorhinus courtoisi) is a Critically Endangered bird 

species only found breeding in two counties (Wuyuan, Dexing) in north-east Jiangxi Province, 

China. The species’ IUCN Red List classification is based on its restricted, fragmented breeding 

range and small population size (BirdLife International 2018). As it is unknown where BCLTs 

go during the non-breeding season (He and Xi 2002; Hong et al. 2003; Yu 2003; Wilkinson et 

al. 2004), all habitat analyses are necessarily based upon their breeding distribution. This is 

still critical to conserving the BCLT, as breeding habitat can be a limiting factor to distribution 

and population size (Colyn et al., 2020; Segal et al., 2021). BCLTs breed in colonies (Wilkinson 

et al. 2004, Zhang et al., 2017) often in association with large, old trees, very close to or within 

areas of human settlement, at low elevation, and near rivers (Hong et al. 2003; Richardson 

2005). However, this generalisation is complicated by the fact that most villages in Wuyuan 

occur near rivers (Huang et al. 2018), not all breeding sites have occurred near rivers, and 

BCLT are also known to breed in bamboo, fir, or fruit trees (Richardson 2005; Zhang et al., 

2017). The exact habitat requirements of this species remain unclear, as there are many 

villages in both north-east Jiangxi and surrounding regions with the same general 

characteristics as breeding sites, but which lack recorded BCLT breeding activity. There are 

many descriptive studies of BCLT habitat use (He and Xi 2002; Hong et al. 2003; Richardson 

2005; Hong et al. 2006; Liao et al. 2007; He et al. 2017) but comparatively few systematic 

studies (Zhang et al. 2017; Huang et al. 2018; Liu et al., 2020), and there remains no conclusive 

evidence for why BCLTs are found only within such a restricted area; addressing this question 

will shed important light on how to effectively conserve the species. Wuyuan County, the 

centre of the BCLT’s known breeding range, is rapidly changing due to tourism and 

development (Zhang, Long and Zhao, 2019), and gathering evidence on the BCLT’s habitat 

preferences is thus also important for ensuring future developments do not compromise the 

species’ chance of persistence within this human-occupied landscape. 

BCLT habitat selection has been examined during the breeding season by comparing forest 

breeding site patches with control patches of the same forest type, revealing a preference for 

breeding sites in broadleaf forests, at low elevation and near villages and sources of water, 

and for nesting sites in tall broadleaf trees, with higher herb coverage under nesting trees 
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(Huang et al., 2018). However, this study used a limited sample of breeding sites (nine 

breeding sites, and four control sites per breeding site). Furthermore, it only compared 

characteristics of forest patches rather than the land around different villages, potentially 

overlooking important breeding site cues such as associated foraging habitat. Huang et al. 

(2018) found that BCLT nested more in Chinese sweetgum Liquidambar, Hackberry Celtis and 

Chinese ash Pterocarya trees among their surveyed sites; these findings contrast with Zhang 

et al. (2017), who only found this pattern at a single breeding site, with camphor 

Cinnamomum trees preferentially used for nesting at other sites. Subsequently, Liu et al. 

(2020) tracked BCLT habitat use within breeding sites, and found a disproportionate use of 

woodland, followed by shrubland and vegetable plots. No study to date has compared a large 

sample of sites, including those outside of Wuyuan or the BCLT breeding range, which would 

allow more robust statistical inferences regarding the species’ habitat preference.  

We build on this existing body of information and provide a more conclusive baseline on BCLT 

breeding habitat requirements by comparing data from all known breeding sites against a 

series of control sites across a much greater geographical area than previous studies, both 

within and outside of the known BCLT breeding range. We apply RSFs at the 2nd and 3rd orders 

of habitat preference (Johnson, 1980), specifically in terms of nesting habitat. We use 

ecological surveys and analysis of satellite imagery to: (1) contrast landscape characteristics 

within the BCLT breeding range (their ‘Extent of Occurrence’ or EOO, Figure 1) and within a 

surrounding buffer region, (2) characterise BCLT breeding site preference in comparison to 

random control sites, (3) characterise nest site selection in comparison to control habitat 

features, and (4) compare proportions of land cover types between breeding and control 

sites. We assess the implications of our findings for ongoing conservation of the BCLT, through 

an improved understanding of whether the species exhibits local-scale habitat selection, or 

whether its restricted range may instead or also be determined by environmental 

characteristics at the wider landscape scale or by other factors such as human exploitation. 

5.3 Methods 

5.3.1 Study area 

Habitat surveys were conducted between 4th June and 31st July 2019 in Wuyuan (29°14’53”N, 

117°51’43”’E), Dexing (28°55’50”N, 117°35’41”E) and Leping (28°58’41”N, 117°09’07”E) 
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counties (Jiangxi Province) and Xiuning County (Anhui Province) (29°47’02”N, 118°11’38”E). 

This region consists of a subtropical human-modified mosaic landscape containing some 

remaining evergreen broadleaf forest (Hong et al., 2006). These landscapes feature many 

traditional village ‘fengshui forests’ (stands or larger patches of mature broadleaved trees). 

Fengshui forests have high cultural and spiritual importance and have been locally protected 

for centuries (Coggins, 2003). Land surrounding villages also contains plantation stands of 

bamboo, fir, and pine trees (He 1994; Richardson 2005) as well as mature broadleaf trees, 

mixed forest stands and other remnant forest patches (He et al., 2014). Dominant crop types 

are rice, tea, vegetable plots and oilseed rape (Richardson 2005; Hong et al. 2006; He et al. 

2017), with a decline of vegetable fields observed in recent years (He et al., 2017). The wider 

landscape is characterized by forested hills, agricultural valleys, river networks and small 

villages, similar to surrounding landscapes in southern China (Ellis, 2004). In Wuyuan County, 

the core of the BCLT’s breeding range, many of the fengshui forest sites have been protected 

by the County Government since 1993 (Huang et al., 2018).  

To select survey sites, we digitised human settlements using the Google Satellite plugin in 

QGIS v.3.16.5 (Hannover; QGIS Development Team 2021). Human settlements were chosen 

as the main spatial unit for BCLT breeding sites, as all known breeding sites to date have been 

either inside or directly adjacent to villages or small towns (He et al., 2017). Settlements were 

digitised within two main areas: a core area comprising the minimum convex polygon (MCP) 

of all recorded BCLT sighting or breeding locations, and a buffer area of 25km around the MCP 

(Figure 1). Over 900 settlements were digitised in total, with names taken from Google Earth. 

Settlement names were verified in the field. In addition to the MCP, to specify the known 

BCLT breeding range, a core area comprising a convex hull around all recorded BCLT breeding 

locations from 2000-2017 (F. He, 2019, personal communication; W. Zhang, 2019, personal 

communication) was created using QGIS, with area 725.93km2. This will hereafter be referred 

to as the EOO, or Extent of Occurrence (Figure 1). A buffer region comprising a 25km distance 

around the EOO was created, for the purpose of comparing villages within the two regions. 
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To select villages to be surveyed, the locations of all villages known to be either active or 

former BCLT breeding sites (n=18) were compiled using unpublished data as per Chapter 3 (F. 

He, 2019, personal communication; W. Zhang, 2019, personal communication). All but one of 

these breeding villages were surveyed (one site was discovered after fieldwork was 

completed). To select control sites, non-breeding villages close to past sightings of BCLTs, as 

reported by eBird.org (n=6) or mentioned in an unpublished field report (n=3; He 1994), were 

included. To generate further potential ‘control’ villages, which represent sites where BCLTs 

were not thought to have nested within living memory, a subset of settlements (n=12) was 

randomly chosen from within the core and buffer polygons combined. This gave a total of 21 

control sites. Control sites were further checked to have not had past breeding BCLT through 

interviews with local community members, carried out as part of Chapter 4. There were no 

Figure 1. Map showing the distribution of sampled villages, depicted as coloured circles. Shaded areas cover 

the counties of Wuyuan, Dexing, Leping (Jiangxi Province) and Xiuning (Anhui Province). Thick black lines 

demark the boundaries between provinces. The polygons show the Extent of Occurrence (EOO) drawn 

around known Blue-crowned Laughingthrush breeding sites, the Minimum Convex Polygon (MCP) drawn 

around all known Blue-crowned Laughingthrush sightings (including those from eBird), and the outer 

polygon shows the 25km buffer region around the MCP.  
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significant differences between control and breeding villages within a key set of 

characteristics (Mann-Whitney U Test): approximate number of buildings (W = 143, p = 0.14), 

distance to main road (W = 105, p = 0.91), distance to river (W = 124, p = 0.51), and elevation 

(W = 89, p = 0.43). Approximate number of buildings was estimated by eye from Google Earth 

imagery, and distance to main road was measured within QGIS. These characteristics were 

chosen for their potential association with BCLT presence (elevation, distance to river) or 

disturbance (number of buildings, distance to main road). Habitat characteristics at breeding 

sites were investigated at the level of individual villages and the land around them. ‘Nest sites’ 

are defined here as habitat ‘characteristics in the immediate vicinity of the nest’ (Jones, 2001). 

The central point of each breeding site survey area was created using QGIS, using a known 

past nesting point, or the centre of the village if precise nest sites within it were not known. 

A circular buffer zone was created around each point (radius = 332m, area = 350,000m2), 

representing an estimate of the furthest distance that BCLT will travel from their breeding 

sites to forage (B. Mo, 2018, personal communication). The mean area of a BCLT home range 

has been estimated as 100,000m2 (Shi et al., 2017; Liu et al., 2020), so our sampling areas 

covered three times the average BCLT home range.  

For the 2nd and 3rd order RSFs, 15 points were surveyed per village. To create these, 20 points 

were randomly generated at least 10m apart within the circular buffer zone, then all points 

located in any rivers or bodies of water were removed (n=23), to prevent a potential bias 

towards riparian trees. If more than 15 points were still available, we found points that were 

closest together and selected one of the pair (n=93), chosen either at random before entering 

the field, or whichever was found to be more accessible in the field. Points within inaccessible 

terrain were replaced with either the closest point, or by getting as close as possible to the 

existing point (n=61).  

 

5.3.2 Data collection protocol 

To collect data for the 2nd and 3rd order RSFs, surveys were conducted between 08:00 and 

16:00h by a team of two or three people. Strict safety rules were followed, including not 

surveying unsafe steep slopes, waist-height or higher thorny vegetation, or flood water. 

Heavy flooding during the field season restricted access to 61 points. Navigation was 
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performed using a Garmin eTrex10 GPS, a screenshot of the survey points displayed on a 

phone, and a compass. At each point, the closest tree over 2m in height was chosen. If the 

point was approximately equidistant between trees, the tree visually estimated to be closest, 

or the most accessible tree (if one tree was not) was chosen. At each breeding site, if known, 

one or two former or current nesting trees (F. He, 2019, personal communication) were 

substituted for the closest equivalent points. Once a tree was selected, a 100m2 (10m x 10m) 

quadrat was measured with the selected tree at the centre of the quadrat. Tree diameter at 

breast height (DBH), height and species were recorded, as well as the quadrat ID (point ID), 

number of trees over 2m high, percentage of land cover types within quadrat, herb density 

and height, and disturbance level (see Data Collection Protocol, Supplementary Information 

for details). Data on elevation, slope and aspect were generated post-fieldwork using QGIS 

(see Data Collection Protocol, Supplementary Information). Research was permitted by 

Jiangxi Wuyuan National Forest Bird Nature Reserve Management Office. 

To generate land cover type percentages for the 2nd order RSF for entire villages, 

atmospherically corrected Sentinel-2 imagery Level-2A Surface Reflectance imagery (10m x 

10m resolution), overlapping with all village locations (representing the least cloudy images 

available between the dates 1st February 2019 – 31st August 2019), was used within Google 

Earth Engine (Gorelick et al., 2017). Prior to image analysis, cloud masks were applied using a 

function that detected probabilities of pixel being cloud, cloud shadow and snow. Supervised 

imagery classification (Wegmann et al., 2016) was conducted using the random forest 

algorithm (Breiman 2001). This is a machine learning algorithm, building multiple decision 

trees and merging them to achieve a more stable and accurate prediction. The eight land 

cover types classified were: broadleaf forest, vegetable plots, other forest, tea plantation, rice 

paddy, bush/scrub, settlement/road and water. Training points were taken from high 

resolution Google Earth imagery. Accuracy assessment was performed using validation 

points, taken from a combination of ground-truthed GPS data (n=637) collected in April-May 

2019 and Google Earth imagery of (a) villages visited during habitat surveys, and (b) other 

areas that the lead author passed through during fieldwork in Wuyuan, Dexing, Leping and 

Xiuning counties. A confusion matrix was generated, and the overall accuracy, producer’s 

accuracy and user’s accuracy was calculated for each land cover type.  
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5.3.3. Data analysis 

5.3.3.1 Analysis overview 

Resource selection models were developed for five spatial analyses, at the scale of the BCLT 

breeding site (2nd order selection) and the BCLT nest site (3rd order selection): (a) comparing 

habitat characteristics within breeding sites to those within control sites; (b) comparing 

habitat characteristics at breeding or control sites within the EOO to those within the buffer 

region; (c) comparing habitat characteristics at known nest sites to random control sites 

within the study area; (d) comparing proportions of land cover types between breeding and 

control villages; and (e) comparing proportions of land cover types at breeding or control sites 

within the EOO to those within the buffer region. 

All analyses were performed in R version 4.0.2 (R Core Team, 2021). Data exploration was 

carried out on all variables using Principal Component Analysis (PCA) and simple box plots, 

with the aim of reducing the number of explanatory variables necessary in the models (see 

Figures S1 & S2, Supplementary Information). An initial PCA of all land type percentages 

captured c.10% of the data variance per dimension, so some land types were merged in order 

to produce stronger patterns: ‘Mixed forest’, ‘Bamboo forest’ and ‘Conifer forest’ were all 

merged into ‘Other forest’, ‘Fengshui forest’ was merged into ‘Broadleaf forest’, and ‘Oilseed 

rape’ was merged into ‘Rice paddy’. The subsequent PCA captured only marginally higher 

variance in the first dimension (c.16%), and tests of contribution and quality of representation 

for each variable revealed that only ‘Other forest’ and ‘Village/Town’ were strongly 

represented on the first two dimensions, indicating that these variables should be used alone. 

Correlation among continuous variables was tested using the corrplot package in R (Wei and 

Simko 2021, Figure S3, Supplementary Information). No variables had a correlation 

coefficient of >0.7, so were not excluded from the model on that basis (Green 1979). 

5.3.3.2 EOO, breeding and nest site selection from quadrat data 

Regression models were built to investigate 2nd order habitat selection by characterising 

differences between sites within the EOO (n=25) and in the buffer region (n=14), and between 

breeding sites (n=18) and control sites (n=21), and to investigate 3rd order habitat selection 

by characterising differences between known nesting quadrats (n=23) and control quadrats 

(n=562). For all models, responses were converted to either a ‘1’ for ‘breeding’, ‘inside the 
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EOO’ and ‘nesting’, or ‘0’ for ‘control’ and ‘buffer region’. Models were analysed as a ‘case-

control’ sampling design (Keating and Cherry, 2004), and thus outputs are interpreted as odds 

ratios rather than probabilities. As two of the surveyed villages had possible but unverified 

past BCLT breeding activity, these were modelled alternately classed as both ‘breeding’ and 

‘control’ villages, to contrast the results. As landscape changes are likely to have occurred 

since the BCLT was rediscovered in 2000, models were also fitted with just the breeding 

villages recorded from 2019 (n=9), with all other villages classed as control sites. For nesting 

sites, a random slope was fitted to see if the magnitude of effect of total broadleaf DBH on 

nest site choice differs among villages. All models were fitted using the brms package (Bürkner 

2017) with a Bernouilli distribution and logit link, and included a varying intercept for village 

(to account for between-site variation). All predictor variables were standardised prior to 

analysis (Harrison et al., 2018, McElreath 2020). Modelled variables are listed in Table 1. A 

full list of potential predictor variables is given in Table S1, Supplementary Information. 

Table 1. Response variables (*) and covariates used in resource selection models for the Blue-crowned 

Laughingthrush. 

Variable Description Justification 

Breeding site* Village verified as former or 
current BCLT breeding site 
between 2000-2017. 

 

Nesting site* Tree verified as former or 
current tree used by breeding 
BCLT (can include single or 
multiple nests) between 2000-
2017. Years of use unknown. 

 

Elevation Elevation in metres at the 
recorded way point 

Past studies indicate 
BCLT breeding sites at 
elevation <100m (Huang 
et al., 2018) 

Slope Percentage slope Observation that 
breeding sites were 
often in flat areas 
(R.Gleave, pers. obs.) 

Total broadleaf DBH Combined DBH of broadleaf 
trees (of over 20cm DBH) 
within a quadrat 

Past studies showed 
BCLT prefer nesting in 
large broadleaf trees 
(Zhang et al., 2017) 

Village/Town percent Percentage of ‘village or town’ 
land type within quadrat. 
‘Village or town’ defined as a 
building, or area of concrete 
or gravel. 

Nesting trees often close 
to human habitation 
(Hong et al., 2003) 
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Other Forest percent Percentage of ‘Other Forest’ 
land type within quadrat. 
‘Other Forest’ defined as 
conifer forest, bamboo forest 
or mixed forest/trees. 

Nesting trees shown to 
sometimes be in 
bamboo or fir trees 
(Hong et al., 2006; Zhang 
et al., 2017) 

Broadleaf Forest percent Percentage of ‘Broadleaf 
Forest’ land type within 
quadrat. ‘Broadleaf Forest’ 
defined as broadleaf forest or 
fengshui forest/trees. 

Nesting trees shown to 
sometimes be in 
broadleaf or fengshui 
trees (Zhang et al., 2017, 
Huang et al., 2018) 

   
Total Cinnamomum The total number of 

Cinnamomum sp. trees (of 
over 2m tall) within the 
quadrat 

BCLT showed preference 
for nesting in 
Cinnamomum trees at 
most sites (Zhang et al., 
2017) 

Village Random effect term, identity 
of each breeding or control 
site village 

 

 

To control for pseudo-replication of the use of 15 sampling points per village, ‘village’ was 

included as a random intercept term within models. To balance the risk of model overfitting 

with that of statistical biases related to unsupervised addition of explanatory variables in a 

regression model (e.g. multicollinearity) while avoiding stepwise variable selection issues 

(Mundry and Nunn, 2009, McElreath 2020), a full model (Table 2) was compared to a set of 

four sub-models. For the EOO/breeding site selection, these sub-models contrast the effects 

of variables hypothesised to be most influential on breeding site selection: elevation, slope 

and total broadleaf DBH. Nesting site selection models also contain an extra variable, total 

Cinnamomum trees, as these are thought to be the most selected tree type by breeding BCLT, 

so thought to affect 3rd order habitat selection. Full reasons for the choice of sub-models are 

given in Reasons for sub-model selection, Supplementary Information. The full model 

contained a carefully selected set of explanatory variables, while the sub-models were used 

to look for a more parsimonious model. Model comparison was performed using Leave-One-

Out cross validation (LOOCV) (Zuur 2009; McElreath 2020). 
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Table 2. All full model and candidate sub-model resource selection functions for the Blue-crowned 

Laughingthrush. Model specification uses R notation.  

Model name Breeding site and EOO selection Nesting site selection 

Full model (random intercept 
and slope) 

NA Nesting ~ Elevation + Slope 
+ Total Cinnamomum + 
Other Forest % + Broadleaf 
Forest % + Village/Town % + 
Total broadleaf DBH + (1 + 
Total broadleaf DBH|village) 

Full model (random intercept) Breeding/EOO ~ Elevation + 
Slope + Other Forest % + 
Broadleaf Forest % + 
Village/Town % + Total 
broadleaf DBH + (1|village) 

Nesting ~ Elevation + Slope 
+ Total Cinnamomum + 
Other Forest % + Broadleaf 
Forest % + Village/Town % + 
Total broadleaf DBH + 
(1|village) 

Sub-model 1 Breeding/EOO ~ Slope + Total 
broadleaf DBH + (1|village) 

Nesting ~ Elevation + Slope 
* Total broadleaf DBH + 
Total Cinnamomum + 
(1|village) 

Sub-model 2 Breeding/EOO ~ Elevation + 
Total broadleaf DBH + 
(1|village) 

Nesting ~ Elevation + Slope 
+ Total broadleaf DBH * 
Total Cinnamomum + 
(1|village) 

Sub-model 3 Breeding/EOO ~ Elevation + 
Slope + Other Forest % + 
Village/Town % + (1|village) 

Nesting ~ Elevation + Slope 
+ Total broadleaf DBH + 
(1|village) 

Sub-model 4 Breeding/EOO ~ Elevation + 
Slope + Total broadleaf DBH + 
(1|village) 

Nesting ~ Elevation + Slope 
+ Total Cinnamomum + 
(1|village) 

 

For all analyses, weakly-informative priors were used, bounding the priors to plausible values. 

Posterior predictive checks were performed for all models to assess how well the model 

retrodicted the real observations. To do so, response variable outcomes were generated from 

the fitted model and compared to the real observations. We only report the covariates with 

coefficient posterior 90% credible intervals that did not encompass zero, that is, with a 90% 

mass probability either lower or higher than zero (hereafter, ‘significant’). 

Bayesian updating of the model parameters was performed through the No-U-Turn Sampler 

(NUTS) in Stan. The models were fitted using 2,000 iterations on four chains, with 1,000 

warmups per chain to optimise the sampler prior to sampling. Model convergence was 

checked using Rhat values, and posterior distributions were handled and visualised using R 

package ‘tidybayes’ (Kay 2022). All models converged and had a sufficiently high Effective 

Sample Size (ESS). 
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To test and if necessary, control for spatial autocorrelation in the model residuals, all models 

were run using a Gaussian process regression, as well as without Gaussian processes. This 

technique allows the varying effects of individual quadrat locations to be treated as a 

continuous category through their spatial coordinates, hence if necessary correcting for the 

fact that geographically close points may share more similar features than expected from 

independent observations (e.g. topography; McElreath 2020). These models were then 

compared using LOO cross-validation. We present the model with the best expected out-of-

sample predictive accuracy, as well as outputs from alternative candidate models with the 

next-best accuracy (especially those with Expected Log Pointwise Predictive Density (ELPD) 

and Standard Error difference of <1.0; see Table S2, Supplementary Information). 

5.3.3.3 Breeding site selection from remote sensing data 

For the 2nd order habitat selection analysis, breeding and control villages were compared by 

gathering data on proportion of land cover types around villages by creating circular 

shapefiles (332m radius) from our classified Sentinel-2 imagery, centred around either known 

nesting points or village centre-points in QGIS. Using R, pixel values (0-7) were extracted from 

within each shapefile using the raster package. The raw values of each land cover class were 

converted to a percentage within the shapefile area, resulting in a dataset of one datapoint 

per village (n=40), each with eight variables containing land cover percentages. 

Four regression analyses were conducted to investigate the relationship between proportions 

of eight land types around villages, and whether these occur within (a) breeding or control 

villages (three versions of the regression, as described in section 5.3.3.2), and (b) villages 

within the EOO versus within the buffer region. As before, all responses were converted to 

either a ‘1’ or ‘0’. The ‘breeding’ and ‘control’ response models were also fitted to the 

variations on these data as described above. Variables included in the models were selected 

a priori, based on past observations of BCLT breeding habitat use and preference: the 

percentages of broadleaf forest, vegetable plot and bush/scrub within a 332m radius of each 

village (He et al., 2017; Huang et al., 2018; Liu et al., 2020). All models were fitted as earlier, 

using 1,000 iterations on four chains, with 500 warmups per chain, to optimise the sampler 

prior to sampling. Model convergence and outputs were checked as in the previous section. 
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5.4 Results 

5.4.1 Overview 

A total of 585 habitat quadrats were surveyed during fieldwork, at 39 villages, and a total of 

5,414 trees of 223 species were surveyed within these quadrats. Bamboo Phyllostachys 

heterocycla and Chinese fir Cunninghamia lanceolata were the most abundant tree species 

overall and occurred in over 30% of quadrats (Table 3). There were also 179 fruit trees of 

various species. There was a mean of 1.95 tree species per quadrat (range: 1-7 species). The 

sampled quadrats for 3rd order analysis (containing nests) contained a total of 423 trees. The 

highest tree densities were seen when the quadrat contained part of a bamboo stand. 

5.4.2 EOO and breeding site selection - 2nd order analysis (quadrat data) 

Elevation was significantly lower within the EOO than in the buffer region (Odds Ratio = 1.54; 

EOO mean = 76.86m, buffer region mean = 115.75m, difference between means = 38.89m) 

(Figure 2), but slope and total broadleaf DBH did not influence the odds that a potential home 

range was within the EOO, according to the second-best fitting model (see Tables S3 & S4, 

Supplementary Information for full model outputs). There was little difference in measures 

of fit between the optimal and all candidate models (maximum ELPD difference: -0.3, SE 

difference: 0.1). 

For breeding site selection, no predictors (elevation, slope, total broadleaf DBH, or 

percentage of quadrat that was village or road, broadleaf forest or other forest) influenced 

the odds of a potential home range being a breeding site (Figure 3). There were minimal 

differences between the LOOCV scores of all candidate models. These patterns were 

consistent for all variations of the breeding site models (where two ‘unsure’ villages were 

assigned either breeding or nonbreeding, or breeding site locations from just 2019 were 

included) (see Figures. S4 & S5, Supplementary Information). In addition, the village-level 

parameters of deviation from the average intercept did not encompass zero, indicating 

important between-village variation, and that the models contain some variance that cannot 

be explained by the fixed effects (Figures 2 & 3).
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Table 3. The most commonly occurring tree species found within 585 survey quadrats within villages formerly or currently containing breeding Blue-crowned Laughingthrush 

colonies, and control villages. 

Commonest 
species 

  Most abundant 
species (all 
quadrats, 

n=585) 

 Most abundant 
species (nesting 
quadrats, n=22) 

 Other key 
statistics 

 

Species Percentage of 
quadrats 

N Species N Species N   

Bamboo 
Phyllostachys 
heterocycla 

32 189 Bamboo 
Phyllostachys 
heterocycla 

(n=3,008) Bamboo 
Phyllostachys 
heterocycla 

(n=321) Mean height of 
each tree in the 
centre of the 
quadrat 

7.65m (range 
2.00 – 36.80m 

Chinese Fir 
Cunninghamia 
lanceolata 

31 182 Chinese Fir 
Cunninghamia 
lanceolata 

(n=708) Chinese Fir 
Cunninghamia 
lanceolata 

(n=28) Mean no. trees 
per quadrat 

9.25 (range 1-
253 trees) 

Chinese Windmill 
Palm 
Trachycarpus 
fortunei 

13 79 Sweet 
Osmanthus 
Osmanthus sp. 

(n=204) Camphor 
Cinnamomum 
camphora 

(n=10) Number trees 
with a DBH of 
20cm or over 

347, mean of 
40.75cm DBH 
(range 20 – 
196cm) 

Sweet 
Osmanthus 
Osmanthus 
fragrans 

12 74 Sweetgum 
Liquidambar sp. 

(n=164) Sweet 
Osmanthus 
Osmanthus 
fragrans 

(n=5) Mean elevation 
at all quadrats 

90.8m 

Chinese Chestnut 
Castanea 
mollissima 

10 58 Chinese 
Windmill Palm 
Trachycarpus 
fortunei 

(n=116) Bald Cypress 
Taxodium 
distichum 

(n=5) Mean slope at 
all quadrats 

11.5 

Chinkapin 
Castanopsis sp. 

8 51 Chinkapin 
Castanopsis sp. 

(n=110) Sweetgum 
Liquidambar 
formosana 

(n=4) Mean elevation 
at nesting 
quadrats 

76.5m 

Camphor 
Cinnamomum sp. 

8 49 Camphor 
Cinnamomum 
sp. 

(n=68) - - Mean slope at 
nesting 
quadrats 

6.4 

Sweetgum 
Liquidambar sp. 

8 49 Pine Pinus 
massoniana 

(n=57) - - - - 
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- - - Wingnut 
Pterocarya sp. 

(n=49) - - - - 
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Figure 3. Interval plot showing the 90% credible intervals (CI, represented by black lines) for the posterior 

distribution of each predictor, in relation to whether a village was a breeding site. Coloured circles within each 

line represent the estimate. Predictor levels are considered significant if the CI does not encompass zero on 

the x axis. Predictors are considered to have a positive relationship to breeding sites if the CI is to the right of 

plot, and negative if they are to the left of the plot. Plot displays the optimal candidate model (submodel 2). 

Figure 2. Interval plot showing the 90% credible intervals (CI, represented by black lines) for the posterior 

distribution of each predictor, in relation to whether a village was in the EOO. Coloured circles within each 

line represent the estimate. Predictor levels are considered significant if the CI does not encompass zero on 

the x axis. Predictors are considered to have a positive relationship with villages in the EOO if the CI is to the 

right of plot, and negative if they are to the left of the plot. Plot displays the second most optimal candidate 

model (submodel 1). 
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5.4.3 Nest site selection – 3rd order analysis (quadrat data) 

Nesting sites were significantly positively related to the size (total DBH) of broadleaf trees 

(Odds Ratio = 1.16) and percentage of ‘other’ (bamboo, fir or pine) forest within the quadrat 

(Odds Ratio = 1.25), according to the optimal model (Figure 4). There was a significant 

negative relationship between nesting sites and slope (Odds Ratio = 1.32). There was no 

significant relationship detected between nesting sites and elevation, the number of 

Cinnamomum trees, or the percentage of broadleaf forest or village and town in the quadrat. 

 

 

5.4.4 Breeding site selection (remote sensing data) 

From the remote sensing images, the mean percentage of land types taken from a 332m 

diameter circular area around villages were: broadleaf forest 9%, vegetable plot 13%, other 

forest 23%, tea 15%, rice paddy 26%, bush/scrub 23%, settlement/road 36%, and water 27%. 

Figure 4. Interval plot showing the 90% credible intervals (CI, represented by black lines) for the posterior 

distribution of each predictor, in relation to whether a survey quadrat was ever a nesting site. Coloured circles 

within each line represent the estimate. Predictor levels are considered significant if the CI does not encompass 

zero on the x axis. Predictors are considered to have a positive relationship to nesting sites if the CI is to the right 

of plot, and negative if they are to the left of the plot. Plot displays the optimal candidate model (global model, 

random intercept only). 
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Land cover classification distinguished land cover across the three remote sensing images 

with moderate overall accuracy (mean: 67.82%), with 64.64% and 60.51% accuracy in 

distinguishing types of broadleaf and ‘other’ forested pixels, respectively; and similar accuracy 

for distinguishing agriculture (vegetable plot, rice paddy, tea) and bush/scrub pixels (60.51–

66.92%; Table S5, Supplementary Information). Land cover classification had the highest 

accuracy for settlement/road and water (Table S5, Supplementary Information). We found 

no evidence of a difference in the proportions of eight different land types between breeding 

and control villages, or between villages inside the EOO and the buffer region (Figure 5). Wide 

90% credible intervals show high levels of uncertainty in both models. 

 

 

 

 

 

 

 

 

 

 

                                                                                        

 

 

 

 

 

Figure 5. Interval plots showing the 90% credible intervals (CI, represented by black lines) for the posterior 

distribution of each predictor, in relation to whether a village was a) a breeding site or b) within the EOO based 

on remote sensing land cover data. Coloured circles within each line represent the estimate. Predictor levels are 

considered significant if the CI does not encompass zero on the x axis. Predictors are considered to have a positive 

relationship to a breeding or EOO site if the CI is to the right of plot, and negative if they are to the left of the 

plot. 

(a) (b) 
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5.5 Discussion 

Our results show that habitat selection studies of threatened species, at more than one scale, 

can provide insights relevant to conservation planning and landscape policy. This study 

developed Resource Selection Functions (RSFs) to identify habitat factors important to the 

distribution of Blue-crowned Laughingthrush (BCLT) at multiple spatial scales, comparing the 

largest number of breeding sites and broadest geographic range for the species to date.  

No habitat selection in terms of topography (elevation, slope), tree characteristics (species, 

DBH) or land cover proportions was detected at the 2nd order (breeding site) selection level, 

between a total of 39 breeding and control sites. Differences were, however, detected 

between sites inside and outside of the BCLT’s Extent of Occurrence (EOO), with villages inside 

the EOO at a significantly lower elevation than villages outside of the EOO. This result is 

consistent with previous smaller-scale studies of BCLT breeding habitat (Hong et al., 2006; 

Huang et al., 2018), where breeding sites were found at lower elevation than control sites. 

However, the overall difference in elevation was small, with a difference of only 38.89m 

between mean elevations inside and outside the EOO. Many breeding sites were located 

within the river basin of the Le’An river, which may contribute to the similarity in elevation 

among breeding sites, rather than reflecting a specific biological requirement. This could be 

interpreted as indicating that sites at lower elevations, or in lowland areas, are more suitable 

as BCLT habitat at the breeding site scale, but otherwise BCLT may be thought of as a broadly 

generalist species at this spatial scale within the context of our study landscape. 

Although elevation was lower within the EOO, this may not necessarily be a direct causal 

factor determining BCLT range. Elevation affects species distributions through influencing 

factors such as temperature and precipitation and by generating habitat gradients (Franklin 

2009; Jankowski et al., 2013), which may not occur within the relatively gentle elevation 

increases observed across the study landscape (14.59-1566.58m, mean = 261.54m). 

Furthermore, BCLT have been reported as foraging in hills at 900m outside of the EOO during 

the breeding season (Cheng and Lin 2011), at higher elevations than within the EOO. This 

suggests that BCLT are unlikely to have their range strongly limited by habitat, at least at the 

2nd order spatial scale. 
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No difference in land cover proportions (from remote sensing imagery) was found in breeding 

and control villages, or villages within or outside of the EOO, at the 2nd order scale. Although 

past work has identified vegetable gardens and broadleaved forest as potentially important 

foraging habitat for BCLT (He et al., 2017; Liu et al., 2020), we do not find evidence that these 

land cover types differ significantly between villages with and without breeding BCLTs. 

However, our results do not contradict past findings that these habitats are important to the 

BCLT; they may simply be reflecting that these land cover types are relatively common across 

our study landscape (mean of 9% broadleaf forest and 13% vegetable gardens around study 

villages), and that they are not limiting factors regulating BCLT distribution. Sites with larger 

amounts of these habitats within the study landscape may, therefore, not influence breeding 

site selection at the 2nd order scale. In contrast, other bird species’ home ranges do sometimes 

contain higher proportions of certain habitats than expected by chance (Lee et al., 2005; Van 

Schmidt et al., 2014). These findings, in combination with our breeding-site quadrat data, 

suggest that BCLT habitat selection may be weaker at the breeding site scale.  

Conversely, in contrast to the lack of signal in our 2nd order analyses, analysis of BCLT nesting 

site preference, the 3rd order selection level, showed that nesting quadrats had a significantly 

higher total broadleaf DBH compared to control quadrats. This result is again consistent with 

past findings that BCLT prefer nesting in broadleaf trees with higher DBH, or in taller trees, 

which correlates with higher DBH (Zhang et al., 2017; Huang et al., 2018); this preference has 

not been reported in other Chinese laughingthrush species (Wang et al., 2011; Li et al., 2017; 

Liu, Qin and Shang, 2021). Nesting sites also had a significantly higher proportion of bamboo, 

fir or mixed forest stands within the quadrats. This may be linked to these habitats being 

plantation forests, which are typically quite dense, thus providing good cover for birds. 

Selection of large broadleaf trees or dense bamboo, fir or mixed forest stands as nest sites 

may be related to nest protection, as nest sites generally minimize detection or predation risk 

(Martin and Roper 1988; Oppel et al., 2004a). Some other laughingthrushes, such as Masked 

Laughingthrush (Garrulax perspicillatus), also nest in similar habitat, showing preferences for 

Osmanthus, bamboo and camphor (Li et al., 2017). Bamboo is a member of the grass family 

and therefore structurally different to other trees, and pure stands of young bamboo are 

generally more dense than other tree types. However other young plantation forests (e.g. 

Chinese fir, Chinese Sweetgum) can reach similar densities (R. Gleave pers. obs). Nesting sites 
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were also on significantly less steep land; this preference for gentler slopes could be linked to 

lower elevation within the EOO. Conversely, we found no significant preference for other 

habitat characteristics on nest site selection, such as the total number of camphor 

Cinnamomum trees, which contrasts somewhat with past findings that BCLT prefer to nest in 

specific tree species (Liao et al., 2007; Zhang et al., 2017; Huang et al., 2018). Large broadleaf 

trees near villages are often only found across the BCLT’s range within fengshui forests 

(Coggins et al., 2012); however, we also found no evidence of preference for nesting in 

quadrats with higher proportions of broadleaf or fengshui forest, which also contrasts with 

past evidence (Huang et al., 2018). This departure from previous studies could be due to our 

dataset containing a greater number and therefore greater variety of breeding/nesting sites; 

Huang et al. (2018) only compared breeding sites in forests with other forests of the same 

type, whereas some nesting sites in our dataset were not found within forest patches. 

Overall, our results indicate that across our study landscape, there is mainly evidence for 

habitat selection by BCLTs at the nesting site (3rd order) scale. The importance of the 3rd order 

scale may be linked to the BCLT’s life history traits (Jedlikowski et al., 2016); as the species 

breeds colonially, and has been recorded engaging in nest defence, nest site selection may be 

more important than foraging opportunities in surrounding areas of land. Liu et al. (2020) 

similarly concluded that the area of suitable available habitat is not a limiting factor in BCLT 

population increase, as high food availability and relatively weak long-distance movement 

ability mean that only a small area is needed to meet their reproductive needs. Given the 

species’ tiny population and small number of breeding sites, we echo previous 

recommendations to protect broadleaf trees within or beside villages, as well as other existing 

stands of forest and bamboo (Liu et al., 2020), considering the available evidence for their 

ecological importance for BCLTs. The breeding habitat requirements of the BCLT differ from 

its closest relative, the Yellow-throated Laughingthrush (Pterorhinus galbanus), which nests 

in shrubs, bushes and tall grasses rather than trees (Baker 1932; Hong et al. 2004), as do some 

other laughingthrush species in China such as the Plain Laughingthrush (Pterorhinus davidi 

concolor) and Elliot’s Laughingthrush (Trochalopteron elliotii) (Liu, Qin and Shang, 2021). The 

positive relationship between the BCLT’s EOO and low elevation could mean their range is 

restricted by elevation; as BCLT showed a preference for gentler slopes at the 3rd order scale, 

preferences over slope at the smaller scale could be influencing the wider patterns in 
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elevation at a larger scale. As for other Chinese species (Li, Pan and Oxnard, 2002; Zhu et al., 

2013; Turvey, Crees and Di Fonzo, 2015), lower elevations have historically been more 

accessible to people, and seen greater habitat conversion and human population growth, 

potentially meaning that the BCLT remains particularly vulnerable to ongoing human 

disturbance. Alternatively, the BCLT’s range may not ‘naturally’ be restricted to low 

elevations: a species’ breeding habitat, including its elevation range, is not always in its 

ecologically optimal location and may be located “in the habitat least favourable to the agent 

of decline” (Caughley, 1994; Channell and Lomolino, 2000). In which case, the present day 

range may represent a lack of other anthropogenic drivers of decline such as trapping or loss 

of habitat. Moreover, the BCLT may not be restricted by its breeding habitat, if it is mainly 

threatened during its non-breeding season, as other bird species are threatened by human 

activities within their wintering range (Martinez and Lewthwaite 2013). Our findings suggest 

that the BCLT’s current restricted breeding range may be regulated, in part, by landscapes at 

lower elevation (or lowlands), and in the availability of large broadleaf trees or stands of 

mixed forest, bamboo or fir trees on gentle slopes. However, other factors or cues could also 

be playing a role in determining the distribution of BCLT breeding colonies. 

Both extrinsic and intrinsic factors may be involved with determining BCLT nesting site choice. 

In terms of extrinsic factors, human disturbance has been posited as a threat to BCLT breeding 

success (He et al., 2017; Zhang et al., 2017), and nests or entire past breeding sites have been 

anecdotally reported as being abandoned due to disturbance (He et al., 2017); for instance, 

following removal of bamboo stands containing BCLT nesting sites, presence of aggressive 

dogs, building developments, and loud markets with firecrackers (F. He, 2019, personal 

communication; L. Gardner, 2020, personal communication). This observed behaviour is 

consistent with studies showing that colonially breeding birds tend to be more vulnerable to 

disturbance (Buckley and Buckley 1976), with cooperative-breeding birds often showing more 

flighty behaviour in response to human approach than non-cooperative breeders (Blumstein, 

2006). Other direct human impacts, such as persecution for the bird trade, could also feasibly 

shape the restricted distribution of the BCLT within a wider landscape containing potentially 

suitable habitat (Yang et al., 2018). In terms of intrinsic factors, several BCLT breeding sites 

(n=8) have been or were used for multiple continuous years (He et al., 2017), suggesting some 

level of site fidelity. Breeding site fidelity is well-documented amongst many bird species 
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(Harvey, Greenwood and Perrins, 1979; Hoover, 2003; Brown, Roche and Brown, 2017) and 

may also contribute to the specific observed distribution of BCLT versus wider habitat 

availability. 

An important potential limitation of this study is the placement of the central point of each 

‘home range’. Breeding villages were centred on a known nesting site, which may either be 

at the edge of, adjacent to, or in the centre of a village. Control sites were instead always 

centred at the central point of a village, which could result in the inclusion of more built-up 

land within data analysis for these sites than in breeding sites. Future analyses could thus 

randomise central point placement within a set boundary for control sites. However, village 

sizes varied considerably, with some extremely small control site villages where the central 

point placement would make little difference to the area surveyed; and there was no 

between-site bias detected in models, with control sites showing no significant difference in 

settlement/road proportion to breeding sites. Control villages were selected from a mixture 

of sources, including near eBird locations, from old reports, and selected at random from 

within the two polygons. Those selected from eBird or old reports may be more suitable for 

BCLT and differ slightly to control villages in general. However, some of these were from non-

breeding season sightings so may not represent more favourable potential breeding habitat. 

In addition, nesting trees included in this analysis represent a subset of all nesting trees, and 

their selection was based on expert knowledge collected from across multiple nesting 

seasons, rather than upon our own survey of nest sites within a single year. We acknowledge 

that this approach may bias the selection of nesting sites to those that are more memorable 

(such as larger or more distinctive trees), and future studies could map all nesting trees across 

all breeding sites within a breeding season to overcome this potential bias. However, this 

selection of trees is probably mostly representative: BCLT sometimes nest in the same tree in 

multiple years (F. He, 2019, personal communication), and we directly observed some nesting 

behaviour during fieldwork. Furthermore, our expert deliberately mentioned specific nesting 

trees which countered the conventional wisdom on the BCLT for preferring fengshui forest. 

Future work could further address the 1st order scale habitat selection of the BCLT: we 

surveyed and compared villages within the EOO and a 25km surrounding buffer region at the 

2nd and 3rd order scales, but it is possible that the landscape may change further outside this 

area, potentially revealing greater disparities in habitat and revealing clearer insights into 
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BCLT range limits. For example, elevation remains similar to the immediate BCLT landscape 

across much of southern China, but increases steeply in the far west (Feng et al., 2007). This 

knowledge gap can be overcome by performing analyses on BCLT occurrence at the landscape 

scale with tools such as species distribution modelling, which is addressed in Chapters 3 and 

6. 

Our findings have implications for other species. Our results support the need for non-crop 

vegetation, such as broadleaf trees or stands of bamboo, mixed forest or fir trees, within the 

agricultural landscape of north-east Jiangxi Province and surrounding regions to support BCLT 

and other bird populations. Many species across China occur within human-occupied 

agricultural mosaic landscapes (Wang and Young, 2003), but there is evidence that bird 

diversity is positively influenced by the amount of non-crop vegetation and habitat 

heterogeneity within these mixed habitats (Li et al., 2020). Our results also highlight the 

importance of integrating conservation-relevant data across multiple scales. Had we only 

investigated the 2nd order (breeding site) scale, we would have overlooked the important 

relationship of BCLT nesting sites with large broadleaf trees and plantation trees. Since these 

are of clear importance for the species, we recommend scaling up legal protection of fengshui 

forests across southern China, as these will likely form habitat refugia for many species 

beyond the BCLT (Coggins, 2003; Hong et al., 2003; Liao et al., 2007). 

Like other species, habitat selection of the BCLT differs according to distinct spatial scales. We 

found no clear driver of breeding site selection at the 2nd order scale, in contrast to some 

other Critically Endangered species (Sawyer and Brashares, 2013). Instead, a strong 

relationship was found between nesting sites (3rd order scale) and large broadleaf trees, 

plantation forest stands and gentle slopes. Our findings for the 3rd order scale broadly match, 

but also nuance, other studies on BCLT nesting habitat (Zhang et al., 2017, Huang et al., 2018). 

Our results show that habitat surveys to develop RSFs at different scales can be a useful, rapid 

tool in elucidating potential range restriction drivers for rare species with few breeding sites. 

We also provide evidence for the importance of protecting large broadleaf trees near villages, 

such as fengshui forests, which should be applied across southern China and not just within 

the regions currently utilised by the BCLT. This approach would help to ensure that suitable 

available habitat remains for a future potentially expanding breeding BCLT population, as well 

as for many other bird species. 
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Supplementary Information 

 

Data Collection Protocol 

A quadrat of 100m2 was chosen through pilot studies, as this area was sufficiently large to 

capture a detailed information on land immediately around trees, but also sufficiently small 

to allow 15 survey points to be measured in one day. This size also prevented significant 

overspill of surveys into inaccessible land, such as private property. Tree DBH was calculated 

using method described by City of Portland, Oregon 

(https://www.portlandoregon.gov/trees/article/424017). Tree species were identified using 

a combination of professional or local knowledge, local Chinese tree ID guides, and a phone 

app (Xing Se). If tree species were not identifiable in the field, photos were taken of the tree 

for later identification. These were compared with images from an identification book (Liu 

2015), Kew Science Plants of the World Online, and efloras.org Floras of China (accessed 13th 

– 21st April 2020), using descriptions of range, plant physical characteristics and illustrations. 

If no positive identification was made then ‘Broadleaf sp.’ is given (n=22). All non-broadleaf 

trees were identified. Tree height was measured using the Theodolite 7.0 app (Hunter 

Research & Technology LLC, 2019). If tree height could not be measured, we visually 

estimated height and gave this to the nearest half metre. Photographs were taken of each 

quadrat. Percentage land use type assessed by eye to the nearest 5%. Land types are listed in 

Table S1. Herb height and herb density were assigned categories by eye. 

QGIS Collection of Elevation, Slope, Aspect 

GPS estimates were unreliable in pilot surveys (possibly due to slow responses to elevation 

change). These were generated in QGIS from a USGS DEM layer (30m x 30m resolution), using 

the Point Sampling Tool plugin. Slope data were extracted by processing a DEM layer with 

lat/long coordinates in decimal degrees using the QGIS GDAL slope tool. A ratio of vertical 

units to horizontal units was set to 111120 and slope outputs were expressed as percentages 

rather than degrees.

https://www.portlandoregon.gov/trees/article/424017
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Figure S1. Principal Component Analysis plot of Dimensions 1 and 2 of land cover type percentages. 
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Figure S2. Principal Component Analysis plot showing total contribution of tree species percentages to 

Dimensions 1 and 2. 
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Figure S3. Correlation plot of all candidate numerical covariates for inclusion in generalised linear mixed 

models.
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Table S1. The full set of potential predictor variables, with descriptions and reasons given for their inclusion. A subset of these will be included in the final analyses. An ‘x’ 

symbol is given for predictor variables which are being considered for each response variable, based on the outcomes of exploratory analyses. 

Predictor Type Variable Predictor Response variables comparing habitat preferences 
between: 

Data format Description of dependent 
variable and hypothesised 
relationship 

Variable 
type 

Examples 
from 
literature 

  Breedin
g status 

Breeding status 
(2019 only) 

Within EOO or 
outside of EOO 

Nesting 
quadrat 

    

Topography Elevation (m) X X X X Continuous 
(numeric) 

Elevation in meters at the 
recorded way point. BCLTs 
shown to breed at low altitude 
(<100m) 

Fixed 
effect 

Wilkinson et 
al. (2010), He 
& Xi (2002), 
Huang et al. 
(2018) 

 Slope (°) X X X X Continuous 
(numeric) 

Percentage (%) slope at 
specific habitat survey point. 
Shown in ecological census 
literature  

Fixed 
effect 

Sutherland 
(2006) 

 Aspect (°)     Continuous 
(numeric) 

 Fixed 
effect 

Sutherland 
(2006) 

Land type 
proportions 

Percentage of 
broadleaf forest within 
10m2 quadrat 

    Proportion 
(numeric) 

BCLTs shown to choose 
broadleaf forest as nesting 
and foraging sites 

Fixed 
effect 

He & Xi 
(2002), Liu et 
al. (2020) 

 Percentage of conifer 
(fir or pine) forest 
within 10m2 quadrat 

    Proportion 
(numeric) 

BCLTs shown to choose fir 
trees as nesting sites 

Fixed 
effect 

He & Xi 
(2002), Hong 
et a. (2006) 

 Percentage of bamboo 
forest within 10m2 
quadrat 

    Proportion 
(numeric) 

BCLTs shown to choose 
bamboo forest as nesting sites 

Fixed 
effect 

Hong et al. 
(2006), He at 
al. (2017) 

 Percentage of mixed 
forest within 10m2 
quadrat 

    Proportion 
(numeric) 

 Fixed 
effect 

 

 Percentage of fengshui 
forest within 10m2 
quadrat 

    Proportion 
(numeric) 

BCLTs shown to choose 
fengshui forest as nesting sites 

Fixed 
effect 

Hong et al. 
(2006), Zhang 
et al. (2017) 

 Percentage of 
bush/scrub within 
10m2 quadrat 

    Proportion 
(numeric) 

BCLTs shown to use shrub and 
grassland for foraging 

Fixed 
effect 

Hong et al. 
(2006), Liu et 
al. (2020) 
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 Percentage of water 
within 10m2 quadrat 

    Proportion 
(numeric) 

 Fixed 
effect 

Huang et al. 
(2018) 

 Percentage of rice 
paddy within 10m2 
quadrat 

    Proportion 
(numeric) 

 Fixed 
effect 

 

 Percentage of tea 
plantation within 10m2 
quadrat 

    Proportion 
(numeric) 

BCLTs shown to forage in tea 
plantation 

Fixed 
effect 

Hong et al. 
(2006) 

 Percentage of 
vegetable garden 
within 10m2 quadrat 

    Proportion 
(numeric) 

BCLTs shown to forage in 
vegetable plots 

Fixed 
effect 

Hong et al. 
(2006), Liu et 
al. (2020) 

 Percentage of oilseed 
rape within 10m2 
quadrat 

    Proportion 
(numeric) 

BCLTs shown to forage in 
oilseed rape 

Fixed 
effect 

Liu et al. 
(2020) 

 Percentage of village or 
town within 10m2 
quadrat 

X X X X Proportion 
(numeric) 

BCLTs shown to choose 
breeding sites close to villages 

Fixed 
effect 

Huang et al. 
(2018) 

 Percentage of ‘other’ 
land type within 10m2 
quadrat 

    Proportion 
(numeric) 

 Fixed 
effect 

 

Tree variables Shannon Index X X X X Continuous 
(integer) 

Total number of tree species 
(over 2m high) recorded 
within the quadrat. Species 
richness may affect the types 
or abundance of food 
available to breeding BCLTs. 

Fixed 
effect 

 

 Total number of non-
broadleaf trees over 
20cm DBH 

    Continuous 
(integer) 

Total number of trees (over 
2m high) within the quadrat 
with a Diameter at Breast 
Height of over 20cm. BCLTs 
have been shown to show 
preference for trees with a 
large DBH for nesting. 

Fixed 
effect 

Zhang et al. 
(2017), Huang 
et al. (2018) 

 Total DBH of broadleaf 
trees over 20cm 

X X X X Continuous 
(integer) 

Total number of broadleaf 
trees (over 2m high) within 
the quadrat with a Diameter 
at Breast Height of over 20cm. 

Fixed 
effect 

Zhang et al. 
(2017), Huang 
et al. (2018) 

 Total number of fruit 
trees 

    Continuous 
(integer) 

Total number of cultivated 
fruit trees (over 2m high) 
within the quadrat. BCLTs 

Fixed 
effect 

Zhang et al. 
(2017), He et 
al. (2017) 
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have been shown to use fruit 
trees for nesting, therefore 
presence of or higher 
abundance of fruit trees may 
influence BCLTs choosing a 
village as a nesting site. 

 Total number 
Osmanthus sp. trees 

    Continuous 
(integer) 

Total number of Osmanthus 
sp. trees (over 2m high) within 
the quadrat. BCLTs have been 
shown to use Osmanthus 
trees for nesting, therefore 
presence of or higher 
abundance of Osmanthus 
trees may influence BCLTs 
choosing a village as a nesting 
site. 

Fixed 
effect 

Zhang et al. 
(2017) 

 Total number of 
Cinnamomum sp. trees 

    
 
 

X 

Continuous 
(integer) 

Total number of Cinnamomum 
sp. trees (over 2m high) within 
the quadrat. BCLTs have been 
shown to disproportionately 
choose Cinnamomum trees for 
nesting, therefore presence of 
or higher abundance of 
Cinnamomum trees may 
influence BCLTs choosing a 
village as a nesting site. 

Fixed 
effect 

Hong et al. 
(2006), Zhang 
et al. (2017) 

 Total number of Celtis 
sp. trees 

    Continuous 
(integer) 

Total number of Celtis sp. 
trees (over 2m high) within 
the quadrat. BCLTs have been 
shown to disproportionately 
choose Celtis trees for nesting, 
therefore presence of or 
higher abundance of Celtis 
trees may influence BCLTs 
choosing a village as a nesting 
site. 

Fixed 
effect 

Zhang et al. 
(2017), Huang 
et al. (2018) 

 Total number of 
Pterocarya sp. trees 

    Continuous 
(integer) 

Total number of Pterocarya 
sp. trees (over 2m high) within 
the quadrat. BCLTs have been 
shown to disproportionately 

Fixed 
effect 

Zhang et al. 
(2017), Huang 
et al. (2018) 
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choose Pterocarya trees for 
nesting, therefore presence of 
or higher abundance of 
Pterocarya trees may 
influence BCLTs choosing a 
village as a nesting site. 

 Total number of 
Liquidambar sp. trees 

    Continuous 
(integer) 

Total number of Liquidambar 
sp. trees (over 2m high) within 
the quadrat. BCLTs have been 
shown to disproportionately 
choose Liquidambar trees for 
nesting, therefore presence of 
or higher abundance of 
Liquidambar trees may 
influence BCLTs choosing a 
village as a nesting site. 

Fixed 
effect 

Hong et al. 
(2006), Zhang 
et al. (2017), 
Huang et al. 
(2018) 

 Total number of 
Castanopsis sp. trees 

    Continuous 
(integer) 

Total number of Castanopsis 
sp. trees (over 2m high) within 
the quadrat. BCLTs have been 
shown to disproportionately 
choose Castanopsis trees for 
nesting, therefore presence of 
or higher abundance of 
Castanopsis trees may 
influence BCLTs choosing a 
village as a nesting site. 

Fixed 
effect 

Hong et al. 
(2006) 

 Total number of trees      Continuous 
(integer) 

Total number of trees (over 
2m high) within the quadrat. 
This is an approximate 
measure of tree density. BCLTs 
have been shown to choose 
nest sites in dense vegetation, 
and so tree density may 
influence their selection of 
breeding site. 

Fixed 
effect 

Hong et al. 
(2006), He et 
al. (2017) 

 Herb height     Factor 
(nominal) 

Description of herb height 
within quadrat. Herbs = both 
forbs and grasses. None, low, 
medium and tall. 

Fixed 
effect 

Huang et al. 
(2018) 
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 Herb density     Factor 
(nominal) 

Description of herb density 
within quadrat. Herbs = both 
forbs and grasses. None, 
sparse, dense. 

Fixed 
effect 

Huang et al. 
(2018) 

 Forest floor 
disturbance 

    Factor 
(ordinal) 

Score describing the degree of 
human habitat disturbance to 
‘forest floor’ type, from 0 = 
concrete/brick/tarmac 
through to 4 = fully ‘natural’ or 
undisturbed vegetation (leaf 
litter, forbs, ferns and small 
trees) 

Fixed 
effect 

Huang et al. 
(2018) 

Random effects Way Point Number X X X X Continuous 
(integer) 

Unique way point number per 
quadrat. Potentially include as 
random effect, to account for 
autocorrelation within 
villages. 

Random 
effect 

 

 Village X X X X Factor 
(nominal) 

Village in which quadrat was 
measured. 15 quadrats are 
measured per village, thus 
there is non-independence 
between quadrats measured 
at the same village. 

Random 
effect 
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Reasons for sub-model selection 

EOO/breeding site models the same for comparison (i.e. do patterns of selection observed 

at breeding site scale also play out across breeding range scale? Do characteristics of breeding 

sites exist across breeding landscape or are they unique to breeding sites?). 

Sub-models contrasting effects of variables hypothesised to be most influential on breeding 

site selection: elevation, slope and total broadleaf DBH. Sites with generally lower elevation, 

lower slope and higher broadleaf DBH hypothesised to be more likely to be breeding sites, so 

examining the effects of these variables in various combinations. 

Nesting site models also contain extra variable, total Cinnamomum trees, as these are 

thought to be the most selected tree type for breeding by BCLT across most sites, so thought 

to affect 3rd order habitat selection. 

Sub-models are again contrasting effects of variables hypothesised to have greatest influence 

on selection at this scale: elevation, slope, total DBH of broadleaf trees and total number of 

Cinnamomum trees. Sub-model 1 contains an interaction term between slope and the total 

DBH of broadleaf trees in the quadrat, to see if areas with less slope and larger trees are more 

likely to be chosen as nesting sites, and sub-model 2 contains an interaction between the total 

number of Cinnamomum trees and the total DBH of broadleaf trees in the quadrat, to see if 

the presence of these two variables are more likely to lead to nesting site selection. 
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Table S2. Leave-One-Out Cross Validation outputs for GLMMs. Shows the difference in Expected Log Pointwise Predictive Density (ELPD) and difference in Standard Error 

between candidate sub-models and full models. 

 Breeding 1 (unsure = 
breeding) 

Breeding 2* (unsure = 
control) 

Breeding (2019 data)** EOO*** Nesting**** 

 ELPD 
Difference 

SE 
Difference 

ELPD 
Difference 

SE 
Difference 

ELPD 
Difference 

SE 
Difference 

ELPD 
Difference 

SE 
Difference 

ELPD 
Difference 

SE 
Difference 

brms_fit_ris NA NA NA NA NA NA NA NA -1.9 0.8 

brms_fit_ri    -0.2 0.1 -0.1 0.1 -0.3 0.1 -0.3 0.1  0.0 0.0 

brms_fit_sub1 -0.1 0.1  0.0 0.1  0.0 0.0  0.0 0.0 -2.8 2.6 

brms_fit_sub2    0.0 0.0  0.0 0.0  0.0 0.1 -0.2 0.1 -2.3 2.6 

brms_fit_sub3 -0.1 0.1 -0.1 0.1 -0.1 0.1 -0.3 0.1 -1.6 2.6 

brms_fit_sub4 -0.1 0.1  0.0 0.1 -0.1 0.0 -0.3 0.1 -18.1 6.7 

 

*Breeding 2 model posterior predictive checks – R squared very high, 0.99, plots showed optimal model predicts well. 

**Breeding 2019 model posterior predictive checks – R squared very high, 0.99, plots showed optimal model predicts well. 

***EOO model posterior predictive checks – R squared very high, 0.99, plots showed optimal model predicts well. 

****Nesting model posterior predictive checks – R squared low, 0.2, plots showed optimal model doesn’t predict as well as breeding models. 
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Table S3. Generalised linear mixed model estimates and credible interval range (full models). 

Selection scale: EOO/buffer Breeding site/control Nesting site/control 

Covariate    

 Estimate (log 
odds) 

90% CI range (lower/upper) Estimate (log 
odds) 

90% CI range (lower/upper) Estimate (log odds) 90% CI range 
(lower/upper) 

Intercept  1.29  0.11 – 2.43 -0.35 -1.55 – 0.84 -3.84 -4.34 - -3.40 

Elevation -0.91 -1.62 - - 0.19 -0.58 -1.28 – 0.12 -0.35 -0.77 – 0.05 

Slope -0.12 -0.67 – 0.42 -0.21 -0.78 – 0.35 -0.49 -0.99 - -0.05 

Total broadleaf 
DBH 

 0.04 -0.45 – 0.56   0.08 -0.41 – 0.60  0.77  0.53 – 1.02 

Other Forest %  0.02 -0.51 – 0.54   0.04 -0.50 – 0.54  0.56  0.18 – 0.93 

Broadleaf 
Forest % 

-0.01 -0.50 – 0.50  -0.00 -0.54 – 0.51  0.08 -0.30 – 0.45 

Village/Town %  0.01 -0.51 – 0.53   0.03 -0.47 – 0.54  0.03 -0.34 – 0.38 

Total 
Cinnamomum 

- - - -  0.12 -0.14 – 0.35 

Village (random 
intercept) 

 4.96  4.07 – 5.93  5.27  4.37 – 6.26  0.35  0.03 – 0.87 
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Table S4. Generalised linear mixed model estimates and credible interval range (optimal models). 

Selection scale: EOO/buffer Breeding site/control Nesting site/control 

Covariate    

 Estimate (log 
odds) 

90% CI range (lower/upper) Estimate (log 
odds) 

90% CI range (lower/upper) Estimate (log odds) 90% CI range 
(lower/upper) 

Intercept  1.22  0.06 – 2.40 -0.33 -1.46 – 0.80 -3.84 -4.34 - -3.40 

Elevation -0.93 -1.75 - -0.07 -0.60 -1.29 – 0.09 -0.35 -0.77 – 0.05 

Slope - - - - -0.49 -0.99 - -0.05 

Total broadleaf 
DBH 

 0.05 -0.52 – 0.65  0.09 -0.37 – 0.58  0.77  0.53 – 1.02 

Other Forest % - - - -  0.56  0.18 – 0.93 

Broadleaf 
Forest % 

- - - -  0.08 -0.30 – 0.45 

Village/Town % - - - -  0.03 -0.34 – 0.38 

Total 
Cinnamomum 

- - - -  0.12 -0.14 – 0.35 

Village (random 
intercept) 

     0.35  0.03 – 0.87 
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Figure S4. Interval plot showing the 90% credible intervals (CI), represented by the black lines, for the posterior 

distribution of each predictor, in relation to whether a village was ever a breeding site (2nd order analysis; 2019 

breeding sites only). Coloured circles within each line represent the estimate. Predictor levels are considered 

significant if the CI does not encompass zero on the x axis. Predictors are considered to have a positive 

relationship to Blue-crowned Laughingthrush breeding sites if the CI is to the right of plot, and negative if they 

are to the left of the plot. Plot displays submodel 1. 
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Figure S5. Interval plot showing the 90% credible intervals (CI), represented by the black lines, for the 

posterior distribution of each predictor, in relation to whether a village was ever a breeding site (where the 

two villages where past breeding is unsure, are classed as breeding). Coloured circles within each line 

represent the estimate. Predictor levels are considered significant if the CI does not encompass zero on the 

x axis. Predictors are considered to have a positive relationship to Blue-crowned Laughingthrush breeding 

sites if the CI is to the right of plot, and negative if they are to the left of the plot. Plot displays the optimal 

candidate model. 
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Table S5. Mean user’s, producer’s and balanced accuracy (%) of random forest supervised classification of eight 

land cover types. 

 Broadleaf 
Forest 

Vegetable 
Garden 

Other 
Forest 

Tea Rice 
Paddy 

Bush / 
Scrub 

Settlement / 
Road 

Water 

User’s 
accuracy 

64.99 68.59 60.64 68.16 55.81 63.42 81.42 93.23 

Producer’s 
accuracy 

64.29 56.54 60.38 65.69 66.44 58.15 90.42 95.32 

Balanced 
accuracy 

64.64 62.56 60.51 66.92 61.12 60.78 85.92 94.27 
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6. Determinants of environmental range restriction in 

the Critically Endangered Blue-crowned 

Laughingthrush Pterorhinus courtoisi at the landscape 

scale 

Rosalind A. Gleave, Samuel T. Turvey, Steven J. Portugal, Andrew Bladon & Sarah K. 

Papworth 

 

6.1 Abstract 

Species occurrence at the landscape scale is dependent on many environmental factors, and 

understanding those of primary importance in determining occurrence is critical to 

conservation planning. Species distribution models offer a means of understanding these 

factors, but provide more accurate answers when given more ecologically relevant and finer-

scale habitat data, and when rigorously validated. The Blue-crowned Laughingthrush 

Pterorhinus courtoisi (BCLT) is a Critically Endangered, colonially breeding songbird. It is only 

known from a restricted area in an agricultural mosaic human-occupied landscape of Jiangxi 

Province, southeast China, with no obvious differences in landscape between the area within 

its range and surrounding regions. Here, we compare the outputs from 14 models: seven 

species distribution model algorithms (Random Forest, Generalised Linear Model, Boosted 

Regression Tree, Generalised Additive Model, Flexible Discriminant Analysis, Multiple 

Adaptive Regression Splines, and Maxent), two pseudo-absence methods and k-fold cross 

validation, to show that BCLT range is largely predicted by precipitation during the wettest 

month, and land cover. BCLT occurred in areas which are wetter at low elevation than 

surrounding areas, and with higher coverage of tea plantations. This distribution may be 

linked to the occurrence of non-crop vegetation or mature trees within tea fields in the study 

area. Such information should inform land management practices in the wider region. 

Pseudo-absence methods (convex hull and presence point based) gave varied outputs, with 

the finer scale method showing greater importance for land cover, highlighting the utility of 

comparing pseudo-absence methods. We also identify regions of potentially suitable habitat 

outside the known BCLT range that could be surveyed to look for unknown populations in 
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Anhui, Jiangxi and Zhejiang provinces. Our results provide the first evidence that the BCLT 

may be limited by both climate and land cover at the landscape scale.  

Key words: species distribution modelling, China, bioclimate, land cover, Pterorhinus courtoisi 

 

6.2 Introduction 

Understanding the factors determining whether species have a restricted range can be 

challenging (Warren et al., 2001; Angel et al., 2006; Bladon et al., 2018) because species 

occurrence can depend on a multitude of factors, such as biotic and abiotic environmental 

characteristics, climate, and anthropogenic influences (Donald et al., 2012; Karunarathna et 

al., 2017). Habitat availability is a key determinant of species recovery, affecting species at 

multiple spatial scales (Oppel et al., 2004; Zhang et al., 2010; Sawyer and Brashares, 2013). 

Understanding species distribution at the landscape scale (e.g. a species geographic range) is 

of particular importance as this enables the study of variables and ecological processes that 

act at coarser scales, such as climate (Elith and Leathwick, 2009; Gutiérrez, Snell and 

Bugmann, 2016), which may affect species differently to processes at finer scales (e.g. a home 

range or nest site). For example, habitat preference may be explained by topographical 

features for birds at the nest site scale, but climate and disturbance at the home range and 

landscape scale (López-López et al., 2006); alternatively, species’ ranges may be better 

explained by fine-scale climate variables at local scales (Gillingham et al., 2012). It is important 

to know determinants of species’ landscape-scale occurrence to guide spatial prioritisation 

for restoration (Adams et al., 2016), species protection (Yang et al., 2018) or land-use policy 

(Bladon et al., 2018). Species Distribution Models (SDMs) are extrapolations of species 

distribution data in time and space, typically based on statistical models fitting associations 

between geographic species occurrences and sets of environmental predictors (Araujo & 

Guisan 2006). When fitted well, SDMs can give insight into environmental tolerances and 

preferences for species (Franklin 2009), and can be used for conservation planning and 

identifying suitable habitat for threatened species (Elith and Leathwick, 2009). However, due 

to fundamental underlying differences in model construction, different SDM algorithms can 

produce very different outputs which can affect inferences; it is therefore best practice to 

compare outputs from multiple model algorithms (Franklin 2009; Bladon et al., 2018). 
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However, it is not just differences in model output that are a source of variation, but also the 

quality of the input information. 

In particular, data for SDMs on threatened species often have very small sample sizes, which 

can constrain model performance depending on the SDM type used (Franklin 2009). 

Moreover, threatened species may lack appropriate absence data, supplying a further barrier 

to generating SDMs using some approaches. However, there is a paucity of studies comparing 

multiple SDMs using datasets with small numbers of occurrences and a broad range of land 

cover types, to allow us to determine the effectiveness or limitations of this approach to guide 

conservation planning. Most studies on threatened species utilise either a single SDM 

algorithm (Gillingham et al., 2012; Adams et al., 2016; Biddle et al., 2021), and/or simple land 

cover data (Yang et al., 2018; Biddle et al., 2021). Furthermore, where no true absence data 

are available, many studies do not contrast the effects of alternate pseudoabsence generation 

methods on model outputs (Yang et al., 2018; Miranda et al., 2019). Studies combining these 

approaches would deliver more robust inferences on species distributions, which is 

paramount for understanding threatened species’ environmental preferences or 

requirements. 

The Blue-crowned Laughingthrush (BCLT) (Pterorhinus courtoisi) is a species of passerine with 

a highly restricted range (Extent of Occurrence) of 610 km2, and is only known to breed in a 

small part of north-east Jiangxi Province, China (BirdLife International 2018). BCLT research 

to date has focussed on conducting censuses and understanding habitat requirements at 

individual breeding sites (He et al., 2017; Zhang et al., 2017; Huang et al., 2018; Liu et al., 

2020); indeed, no study has attempted to understand habitat characteristics regulating their 

range at a broader spatial scale. BCLTs are colonial and cooperative breeders, with colonies 

nesting both near and within villages occurring within a mixed mosaic agricultural landscape 

(Wilkinson et al., 2004). As this habitat mosaic is at least superficially similar to surrounding 

human-occupied landscapes in southern China, it is unclear why the BCLT is not more 

widespread, as with other sympatric Laughingthrush species (MacKinnon and Phillips 2000). 

Human modification over past centuries has converted much of south China’s original climax 

vegetation to cultivated land, plantation forest, or scrub (Elvin 2004; Coggins et al., 2012; Su 

et al., 2020). Moreover, it is likely that habitat change will show different patterns of forest 

or agricultural habitat composition and extent across different parts of southern China. 
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Additionally, areas of different climatic (precipitation, temperature) conditions may generate 

strong regional variation in biodiversity (Brown et al., 2016). Small-scale studies at the local 

scale within Wuyuan County suggest that vegetable plots are declining, and these have been 

suggested to represent key BCLT foraging habitat (He et al., 2017; Liu et al., 2020). However, 

it is unknown if land types important to BCLT at a local scale show importance at larger spatial 

scales, or if previously unknown factors are equally important for BCLT distribution and 

subsequent conservation planning. 

In this study, we explore why the known BCLT population is restricted to its current range in 

northern Jiangxi, by investigating whether this limited distribution is related to bioclimatic 

factors, topography, and the availability of certain land cover types, particularly different 

forest or agricultural land types, at the landscape scale. Many species distribution studies use 

limited sets of habitat/land cover types, for example where multiple forest or agriculture 

types are grouped into a single metric (Rose, Halstead and Fisher, 2020; Peng et al., 2021). 

However, specific sub-types of habitat can affect species’ ranges (Rocha et al., 2018), and 

using simplistic or restricted land cover types can miss important patterns and nuance that 

might affect habitat suitability for a given species. For example, Bo et al. (2009) found Sichuan 

Partridges (Arborophila rufipectus) significantly preferred primary and older secondary 

broadleaf forest over degraded forests or scrub, which would be overlooked by a single forest 

metric. Creation of more complex metrics can be facilitated using high-resolution remote 

sensing data such as Landsat 8, Sentinel-2 and QuickBird, allowing classification of many 

specific habitat types (Laba et al., 2008; Brinkhoff, Vardanega and Robson, 2020; Reuleaux et 

al., 2020). 

We conducted a comparison of seven SDMs: Random Forest (RF), Generalised Linear Model 

(GLM), Boosted Regression Tree (BRT), Generalised Additive Model (GAM), Flexible 

Discriminant Analysis (FDA), Multiple Adaptive Regression Splines (MARS), and Maximum 

Entropy (Maxent); enabled by the generation of pseudo-absence data. Models were based 

upon environmental variables including a novel land classification map that incorporated 

eight land cover types, derived from ground-truthed field data. Our aims were to (a) use SDM 

comparison to establish whether any environmental factors can be identified as limiting BCLT 

range at the landscape scale, and (b) indicate more precise locations for surveying 

subpopulations of breeding BCLT outside of their known breeding range. Our results also help 
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more widely to refine methods used in determining the environmental factors associated 

with range restriction, for threatened species occurring in landscapes with complex habitats 

and where presence data are limited. This is done by contrasting both multiple SDM 

algorithms and pseudoabsence methods, and including a fine-scale, biologically relevant land 

cover map for our study species. 

 

6.3 Methods 

6.3.1 Study area 

The core study area comprises locations where BCLT have occurred, in Wuyuan (29°14’53”N, 

117°51’43”’E) and Dexing (28°55’50”N, 117°35’41”E) counties, Jiangxi Province, and Xiuning 

County (29°47’02”N, 118°11’38”E), Anhui Province. The core study area is located within the 

Changjiang Plain evergreen forest region (WWF Global 200 Ecoregion; Olsen et al., 2001) with 

elevation ranging from 50 to 1,600m (Hong et al., 2006; He et al., 2017). Mean annual 

precipitation is 1330.3mm, with a mean temperature of 17.7°C (Liu et al., 2020). The core of 

the BCLT range, Wuyuan County in northern Jiangxi Province, contains 48.0% subtropical 

broadleaf forest, most of which is secondary (He 1994; Hong et al., 2006). The landscape is 

human-occupied and modified; Wuyuan County, for example has an area of 2,947.51km2 (Shi 

2017) and a population of 360,000 (He et al., 2014). The area of the study extent is 65,097km2 

(Figure 1). This region was selected because it is significantly larger than the BCLT’s known 

range and should incorporate a range of climatic variables, but is small enough to be 

biologically relevant for a species with a small range. The BCLT’s breeding landscape is 

characterised by low, forested hills, and agricultural riverine valleys dominated by rice, oilseed 

rape and tea plantations. These are interspersed with small villages surrounded by vegetable 

plots (Richardson 2005; He et al., 2017) and mature broadleaf or mixed forest stands known 

as fengshui forests (Coggins et al., 2012), with BCLT frequently recorded to be nesting in the 

latter habitat type (Hong et al., 2003; Wilkinson et al., 2004). 
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Figure 1. Range map for the Blue-crowned Laughingthrush, showing coordinates of all presence locations used 

for fitting species distribution models. Extent extends from 499910,709850 to 3090200,3400080 UTM (117.20, 

118.50 to 28.50,29.80 lat/long). The rectangular box demarcates the area from which pseudo-absence locations 

were drawn for modelling, and for which current simulations were projected. The lines radiating from the Blue-

crowned Laughingthrushes’ range centre show the three segments of the map used for leave-one-out cross-

validation of models. Provincial and county borders are plotted using the ‘GADM’ dataset available via the raster 

package in R (Hijmans and van Etten 2012). Not all presence points are visible as separate. 

 

6.3.2 Image classification 

6.3.2.1 Ground-truthed data protocol 

Ground-truthed habitat data were collected in April-May 2019, when BCLT typically select 

breeding sites (Yu 2003; Zhang et al., 2017), with any seasonal land cover types present during 

this period considered as potentially having an impact on BCLT presence. Fourteen land cover 

classes were used, based on forest and agricultural land types mentioned as being utilized by 

BCLT during the breeding season (He and Xi 2002; Richardson 2005; Hong et al., 2006; Liao et 
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al., 2007, He et al., 2017; Zhang et al., 2017; Huang et al., 2018; Liu et al., 2020) Using QGIS, 

stretches of road were digitised as lines, and sample points were generated at random within 

a spatially constrained 100m buffer of the roads (Wohlfart et al., 2016). Points were visited 

on foot using a GPS device and information recorded during field surveys is given in Figure S1, 

Supplementary Information. Points were assigned to one of 14 land cover classes (Table S1, 

Supplementary Information) until a minimum of 50 points per class was reached (except for 

orchards, where too few points were encountered, and the class was dropped) (Wegmann et 

al., 2016). Of the 645 points sampled, following removal of incorrect points (n=8), a total of 

637 survey points were suitable for inclusion in the classification procedure (Field survey data 

cleaning protocol, Supplementary Information). The 14 land cover classes were merged into 

eight for ease of classifying at the 10 x 10m pixel scale (Table S1, Supplementary 

Information). The final eight land cover types classified were: broadleaf forest, vegetable 

plots, other forest, tea plantation, rice paddy, bush/scrub, settlement/road, and water. 

6.3.2.2 Classification procedure 

Atmospherically corrected Sentinel-2 Level-2A Surface Reflectance imagery (10 x 10m pixel 

resolution) were analysed within Google Earth Engine (Gorelick et al., 2017), using the most 

cloud-free images available between the dates 1st February 2019 – 31st August 2019 that 

overlapped with both the known BCLT breeding range and surrounding landscapes in China. 

Prior to image analysis, cloud masks were applied using a function detecting probabilities of 

pixels being cloud, cloud shadow and snow. Supervised imagery classification (Wegmann et 

al., 2016) was conducted using the random forest algorithm (Breiman, 2001). This machine 

learning algorithm builds multiple decision trees and merges these together to achieve a more 

stable and accurate prediction. Training points were taken from high-resolution Google Earth 

imagery from 2021, and checked against Sentinel-2 imagery from 2019 to ascertain if any land 

cover types had changed (e.g. from farmland to human settlement). Accuracy assessment was 

performed using validation points (n = 9,342, across eight Sentinel-2 tiles), taken from a 

combination of the ground-truthed GPS data and Google Earth imagery of a) villages visited 

during habitat surveys and b) other areas collected in the same manner as the training data. 

A confusion (validation) matrix was generated, and the producer’s accuracy, user’s accuracy 

and balanced accuracy for each land cover class were calculated, as well as the overall 

accuracy. 
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6.3.3 Presence and absence dataset 

Our presence dataset for the BCLT were obtained from three different sources: a) official 

census datasets (n=21), b) opportunistic field observations (n=6), and c) eBird locations 

(n=41). The first census dataset was collected in 2000-2017 by Prof. Fenqi He of the Chinese 

Academy of Sciences, and the second was collected in 2012-2017 by Dr Weiwei Zhang of 

Jiangxi Agricultural University and her MSc students; all of these data are georeferenced to 

the scale of the nearest village as a minimum. Both census datasets are from Wuyuan and 

Dexing counties, northern Jiangxi Province. Model performance of SDMs is known to quickly 

decrease for sample sizes below 20 (Stockwell and Peterson, 2002), and thus boosting 

available presence data is necessary to improve accuracy. As a result, opportunistic field 

observations were obtained from the 2018 and 2019 BCLT breeding seasons and 

georeferenced BCLT location records given by eBird.org were collated alongside the official 

census data. The eBird.org observations were predominantly from within Wuyuan County, 

with a single sighting made in southern Anhui Province; all were made from 2008-2018, and 

all during the BCLT breeding season (April to June). All eBird sightings were included, as the 

BCLT is a highly distinctive species that is difficult to confuse with other local bird species. 

After removing duplicates using QGIS from identical 10 x 10m pixels we had 66 georeferenced 

BCLT records with sufficiently accurate metadata for inclusion in SDMs and were all from 

within the last 13 years. 

As no reliable absence data were available for the BCLT, pseudo-absence points were 

generated via two methods: a) random points at least 10km outside a buffer region around a 

convex hull fitted around presences (‘convex hull method’); and b) random points at least 

10km outside a buffer around each individual presence datum (‘presence point method’) 

(Figure S2; Supplementary Information). These pseudo-absence points were taken from 

within the study extent (Figure 1). A total of 5,000 pseudo-absence points were generated for 

each method. Both methods were used to compare to one another, as potential biases exist 

for either method; as the presence point method gives more precise divisions between 

presence and pseudo-absence landscapes, this allowed a finer-scale understanding of 

environmental predictors of BCLT occurrence within the study area (Figure S2b; 

Supplementary Information). 
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6.3.4 Environmental dataset 

Administrative provincial and county boundaries were downloaded from WorldMap 

(available at http://worldmap.harvard.edu/chinamap/; Guan et al., 2012). Bioclimate 

variables were obtained from the Worldclim global climate database 

(http://www.worldclim.org/) (Hijmans et al., 2005). To avoid model overfitting, 

multicollinearity was checked between the 19 Worldclim variables (Parra, Graham and Freile, 

2004) as follows. Raster layers were clipped to the study extent in QGIS, and 2,000 random 

points were generated in a shapefile of the same extent. Values were extracted from each 

raster layer using the ‘Point Sampling Tool’ plugin, which were then saved to CSV format. 

These data were checked for collinearity within the corrplot package in R (Wei and Simko 

2017). Variables were excluded that had a coefficient of correlation >0.7 (Green 1979) but did 

not have relevance to the BCLT breeding season. As including higher numbers of predictors 

can lead to misleading correlations, it is better practice to identify a small number of 

predictors which are likely to have relevance to the study species (Pearce-Higgins and Green 

2014). Four bioclimate variables were selected that were not strongly intercorrelated (Figure 

S3 and S4, Supplementary Information), with most of these selected variables chosen to 

represent bioclimatic conditions during the BCLT breeding season (Yu 2003; Zhang et al., 

2017; Liu et al., 2020).  

Elevation data were extracted from NASA Shuttle Radar Topography Mission (SRTM) Digital 

Elevation imagery at a resolution of 1 arc-second (approximately 30m) using Google Earth 

Engine (Gorelick et al., 2017). Imagery was clipped to the appropriate spatial extent. 

Normalised Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) data 

were generated from Sentinel-2 imagery Level-2A Surface Reflectance imagery, also using 

Google Earth Engine. All images used had a cloudy pixel percentage of <5.00% (0.06-4.93%) 

and dated from between 1st February 2019 and 31st August 2019, aiming to represent the 

BCLT breeding season. Prior to image analysis, cloud masks were applied using a function 

detecting probabilities of pixels being cloud, cloud shadow or snow, and NVDI was then 

calculated from the data. The Google Earth Engine code for this function is available under 

Supplementary Information. Additional pre-processing was avoided due to the likelihood of 

introducing unnecessary biases to the data (Young et al., 2017). A total of eight environmental 

variables were selected for modelling: elevation, land cover, NDVI, EVI, isothermality (BIO3), 

http://worldmap.harvard.edu/chinamap/
http://www.worldclim.org/
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mean temperature of the wettest quarter (BIO8), mean temperature of the driest quarter 

(BIO9) and precipitation of the wettest month (BIO13) (Table S2, Supplementary 

Information). 

6.3.5 Species Distribution Modelling 

Environmental rasters were re-projected to UTM zone 50 and extended to the same 

geographic extent (the study extent, Figure 1), using NA values to fill in any gaps, in R version 

4.1.2 (R Core Team 2021). All eight environmental rasters were extended to the same 

resolution (10 x 10m), using the NDVI raster as the reference layer to reduce 

computation/processing time. All datasets were then re-extended to ensure they were not 

influenced by sampling, and were written as GTiff files. 

The geographical distribution of the BCLT was related to the eight environmental variables by 

fitting SDMs to the presence and pseudoabsence data using the biomod2 package (Thuiller et 

al., 2009) in R version 4.1.2 (R Core Team 2021). Seven model algorithms were used: RF, GLM, 

BRT, GAM, FDA, MARS, and Maxent. The ability of each model to predict the BCLT’s range was 

assessed using a k-fold partitioning cross-validation method, with radial partitions (k=3) to 

avoid spatial autocorrelation, fitting each model three times and leaving data out from one 

segment each time. Partitions were generated from the centre of the BCLT’s range, based on 

the mean of the x and y coordinates of all recorded BCLT locations (Figure 1). Three partitions 

were chosen to ensure that occurrences were still high enough per segment (minimum n=20) 

to ensure robust model testing, as shown in Figure 1. Occurrences were balanced per 

segment such that each contained close to identical numbers of occurrences (n=20/23/23). 

Pseudo-absences (NAs) were converted to true absences (0s) for k-fold analyses, as biomod2 

is unable to code pseudo-absences into evaluation data. Model performance was evaluated 

using the Area Under the Curve (AUC) of the Receiver Operating Characteristic (Fielding & Bell 

1997). Further details are provided in Methods used to model geographical distribution in 

relation to environmental predictor variables, Supplementary Information.  

To assess variable importance, the two best-fitting model algorithms were selected for each 

pseudo-absence method, determined by k-fold cross-validation AUC scores greater than 0.7. 

These models were re-fitted using k-fold cross validation, with each variable of interest 

dropped in turn and with new AUC scores calculated for each model. The ΔAUC was calculated 
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for each variable, by subtracting the k-fold AUC for each model with the variables of interest 

progressively removed, from the maximal k-fold model with all variables included (Bladon et 

al., 2018). To visualise variable importance, ΔAUC values were plotted against one another 

for the two best performing model algorithms, for each pseudo-absence method. To map 

predicted BCLT occurrence, simulated distributions for the BCLT under each algorithm were 

compared with their known breeding season range map, using all available data. 

 

6.4 Results 

6.4.1 Image classification 

Land cover classification distinguished types across the eight Sentinel-2 images with 

moderate overall accuracy (overall mean: 69.82%), with 72.34% and 64.84% accuracy in 

distinguishing types of broadleaf and ‘other’ forested pixels, respectively; and similar accuracy 

for distinguishing bush/scrub and agriculture (vegetable plot, rice paddy, tea) pixels (57.72–

66.88%; Table S3, Supplementary Information). Land cover classification had the highest 

accuracy for settlement/road and water (84.54% and 95.54%, respectively) (Table S3, 

Supplementary Information).  

6.4.2 Species Distribution Modelling 

The FDA algorithm performed best for both pseudo-absence sampling methods according to 

the AUC scores from k-fold cross-validation (convex hull based sampling = 0.821, presence 

point based sampling = 0.852; Table 1). The second-best performing algorithms were Maxent 

(AUC = 0.798, presence point method) and GLM (AUC = 0.797, convex hull method) (Table 1). 

As expected, AUC scores were much higher when all available data were used to fit each 

model than when data were partitioned for the k-fold analysis (Table 1). Overall, differences 

between pseudo-absence methods were much smaller when all available data were used 

(AUC = 0.001 - -0.002), and larger during k-fold analyses (AUC = -0.109 – 0.138) (Table 1). 

There were also only slight differences between the upper and lower CIs of AUC values for 

full data models fitted with either pseudo-absence selection method (Figure S5, 

Supplementary Information). 
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Table 1. Blue-crowned Laughingthrush SDM AUC scores for all variables, with all presence/pseudo-absence data 

included and also using segmented k-fold models. The two best model algorithms for each pseudo-absence 

method, as identified by k-fold analysis, are highlighted in bold. 

Model All predictors convex 
hull-based pseudo-
absence method (all 
data) 

All predictors 
convex hull 
method (k-fold) 

All predictors presence-
point based pseudo-
absence method (all 
data) 

All predictors 
presence point 
method (k-fold) 

RF 1.000 0.658 1.000 0.639 
GLM 0.983 0.797 0.982 0.659 
GBM 0.997 0.675 0.997 0.633 
GAM 0.999 0.681 0.999 0.790  
FDA 0.966 0.821 0.966 0.852 
MARS 0.986 0.757 0.988 0.750 
Maxent 0.976 0.796  0.974 0.798 

 

Models containing precipitation of the wettest month (BIO13) and land cover gave the highest 

ΔAUC scores, using both convex hull and presence point based pseudo-absence methods, 

according to best-performing k-fold cross-validated algorithm (FDA; Figure 2). For the next 

best-ranking model algorithms, the most important variables were mean temperature of the 

driest quarter (BIO9) and elevation, using the convex hull pseudoabsence method (GLM; 

Figure 2a); however, the most important variables were land cover and precipitation of the 

wettest month (BIO8) using the presence point pseudoabsence method (Maxent; Figure 2b). 

Based on the FDA and GLM algorithms, the least important variables in the convex hull models 

were mean temperature of the wettest quarter (BIO8) and NDVI, and the least important 

variables (lowest ΔAUC) in the presence point models were NDVI, EVI, BIO3, BIO13 and BIO9 

(Figure 2). 

Modelled probability of BCLT occurrence against rainfall during the wettest month (BIO13) in 

the FDA and GLM models, using the convex hull method, shows a relatively narrow 

occurrence range of 275-310mm. This range has a sharp peak of occurrence at 300mm and 

decline above 310mm (Figure 3a), tending to be wetter than surrounding regions. Modelled 

probability of BCLT occurrence against land cover in the FDA model, using both the convex 

hull and presence point methods, shows a small peak in predicted occurrence for tea 

plantation (Figure 3). The GLM algorithm indicated a decrease in predicted occurrence over 

water (Figure 3a). All algorithms predicted equal probabilities of occurrence across all other 

land cover types. Although a less important variable in the models, elevation showed the 

highest predicted occurrence between 0-300m for both pseudo-absence methods using 
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model algorithms MARS and Maxent, although there was no drop in predicted occurrence for 

higher elevations with the FDA models (Figure 3). 

In the best models (Maxent, GLM), areas of high habitat suitability occur in Wuyuan, Dexing 

and Fuliang counties (Jiangxi Province); also, Kaihua and Changshan counties (Zhejiang 

Province), and Xiuning and Qimen counties (Anhui Province) showed high suitability according 

to MARS (Figure 4). Model projections are unavailable for the FDA models. The BRT model 

algorithm, though it performed less well, also predicts similar regions to Maxent, GLM and 

MARS to be suitable. Conversely, other model algorithms (RF and GAM) predict very little 

suitable habitat, without overlapping (and therefore not predicting) the known BCLT range. 

However, generally, there was a relatively small area of high predicted occurrences across the 

suite of model algorithms, compared to the size of the study area. 
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Figure 2. Delta AUC scores for each variable from the two best-fitting model algorithms based on k-fold analysis 

AUC scores, for (a) convex hull method models, and (b) presence point method models. Each point represents 

one of the bioclimatic predictor variables used in the models. 
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Figure 3. Response curves of Blue-crowned Laughingthrush occurrence records to each variable, using (a) the 

convex hull method, and (b) presence point method. FDA = blue, GLM = red, Maxent = green, MARS = turquoise. 

Land cover values correspond as follows: broadleaf forest = 0.00, vegetable garden = 0.14, other forest = 0.28, 

tea plantation = 0.42, rice paddy = 0.57, bush/scrub = 0.71, settlement/road = 0.85, water = 1.00. Values are 

decimals due to the raster conversion process. 
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Figure 4. Projections for all model algorithms using (a) the convex hull based method and (b) presence point based method. Projections are unavailable for the FDA models
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6.5 Discussion 

In studying species distributions, many studies use single model algorithms, or land cover 

maps with single forest or agriculture type metrics, which may misrepresent species’ study 

landscapes. Equally, studies reliant on pseudoabsence data typically generate such data 

through a single method (Warren et al., 2021). Our findings support the use of combining 

multiple SDM algorithms, different pseudo-absence generation methods, and land cover 

maps with sufficiently high complexity for the study species (Reuleaux et al., 2020), with these 

maps produced with the study species’ habitat associations in mind. In our study, comparing 

seven model algorithms and using eight land cover types, the restricted global range of the 

Blue-crowned Laughingthrush is described predominantly by precipitation of the wettest 

month, land cover and mean temperature of the wettest quarter. We also show that where 

true absences are missing, contrasting different methods of generating pseudoabsences can 

show alternate patterns in models. For example, land cover is considered of higher 

importance when using a higher-resolution pseudo-absence approach, giving greater 

significance to the BCLT’s higher predicted probability of occurrence where there is more tea 

plantation. 

BCLT are predicted to occur in areas that are generally wetter (during the wettest month) 

than surrounding areas; and in areas that tend to be cooler (during the wettest quarter) than 

surrounding areas. The wettest month in Jiangxi is typically June (Climate-Data.org), the peak 

of the BCLT breeding season (April-August) (Zhang et al., 2017), suggesting the BCLT is 

affected by precipitation and temperature during the breeding season. This may suggest that 

the BCLT’s breeding range is at least partially restricted by climate, both by rainfall and 

temperature during the breeding season, which could be linked to food availability (Brambilla 

et al., 2018), nest sites, incubation and provisioning (Schöll and Hille, 2020; van de Ven et al., 

2020). 

BCLT are also predicted to occur in areas with greater tea plantation land cover than 

surrounding regions, within our study area. This may be because tea plantations often have 

large trees and other vegetation dispersed around and within them, notably at several BCLT 

breeding sites (Chapter 3; Figure S6, Supplementary Information). Moreover, tea plantations 

containing mature trees are also present more generally in the surrounding landscape, 

particularly in Wuyuan County (R. Gleave, pers. obs.), suggesting their importance to BCLT 
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conservation. However, this was not supported by the BCLT’s relationship to forest land cover 

types: there was no higher prediction of occurrence in areas with more broadleaf forest. This 

may be because fengshui forest and other broadleaf forests were combined into a single 

landcover metric, which therefore does not distinguish areas of large, mature trees over 

younger secondary growth. This shows some similarities with the BCLT’s closest relative: 

Yellow-throated Laughingthrushes (Pterorhinus galbanus) occupy habitats with tall grassland, 

scrub and secondary mixed forest (Collar and Robson 2007), thus also tolerate more open 

habitats than closed-canopy forest. These results also highlight the potential importance of 

including granular or fine-scale land cover data within SDMs, derived from both ground-

truthed data and high-resolution imagery. This is particularly the case in highly human-

modified landscapes with a complex range of distinct natural and anthropogenic land cover 

types (Frolking et al., 1999). Notably, land cover was the most important variable in the 

presence-based pseudo-absence method models, possibly reflecting the finer scale 

differences in occurrence across the study landscape this method was able to identify.  

These results are based upon the outputs of seven model algorithms, two methods for 

generating pseudo-absences, and k-fold cross validation. They are, therefore, substantially 

more robust than the single SDM output from Chapter 3, which used a single model 

algorithm, presence-only data, a less complex land cover map, and lacked k-fold cross-

validation. As expected, model performance varied, with four model algorithms scoring an 

AUC of over 7.0, and three below 7.0. Projections also displayed inter-model variability (Figure 

4), potentially generating ambiguity over potential locations for BCLT searches. Ensemble 

forecasting could present a future approach to generating a more consistent signal from 

across model algorithms. The use of pseudoabsence data enabled the comparison of seven 

model algorithms; using only presence data would restrict how many model types we could 

use (Elith and Leathwick, 2009; Araújo et al., 2019). In this previous model, precipitation 

during the wettest month was also identified as an important predictor of BCLT distribution, 

but this model identified elevation as the most important predictor. Elevation is considered a 

key factor in determining BCLT range (Hong et al., 2003; Wilkinson et al., 2004; Chapter 5), 

which is not supported by its lack of importance in our analysis. However, a relationship with 

elevation may only exist at smaller spatial scales, as habitat selection can be highly scale 

dependent (Sawyer and Brashares, 2013; Fattebert et al., 2018). Similarly, we also expected 
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a stronger relationship between BCLT predicted occurrence and vegetable gardens, which 

were perceived to be increasing at BCLT breeding sites (Chapter 4), and are used 

disproportionately to other habitats except woodland by breeding BCLT (Liu et al., 2020). 

However, this may be because vegetable gardens are only important at smaller spatial scales, 

or because they were harder to distinguish from other land cover types than tea (Table S3, 

Supplementary Information). 

This study looks only at the landscape scale: this is one key piece of a wider puzzle. At the 

landscape scale, we can detect the influence of factors acting at coarser scales, such as 

climate, which may be less detectable at finer scales (Elith and Leathwick, 2009; Ewers et al., 

2011). Hence, our predictors were variables displaying patterns at coarser landscape scales, 

such as patterns in NDVI, bioclimate and land cover, as opposed to tree species and sizes, or 

understorey vegetation, which would be expected to vary and influence distribution at finer 

scales (Mellanby et al., 2008). Our approach highlighted unexpected bioclimatic and habitat 

associations at this scale, with both climate and land cover (specifically tea) influencing BCLT 

occurrence. These are driven by different processes: in China, land cover is chiefly driven by 

anthropogenic factors, while regional climate is less so. However, our results have potential 

implications for future synergistic effects of human-induced climate and land cover changes. 

Our findings have important implications for future BCLT searches and wider conservation. 

One of four best-fitting model algorithms, MARS (>0.7 AUC for both pseudoabsence 

methods), predicted high likelihood of BCLT occurrence in Wuyuan, Dexing and Fuliang 

counties (Jiangxi Province), Kaihua and Changshan counties (Zhejiang Province), and Xiuning 

and Qimen counties (Anhui Province). This is important because BCLT are not known to occur 

in many of these areas, with occurrence records only obtained to date from Wuyuan, Dexing 

and Xiuning counties. We suggest that data on precipitation during the wettest month and 

relative amounts of tea plantation, along with habitat data at smaller spatial scales (Chapter 

5), could be used in targeting specific regions to search for isolated populations which may 

continue to survive outside the species’ known distribution. However, we recognise that BCLT 

range could also be limited by direct human impacts such as overexploitation, which could 

not be included within our environmental models (Yang et al., 2018). Future work for the BCLT 

could build upon this study by conducting structured surveys of potential BCLT habitat based 

on the above model predictions, and including true absences from these new data. It could 
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also widen the study area, especially to the west and south where further areas of predicted 

suitability may yet occur. Other future studies could examine correlations between climate 

data such as rainfall and ambient temperature patterns to BCLT population monitoring and/or 

breeding success. 

We recommend gaining a better understanding of why tea plantations are important to BCLT 

at the landscape scale, given these are human-modified, and not strictly ‘natural’, landscape 

features. This may be due to the practice of having mature trees in and around this habitat 

type in this region of China, and if so, this could inform future land management practice in 

the wider region. In support of this theory, woodland and shrubs were the most utilised 

habitat types at BCLT breeding sites (Liu et al., 2020), BCLT preferred breeding in tall trees 

surrounded by high herb coverage (Huang et al., 2018) and the importance of non-crop 

vegetation for bird diversity has been demonstrated in other parts of southern China (Li et al., 

2020). Additionally, in Fujian Province, a bird survey found 82 bird species occurring in tea 

plantations, many of which typically forage in forests, with higher diversity in plantations 

interspersed with semi-natural habitats and forest fragments (Imboma et al., 2020). Similarly, 

forest windbreaks were shown to maintain bird diversity in a tea dominated landscape in India 

(Sreekar et al., 2013). As tea (Camellia sinensis) was originally a forest species, occurring 

where forests used to be, and is subject to mild disturbance regimes with tea shrubs 

remaining in place for long time periods (Imboma et al., 2020), it may possibly act as an 

understorey plant where sufficient natural vegetation is in close proximity. Furthermore, 

isolated mature trees are argued to be important keystone structures across open, human-

modified landscapes (Manning et al. 2006) and have been shown to support more biodiversity 

than open areas without scattered trees (Prevedello et al. 2017). 

This study, although conducted with as much rigour as possible, still has some limitations that 

must be considered. Despite our overall robust methods, especially regarding validation and 

approaches for reducing spatial autocorrelation, our model outputs are ultimately dependent 

on the limited data that are available for the BCLT. SDMs are built on the assumption that 

sample data cover the species’ full ecological range (Sánchez-Fernández, Lobo and 

Hernández-Manrique, 2011), and our outputs would therefore be biased if the BCLT does not 

occupy its full realised niche. Predicted BCLT range and its explanatory variables may also 

depend on the data available within a given time frame, as when past or historical records are 
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also available for species distribution modelling, these may predict very different ecological 

niches should the species have previously occupied a wider area (Chatterjee, Tse and Turvey, 

2012; Turvey et al., 2020). For example, the ranges of many threatened species, such as 

Chinese pangolin (Manis pentadactyla), have changed over time, with more recent 

distributions confined to mountainous areas in response to human activity (Yang et al., 2018). 

Other threatened species do not occupy representative areas of their full historical range, 

instead occupying marginal or peripheral habitat as ‘refugee’ species (Channell and Lomollno, 

2000; Cromsigt, Kerley and Kowalczyk, 2012), including others in China (Turvey, Crees and Di 

Fonzo, 2015; Kerley et al., 2020). If historical records were available for the BCLT, their 

predicted distribution and the importance of different predictors could drastically change 

(Nüchel et al., 2018). Alternatively, LEK interviews could be conducted in regions of high 

predicted occurrence to validate model findings (Chen et al., 2018). 

Despite our efforts to collect BCLT occurrence data from a range of different sources, our 

dataset contained <70 presence locations, and no reliable true absences were available. 

However, this is the case for many threatened species (Turvey et al., 2020; Biddle et al., 2021; 

Bladon et al., 2021), and high accuracy has been observed for models built on sample sizes as 

low as 25 records (Hernandez et al., 2006), as well as for species with spatially restricted 

ranges (Elith et al., 2006). Furthermore, although our use of radial segments aimed to 

minimise spatial autocorrelation by separating training from test data, an approach that will 

reduce spatial autocorrelation compared to cross-validation based on random sampling 

(Pearce-Higgins and Green, 2014), most available BCLT location records are close to the centre 

of their current range and so some remained close together. In addition, pseudo-absences 

were converted to true absences for k-fold cross-validation, which could affect model 

outputs. However, we are reasonably confident that BCLT are unlikely to breed outside of 

their current known breeding range, because surveys for breeding BCLT actively seeking new 

colonies have taken place annually since 2000, and have covered parts of Anhui and Zhejiang 

provinces in the past (F. He, 2019, personal communication). 

Our data suggest that the BCLT is likely in-part restricted by a combination of precipitation 

and temperature during its breeding season, and by the presence or absence of tea 

plantation, which may be related to non-crop habitat features found within this agricultural 

land type. Research to explore whether these habitat features are important for future 
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landscape management to benefit the BCLT is recommended. Surveys are now required to 

see if breeding or other populations persist in areas predicted as highly suitable by our best 

performing models. Our study shows that incorporating high-resolution, fine-scale habitat 

maps in agricultural mosaics can reveal new habitat associations for threatened species, and 

that when lacking true absence data for SDMs, contrasting pseudoabsence methods can 

emphasise different relationships between a species and its environment, giving greater 

insight into future conservation management. 
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Supplementary Information 
Figure S1. Example field survey sheet used to collect ground-truthed data for remote sensing image 

classification. 

Field Survey – May 2019 

Date:  

Location: Wuyuan – Qiukouzhen route 

Object measures 

Land cover type 1  2 3 4 5 6 

 7 8 9 10 11 12 

 13 14     

Homogeneity Dense Sparse Open None   

 

Conditions 

Clouds High Medium Low None  

Rain High Medium Low None  

Accessibility Easy Difficult None   

Temperature 
(◦C) 

 

 

Comments 
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Land cover key: 

1 – Conifer tree forest 

2 – Broadleaf forest 

3 – Bamboo forest 

4 – Mixed forest 

5 – Mature broadleaf forest/tree 

6 – Bush / scrub 

7 – Rice paddy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 – Tea plantation 

9 – Vegetable plot 

10 – Oilseed rape 

11 – Village or town 

12 – Road 

13 – Orchard 

14 – Water 
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Table S1. Land cover categories, their definitions, and quantities of data points per category from a field survey 

in May 2019. Data collected are intended to classify remote sensing imagery. 

Land 
cover 

number 

Land cover 
type 

Definition Number 
data 

points 
collected 

(pre- 
cleaning) 

Number 
data 

points 
collected 

(post- 
cleaning) 

New 
land 

cover 
number 

New land cover 
type 

1 Conifer forest >80% conifer trees 
(either fir, pine or 
both) 

52 52 2 Other forest 

2 Broadleaf 
forest 

>80% broadleaf 
trees   

51 50 0 Broadleaf forest 

3 Bamboo 
forest 

>80% Phyllostachys 
heterocycla bamboo 

51 51 2 Other forest 

4 Mixed forest Mix of 
broadleaf/conifer, 
broadleaf/bamboo 
or conifer/bamboo 

47 47 2 Other forest 

5 Mature 
broadleaf 
forest/tree 

Single tree or tree 
stand composed of 
over 50% broadleaf 
trees with DBH of 
approx. >30cm 

50 48 0 Broadleaf forest 

6 Bush/scrub Wild habitat with 
few/no trees, 
typically 
characterised by 
dense stands of 
elephant grass 
and/or Pleioblastus 
amarus. Lack of 
canopy 

50 66 5 Bush/scrub 

7 Rice paddy - 50 54 4 Rice paddy 
8 Tea 

plantation 
- 50 49 3 Tea plantation 

9 Vegetable 
plot 

- 50 49 1 Vegetable plot 

10 Oilseed rape Oilseed rape either 
in flower or during 
harvest 

53 49 4 Rice paddy 

11 Human 
settlement 

Any area of human 
settlement, 
characterised by the 
use of concrete on 
the ground 

44 42 6 Settlement/road 

12 Road Either minor 
concrete road or 
tarmac highway 

22 32 6 Settlement/road 

13 Orchard Orchard of any tree 
species, such as 
Camellia japonica 

4 6 NA NA 

14 Water Rivers, streams, 
lakes, ponds 

52 42 7 Water 

- NA or 
indeterminate 

Indeterminate class 19 NA NA NA 
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Field survey data cleaning protocol 

In addition to the pre-cleaning classes given in Table S1, seven points were classed as ‘NA’ 

and 12 were indeterminate (one of two) classes. Less than 50 points of class four were initially 

collected, and seven points of indeterminate class 4/6 were also collected. All data then 

underwent checking and cleaning within QGIS, checking point accuracy against a Google 

Satellite map layer. Inaccurate points were deleted (n=8) or the type re-classified where it 

was easy and clear to do so (e.g. the point was classed as village but was actually falling on a 

water pixel). 

Less than 50 points of classes 11 and 12 were initially collected as planned to merge the two 

classes. These were first merged to 12 classes (converted orchards to bush/scrub, and merged 

settlement with road). Then, points of indeterminate class (n=12) were converted to a single 

class, including points of either mixed forest or bush/scrub (4/6), which were converted to 

bush/scrub, and two other indeterminate points which were converted to class six. 
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Figure S2. Methods of generating pseudo-absence points (two types of buffer): (a) convex hull based and (b) 

presence point based. 
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Figure S3. Correlation plot of the final numerical environmental variables chosen for inclusion in the species 

distribution model. Land cover is excluded as it is categorical. 
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Figure S4. Correlation plot of all environmental variables considered for inclusion in the species distribution 

models. 
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Link to Google Earth Engine code:  

https://code.earthengine.google.com/28d94edb30cdb7451c3550cee111a2d2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://code.earthengine.google.com/28d94edb30cdb7451c3550cee111a2d2
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Table S2. Environmental predictor variables included in the species distribution model. 

Environmental variable Variable meaning Variable source Reason for 
inclusion 

Elevation Elevation in metres Google Earth Engine (via 
USGS SRTM) 

Low elevation has 
been linked to 
BCLT breeding 
sites (Hong et al. 
2004, Wilkinson 
et al. 2004) 

Land cover Classification of Sentinel-2 
imagery into eight land 
cover types: broadleaf 
forest, vegetable plot, other 
forest, tea plantation, rice 
paddy, bush/scrub, 
settlement/road, water 

Google Earth Engine (via 
Sentinel-2) 

Different habitat 
have been linked 
to BCLT foraging 
(Richardson 2005; 
Hong et al. 2006; 
Liao et al. 2007; 
He et al. 2017; Liu 
et al. 2020) 

NDVI Normalised Difference 
Vegetation Index: quantifies 
vegetation greenness 

Google Earth Engine (via 
Sentinel-2) 

NDVI may 
indicate different 
types of 
vegetation 
associated with 
BCLT occurrence 

EVI Enhanced Vegetation Index: 
as NDVI, but corrects for 
some atmospheric 
conditions, and is more 
sensitive in areas with 
dense vegetation 

Google Earth Engine (via 
Sentinel-2) 

Study region is 
subtropical with 
dense vegetation, 
so may be 
particularly 
suitable for 
identifying areas 
associated with 
BCLT occurrence 

BIO3 Isothermality quantifies 
how large the day-to-night 
temperatures oscillate 
relative to the summer-to-
winter (annual) oscillations 

WordClim.org Variable is not 
intercorrelated 
with others and 
may affect BCLT 
distribution 

BIO8 Mean temperature wettest 
quarter (°C) 

WordClim.org Wettest quarter is 
during BCLT 
breeding season 
(Yu 2003; Zhang 
et al. 2017) 

BIO9 Mean temperature driest 
quarter (°C) 

WordClim.org Variable is not 
intercorrelated 
with others and 
may affect BCLT 
distribution 

BIO13 Precipitation of wettest 
month (mm) 

WordClim.org Wettest month is 
during BCLT 
breeding season 
(Yu 2003; Zhang 
et al., 2017) 
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Methods used to model geographical distribution in relation to environmental predictor 

variables 

Creating robust evaluations of SDM prediction are best assessed through independent data 

(Fielding and Bell 1997). As we had only one set of presence data for the BCLT, we used k-fold 

partitioning as a cross-validation procedure, where data are divided into k subsets. Typical 

methods partition at random, however this overlooks the potential for spatial autocorrelation 

between points, which inflate model performance estimates (Pearce-Higgins and Green 

2014). 

We assessed model performance by linking observed presence/absence at each sampled 

point with its predicted probability of occurrence, calculated with the model version missing 

the specific data segment containing the observed point. These outputs were used to 

calculate the AUC of the ROC plot (Hanley and McNeil 1982). AUC was used as it provides a 

measure of prediction accuracy that is independent of a single threshold, as this would 

require continuous probabilities to be converted to a binary presence/absence score, and 

threshold-dependent measures are sensitive to species prevalence (Franklin 2009). Kappa 

and True Skill Statistic (TSS) are alternative model evaluation measures; however these are 

both threshold-dependent measures and are sensitive to species prevalence within a sample 

(McPherson et al., 2004; Allouche et al., 2006). AUC values of 0.7-0.9 are considered 

moderate model performance, and >0.9 are considered high (Manel et al., 2001). Each 

modelling technique’s ability to predict the BCLT range was assessed through comparison of 

their AUC scores. 
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Table S3. Mean user’s, producer’s and balanced accuracy (%) of random forest supervised classification of eight 

land cover types. 

 

 Broadleaf 
Forest 

Vegetable 
Garden 

Other 
Forest 

Tea Rice 
Paddy 

Bush / 
Scrub 

Settlement / 
Road 

Water 

User’s 
accuracy 

70.29 67.28 65.92 73.36 58.50 58.63 84.40 95.57 

Producer’s 
accuracy 

74.40 66.48 63.77 69.57 60.55 56.80 84.68 95.52 

Balanced 
accuracy 

72.34 66.88 64.84 71.46 59.52 57.72 84.54 95.54 
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Figure S5. AUC estimates with 95% CIs, from models using all data. (a) convex hull-based method and (b) 

presence point based method. 
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Figure S6. Tea plantations surrounded by mature trees and other non-crop vegetation at Blue-

crowned Laughingthrush breeding sites and other sites in Wuyuan and Xiuning counties. 
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7. Discussion  

 

Globally, restricted ranges are an important indicator of threat to species, and it is crucial to 

understand why species have small geographic ranges before relevant conservation actions 

can be designed and applied (Williams, Balmford and Wilcove, 2020). For threatened species, 

however, data may be limited, hampering efforts to understand the reasons behind a 

restricted range (Chen et al., 2018; Biddle et al., 2021; Segal et al., 2021). This thesis adds to 

the understanding of diverse drivers behind species’ restricted ranges, and further develops 

techniques to disentangle the complexities of these drivers in the face of limited existing data 

and few presence locations. It brings together varied approaches, in the form of habitat 

surveys, social surveys and remote sensing data to tackle the pressing question of: why is the 

Blue-crowned Laughingthrush restricted to a small region of China? And, can we identify 

additional areas for further conservation research and action? Gaining a better understanding 

of this single species will have ramifications for other species in their local region, threatened 

species across China, and will add to the evidence base of approaches for other global 

threatened species (Turvey et al., 2013; Archer et al., 2020). Additionally, and unexpectedly, 

this study demonstrated the importance of bringing sources of data together; this shed 

greater light on how and why a species is range restricted, as well as its true population size. 

This important step (Chapter 3) benefited all subsequent chapters in terms of the number of 

confirmed breeding sites (Chapters 4 and 5) and availability of locality data for SDMs 

(Chapters 3 and 6). 

7.1 Red List Status 

A given species’ Red List status depends upon information on its population and range size, 

population trend, and threats (IUCN, 2012). Since 2007, the Blue-crowned Laughingthrush has 

been listed as Critically Endangered on the IUCN Red List (Birdlife International 2018a). 

However, the findings from my research have brought together diverse sources of 

information on the Blue-crowned Laughingthrush for the first time, giving us the opportunity 

to review this threat status. In Chapter 3, bringing together independent census datasets 

showed the Blue-crowned Laughingthrushes’ population was larger than previously believed, 

and analysis of the population incorporating all breeding sites showed a recent increasing 
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population trend. However, I also demonstrated the recent threat of trapping affecting the 

Jiangxi Blue-crowned Laughingthrush population, and possibly loss of habitat (Chapter 4). This 

has conflicting implications for its probable Red List status, with the Jiangxi population both 

larger and under greater threat than previously assumed. The Blue-crowned 

Laughingthrushes’ Red List status as Critically Endangered is based on criterion C2a(i,ii) and 

justified by its ‘very small, fragmented known range and an extremely small known population 

which is likely to be declining owing to a number of threats’ (BirdLife International 2018a). 

However, the assessment also states that ‘further survey effort may reveal additional sub-

populations, in which case it may warrant downlisting’ (BirdLife International 2018a). As more 

sub-populations or breeding sites have been discovered, this could potentially meet this 

requirement. Similar situations have occurred for other threatened species, for example the 

Ludwig’s Bustard (Neotis ludwigii) in southern Africa, where no decline over two decades was 

detected however mortality due to powerline collisions was high (Shaw et al., 2016, 2018). 

This species ultimately retained its Endangered status (criterion A4cd) justified by the 

expansion of the existing threat and lack of successful mitigation measures (BirdLife 

International 2018b). My findings have implications for other threatened and Red Listed 

species, by showing the importance of integrating and reassessing existing data sources to 

better understand population dynamics. My research also further demonstrates the use of 

LEK as a data source to better understand threats (Turvey et al., 2014) which may have a 

bearing on Red List assessments. Such threat assessments are sensitive to spatial and 

temporal scales of decline, which can give contrasting information to help understand species 

status. 

 

7.2 The importance of comparing spatial and temporal information 

Biotic and abiotic factors can influence the distribution and range size of any species, but as 

these influences and their magnitude can vary over spatial and temporal scales, it is vital to 

study these separately and make comparisons. For example, habitat selection can be a multi-

scale process with some scales showing higher importance than others (Jedlikowski et al., 

2016). To this end, I strove to use consistent measures (such as land cover classes, elevation) 

between scales (Chapters 4, 5, 6), except where these needed simplifying for technical 

reasons (Chapter 6). Chapters 3, 5 and 6 all looked at habitat and environmental influences 
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at a static snapshot in time, finding differences in habitat associations between the landscape, 

breeding site and nesting site scales. This work is only one of four studies looking 

systematically at Blue-crowned Laughingthrush habitat use (Zhang et al., 2017; Huang et al., 

2018; Liu et al., 2020), contrasts both breeding and nesting sites, and is the only to look at 

landscape scale effects. 

However, Chapter 4 differs by looking back in time over the last 50 or so years, at perceived 

changes to local landscapes, enabled by the collection of LEK data. Typically, studies using LEK 

aim to better understand where a species is, and how that is affected by human demographic 

characteristics (Pan et al., 2016; Zanvo et al., 2020). However, this study differs by using 

established, previously known breeding sites and related this to local perceptions of Blue-

crowned Laughingthrush awareness, landscape change and threats. Moreover, this study is 

the first LEK dataset for the Blue-crowned Laughingthrush, giving us information on its range 

outside of the breeding season, potential new breeding sites, recent threats, and changes to 

the landscape associated with sites where they do and do not breed. Strikingly, two new 

potential breeding sites were revealed by local people, who reported past Blue-crowned 

Laughingthrush nesting behaviour in large trees at their villages. Moreover, both breeding 

sites were near locations reported by eBird, however neither have yet been investigated 

further. In addition, LEK showed regions (such as Xiuning County, Anhui Province) where Blue-

crowned Laughingthrushes had been seen during the breeding season and within the last five 

years, but where very recent bird trapping activity had also been reported, suggesting an area 

with high potential for conservation interventions. Overall, my findings give further evidence 

for the importance of investigating across spatial and temporal scales for range restriction. 

However, these findings need combining to assess how they contribute to the restricted range 

of the Blue-crowned Laughingthrush. 

7.3 Range restriction in the Blue-crowned Laughingthrush 

Evidence at the landscape scale indicates the Blue-crowned Laughingthrush range is shaped 

by temperature, precipitation during their breeding season (at the wettest part of the year), 

and land cover, which is consistent between our two SDM approaches (Chapter 3 and Chapter 

6). However, the other most important variables from these separate approaches also 

contrast between the importance of elevation (Chapter 3 and 5) and of tea plantation 

(Chapter 6). Chapter 3 used a more typical approach for modelling distributions of threatened 
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species by using presence only data, a single model algorithm, and simple habitat metrics, 

validated with a randomised split in presence data. Chapter 6, however, used a more 

sophisticated approach, with contrasting methods of generating pseudo-absences, multiple 

SDM algorithms, more complex habitat metrics, and k-fold cross validation based on spatial 

segments to counteract spatial autocorrelation.  

The SDM from Chapter 3 and suite of SDMs from Chapter 6 gave contrasting outputs. First, 

Chapter 3 found low elevation to be associated with Blue-crowned Laughingthrush 

occurrence, whereas Chapter 6 found no relationship. Perhaps most strikingly, Chapter 3 gave 

land cover as an important variable; however, with only four land cover types, the model was 

unable to give a land type with higher prediction of occurrence for the Blue-crowned 

Laughingthrush, but also the highest gain when used in isolation, and a negative gain base on 

test data only. This suggested that land cover played an important role in BCLT occurrence, 

but the land types used were not sufficiently fine scale to reveal how. Chapter 6 then used 

eight land cover types, which showed the high importance of tea plantation, which was simply 

part of the ‘agriculture’ land cover type in Chapter 3. This new land cover map plus the rigour 

of comparing multiple SDM outputs, and using segments to cross-validate the models, 

enabled the production of a more informative map showing likelihood of occurrence which 

can be used to target areas to search for Blue-crowned Laughingthrush in a more specific 

manner. 

At the breeding site scale, Blue-crowned Laughingthrush range is only influenced by elevation, 

with breeding sites more likely to occur within landscapes at low elevation (Chapter 5). 

However, when using data on past landscape changes based on local people’s perceptions of 

their village landscapes, fengshui forest and vegetable gardens were significantly associated 

with breeding Blue-crowned Laughingthrushes (Chapter 4). Blue-crowned Laughingthrush 

were shown to be selective of habitat at the nest site scale in terms of large broadleaf trees, 

stands of bamboo, fir or mixed forest, and on gentle slopes (Chapter 5).  

In summary, all our combined available evidence suggests a wide climate envelope (Chapter 

3 and 6) but also an influence of tea plantations at the landscape scale (Chapter 6). We found 

good overall habitat availability at potential breeding sites within the study landscape 

(Chapter 5), but some specific habitat selection which could restrict choice at the nesting site 

scale (Chapter 5). However, Blue-crowned Laughingthrush are also trapped/exploited, 
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though to an unknown degree (Chapter 4); while this evidence of trapping does not directly 

support restriction of range, it does suggest it may be an overlooked factor. 

However, while this evidence gives some support for why the Blue-crowned Laughingthrush 

persists within a small range, it does not necessarily occupy its optimal niche (Channell and 

Lomollno, 2000; Cromsigt, Kerley and Kowalczyk, 2012). Indeed, Caughley (1994) proposed 

that a precautionary hypothesis for declining species is ‘not in the habitat most favourable to 

it, but in the habitat least favourable to the agent of decline’. In the case of the Blue-crowned 

Laughingthrush, assuming the current population has declined from a more abundant and 

widespread one in the past, its current range may be where the least habitat was destroyed 

and where trapping pressure may have been lower, either due to inaccessibility of the region 

or local cultural attitudes towards trapping. In support of this, Yu (2003) described Wuyuan 

and its surrounding areas as ‘one of the best areas for birds in the South China region’, which 

helps to explain why Blue-crowned Laughingthrush have persisted here. as In contrast, the 

Chinese Hwamei (Garrulax canorus), a related Laughingthrush species, has a wide geographic 

range across China despite ongoing trapping pressure (Dai and Zhang, 2017; Shepherd et al., 

2020). This could be due to broader habitat or climatic requirements (BirdLife International 

2018c). Certainly, other species across mainland China show evidence of occupying a 

suboptimal niche, such as the Giant Panda (Ailuropoda melanoleuca) (Kerley et al., 2020) as 

well as the Chinese Pangolin (Manis pentadactyla), where SDM outputs on elevation changed 

as its range was pushed by human activity into mountainous regions: therefore, not 

necessarily occupying a ‘naturally’ optimal elevation range (Yang et al., 2018). While I do not 

have direct evidence of this, it must be acknowledged alongside all other data. These range 

contractions of Chinese species had a key feature in common: they were accompanied by 

large-scale changes to the rural landscape over time. 

 

7.4 Changes in rural landscapes and wildlife exploitation in south China: then and now 

In this study, I found a link between breeding Blue-crowned Laughingthrush, fengshui forests 

and vegetable gardens (Chapter 4), which was further supported in Chapter 5, showing large 

broadleaf trees as important to nesting Blue-crowned Laughingthrush, which may be less 

available beyond the study landscape. Agricultural landscapes may be different further away 

from the study region, for example they may have less non-crop vegetation, in landscapes like 
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tea plantation (Chapter 6). However, we were unable to research this during the current 

study. Rural landscape change and wildlife exploitation in China has been in flux both past 

and present (Elvin 2004; Coggins 2017; Miller 2020). Anthropogenic processes have occurred 

over millennia but intensified in the last few hundred years: deforestation and massive 

population expansion across southern China (Marks 1998), and in the 20th century, loss of 

fengshui forest (Coggins et al., 2012). These changes have led to many species now having 

diminished geographic ranges, by pushing the availability of suitable habitat up mountain 

slopes and or into less productive or less accessible land (Kerley et al., 2020). This has 

impacted species including the Chinese Giant Salamander (Andrias davidianus) (Chen et al., 

2018), Gibbons (Chatterjee, Tse and Turvey, 2012), Elephants (Elephas maximus) (Elvin 2004) 

and Chinese Pangolin (Coggins 2003;Yang et al., 2018). If we could determine whether it has 

suffered a contracted range, the Blue-crowned Laughingthrush may fit in this pattern 

affecting other species; however, unlike these species, we are missing historical data for past 

Blue-crowned Laughingthrush range. If the Blue-crowned Laughingthrush’s range had 

followed a similar pattern to other range-restricted Chinese species, it may have experienced 

range contraction during the 19th century with further declines and fragmentation throughout 

the 20th century (Turvey, Crees and Di Fonzo, 2015; Yang et al., 2018). 

In terms of exploitation, we found ongoing and recent evidence of people trapping Blue-

crowned Laughingthrush and other birds within the study region (Chapter 4); the last 

evidence of trapping affecting the Jiangxi Blue-crowned Laughingthrush population is from 

the late 1990s/early 2000s (Yu 2003).  This has implications for other threatened species, 

especially in Southeast Asia (Turvey et al., 2015; Sykes, 2017). Where threats are not fully 

understood, LEK interviewing is a useful tool in establishing them, particularly in human-

occupied landscapes (Turvey et al., 2014). Trapping is a key threat to songbirds across 

Southeast Asia, but is poorly understood in China (Fiennes et al., 2021), where the activity is 

not well monitored across the country and therefore its true impacts are not known. 

Moreover, past changes to the Chinese landscape have impacted wildlife, but this transition 

and change is ongoing, for example, the transition from traditional to modern agriculture 

practices (Liu, Duan and Yu, 2013). In Wuyuan County, rapeseed is grown as an ornamental 

crop to encourage tourism, which is partly symptomatic of management of landscapes for 

tourist revenue as much as for food, to cater for an expanding middle class (Fu et al., 2016). 



 

322 
 

In my study, respondents across our study landscape reported decreases in vegetable gardens 

and tea plantations (Chapter 4). Chapter 4, 5 and 6 also potentially point to the importance 

of non-crop vegetation within the agricultural landscape (Imboma et al., 2020; Li et al., 2020). 

Similarly, respondents reported increasing urbanisation, with increasing numbers of houses 

in villages and towns (Chapter 4), which has been reported across China (Zhang and Song, 

2003). Climate change may also pose a future issue for Blue-crowned Laughingthrush, if this 

exacerbates current annual flooding patterns in their breeding range (Lyu et al., 2018). 

 

7.5 Limitations and future research questions 

While this research helped to add evidence and clarify uncertainties related to the Blue-

crowned Laughingthrush, it also generated additional questions. While we found evidence of 

the Blue-crowned Laughingthrush right across the study landscape, this cannot answer a 

missing link in our understanding of this species: how large was its range in the past? How 

large was this in 1500 or 1750 CE, for example (Akçakaya et al., 2018)? This is not available 

from museum records, given the only wild specimen (of the Jiangxi population) is from 1919, 

and gives no information beyond the county name (Menegaux 1923). However, if available, 

Chinese language historical records such as gazeteer records or similar sources of information 

should be explored, and wider LEK interviews may give insight into their past range up to 

approximately 50 years ago. Similarly, LEK interviews could also be used to validate the 

outputs of our existing SDMs, as was demonstrated by Chen et al. (2018). Further research 

could also employ more direct, invasive methods to understand both past range and present 

non-breeding range of Blue-crowned Laughingthrushes. For example, by testing Blue-

crowned Laughingthrushes’ genetics for past population bottlenecks (Brekke et al., 2011) or 

tagging birds with satellite transmitters to reveal their non-breeding range (Lei et al., 2019). 

Does the agricultural landscape in south China change further outside of our study landscape? 

We were constrained from widening the geographic extent of our study area for habitat 

surveys and interviews by the COVID-19 pandemic, but beyond these bounds we may have 

observed stronger changes and patterns in the landscape. For example, does the landscape 

beyond the study area have a higher population density, more pollution, less non-crop or 

forest vegetation in the landscape? And if so, is this related to or impacting on the current 

range of the species? This can not only help us understand the range of the Blue-crowned 
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Laughingthrush, but is also likely to help other species across China, and could inform 

landscape management policies in other human-occupied agricultural areas (Liu, Duan and 

Yu, 2013). 

To what extent are Blue-crowned Laughingthrush affected by trapping, how much is it 

affecting their population size, or breeding or wintering range? The species may be trapped 

more intensively outside of its known range, which could affect where it can breed, thus 

hindering any range expansion. Or, trapping may take place outside of the breeding season 

and constrain the number of individual birds returning to breed each year. Who is carrying 

out trapping, what are the key trade routes, and are there any hotspots targeted by trappers? 

Trapping appeared to be carried out by people from nearby urban trade centres, but we need 

to find out how frequently this happens, how many people carry this out, and where birds are 

taken once trapped. Recent work suggests trapped birds may be taken to southern trade 

routes via Gaungdong Province (Zhang et al., 2008). These questions are linked to the need 

for a better understanding of the Asian songbird crisis in China: to date, there has much been 

focus on international trade, and Indonesia, but little focus on the domestic Chinese trade 

(Fiennes et al., 2021). 

And finally, a question that is continually echoed: where do Blue-crowned Laughingthrush go 

during the non-breeding season (He and Xi 2002; Yu 2003; Hong et al., 2003; Wilkinson et al., 

2004; Zhang et al., 2017)? Our findings from Chapter 4 hints at flocks remaining in the local 

region, supporting findings by He et al. (2017), but Cheng and Lin (2011) suggest Blue-

crowned Laughingthrush may wander as far as Wuyi mountain (although, that was during 

breeding season, which also flags additional questions: namely, could the Blue-crowned 

Laughingthrush breed much further south than we currently expect?). However, Blue-

crowned Laughingthrush may be more vulnerable to trapping outside of the breeding season, 

so this is important to establish. 

 

7.6 Recommendations for the Blue-crowned Laughingthrush 

Based on the outputs of this thesis, the following recommendation can be made for the Blue-

crowned Laughingthrush population in Jiangxi Province to support the expansion of its 

population. These may be of use to members of the Blue-crowned Laughingthrush Global 



 

324 
 

Species Management Plan, researchers, government bodies, non-governmental 

organizations and funders to benefit this specific species, but these recommendations may 

also have utility for numerous other threatened species across China and the wider world. 

• Annual monitoring should be standardised to follow a specific protocol, collecting data 

on sampling effort, detection bias, date of survey, true absences, and georeferencing 

information. Additionally, all Blue-crowned Laughingthrush presences should be 

recorded, not just breeding sites, as populations present but not breeding could also 

be vulnerable to threats such as trapping, so it is vital to collate a wider map of general 

occurrence. Monitoring should attempt to census a core area, as previously, but also 

actively look for new populations through sampling a wider area on an annual basis, 

to a pre-agreed and repeatable framework including all absences, survey dates and 

the identity of observers, sampling effort and estimates of detectability (Sutherland, 

Newton and Green, 2004). The SDM suitability maps generated in Chapters 3 and 6, 

and habitat selection outputs from Chapter 5, can be used to guide areas to survey. 

• Review the Blue-crowned Laughingthrush Red List status in view of the new 

population data, but also considering the new threat data. This would be particularly 

recommended following implementation of a new monitoring protocol. 

• Explore whether interventions can be developed that curb trapping of Blue-crowned 

Laughingthrush. For example, the involvement of local communities to monitor 

trapping activity, especially trapping that’s conducted by non-local people, and notify 

local authorities. 

• Broader landscape management to encourage retention of or increase in stands of 

natural vegetation, particularly mature broadleaf trees, in agricultural mosaic 

landscapes. This should be emphasised in areas with gentle slope, at low elevation and 

in areas with tea plantation and/or vegetable gardens, and in regions both within and 

outside of the current Blue-crowned Laughingthrush breeding range. 

• Increased collaboration between all global actors involved in conservation of the Blue-

crowned Laughingthrush, including local government, researchers and captive 

breeding facilities, to share data and responsibilities, give mutual support and a find a 

common vision in achieving a sustained future for the Blue-crowned Laughingthrush. 

This should extend beyond Wuyuan County and join up with surrounding counties and 
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provinces where suitable habitat for the Blue-crowned Laughingthrush may or could 

exist. This could be achieved for example by holding a meeting between the Wuyuan 

County local government, plus local governments for surrounding regions (including 

in Anhui and Zhejiang provinces), and all key Blue-crowned Laughingthrush 

researchers and stakeholders to devise a common plan for the species across the 

wider region. 

 

7.7 Recommendations for other threatened and range restricted species 

Overall, this study has strong implications for rare species with limited available data. The 

following key lessons and recommendations are made for similar, threatened species with 

restricted ranges: 

• Bring together all existing data sources, including all population surveys. Citizen 

science is still an untapped resource in many areas and could be exploited more in 

regions with growing bird or nature watching communities. 

• Work with all local and international stakeholders and researchers: my own research 

benefitted enormously from having input from all local actors involved in Blue-

crowned Laughingthrush conservation, many of whom did not typically work together. 

• This research adds to evidence for LEK approaches for other birds in China and 

elsewhere. Local people displayed a good recognition of bird species, and their 

responses enabled the diagnosis of important threats, potential new breeding sites 

and helped find new places to search. 

• Studying environmental factors at different spatial scales is highly important, as 

reinforced by this study. This is possible even for threatened species with few 

occupied breeding sites. 

• The difference in the two SDM study outputs has wider implications for modelling 

species distributions of other threatened species using simpler approaches (Papeş and 

Gaubert, 2007; Turvey et al., 2020), as it supports, where relevant, using more 

complex land cover maps, and comparing SDM outputs from a range of model 

algorithms, in better understanding the ranges of threatened species. 
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7.8 Conclusions 

This thesis highlights the power of employing diverse approaches in understanding the 

restricted ranges of threatened species, and in laying foundations for future action. I show 

the importance of integrating and interrogating sources of existing information, of obtaining 

local ecological knowledge, studying environmental associations at multiple spatial scales, 

and using rigorous comparisons of species distribution models. These have uncovered 

opportunities to improve monitoring practices, regions with potentially suitable habitat to 

search for Blue-crowned Laughingthrushes, previously overlooked threats and potential 

breeding sites, and diverse relationships with habitat across scales. For the Blue-crowned 

Laughingthrush Global Species Management Plan, this research will lay foundations for the 

next steps in international cooperation to secure the future of the Blue-crowned 

Laughingthrush. More widely, this study provides evidence of techniques and approaches 

which can be applied to threatened species across China and globally. The Blue-crowned 

Laughingthrush has the potential to become a future symbol of conservation success, both in 

China and beyond; if so, its lessons learned will impact species worldwide. 
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