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The CBH characterisation theorem

beyond algebraic quantum theory

Chris Heunena,1, Aleks Kissingerb

aUniversity of Edinburgh, UK
bUniversity of Oxford, UK

Abstract

The CBH theorem characterises quantum theory within a C*-algebraic frame-
work. Namely, mathematical properties of C*-algebras modelling quantum sys-
tems are equivalent to constraints that are information-theoretic in nature: (1)
noncommutativity of subalgebras is equivalent to impossibility of signalling; (2)
noncommutativity of the whole algebra is equivalent to impossibility of broad-
casting; (3) the existence of entangled states is implied by the impossibility
of secure bit commitment (with the converse conjectured). However, the C*-
algebraic framework has drawn criticism as it already contains much of the
mathematical structure of quantum theory such as complex linearity. We ad-
dress this issue by a generalising C*-algebras categorically. In this framework,
equivalence (1) holds, equivalence (2) becomes a strict implication, and impli-
cation (3) fails in general. Thus we identify exactly what work is being done by
the complex-linear structure of C*-algebras. In doing so, we uncover a richer hi-
erarchy of notions of ‘classicality’ and ‘quantumness’ of information than visible
in the concrete case.

1. Introduction

Does information play a significant role in the foundations of physics? This
question, often abbreviated ‘it from bit’ after John Wheeler, has received signifi-
cant attention, and lies at the root of quantum information theory. The seminal
work by Clifton, Bub, and Halvorson [8] isolates quantum theory according to
the following three information-theoretic constraints:

• It is impossible to signal information faster than light;

• It is impossible to broadcast an unknown state;

• It is impossible to securely implement bit commitment ;
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by linking each of them, respectively, with the following algebraic conditions,
characteristic of quantum theory:

• Distinct systems are kinematically independent ;

• There exist noncommuting observables;

• There exist entangled, or nonlocal, states.

The first two pairs of properties are proven equivalent; for the third only one
implication is proven, and the other conjectured.

However, a criticism often raised against this result is that a C*-algebraic
framework, including complex numbers and linearity, is assumed from the start [34,
4, 2]. In the words of one of the authors himself [30, page 204]:

The characterization theorem we proved assumes a C*-algebraic
framework for physical theories, which I would now regard as not
sufficiently general in the relevant sense, even though it includes a
broad class of classical and quantum theories, including field theo-
ries, and hybrid theories with superselection rules.

Recent axiomatisations [20, 27, 28, 24, 6] have to a great extent avoided this
problem by starting with a framework which retains only the convex structure
of probabilistic states. Nevertheless, these frameworks maintain some remnant
of linearity in the form of convexity, which does a great deal of work.

In this paper, we investigate the issue by generalising quantum theory in a
different direction, which instead retains only the algebraic structure of inter-
action between classical and quantum systems, via the CP*-construction [12],
which enables us to consider abstract C*-algebras in a wide variety of categories
beyond the usual examples based on vector spaces. By applying this construc-
tion to the category of Hilbert spaces, we obtain algebraic quantum information
theory in the usual sense, where objects are (finite-dimensional) C*-algebras and
morphisms are completely positive linear maps. However, if we apply this to
other categories, we obtain nonstandard models of quantum theory. For exam-
ple, applying the construction to the category of relations gives a possibilistic
model of quantum theory, where probabilities of measurement outcomes are
replaced by boolean-valued possibilities (‘possible’ vs. ‘impossible’), in a simi-
lar spirit to possibilistic physics as described by Fritz [18] or Schumacher and
Westmoreland’s modal quantum theory [31].

We phrase the above implications in categorical terms, and show which of
them survive and which ones fail. That is, our main contribution is to prove
the following (non)implications in this generalised setting:

information theory quantum theory

no signalling ⇔ kinematic independence

no broadcasting ⇒
: noncommutativity

no bit commitment : entanglement
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The first equivalence of no-signalling with kinematic independence indeed
lifts almost unmodified to any category arising from the CP*-construction. How-
ever, in the second case, the commutativity of the algebra of observables merely
implies the existence of a broadcasting map (and not vice-versa). Interestingly,
this yields finer-grained notions of classicality for the systems in a theory. In
particular, we can combine this with the result of [11] to show that, in the case
of possibilistic quantum theory, this yields a beautiful group-theoretic hierarchy
of classical systems. Rather than requiring the existence of a broadcasting map,
we can force a system to be classical by requiring that the algebra associated
with the system is commutative or that the partially ordered set of propositions
(i.e. the CP*-generalisation of the lattice of projections) is distributive, or both.
In the case of quantum theory, either of these is equivalent to the existence of
a broadcasting map. However, in possibilistic quantum theory, the following
inclusions are strict:

distributive & commutative ( commutative ( broadcasting

The systems in possibilistic quantum theory are groupoids [21], which are a
generalisation of groups where the multiplication is allowed to be partially-
defined. We show that broadcasting, the weakest ‘notion of classicality’, implies
that these groupoids are in fact disjoint unions of groups. Then, stricter notions
of classicality yield smaller classes of groups. The ‘classicality’ hierarchy above
corresponds exactly to groupoids arising as disjoint unions of:

locally cyclic groups ( abelian groups ( groups

For the case of bit commitment, we first assume that our system is ‘quan-
tum enough’ to admit secure bit commitment. Namely, we assume that it is
described by a noncommutative algebra, which by the second implication is
strictly weaker than assuming it is no-broadcasting. We then exhibit a noncom-
mutative system in CP∗[Rel] which simultaneously admits entanglement and a
secure bit commitment protocol. The converse remains an open question.

A notable feature of this work is the convergence of two previously discon-
nected threads in the foundational study of quantum information. On the one
hand, we use many abstract, diagrammatic techniques that originated within
the program of categorical quantum mechanics [1, 23, 14] (CQM). Yet in contrast
to prior CQM work, which relies heavily on the tensor product to give a notion
of ‘subsystem, we develop abstract, categorical analogues to subsystems which
are more general than tensor factors, and develop concepts such as signalling
and broadcasting between such subsystems in the style of algebraic quantum
information [25] (AQI). We hope this methodology, which both enables AQI-
style generalised systems and CQM-style diagrammatic manipulations, will find
many new applications in areas such as algebraic quantum field theory.

Remark 1.1. Note that we refer to the condition called ‘nonlocality’ in [8]
simply as ‘entanglement’. This is to avoid a terminology clash with the related
(and now more common) use of the term nonlocality, namely the absence of a
locally realistic model for observed correlations.
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The rest of this article is laid out as follows. Section 2 sets up our general
categorical framework. Sections 3–5 then investigate one equivalence each: Sec-
tion 3 signalling, Section 4 broadcasting, and Section 5 bit commitment. We
thank Katriel Cohn–Gordon and Mariami Gachechiladze for their MSc thesis
work, supervised by Chris Heunen, on parts of this topic [17, 19].

2. The CP*-construction

In this section, we will briefly introduce compact dagger categories and the
CP*-construction. We assume familiarity with basic categorical concepts, no-
tably the notion of a symmetric monoidal category (see e.g. [26]).

The CP*-construction transforms one symmetric monoidal category into
another in a way that mirrors the passage from finite-dimensional Hilbert spaces
and linear maps to finite-dimensional C*-algebras and completely positive linear
maps. It operates on a certain type of symmetric monoidal category called a
compact dagger category, whose definition we now recall.

Definition 2.1. A compact closed category is a symmetric monoidal category
C such that every object A in C has a dual object A∗ and morphisms

ε : A⊗A∗ → I η : I → A∗ ⊗A

satisfying

(ε⊗ 1) ◦ (1 ⊗ η) = 1A 1A∗ = (1 ⊗ ε) ◦ (η ⊗ 1). (1)

We will represent morphisms in such a category using string diagrams. For
more information we refer to the survey [33]. Objects are depicted as labelled
wires with upward directed arrows, and their duals as downward wires:

A∗:=A:=A A

The morphisms ε and η are called caps and cups, drawn as:

A A
A A

Using this notation, the equations from (1) become:

= =

These ‘snake equations’ embody the relationship between a maximally entan-
gled state (e.g. the Bell state) and the associated effect arising from a Bell
measurement. As such, they represent the key to quantum teleportation [1].
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We can furthermore define the (partial) trace of a morphism f : X ⊗ A →
X ⊗ B in a compact closed category via cups and caps:

trX(f) = f

X B

A

where:

AA
A A

:=

(and similarly for cups).
An important property of compact closed categories is that two morphisms

are equal whenever their string diagrams can be deformed into one another. In
other words, the only relevant data in a string diagram is its connectivity [33].

Definition 2.2. A dagger category is a category equipped with a contravariant
functor (−)† : Cop → C that satisfies A† = A on objects and f †† = f on
morphisms.

Dagger categories enable us to formulate abstract versions of many familiar
linear-algebraic concepts. Notably, a morphism in a dagger category is called
self-adjoint if f † = f and positive if there exists g such that f = g† ◦ g. An
isomorphism in a dagger category is unitary if f−1 = f †.

Definition 2.3. A compact dagger category is a category that is both a compact
closed category and a dagger category, such that the coherence isomorphisms
(associators, unitors, and swap maps) are unitary, and ε†A = ηA∗ .

In a compact dagger category, a morphism can take four forms, the morphism
itself and its adjoint :

f

B

A

f†

B

A

as well as its transpose and conjugate:

f∗

B

A

= f

A

B

f∗

B

A

= f†

A

B

5



Example 2.4. The category FHilb of finite-dimensional Hilbert spaces and
linear maps forms a compact dagger category. The dagger is given by the linear
algebraic adjoint:

〈f †(u)|v〉 = 〈u|f(v)〉
The dualH∗ is the linear algebraic dual, and cups and caps are given respectively
as:

ε(|ψ〉 ⊗ 〈φ|) = 〈φ|ψ〉 η =
∑

〈φi| ⊗ |φi〉

where η does not depend on the choice of orthonormal basis {|φi〉}i. From this
it follows that f∗ : K∗ → H∗ is given by pre-composition:

f∗(〈ξ|) = 〈ξ| ◦ f

which is sometimes called ‘operator transpose’. If we fix a bases for K and H ,
we can identify them with their duals, in which case f∗ corresponds to matrix
transposition.

Example 2.5. The category Rel of sets and relations also forms a compact
dagger category. The composition of R ⊆ A × B and S ⊆ B × C is the usual
composition of relations:

(a, c) ∈ S ◦R ⇐⇒ ∃b ∈ B : (a, b) ∈ R, (b, c) ∈ S

and the monoidal product is given by cartesian product:

A⊗B = A×B

((a, b), (c, d)) ∈ R⊗ S ⇐⇒ (a, c) ∈ R, (b, d) ∈ S

Hence the monoidal unit I = {∗} is a single-element set. The dagger is given
by relational converse:

(b, a) ∈ R† ⇐⇒ (a, b) ∈ R

and cups and caps are:

η = {(∗, (a, a)) | a ∈ A} ε = {((a, a), ∗) | a ∈ A}

The CP*-construction lets us build a new category whose objects are ab-
stract C*-algebras coming from the original category and whose morphisms are
abstract completely positive maps. To do this, we first make precise what we
mean by ‘abstract C*-algebra’.

Definition 2.6. Amonoid in a compact dagger category is an object A together

with a morphism : A⊗A→ A and : I → A satisfying

= = = .

6



A dagger Frobenius structure is a monoid satisfying

= = ,

where = ( )† and = ( )†. It is symmetric when

= (2)

and special when

= .

We call a dagger Frobenius structure that is symmetric and special an abstract
C*-algebra.

It was shown in [35] that dagger Frobenius structures in FHilb correspond
exactly to finite-dimensional C*-algebras, and in [22], it was furthermore shown
that any such C*-algebra is isomorphic to one that is special and symmetric.

Example 2.7. For a D-dimensional Hilbert space H , any orthonormal basis
{ |φi〉 }i defines a commutative abstract C*-algebra on H via the Schur product.
This can be expressed in Dirac ‘bra-ket’ notation as follows:

:=
∑

i

|φi〉(〈φi| ⊗ 〈φi|) :=
∑

i

|φi〉

The comultiplication and counit are given as the adjoints of these two maps,
namely:

:=
∑

i

(|φi〉 ⊗ |φi〉)〈φi| :=
∑

i

〈φi|

Example 2.8. The algebra B(H) is almost an abstract C*-algebra, but it fails
to satisfy the specialness equation by a scaling factor. However by normalising:

(M ⊗N) = 1√
D

· MN =
√

D · 1

where D is the dimension of H , we obtain an abstract C*-algebra A isomorphic
to B(H). The comultiplication and counit are formed by taking the adjoint with
respect to the Hilbert-Schmidt inner product on B(H), giving:

(eij) =
1√
D

·
∑

k

eik ⊗ ekj (M) =
√

D · tr(M)

7



where eij = |φi〉〈φj | for any choice of orthonormal basis of H . Thus, symme-
try (2) captures cyclicity of the trace:

tr(MN) = tr(NM)

For any abstract C*-algebra in FHilb, we define a ‘star’ on elements of the
algebra via:

a
7→

a







†

(3)

Then, the C*-algebraic norm is fixed uniquely as the spectral radius by the
spectral theorem. For more details see [35].

While abstract C*-algebras correspond exactly to C*-algebras in FHilb,
they correspond to a familiar, but very different kind of structure inRel, namely
groupoids.

Definition 2.9. A groupoid is a category whose morphisms are all isomor-
phisms.

Groupoids generalise groups, in the sense that a group is the same thing as
a groupoid with a single object. Groupoids are a useful tool for capturing sym-
metries or other geometric information may not be fully captured by a group.
For example, in homotopy theory, one can define the fundamental groupoid
of a topological space without fixing a basepoint [5], which is sometimes more
convenient than the fundamental group, e.g. for disconnected spaces.

Example 2.10. In the categoryRel of sets and relations, special dagger Frobe-
nius structures correspond on an object A precisely to groupoids whose set of
morphisms is A. The multiplication is the relation

= {((g, f), g ◦ f) | f, g ∈ A, g ◦ f is defined}

and the unit is the set of identities:

= {(∗, 1X) | X is an object in the groupoid} ⊆ I ×A

The comultiplication and counit are simply the relational converses of the mul-
tiplication and unit. Finally, just like for C*-algebras in FHilb, there is a ‘star’
operation on elements of an abstract C*-algebra in Rel given by (3), which
relates g to its inverse g−1. For more details see [21].

A useful calculational tool for symmetric Frobenius structures (and hence
abstract C*-algebras) is the symmetric spider theorem. It tells us which of a wide
variety of diagrams involving the algebraic structure are equal. Call a diagram
a tree when its underlying (undirected) graph is a tree (i.e. is connected and
acyclic) and planar if it contains no wire-crossings.

8



Theorem 2.11 (Symmetric spider). For a symmetric dagger Frobenius struc-

ture (A, , ), suppose f and g can be written as planar trees consisting only

of , , caps, cups, and 1A with the same domain and codomain. Then
f = g.

Proof. See [29].

Since any planar tree with a given input/output type is equivalent, we can
collapse them into a single node without ambiguity:

= =: (4)

Such a node is called a spider. This generalises the spider theorem for com-
mutative Frobenius structures, which has been widely used in the categorical
quantum mechanics literature [10, 13]. However, some care needs to be taken
in the symmetric case, since the restriction to planarity means that the order of
inputs and outputs is relevant. So, unlike for commutative Frobenius structures:

6=

Before showing the construction of a category whose objects are all abstract
C*-algebras in C, we first focus just on the abstract analogues to C*-algebras
of the form B(H), for a finite-dimensional Hilbert space H , as was done in [32].
First, we note that morphisms of the form ρ′ : I → H∗ ⊗H are in 1-to-1 corre-
spondence with morphisms ρ : H → H . That is, there is a canonical bijection
hom(H,H) ∼= hom(I,H∗ ⊗H) given by ‘bending the wire’, i.e. pre-composing
η:

ρ 7→ ρ (5)

whose inverse is given by post-composing by ǫ

ψ

7→
ψ

(6)

Sometimes the right-hand side of (5) is referred to as the name of the mor-
phism ρ. Using it, we can represent superoperators hom(H,H) → hom(K,K)
as morphisms of type

Φ: H∗ ⊗H → K∗ ⊗K.

9



Then, [32] showed that, when C = FHilb, such morphisms correspond to CP-
maps precisely when they factor as

gg∗=Φ (7)

for some g. One way to see that this indeed gives the correct notion of CP-map
in FHilb is to start with the presentation of an arbitrary CP-map in terms of
the partial trace:

Φ̃(ρ) = trX(g†ρg) =:

g

g†

ρ

X

and ‘bend the wire’ as in (5):

g

g†

ρ

X

7→

g

g†

ρ = g∗ g

ρ

Hence, Φ depicted in (7) sends the name of ρ to the name of Φ̃(ρ) for an arbitrary

CP-map Φ̃.
To pass from CP-maps between B(H)-type algebras to CP-maps between

arbitrary abstract C*-algebras, we can embed hom(A,B) into hom(A∗⊗A,B∗⊗
B) as follows:

f 7→ f

We obtain ‘abstract CP-maps’ by requiring that the image of this embedding
satisfies (7). From this we get our main definition.

10



Definition 2.12. For a compact dagger category C, the category CP∗[C] has

as objects special symmetric dagger Frobenius structures (A, ), and as mor-
phisms

(A, ) → (B, )

morphisms f : A→ B from C satisfying the CP*-condition, namely there exists
a morphism g : A→ X ⊗B in C satisfying

f gg∗= . (8)

If C is a compact dagger category, then so is CP∗[C] [12, Theorem 3.3].
Our key examples are:

• The category CP∗[FHilb], which is equivalent to the category of finite-
dimensional C*-algebras and completely positive linear maps [12, Propo-
sition 3.5].

• The category CP∗[Rel], which is equivalent to the category of groupoids
and inverse-respecting relations [12, Proposition 5.3]. The latter are rela-
tions R ⊆ G×H between the sets of morphisms of two groupoids satisfy-
ing:

(g, h) ∈ R =⇒ (g−1, h−1) ∈ R, (9)

(g, h) ∈ R =⇒ (1dom(g), 1dom(h)) ∈ R. (10)

Remark 2.13. The CP*-condition comes in a variety of equivalent forms, com-
ing from the fact that:

= (11)

(See also [12, Lemma 2.10].) In particular, pre-composing both sides of (8) with
yields

f

gg∗
= (12)

which has a familiar interpretation in FHilb. Here, (A, ) is a finite-dimensional
C*-algebra whose underlying vector space A happens to be a Hilbert space.

11



Hence there (A, ) is canonically represented on B(A) by right-multiplication.

Letting π and χ be the representations of (A, ) on B(A) and (B, ) on B(B)
respectively, condition (12) says that f is a CP-map if and only if

χ(f(a)) = trX(gπ(a)g†)

for all a ∈ A, which is essentially just the Stinespring dilation of χ ◦ f . For
finite-dimensional C*-algebras, saying that χ ◦ f has a Stinesping dilation is
indeed equivalent to saying that f is a CP-map [7]. Combining (11) and (12)
shows that f : A→ B satisfies the CP*-condition if and only if

h= h∗f (13)

for some object X and morphism h : A→ X ⊗B.

While we wish to remain as agnostic as possible about the base category C,
it is convenient to assume that objects A in C are either a zero object A ≃ 0,
or they are normalisable, i.e. there exists a positive isomorphism

√
dA : I → I

such that:
√
dA ◦

√
dA = A =: dA

We refer to dA as the dimension of A. In FHilb, this indeed gives the dimension
of the Hilbert space.

We now recall some basic facts about the CP*-construction from [12]. First,
there is a functor B : C → CP∗[C] which is analogous to the passage from a
linear map f : H → K to a CP-map Ψf : B(H) → B(K) of the form:

Ψf(ρ) = fρf †

Explicitly, the functor sends an object A of C to the special symmetric dagger
Frobenius structure A∗ ⊗A with the following multiplication and unit:

(√
dA

)−1 √
dA

The functor sends a morphism f in C to f∗⊗f , which is clearly of the form (8).
Second, ∗-homomorphisms, i.e. morphisms in C satisfying:

f f
=

f f
=

f∗
,

12



where = ◦(1⊗ ) : A∗ → A, satisfy the CP*-condition, and hence are also
morphisms in CP∗[C]. To see this, we first give an alternative characterisation
of a ∗-homomorphism.

Lemma 2.14. Let f : (A, ) → (C, ) be a ∗-homomorphism. Then:

f∗ f

C

AA

=

A A

f

C

f∗f

AA

f

C

AA

=

C

Proof. First use that f preserves involution, then that it preserves multiplica-
tion:

f∗

f

C

AA

=

A A

f

C

f

C

A A

=f∗

A

C

f

A

=f

C

AA

f

=

The second equations follows similarly.

The fact that ∗-homomorphisms satisfy the CP*-condition now follows im-
mediately from Lemma 2.14 and equation (11).

The final basic concept we need before exploring the characterisation of
quantum theory is the notion of causality, which tells us which processes are
deterministically physically realisable.

Definition 2.15. A morphism f : (A, ) → (B, ) is called causal if it
preserves co-units:

f = (14)

The causality condition says, intuitively, that if we discard the output of a
process, then it doesn’t matter which process happened. This condition origi-
nated in work in operational probabilistic theories [6], but was later formulated
for any symmetric monoidal category whose objects come with some notion of
‘discarding’ [15, 9]. While it may not seem immediately obvious from its form,
this requirement efficiently captures the condition that the inputs of any mor-
phism f in a string diagram can only have an effect in the causal future of
f . That is, they can only affect the outputs of f , the outputs of morphisms
connected to the outputs of f , and so on.

The abstract relationship between the causality equation and causal influ-
ence in a string diagram is explained in detail in e.g. [14, 23], but for our
purposes, it suffices to consider the causality equation as a type of normalisa-
tion condition. In the case of CP-maps B(H) → B(K), satisfying equation (14)

13



corresponds to being trace-preserving. For more general C*-algebras, this plays
a similar role to the requirement of a CP-map to be unital.

Remark 2.16. Note that our notion of causality requires a CP-map to pre-
serve the counit, rather than unit of the C*-algebra, which is more common
in the algebraic quantum information literature. This is because we work in

the Schrödinger picture, where morphisms f : (A, ) → (B, ) represent
processes which take states of system A to states of system B. Since all the
categories we work with are dagger categories (and are therefore isomorphic to
their opposite categories), this is equivalent to the Heisenberg picture where

unital CP-maps f ′ : (B, ) → (A, ) represent processes from A to B.

3. Signalling

This section focuses on the relationship between signalling and kinematic
independence. To be able to capture these concepts for general CP∗[C], we
need to introduce the notion of subsystem.

Definition 3.1. Let (C, ) be an abstract C*-algebra. A subsystem is another

abstract C*-algebra (A, ) together with a morphism f : A → C satisfying

f † ◦ f = 1A that is a unital ∗-homomorphism. We call f the inclusion of the
subsystem, and depict it as

A

C
.

Remark 3.2. For f =
A

C
= 1A ⊗ we actually have that f † ◦ f = dB ⊗ 1A,

rather than 1A. We can fix this by re-normalising to (
√
dB)

−1⊗f . For simplicity,
we will generally suppress such normalisation factors unless they are important.

In general, if (C, ) = (A ⊗ B, ), then (A, ) and (B, ) are
subsystems with inclusions

A

C
= 1A ⊗ and

B

C
= ⊗ 1B. But there can

also be subsystems that are not tensor factors. For C = FHilb, subsystems
correspond precisely to C*-subalgebras. Next we look at subsystems for C =
Rel.

Example 3.3. In Rel, a subsystem of a groupoid G consists of a groupoid H

and a multi-valued function R : H → P 6=∅(G) satisfying

R(h−1) = R(h)−1, (15)

R(h ◦ h′) = R(h) ◦R(h′), (16)
⋃

x∈H

R(1x) =
⋃

y∈G

{1y}, (17)

R(h) ∩R(h′) = ∅ ⇔ h = h′. (18)

We will call such subsystems wide subgroupoids. This is a slight abuse of termi-
nology: the image of R is an honest wide subgroupoid, but R itself may map
one morphism of H to many morphisms of G.

14



To see the above statement, let a groupoid H and relation R ⊆ H×G form a
subsystem of G. As any relation, we may regard R as a function R : H → P(G).
Isometry then says that R(h) 6= ∅, and that R(h)∩R(h′) = ∅ when h 6= h′, that
is (18). Hence R is a multi-valued function. In these terms, R being a unital
∗-homomorphism translates into (15)–(17).

There is some more structure to subsystems. If g, g′ ∈ R(h) have the same
codomain, then

g−1 ◦ g′ ∈ R(h)−1 ◦R(h) = R(h−1 ◦ h)
= R(1dom(h))

⊆ {1y | y ∈ G},

so g = g′. Thus R is in fact a single-valued function when restricted to subsets
of H of morphisms with common codomain.

The we call the dagger of a subsystem inclusion a subsystem restriction:

= ( )†

Since subsystem inclusions are unital, restrictions are always causal:

= =⇒ =

and hence physically realisable. Restrictions furthermore have a clear opera-
tional interpretation: they correspond to the process of discarding (or ignoring)
everything which is not local to the subsystem A.

Subsystems also allow us to say when an operation on the large system is
actually localised to a subsystem.

Definition 3.4. An endomorphism of (C, ) in CP∗[C] is called local to a

subsystem (A, ) when it is of the form:

E∗ E
(19)

The above definition captures abstractly the C*-algebraic notion of a CP-
map only having support on a sub-algebra, i.e. a CP-map Φ : C → C being of
the form Φ(x) =

∑
i eixe

∗
i for ei all elements of a sub-algebra A of C. We will

now see that when these sub-systems arise from tensor factors, this recovers the
usual notion of being localised to a tensor factor, i.e. being of the form Φ⊗ 1.
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Proposition 3.5. Let (A, ) and (B, ) be objects in CP∗[C]. If a mor-
phism A⊗B → A⊗B in CP∗[C] is local to A, then it is of the form g⊗ 1B for

some g : (A, ) → (A, ). Conversely, if (A, ) = (C∗ ⊗ C, ), then
every such map has the form (19).

Proof. Unfolding Definition 3.4 shows that the morphism A⊗ B → A⊗ B has
the form

=
EE∗ EE∗

for some morphisms E. Thus we may take the left half of the right-hand diagram
for g. For the converse, it suffices to show that any endomorphism of (C∗ ⊗
C, ) takes the desired form. That is, for any h, there exists E such that:

hh∗ = E∗ E

Taking

E h:=

this immediately follows from diagram deformation.

For the case of local maps, causality takes a simpler form.

Lemma 3.6. A map of the form (19) is causal if and only if:

E∗E

=

Proof. Causality is given by the following equation:

16



E∗ E
=

Applying a spider with two outputs to both sides yields:

E∗ E
=

The right-hand side equals the unit, by the symmetric spider theorem. If we
deform the left-hand diagram, we can also apply the symmetric spider theorem
there, yielding:

E∗ E
=

E∗E

=

E E∗

This finishes the proof.

We can now introduce the two concepts of interest. First, we consider kine-
matic independence. This concept formalises when systems controlled by Alice
and Bob do not influence each other’s kinematics, namely when the associated
sub-algebras commute with respect to each other. The following definition cap-
tures this in such a way that for C = FHilb it coincides with the notion given
in [8].

Definition 3.7. Let (C, ) be a dagger Frobenius structure in a compact

dagger category C. We say that two subsystems (A, ) and (B, ), with in-
clusions

A

C
and

B

C
, are kinematically independent when the following equation

is satisfied.

=

A

C

BBA

C

(20)
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Note that, by applying the dagger to both sides, we can equivalently state
kinematic indepences as:

=

A

C

BBA

C

(21)

This will be important when it comes to relating this concept to nonsignalling.

Notice that if (C, ) decomposes into a tensor product (A⊗B, ), then

the subsystems (A, ) and (B, ) are always kinematically independent.
In other words, kinematic independence is a notion that essentially concerns
subsystems that are not tensor factors. For example, in C = FHilb, kinematic
independence means that the C*-subalgebras A and B commute.

Example 3.8. Let G be a groupoid. Wide subgroupoids A and B are kine-
matically independent if and only if S ◦ T = T ◦ S for all subsets S ⊆ A and
T ⊆ B of morphisms. Equivalently, when for all subsets S ⊆ A, T ⊆ B and
elements a ∈ S and b ∈ T , if a ◦ b is defined then there exist a′ ∈ S, b′ ∈ T such
that a ◦ b = b′ ◦ a′, and when b ◦ a is defined, there exist a′′ ∈ S, b′′ ∈ T such
that a′′ ◦ b′′ = b ◦ a.
Proof. Plug the states S and T into Definition 3.7. Conversely, if S ◦T = T ◦S
for all states, then (20).

The next notion we consider prohibits superluminal information transfer. It
says that when Alice and Bob both control a system, any data that Alice extracts
from her system (through measurement) cannot instantaneously influence Bob’s
system. We formalise this as follows.

Definition 3.9. Let (C, ) be a dagger Frobenius structure in a compact

dagger category. Two subsystems : (A, ) → (C, ) and : (B, ) →
(C, ) are no signalling when

E∗ E

=
F∗ F

=

for any E,F which define causal maps local to A and B, respectively.

Again, tensor factors are automatically no signalling, making this notion

essentially about subsystems that are not tensor factors: if (C, ) decomposes

into a tensor product (A⊗B, ), then the subsystems (A, ) and (B, )
are always no signalling. For C = FHilb, our definition of no signalling comes
down to the usual one employed in [8].

18



Theorem 3.10. In CP∗[C] for compact dagger C:

no signalling ⇔ kinematic independence

Proof. First, assume kinematic indepence. Then applying the symmetric spider
theorem and equation (21):

E∗ E

=

E∗ E E∗

=

E

A second application of the symmetric spider theorem, as well as Lemma 3.6
yields the first no-signalling equation:

E∗

=

E E E∗

=

E∗E

= =

The second equation is similar.
Conversely, assume no signalling. First note that taking E = 1A in (19)

yields a causal map, by Lemma 3.6:

= = =

Hence the first no signalling equation from Definition 3.9 applies:

=

Applying this to the left-hand side of (21) introduces a loop:

19



=

BA

C

C

A B

=

B

C

A A

C

=

B

We then apply (the dagger of) the homomorphism equation:

A

C

=

B B

C

A

C

=

BA

then apply the homomorphism on the other side:

C

=

BA

C

A B

=

BA

C

and finally remove the loop:

=

BA

C C

A B

=

C

A B

This finishes the proof.

4. Broadcasting

We now give a definition of broadcasting, generalising that of [8].
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Definition 4.1. Let (C, ) be an object of CP∗[C], and let , : (A, ) →
(C, ) be two kinematically independent subsystems of (C, ) whose do-

mains are a fixed algebra (A, ). A broadcasting map is a morphismB : A→ C
in CP∗[C] satisfying the following equation.

B = = B (22)

We say A is broadcastable when there exists a broadcasting map for some C.

If (A, ) is commutative, we can simply take C := A, and = =
1A. Hence, commutatitivity trivially implies broadcastability. In the case of
CP∗[FHilb], broadcastability implies commutativity, thanks to [8, Theorem 3].
However, as we will show in this section, when we pass to arbitrary CP∗[C],
this is no longer the case.

As in the case of concrete C*-algebras, Definition 4.1 generalises the older,
more familiar notion of broadcasting presented by Barnum et al [3], which we
will call ⊗-broadcasting.

Definition 4.2. A ⊗-broadcasting map for an object (A, ) of CP∗[C] is a
morphism b : A→ A⊗A in CP∗[C] satisfying the following equation.

b = b= (23)

The object (A, ) is called ⊗-broadcastable when there exists a ⊗-broadcasting
map.

Lemma 4.3. Let C be a compact dagger category. Commutative dagger Frobe-
nius structures in C are ⊗-broadcastable objects in CP∗[C].

Proof. Suppose that (A, ) is commutative. We will show that is a broad-

casting map. It clearly satisfies (23), so it suffices to show that it is a well-defined
morphism in CP∗[C]. Using the spider theorem for commutative dagger Frobe-
nius structures [16, Lemma 3.1], we obtain the following:

=
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Therefore ◦ ◦ is a composition of the identity on (A, ) in

CP∗[V] and the image of under the functor B. Since these are both com-

pletely positive, so is their composition. Thus is a well-defined morphism

in CP∗[V].

In particular, we can conclude that commutative C*-algebras are not only
broadcastable, but also ⊗-broadcastable.

A groupoid is skeletal when its only morphisms are endomorphisms. Equiv-
alently, it is a disjoint union of groups.

Lemma 4.4. ⊗-broadcastable objects in CP∗[Rel] are precisely skeletal groupoids.

Proof. Let G be a skeletal (small) groupoid, and write G for its set of mor-
phisms. We will show that the morphism b : G→ G×G in Rel given by

b ={(f, (1dom(f), f)) | f ∈ Mor(G)}
∪ {(f, (f, 1dom(f))) | f ∈ Mor(G)}

is a broadcasting map. First of all, b is readily seen to respect identities (property
(10)). Since G is skeletal, 1dom(f) = 1cod(f) = 1dom(f−1), so f also preserves
inverses (property (9)). Hence, it is a well-defined morphism in CP∗[Rel].

When interpreted in Rel, the broadcastability equation (23) reads:

{(f, f) | f ∈ G} = {(f, g) | ∃C.(f, (1C , g)) ∈ b}
= {(f, g) | ∃C.(f, (g, 1C)) ∈ b}. (∗)

This is satisfied by b as defined above. By definition, (f, (1dom(f), f) is in b, so
the LHS of the first equation above is contained in the RHS. On the other hand,
if for some g, C, we have (f, (1C , g)) ∈ b, then C = dom(f) and g = f , so the
LHS also contains the RHS. The second equation follows symmetrically.

Conversely, suppose that a small groupoid G is broadcastable. Then there is
a morphism b in Rel that respects inverses, and satisfies (∗). Let f ∈ Mor(G).
By (∗), there is an object C of G such that (f, (1C , f)) ∈ b. Next, (10)
gives (1dom(f), (1C , 1dom(f))) ∈ b and C = dom(f). But by (9), it is also the
case that (f−1, (1C , f

−1)) ∈ B. So, using (∗) and (10) again, we also have
(1cod(f), (1C , 1cod(f))) and C = cod(f). Hence dom(f) = cod(f). Thus G is
skeletal.

Lemma 4.5. Let b be an ⊗-broadcasting map for an object (A, ). Then it
is also a broadcasting map, where C := A⊗A, = , and = . Hence
⊗-broadcastability implies broadcastability.

Proof. Simply unfold the definitions.

Theorem 4.6. In CP∗[C] for general C:

no broadcasting ⇒
: noncommutativity
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Proof. The implication is given by Lemmas 4.3 and 4.5. The other implication
does not hold in CP∗[Rel]; we develop a counterexample. Let G be a non-
commutative group, considered as a skeletal groupoid. By Lemma 4.4, it is
⊗-broadcastable and hence broadcastable. However, it is noncommutative by
definition.

Remark 4.7. In C = FHilb, commutativity and broadcastability are equiva-
lent. They also coincide with a third notion of classicality, namely that a C*-
algebra is a direct sum of 1-dimensional C*-algebras. This can be phrased for
general compact dagger categories C with biproducts, for in that case CP∗[C]
inherits biproducts [22]. Hence we can consider objects in CP∗[C] that arise as
biproducts of the monoidal unit. One can straightforwardly show that all such
objects give commutative Frobenius algebras, whereas any nontrivial abelian
group in CP∗[Rel] is commutative, but not a biproduct of units. Hence, we can
refine Theorem 4.6 as follows:

biproduct of unit ⇒
: commutative ⇒

: broadcastable

Finally, since broadcasting coincides with commutativity when C = FHilb,
then broadcasting and ⊗-broadcasting must also coincide. We leave open the
question of whether this is also true for Rel.

5. Bit commitment

Briefly, bit commitment is the following two-party protocol. Alice claims to
know something, and Bob wants to verify that Alice indeed has that knowledge,
but Alice doesn’t want to reveal her secret yet. Let’s say the information is
a single bit; Bob wants Alice to commit to either ‘heads’ or ‘tails’ now, and
wants to be able to verify her committed value later. Alice could cheat by
changing the value she committed to later on; if this is impossible the protocol
is binding. Bob could cheat by learning the value Alice committed to before she
is ready to unveil it; if this is impossible the protocol is concealing. A secure
bit commitment protocol is one where neither cheat is possible. Secure bit
commitment is possible under the assumption that a pair of quantum systems
can only inhabit classically correlated states. Hence, impossibility of secure
bit commitment implies the existence of entangled states [8]. We can model it
categorically as follows.

Definition 5.1. A bit commitment protocol for a system C and two sub-
subsystems A,B of C consists of two states H,T : I → C of CP∗[C] which
is concealing when:

H T

=

B

C

B

C
(24)
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and binding when there exists no state cheat : I → C and morphisms cH , cT
localised to A:

E∗ E

AA

C

C

cH :=

C

C

F∗ F

AA

C

C

cT =

C

C

such that cH ◦ cheat = H and cT ◦ cheat = T . Finally, it is secure when it is
concealing, and binding.

This describes a bit commitment protocol in the following way. We assume
that initially Alice has access to sub-systems A and B, which enable her to
prepare the states H and T of C. During the commitment phase of the protocol,
Alice prepares either H or T and gives subsystem B to Bob. Concealing says
that at this point, Bob is unable to determine Alice’s commitment. Then, for
the reveal phase, Alice gives the remainder of C to Bob, at which point he can
ascertain whether he has state H or T . Binding says that if Alice only has
access to her own system A (namely, after sending system B to Bob), there is
no way for Alice to change her commitment.

One thing to note here is that we have somewhat substantially limited Alice’s
resources if she wishes to cheat, in that she is not allowed to start with a state
cheat which initially occupies a larger system, unbeknownst to Bob, and only
send some part of that system in the reveal phase. This allows us to consider
situations where secure bit commitment is possible, namely when Alice is unable
to perform an attack using entanglement.

Example 5.2. In CP∗[FHilb], fix the systems B = (C2, ) and Q = ((C2)∗⊗
C2, ) consisting of a bit and qubit. Then the states

H =
1

2
(|0〉 ⊗ |0〉〈0|+ |1〉 ⊗ |1〉〈1|)

T =
1

2
(|0〉 ⊗ |+〉〈+|+ |1〉 ⊗ |−〉〈−|)

give a (näıve) secure bit commitment protocol for (B⊗Q,B,Q). It is concealing
because deleting the left system yields the maximally mixed state:

(〈+| ⊗ 1) ◦H = (〈+| ⊗ 1) ◦ T =
1

2
(|0〉〈0|+ |1〉〈1|)

and binding because every local operation on a generic state of the form

p|0〉 ⊗ ρ0 + q|1〉 ⊗ ρ1
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yields a state
p′|0〉 ⊗ ρ′0 + q′|1〉 ⊗ ρ′1

where ρ′i is a mixture of the states ρ0, ρ1. Hence no fixed state cheat can yield
both H and T under local operations.

We now translate the result of [8] into our language. Note that we say an
object in a CP∗-category is noncommutative if its associated Frobenius structure
is noncommutative.

Theorem 5.3. For a system C in CP∗[FHilb] with subsystems A,B such that
B is noncommutative, the impossibility of bit commitment entails the existence
of an entangled state.

Proof(sketch). It suffices to show that there exist distinct states ρ1, ρ2 of B such
that:

ρ1 ρ2

=

B

C

B

C

yet there exists no classically correlated state and localisable maps c1, c2 such
that c1 ◦ρ = ρ1 and c2 ◦ρ = ρ2. This is indeed the case for any noncommutative
C*-algebra. Hence, if all states ρ of C are classically correlated, this gives the
data of a secure bit commitment protocol, and contrapositively, the impossibility
of secure bit commitment necessitates the existence of an entangled state.

In [8], the authors conjectured that the converse is also true, namely that
the existence of an entangled state implies the impossibility of secure bit com-
mitment. We now show that, at least in the more general setting, this is not
the case.

Proposition 5.4. The following defines a secure bit commitment protocol in
Rel. Let A and B be indiscrete groupoids on 2 and 3 objects, respectively. For
convenience, we name their morphisms as follows:

A = • •z
x y

B =

• •

•

a b

c

d

e f
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(note the inverses d−1, e−1, f−1, and z−1 are not pictured). Let C = A × B,
and define the following states of C:

H = ({x} ×B) ∪
{
(y, b), (z, d), (z−1, d−1)

}
,

T = ({x} ×B) ∪
{
(y, c), (z, e), (z−1, e−1)

}
.

Then, (A,B, H, T ) gives a bit commitment protocol for C.

Proof. The key to this counterexample is that H and T are similar enough to be
concealing, but still distinct enough that Alice cannot possibly find local maps
R and S which produce them from a single state.

H,T are closed under taking domains and inverses, so they are indeed states
in CP∗[Rel]. To see that this is concealing, note that ( )◦H = ( )◦T = B.
To see that this protocol is binding, suppose there exists a state cheat and maps
R,S : A → A such that both (R⊗1B)◦cheat = H and (S⊗1B)◦cheat = T . For
a morphism p ∈ A, let 〈p〉 : A → {∗} be the (not necessarily inverse-respecting)
relation {(p, ∗)}. Then, for each of the following values for π : A → {∗}:

〈y〉 ◦R, 〈z〉 ◦R, 〈z−1〉 ◦R, 〈y〉 ◦ S, 〈z〉 ◦ S, 〈z−1〉 ◦ S,
the composition (π⊗1B)◦ cheat yields a distinct singleton subset of B (namely:
{b}, {d}, {d−1}, {c}, {e}, and {e−1}, respectively). Hence each of these 6 effects,
regarded as subsets of A, must contain at least one element which is not in the
other 5. Since A has only 4 morphisms, this yields a contradiction.

Definition 5.5. Let C be a compact dagger category, and C an object in
CP∗[C]. A state ρ : I → C is classically correlated with respect to subsystems
A and B of C when there exist a broadcastable object X in CP∗[C], a state
p : I → X , and a morphism f : X → C satisfying ρ = f ◦ p and:

X

=f f

A B

X

C

A B

f

We say that ρ is entangled when it is not classically correlated.

Lemma 5.6. Let A and B be wide subgroupoids of C, regarded as subsystems
in CP∗[Rel], and let R : 1 → C be a morphism, regarded as a subset R ⊆ C.
Suppose that R classically correlates A and B. If a ◦ b ∈ R, then 1dom(a) ∈ R.

Proof. Definition 5.5 unfolds as follows: there is a skeletal G and maps S : G→
C and P : I → G with R = P ◦ S and such that (g, a ◦ b) ∈ S if and only if
(h, a) ∈ S and (k, b) ∈ S and g = h ◦ k for some h, k ∈ G.

If a ◦ b ∈ R, then there is g ∈ P with (g, a ◦ b) ∈ S. So there are g, h ∈ G
with g ◦ h ∈ P and (g, a) ∈ S and (b, h) ∈ S. Write e for identity on dom(g) =
cod(h); because G is skeletal also dom(h) = cod(h) and hence e ∈ P . Then
(e, 1dom(a)) ∈ S, and so 1dom(a) ∈ R.
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Remark 5.7. To illustrate the slight abuse of notation in Example 3.3, let us
show that in case C = A×B the subsystems A and B are in fact multi-valued.
In the setting of the previous lemma, we will show that if (a, b) ∈ R, then
(1dom(a), 1cod(b)) ∈ R.

Because C = A × B, Definition 5.5 simplifies as follows: we may regard R
as a map A→ B; there is a skeletal groupoid G and maps S : G → A× B and
P : I → G with:

R

BA

= S

P

BA

S

BA

=

G

A

S

B

S

G

If (a, b) ∈ R then there is g ∈ P with (g, (a, b)) ∈ S. Hence there are g, h ∈ G
with g ◦h ∈ P and (g, (a, 1y)) ∈ S for some object y of B and (h, (1x, b)) ∈ S for
some object x of A. Again the identity e = e◦e on dom(g) = cod(h) is in P , and
(e, (1dom(a), 1y)) ∈ S and (e, (1x, 1cod(b))) ∈ S. Therefore (1dom(a), 1cod(b)) ∈ R.

Theorem 5.8. In CP∗[Rel]:

no bit commitment : entanglement

Proof. Proposition 5.4 exhibited a secure bit commitment protocol in CP∗[Rel].
It suffices to show that the system C defined there admits an entangled state.
Let

E =
{
(x, a), (y, c), (z, e), (z−1, e−1)

}

be a state of C. Then, note that (z, e) = (y, f) ◦ (z, d). However, 1dom(y,f) =
(y, b) /∈ E. Hence by Lemma 5.6 (and Remark 5.6), E is entangled.

The point this paper emphasises is that the impossibility of secure bit com-
mitment is not caused by the conceptual structure of quantum theory, but by
the algebraic model assumed in [8].
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