
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Tactile Transfer Learning and Object Recognition
With a Multifingered Hand Using Morphology

Specific Convolutional Neural Networks
Satoshi Funabashi , Member, IEEE, Gang Yan, Student Member, IEEE, Fei Hongyi , Student Member, IEEE,

Alexander Schmitz , Member, IEEE, Lorenzo Jamone , Member, IEEE, Tetsuya Ogata , Member, IEEE,

and Shigeki Sugano , Fellow, IEEE

Abstract— Multifingered robot hands can be extremely effec-
tive in physically exploring and recognizing objects, especially if
they are extensively covered with distributed tactile sensors. Con-
volutional neural networks (CNNs) have been proven successful
in processing high dimensional data, such as camera images, and
are, therefore, very well suited to analyze distributed tactile infor-
mation as well. However, a major challenge is to organize tactile
inputs coming from different locations on the hand in a coherent
structure that could leverage the computational properties of
the CNN. Therefore, we introduce a morphology-specific CNN
(MS-CNN), in which hierarchical convolutional layers are formed
following the physical configuration of the tactile sensors on the
robot. We equipped a four-fingered Allegro robot hand with
several uSkin tactile sensors; overall, the hand is covered with
240 sensitive elements, each one measuring three-axis contact
force. The MS-CNN layers process the tactile data hierarchically:
at the level of small local clusters first, then each finger, and then
the entire hand. We show experimentally that, after training, the
robot hand can successfully recognize objects by a single touch,
with a recognition rate of over 95%. Interestingly, the learned
MS-CNN representation transfers well to novel tasks: by adding
a limited amount of data about new objects, the network can
recognize nine types of physical properties.

Index Terms— Convolutional neural network (CNN), multifin-
gered hand, object recognition, tactile sensing.

I. INTRODUCTION

MULTIFINGERED hands are useful for the exploration
and recognition of objects or environments by using

Manuscript received 15 September 2021; revised 16 August 2022;
accepted 4 October 2022. This work was supported by the Japan Science and
Technology Agency ACT-I Information and Future under Grant JPMJPR18UP
and its Acceleration Phase under Grant JPMJPR18UP. (Corresponding author:
Satoshi Funabashi.)

Satoshi Funabashi is with the Institute for AI and Robotics, Future
Robotics Organization, Waseda University, Tokyo 169-8555, Japan (e-mail:
s.funabashi.suganolab@gmail.com).

Gang Yan, Fei Hongyi, Alexander Schmitz, and Shigeki Sugano are with the
Department of Modern Mechanical Engineering, Waseda University, Tokyo
169-8555, Japan.

Lorenzo Jamone is with the School of Electronic Engineering and Computer
Science, Queen Mary University of London, E1 4NS London, U.K.

Tetsuya Ogata is with the Department of Intermedia Art and Science,
Waseda University, Tokyo 169-8555, Japan.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2022.3215723.

Digital Object Identifier 10.1109/TNNLS.2022.3215723

Fig. 1. Examples of applications for multifingered hands. Picking objects
with diverse object properties is difficult even though the motion seems
the same because the properties change the motion. During those kinds of
multifingered tasks, acquiring object features through tactile information is
important to achieve dexterous and stable manipulation.

multiple fingers dexterously (see Fig. 1). To achieve such
multifingered tasks stably and effectively, tactile sensing was
applied to a lot of tasks, such as grasp stability, detecting
tactile events, and tactile exploration [1]. Those skills can also
be crucial for multifingered manipulation where quick tactile
feedback or recognition is required.

Tactile sensing is considered to be complementary to other
sensing modalities [2], especially when there is visual occlu-
sion. In camera-based situations [3], the hand needs to be
simple in shape to avoid occlusions, but there is a limitation
in realizing difficult tasks, such as with multifingered hands.
Therefore, for multifingered tasks, tactile sensing becomes
a more important modality. In multifingered hand tasks,
a diverse and relatively large area, including not only the
fingertips but also the phalanges, comes into contact with the
object, and the forces act in various directions as the fingers
touch the grasped object from different directions [4]. A mul-
tifingered hand, such as a human mimetic hand, is capable
of performing multipurpose tactile tasks [5], [6], but it is
difficult to process such a rich amount of tactile information.
Much research has been done on how a robotic hand equipped
with tactile sensors can accomplish a task [7]. By considering
the grasping state and fingertip position analytically, it has
become possible to optimize the grasp and recognize the slip of
the grasped object [8], [9]. However, complex grasping states
are difficult to model analytically, and there are cases where
only two fingers are used [10] or the touch is limited to the
fingertips [11].

2162-237X © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on November 09,2022 at 10:54:40 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6381-3522
https://orcid.org/0000-0003-3969-6052
https://orcid.org/0000-0002-8962-771X
https://orcid.org/0000-0002-1521-6168
https://orcid.org/0000-0001-7015-0379
https://orcid.org/0000-0002-9331-2446

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Various machine learning methods are used for the recog-
nition task; for example, a random forest was used for object
classification for a simple two-fingered robot hand [12] and
also for slip prediction for an arbitrary number of robot
fingers [13]. Also, a support vector machine (SVM) has been
used for zero-shot learning of object recognition tasks even
though it has tactile information limited to fingertips [11].

Some other researchers have experimented with the fast
estimation of object shape recognition when there is only
one tactile sensor at a fingertip [14]. Active exploration
methods, which use SVMs to learn by combining tactile
and visual information, have been shown to be less accurate
than learning from either alone [15]. This is one example
where machine learning methods were not able to process
sensor information of enormous size. Distributed tactile sen-
sors have also been studied [16]. Even with SVM and
self-organized maps (SOMs), the recognition rate remained
low [17]. Also, research has already been done focusing on
the features of multifingered hands [18]. By concatenating
the information of each finger, a high recognition rate of
objects can be obtained. While many studies have already
been reported on the combination of robot hands and tactile
sensors, there are still challenges in dealing with a large
number of tactile sensors and learning high-dimensional tactile
information.

Deep learning has been used for tactile sensors as one of the
methods to process a large amount of tactile information. Deep
learning has achieved better recognition rates compared to
other machine learning methods, such as SVM [19]. Another
example is the use of deep reinforcement learning to change
the orientation of a cylindrical object. Although the hand is
multifingered, the small number of pressure sensors and the
high degree of freedom of the finger joints could make the
situation difficult; moreover, it has not been used to manipulate
various objects [20]. Many researchers have been working on
convolutional neural networks (CNNs) for image and speech
recognition because of their robust performance in extracting
features from multidimensional information. This advantage of
CNNs is well suited for distributed tactile sensors because the
sensors are physically distributed on a 2-D surface. Therefore,
CNNs have become widely used in distributed tactile sensors
for robotic hands [21]. A state-of-the-art method focusing on
CNNs and distributed tactile sensors has been developed [22].
CNNs have also been applied to tactile sensors for multifin-
gered hands [23]. In our previous works, CNNs were also
applied for in-hand manipulation and object recognition of an
Allegro hand with three-axis tactile sensors [24], [25], and
the results were better than the results of other modeling and
machine learning methods.

While CNNs have achieved prominent results, it is still
necessary to consider the problem of how to input tactile
information from such sensors into the CNN when it comes
to multifingered hands, as some hands have tactile sensors at
the fingertips [26], while others have distributed sensors of
different sizes and shapes [27]. This is particularly difficult
because the size and shape of tactile patches on hands vary
as much as the size of fingers, and in general, CNNs require
rectangular input, which makes the implementation of CNNs
difficult.

It also makes it difficult to extract multifingered level
meaning from tactile information, such as object grasping
and in-hand manipulation, due to its incapability of process-
ing tactile information on multifingered hands at the same
time. Previously, we used the uSkin three-axis tactile sensors
[28], [29] attached to the Allegro hand, and in this article,
we use the same dataset as in our papers [25], [30]. Both
in [25] and [30], we obtained sufficient object recognition
rates (95%). However, in [25], the input was a sequence of
tactile states from different regions of the hand, while, in [30],
it was a single, tactile state of the entire hand. Therefore, the
architecture in [30] permits to have a much faster recognition.
This is crucial especially if the information has to be used
for real-time object manipulation (e.g., retrieving a stored
3-D model of the object after the object has been correctly
recognized).

However, Funabashi et al. [30] just showed recognition
rates and did not analyze how the CNNs process tactile infor-
mation, and thus, it was not clear why this specific structure
of the CNN was beneficial for multifingered hands. A more
careful and detailed analysis of the internal representations
created by the morphology-specific CNN (MS-CNN) would
explain why the proposed structure is superior to other possible
arrangements of the data, and whether it is beneficial for
other tasks rather than object recognition. Finally, whether
the CNNs are usable with other efficient training methods,
such as transfer learning, to achieve better results has not
been confirmed yet. It has to be evaluated whether CNNs
can embrace a useful viewpoint, which is based on robotic
morphology.

Even though the proposed method could be applied to
multiple tasks, the data collection would require a high hard-
ware load especially because tactile sensors directly touch
objects and, in general, get worn out easily (e.g., [22]). This
is especially important for multifingered hands because a lot
of tactile sensors on the hands can break. In this case, transfer
learning that is widely used for image recognition tasks [31]
can be useful to reduce the size of the required training dataset
with tactile sensors. There are some tactile transfer leaning
methods that achieved high recognition rates [32], [33], yet
they focus on only fingertips. N-shot learning was also used
by specifying the size of training data [34]. Multimodal
transfer learning, including vision and tactile information,
was conducted [35], which can be difficult to implement
in the case of multifingered hands due to occlusions. Sim-
to-real transfer learning is one of the effective ways to collect
training data [36], [37]. However, touching an object from
diverse orientations happens due to multiple fingers and, thus,
requires three-axis tactile information. That information is
difficult to implement in simulation systems. Even though
many tactile transfer learning methods have been used, transfer
learning with a multifingered hand with tactile information
from not only the fingertips but also the phalanges has not
been investigated yet. Therefore, transfer learning was chosen
for evaluating the MS-CNNs.

Therefore, the contributions of this study are given
as follows. First, we review and compare the possible
architectures of convolutional layers of the MS-CNN and
how their combinations affect the object recognition rate.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on November 09,2022 at 10:54:40 UTC from IEEE Xplore. Restrictions apply.

FUNABASHI et al.: TACTILE TRANSFER LEARNING AND OBJECT RECOGNITION WITH A MULTIFINGERED HAND 3

Second, we visualize the internal representations of the differ-
ent network structures using Grad-CAM++ [38] and highlight
why and how such representations are the best candidates to
support a wide range of robotic tasks related to multifingered
hands. Finally, and most importantly, we demonstrate how
these learned representations permit efficient transfer learning
from the recognition of object instances to the recognition of
physical properties (i.e., heaviness, slipperiness, and softness)
of novel objects during in-hand manipulation with complex
contact states on several fingers and show whether the CNNs
are useful with transfer (WT) learning.

II. SYSTEM ARCHITECTURE

A. Hardware Design

This study uses the Allegro hand, a commercially available
robotic hand from Wonik Robotics. Our uSkin tactile sensor,
which was designed to detect forces in three axes, is used to
cover the fingertips [28] and phalanges [29] of the Allegro
hand, as shown in Fig. 2(a). As a multifingered robot hand
with 16 degrees of freedom, the Allegro hand generates forces
in many directions during manipulation. Therefore, the uSkin
sensor has been implemented to detect such complicated
grasping states. A total of 15 uSkin patches are installed:
four on the index, middle, and little fingers, and three on the
thumb. Thus, the customized Allegro hand has a total of 15
(sensor patches) × 16 (sensors) × 3 (tactile axes) + 16 (joint
angles) = 736 measurements.

B. How to Input Tactile Information?

The locations of the sensors on the phalanges and fingertips
are shown in Fig. 2(a) and (b). There are 16 sensors in each
sensor patch. The phalanges and fingertips, however, differ in
size and shape [see Fig. 2(b)]. Regarding the position of the
sensors, the input map of the phalanges has a shape of 4 × 4,
and the input map of the fingertips has a shape of 6 × 4.
In the fingertip input map, the number “0” [the red number in
Fig. 2(b)] is received at the position where each fingertip is
not equipped with a sensor, resulting in a rectangular input
map. This allows to convolute the input map with a filter
of a size equal to or larger than 2 × 2. Some studies on
image recognition use three channels of “RGB” input. This
is because, in an image, each pixel has “RGB” information.
Likewise, in this article, the input to CNN is set to three
channels. This is because each of the sensors (or “taxel”)
provides xyz information [see Fig. 2(b)], and the orientation
of xyz information on the patch is shown in [see Fig. 2(a)].
For the fingertips, the xyz-direction varies between taxels as
the fingertips are curved. Specifically, the z-axis corresponds
to the tactile information in the direction perpendicular to
the sensor surface, and the other axes correspond to the
tactile information in the tangential direction. This method of
processing was used in [24], [30]. One way to process the
tactile sensor patches is shown in Fig. 2(c). Here, as the first
convolution layer, a convolution layer is prepared for each
tactile patch. In the second layer, all the convolution layers of
the first layer are combined in accordance with the position of
the tactile sensor on the hand. In order to make the shape of the
convolution layer rectangular by filtering, the first convolution

Fig. 2. Hardware setup and architecture of the proposed CNN. (a) Allegro
hand with a set of uSkin three-axis tactile sensors mounted on the phalanges
and fingertips (hardware setting). There are four uSkin sensor patches on the
index, middle, and little fingers, and three patches on the thumb. (b) From left
to right, the mounted sensor patches, the location of the sensors in black dots,
and the input map for the CNN (how to input tactile information). Each red
“0” stands for a position where no sensor is mounted on the corresponding
actual sensor patch (other values are arbitrary). The map is used for input to
the CNN in three channels (x, y, z). (c) One example is how to combine the
convolution layers from each tactile sensor patch (how to combine tactile
features). The current robotic hand platform has different sizes of sensor
patches for fingertips and phalanges. In addition, there are different numbers
of patches for the thumb and other fingers. In the example shown in this figure,
each tactile patch has its own convolution layer (patch-level convolution) and
is combined at a later stage (hand-level convolution).

layer convolutes the input from each sensor patch and converts
it into an output of the required size. The height and width
sizes of the filters in the convolution layer are adjusted as
follows:

OH = H + 2P − FH

S
+ 1

OW = W + 2P − FW

S
+ 1 (1)

where H and W are the height and width of the current
convolution layer’s input, OH and OW are the height and
width of the current convolution layer’s output, and FH and
FW are the height and width of the filters that convolute the
input into the output of the next convolution layer. P is the
padding, which typically adds “0” around the input map, so as
to keep the outputs of the convolution layers the same size.
Since the size of the input varies depending on the combination
of convolution layers, padding is not used in this article.
In addition, as we focus on how the convolution layers are
combined, there is no pooling layer in the CNN used in our
experiments that change the size of the input.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on November 09,2022 at 10:54:40 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

III. EXPERIMENT DESIGN

A. Data Collection

Instead of collecting tactile information only when an object
was statically grasped, we recorded tactile information through
a series of manipulations in the hand as an active tactile
sensing method. Since the objects were provided to the Allegro
hand in random positions for training, recognition should be
according to the object, not the way it was grasped. Note
that, because the tactile measurements are not calibrated, the
sensitivity varies, and furthermore, crosstalk between measure-
ment axes may occur (see [28], [29] for details). However,
we assume that, as long as the features from the measurements
are extracted by neural networks, there is no need to calibrate
the measurements.

1) Object Recognition: For the training data of object
recognition, we use the same data as in our previous paper
[25], [30], where we confirmed the effect of uSkin sensors on
a multifingered hand by focusing on time series information
and spatial information to improve the accuracy of object
recognition by CNNs. In this article, we focus on spatial
information and its analysis. The data were collected in a
way that mimicks an infant’s manipulation and exploration of
objects to obtain information about their physical properties.
Fig. 3(a) shows the 20 common objects used in the experiment,
which also includes ten objects from the Yale-CMU-Berkeley
Model Set. In particular, the objects in the top row of Fig. 3(a)
and 20: spray bottle are elongated in shape, and when grasping
the object, the palm of the hand always faces roughly the
elongated side, e.g., the bottle was never grasped from the
cap or bottom, and the orientation varied, with the object being
grasped close to the center, but not necessarily exactly at the
center. It is also important to note that, in this experiment,
even after repeated grasping, the objects do not always have
the same orientation, as the final grasping posture depends on
the weight distribution. The other ten objects were roughly
spherical and grasped in random orientations. Some examples
of active tactile sensing for elongated objects can be seen in
Fig. 3(c). Note that the Allegro hand controlled the position
with a constant controller gain in all trials, and the reaction
force varied depending on the size and shape of the object.

Thirty manipulation trials were performed for each object,
for a total of 600 trials. Twenty-five trials for each object
were used for training the CNNs, and five trials were used
for each CNN’s test set [see Fig. 3(a)]. Data were collected at
a sampling rate of 30 Hz. Red is the raw data recorded, and
green is the data extracted for training and testing shown in
Fig. 3(e). The last step of the 250 steps was set less than one
second before the end of the recording (the recording always
stops at the same time after the movement stops). Note that the
hand remains grasping the object even after the movement has
stopped. Twenty-five timesteps from 250 timesteps in each of
the 25 trials used for training were randomly sampled and used
as the training dataset. The training dataset contains a total
of 12 500 samples. The test dataset contained 2500 samples
randomly sampled from five trials for each object.

2) Object Property Recognition: For the training data of
object property recognition, the target in-hand manipulation
chosen in this study was a movement of a precision grasp to

a power grasp by starting with picking motion of fingertips
from a ground [see Fig. 3(d)]. Since this motion embraces a
variety of complicated contact states (e.g., slip, rolling contact,
touch, and not touch by finger gating) during executing the
manipulation, it was chosen to evaluate the proposed CNN’s
adaptability and whether it is applicable to other tactile recog-
nition tasks or not. Since it is difficult to derive a formula to
generate the motion, the training data were collected via the
CyberGlove [40], which is a dataglove that enables teleoperate
human-mimetic robot hands by sending joint motions of their
fingers to robot fingers. One experimenter collected all data
because the motion can be drastically different among trials
when different people do the experiment, i.e., human hands
are different from each other and require different calibration
settings for the dataglove.

As shown in Fig. 3(b), there are 45 objects, including
three objects from the Yale-CMU-Berkeley Model Set. The
objects were separated into three heaviness classes [Heaviness
High (more than 136 g), Heaviness Medium (77–114 g),
and Heaviness Low (under 68 g)], three softness classes
[Softness High (deformable), Softness Medium (only surface
deformable), and Softness Low (stiff objects)], and three slip-
periness classes [Slipperiness High (plastic or coated paper),
Slipperiness Medium (paper or bumpy), and Slipperiness Low
(textile or rubber)]. Each class has at least one object and
sometimes several objects in terms of outer properties so that
the networks can acquire a generalization skill for the inner
properties (e.g., different-sized balls and differently shaped
plastic fruits).

Two trials of the in-hand manipulation motion for each
of the 45 objects were collected resulting in 90 trials in
total. Data were collected with a sampling rate of 100 Hz.
The objects were placed near the Allegro hand in random
positions. Fig. 3(f) shows tactile trajectories obtained from
one trial, where red indicates the raw data recorded and green
indicates the data extracted for training and testing. The data
were recorded for 17 s, and the manipulation was executed
during the period. Since the motion was executed by a human,
the motion itself and when the motion finishes are always
differently shown in Fig. 4. Therefore, the data for training in
each trial were extracted especially when the hand touches the
grasped object with a threshold of tactile measurements. Sev-
eral timesteps where the movement stops were also sampled
as a static state. 291 timesteps were randomly sampled from
each trial. In total, 26 189 samples were randomly chosen and
used. The samples were split randomly into the training dataset
and the test dataset consisting of 23 570 and 2619 samples,
respectively. A different random split was conducted for each
training trial of CNNs.

3) Object Property Recognition With Transfer Learning:
For the training data of object property recognition, the
datasets described in Sections III-A1 and III-A2 were used.
First, the datasets for object recognition were used for a
pretraining phase of the transfer learning, and thus, the task
for the pretraining was the same object recognition task
described in Section III-A1. Therefore, the size of samples
for the training dataset and the test dataset is 23 570 and
2619, respectively. Second, the datasets for object recognition
property recognition were used for a fine-tuning phase of the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on November 09,2022 at 10:54:40 UTC from IEEE Xplore. Restrictions apply.

FUNABASHI et al.: TACTILE TRANSFER LEARNING AND OBJECT RECOGNITION WITH A MULTIFINGERED HAND 5

Fig. 3. Collection of objects and training data. (a) Selection of 20 daily objects (target objects for object recognition). Ten objects were selected from the
“Yale-CMU-Berkeley Model Set” [39]. To increase the difficulty of recognition, we chose ten slightly more difficult identifiable objects. The bottles are labeled
L (large), M (medium), and S (small). 1: bottle (L, spheric); 2: bottle (L, cornered); 3: bottle (S, spheric); 4: bottle (S, cornered); 5: bottle (M, spheric);
6: bottle (M, waisted); 7: powder can; 8: pringles; 9: hand model; 10: pack of Styrofoam dices; 11: pack of snacks; 12: pack of solid dices; 13: tuna can;
14: large can; 15: spam can; 16: bowl; 17: clipper; 18: baseball; 19: soccer ball; and 20: spray bottle. (b) 45 daily objects that were selected in terms of inner
object properties (heaviness, softness, and slipperiness) (target objects for object property recognition). (c) shows how the training data were collected (target
motion for object recognition). The motion is to mimic a human baby’s squishing. Fingers move left and right. The skin sensors are rubbed to the grasped
object. (d) Target motion of the object property recognition is to start a grasping posture by pinching it with fingertips. (e) Example of tactile time-series data
throughout squishing trial (tactile trajectories during object recognition motion). The repetitive motion is reflected in the tactile data stream. Red indicates the
complete data stream; green indicates the extracted raw data for learning object recognition. (f) Example of tactile time-series data throughout object picking
trial (tactile trajectories during object properly recognition motion). Red indicates the complete data stream; green indicates the extracted raw data for learning
object property recognition. The data are extracted when the hand touches objects, and thus, the extracted timesteps depend on each trial.

transfer learning. The task for the fine-tuning was the same
object property recognition task described in Section III-A2
but with different training settings to the one for object
property recognition without transfer learning.

B. Training Setting

All the CNNs were built with the Tensorflow library for
Python and a GTX Geforce 1080, 1080Ti and RTX 2080 were
used as the GPU. Object recognition and object property
recognition have different training settings because the object
recognition task requires the CNNs to generate one-hot vectors
for so-called multiclass classification, while the object property
recognition task requires the CNNs to generate “multi”-hot
vectors for so-called multilabel classification.

Otherwise, with the exception of the size of the convolution
layer, all the CNNs used in this article have the same network
parameters and training settings, and they are described in
Fig. 5(b). For the CNN input, we used samples, including

16 (joint angles) + 15 (sensor patches) × 16 (sensor) × 3
(tactile axis); thus, 736 measurements at each time step were
obtained. To train the CNN, we added “0” to the input from
the fingertip sensor, as shown in Fig. 3(b). Consequently, the
number of dimensions of the input is 736 + 8 (number of
“0”s for one fingertip) × 3 (tactile axis) × 4 (number of
fingertips) = 832 dimensions.

Transfer learning was conducted with object property recog-
nition. In this study, acquired features (or trained weights
and biases) from the object recognition task were reused for
(transferred to) the object property recognition task to get
higher recognition rates. As far as the authors know, this is
the first time to achieve transfer learning for tactile tasks with
a multifingered hand.

1) Object Recognition: Each CNN was trained with
12 500 samples, and the test set consisted of 2500 different
samples for up to 10 000 epochs until the training loss con-
verged and the test loss for the test set did not go up. Weights
for all CNNs were initialized with a random number from a

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on November 09,2022 at 10:54:40 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 4. Examples of the used objects for object property recognition and corresponding time-series (joint and tactile measurements) data. As shown in the
graphs, even though each trial of manipulation starts and ends at a different time and the trajectories of joint and tactile information differently change, the
proposed CNNs could get high recognition rates of the object properties.

truncated normal distribution with a standard deviation of 0.1,
with a random seed defined as 1. All layers except the output
layer used ReLU as the activation function. Softmax was used
as the activation function for the output layer

f (xi) = ex
i∑C

k exk
(2)

where xi is a feature from the i th neuron in the output layer
and f (xi) is the activated output from the output layer. Since
the sum of the values from the output layer is 1.0 through
Softmax, it can be regarded as a probability. It is suitable for
categorical cross (CC) entropy as the loss function. This CC
Loss is defined as

CCLoss = − log
exp∑C
k exk

(3)

where tk and xk are the target label and the output of the
CNN for class k of C classes. The optimizer used was Adam,
and the minibatch size was set to 100. The step size of the
optimizer α was 0.0001, the first exponential decay rate β1
was 0.9, the second exponential decay rate β2 was 0.999, and
the small value of numerical stability ε was 1e−08. Moreover,
the learning rate was 0.00001.

2) Object Property Recognition: For the training of the
object property recognition task, each CNN was trained with
23 490 samples, and the test set consisted of 2610 different
samples for up to 10 000 epochs until the training loss con-
verged and the test loss for the test set did not go up. ReLU
was used as an activation function for all the layers except

the output layer. The output layer has a sigmoid activation
function unlike object recognition

f (xi) = 1

1 + e−xi
(4)

where xi is a feature from i th neuron in the output layer and
f (xi) is activated output from the output layer. The output
values from the output layer take a range of 0 to 1 through
the sigmoid. The loss function was binary cross (BC) entropy.
This BC loss is defined as

BCLoss = −
C∑
k

tk log(xk) (5)

where tk and xk are the target label and the output of the CNN
for class k in C classes. The optimizer, the learning rate, and
the minibatch size were the same as that of object recognition.

3) Object Property Recognition With Transfer Learning:
For pretraining in transfer learning, the models that were made
in the object recognition task described in Section III-B1 were
prepared as pretrained models for object property recognition.
Those pretrained models were fine-tuned for the object prop-
erty recognition task. Each MS-CNN has differently shaped
convolution layers, as shown in Fig. 5, the difference is
investigated by considering the recognition results for transfer
learning in Sections IV-D–IV-F, and the size of the output
layer for the two tasks is different (20 for object recognition
and nine for object property recognition). From these points,
the weights and biases in the fully connected (FC) layers

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on November 09,2022 at 10:54:40 UTC from IEEE Xplore. Restrictions apply.

FUNABASHI et al.: TACTILE TRANSFER LEARNING AND OBJECT RECOGNITION WITH A MULTIFINGERED HAND 7

Fig. 5. Nine architectures for combining convolution layers. (a) First FC gets features from the third convolution (Conv) layer and joint angles (J) (combining
patterns of MS-CNN architectures). Architectures II and III, and VII and IX are prepared to see the difference in when to combine convolution layers. (b) Each
parameter for constructing convolution layers is described (parameter settings for MS-CNN architectures).

(FC1 and output layers in Fig. 5) were not transferred, only
the ones in the convolution layers.

For fine-tuning in transfer learning, the weights and biases
in the convolution layers were not updated during fine-tuning.
The pretrained models were trained with 13 094 samples and
13 095 samples as the test set for up to 1000 epochs as training
losses of the models got converged, and the test loss for the
test set did not go up (the original dataset with 26 189 samples
was split half and a half). The samples were randomly chosen
for the training and test datasets for each training trial. All the
hyperparameters for training, such as learning rate or training
epoch, were the same as the object property recognition task in
Section III-B2. However, in the case of the transfer learning,
the size of the training dataset was almost 50% smaller than
the training of object property recognition task (and the test

set was almost 50% larger) as transfer learning is supposed to
transfer useful knowledge to train networks for another task
and result in being able to reduce the size of the training
dataset. This was also because, when the training and test
dataset sizes for object property recognition tasks were used,
it was difficult to see a difference among recognition results
from the CNNs used for transfer learning. Those datasets were
created by randomly choosing samples every time the object
property recognition trial was conducted.

C. Combining Architectures

Different architectures were considered to combine the
convolutional (Conv) layers. The location of the hand sensors
was taken into account when defining these architectures. Par-
ticularly, the choice of applying filters across the boundaries of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on November 09,2022 at 10:54:40 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

finger segments and different stages of fingers was considered.
This idea considering merging convolution layers for extract-
ing features at the different stages with each resolution can be
useful for achieving high object recognition performance [41].
As shown in Fig. 5(a), there are nine architectures, and the
parameters of each architecture are shown in Fig. 5(b). For
example, in architecture I, the first Conv layer has an input of
size 18×16×3. When this is passed to the first Conv layer, the
output from the first Conv layer is 10 × 8 × 14. In a previous
paper of ours [30], we evaluated the comparison between
three-axis and one-axis tactile information and showed that
using three-axis tactile information is more effective than that
of one-axis. Therefore, Fig. 5(b) shows the parameter settings
for the three axes only, which are determined heuristically. The
joint angle measurements were added to the first FC layer,
represented by J in Fig. 5(a), for all architectures. Weight
sharing was tried to reduce the number of filters between
fingers. However, when we evaluated the results with and
without weight sharing, we found that weight sharing did
not improve the recognition rate compared to the case where
different weights were used in [30]. Therefore, only different
weights of CNNs were used in this study. To adjust the size
of the convolution layer, we used filters of different sizes in
architectures II, III, and IV.

The measurements of joint angles and tactile sensors
were, respectively, normalized by their full measurement
range. In architecture I, a “Hand Map Layer with Zero
Padding” was constructed as an input layer with a size of
18 rows × 16 columns. Three tactile patches [4 × 4 ×
(2 patches) and 6 × 4 × (1 patch)] for the thumb and four
patches [4 × 4 × (3 patches) and 6 × 4 × (1 patch)] for
the other fingers were implemented, respectively. Therefore,
to construct a rectangular input layer, we had to add four
rows × four columns of “0” on top of the tactile input map
from the thumb fingertip, as shown in Fig. 5(a). As a result, the
dimensionality of the input is 736 + 8 (number of “0”s on one
fingertip) × 3 (tactile axis) × 4 (number of fingertips) + 16
(4 (rows) × 4 (columns) above the thumb’s fingertip) × 3
(tactile axis) = 880 dimensions. The filter was applied across
the boundaries of the finger segments already set up in the
first layer. The purpose of this architecture is to see whether
it is sufficient to combine all the information into one large
input layer or not.

In Architecture II, each one of the 15 sensor patches
is processed separately in the first convolution layer (as a
“Patch Map Layer”). In this case, the first convolution layer
is the “Patch Map Layer,” i.e., no filters are applied across
the boundaries of the sensor patches, and hence, for every
different sensor patch, a different filter is trained. In the next
layer, the output of the first convolution layer is combined
taking into account the location of the tactile patches of
the hand in Fig. 2(c) (“Hand Map Layer”). For the input
map from the phalanges of the thumb, a filter of size
(2, 3) is used in the first Conv layer. The details are shown
in Fig. 5(b).

In Architecture III, a “Patch Map Layer” is also used for
the second Conv layer. A “Hand Map Layer” is implemented
in the third Conv layer. For the thumb fingertip, a filter of size
(2, 2) is used in the second Conv layer. The only difference

Fig. 6. Average and variance of recognition rate for ten times from each
architecture. Architecture IV shows the best recognition rate.

between architectures II and III is when the “Hand Map Layer”
is constructed. This idea comes from [16], which studied the
timing of information fusion for grasp stability.

In Architecture IV, we have a “Patch Map Layer” as the first
Conv layer. Thereby, the maps of the four fingers (index finger,
middle finger, little finger, and thumb) are constructed as the
“Finger Map Layer.” The “Hand Map Layer” is constructed
in the third Conv layer. This architecture changes the map
architecture from a “Patch Map Layer” to a “Hand Map
Layer,” one Conv layer at a time. A filter of size (4, 2) of
the second Conv layer is used for the Conv layer from the
phalanges and fingertip of the thumb.

In Architecture V, a “Patch Map Layer” is used for the input
layer and the first Conv layer. A “Finger Map Layer” consists
of the second and third Conv layers. Architecture V differs
from Architecture IV in that it does not have a “Hand Map
Layer” but still gradually combines the Conv layers.

Architecture VI consists of only a “Patch Map Layer” for
the input and all Conv layers. This architecture is to check
whether we need to combine convolution layers according to
the position of the patch on the hand.

Architecture VII uses only a “Finger Map Layer” for the
input and all Conv layers, to check whether it is sufficient to
consider the position of the patches on the fingers.

Architecture VIII uses the “Finger Map Layer” in the input
and the first Conv layers so that we confirm if a morphological
fusion of convolution layers (i.e., finger- and hand-shaped
convolution layers) extracts more useful features for tactile
recognition tasks or not.

Architecture IX uses the “Finger Map Layer” in the input,
first, and second Conv layers. The difference between archi-
tectures VIII and IX lies in when to build the “Hand Map
Layer” with the same reason as for architectures II and III.

IV. EVALUATION

A. Combining Architectures and Object Recognition Rates

In Fig. 6, the accuracy and variance presented are the mean
values of ten recognition trials. In each trial, 1500 samples
were randomly selected from the 2500 samples in the test set.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on November 09,2022 at 10:54:40 UTC from IEEE Xplore. Restrictions apply.

FUNABASHI et al.: TACTILE TRANSFER LEARNING AND OBJECT RECOGNITION WITH A MULTIFINGERED HAND 9

Fig. 7. Error rates of object recognition for six objects from each architecture.
The red solid square shows where architectures that do not have the “Patch
Map Layer” have relatively higher error rates. The red dot square shows where
architectures that do not have the “Patch Map Layer” have lower error rates.
The green solid square shows where architecture VI that only has “Patch Map
Layer” has relatively higher error rates. The green dot circle shows where
architecture VI that has lower error rates.

Architecture II showed a slightly lower recognition rate
than the others. The variance for architecture VI is the highest
as the architecture has the largest number of weight parame-
ters in the convolution filters. The best recognition rate was
achieved by architecture IV, which includes the Patch, Finger,
and Hand Map Layers.

B. Object Recognition Rate for Each Object

In this section, the object recognition rate for each object
is investigated to elaborate on the effect of morphological
convolution architectures. Specifically, six objects (2: bottle
(L, cornered), 4: bottle (S, cornered), 5: bottle (M, spheric),
12: pack of solid dices, 13: tuna can, and 16: bowl) are
investigated, as shown in Fig. 7. For 2: bottle (L, cornered), 12:
pack of solid dices, and 13: tuna can, four CNN architectures
[architectures I, VII, VIII, and IX (with red dot squares)]
achieved a lower error rate than other architectures. On the
other hand, they have relatively higher error rates (with
red solid squares) than the other architectures for 5: bottle
(M, spheric). Those architectures do not have Patch Map
Layers, and tactile sensor patches are combined from their
input layer as the “Finger Map Layer” or the “Hand Map
Layer.”

Moreover, architecture VI has a lower error rate for 4:
bottle (S, cornered) and 5: bottle (M, spheric) (with green dot
squares), and the others have the highest wrong recognition
rate with 12: pack of solid dices, 13: tuna can, and 16: bowl
(with green solid squares). From this result, depending on
having the “Patch Map Layer” or not, the recognition rate
for each object can be changed.

C. Visualization of Sensor Map With Weights From
Convolution Layers

Since the error rates of object recognition can change
according to the structure of the convolution layers, how the
weights in the last convolution layer (third Conv layer) in
each architecture react to tactile measurements was investi-
gated. Grad-CAM++ and guided Grad-CAM++ [38], which
provides a saliency map of calculated weights from the last
convolution layer corresponding to tactile measurements, were
used, as shown in Fig. 8. The saliency map is defined as
follows [38]:

Lc
i j = ReLU

(∑
k

wc
k · Ak

i j

)
(6)

where wc
k is a weight for a feature map. The map is defined as

Ak
i j at the i th and j th spatial location for class c. For the map

provided by Grad-CAM++, blue to red represent the lowest to
highest values, respectively, and the pixels where high values
are placed show where the network regards the information as
important. For the map provided by guided Grad-CAM++,
the pixels where convolution layers focus on are emphasized
with colors, while the other pixels are depicted with gray.
This section focuses on the objects that are described in
Section IV-B. For architectures I, II, and IV, the saliency maps
provided by Grad-CAM++ show that the tactile information is
wholly focused on by their last convolution layer. On the other
hand, architecture VI shows that the layer focuses on a small
part of the tactile information, relatively. Also, architecture VII
focuses on tactile information in a line-shaped fashion.

It seems that these differences happen because one or
several convolution layers in the last layer (third Conv layer)
are weighed heavily among the convolution layers. Since there
is only one convolution layer in the last layer of architectures
I, III, and IV, they seem to regard entire tactile information as
important. Some objects picked in Figs. 7 and 8 (2: bottle
(L, cornered), 12: pack of solid dices, 13: tuna can, and
16: bowl) have a relatively complicated shape compared to
the rest of the objects [4: bottle (S, cornered) and 5: bottle
(M, spheric)]. This shape can change contact patterns on
each part of the multifingered hand. Therefore, when the
hand grasps 12: pack of solid dices, for example, contact
patterns on each finger segment can be different which are
provided by an edge, side, and plane of the dices. On the
other hand, 5: bottle (M, spheric) has small enough size
that the hand grasps it wholly and has a cylindrical shape,
which can produce a similar contact pattern on the hand while
grasping. From this result, we deduce that it was easy for
architecture VI to recognize relatively simple shaped objects
[4: bottle (S, cornered) and 5: bottle (M, spheric)] because the
network focuses on a small part of the contact areas, which
can be enough to perform object recognition due to the similar
contact pattern on any part of the Allegro hand. However,
when it comes to complicated shaped objects, such as 2: bottle
(L, cornered), 12: pack of solid dices, 13: tuna can, and 16:
bowl, they were difficult for architecture VI to recognize
because it focuses on small contact areas, but contact patterns
on the contact areas are diverse. This misleads the network
to recognize objects wrongly. For the other architectures,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on November 09,2022 at 10:54:40 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 8. Saliency maps from the last convolution layer in each MS-CNN generated by Guided Grad-CAM++ and Grad-CAM++ from [38]. The maps
generated by both visualization methods for architectures I, III, and IV that have the “Hand Map Layer” clarify that the networks focus on the entire tactile
information. Architecture VI that only has the “Patch Map Layer” shows it focuses on small areas compared to the other networks. Interestingly, architecture VII
seems to see tactile information in a line fashion. Since those maps are generated by the last convolution layer and the layer shape is different for each
architecture, the difference in the saliency maps among networks seems to happen as each network chooses which layer in the last convolution layer to
focus on.

architectures I, II, and IV focus on whole tactile information,
and architecture VII focuses on larger areas compared to
architecture VI. Thus, they have better recognition rates when
the hand grasps the relatively complicated shaped objects.
Also, as shown in Fig. 7, architectures I, VII, VIII, and IX
have lower error rates for the complicated objects specifically
because they have combined inputs from the input layer.
Furthermore, it can be considered that architecture IV could
have the best object recognition rate with a variety of objects
in terms of shape (or contact patterns) in total because the
network has a “well-balanced” network architecture (i.e., the
“Patch Map Layer,” the “Finger Map Layer,” and the “Hand
Map Layer”). From this result, we hypothesize that a CNN that
has combined convolution layers (i.e., the “Hand Map Layer”)
sees the entire tactile information on the multifingered hand
and is well suited for recognizing complicated contact states.

D. Object Property Recognition and Transfer Learning

Object property recognition was chosen as the target task.
The accuracy was calculated as a mean of all nine outputs of
the CNNs. The recognition trials were conducted five times
for each CNN. Fig. 9(a) shows the mean accuracies and their
variances of the five trials. Architectures I, III, IV, VI, and VII
were chosen. As a result, architecture IV got again the best
recognition rate.

Fig. 9. (a) Recognition rate of the object property (comparison of the
proposed CNN architectures). On the left-hand side of the table, averages and
variances of recognition rate for five times of no transfer (NT) models are
shown. The accuracy difference among CNNs for object property recognition
is larger than that of object recognition shown in Fig. 6. Furthermore,
architectures I, III, and IV have a large difference in comparison with
architectures VI and VII. On the right-hand side of the table, averages and
variances of recognition rate for five times WT models are shown. The
recognition rate got around 10% better than without transfer learning. Note
that architecture IV still has the highest recognition rate, and architectures
I, III, and IV that have a “Hand Map Layer” have better recognition rates
than the others. (b) Recognition rate of the object property (comparison with
popular CNNs). On the right-hand side of the table, averages and variances
of recognition rate for five times of each model are shown.

Also, architectures I and II got better recognition rates than
the others, which do not have a “Hand Map Layer.” However,
a “Patch Map Layer” can improve the recognition rate from
the result that architecture I has less recognition rate and huge
variance compared to architectures III and IV. The “Finger

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on November 09,2022 at 10:54:40 UTC from IEEE Xplore. Restrictions apply.

FUNABASHI et al.: TACTILE TRANSFER LEARNING AND OBJECT RECOGNITION WITH A MULTIFINGERED HAND 11

Map Layer” also contributes to a good result as architecture IV
got better results than architecture III.

Regarding transfer learning, most architectures got around
10% better recognition rates, and architecture IV got the
best accuracy. Furthermore, the trend that networks get better
results with the “Hand Map Layer” and/or the “Patch Map
Layer” was kept.

E. Classifier Comparison for Object Property Recognition

From Section IV-E, architecture IV got the best accuracy
of object property recognition. To validate the recognition
performance of the proposed CNNs, other CNN-based neural
networks and machine learning models were used for compar-
ison. Since each network has a different architecture, training
epochs where each network converged was different. Resnet
with 18 layers (trained for 800 epochs) and 34 layers (trained
for 900 epochs), MobileNetV2 (trained for 900 epochs),
ShuffleNetV2 (trained for 800 epochs), and MnasNet (trained
for 750 epochs) as CNN-based models (provided by PyTorch)
and SVM (provided by scikit-learn) as a machine learning
model were prepared. The “Hand Map Layer with Zero
Padding” was constructed as an input layer with a size of
18 rows × 16 columns (same as architecture I) to be input to
the deep learning models. Note that the deep learning models
were chosen, which could process the tactile input with a size
of 18 × 16, which is relatively small-sized input compared
to visual inputs from a camera with a larger size, such as
224 × 224. Moreover, the convolution layers soon before FC
layers of the deep learning models were used as a feature
extractor and a first FC, and output layers were prepared to be
applied to a new domain referring [22]. During the training,
the layers of the deep learning models were not updated, but
only the first FC and output layers were, so that the effect of
convolution layers of the deep learning models were validated
in the same way as the transfer learning in Section IV-D, all
the models were trained with the same training setting as
one used in Section III-B-2 except the training epoch. The
accuracy was calculated as a mean of all nine outputs of the
networks. The recognition trials were conducted five times for
each network. Fig. 9(b) shows the mean accuracies and their
variances of the five trials. In the proposed CNN, architecture
IV could achieve the best recognition rate. Especially, the deep
learning models that are larger than architecture IV and do
not have combined convolution layers following tactile sensor
positions on the hand produced very low recognition rates.

F. Analysis of Weights in CNNs

Even though transfer learning is useful for problems with
insufficient training data in general [42], it is not clear why
the CNNs could achieve better recognition rates for object
property recognition, as shown in Fig. 9(a). The difference
between WT and NT models is how to prepare the weights
in a neural network for a new task, i.e., the weights from
a pretrained model trained in the other task or the weights
generated from a random initialization method. Therefore,
we compared the weights in pretrained models from the object
recognition task as a WT model and the weights initialized
by a normal distribution with a mean of 0.0 and a standard

Fig. 10. Weight values (filters) from the last convolution layers. The top row
shows one of the filters consisting of the weights from the last convolution
layer in architecture VI. The middle row shows one of the filters consisting
of the weights from the last convolution layer in architecture VII. The bottom
row shows one of the filters consisting of the weights from the last convolution
layer in architecture IV. The errors between weights values from the NT model
after training and the transferred weights’ values from the WT model are
shown in the center. Also, the errors between the weights from the NT model
after training and the NT model before training (the weights were randomly
initialized by a normal distribution with a mean of 0.0 and a standard deviation
of 0.1) are shown on the right-hand side. Most of the errors between the NT
model after training and the transferred weights of the WT model are less
than 1.00, but the errors between the NT model after training and the NT
model before training are various and huge.

deviation of 0.1 as an NT model. Note that the transferred
weights were from only convolution layers (not FC layers) as
this study focused on the convolution mechanism for tactile
information.

In Fig. 10, from the top row, one of the filters (weights) in
the last convolution layer of architectures VI (2 × 2 filter),
VII (2 × 4 filter), and IV (3 × 3 filter) as ones of examples
are shown in a gray scale. On the left-hand side, the weights
in the NT model after training is shown as target weights
and the weights are supposed to be the optimized (trained
and converged) ones for object property recognition. In the
middle of Fig. 10, the weights in the WT model, which are
the transferred weights of convolution layers from a model
trained for object recognition, are shown. On the right-hand
side, the weights in the NT model before training are shown
as a baseline for this comparison study. The values shown in
Fig. 10 are the errors of the weights between the NT model
after training and the WT model in the center, and the NT
model after training and the NT model before training on the
right-hand side. The weights in the WT model are similar to
the weights in the NT model after training with the dataset
of object property recognition as most of the errors between
weights of the NT model after training and weights of the
WT model are under 1.00. This shows that the weights in
the WT model were already optimized enough that the WT
model required less size of training dataset and training epochs
for object property recognition. Then, the WT model focused
on updating only weights in the FC layers was enough to
achieve high recognition rates (technically, the weights in
the convolution layers were fixed and were not updated).
On the other hand, as most of the errors between weights of the
NT model after training and weights of the NT model before
training are over 1.00 and some of the errors are even more
than 100, the NT model needs to update weights in convolution

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on November 09,2022 at 10:54:40 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 11. AUC of architectures I–IV, VI, and VII. AUC is an indicator of how much the models are capable of distinguishing between classes and its value,
which is an area under the ROC curve. The AUC of the label “Heaviness High” is very low from architecture I. The AUC of the label “Softness High” is
very low from architecture VI. This also implies that the fusion combination of CNN architectures affects the accuracy of each physical property of objects.

layers and the weights in FC layers. This comparison result
can be a reason why the recognition rates of the WT models
were better than those of the NT models.

G. Object Property and CNN Architectures

By using the WT models, recognition performance for
each object property was investigated. Since the binary-cross
entropy was used as the cost function, recognition results
would change by cutoff values that decide an output of CNNs
as 0 or 1. In this case, the receiver operating characteris-
tic (ROC) and the area under the curve (AUC) were calculated.
The ROC curve is depicted in a map with the true positive
rate (TPR) axis and the false positive rate (FPR) axis, which
are defined as

TPR = TP

TP + FN

FPR = FP

FP + TN
(7)

where true positive (TP) is that the actual class and prediction
are positive (correct answer), true negative (TN) is that the
actual class and the prediction are negative (correct answer),
false positive (FP) is that the actual class is negative but
the prediction is positive (incorrect answer), and false neg-
ative (FN) is that the actual class is positive but the prediction
is negative (incorrect answer).

The AUC is an area under the ROC curve and is defined as

AUC =
∫ 1

0
TPR(FPR)dFPR

=
∫ 1

0
TPR

(
FPR−1(x)

)
dx (8)

where x is a continuous random variable. Fig. 11 shows AUCs
for object properties from each CNN. Architecture IV achieved
a high value of AUC for each physical property. Interestingly,
there are some properties that each CNN model is good at
recognizing. The AUC of “Heaviness High” in architectures
I–III shows a very low value of 0.500, which is theoretically
the same value as what a predictor randomly outputs. There
is a reason why 0.500 appears for some property labels. First,
CNNs output 0 for the labels at all grasping states. Although
a cutoff value, which is a threshold to decide whether the
CNNs recognize an object property or not, varies from 0 to
under 1, the output from CNNs is always classified as 0. Only
when the cutoff value is set as 0, the output from CNNs
are always classified as 1. Therefore, when the cutoff value
is set to 0, TPR and FPR derived from (7) are 1 (i.e., all

outputs from the CNNs are positive, and thus, TN and FN
are 0); otherwise, they are 0 (i.e., all outputs from the CNNs
are negative, and thus, TP and FP are 0). From this point,
an ROC curve can be built only by coordinates TPR and
FPR = (0, 0) and (1, 1). Finally, an AUC derived from (8)
would be 0.500. On the other hand, the AUC of “Softness
High” in architectures VI and VII shows a very low value. The
difference is whether each model has the “Hand Map Layer.”
Furthermore, architectures II and III have similar network
architecture, while each model has a low AUC value for
different properties. Architecture II has a lower number of
the “Patch Map Layers” and a low AUC value for “Heaviness
High.” Architecture III has a lower number of the “Hand Map
Layers” and a low AUC value for “Softness High.” Therefore,
we deduce that the fusion of convolution layers affects not
only the recognition of objects but also the physical property
of objects.

H. Object Property and Tactile Information

Finally, tactile information was analyzed for a better under-
standing of CNN architectures for object property recognition.
Specifically, the architectures that have the “Patch Map Layer”
showed a low AUC value for “Softness High,” while the
other architectures that have “Hand Map Layer” showed a
low AUC value for “Heaviness High.” Grad-CAM++ showed
how the architectures that have a “Patch Map Layer” are
good at recognizing simpler contact patterns, while the other
architectures that have the “Hand Map Layer” are good at
recognizing complicated contact patterns.

From this point, how each object property changes contact
patterns was analyzed. In Fig. 12, each tactile trajectory
represents an average on each tactile sensor patch for simpler
visualization of the tactile information. This information is
taken from the third to fourth grasping postures in Fig. 3(d) as
the last 70 timesteps of the motion. The red line is on a digital
value of 2400 where noises and responses to the grasped
object are clearly separated. The tactile trajectories over the
digital value are regarded as where the hand touches the object
firmly. Fig. 12(a) shows that five sensor patches have tactile
value. We deduce that the soft object deformed and followed
a grasping posture of the hand, and thus, the soft object
affected relatively many tactile sensor patches. Also, tactile
trajectories are dynamic due to the softness of the object,
which means that contact patterns are complicated. Fig. 12(b)
shows that a smaller number of tactile sensor patches (three
patches) have tactile values over 2400 to the contrary. Also,
tactile trajectories are relatively flat due to the stiffness of the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on November 09,2022 at 10:54:40 UTC from IEEE Xplore. Restrictions apply.

FUNABASHI et al.: TACTILE TRANSFER LEARNING AND OBJECT RECOGNITION WITH A MULTIFINGERED HAND 13

Fig. 12. Tactile information during grasping: (a) kitchen paper with “Softness
High,” “Slipperiness Low,” and “Heaviness High” labels and (b) spray bottle
with “Softness Low,” “Slipperiness High,” and “Heaviness High” labels. Those
objects are chosen to compare tactile measurements varied by their softness.
Despite a difference in the slipperiness labels of the objects, they are not
taken into consideration for this comparison as AUCs of CNN architectures
are barely different. They have the same heaviness label so that tactile
measurements largely vary. The last 70 timesteps of tactile information during
in-hand manipulation are shown. (a) Tactile information with kitchen paper
(soft object). (b) Tactile information with a spray bottle (stiff object).

object, which means that contact patterns are not complicated.
We deduce that the heavy and stiff objects are held at a
small number of phalanges because it does not deform. These
physical properties of objects change the recognition rates of
an object property. This result revealed that each architecture
has the robustness to process contact patterns that depend on
the physical properties of objects.

V. CONCLUSION

This study investigated how the MS-CNN architecture
affects tactile-based multifingered hand tasks with distrib-
uted three-axis tactile sensors. Object recognition and object
property recognition were targeted to evaluate the CNN.
The best object recognition rates over 95% were achieved
in the experiments by initially separating and subsequently
combining convolution layers following the robot’s configu-
ration, especially when making the patch, finger, and hand
maps (architecture IV). Moreover, we clarified that the CNNs
can make better results by synergy with another generally
useful training method, i.e., transfer learning, which achieved
prominent object property recognition rates up to 98% with the
CNNs. Since this recognition was achieved at a single touch
of the multifingered hand, the CNN could also be applied to
in-hand manipulation and grasp stability tasks in which quick
processing is required.

Most importantly, this study revealed an interesting finding
when convolution layers are not fused (architecture VI); it has
better recognition rates with simpler shaped objects for object

recognition and with heaviness labels for object property
recognition. On the other hand, when the convolution layers
are fused and built in the “Hand Map Layer” (e.g., architec-
ture IV), it has better recognition rates with more complicated
shaped objects for object recognition and with softness labels
for object property recognition. Thus, the CNN architecture
can be customized depending on tactile measurements or tasks
(i.e., simple or complicated touch), reflecting outer (e.g., size
and shape), and inner (e.g., softness, slipperiness, and heav-
iness) properties of objects. This finding is investigated by a
visualized localization skill of the Grad-CAM++ and thor-
oughgoing analyses of recognition results for each object and
object property using not only a variety of proposed CNN
architectures and also CNN-based neural network and machine
learning models. Moreover, transferred weights and tactile
measurements are analyzed to investigate the factors behind
successful recognition. This kind of approach to geometrical
features of grasped objects from tactile sensors can be a key
for further understanding of tactile sensing as a tactile system
in a human’s skin also recognizes such object geometries [43].

Overall, considering robotic configuration represented by
distributed tactile sensors with different scales (patch, finger,
and hand mappings) can be a useful approach to achieving
robotic tactile tasks, including simple and complicated contact
states, and the approach can be used with other useful methods
(i.e., transfer learning that is specifically important for tasks
with many tactile sensors as they can be worn out) for
achieving better results.

Nowadays, some of the differently shaped robots have dis-
tributed tactile sensors on their surface, for example, humanoid
or disaster robots with distributed tactile sensors [44], [45].
The proposed concept, i.e., building network architectures
following robot configurations, could be a suggestion for how
to process the tactile information with CNNs for such robots.
Also, the proposed concept can be applied to infant robots to
identify their body via distributed tactile sensors for further
understanding of cognitive science. Not only tactile informa-
tion but also thermal information following robot configura-
tion could be another application for our proposed methods
and used for thermal imaging tasks [46], [47], [48]. As the
proposed networks achieved high accuracies in recognition
tasks, real-time recognition during multifingered manipulation
is the next step for dexterous manipulation [49] using the
graph convolutional network [50] inspired by the results of the
MS-CNNs with morphology-related convolution. Moreover,
transfer learning can be applied to more different domains,
such as in-hand manipulation and measuring grasping stability.

ACKNOWLEDGMENT

The authors would like to thank Dr. S. Somlor and
Dr. T. Tomo Pradhono for their technical support. They would
also like to thank the Editor-in-Chief, the Associate Editor,
and all the anonymous reviewers for their time and helpful
comments.

REFERENCES

[1] A. Yamaguchi and C. G. Atkeson, “Recent progress in tactile sensing
and sensors for robotic manipulation: Can we turn tactile sensing
into vision?” Adv. Robot., vol. 33, no. 14, pp. 661–673, 2019, doi:
10.1080/01691864.2019.1632222.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on November 09,2022 at 10:54:40 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1080/01691864.2019.1632222

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[2] M. A. Lee et al., “Making sense of vision and touch: Self-supervised
learning of multimodal representations for contact-rich tasks,” in Proc.
Int. Conf. Robot. Automat. (ICRA), May 2019, pp. 8943–8950.

[3] Y. Gao, L. A. Hendricks, K. J. Kuchenbecker, and T. Darrell, “Deep
learning for tactile understanding from visual and haptic data,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2016, pp. 536–543.

[4] I. Akkaya et al., “Solving Rubik’s cube with a robot hand,” 2019,
arXiv:1910.07113.

[5] A. Billard and D. Kragic, “Trends and challenges in robot manipu-
lation,” Science, vol. 364, no. 6446, Jun. 2019. [Online]. Available:
https://science.sciencemag.org/content/364/6446/eaat8414

[6] Y. Chebotar, K. Hausman, Z. Su, G. S. Sukhatme, and S. Schaal,
“Self-supervised regrasping using spatio-temporal tactile features and
reinforcement learning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
(IROS), Oct. 2016, pp. 1960–1966.

[7] H. Yousef, M. Boukallel, and K. Althoefer, “Tactile sensing for
dexterous in-hand manipulation in robotics-A review,” Sens. Actua-
tors A, Phys., vol. 167, no. 2, pp. 171–187, 2011. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0924424711001105

[8] M. Andrés and R. Suárez, “Manipulation of unknown objects to improve
the grasp quality using tactile information,” in Proc. SENSORS, vol. 18,
2018, pp. 1628–1635.

[9] T. Narita, S. Nagakari, W. Conus, T. Tsuboi, and K. Nagasaka, “Theo-
retical derivation and realization of adaptive grasping based on rotational
incipient slip detection,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2020, pp. 531–537.

[10] B. Sundaralingam and T. Hermans, “In-hand object-dynamics infer-
ence using tactile fingertips,” IEEE Trans. Robot., vol. 37, no. 4,
pp. 1115–1126, Aug. 2021, doi: 10.1109/TRO.2020.3043675.

[11] Z. Abderrahmane, G. Ganesh, A. Crosnier, and A. Cherubini, “Hap-
tic zero-shot learning: Recognition of objects never touched before,”
Robot. Auto. Syst., vol. 105, pp. 11–25, Jul. 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0921889017307492

[12] A. J. Spiers, M. V. Liarokapis, B. Calli, and A. M. Dollar, “Single-
grasp object classification and feature extraction with simple robot hands
and tactile sensors,” IEEE Trans. Haptics, vol. 9, no. 2, pp. 207–220,
Apr./Jun. 2016.

[13] F. Veiga, B. Edin, and J. Peters, “Grip stabilization through inde-
pendent finger tactile feedback control,” Sensors, vol. 20, no. 6,
p. 1748, Mar. 2020. [Online]. Available: https://www.mdpi.com/1424-
8220/20/6/1748

[14] T. Matsubara and K. Shibata, “Active tactile exploration with uncertainty
and travel cost for fast shape estimation of unknown objects,” Robot.
Auto. Syst., vol. 91, pp. 314–326, May 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S092188901630522X

[15] P. Falco, S. Lu, A. Cirillo, C. Natale, S. Pirozzi, and D. Lee,
“Cross-modal visuo-tactile object recognition using robotic active explo-
ration,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2017,
pp. 5273–5280.

[16] J. Kwiatkowski, D. Cockburn, and V. Duchaine, “Grasp stability assess-
ment through the fusion of proprioception and tactile signals using
convolutional neural networks,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Sep. 2017, pp. 286–292.

[17] A. Vasquez, Z. Kappassov, and V. Perdereau, “In-hand object shape iden-
tification using invariant proprioceptive signatures,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst. (IROS), Oct. 2016, pp. 965–970.

[18] H. Liu, D. Guo, and F. Sun, “Object recognition using tactile measure-
ments: Kernel sparse coding methods,” IEEE Trans. Instrum. Meas.,
vol. 65, no. 3, pp. 656–665, Mar. 2016.

[19] S. S. Baishya and B. Bauml, “Robust material classification with a tactile
skin using deep learning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Oct. 2016, pp. 8–15.

[20] V. Kumar, A. Gupta, E. Todorov, and S. Levine, “Learning dex-
terous manipulation policies from experience and imitation,” 2016,
arXiv:1611.05095.

[21] M. Meier, F. Patzelt, R. Haschke, and H. J. Ritter, “Tactile convolutional
networks for online slip and rotation detection,” in Artificial Neural
Networks and Machine Learning–I C AN N , vol. 9887. 2016, pp. 12–19.

[22] W. Yuan, Y. Mo, S. Wang, and E. Adelson, “Active clothing
material perception using tactile sensing and deep learning,” 2017,
arXiv:1711.00574.

[23] M. Lambeta et al., “DIGIT: A novel design for a low-cost compact
high-resolution tactile sensor with application to in-hand manipulation,”
IEEE Robot. Automat. Lett., vol. 5, no. 3, pp. 3838–3845, Jul. 2020.

[24] S. Funabashi et al., “Stable in-grasp manipulation with a low-cost robot
hand by using 3-axis tactile sensors with a CNN,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst. (IROS), Jan. 2020, pp. 9166–9173.

[25] S. Funabashi et al., “Object recognition through active sensing using a
multi-fingered robot hand with 3D tactile sensors,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst. (IROS), Oct. 2018, pp. 2589–2595.

[26] B. Romero, F. Veiga, and E. Adelson, “Soft, round, high resolution
tactile fingertip sensors for dexterous robotic manipulation,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2020, pp. 4796–4802.

[27] Q. Li, O. Kroemer, Z. Su, F. F. Veiga, M. Kaboli, and H. J. Ritter,
“A review of tactile information: Perception and action through touch,”
IEEE Trans. Robot., vol. 36, no. 6, pp. 1619–1634, Dec. 2020.

[28] T. P. Tomo et al., “A modular, distributed, soft, 3-axis sensor system
for robot hands,” in Proc. IEEE-RAS 16th Int. Conf. Humanoid Robots
(Humanoids), Nov. 2016, pp. 454–460.

[29] T. P. Tomo et al., “Covering a robot fingertip with uSkin: A soft
electronic skin with distributed 3-axis force sensitive elements for
robot hands,” IEEE Robot. Automat. Lett., vol. 3, no. 1, pp. 124–131,
Jan. 2018.

[30] S. Funabashi, G. Yan, A. Geier, A. Schmitz, T. Ogata, and S. Sugano,
“Morphology-specific convolutional neural networks for tactile object
recognition with a multi-fingered hand,” in Proc. Int. Conf. Robot.
Autom. (ICRA), May 2019, pp. 57–63.

[31] Z. Peng, Z. Li, J. Zhang, Y. Li, G.-J. Qi, and J. Tang, “Few-shot image
recognition with knowledge transfer,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2019, pp. 441–449.

[32] C. Sferrazza and R. D’Andrea, “Transfer learning for vision-based tactile
sensing,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Nov. 2019, pp. 7961–7967.

[33] J. M. Gandarias, A. J. Garcia-Cerezo, and J. M. Gomez-de-Gabriel,
“CNNbased- methods for object recognition with high-resolution tactile
sensors,” IEEE Sensors J., vol. 19, no. 16, pp. 6872–6882, 2019.

[34] B. Bauml and A. Tulbure, “Deep n-Shot transfer learning for tactile
material classification with a flexible pressure-sensitive skin,” in Proc.
Int. Conf. Robot. Autom. (ICRA), May 2019, pp. 4262–4268.

[35] P. Falco, S. Lu, C. Natale, S. Pirozzi, and D. Lee, “A transfer learning
approach to cross-modal object recognition: From visual observation
to robotic haptic exploration,” IEEE Trans. Robot., vol. 35, no. 4,
pp. 987–998, Aug. 2019.

[36] H. Lee, H. Park, G. Serhat, H. Sun, and K. J. Kuchenbecker, “Calibrating
a soft ERT-based tactile sensor with a multiphysics model and sim-to-
real transfer learning,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2020, pp. 1632–1638.

[37] Z. Ding, N. F. Lepora, and E. Johns, “Sim-to-real transfer for optical tac-
tile sensing,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2020,
pp. 1639–1645.

[38] A. Chattopadhay, A. Sarkar, P. Howlader, and V. N. Balasubramanian,
“Grad-CAM++: Generalized gradient-based visual explanations for deep
convolutional networks,” in Proc. IEEE Winter Conf. Appl. Comput. Vis.
(WACV), Mar. 2018, pp. 839–847.

[39] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and
A. M. Dollár, “The YCB object and model set: Towards common
benchmarks for manipulation research,” in Proc. Int. Conf. Adv. Robot.
(ICAR), Jul. 2015, pp. 510–517.

[40] [XXXX].
[41] H. Zhou, Z. Li, C. Ning, and J. Tang, “CAD: Scale invariant framework

for real-time object detection,” in Proc. IEEE Int. Conf. Comput. Vis.
Workshops (ICCVW), Oct. 2017, pp. 760–768.

[42] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey
on deep transfer learning,” Artificial Neural Networks and Machine
Learning–(ICANN) (Lecture Notes in Computer Science), vol. 11141.
2018, pp. 270–279.

[43] J. A. Pruszynski and R. S. Johansson, “Edge-orientation processing
in first-order tactile neurons,” Nature Neurosci., vol. 17, no. 10,
pp. 1404–1409, 2014, doi: 10.1038/nn.3804.

[44] G. Cheng, E. Dean-Leon, F. Bergner, J. R. G. Olvera, Q. Leboutet, and
P. Mittendorfer, “A comprehensive realization of robot skin: Sensors,
sensing, control, and applications,” Proc. IEEE, vol. 107, no. 10,
pp. 2034–2051, Oct. 2019.

[45] D. Inoue, M. Konyo, and S. Tadokoro, “Distributed tactile sensors
for tracked robots,” in Proc. 5th IEEE Conf. Sensors, Oct. 2006,
pp. 1309–1312.

[46] A. Glowacz, “Thermographic fault diagnosis of ventilation in BLDC
motors,” Sensors, vol. 21, no. 21, p. 7245, Oct. 2021. [Online]. Avail-
able: https://www.mdpi.com/1424-8220/21/21/7245

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on November 09,2022 at 10:54:40 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TRO.2020.3043675
http://dx.doi.org/10.1038/nn.3804

FUNABASHI et al.: TACTILE TRANSFER LEARNING AND OBJECT RECOGNITION WITH A MULTIFINGERED HAND 15

[47] A. Glowacz, “Ventilation diagnosis of angle grinder using thermal imag-
ing,” Sensors, vol. 21, no. 8, p. 2853, Apr. 2021. [Online]. Available:
https://www.mdpi.com/1424-8220/21/8/2853

[48] A. Glowacz, “Fault diagnosis of electric impact drills using ther-
mal imaging,” Measurement, vol. 171, Feb. 2021, Art. no. 108815.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0263224120313099

[49] S. Funabashi et al., “Multi-fingered in-hand manipulation with various
object properties using graph convolutional networks and distributed tac-
tile sensors,” IEEE Robot. Automat. Lett., vol. 7, no. 2, pp. 2102–2109,
Apr. 2022.

[50] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” Tech. Rep., 2017.

Satoshi Funabashi (Member, IEEE) received the
B.E., M.E., and Ph.D. degrees from Waseda Uni-
versity, Tokyo, Japan, in 2015, 2017, and 2021,
respectively.

Since 2021, he has been a Junior Researcher with
the Institute for AI and Robotics, Future Robot-
ics Organization, Waseda University. From 2018
to 2019, he was a Visiting Student with the Com-
puter Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge,
MA, USA. His current research interests include

multifingered hands, tactile perception, and dexterous manipulation.
Dr. Funabashi received the Research Fellowship for Young Scientists DC1

from the Japan Society for the Promotion of Science (JSPS) and the Strategic
Basic Research Programs ACT-I from the Japan Science and Technology
Agency (JST) in 2017 and 2018, respectively.

Gang Yan (Student Member, IEEE) received
the B.E. degree from Northeastern University,
Shenyang, China, in 2016, and the M.E. degree from
Waseda University, Tokyo, Japan, in 2020, where
he is currently pursuing the Ph.D. degree with the
Department of Modern Mechanical Engineering.

In 2022, he was a Visiting Student with the Robot-
ouch Laboratory, The Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA, USA. He has
been working on research about grasping stability
estimation and slip detection relying on either tactile

or multimodal tactile-visual sensing using a data-driven approach. His research
results have been published at the International Conference on Robotics and
Automation and the IEEE ROBOTICS AND AUTOMATION LETTERS. His
current research interests include tactile perception, tactile sensor simulation,
robotic manipulation, and human–robot interaction.

Fei Hongyi (Student Member, IEEE) received the
B.E. degree from China Jiliang University, Zhejiang,
China, and the M.E. degree from Waseda University,
Tokyo, Japan, in 2022.

Since 2020, he has been a student with the Depart-
ment of Modern Mechanical Engineering, Waseda
University. Since 2020, he has been working on
research about object recognition and dexterous
in-hand manipulation with multifingered hands and
tactile sensors. He has developed a controlling sys-
tem of anthropomorphic hands and machine learning

methods. He worked on the project for generating in-hand manipulation
published for IEEE ROBOTICS AND AUTOMATION LETTERS (RA-L) in 2022.
His research interests include machine learning, tactile sensing, and dexterous
manipulation.

Alexander Schmitz (Member, IEEE) received the
master’s degree (Hons.) from the University of
Vienna, Vienna, Austria, in 2007, and the Ph.D.
degree from The University of Sheffield, Sheffield,
U.K., in 2011.

He performed his Ph.D. research as part of a
joint location program with the Italian Institute
of Technology, Genoa, Italy. He is currently an
Associate Professor with the Department of Modern
Mechanical Engineering, Waseda University, Tokyo,
Japan. He has published 14 journal articles, one book

chapter, and 34 international conference papers. Furthermore, he has applied
for three national and five international patents. His research interests include
tactile sensing, intrinsically safe actuation, human symbiotic robotics, and
robotic object handling.

Dr. Schmitz received a grant of 117 million JPY from the JST START
Program (Program for Creating STart-ups from Advanced Research and
Technology) in 2016.

Lorenzo Jamone (Member, IEEE) received the
M.S. degree (Hons.) in computer engineering from
the University of Genoa, Genoa, Italy, in 2006, and
the Ph.D. degree in humanoid technologies from the
Italian Institute of Technology, Genoa, in 2010.

He was an Associate Researcher with the Takan-
ishi Laboratory, Waseda University, Tokyo, Japan,
from 2010 to 2012, and Vislab, Instituto Superior
Técnico, Lisbon, Portugal, from 2012 to 2016. He is
currently a Senior Lecturer in robotics with the
School of Electronic Engineering and Computer

Science, Queen Mary University of London, London, U.K. He is part of
Advanced Robotics at Queen Mary (ARQ), London. He is the Founder and the
Director of the CRISP Group: Cognitive Robotics and Intelligent Systems for
the People. He has over 100 publications with an H-index of 26. His current
research interests include cognitive robotics, robotic manipulation, and tactile
sensing.

Dr. Jamone has been a Turing Fellow since 2018.

Tetsuya Ogata (Member, IEEE) received the B.S.,
M.S., and D.E. degrees in mechanical engineering
from Waseda University, Tokyo, Japan, in 1993,
1995, and 2000, respectively.

He was a Research Associate with Waseda Univer-
sity from 1999 to 2001. From 2001 to 2003, he was
a Research Scientist with the RIKEN Brain Science
Institute, Saitama, Japan. From 2003 to 2012, he was
an Associate Professor with the Graduate School
of Informatics, Kyoto University, Kyoto, Japan.
From 2009 to 2015, he was a JST (Japan Science and

Technology Agency) PREST Researcher. Since 2012, he has been a Professor
with the Faculty of Science and Engineering, Waseda University. Since 2017,
he has been a Joint-Appointed Fellow with the Artificial Intelligence Research
Center, National Institute of Advanced Industrial Science and Technology,
Tokyo.

Shigeki Sugano (Fellow, IEEE) received the B.S.,
M.S., and D.E. degrees in mechanical engineering
from Waseda University, Tokyo, Japan, in 1981,
1983, and 1989, respectively.

Since 1986, he has been a Faculty Member of
the Department of Mechanical Engineering, Waseda
University, where he is currently a Professor. Since
2014, he has been the Dean of the School/Graduate
School of Creative Science and Engineering, Waseda
University. Since 2020, he has been the Senior Dean
of the Faculty of Science and Engineering, Waseda

University.
Dr. Sugano is a fellow of four academic societies: IEEE, the Japan Society

of Mechanical Engineers, the Society of Instrument and Control Engineers,
and the Robotics Society of Japan. He has served as the General Chair of the
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
in 2003 and the IEEE/RSJ International Conference on Intelligent Robots and
Systems in 2013. From 2001 to 2010, he has served as the President of the
Japan Association for Automation Advancement. In 2017, he has served as
the President of SICE.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on November 09,2022 at 10:54:40 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

