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The classical double copy relates solutions of biadjoint, gauge, and gravity theories. The ultimate origin
and scope of this correspondence remains mysterious, such that it is important to build a clear physical
intuition of how the double copy operates. To this end, we consider the multipole expansion of exact
classical solutions. Using a recently developed twistor translation of the classical double copy, we use well-
established techniques to show that the multipole moments of arbitrary vacuum type-D gravity fields are
exactly related to their counterparts in gauge and biadjoint scalar theories by the single and zeroth copies.
We cross-check our results using previously obtained results for the Kerr metric and also provide new
results for the “square root” of the Kerr-Taub-NUT solution.
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I. INTRODUCTION

There is mounting evidence that our various theories of
fundamental physics are more closely connected than
previously thought. In this paper, we focus on a particular
correspondence—the classical double copy that relates
solutions of the field equations in (non-)Abelian gauge
theories and gravity, as well as in a novel scalar theory with
two different types of color charge (biadjoint scalar field
theory). Inspired by the original double copy for scattering
amplitudes in the corresponding quantum field theories
[1,2] (which itself has a string theoretic origin [3]), the first
classical double copy to appear was the Kerr-Schild double
copy of Ref. [4] (see Refs. [5–18] for further developments,
and Refs. [19,20] for related earlier work in a higher-spin
context). An alternative exact double copy procedure is the
Weyl double copy of Ref. [21] (see also Refs. [14,22–25]).
This uses the spinorial rather than tensorial formalism of
general relativity and includes the Kerr-Schild double copy
as a special case. To date, it constitutes the most general
exact statement of the classical double copy, although other
formalisms also offer useful alternative insights [26–37].
As well as practical applications of this correspondence

(see, e.g., Ref. [38]), there are also important conceptual

issues to address, including understanding the ultimate
origin of the classical double copy itself. To this end,
Refs. [39,40] showed how one can derive both the form and
scope of the Weyl double copy using well-established ideas
from twistor theory [41–43] (see Refs. [44–46] for peda-
gogical reviews of this subject), as well as showing that
the Weyl copy is more general than previously thought.
Recently, Ref. [47] used the ideas of Refs. [48–50] to show
that the Bern-Carrasco-Johansson (BCJ) double copy for
scattering amplitudes, the twistor double copy of
Refs. [39,40], and the Weyl double copy of Ref. [21]
are precisely equivalent for type-D solutions, being related
by well-defined integral transforms. This provides a firm
basis for the validity of the exact classical double copy
where it applies and allows us to use whichever form of the
double copy happens to be convenient for a particular
purpose.
As well as applying new mathematical techniques,

another useful method for extending our understanding
of the double copy is to take known physical or math-
ematical properties in biadjoint scalar, gauge, and gravity
theories and to see how they match up (or otherwise).
Recent examples include properties of solutions at strong
coupling [51–54], symmetries [35,55–58], and geometric/
topological information [8,59,60]. Even more simply, the
original Kerr-Schild double copy of Ref. [4] told us that
mass and energy map to charge in the gauge theory, which
nicely mirrors the replacement of kinematic by color
information in scattering amplitudes [1,2]. Arguably, how-
ever, a detailed physical understanding of how the double
copy operates is still in its infancy. Further development of
our physical intuition ought to proceed in tandem with
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mathematical developments, as it is very often the case that
physical and/or geometric reasoning allows us to make
conceptual breakthroughs that allow for technical progress.
With this in mind, it becomes important to fully scrutinize
exact cases of the double copy however special or restricted
a given class of solutions may happen to be.
In this paper, we extend these ideas by considering the

well-known multipole expansion of classical solutions.
For any given solution, one may define a series of higher-
rank multipole tensors, which completely characterize the
spatial and temporal distributions of charge (energy/
momentum) in the gauge (gravity) theory, respectively.
The lowest-order results in this expansion constitute the
total charge and mass mentioned above, and one may then
ask whether higher multipole moments are strict double
copies of each other. It turns out that this can be easily
addressed in the twistor double copy of Refs. [39,40],
which relies on the well-known Penrose transform con-
necting spacetime (spinor) fields with certain functions in
an abstract twistor space. As has been argued by Curtis
[61], the multipole tensors associated with a given
spacetime field can be replaced by a description in terms
of higher-rank twistors, which are straightforwardly
defined from the twistor-space functions describing the
fields. We combine this with the twistor-space double
copy of Refs. [39,40] and thus obtain an explicit statement
that the multipole expansion double copies for arbitrary
type-D vacuum solutions. Our results provide a useful
physical insight into how the double copy operates and may
well be relevant for thinking about further applications. Note
that it must be possible to arrive at similar results using the
standard BCJ or Weyl double copies. However, given that
these are both equivalent to the twistor double copy for the
Petrov type-D solutions described by the Weyl double copy,
we can choose whichever formalism we like, and it is
Ref. [61] that suggests that the twistor double copy is the
most convenient.
The structure of our paper is as follows. In Sec. II, we

briefly review the twistor double copy of Refs. [39,40]. In
Sec. III, we define more precisely the multipole expansion,
guided by the arguments of Ref. [61]. In Sec. III B, we
argue that multipole moments in different theories double
copy for arbitrary instances of the Weyl double copy of
Ref. [21]. Finally, we discuss our results and conclude
in Sec. IV.

II. THE TWISTOR SPACE DOUBLE COPY

In this section, we review salient details of the Weyl
double copy, together with its twistor space incarnation,
referring the reader to Rfs. [39,40] for full details. First, we
recall that massless free spacetime fields can be represented
by multi-index spinors ϕAB…C (ϕ̄A0B0…C0 ), representing the
antiself-dual (self-dual) parts of the field respectively. Index
values run from 0 to 1 and may be raised, lowered, and/or
contracted using the Levi-Civita symbols ϵAB, etc. There

are 2n indices for a spin-n field, and the resulting quantities
then satisfy a special case of the general massless free-field
equation,

∇AA0
ϕ̄A0…C0 ¼ 0; ∇AA0

ϕAB…C ¼ 0; ð1Þ

where ∇AA0
is the appropriate translation of the spacetime

covariant derivative. These fields can be reinterpreted in
twistor space T , corresponding to solutions of the twistor
equation,

∇ðA
A0ΩBÞ ¼ 0 ⇒ ΩA ¼ ωA − ixAA

0
πA0 : ð2Þ

In the second equality, we have written the general solution
in Minkowski space, in terms of constant spinors which
may be grouped together to make a 4-component twistor,

Zα ¼ ðωA; πA0 Þ: ð3Þ

A nonlocal map between spacetime and twistor space is
established by requiring that the field in Eq. (2) vanishes,
such that the twistor components satisfy the incidence
relation,

ωA ¼ ixAA
0
πA0 : ð4Þ

This is invariant under rescalings Zα → λZα, λ ∈ C, such
that we need only consider projective twistor space PT . A
point in spacetime corresponds to a Riemann sphere in PT ,
also referred to as a (complex) line. An important result
known as the Penrose transform expresses massless free
spacetime fields satisfying Eq. (1) via the contour integrals,

ϕ̄A0B0…C0 ðxÞ ¼ 1

2πi

I
Γ
dπE0dπE

0
πA0πB0…πC0 ½ρxfðZαÞ�; ð5Þ

where ρxfrom which we may straightforwardly write
restricts all twistors to obey the incidence relation corre-
sponding to spacetime point x, and the contour Γ lies on the
appropriate Riemann sphere. The combined integrand and
measure must be invariant under rescalings Zα → λZα,
which fixes the (holomorphic) function fðZαÞ to have
homogeneity −ð2nþ 2Þ for a spin-n field. The above
remarks imply that twistor functions of homogeneity −2,
−4, and −6 correspond to spacetime gravity fields in scalar,
gauge, and gravity theories, respectively. Denoting the cor-
responding twistor functions by the subscripts fscal;EM;
gravg, Refs. [39,40] argued that one may define a gravity
twistor function via1

1We have here skimmed over the fact that the twistor functions
used throughout are not unique and are instead representatives of
cohomology classes. The product of Eq. (6) is then interpreted to
apply only to particular chosen representatives, and we return to
this point in what follows.
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fgravðZαÞ ¼ fð1ÞEMðZαÞfð2ÞEMðZαÞ
fscalðZαÞ ; ð6Þ

leading to the spacetime Weyl double copy formula,

ϕA0B0C0D0 ðxÞ ¼
ϕð1Þ
ðA0B0 ðxÞϕð2Þ

C0D0ÞðxÞ
ϕðxÞ ; ð7Þ

first presented in Ref. [21]. Here, ϕ is a biadjoint scalar

field, ϕðiÞ
A0B0 an electromagnetic spinor, and ϕA0B0C0D a Weyl

spinor. The above discussion applies to the case of primed
spinor fields in spacetime. For unprimed fields, one may
consider the conjugate of Eq. (2), whose solutions are
associated with dual twistorsWα. The notion of the Penrose
transform can be straightforwardly adapted from Eq. (5),

ϕAB…CðxÞ ¼
1

2πi

I
Γ
dλEdλEλAλB…λC½ρxfðWαÞ�; ð8Þ

and the twistor double copy of Eq. (6) similarly generalizes.
We work with dual twistors by default in what follows, in
order to match conventions with Ref. [61].

III. MULTIPOLES AND THE DOUBLE COPY

The idea ofmultipoles is familiar fromNewtonian physics
in three-dimensional Euclidean space. A stationary electro-
static orNewtonian potentialϕ in a sourceless region satisfies
Laplace’s equation ∇2ϕ ¼ 0, and may be expanded as2

ϕ ¼ M
r
þMixi

r3
þMijxixj

r5
þ…; ð9Þ

where r ¼ ðxixiÞ12, and the multipole tensors fMij…kg are
constant tensors defined in terms of derivatives of the
potential, evaluated at the origin O. Upon shifting to a
different point, the multipole moments change in a way that
involves only lower-ordermultipoles. The extension of these
ideas to general relativity has been discussed in Refs. [62–
64], for general asymptotically flat spacetimes. We do not
need the full complication of the latter, given that we are
concerned with solutions of the massless free-field equation
of Eq. (1) inMinkowski space. Given a constant unit timelike
vector ta, one may then consider the 3-space orthogonal to
this, with induced metric

hab ¼ ηab − tatb: ð10Þ

Reference [62] then showed that an appropriate generaliza-
tion of the multipole tensors appearing in eq. (9) is provided
by symmetric, trace-free tensor fields Qa1…anðxÞ satisfying

ta1Q
a1…an ¼ 0;

∇mQa1…an ¼ nð2n − 1Þ
3

hmða1Qa2…anÞ

−
nðn − 1Þ

3
Qmða3…anha1a2Þ; ð11Þ

where the nth such quantity is referred to as the 2n-multipole
tensor, and the second condition requires that the derivatives
of multipole tensors depend only upon lower multipoles.
This is the analogue of the “shifting the origin” property
mentioned for Newtonian multipoles above and ensures that
the set of tensors fQa1…ang corresponds to the same solution
of the field equation.
In the spinorial formalism, each spacetime index in

Eq. (11) will become a pair of spinor indices. Contracting
with the timelike vector appearing there, one may define the
symmetric spinor field,

ωA0
1
…A0

2n ¼ ð6iÞnQA0
1
…A0

nB1…Bnt
A0
nþ1

B1
…t

A0
2n

Bn
; ð12Þ

which turns out to solve a higher-rank generalization of the
twistor equation of Eq. (2),

∇ðL0
L ωA0

1
…A0

2nÞ ¼ 0: ð13Þ

Thus, we can associate the spinors of Eq. (12) with multi-
indexmultipole twistorsfQα1…α2ng. To see how thisworks in
practice, consider a given physical spin-n field ΨA1A2…A2n

.
Then, one may define higher-spin fields iteratively by taking
derivatives and contracting with the timelike vector appear-
ing in Eq. (12),

ΨðnÞ
A1…A2n

¼ tA0A1
∇A0

A2
½Ψðn−1Þ

A3…A2n
�: ð14Þ

These constitute a spinorial analogue of the multiple deriv-
atives appearing in the Newtonian formalism, whereby
higher multipole moments contain more derivatives of
the original potential. For a spin-1 field, one may write an
explicit twistor space integral for the total conserved charge
producing the field [65],

Q ¼ −
i

4π2

I
fðWαÞd4W;

d4W ¼ 1

4!
ϵαβγδdWαdWβdWγdWδ; ð15Þ

where an appropriate contour must be chosen and where
fðWαÞ is the twistor function corresponding to the spacetime
field. Given a higher-spin field as in Eq. (14), we can form
multiple spin-1 fields by contracting with solutions of the
twistor equation3 fαA1…A2ng,2Throughout the paper, we use lower-case latin, upper-case

latin, and greek indices for spacetime tensors, spacetime spinors,
and twistors, respectively. Note, however, that the indices in
Eq. (9) run only over spatial components, i.e., from 1 to 3.

3That the fields of Eq. (16) indeed satisfy the massless free-
field equation of Eq. (1) follows from Eq. (13).
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ΦðnÞ
AB ¼ −inαA1…A2n ½Ψðnþ1Þ

ABA1…A2n
�: ð16Þ

Each of these fields will have a conserved charge according
to Eq. (15), and we may collect together all such charges in
the twistor-covariant form,

qðAα1…α2nÞ ¼ inþ1

4π2

I
Wα1…Wα2nA

α1…α2nfnþ1ðWαÞd4W;

ð17Þ

for symmetric twistors fAα1…α2ng, where fnþ1ðWαÞ is the
twistor function corresponding to the spacetime higher-spin
field ðnþ1ÞΨABA1…A2n

and multipole index n. Equation (17)

defines a set of quantities dual to the fAα1…α2ng,

Qα1…α2n ¼
inþ1

4π2

I
Wα1…Wα2nfnþ1ðWαÞd4W; ð18Þ

which are the multipole twistors we have been seeking. Note
that the iterative structure of the higher-spin fields in Eq. (14)
implies that the twistor functions ffnþ1g in Eq. (18) can also
be constructed iteratively, and there are various ways that this
can be written. A fully invariant condition is [61]

fnþ1 ¼ iðRαWβIαβÞ−1RγP
γ
δ

∂fn
∂Wδ

; ð19Þ

where we have introduced the so-called infinity twistors for
Minkowski spacetime,

Iαβ ¼
�
0 0

0 ϵA
0B0

�
; Iαβ ¼

�
ϵAB 0

0 0

�
: ð20Þ

Rα is an arbitrary twistor, and we have introduced the
projector [61]

λPα
β ¼ IαγQγβ; ð21Þ

where λ is the relevant mass or charge parameter for a given
theory. One thus has λ ¼ m in gravity, where m is the total
mass of the system. In gauge or biadjoint theory, it will be the
total charge of the system that is creating the field, which we
denote by q and y, respectively.

A. The double copy of the multipole expansion

The multipole twistors introduced above allow us to
address the double copy of the multipole expansion in a
particularly compact and elegant way. Consider twistor
functions corresponding to a biadjoint scalar, electromag-
netic, and gravity solutions, respectively, which we label by
fXðWαÞ, X ∈ fscal;EM; gravg. From each of these, one
may define a set of higher-spin twistor functions according
to the iterative procedure of Eq. (19), denoted here by

fðnþ1Þ
X ðWαÞ. By Eq. (18), this immediately leads to a set of

multipole twistors for each original spacetime field. This
construction is shown in Table I, where each column
contains twistor functions of the same homogeneity, lead-
ing to fields in position space with the same spin. We show
the multipole twistors that arise from these in Table II. Note
that the biadjoint scalar twistor function fscal does not
produce a physical multipole, but it is needed to generate

all the fðnþ1Þ
scal that do result in the multipole expansion.

Furthermore, note that a gravitational monopole contribu-
tion is not directly obtained from the corresponding twistor
functions. As the total mass, however, it is obtainable from
the angular momentum twistor Qgrav

α1α2. For the n ¼ 0 case,
one finds integrals expressing the total charge generated by
the biadjoint or EM field. From n ¼ 1 upwards, there are
multipole twistors in all three theories. For a given set of
functions ffXg related by the twistor-space double copy,
we can then associate each column of Table II with a
classical double copy triple, as shown in Fig. 1.
The physical interpretation of the identifications in Fig. 1

is straightforward. Consider, for example, the 2-multipole
tensors QX

αβ. This represents the angular momentum in
gravity [42], whereas in electromagnetism, it is the charge
dipole tensor, as expected given that the single copy turns
mass into charge. Likewise, for the higher multipoles, the
single copy replaces the relevant spatiotemporal distribu-
tion of mass/momentum with that of charge, with a further
replacement to “biadjoint charge” in the zeroth copy.
It is one thing to formally identify the multipole twistors

in different theories, as we have done in Fig. 1. It is quite

TABLE I. Twistor functions resulting in the multipole expan-
sion for three different theories. Here, fX is a twistor function
corresponding to the physical spacetime field in theory X, and

fðnþ1Þ
X is a higher-spin field generated from this by the iterative

procedure of Eq. (19). The function fscal does not produce a
physical multipole, but it generates the set of higher multipole

twistor functions fðnþ1Þ
scal .

Theory

Multipole index n

0 1 2 3

Biadjoint scalar fð1Þscal fð2Þscal fð3Þscal fð4Þscal
Gauge fEM fð2ÞEM fð3ÞEM fð4ÞEM
Gravity fgrav fð3Þgrav fð4Þgrav

TABLE II. Multipole twistors arising from the twistor functions
of Table I.

Theory

Multipole index n

0 1 2 3

Biadjoint scalar Qscal Qscal
α1α2 Qscal

α1α2α3α4 Qscal
α1…α6

Gauge QEM QEM
α1α2 QEM

α1α2α3α4 QEM
α1…α6

Gravity Qgrav
α1α2 Qgrav

α1α2α3α4 Qgrav
α1…α6
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another thing to say that the multipole twistors in the
different theories are the same, up to simple mass and
charge replacements. Remarkably, this strong statement
indeed turns out to be true for fields related by the original
type-DWeyl double copy of Ref. [21], as we discuss in the
following section.

B. Multipole moments of type-D solutions

As discussed in Ref. [66] and reviewed in Refs. [39,40],
all vacuum type-D solutions arise from twistor functions of
the form

fgrav ¼ ðAαβWαWβÞ−3; ð22Þ

where Aαβ is a constant twistor that can be taken to be
symmetric. We see that Eq. (22) has homogeneity −6 under
rescalings of Wα, as required for a gravity solution.
Furthermore, it has two poles in twistor space, which give
rise, after performing the Penrose transform of Eq. (8) to
position space, to the two two-fold degenerate principal
spinors of the Weyl spinor that characterize it as being of
type D. It turns out that the twistor Aαβ can be straight-
forwardly related to the 2-multipole twistor for this field.
Substituting Eq. (22) into Eq. (18) for n ¼ 1, one may carry
out the integral using a special case of

I
Wα1…Wα2nðWαWβAαβÞ−ðnþ2Þd4W

¼ π3i
Δ

ð2nÞ!
22n−1ðnþ 1Þ!n!Bðα1α2…Bα2n−1α2nÞ; ð23Þ

where Bαβ is the inverse of Aαβ andΔ the determinant of the
latter. One finds

Qαβ ¼
π

8iΔ
Bαβ; Qαβ ¼ 8iΔ

π
Aαβ: ð24Þ

Given the general type-D gravity twistor function of
Eq. (22), one may also identify the single and zeroth
copies, giving rise to gauge and biadjoint scalar fields
in spacetime, respectively. As explained in Refs. [39,40],
these are

fscal ¼ N 0ðAαβWαWβÞ−1; fEM ¼ N 1ðAαβWαWβÞ−2:
ð25Þ

We have here included arbitrary constant normalization
factors in the scalar and electromagnetic functions, which
are in any case not fixed in the Weyl double copy of
Ref. [21]. Physically, one may absorb such constants by
redefining the total amount of charge in a particular
solution, but we fix them shortly. Let us now construct
and compare the multipole twistors from these solutions.
For each field, we may construct higher-spin twistor
functions using the procedure of Eq. (19). Starting with
the gravity function from Eq. (22), one finds

fð3Þgrav ¼ −
3i
λ
ðRαWβIαβÞ−1ðAρλWρWλÞ−4RγIγτQτδAδσWσ;

ð26Þ

where we have used Eq. (21). We may now use Eq. (24),
which yields

fð3Þgrav ¼ 3

�
−

π

4Δm

�
ðAρλWρWλÞ−4; ð27Þ

such that iterating this procedure leads to the formula

fðnÞgrav ¼
�
−

π

4Δm

�
n−2 n!

2
ðWαWβAαβÞ−ðnþ1Þ; ð28Þ

as quoted in Ref. [61]. Note that placing n ¼ 2 in this
formula reproduces the original gravity twistor function
fgravðWαÞ itself. We may find the multipole twistors of
Eq. (18) using Eq. (23), (24), yielding

Qgrav
α1…α2n ¼

1

2

1

ð2mÞn−1
ð2nÞ!
n!

Qgrav
ðα1α2…Qgrav

α2n−1α2nÞ; ð29Þ

where the angular momentum twistor takes the explicit
form

Qgrav
αβ ¼

�
0 mtB

0
A

mtA
0

B 2iμA
0B0

�
; ð30Þ

Double copy

Single copyZeroth copy

Inverse zeroth copy

EM grav.scal.
Q

1 ... 2n
Q

1 ... 2n
Q

1 ... 2n

FIG. 1. Double copy structure of the multipole twistors appearing in a single column in Table II.
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and μA
0B0

is the dipole spinor at the origin. Given that μA
0B0

can be shown to be proportional to the linear momentum
spinor, we conclude that Qgrav

αβ is linear in the mass m. It is
then useful to scale this out by writing

Qgrav
αβ ¼ mQ̄grav

αβ : ð31Þ

The multipole twistors then become

Qgrav
α1…α2n ¼

m
2n

ð2nÞ!
n!

Q̄grav
ðα1α2…Q̄grav

α2n−1α2nÞ; ð32Þ

which makes clear that they are well defined as m → 0,
with a simple linear mass dependence. In principle, one
may convert these multipole twistors back into multipole
tensors. For the Kerr solution, a set of scalar multipole
moments has been defined in the literature [64]. Let z̃a be a
vector aligned with the axis of rotation of the black hole and
Λ be the point at infinity after conformal compactification
of the spacetime. Then, the multipole moments are given by

Qn ¼
1

n!
Qa1…an z̃

a1…z̃an jΛ; ð33Þ

where the notation on the right-hand side denotes that this be
evaluated at Λ itself. As stated in Ref. [61], the multipole
twistors ofEq. (29) do indeed reproduce the knownmultipole
moments of the Kerr solution, first found in Ref. [64].
We may carry out the above procedure for the biadjoint

scalar and gauge theories twistor functions of Eq. (25), and
the resulting higher-spin twistor functions are given by

fðnÞscal ¼ N 0

�
−

π

4Δy

�
n n!
2
ðWαWβAαβÞ−ðnþ1Þ;

fðnÞEM ¼ N 1

�
−

π

4Δq

�
n−1 n!

2
ðWαWβAαβÞ−ðnþ1Þ; ð34Þ

where we have replaced the mass m in the gravity solution
with the charge q in gauge theory and biadjoint charge y in
the scalar theory. These functions reproduce the original
fields for n ¼ 0 and n ¼ 1, respectively. We may choose to
fix the arbitrary normalization constants N i by requiring
that the 2-multipole (dipole) tensor in each theory is simply
related by replacing

m → q → y; ð35Þ

in going from gravity to gauge theory to biadjoint theory.
This determines

N 0 ¼
�
−

π

4Δy

�
−2
; N 1 ¼

�
−

π

4Δq

�
−1
; ð36Þ

after which comparison of Eq. (34) with Eq. (28) shows
that all higher-spin twistor functions agree across all three

theories, so that one may simply replace the multipole
twistors of Eq. (29) with the gauge and biadjoint scalar
counterparts,

Qscal
α1…α2n ¼

y
2n

ð2nÞ!
n!

Q̄scal
ðα1α2…Q̄scal

α2n−1α2nÞ;

QEM
α1…α2n ¼

q
2n

ð2nÞ!
n!

Q̄EM
ðα1α2…Q̄EM

α2n−1α2nÞ; ð37Þ

where the bar notation on the right-hand side denotes that
we have scaled the relevant coupling out of the two-index
twistors, similarly to Eq. (31). A direct consequence of
Eq. (37) is that the multipole moments of the gauge and
biadjoint scalar fields corresponding to a given gravity field
from Eq. (22) precisely match, after making the necessary
mass-to-charge replacements. Our twistor analysis has
applied for an arbitrary quadratic form in Eq. (22) which,
as explained in Refs. [39,40], is a general statement for any
(vacuum type-D) spacetime entering the original Weyl
double copy of Ref. [21]. In particular, this must apply
to the Kerr solution, whose scalar multipole moments are
given by [64]

QKerr
n ¼ in−1man; ð38Þ

where a is the ring radius of the Kerr black hole. Our
arguments in this paper then immediately imply that the
multipole moments of the

ffiffiffiffiffiffiffiffiffi
Kerr

p
solution, and its zeroth

copy, are given by

Q
ffiffiffiffiffiffiffi
Kerr

p
n ¼ in−1qan; Qscal

n ¼ in−1yan; ð39Þ

respectively. That is, they are simply obtained by replacing
the mass in the gravitational case with the relevant coupling
parameter, as described above. There is a novel cross-check
of the gauge theory results that one may perform. Although
the electromagnetic multipole moments of the

ffiffiffiffiffiffiffiffiffi
Kerr

p
solution have not been previously calculated in the liter-
ature, one may instead consider a charged Kerr black hole,
otherwise known as a Kerr-Newman black hole [67,68].
This is a solution of the Einstein-Maxwell equations, and as
such consists of a metric plus a gauge field. The

ffiffiffiffiffiffiffiffiffi
Kerr

p
solution can be obtained by setting the mass of the solution
to zero, leaving a gauge field living in Minkowski space,
which is known to correspond to the single copy of the
gravity solution. The combined gravitational and electro-
magnetic multipole moments of the Kerr-Newman solution
have been calculated in Ref. [69]. The gravity moments
agree with the pure Kerr solution, and the electromagnetic
ones indeed match Eq. (39), thus verifying our results.
Let us now return to a technical issue that we glossed

over above. As discussed above, the twistor double copy of
Refs. [39,40] relies upon forming products of “functions”
in twistor space. However, the Penrose transform of Eq. (5)
is invariant under redefining fðZαÞ according to
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fðZαÞ → fðZαÞ þ hNðZαÞ þ hSðZαÞ; ð40Þ

where hN;S have poles only on one side of the integration
contour Γ (i.e., respectively only in the northern or southern
hemispheres of the Riemann sphere corresponding to the
spacetime point x). The set of functions related by such
transformations forms a Čech) cohomology class, such that
any given fðZαÞ constitutes a representative member of the
class. As discussed in detail in Ref. [40], the nonlinear
product of Eq. (6) that is needed to obtain the Weyl double
copy in spacetime does not allow one to first perform
redefinitions according to Eq. (40). It therefore seems that
special representatives are needed to make the double copy
product structure manifest, leaving a conceptual puzzle as
how such representatives must be chosen. A number of
discussions of this issue have recently appeared in the
literature, and the first of these was in Ref. [70], which
considered purely radiative spacetimes, i.e., those that can
be completely prescribed using data defined at future null
infinity. In such cases, there exists a natural way to pick out
a special cohomology representative in each theory enter-
ing the double copy [71], thus making the twistor double
copy unambiguous. A second discussion can be found in
Ref. [72], which showed how the twistor double copy of
Refs. [39,40], based on Čech cohomology, can be system-
atically translated into the different viewpoint of Dolbeault
cohomology. The quantities entering the Penrose transform
then become differential forms, and Ref. [72] showed that
in the Euclidean signature the Weyl double copy in
spacetime implies a natural product structure in twistor
space, provided harmonic differential forms are chosen to
represent each spacetime field. How this procedure relates
to the Čech representatives used in Refs. [39,40]—not to
mention the radiative double copy of ref. [70]—remains
unclear.
Much closer to our present study, however, is the more

recent work of Ref. [48], which constructs certain classical
spacetimes from momentum-space scattering amplitudes
using a two-step procedure: (i) gravitational amplitudes in
momentum space are transformed into twistor space and
(ii) the resulting quantities from step (i) are Penrose
transformed to give spacetime fields, where further analytic
continuation may be required to fix a desired signature. The
relevant Penrose transform is in the Čech cohomology
language, and step (i) thus picks out a particular Čech
cohomology representative for the spacetime of interest. As
shown in Ref. [47], the Čech representatives picked out by
this procedure are precisely those entering the original
twistor double copy of Refs. [39,40] and given here by
Eq. (22). Thus, the known exact classical double copies in
momentum, twistor, and position space amount to the same
thing. Locality in all three spaces can also be shown to arise
from the precise nature of three-point scattering amplitudes
in momentum space [47]. This provides a response to those
critics of position-space double copies, who may regard

them as somehow speculative and/or coincidental: they are
in fact rigorously derivable from the BCJ double copy for
scattering amplitudes, but such that exact position-space
double copies may not be available for arbitrary solutions.
For general nonlinear solutions, one may still form classical
double copies, but one must typically proceed order-by-
order in the coupling, as has been emphasised, for example,
in Refs. [73–77].
A simple consequence of the above discussion is that our

multipole double copy indeed applies to all vacuum type-D
solutions that are described by the Weyl double copy [21],
where (as noted in Refs. [39,40]) different choices for the
constant twistor Aαβ in Eq. (22) map out the space of such
solutions (see also Ref. [66]). As a further example, let us
consider the Kerr-Taub-NUT solution, in which a Kerr
black hole is dressed by a NUT charge N, which gives rise
to a rotational character of the gravitational field that
survives at infinity. As argued only very recently [78], it
is possible to derive multipole moments for such a space,
even though strictly speaking the spacetime is not asymp-
totically flat.4 Here, we may easily obtain the multipole
moments of Kerr-Taub-NUT as follows. First, we may note
that the three-point amplitudes corresponding to the Kerr-
Taub-NUT solution in position space can be obtained from
the amplitudes M� for the Kerr solution by the simple
procedure [50]

M� → e�iθM�; ð41Þ

where subscripts denote the helicity of the emitted graviton.
The results of Refs. [47,48] linking momentum-space
amplitudes with twistor-space functions then immediately
imply that the twistor function of Eq. (22) (for the Kerr
case) is simply multiplied by a similar factor e−iθ to obtain
the Kerr-Taub-NUT result.5 This has the effect of replacing
the mass in our above results as follows:

m → me−iθ ≡M − iN; ð42Þ

where we have defined the parameters,

M ¼ m cos θ; N ¼ m sin θ: ð43Þ

These play the role of the mass and NUT charge in the
Kerr-Taub-NUT solution [50], and it follows from our
above analysis that the scalar multipole moments of the
Kerr-Taub-NUT solution will be simply given by

4All that is needed to apply the multipole formalism of
Refs. [62–64] is the presence of an asymptotically flat spacelike
hypersurface orthogonal to the time direction. See Ref. [78] for a
full discussion.

5In choosing the dual twistor space double copy, we have
picked out a particular helicity of the graviton. The other helicity
is obtained from the (nondual) twistor space double copy.
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QKTN
n ¼ in−1ðM − iNÞan: ð44Þ

This matches the recent computation of Ref. [78] and is
itself a significant check that the original twistor multipole
construction of Ref. [61] indeed corresponds to the Geroch-
Hansen multipole formalism of Refs. [62–64]. The ana-
logue of Eq. (35) for gauge and biadjoint theories is

q → qe−iθ ≡Q − iQ̃; y → ye−iθ ≡ Y − iỸ; ð45Þ

from which we may straightforwardly write the multipole
moments,

Q
ffiffiffiffiffiffiffi
KTN

p
n ¼ in−1ðQ − iQ̃Þan; Qscal

n ¼ in−1ðY − iỸÞan;
ð46Þ

In the gauge theory, for example, these will be the multipole
moments associated with a stationary spinning electromag-
netic dyon at the origin, where Q and Q̃ can be interpreted
as the electric and magnetic charges, respectively. Again, it
is the case that the multipole moments in gauge or biadjoint
theory are essentially identical to their gravitational coun-
terparts, up to the replacements of the relevant charges/
couplings, as follows directly from the twistor formalism.

IV. DISSCUSSION

In this paper, we have considered whether the multipole
expansions of fields in biadjoint scalar, gauge, and gravity
theories can be related by the classical double copy. By
combining a twistor formulation of the multipole expansion
[61] with a recently developed twistor language for the
classical double copy [39,40], we have shown that the
multipole moments for arbitrary type-D vacuum solutions
indeed match up in different theories, subject to appropriate
mass/charge replacements.6

Our results provide a nice illustration of the efficiency of
the twistor double copy, but are of interest in their own
right. It is often the case that a single copy of a given gravity
solution can be found, but not easily interpreted. A
canonical case of this is the single copy of the Kerr black
hole, first formally identified in Ref. [4] and denoted asffiffiffiffiffiffiffiffiffi
Kerr

p
in subsequent literature (see, e.g., Refs. [80–82]). It

is known that this solution occurs by replacing the source
for the Kerr black hole (a rotating disk of mass) with a
similar gauge theory source (a rotating disk of charge).
However, the nature of the sources is subtly different in the
two theories [4], such that it is not clear what impact this
has on the fields themselves. Multipole moments, however,
allow us to fully characterize the structure of fields in a
gauge-invariant way. Thus, the fact that the multipole

moments for the Kerr and
ffiffiffiffiffiffiffiffiffi
Kerr

p
solutions are essentially

identical tells us a great deal of information about how to
physically interpret the single copy, by recyclingour intuition
gathered from the Kerr black hole. Furthermore, the fact that
our results apply for any type-D vacuum solution makes this
a rather powerful statement, thatmaywell help in interpreting
and extending the double copy in future.
Our focus on type-D solutions is due to the fact that these

linearize the field equations in biadjoint, gauge, and gravity
theories. The twistor double copy—which relies on the
standard Penrose transform restricted to the linearized level
of each respective theory—is then an exact statement.
Whether or not the twistor double copy can be extended to
genuine nonlinear solutions is an open question, but it is
worth noting that nonlinear twistor constructions exist in
both gauge and gravity theories if one restricts to the (anti)
self-dual sector [83,84]. A related question is whether our
conclusions about multipole moments extend to solutions
of the arbitrary Petrov type. Although Refs. [39,40] showed
that the twistor double copy could be used to generate Weyl
double copies for solutions of the arbitrary Petrov type,
these were restricted to the linearized level only due to the
limitations of the Penrose transform. Whether or not the
multipole moments of genuine nontype-D solutions can be
double copied depends on whether twistor methods can be
extended to these nonlinear solutions. Progress in this area
may also come from the recent connection between
scattering amplitudes and the twistor double copy uncov-
ered in Ref. [48], which we discuss above.
A particularly nice aspect of our results is that the

multipole expansion in biadjoint theory also matches that in
the gauge and gravity theories for the wide class of
solutions we have considered. This adds a powerful weight
to the observations made in Refs. [39,40], namely, that the
twistor double copy allows us to understand the inverse
zeroth copy from biadjoint scalar theory to gauge theory.
That is, we have seen directly that the multipoles of vacuum
type-D gravity solutions and their single copies are essen-
tially inherited directly from a much simpler scalar theory.
It is interesting to ponder what other physical quantities can
be phrased in such an appealing manner.

ACKNOWLEDGMENTS

We are very grateful to Donal O’Connell and Justin
Vines for discussions. This work has been supported by the
UK Science and Technology Facilities Council (STFC)
Consolidated Grant No. ST/P000754/1 “String theory,
gauge theory and duality” and by the European Union
Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie Grant Agreement No. 764850
“SAGEX”. E. C. is supported by the National Council of
Science and Technology (Conacyt). A. L. is supported by
the U.S. Department of Energy (DOE) under Award
No. DE-SC0009937 and by the Mani L. Bhaumik
Institute for Theoretical Physics.

6The multipole expansion of gravitational sources was also
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