
Speech Dereverberation and Speaker

Separation Using Microphone Arrays in

Realistic Environments

Teun F. Krikke

Submitted for the degree of

Doctor of Philosophy

Heriot-Watt University

School of Engineering and Physical Sciences.

Awarded jointly with The University of Edinburgh

June 17, 2021

The copyright in this thesis is owned by the author. Any quotation from the thesis

or use of any of the information contained in it must acknowledge this thesis as the

source of the quotation or information.





ACADEMIC REGISTRY
Research Thesis Submission

Name: Teun F. Krikke

School: School of Engineering and Physical Sciences

Version: Final Degree Sought: Degree of Doctor of Philosophy

Declaration:
In accordance with the appropriate regulations I hereby submit my thesis and I declare that:

1. the thesis embodies the results of my own work and has been composed by myself
2. where appropriate, I have made acknowledgement of the work of others and have made

reference to work carried out in collaboration with other persons
3. the thesis is the correct version of the thesis for submission and is the same version as any

electronic versions submitted*.
4. my thesis for the award referred to, deposited in the Heriot-Watt University Library, should

be made available for loan or photocopying and be available via the Institutional Repository,
subject to such conditions as the Librarian may require

5. I understand that as a student of the University I am required to abide by the Regulations
of the University and to conform to its discipline.

6. I confirm that the thesis has been verified against plagiarism via an approved plagiarism
detection application e.g. Turnitin.

* Please note that it is the responsibility of the candidate to ensure that the correct version of the
thesis is submitted.

Signature of Candidate: Teun F. Krikke Date: 17-06-2021

Submission:

Submitted by: TEUN KRIKKE

Signature of Individual Submitting: Teun F. Krikke

Date submitted: 17-06-2021

For Completion in the Student Service Centre (SSC)

Received in the SSC by (name in capitals):

Method of Submission (Handed in to SSC;

posted through internal/external mail):

E-thesis Submitted (mandatory for final the-

ses):

Signature: Date: - -

Please note this form should be bound into the submitted thesis.

Academic Registry/Version (1) August 2016



Abstract

This thesis concentrates on comparing novel and existing dereverberation and speaker

separation techniques using multiple corpora, including a new corpus collected using

a microphone array. Many corpora currently used for these techniques are recorded

using head-mounted microphones in anechoic chambers. This novel corpus contains

recordings with noise and reverberation made in office and workshop environments.

Novel algorithms present a different way of approximating the reverberation, pro-

ducing results that are competitive with existing algorithms.

Dereverberation is evaluated using seven correlation-based algorithms and ap-

plied to two different corpora. Three of these are novel algorithms (Hs NTF, Cauchy

WPE and Cauchy MIMO WPE). Both non-learning and learning algorithms are

tested, with the learning algorithms performing better.

For single and multi-channel speaker separation, unsupervised non-negative ma-

trix factorization (NMF) algorithms are compared using three cost functions com-

bined with sparsity, convolution and direction of arrival. The results show that the

choice of cost function is important for improving the separation result. Further-

more, six different supervised deep learning algorithms are applied to single channel

speaker separation. Historic information improves the result. When comparing

NMF to deep learning, NMF is able to converge faster to a solution and provides a

better result for the corpora used in this thesis.
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Chapter 1

Introduction

Speech recognition has increased in popularity with more devices using the technol-

ogy and therefore, the demands of the technology are also increasing. The technology

has improved to a standard whereby people who are almost fluent in one of the ma-

jor languages can be understood by a speech recogniser providing the environment

is suitable. With these advances, the usage has expanded and the expectations of

the technology continue to increase. However, the environment in which a speech

recogniser is trained has not changed. The user expects that a speech recogniser can

understand them in any environment such as walking along a busy street, working in

a factory or cooking a three course meal with friends in the kitchen. However, cur-

rent and past research largely concentrates on making recordings of people wearing a

headset and standing in an anechoic chamber, not of people in an office environment

away from the microphone.

The history of speech recognition starts with Bell Labs in the 1950s where it was

first used for spoken digit recognition. In this system a single voice speaking digits

aloud could be recognised. Twenty years later, Carnegie Mellon introduced a system

that could recognise 1000 words. In the same decade Bell Labs introduced a system

that could understand multiple voices. With the start of the new millennium and

the introduction of Google Voice, the accuracy of speech recognition rose to 80%

in a lab environment. Google Voice distributes the processing load over various

data centres instead of using the user’s computer, the former approach has more

processing power which allows more complicated models to be run.

By the start of 2010, speech recognition had improved again with the intro-
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duction of deep learning. By making use of the graphics cards in computers, the

running time of complex models decreased to almost real-time. The combination of

using more accurate models with distributed computing allows speech recognition

to run on devices that do not have enough computing power to run these complex

models required for adequate results. Instead, it will listen for pre-configured words

(so-called wake words) and will send the recording of the user through to a more

powerful computer. This has raised the expectations of speech recognition to a level

where people expect to be recognised in crowded or empty environments. These

expectations give rise to a new set of challenges.

When addressing a robot, the speaker needs to be understood to enable the robot

to execute the tasks the speaker demands from it. In general, robots are able to

understand the speaker when tested in a lab setting with no other speakers around,

but in real-world environments, noise, reverberation and the presence of multiple

speakers make the speech recognition task more difficult. This is not only the case

for robots but also for smart speakers (e.g. Amazon Alexa, Google Home, Microsoft

Cortana and Apple Siri). These smart speakers work in a home or office environment

where there is noise coming from various things like the kitchen, television, printer

or multiple background speakers. However, robots also need to work in industrial

environments where there is noise from heavy machinery. The noise makes it difficult

for the speech recogniser to understand the speaker which does not happen in the

ideal, clean lab, scenario.

To deal with the distorted speech obtained in varied environments, the signal

needs to be pre-processed before it can be given to a speech recogniser. Pre-

processing removes the reverberation, noise and other speakers to give the speech

recogniser a signal that is as clean as possible. These are three challenges that are

currently worked on, two of which (reverberation and other speakers) are addressed

in this thesis.

There are a number of different ways of removing the noise, reverberation and

de-mixing speakers. The easiest is to know how the signals are mixed and use this as

a function for de-mixing the signals. This requires information about the positioning

of the speakers and noise sources in the environment, the number of speakers and the

influence of the environment. The latter describes the influence of the reverberation
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on both the noise sources and the speech. Reverberation makes it more difficult to

define where the noise or speech stops because the signal dies out slowly. There are

many cases where we lack some of the parameters or do not know anything about

the mixture apart from it containing speech. This latter case is called blind source

separation (or blind dereverberation).

1.1 Scope

This thesis is concerned with the dereverberation of speech signals and the sepa-

ration of speakers. Two categories of algorithms are used for both problems; one

assumes that there is no ground truth speech signal presented to the algorithm

(unsupervised learning), the other assumes there is a ground truth speech signal

presented (supervised learning). For the first category, the algorithms only use the

input signal to recreate the speech signals. Whereas with the second category, the

algorithms are presented with the input signal and a ground truth signal to learn to

recreate the transition from input to ground truth.

To test the algorithms, a corpus has been created using a microphone array

(called the Acoustic Camera or AC corpus). This AC corpus contains speech in

reverberant office and workshop environments. These environments create realistic

scenarios in which robots and artificial assistants have to work. Apart from this

corpus, three existing corpora (TIMIT, vocalization and MapTask corpora) are being

used. For these corpora, a room is simulated with the exact dimension of the room

used for the recordings of the AC corpus.

In the case of dereverberation, the seven algorithms (H1, H2, Hs, H1 NTF, Hs

NTF, WPE and MIMO WPE) require recordings from more than one microphone.

These algorithms determine the correlation between microphones in order to mea-

sure the reverberation of the room. For simplicity, microphone arrays with two

microphones are used in the simulated environments. The algorithms used for this

problem are applied to the TIMIT corpus in order to generate a comparison with

other techniques.

For the workings of the separation algorithms, it is important to know how many

speakers there are in the mixture, this thesis concentrates on mixtures containing
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two speakers. The separation algorithms are run in a single channel version where

there is only information present from one microphone and in a multichannel version

where there is information present from two microphones in a stereo configuration.

The algorithms used for the single and multichannel separation are based on non-

negative matrix factorisation and non-negative tensor factorisation. Deep learning

is only used for the single channel separation task. As input to the algorithms

three corpora (vocalization, MapTask and AC corpora) are used. In the case of the

multichannel separation, the recordings of two corpora (vocalization and MapTask)

are run in a simulated environment of the same dimensions as used in the AC corpus.

For measuring the performance of the algorithms, a unified framework is used to

measure the difference in:

• distortion

• artefacts

• interference

between the original signal and the outcome of the algorithms as it was presented in

Vincent et al. [1]. This framework allows for the comparison of the algorithms used

in this thesis with the ones described in the literature. In addition to these three

measurements perceptual evaluation of speech quality (PESQ) [2] is specifically used

for the dereverberation algorithms in order to compare them with existing work.

Contributions

• A corpus recorded in realistic environments (office and workshop) with a high

quality 72 microphone array.

• A new non-negative matrix factorisation based algorithm for speaker derever-

beration.

• New modifications to multiple-input-multiple-output weighted prediction error

and weighted prediction error.

• Analysis on the performance of non-negative matrix factorisation and non-

negative tensor factorisation in realistic environments.

• Analysis of the importance of cost function choice with using non-negative

matrix factorisation for speaker separation.

• Analysis of the importance of directionality for multichannel non-negative ten-
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sor factorisation.

• Analysis on the importance of extra information in the form of convolution,

sparseness or directionality in non-negative matrix factorisation to deal with

noise and reverberation.

Out of scope

The microphone array is used as a finished product and does not have to be built.

For the simulation of a room, a library is used as a finished product. For the

separation of speakers, the assumption is that no information is available about

the speakers (e.g. gender and age) and that all speakers in a mixture are of equal

importance. Target speaker separation is not considered. The measurements that

are used for assessing the accuracy of the algorithms are not developed by us but

are the standard in the field of blind source separation with no further development

considered.

1.2 Research questions

• How does the performance of algorithms compare between a simulated and a

real environment with noise and reverberation and varying distance between

the microphones and speaker?

– What is the influence of the distance between the microphone and speaker?

– What is the influence of noise and reverberation in the recordings on the

separation of speakers?

• What is the performance gain of a multichannel algorithm over that of a single

channel and how does the cost function influence this?

– What is the performance gain of a multichannel algorithm over that of a

single channel algorithm?

– What is the influence of the cost function on the performance of the

algorithm?

• What is the performance gain of a learning algorithm over that of a non-

learning algorithm?
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1.3 Structure

• Chapter 2 focuses on the workings of deep learning, non-negative matrix fac-

torisation and weighted error prediction algorithms and makes a comparison

between supervised and unsupervised learning techniques. In this chapter

non-negative matrix factorisation and weighted prediction error are being ex-

plained. This chapter also focuses on beamforming algorithms and the work-

ings of deep learning algorithms as recurrent neural networks, autoencoders,

convolution neural networks and deep neural networks. The commonalities

between different cost functions (Kullback-Leibler, Itakura-Saito, Euclidean

and Cauchy) are described. Six different window functions used for the short-

time Fourier transform are introduced. Finally, there is an overview of the

measurements used for tracking the performance of the different algorithms

that are used in this thesis.

• Chapter 3 presents a selection of corpora used for speech recognition research.

This chapter introduces the corpora that are used for dereverberation and

speaker separation in this thesis and compares these against the other cor-

pora currently used in similar situations. An overview of the current work

on dereverberation is given. This is presented with the situations in which

the different techniques are tested, their performance and the corpora used for

training and testing. Current work on speaker separation is presented along

with the performance of the different techniques and the corpora used for

training and testing.

• Chapter 4 presents the recordings made with a microphone array. The chapter

starts with a description of the workings of the microphone array. This is

followed by an overview of the recordings made with this device and their use

cases. The chapter also describes the recording environment, instructions to

the speakers and gives general details about the speakers. Post-processing of

the files in order to create four different datasets within the corpus is also

described.

• Chapter 5 describes the application of correlation algorithms to the dereverber-

ation problem. The chapter starts with three correlation non-learning based

methods. Two of these are expanded to work with non-negative tensor factori-
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sation to create correlation learning based methods. This is followed by the

application of weighted prediction error and multiple-input-multiple-output

weighted prediction error applied to dereverberation. These two methods have

been modified with three modifications inspired by the Cauchy distribution.

The chapter concentrates on applying the different techniques to the TIMIT

[3] corpus in a simulated room.

• Chapter 6 presents the work of applying non-negative matrix factorisation

(NMF) and deep learning to the problem of single channel source separation.

This chapter presents an overview of the different modifications applied to

NMF and measures their performance. These modifications are three different

cost functions (Kullback-Leibler, Itakura-Saito and Euclidean) and three dif-

ferent additions to the NMF algorithm (convolution, directionality and sparse-

ness). The performance of these algorithms is tested on three different corpora

(vocalization, MapTask and Acoustic Camera corpora). Next to the NMF al-

gorithms an ideal binary filter is applied to each of the corpora. This creates

a baseline to compare the algorithms against. Deep learning is applied to the

vocalization corpus in the form of six algorithms. The result of the ideal binary

filter and deep learning algorithms is compared with NMF.

• Chapter 7 describes the application of multi-channel non-negative matrix fac-

torisation (NMF) and non-negative tensor factorisation (NTF) to speaker sep-

aration using microphone array recordings. This chapter uses four algorithms,

three are based on NTF (time-difference of arrival NTF, covariance NTF and

direction of arrival NTF) and one is based on NMF (direction of arrival NMF).

The performance of these algorithms is tested on three different corpora (vo-

calization, MapTask and Acoustic Camera corpora). For two of these corpora

(vocalization and MapTask corpora), a simulated environment and microphone

array are used because these corpora have been recorded with one microphone.

The simulated environment has the same dimensions as the environment used

in the recordings of the third corpus (Acoustic Camera corpus).

• Chapter 8 concludes this thesis. The conclusions obtained from this research

are presented. The limitations of the used techniques are being described and

future work towards addressing said limitations is suggested in this chapter.
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Chapter 2

Background

2.1 Introduction

For dereverberation and speech separation, corpora are used to test the different

algorithms. For the collection of data, this chapter concentrates on different types

of microphone arrays, from arrays filling a room to smaller sized ones implemented in

robots. One of the key usages of microphone arrays is beamforming. This technique

can be used for speaker localisation in the time domain or in the frequency domain.

Additionally, the properties of the different corpora, such as near field speech, are

explained.

The chapter concentrates on the underlying methods of the algorithms used

for dereverberation and speaker separation described in this thesis. For example,

the time-difference of arrival non-negative tensor factorisation algorithm (used for

speaker separation) is based on beamforming to determine the time difference of ar-

rival of speech between microphones and non-negative tensor factorisation to cluster

the speech signal into different speakers. To describe the performance of these algo-

rithms, the workings of a unified performance framework is also described.

To remove the reverberation from the speech signal, it is important to know

what the room impulse response is and how this is calculated. This is described

in this chapter along with the image method for simulating reverberation and the

techniques used for dereverberation (weighted prediction error and multiple input

multiple output weighted prediction error).

The algorithms used in this thesis for speaker separation work in the frequency
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domain which means that it is important to choose a window function for the short-

time Fourier transform. These window functions have different characteristics which

are described in this chapter. The chapter also concentrates on the underlying

principles of non-negative matrix factorisation and deep learning. For non-negative

matrix factorisation and deep learning, cost functions are used to determine the

convergence of an algorithm. The cost functions used in this thesis are based on the

β-divergence and the symmetric α-stable distribution.

2.2 Fundamental concepts

2.2.1 Sound

Sound comes from many sources, from cars passing to trees falling and fireworks

exploding, e.g. when a speaker speaks they introduce movement into the air that

surrounds them. In this thesis, the main concentration is on sound as speech created

by one or more people. The movement of speech through the air is picked up by our

ears or microphones and translated into information that we can understand. The

movements of the air are called sound waves because of the wave like pattern they

have. These waves can be modelled using sine and cosine functions (see Equation

2.1) [4] travelling from the speakers to a listener (being a microphone or a person’s

ear). The period (T) of these waves is the time it takes for one cycle to complete

(see Equation 2.2). This measure can be changed to calculate the sample rate (see

Equation 2.3) which is the number of samples taken per second. In order to measure

a wave accurately, there needs to be at least two samples in each cycle; one for the

positive part of the wave and one for the negative. The more samples per cycle

the higher the amplitude accuracy. This is important for reconstructing the original

wave and extracting features from it. When there are less than two samples per

cycle, the frequency of the sound wave cannot always be determined.

y = A× sin(2πft) (2.1)

T =
1

f
(2.2)
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fs =
1

T
(2.3)

Propagation

When sound travels in an empty flat field it does not encounter any obstructions

thus not creating reflections. However, when this field is changed into a valley, with

high mountains on either side, the sound encounters surfaces that reflect the waves

back to the original speaker who will hear this as an echo [5]. Furthermore, when the

speaker is in a large factory hall with a roof, then the sound waves bounce off these

surfaces creating reverberation as well as echo. With a metal roof that is heated by

the sun, noise is created by the expansion of the metal plates in the roof. These

surfaces absorb and reflect frequencies differently. Similar to when sound travels in

air, it can also travel in water or along a metal pipe. The material in which the

sound propagates determines how far the sound can travel, this is dependent on four

properties: the elasticity of the material, the density of the material, the density

of the air and the temperature of the air. In case of the elasticity of the material,

it means that a more rigid material, for example, iron plates deform less and will

reflect and propagate more of the sound than a rubber floor tile. Water has a higher

density than air, therefore it is easier for sound to travel a greater distance.

Human speech

Human speech has a frequency range from approximately 85 Hz to 255 Hz (see

Jurafsky et al [6]). Most of the information that is present in human speech can be

found in frequencies below 10 kHz, therefore the maximum sample rate to capture all

information is 20 kHz. When a corpus is specifically designed for telephone speech,

the sampling rate is often lower (8 kHz). This is because the telephone calls are

routed through a switchboard that filters the speech down to 4 kHz.

When a speech signal is passed through the short-time Fourier transform it

switches to a complex signal containing the magnitude as the real part and the phase

information as the imaginary part of the complex signal. The phase information can

be used to determine where the signal is coming from (see [7]).

The magnitude, also described as the amplitude, shows which frequencies are

present in the signal and contains features such as the pitch and is used for the ex-
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traction of others (e.g. the Mel-frequency cepstral coefficients [8], linear prediction

cepstral coefficients [9] and perceptual linear prediction [10, 11]). Magnitude can

be changed to the power spectrum of the signal which is used for speaker tracking,

separation and extraction. Pitch is a term that is related to the fundamental fre-

quency of the sound which is the frequency of the vocal cord vibration. When the

sound has a higher fundamental frequency, it is often perceived as having a higher

pitch. The fundamental frequency or pitch can be plotted in a pitch track and gives

information about tonal languages to a speech recogniser [12].

2.2.2 Supervised and unsupervised learning

The algorithms used for dereverberation and speaker separation are used as either

supervised or unsupervised learning algorithms (see Alpaydin [13]). The main dif-

ference is the presence of labelled data. With supervised learning, labelled data is

given to the algorithm during the training phase. The algorithm uses this informa-

tion to actively adapt itself to the training data and finds information in the training

data that best describes the labels.

Unsupervised learning is when unlabelled data is passed to the algorithm and

the algorithm has to learn how to represent the input. The outcome of this process

can be a label or other representations that are used to describe the input data.

Classification and regression are examples of supervised learning. During train-

ing, the algorithm is given training data and training labels. The algorithm learns

the transformation from input data to labels. When a new unseen item is given, the

algorithm then tries to match it against what it has learned from the training data

and returns a label. For example, in its training phase, a recurrent neural network

(RNN) is given a mixture of two speakers and a label per timestep that shows which

speaker is speaking. During the test phase, the algorithm is only given a mixture of

two speakers and it has to produce the labels for this mixture. This is an example of

a classification algorithm. Regression, on the other hand, works with a continuous

number as a label (for example predicting a temperature). Looking at the rever-

beration problem, an RNN is given a recording with reverberation and the same

recording without reverberation. Now the network has to learn the transformation

from the reverberant file back to a non-reverberant file. This transformation should
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converge to the room impulse response function for that specific environment.

Clustering is often given as an unsupervised learning example. In this case,

alongside the training data, the algorithm is told to divide the data into N clusters.

The algorithm itself will fill in the labels. Non-negative matrix factorisation is an

example of a clustering algorithm where the input (in this case a mixture of two

speakers) is given to an algorithm to separate it into N clusters where N is the

number of speakers.

2.2.3 Short-time Fourier transform

The short-time Fourier transform (STFT) [14, 15] transforms a signal from the time

domain to the frequency domain (see Equation 2.4). By definition, it assumes that

the signal is continuous. However, it cuts the signal up in overlapping blocks of a

specific length (m, also called the window size). These blocks are first multiplied with

a window (w(m)) which is, in essence, a filter. The outcome of this multiplication is

passed through the discrete-time Fourier transform [15] to create a complex signal.

This changes the signal from amplitude over time to frequency over time where at

each timestep the signal is divided into a number of frequency bins. These frequency

bins determine the number of steps in the sampling frequency, e.g. if the sample

frequency is 16 kHz and there are 1024 frequency bins then there are 1024 steps

between 0 and 16,000, therefore the width of each bin is between 15 and 16 Hz.

X = STFT (x) = DTFT (x(n−m)w(m)) (2.4)

The advantage of the STFT is that it is invertible, meaning that it is possible

to go from the frequency domain back to the time domain using the inverse STFT

(iSTFT). This advantage can be exploited by using the STFT for noise reduction.

In this case, the signal is passed through the STFT after which a threshold function

is applied to the frequency bins thus removing the noise. The last step is to pass

the signal through the iSTFT. However, this method is dependent on the threshold

and can create artefacts when the wrong threshold is chosen.

12
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Window Function

Window functions are used within the STFT to act as a filter, thus creating a

windowed sequence. The window functions each have their own characteristics which

makes them suited to different situations. The Hann (or Hanning) window (see

Figure 2.1) [16] function is often used with speech because it deals better with the

boundary conditions and reduces the influence of artefacts. However, the Hann

window does introduce some smearing of frequencies. The Hamming window (see

Figure 2.2) [16] is very similar to the Hann window with a difference in the ends

not going down to zero. This results in a slight discontinuity in the signal. On the

other hand, the Hamming window has a bigger difference between the main and side

lobe in the frequency domain. This results in a better cancellation of the nearest

side lobe but the window does a worse job at cancelling the others. Looking at the

the difference in side lobes we see that the Barlett, Bartlett-Hann and triangular

windows (see Figures 2.3, 2.4 and 2.5) [16] are very similar to that of the Hann

window. The Blackman window (see Figure 2.6) has a bigger difference between the

main and side lobes meaning that it deals better with the smearing of frequencies.
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Figure 2.1: Hann window and its frequency response
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Figure 2.2: Hamming window and its frequency response
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Figure 2.3: Bartlett window and its frequency response
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Figure 2.4: Bartlett-Hann window and its frequency response
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Figure 2.5: Triangular window and its frequency response
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Figure 2.6: Blackman window and its frequency response

2.2.4 Cost function

Cost functions are convex (or concave) functions [17] (see Figure 2.7) that describe

the difference between a true distribution (A) and an approximated version (B) of the

true distribution (D(A||B)). The lowest point in the convex function corresponds

to both distributions being the same. Cost functions can be divided into two cat-

egories, divergences and distances. Divergences (for example the Kullback-Leibler

divergence) are described as pseudo-distances because they are not symmetric mean-

ing that D(A||B) is not the same as D(B||A) and it does not satisfy the triangle

inequality. On the other hand, distance measurements (for example Wasserstein

distance) are symmetric and satisfy the triangle inequality. The triangle inequality

[18] states that the sum of the lengths of any two sides is greater than the length of

the remaining side. In the case of a cost function measuring the difference between

a prior and posterior distribution, the triangle inequality states that the difference

needs to be less than the sum of the individual updates. For example, the cost of a

process that starts with a prior distribution p(x) and goes to a posterior distribu-
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Figure 2.7: The second derivative of the Cauchy distance (d(y|x), see Equation 2.16)
plotted with the Euclidean, Kullback-Leibler and Itakura-Saito divergences (d(y|x),
see Equations 2.8 to 2.11). All measurements assume that y=1.

tion p(x|I) is measured. When the posterior distribution is simultaneously updated

with two parts of new information y1 and y2, creating the new posterior distribu-

tion p(x|y1, y2, I) then the difference between the old posterior and the new one

needs to be less than the sum of the individual updates D(p(x|y1, I)||p(x|I) and

D(p(x|y2, y1, I)||p(x|y1, I)) to satisfy the inequality (see Equation 2.5).

D(p(x|y1, y2, I)||p(x|I)) < D(p(x|y2, y1, I)||p(x|y1, I)) +D(p(x|y1, I)||p(x|I) (2.5)

This section concentrates on the β-divergence which is a special class of diver-

gences containing the squared Euclidean, Kullback-Leibler [19] and Itakura-Saito

[20] divergences which are used for non-negative matrix factorisation. Note that the

squared Euclidean distance differs from the Euclidean distance in that the latter is

symmetric and the former is considered a divergence because of the triangle inequal-

ity. Another cost function that is described is the Cauchy divergence which is used

for weighted error prediction.

β-divergence

One of the, if not the main, reasons for using the β-divergence [21, 22] is its ro-

bustness to outliers. The β-divergence (see Equations 2.6 and 2.8) is a subset
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of the Bregman distances [23, 24] and includes the following divergence measure-

ments: the squared Euclidean distance (see Equation 2.9), Kullback-Leibler (KL, see

Equation 2.10) divergence and the Itakura-Saito (IS, see Equation 2.11) divergence.

Where in Equations 2.6 and 2.8 p(x) is the prior distribution, q(x) is the posterior

distribution and β is a real number. Equation 2.6 is said to be continuous for β = 0

and β = 1 (see Equation 2.7). Therefore, Equation 2.8 includes the special cases for

β = 0 and β = 1 which are the Itakura-Saito and the Kullback-Leibler divergences

respectively.

Dβ
B(P ||Q) =

∫ (
p(x)

p(x)β−1 − q(x)β−1

β − 1
− p(x)β − q(x)β

β

)
dµ(x) (2.6)

∀β0 ∈ R

∀p, q ∈ R+

Dβ0
B (P ||Q) =

[
lim
β0→β

Dβ0
B (P ||Q)

] (2.7)

Dβ
B(P ||Q) =


1

β(β−1)

∫ (
pβ(x) + (β − 1)q(x)β − βp(x)q(x)β−1

)
dµ(x)β 6= 0, 1∫ (

p(x)log p(x)
q(x)
− p(x) + q(x)

)
dµ(x)β = 1∫ (

log q(x)
p(x)

+ p(x)
q(x)
− 1
)
dµ(x)β = 0

(2.8)

dEUC(x|y) =
1

2
(x− y)2 (2.9)

dKL(x|y) = xlog
x

y
− x+ y (2.10)

dIS(x|y) =
x

y
− logx

y
− 1 (2.11)

It has all of the Bregman divergences properties:

Convexity. The second derivative of the function is greater than zero for all y

where d2

dx2
f(x, y) ≥ 0 ∀ x, y ∈ Rn
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Linearity. The function is linear with respect to its negative coefficients.

Duality. The function has a convex conjugate.

Being part of the Bregman distances also means that the set is one on one in

correspondence to that of the regular exponential distributions. The IS divergence is

in correspondence with a gamma distribution and the KL divergence with a Poisson

distribution. The Gaussian distribution corresponds with a squared Euclidean dis-

tance. The reason for the β-divergence being a subset has to do with the Bregman

generation function, which cannot create the Itakura-Saito or the Kullback-Leibler

divergences. This is only the case when the Bregman generation function is a Leg-

endre type, meaning that the function is locally bounded and strictly convex.

The β parameter defines which divergence is used and also defines on which data

values the divergence relies. Choosing the optimal parameter for β depends on the

characteristics of the data. When β > 0, the factorisation of the data relies more on

the largest data values and less precision is expected in the estimation of the small

values. When β < 0 the opposite happens.

In the following three divergences (see Figure 2.8) concentrate on two concepts:

statistical efficiency and statistical robustness (see Box et al. [25]). When a diver-

gence is efficient it means that the outliers have less influence on the result which

allows the divergence to produce more precise estimates of the similarity between

two probability distributions. Robust divergences divert less (lower bias) from the

mean of the distributions, meaning that outliers have less influence on the result.

Both these concepts are dependent on the weights given to the values of the two

distributions.

Squared Euclidean

The squared Euclidean (β = 2) distance is based on the Euclidean distance how-

ever, it does not satisfy the triangle inequality. Therefore, it is considered to be a

divergence and not a distance. This cost function is more robust to outliers however

it is less efficient meaning that severe outliers have a greater influence on the end

result thus creating less precise estimates of the parameters of the underlying linear

relationship.
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Figure 2.8: The Euclidean, Kullback-Leibler and Itakura-Saito divergences d(y|x)
(see Equations 2.8 to 2.11) assuming that y=1.

Kullback-Leibler

The KL (β = 1) is less robust and more efficient with outliers resulting in a cost

functions that treats outliers equally in its calculations resulting in a lower influence

of severe outliers on the result.

Itakura-Saito

The IS-divergence (β = 0) is the only one of the β-divergences that is scale invariant

and show similar robustness and efficiency as the KL divergence. Note that this is

different from the robustness and efficiency describe for the KL divergence and the

squared Euclidean distance. Scale invariance means that D(αA||αB) = D(A||B).

Cauchy divergence

The complex Cauchy distribution is part of the complex symmetric α-stable (SαS)

distributions. This distribution is best defined by its characteristic function ψ(ω) =

ejδω−γ|ω|
α
, where α is the characteristic exponent restricted to the values 0 < α ≤ 2,

δ runs from −∞ < δ <∞, this is the location parameter and γ > 0 is the dispersion

of the distribution.

The limit of α is important because it influences the characteristic function.

When α < 0, the characteristic function becomes e|k|. As |k| goes to ∞, the char-

acteristic function goes to unity because it goes to e0. This characteristic function
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cannot be integrated and the Fourier transform cannot be used to get the probabil-

ity density function. In the other case, when α > 2, the inverse Fourier transform

cannot be proven to be non-negative, however the probability density function is

non-negative. There are two important special cases of (SαS) when α is 1 or 2,

namely the Cauchy (α = 1) and the Gaussian (α = 2) distributions.

The multivariate SαS distributions, to which the complex Cauchy distribution

belongs, is used for modelling signals among other things. The distribution is

isotropic with respect to the point (δ1, δ2).

A complex random variable X = X1 + jX2 is considered to be SαS when its

parts (X1 and iX2) are jointly SαS and the characteristic function from which it

was drawn can be written as Equation 2.12.

ψ(ω) == Ei<[ωX∗] = Ei(ω1X1+ω2X2) = exp

[
−
∫
S2

|ω1x1 + ω2x2|αdΓX1,X2(x1, x2)

]
(2.12)

In Equation 2.12 ω is ω1 +jω2, < is the real part operator, and ΓX1,X2 is a symmetric

measure on the unit sphere S2, called the spectral measure of the random variable X.

A complex random variable X = X1 + jX2 is isotropic if and only if (X1, X2) has a

uniform spectral measure. Several complex random variables are jointly SαS if their

real and imaginary parts are jointly SαS. In the theory of second-order processes,

the concept of covariance plays an important role in problems of linear prediction,

filtering and smoothing of for example statistical signal processing problems.

As a cost function the Cauchy divergence is non-convex in the sense that the

second derivative (see Equation 2.16) is not greater than zero for the whole domain

(see Figure 2.9).

Pγ(x1, x2) =
γ

2π(x2
1 + x2

2 + γ2)3/2
(2.13)

Dcauchy(x, y) =
3

2
log(x2 + y2)− log(y) (2.14)

d

dx
Dcauchy(x, y) =

3x

(x2 + y2)
(2.15)

d2

dx2
Dcauchy(x, y) =

3(−x2 + y2)

(x2 + y2)2
(2.16)
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Figure 2.9: The second derivative of the Cauchy distance (d(y|x), see Equation 2.16)
with the assumption that y=1.

Gaussian distribution

The Gaussian distribution is another case of the SαS distributions (see Section

2.2.4). This distribution can be used to model the speech signal and to remove

reverberation from it [26]. However, this is the case for short segments of speech (<

2.5 ms). When the speech segments are smaller than 5 ms, they can be modelled by

a multivariate Gaussian distribution [27]. The modelling of the speech works in the

time domain and can also be used to model noise. Making it useful for developing

new algorithms, but the variance of the Gaussian distribution needs to be chosen

carefully to be able to model the speech. Therefore, both Gazor et al. [27] and

Usman et al. [28] recommend using the Laplacian distribution to model the speech

signals. This distribution gives a better prediction of the speech signal and its STFT

coefficients.

2.3 Dereverberation

2.3.1 Room impulse Response

When a sound signal travels from the speaker to the listener, it interacts with the

environment. In an enclosed space, for example an office or a workshop, the signal

22



Chapter 2: Background

bounces off the walls and the ceiling. This interaction is described by the room

impulse response (RIR) in the time domain and the frequency response function

(FRF) in the frequency domain. The resulting speech (y in the time domain or Y in

the frequency domain) is described as the interaction between these functions and

the clean speech (x in the time domain or X in the frequency domain). In the time

domain this interaction is described by convolution (see Equation 2.17) and in the

frequency domain this is described by multiplication (see Equation 2.18).

y(t) = x(t) ~RIR(t) (2.17)

Y (f) = X(f)FRF (f) (2.18)

Image method

The image method is a technique for calculating the room impulse response. It

models a speaker in a room as a point source in a rectangular cavity. The method

described by Allen et al. [29] starts off by assuming the speaker is in free space (i.e.

no walls present) where the pressure wave emitted by the speaker is of the form

described by Equation 2.19.

P (ω, Ls, Lm) =
exp(iω(R/v − t))

4πR
(2.19)

Figure 2.10: A single source in an 2D environment without walls as described by
Equation 2.19. In this case the sound is not reflected by any surface.
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When a rigid wall (i.e. a wall with zero normal velocity) is present, the boundary

condition given by this wall is represented by placing an image symmetrically on

the far side of the wall. The image in this case represents the reflection produced

by the wall. This image varies by structure and surface of the wall. To include the

image in the equation two distances are defined, one from the microphone to the

source (Rsou) and one to the image (Rimg). This expands Equation 2.19 to 2.20 and

assumes that the wall is placed at x = 0 and where X represents the location of the

source (x, y, z) and X ′ represents the microphone location (x′, y′, z′).

P (ω,X,X ′) =

[
exp(i(ω/v)Rimg)

4πRimg

+
exp(i(ω/v)Rsou)

4πRsou

]

R2
img = (x+ x′)2 + (y + y′)2 + (z + z′)2

R2
sou = (x− x′)2 + (y + y′)2 + (z + z′)2

(2.20)

Figure 2.11: A single source in an 2D environment with one wall. The sound is
reflected back from the wall towards the source as described by Equation 2.20.
These reflections show up as waves moving back to the sound source.

Expanding this to 6 walls (representing a boxed room) increases the complexity

because each image in itself is imaged to account for the reflections bouncing off

the other walls (see Equation 2.21). In Equation 2.21, the Rp vector represents

the eight permutation vectors and Rr the room dimensions and the influence of the

dimensions (in the form of the integer variables n, l, m).
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Figure 2.12: A single source in an 2D environment with four walls. The sound is
reflecting back from the four walls towards the source (see Equation 2.21). These
reflections show up as waves moving back to the sound source.

P (ω,X,X ′) =
8∑
p=1

∞∑
r=−∞

exp(i(ω/v)|Rp +Rr|)
4π|Rp +Rr|

exp(−iωt)

Rp = (x± x′, y ± y′, z ± z′)

Rr = 2(nLx, lLy,mLz)

(2.21)

When the Fourier transform is applied to Equation 2.21, the room impulse re-

sponse is found (see Equation 2.22).

p(t,X,X ′) =
8∑
p=1

∞∑
r=−∞

δ(t− (|Rp +Rr|/v))

4π|Rp +Rr|
(2.22)

The method for rigid walls is expanded to non-rigid walls by assuming the ap-

proximate point image model (see Equation 2.22) and an angle independent wall

reflection coefficient β. These assumptions expand Equation 2.22 to include the

effects of angle independent wall absorption (see Equation 2.23).
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P (t,X,X ′) =
8∑
p=1

∞∑
r=−∞

β|n−q|x1
β|n|x2 β

|l−j|
y1

β|l|y2β
|m−k|
z1

β|m|z2

×δ(t− (|Rp +Rr|/v))

4π|Rp +Rr|

Rp = (x− x′ + 2qx′, y − y′ + 2jy, z − z′ + 2kz)

(2.23)

β represents the pressure reflection coefficients, subscript 1 refers to the adjacent

walls and subscript 2 to the opposing wall (where j, k, l, m, n, q describe the influence

of the walls). The reflection coefficient β can be calculated using the Sabine energy

absorption coefficient α (see Equation 2.24).

RT60 = 0.161V/Sᾱ

α = 1− β2

(2.24)

Reverberation through ray-tracing

Another more computationally expensive method for calculating the reverberation is

ray-tracing. This method is currently used in the games industry and has an advan-

tage in that it includes the influence of late reflections. Game engines such as Unity

and rendering programmes such as Blender use ray-tracing for the calculation of the

late reflections. An example of this is iSound [30] which uses specular reflections

and edge diffraction to calculate the contribution paths of each ray emitted from

the sound source. The hybrid acoustic model [31] combines the image method and

a ray tracer which uses three different transforms (Finite difference time domain,

beam tracing and acoustic radiance transfer) to calculate the reverberation. The

finite difference time domain method is used for the low frequency modelling, beam

tracing for low-order reflections and acoustic radiance transfer for late reflections.

26



Chapter 2: Background

2.3.2 Correlation-based dereverberation method

Reverberant speech is the result of clear speech coming from the speaker’s mouth

and reflections coming from the environment (see Section 2.3.1). The frequency

response function (FRF) describes this interaction in the frequency domain and can

be approximated by calculating the cross-correlation between the nonreverberant

signal (Y) and the reverberant signal (X). Using the correlation between microphones

is a computationally inexpensive way of determining the dereverberant signal. This

means that can be easily run in real-time. The trade-off is that the technique is

not adaptable, meaning the calculation needs to be correct the first time it runs and

does not adapt when a speaker is moving. Instead, recalculation is needed to build a

new mask. However, this one-shot approach is not as accurate as learning methods

that are able to use a delayed signal.

There are three ways of calculating the cross-correlation between the nonrever-

berant and the reverberant signals. Two of these (H1 and H2) [32] assume that

there is noise in either the reverberant (in the case of H1, see Equation 2.26) or

nonreverberant signal (in the case of H2, see Equation 2.27). The H1 algorithm

will give an underestimation of the dereverberation mask when there is noise on the

nonreverberant signal, whereas H2 will give an overestimation when there is noise

on the reverberant signal.

Gxx = XXH

Gxy = XY H

Gyx = Y XH

Gyy = Y Y H

(2.25)

H1 = GxyGyy
−1 (2.26)

H2 = GxxGyx
−1 (2.27)
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The Hs algorithm (see Equation 2.28) uses a positive scaling factor s for balancing

the reverberant and nonreverberant signals and accounting for noise present in the

two signals.

Hs =
s2Gxx −Gyy +

√
(s2Gxx −Gyy)2 + 4s2|Gyx|2

2s2Gyx

(2.28)

A method for calculating Hs is described by Leclère et al. [32] and is computa-

tionally more expensive because of calculating the eigenvalues and using singular-

value decomposition to build the mask. However, this technique accounts for noise

in both the input and output signals, resulting in a signal that has less distortion

than the results coming from the other two correlation techniques.

Leclère et al. [32] use the cross-correlation of the two signals and the auto-

correlation of each to build a cross-correlation matrix (see Equations 2.25 and 2.29).

Gxyxy =

Gxx Gxy

Gyx Gyy

 (2.29)

Taking the eigenvalue-decomposition of this matrix (Gxyxy in Equation 2.29) and

discarding the smallest eigenvalues (λM) but keeping the eigenvectors (U and V ),

builds a mask that removes the reverberation from the original signal (see Equa-

tion 2.30). The λ smallest eigenvalues describe noise within the signal and therefore

can be omitted. In addition to this, two scaling factors (sx and sy) are introduced

that allows the algorithm to account for noise in both the nonreverberant and re-

verberant signal (see Equation 2.32).

Gxyxy =

Ux Vx

Uy Vy

λN 0

0 λM

Ux Vx

Uy Vy

H (2.30)

Gxyxy =

U
V

CDH (2.31)

Hs =
1

sx
UnVn

−1sy (2.32)

The eigenvalue decomposition is by definition defined for square matrices. How-
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ever, the input to the algorithm is not a square matrix. This means using the

singular value decomposition (SVD) (see Equation 2.31) of the algorithm. SVD

produces four matrices of which U and V are the left singular vectors, C contains

the singular values and DH the right singular vectors. The Hs filter uses the left

singular matrices with the first n singular values (see Equation 2.32). The amount

of singular values used is determined empirically.

Is is assumed that the singular values in matrix C are in decreasing order, where

the first value describes the biggest contribution to the data and the last value the

smallest. With this assumption the data can be reconstructed using a percentage

of the singular values and by discarding the smallest singular values remove the

reverberation. The dereverberant signal Xapprox is subsequently approximated by

multiplying the affected signal Y with the inverse of the approximated reverberation

Hs (see Equation 2.33).

Xapprox = Y Hs
−1 (2.33)

2.3.3 Weighted prediction error

Weighted prediction error (WPE) [26] is a multichannel technique that assumes that

the speech signal is nonstationary and has short time Gaussianity. Each short time

frame can be modelled by a stationary univariate Gaussian process with zero mean

and covariance matrix Rt = Es1,st. Similarly, the desired signal is also a Gaussian

process. This gives a marginal pdf of dt as p(dt) = N(dt; 0, σ2) where σ2 is E|dt|2.

The σ2 describes the time-varying variance which is stationary for a short time frame

and varies over different frames, meaning that σ2 is the varying average of a time

frame.

The second assumption WPE makes is that there is only one speaker and limited

background noise. Under this assumption the dereverberant signal is calculated from

the prediction errors of one of the M-channels, meaning that only one channel has

to be estimated instead of all channels.

To find the desired signal, WPE employs a log likelihood function where the goal

is to find the optimal set of parameters that maximise the log likelihood equation.

These parameters are found by calculating the covariance matrix of the delayed input
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signal (Φ) and multiplying this with the covariance vector of the delayed and original

input signal (φ), this results in c̄ (see Equation 2.34). The optimal parameters

are then found by alternately updating c̄ and σ2. The technique calculates the

regression vector that created the resulting signal. In doing this, the technique also

approximates the nonreverberant signal which multiplied with the regression vector

gives the reverberant signal.

σ2 =
1

T

T∑
|dt|2

Φ =
xt−Dx

T
t−D

σ2

φ =
(xt−Dx

(1)
t )T

σ2

c̄t = Φφ

(2.34)

2.3.4 Multiple Input Multiple Output WPE

Multiple input multiple output (MIMO) WPE [33] is a version of WPE which pro-

duces the same number of outgoing channels as incoming channels and is based

on the principle of WPE. However, it changes the assumption of having only one

source in the room to multiple speakers. MIMO WPE preserves the time-difference

of arrival (TDoA) of the sources and microphones making it suitable for speaker

localisation and tracking. This means that the data can be passed through this

algorithm and then be used for speaker tracking or separation to improve the accu-

racy of speech recognisers. The algorithm uses the Hadamard-Fischer (HF) mutual

correlation which is applied to multivariate random variables. The HF mutual cor-

relation assumes that U1, · · · , Un are complex-valued multivariate random vectors

and U is the vector in which these are stacked as [UT
1 , · · · , UT

N ]T . This correlation

between these vectors is described in Equation 2.35.

CHF (U1, · · · , UN) =
1

N
(
N∑
n=1

log(detE(UnUn
T ))− log(detE(UUT ))) (2.35)
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The method works under the assumption that a positive or zero number means that

all of the multivariate random vectors are mutually uncorrelated. This correlation

method is used in WPE to determine the dereverberated signal.

The main difference between WPE and MIMO WPE is the calculation of the

spatial correlation matrix and the usage of the variation. While WPE uses the

variation to calculate the sample correlation matrix (Φ) and the sample correlation

vector (φ), MIMO WPE uses the spatial correlation matrix (∆). This ensures that

MIMO WPE can use the information from all microphones instead of one, creating a

more robust approximation of the dereverberant signal. In addition to this, using a

spatial correlation matrix allows the algorithm to calculate the dereverberant signal

for each microphone and produce a multichannel output.

∆ = E(dtd
+
t )

Φ = xt−D∆xt−D
T

φ = xt−D∆xt
T

c̄t = Φφ

(2.36)

2.4 Speaker separation

2.4.1 Ideal binary filter

Using an ideal binary filter (IBF) or ideal binary mask for speaker separation assumes

that there are two sources of speech which can be combined at different volumes

(measured in dB). The IBF assumes that both sources are known (i.e. a ground truth

of each individual source is available) and describes the ideal case of separation (by

subtracting one ground truth from the mixture). The algorithm works by building

a binary mask where the number 1 means that this time-frequency (t-f) bin is used

and 0 means that this t-f bin is ignored (see Equation 2.37, where X is the mixture,

S one of the two sources and LC a local criterion measured in dB). Knowing the

second source allows this mask to be tailored to remove this source from the mixture.

The IBF is used to see how well the different sources can be separated and to create
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Figure 2.13: Nonnegative matrix factorisation [35]

an upper bound for the algorithms.

IBM(t, f) =

1 if X(t,f) - S(t,f) > LC,

0 otherwise.

(2.37)

2.4.2 Non-negative matrix factorisation

Non-negative matrix factorisation (NMF) [34] is an unsupervised clustering tech-

nique that tries to approximate its input by multiplying two randomly initialised

matrices together (see Figure 2.13). These two matrices are updated every iteration

to create a new approximation. By multiplying columns and rows of the two ma-

trices, a mask is approximated for filtering out sources in the input using a Wiener

filter (see Equation 2.38, where Vs and Xs are the source s of the approximation and

original mixture respectively). With NMF, the cost function influences the update

rules and how fast the algorithm converges. In addition to the cost function NMF

can be expanded with sparsity, convolution and direction of arrival.

Xs =
Vs
V
X (2.38)

The input to an NMF algorithm needs to be non-negative for the technique to

work. This technique is applied to speech data and in particular, the short-time

Fourier transform (STFT) of the speech data. The squared magnitude of the STFT

applied to the raw speech data (V = |X|2) is used as input to the technique (the

size of V is F × T ).

V ≈ Ṽ = WH (2.39)

NMF multiplies two matrices (W and H) together to approximate the input (see

Equation 2.39). The size of W is F×K, where K is the number of sources to extract
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from the input and the size of H is K ×T . Multiplying W and H together produces

Ṽ . The W matrix is seen as a feature matrix for each source and the H matrix is seen

as the activation matrix for each source. This means that multiplying one column

of W and one row of H results in the activation of the features for one source and

thus the approximation of the one source (Ṽs). To get a good approximation, NMF

is run for a number of iterations. After each iteration the difference between the

input and the approximation is calculated by the cost function (see Equation 2.40)

and the updates are modified accordingly until convergence of the cost function is

reached.

D(V ||Ṽ ) =
F∑
f=1

N∑
n=1

d([V ]fn|[Ṽ ]fn) (2.40)

W = W
((WH)β−2 × V )HT

(WH)β−1HT
(2.41)

H = H
W T ((WH)β−2 × V )

W T (WH)β−1
(2.42)

The β parameter in Equations 2.41 and 2.42 defines which cost function from

the β divergence is used and adapts the update rules accordingly. When β = 2 the

squared Euclidean distance is used, if β = 1 KL divergence and if β = 0, the IS

divergence is used.

In addition to the cost functions, four different versions of NMF are described

here: sparse, convolution, direction of arrival (DoA) and time-difference of arrival

(TDoA). Note that, the latter two are multichannel techniques meaning that they

are only usable when working with multiple microphones and require the distance

between microphones.

Sparse NMF

The sparse NMF [36, 37] adds a parameter λ to the update rule for the H matrix

- this ensures that features are not lost by multiplying by 0 for the activation (see

Equation 2.43). With sparsity, the W and H matrices are overcomplete, meaning

that the dimensionality of the factorisation space is bigger than the effective dimen-

sionality of the input space. This results in fewer items in the W and H matrices
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being needed to represent the separated signals. However, it takes longer to reach

this overcompletion by the nature of the signals. Sparsity is only enforced when

λ > 0.

H = H
W T ((WH)β−2 × V )

W T (WH)β−1 + λ
(2.43)

Convolution NMF

For convolution [38], Ṽ is calculated differently, each feature W is multiplied with

a shifted version of H by t timesteps (see Equation 2.44). Similarly, it changes the

update rules for updating the W and H matrices (see Equation 2.45 and 2.46). Con-

volution is better at dealing with noise because it averages over different timesteps

meaning that some of the noise will be removed because it is not present at all

the timesteps. Similarly, it will be able to deal with overlapping speech because by

taking an average there is a higher chance of including timesteps where there is only

one speaker present.

Ṽ =
T∑
t=0

Wt

→t

H (2.44)

W = W

→t

H[ V
(WH)β−2 ]HT

(WH)β−1HT
(2.45)

H = H
W T

→t

H[ V
(WH)β−2 ]

W T (WH)β−1 + λ
(2.46)

Direction of arrival NMF

Direction of arrival is combined with NMF into a version that uses the difference

of angle of arrival at which the sound arrives at the microphones. The research by

Stein [7] describes the usage of three microphones. In the case of NMF, the direction

of arrival (DW ) is seen as extra features and is multiplied each time with W (see

Equation 2.48). Whereas for the NTF version, the matrix D is approximated using

the least mean squares method of the location and angles of the microphones (see

Equation 2.47).

V ≈ Ṽ = DWH (2.47)
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Figure 2.14: Example of the polar plot of a directional microphone showing the
angles where the microphone can receive the signal from. The best response is given
by a source in front of the microphone (90 degrees) and the worst response by a
source behind the microphone (270 degrees). These angles are used to determine
the look directions for Equation 2.50

W = DWW
((WH)β−2V )HT

(WH)β−1HT
(2.48)

Information in the form of a spatial covariance matrix, which is said to describe

the time-difference of arrival (TDoA), can also be added to the NMF algorithm.

However, this makes NMF more complex than when adding the direction of arrival

(DoA) information.

Time-difference of arrival NTF

The spatial covariance matrix (SCM) contains the phase difference for all the coor-

dinates, in a 2D plane, that are within the field of view of the microphone. This field

of view is described as a polar pattern that shows under which angle, between source

and microphone, the microphone still can receive sound from the source (see Figure

2.14). Each of the coordinates within the SCM is described by a specific azimuth

and elevation and shows the mixing of signals by phase and magnitude differences.

The specific combination of azimuth and elevation describes a look direction.

This information is stored in a spatial covariance matrix (A) which describes

the mixing of signals by phase and magnitude differences and is multiplied with
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Figure 2.15: Example of the look directions (τ) showing the angles under which the
time difference of arrival (ko) is calculated (see Equation 2.50). The different colours
represent the individual look directions.

the estimation of the sources (see Equation 2.49). The size of the matrix A is

O × F ×M ×M .

V ≈ SṼ = AWH (2.49)

Nikunen et al. [39] use the TDoA to calculate the SCM first, the look directions

(τ) between microphone pairs are calculated. First the TDoA for each look direction

(ko) and each microphone (τn) is calculated (see Equation 2.50) with respect to the

array centre point (c) using the speed of sound (v). From this, it is possible to

calculate the TDoA between microphone pairs (τnp) with the same look direction

(see Equation 2.51).

τn(ko) =
−kTo (n− c)

v
=
−kTo n
v

(2.50)

τnp(ko) = τn(ko)− τp(ko) (2.51)

With knowing the TDoA for each microphone pair, the phase difference per

frequency can be calculated (see Equation 2.52). For this it is important to know

the sample frequency and the number of STFT bins.
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[Ao,f ]np = exp(i2πfiτnp(ko))

fi = (i− 1)Fs/F

(2.52)

This now gives an approximation of the location of the speaker which can be used to

approximate the mixture. This is combined with a direction weight (Q) of the size K

× O to cluster the NMF components (see Equation 2.55). N.B. Xf,n is determined

by Equations 2.53 and 2.54 to create a non-negative input to the algorithm.

x̂f,n = [|xf,n,1|1/2sign(xf,n,1), . . . , |xf,n,M |1/2sign(xf,n,M)]T (2.53)

Xf,n = x̂f,nx̂f,n
H (2.54)

Xf,n ≈ Vf,n =
K∑
k=1

O∑
o=1

Ao,fqk,owf,khk,n (2.55)

After the first approximation of the SCM (A), it will be updated to approximate the

mixture better. For this first the error between the approximation and the original

mixture is used (see Equation 2.56). This combined with the directional weight, the

feature matrix and the approximation of the mixture to create an update for the

SCM (see Equation 2.57).

Ef,n = Xf,n − Vf,n (2.56)

Âo,f ← Ao,f

[∑
n,k

qk,owf,kvf,n +
∑
n,k

qk,owf,kEf,n

]
(2.57)

Within the calculation of the SCM the singular value decomposition (SVD) is

used to determine the eigenvalues of the SCM and to remove any negative eigenvalues

(see Equation 2.58). After the eigenvalues are determined and the phase of the signal

is added to the SCM (see Equation 2.59), it needs to be renormalised by dividing it

by the Frobenius norm of the updated matrix (see Equation 2.60).
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Âo,f ← V D̂V H (2.58)

Âo,f ← |Âo,f | exp(i arg(Af,n)) (2.59)

Ao,f ←
Âo,f

||Âo,f ||F
(2.60)

For updating the Q, W, and H matrices (see Equations 2.61 to 2.63), the trace

between the SCM and error is used. This error is the difference between the original

mixture and the approximation at each time step and each frequency. This is not

the result of the cost function, which is a single number. The trace is combined

with the other matrices to build a new approximation, depending on the matrix

being updated two of the following Q, W or H as well as the approximation are

used. For example, for updating the Q matrix the trace is multiplied with the W

and H matrices and divided by the multiplication of the W, H and V matrices (see

Equation 2.61). This makes the new approximation of Q and later on the new

approximation of the mixture closer to the original mixture. However, the result of

this multiplication is in the range of -1 to 1, which means that certain items result

in being negative. This is not allowed in NMF therefore 1 is added to the result of

the division to make sure that all items stay positive.

qk,o ← qk,o

(
1 +

∑
f,nwf,khk,ntr(Ef,nAo,f )∑

f,nwf,khk,nvf,n

)
(2.61)

wf,k ← wf,k

(
1 +

∑
n,o qk,ohk,ntr(Ef,nAo,f )∑

n,j qk,ohk,nvf,n

)
(2.62)

hk,n ← hk,n

(
1 +

∑
f,o qk,owf,ktr(Ef,nAo,f )∑

f,s qk,owf,kvf,n

)
(2.63)

These three matrices need to be normalised using first the square root of the

sum of the activation to normalise W and H (see Equation 2.64). Followed by the

square root of the direction weights which normalises Q and W (see Equation 2.65).

The latter matrix is normalised twice because it has an effect on both matrices (Q
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and H). The normalisation ensures the the respective matrices and the resulting

approximation is in the same range as the original mixture.

âk =

(
K∑
k=1

h2
k,n

)1/2

hk,n ←
hk,n
âk

wf,k ← wf,kâk

(2.64)

b̂k =

(
O∑
o=1

q2
k,o

)1/2

qk,o ←
qk,o

b̂k

wf,k ← wf,kb̂k

(2.65)

To separate the sources in this algorithm a clustering algorithm (k-means) is

employed. Its outcome (B) is multiplied with the Q, W and H matrices to form the

separated sources (see Equation 2.66). The number of sources is equal to the number

of cluster that the clustering algorithm uses. This algorithm gives the matrix b which

represents to which cluster the spatial weight belong. In this case x is the mixture

that has not been modified for the input meaning that is not modified by Equations

2.53 and 2.54.

ys,f,n = xf,n

∑
k,o bs,kqk,owf,khk,n∑
s,k,o bs,kqk,owf,khk,n

(2.66)

Covariance NTF

This is however not the only way to calculate the SCM. A different way is to use

the cross-correlation between microphones [38, 40]. This gives the location of the

different speakers and also takes into account the reverberation coming from dif-

ferent parts of the room. The location is determined by the highest values in the
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covariance whereas the lower values represent the the reverberation coming from

the room. Using a correlation technique to determine the SCM and the FRF, this

method is similar to the WPE method discussed in Section 2.3.3. It accounts for

the reverberation of the environment making the resulting signal free from rever-

beration. This should make it easier for the speech recogniser to determine when a

speaker finishes and what the speaker has said.

The calculation of the spectral covariance and the spatial covariance matrices

are dependent on each other. First the algorithm creates a non-negative version of

the input (see Equation 2.67), this is done instead of the magnitude power spec-

trum which removes the phase information of the signal (i.e. removes the imaginary

component and thus removing the ability to recover the phase information). This

non-negative version of the input is used in determining the spatial covariance ma-

trix.

Σ̂x = xxH (2.67)

For the spectral covariance matrix, first the mixture needs to be transformed to

a matrix of the size M × S × F × N (see Equation 2.68). Now there is a mixture

present per source and per microphone to use for the spectral covariance matrix

where the speakers have a different spectral response. This makes it easier to recog-

nise the dominant (or loudest) features in the spectrum which should correspond to

the dominant speaker for that microphone.

Σs = diag
(

[v1,fn, . . . , v1,fn︸ ︷︷ ︸
M times

, v2,fn, . . . , v2,fn︸ ︷︷ ︸
M times

, . . . , vJ,fn, . . . , vS,fn︸ ︷︷ ︸
M times

]
)

(2.68)

The next step is to determine the complex approximate mixture which takes into

account the spectral covariance matrix (A) (see Equation 2.69). This equation also

takes into account the noise that is present in the room (in the form of matrix Σn).

Σx = AΣsAH + Σn (2.69)
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Σn = diag(Σx − AΣxs
H − ΣxsA

H + AΣsA
H) (2.70)

To determine the relative error between the complex approximation and the mix-

ture, the algorithm takes into account the spatial covariance matrix (see Equation

2.71).

Ωs = ΣsA
HΣ−1

x (2.71)

The last step in this part of the process; the spectral covariance matrix is calcu-

lated by using the relative error, the non-negative version of the input, the spatial

covariance matrix and the microphone matrix (see Equation 2.72). The latter en-

sures that the information is available per microphone which means it is easier to

determine the dominant source for a microphone.

Σ̂s = ΩsΣ̂xΩs
H + (I − ΩsA)Σs (2.72)

For the spatial covariance matrix, it is needed to determine the cross-correlation

between the original non-negative input and the relative error of the complex ap-

proximation (see Equation 2.73). This cross-correlation takes in to account the noise

that is present in the relative error and shows the strongly correlated components

between the two which can be used to determine the spatial covariance matrix.

To do this, the cross-correlation is divided by the spectral covariance matrix (see

Equation 2.74).

Σ̂xs = Σ̂xΩs
H (2.73)

A =
Σ̂xs

Σ̂s

(2.74)

For the non-negative tensor factorisation part of this algorithm, it is important

to determine the approximation. This is done by multiplying three matrices (Q, W

and H) together (see Equation 2.75).

V =
K∑
k=1

wk ◦ hTk ◦ qk (2.75)
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All three matrices are dependent on the spatial covariance matrix (Σ̂s) which

should be non-negative. The spatial covariance matrix is averaged per microphone

and the only the information from the diagonal is used (see Equation 2.76). These

are the items which the highest correlation with the respective sources and should

therefore be non-negative.

ξs,f,n =
1

M

sM∑
i=(s−1)M+1

Σ̂s(i, i) (2.76)

To update Q, W and H, its respective matrices are used as well as the average of

the spatial covariance matrix and the approximation (see Equations 2.77, 2.78 and

2.79). For example for updating the Q matrix, W, H, ξ and V are multiplied and

divided by W, H and V. This means that the updates are relying on the outcome

of the spatial covariance matrix to determine which source in stronger in which

microphone. Apart from the usage of ξ, the update rule is similar to that of NMF.

qsk ← qsk

(∑
f,nwf,khk,nξs,f,nv

−2
s,f,n∑

f,nwf,khk,nv
−1
s,f,n

)
(2.77)

wfk ← wfk

(∑
s,n hk,nqs,kξs,f,nv

−2
s,f,n∑

s,n hk,nqj,kv
−1
s,f,n

)
(2.78)

hkn ← hkn

(∑
,f wf,kqj,kξs,f,nv

−2
j,f,n∑

j,f wf,kqs,kv
−1
s,f,n

)
(2.79)

All four matrices (A, Q, W and H) need to be normalised to ensure that the

approximation is in the same range as the original mixture (see Equations 2.80, 2.81

and 2.82). First the spatial covariance matrix is normalised and with it also W has

its first normalisation with respect to the SCM (see Equation 2.80).
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A← A

sign(A)

â =

(
M∑
m=1

|A|2
)

A← A

â

W ← Wâ

(2.80)

This is followed by the normalisation of Q and finally the normalisation of H with

respect to W (see Equations 2.80 and 2.81 and 2.82). The W matrix is normalised

3 times to make sure that in the end both W and H are in the same range and these

two matrices have the largest influence on the end result.

b̂k =

(
S∑
s=1

qs,k

)

qk,o ←
qk,o

b̂k

wf,k ← wf,kb̂k

(2.81)

ĉk =

(
K∑
k=1

wf,k

)

hk,n ← hk,nĉk
T

wf,k ← wf,kĉk

(2.82)

As the final step a multichannel Wiener filter is employed to separate the sources

from the mixture (see Equation 2.83). For this filter, the SCM is used to account for

the locations of the speakers and to create a cleaner separation between them. N.B. it

also uses the original mixture that has not been multiplied by a Hermitian transpose

nor does it use the magnitude power spectrum of the mixture. The algorithm
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applies this separation to each microphone individually therefore it gives a result

per microphone per source.

R = AAH

ys,f,n = Rs,f,nVs,f,n

[
S∑
s=1

Rs,f,nVs,f,n

]
−1xf,n

(2.83)

2.4.3 Deep Learning

There are three different deep learning techniques used in this thesis, namely the

deep neural networks (DNN), recurrent neural networks (RNN) and convolution

neural networks (CNN). These three techniques are used as supervised learning

techniques. There are also two popular unsupervised learning techniques, namely

autoencoder (AE) and generative adversarial network (GAN), described. Their

usage is popular for dereverberation but are also used for speaker separation.

Deep neural network

To understand how the three techniques work, it is important to first understand

what a neural network is and how it works. A normal single layer perceptron, which

is a neural network without any hidden layers, works by multiplying the input with

a weights matrix (W) and adding a bias (b) to get an output (see Equation 2.84

and Figure 2.16). A multilayer perceptron (MLP) [41] expands on this by adding a

so-called hidden layer (see Equation 2.85 and Figure 2.17). In this case the input

will be multiplied with a weights matrix (W (1)) and passed through an activation

function (G), for example a sigmoid function. The outcome of this will again be

multiplied with a weights matrix (W (2)) and passed through an activation function

(S) to generate the output. A MLP is an example of a neural network and the more

recently introduced deep neural network, these two definitions generally assume two

or more hidden layers whereas the name MLP is associated with a network with

one hidden layer. The MLP can be expanded to a DNN [17] which has a similar

structure with more hidden layers (see Figure 2.18).
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Figure 2.16: A single layer perceptron [42] which is a schematic representation of
Equation 2.84

Figure 2.17: A multilayer layer perceptron [43] which is a schematic representation
of Equation 2.85

f(x) = WX + b (2.84)

f(x) = S(b(2) +W (2)G(b(1) +W (1)X)) (2.85)

Figure 2.18: A 3 layer deep neural network [44] which expands Equation 2.85
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Recurrent neural network

A recurrent neural network (RNN) [45] is a special case of a neural network with

loops to allow information to persist (see Figure 2.19). This can be thought of

as multiple copies of the same network with the ability to pass information from

one copy to the next. The information that is passed through can be the previous

output of the network in the case of a Jordan network [46] or the previous output

of the hidden layer in the case of an Elman network [47] (see Figure 2.20). Adding

information about the previous input to the current input is particularly useful in

the case of time-series data, where information from the past helps in making a

decision.

Figure 2.19: An unrolled RNN [48] where the information of the hidden layer (layer
A) is being passed to the next cell.
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Figure 2.20: An Elman and Jordan networks [49]. N.B. the recurrent connections
in an Elman network are between the hidden layer (h) and the context layer (c)
whereas in an Jordan network this is between the output layer (o) and the context
layer (c).

RNNs have issues with learning long term dependencies, this has to do with

the exploding and vanishing gradients problems. The exploding gradients problem

refers to the explosion of long term components. This means that there are more

long term components than short term ones.

Pascanu et al. [50] describe the exploding gradients problem as a wall in the

error surface of a recurrent network, where a regular gradient step would jump this

wall and thus disrupt the learning process. Instead, a small-norm step would follow

this wall or fall to a (lower error) valley and starts to follow this to a solution.

The vanishing gradients problem describes the opposite where the long term

components disappear (i.e. go exponentially fast to norm 0) and the network loses

the ability to learn the relation between distant events. Being the opposite of the

exploding gradients problem implies that in this case there are more short term

components than long term ones. According to Bengio et al. [51] and Pascanu et al.

[50] the vanishing gradients problem is an effect of the backpropagation algorithms

that is inefficient for learning long term dependencies in the input/output sequence.
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For the vanishing gradients problem Bengio et al. [51] assume that a neuron has

two attractors x̄ > 0 and −x̄. When this attractor is hyperbolic than the gradients

quickly vanish when t increases making it very difficult to continue training as the

short term dependencies dominate in the weight gradients. Pascanu et al. [50]

suggest that the vanishing gradients problem can be solved with the use of LSTM

units because these units have a recurrent connection to itself (fixed to 1) and learn

the input and output gates. However, this solution does reduce the problem of

exploding gradients but does not solve it. This still exists because it is possible for

the gradient connected to the path through the inpout or forget gates to explode

due to the self-multiplication of matrices (see Greff et al. [52]). One solution for the

exploding gradient problem is gradient thresholding (or clipping [17]) where when

the gradient passes a threshold it will be downscaled (see Pascanu et al. [50]) or by

introducing a L1 or L2 penalty term on the gradients.

Long short-term memory

Figure 2.21: The LSTM chain [48] showing the inner workings of an LSTM cell with
the three gates. The top line being the repeating cell state to which information
can be added. The bottom line being the information passes from the previous cell
(containing input Xt−1) which is combined with new information for the current cell
(the input being Xt)

Long short-term memory (LSTM) networks [53] are capable of learning long-term

dependencies and remembering this information is their strength. A LSTM has four

internal dense layers in the repeating modules opposed to one (see Figure 2.21).

The repeating cell state runs down the chain of LSTM nodes and each node has the

ability to add or remove data from the cell state by using three gates (forget, store
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and output).

The input gate consists of a dense layer followed by a sigmoid activation function.

Firstly non-important information is forgotten - this is determined by the previous

cell state (ft). After this the information from the current input is updated. What

information to update the cell state with is determined by the sigmoid activation

function in the input gate, 1 means completely update this information and 0 means

do not update this information.

The second gate is a forget gate. This decides which to forget from the cell

state. Again, the output of a sigmoid function determines what to remove and what

to keep, 1 means completely keep this information and 0 means completely forget

this information. The output of the sigmoid function is combined with the output

of a tanh function. The latter provides a vector of candidate values that could be

stored in the cell’s memory. The combination of the sigmoid function and the tanh

function is the update for the cell’s state.

The LSTM has an output gate that decides which information to output and

is combined with the output of a different tanh layer which provides the candidate

values. The output is based on the current cell’s state but is a filtered version of

this.

Convolution neural network

The convolution neural network (CNN) [54] contains one or more convolution layers

which are followed by neural network layers (see Figure 2.22). Convolution layers

combine information seen in the data and try to build a pattern that describes this.

It uses the same principle for convolution as described in Section 2.4.2. In addition

to this it uses a max or average pooling layer to sum up the result from convolution.

However, by its design the max pooling can act as a noise suppressor removing the

smaller values coming from convolution.
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Figure 2.22: The architecture of AlexNet [54] showing the different convolution
layers with the size of the kernel (e.g. 11 x 11 in the first layer) forllow by two dense
layers to determine which class the image belongs to.

AutoEncoder

AutoEncoders (AE) [55, 56] try to compress the input into fewer dimensions (see

Figure 2.23). This is done by stacking the layers of a neural network that becomes

smaller in size until the bottleneck layer. After this layer the opposite happens.

This means that the input and output of the network are the same and the network

learns a compressed (or latent) representation of the input. These autoencoders can

be used for denoising a signal where the latent representation learns the important

features of the data. In this case the input to the network is the noisy speech

signal and the output of the network is compared against a clean signal. When the

autoencoder is given new data it should be able to remove the noise and produce

the clean speech signal.
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Figure 2.23: Schematic overview of an AutoEncoder [57] where the input (X) is
offered to the encoder which changes it in a latent description (z). This latent
description is then used by the decoder to recreate the image (X ′)

Generative Adversarial Network

Generative Adversarial Networks (GAN) [58] are trained to generate new input from

white noise (see Figure 2.24). This input is based on real word examples. A GAN

consists of two parts:

1. Generator creating the input from white noise

2. Discriminator which classifies the samples as being real or coming from the

generator.

The GAN uses the input to learn how to represent this from white noise. To do

this the discriminator receives two inputs and determines which is coming from the

generator and which is real input. This allows the generator to create output that

is more similar to the real data making it more difficult to distinguish between the

two. The white noise that the generator is using can be seen as a latent description

used in the AutoEncoder (see Section 2.4.3). After training, the discriminator is

discarded and the generator is used to create new data. GANs can be used for

separating speakers from a mixture. Instead of having a latent description the

mixture is given as input to the generator. The outputs of the generator are the

unmixed speaker files which are provided to the discriminator together with the real
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unmixed speaker files. The discriminator then classifies these. After training has

finished the generator should be able to unmix new mixtures.

Figure 2.24: Schematic overview of an generative adversarial network [59] showing
the random input used by the generator to create a sample image which is pass
to the discriminator together with a real image. The discriminator produces two
output one showing the performance of the generator and one for the performance
of the discriminator.

2.5 Measurements

Signal-to-artifact (SAR), signal-to-distortion (SDR) and signal-to-interference (SIR)

ratios are used for measuring the performance of speaker separation algorithms (see

Vincent et al. [1]). Each of these measure a different aspect of the signal and

are designed to work with multichannel recordings. SAR describes the number of

artefacts present in the result of the algorithm. These artefacts are introduced by the

algorithm during the process of separating the speakers. The distortions measured

by the SDR are similar to the noise introduced by the algorithm. This measurement

is also expanded in a scale invariant version called (SISDR) [60] that reduces the

effect of the amplitude on the result. The SIR measurement measures how much

of the interfering signal is still present in the result of the algorithms. In addition

to these measurements, the perceptual evaluation of speech quality (PESQ) is used.

This last measurement describes the quality of noise reduction and dereverberation

algorithms and looks at how listeners would perceive the quality of the recording.
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(a) The spectrogram of the subband projection
(Papprox j) with a SNR of -5 dB.
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(b) The spectrogram of the reference signal con-
taining no noise.

Figure 2.25: The spectrograms of the subspace projection (Papprox j) and the refer-
ence source used for calculating the different measurements (SAR, SDR, SISDR and
SIR). The subspace projection contains 5 dB of noise.

2.5.1 SAR and SIR

Artefacts are described as “burbling” noise or also called musical noise. This kind

of noise is created by random statistical variations in the different frequency bins

or as a left over product of noise reduction where spectral subtraction is applied.

These sounds cannot be classified as distortion nor attributed to interfering sound

sources.

For the SAR measurement (see Equation 2.86), the artefacts (errorartifacts) are

calculated by subtracting the subspace projection of all estimated sources (Papprox J
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from the reference source (see Equation 2.87). Using a subspace projection means

that the best fit for every subspace is found - this is advantageous when the signals

are not aligned properly.

SAR =
||Starget||2

||einterference + efilterdistortion + eartifacts||2
(2.86)

Next to the artefacts, the SAR also depends on the interference and filter dis-

tortion. The latter is calculated per source by subtracting the reference signal from

the subspace projection within a single source (Papprox j) but looking at all chan-

nels (I) for that source. Whereas, the interference is calculated by subtracting the

least-squares subspace projection of one estimated source from that of all estimated

sources.

errorfilter distortion = Papprox j − reference signal

errorartifacts = Papprox j − Papprox J

errorinterference = reference signal− Papprox J

(2.87)
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(a) The spectrogram of the filter distor-
tion error (Papprox j − reference signal.)
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(b) The spectrogram of the artefacts er-
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0 0.5 1 1.5 2 2.5 3 3.5 4
Time

0

2000

4000

6000

8000

10000

Hz

-80 dB

-70 dB

-60 dB

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

(c) The spectrogram of the interference
error (reference signal− Papprox J.)

Figure 2.26: The spectrograms of the different variables (errorfilter distortion,
errorartifacts and errorinterference) used for calculating the measurements (SAR, SDR
and SIR).

Sounds from other sources, than the one of interest, that are also present in a

recording are called interferences. These are found when the recording is compared

with the ground truth that does not have interferences. Interference can range from

reverberation to other speakers. To calculate the interference, a ground truth signal

(Starget) is needed which is divided by the interferences (errorinterference) to create

the SIR (see Equation 2.88).

SIR =
||Starget||2

||errorinterference||2
(2.88)

2.5.2 SDR and SISDR

Both SDR and SISDR are closely related to the signal-to-noise (SNR) ratio. The

main difference is the way they are calculated. All three measurements (SNR in-
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cluded) need a reference signal. Dividing the reference signal by the noise gives us

the SNR (see Equation 2.89). Noise is calculated by subtracting the approximated

signal from the reference signal.

source = reference source

noise = (reference signal− approximated signal)

SNR = 10log10(source/noise)

(2.89)

The SISDR uses the same approach but uses a scaling factor to make sure both

signals have the same amplitude (see Equation 2.90).

s = approximated signal ∗ reference signal/||reference signal||2

source = s ∗ reference signal

noise = (s ∗ reference signal− approximated signal)

SISDR = 10log10(source/noise)

(2.90)
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(a) The spectrogram of the scaled ver-
sion of Papprox j with a SNR of -5 dB.
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(b) The spectrogram of Papprox j with a
SNR of -5 dB.
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(c) The spectrogram of the noise (s ∗
reference signal− approximated signal).

Figure 2.27: The spectrograms of the SISDR calculation compared with the subspace
projection used for the SDR measurement.

The SDR assumes that there are three different types of error (artefacts, in-

terference and spatial distortion). These three are used to calculate the SDR (see

Equations 2.87 and 2.91).

source = reference signal + errorfilter distortion

noise = (errorartifacts + errorinterference)

SDR = 10log10(source/noise)

(2.91)
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source = reference signal

noise = (errorartifacts + errorfilter distortion + errorinterference)

SDRmir = 10log10(source/noise)

(2.92)
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(b) The spectrogram of the noise used
for SDRmir.
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(c) The spectrogram of the noise used for
the SISDR.

Figure 2.28: The spectrograms of the different calculations of noise used SDR,
SDRmir and SISDR.

There are two implementations of the SDR measurement; one works as described,

the second adds the filter distortion to the reference signal before dividing it by the

artefacts and the interference. This gives a bias towards the reference signal, finding

less noise in the noisy signal and returning a higher value (see Equation 2.92). This

bias is more pronounced when using the correlation between clean and noisy speech

(see Figure 2.31). It can also be seen in a noisy or reverberant gunshot as well as
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reverberant speech.

The measurement for calculating the SAR is also dependent on the filter distor-

tion and the interference. If there is no interfering signal for the SIR to measure

apart from the reverberation, the value for the SIR will be high. For the SAR this

means that it resembles the SDR too closely to be informative. When running the

SAR and SDR on 800 files from the TIMIT dataset which have a very low interfer-

ence, the main input for both measurements is coming from the number of artefacts

(see Figure 2.29). The result of both measurements over these 800 files is the same,

when looking at one file no difference can be seen. When looking at the results of all

800 files, then there is no significant difference between the two measurements (see

Figure 2.29). The results for the individual number for the artefacts, distortion and

interference, suggest that the artefacts are the main contributor for both the SDR

and the SAR measurements (see Figure 2.30).

−20

−15

−10

−5

0

0 200 400 600 800

file #

d
B

Measurement

SAR
SIR

Figure 2.29: A comparison between the SAR and SDR values over 800 single speaker
files. The values represent per file results.
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Figure 2.30: A per file comparison between the number of artefacts, noise and
interference present in 800 single speaker files.

Figure 2.31: Comparing the result of the different measurements using different
target SNR showing the bias of the measurements towards a positive (> 0 dB)
result.

Applying SDR and SISDR to gunshot data

A gunshot has a clear start and end to the sound (see Figure 2.32a). This makes

it easier if we want to use it for denoising or dereverberation. When we add -5 dB

noise to the signal (using Equation 2.93) we can still see the start of the gunshot and
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(a) The STFT of a gunshot
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(b) The STFT of a gunshot with -5 dB
added noise
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(c) The STFT of a reverberant gunshot
(RT60=1.0)

Figure 2.32: The STFT of the normal, noisy and reverberant gunshot signal

its end (see Figure 2.32b). If instead of noise we place the gunshot in a reverberant

room (RT60 is 1 second) then we see that the signal gets stretched but it still has a

clear start and end (see Figure 2.32c).

noisedb = |xdb| − SNRdb

N ∼ N (0, 10
noisedb

10 )

y = x+N

(2.93)

To see what the three different measurements consider to be noise, the original

signal is subtracted from the noisy signal. The latter is then divided by the original

signal to show the noise levels in the noisy signal (see Figure 2.33a). The process

is also applied to reverberant signals (see Figure 2.33b) to determine if there is a

61



Chapter 2: Background

difference between the recognition of noise and reverberation.

We see that in the case of the noise, both SDR measurements show artefacts

introduced at the end of the signal (see Figures 2.33c and 2.33d). The reverberation

case shows that the outcome of the SDRmir and SISDR is similar to the reverberation

(see Figures 2.32c, 2.33h and 2.33f) whereas the SDR is biased towards the original

sound (see Figure 2.33d), this was also described by LeRoux et al. [60]. As an

additional test an approximated signal is used which is given by the H1 correlation

between the signal and the noisy or reverberant signal (see Equation 2.26). We

see that the SDRmir measurement (see Figure 2.34g) follows the SNR (see Figure

2.34c) closely where the SDR and SISDR measurements (see Figures 2.34e and 2.34i)

detect more noise and reverberation. This confirms that the SDRmir is similar to

the SNR. However, the SISDR lacks this similarity and is better at detecting noise

than the SDRmir and the SNR. Adding the filter distortion error seems to replicate

this, however, it also detects parts of the signal as noise.

2.5.3 PESQ

The perceptual evaluation of speech quality (PESQ) developed by Rix et al. [2, 61] is

a measurement that runs from 1.0 to 4.5 where 1.0 is the worst quality and 4.5 is the

best quality. PESQ predicts how users perceive the recording when they are listening

to it. First, the files are time aligned using a narrowband filter for emphasising

perceptual important parts, division of the reference signal in utterances, utterance

alignment, splitting and re-alignment to test for delay changes during speech (see

Figure 2.35). This process is followed by transforming the signal in to the power

spectrum in order to do frequency and gain equalisation and loudness mapping.

The latter part of the process gives the perceived loudness of the files. After time

and level alignment, the algorithm compares the two signals and determines the

localised errors also called disturbances. These include deletion or negative delay

change where there is an overlapping section in the degraded signal and masking

where the disturbance needs to be above a threshold to be counted. Localised

errors are counted on a frequency level basis giving a frame-by-frame measure of the

perceived distortion, frequency wrapping and loudness scaling. The representations

are processed to calculate the severe effects and rapid variation between the two
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signals.

Applying PESQ to speech data

PESQ is used to evaluate the speech quality of audio recordings when there is noise

and reverberation present. The result of PESQ shows how well the algorithms work,

this can be simulated with adding noise to a speech signal and comparing this to

the original signal. For this, the same parameters as for the gunshot data in Section

2.5.2 are used, the signal-to-noise ratio is varied from -10 to 10 dB and the RT60 time

from 0 to 2 seconds, both using increments of 5 units (5 dB and 0.5 sec respectively).
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Figure 2.36: Applying PESQ to a file with varying SNR values

There is a relation between the increase in SNR and the value of PESQ (see

Figure 2.36) when the SNR increases the value of PESQ also increases. This shows

that when there is more signal than noise present the result according to PESQ is

higher.
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Figure 2.37: Applying PESQ to different RT60 times.

In the case of reverberation the same pattern can be seen (see Figure 2.37).

When more reverberation (higher RT60 time) is added to the signal the result on

the PESQ scale is lower. However, unlike the SNR case, the result is not linear but

exponential. This shows that the reverberation is affecting the signal more than the

SNR does.

2.5.4 Cepstral Distance

The cepstral distance (CD) [62] is the Euclidean distance in the cepstrum domain

(see Equation 2.94). It measures the distance between two cepstrum coefficients

and can be used for voice activity detection (VAD), emotion classification and to

measure the enhancement of a speech signal.

D =
N∑
n=0

(c(n)− c(n+ 1)) (2.94)

2.6 Corpora/Data collection

2.6.1 Near field and far field recordings

The difference between near field and far field is the distance between the sound

source and the microphone. Hansen [63] and Siano et al. [64] classify near field as

the region of the sound field where the sound pressure does not decrease by 6dB
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each time the distance travelled from the source is doubled. Far field is the region of

the sound field where the sound pressure decreases each time the distance travelled

from the source is doubled. When the sound source is close to the microphone then

the sound does not have far to travel therefore the sound pressure does not decay

significantly. On the other hand when there is a large distance between the sound

source and the microphone where the sound has to travel a significant distance then

the sound pressure has time to decay. The case of the former is called near field

where the decay or decrease is less than 6 dB each time the distance travelled is

doubled, the latter is call far field when the decay is 6dB or more each time the

distance travelled is doubled. Doclo et al. [65] describe a formula for calculating the

distance where the near-field regions ends and far-field starts. This formula uses the

size of a microphone array to calculate the minimum distance for this assumption

(see Equation 2.95).

R←
(LmM−1

− Lm0)fs

v
(2.95)

For example, when using a microphone array with a distance between microphones

of 1.5 metres and a sampling frequency of 16kHz, the far field area starts at 160

metres. When the sampling frequency is reduced to 8kHz, the far-field area starts at

80 metres. This formula assumes a linear array and does not work for a circular array

where the first and last microphones are close together. Instead, for a non-linear

array LmM−1
−Lm0 is replaced by the maximum distance between two microphones.

This definition is used for microphone arrays but not for single microphones. In the

case of single microphone recordings, the minimum distance for far field is considered

to be 2 metres by Zhao et al [66], whereas Gelbart et al. [67] consider the area from

3 feet (0.91 metres) onwards to be far-field. Therefore, in this thesis the area from

1m onwards is considered to be far-field for monaural recordings (i.e. recordings

made with one microphone).

2.6.2 Microphone Array

Microphone arrays are used for a number of things, including: sound source tracking,

noise reduction and speaker separation. These microphone arrays differ greatly in

size. From a four microphones array placed in the Microsoft Kinect or a circular
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array with 32 microphones and 440mm in diameter [68] to a 4096 microphones

array [69, 70]. Beamforming is traditionally used for sound source localisation with

Delay-and-Sum being the most popular method. The smaller sized microphone

arrays are implemented in robots like Softbanks’ Nao [71] and Pepper [72, 73]. It

helps the robot to localise the speaker and follow them around with its head. For

noise reduction, the placement of one microphone pointing away from (instead of

towards) the speaker could help in determining the noise sources and in removing

these from speech [74, 75]. Microphone arrays can be used in combination with

beamforming algorithms to determine where the sound sources are located. There

are different beamforming algorithms that work in either the frequency domain or

the time domain.

2.6.3 Beamforming

Beamforming works by aligning peaks in the recordings of different microphones. It

works under the assumption that the location of each microphone is known and that

each recording is of the same subject. For each microphone the field of view needs

to be known, this being the angles from which it is still possible for a microphone

to record a sound. Together with the distance between microphones and location

of the microphone, this is used to determine the direction of arrival of the sound.

The output of a beamforming algorithm is an area with high sound pressure, which

should correspond to the sound source that has to be tracked.

The concentration is the four most used beamforming algorithms:

• Two compute the time-difference of arrival (TDoA) locally in each time-

frequency bin (these are Generalized cross-correlation with phase transform,

GCC-PHAT [76, 77], or with a nonlinear function, GCC-NONLINEAR [78]).

• Two build a TDoA function for each time-frequency bin that is likely to get a

high value for the true TDoA and pool it across the time-frequency plane to

get an angular spectrum (these are minimum variance distortionless response,

MVDR [79, 80], and minimum variance distortionless response weighted, MV-

DRW [80]).

The input for the methods is an empirical covariance matrix (ECM). This is

calculated using the neighbourhood of every time-frequency bin (t,f), by multiplying
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a neighbourhood windowing function (w) of length Lf x Lt by the input signal (x) of

all microphones and the Hermitian transpose of the input signal (see Equation 2.96).

X̃mm(t, f) =

∑
t′,f ′ w(t′ − t, f ′ − f)x(t′, f ′)x(t′, f ′)H∑

t′,f ′ w(t′ − t, f ′ − f)
(2.96)

GCC-PHAT and MVDR are both angular spectrum techniques in which the

methods try to construct a function φ of the TDoA (τ) where the peaks indicate the

TDoAs of the different sources. GCC-PHAT assumes that in each time-frequency

bin the sound of one source is more noticeable than of the others. The TDoA of

this source is estimated by taking the phase difference between two channels (see

Equation 2.97).

φGCC(t, f, τ) = real

(
X̃mm(t, f)1,2

|X̃mm(t, f)1,2|
e−2iπfτ

)
(2.97)

For MVDR, the signal-to-noise ratio (SNR) between the sound power and resid-

ual power in the direction of the TDoA is used. This function overestimates the

SNR at the low frequencies, where the phase differences are small. This happens re-

gardless of the number of sources. MVDR uses a steering vector (see Equation 2.98)

for estimating the power in the direction τ (see Equation 2.99). The residual power

is computed by subtracting the estimated power in the direction τ from the total

power. This is used to calculate the SNR in the direction τ (see Equation 2.100).

d(f, τn) = [1, e−2iπfτ ]T (2.98)

P(t, f, τn) =

(
d(f, τ)HX̃mm(t, f)−1d(f, τ)

)
−1 (2.99)

φMVDR(t, f, τ) =
P (t, f, τ)

1
2
tr

(
X̃mm(t, f)

)
− P (t, f, τ)

(2.100)

GCC-NONLINEAR and MVDRW are variants of GCC-PHAT and MVDR re-

spectively. GCC-NONLINEAR uses a nonlinear function which assumes sparseness

in the sound signal (see Equation 2.102). α is a non-linear parameter based on the

67



Chapter 2: Background

speed of sound, the distance between microphones d and the sampling frequency

(see Equation 2.101).

α =
10 ∗ c
d ∗ Fs

(2.101)

φGCC-NONLINEAR(t, f, τ) = 1− tanh(α(|2− 2 ∗GCC − PHAT (t, f, τ)|)1/2) (2.102)

MVDRW is the weighted version of MVDR and uses frequency weighted beam-

forming. MVDRW assumes that the input signal consists of a single source TDoA

and diffuse noise. Instead of using the ECM as input it uses a covariance matrix and

inverts the MVDR. However, because it is based on the MVDR and the input is dif-

ferent, the MVDR equation changes too (see Equation 2.103). The weight factor wd

(see Equation 2.104) depends on the frequency, the distance between microphones

d and the speed of sound. This factor reduces the impact on frequencies that are

below 1kHz.

φMVDR(t, f, τ) =
1 + 2vs(t, f, τ)/vb(t, f, τ) + sinc(2πf d

c
)

1− sinc(2πf d
c
)

(2.103)

wd(f) =
1

2
(1− sinc(2πf d

c
)) (2.104)

φMVDRW(t, f, τ) = wd(f)φMVDR(t, f, τ) + wd(f)− 1 (2.105)

2.7 Conclusion

The techniques described in the chapter are used as the foundation of the coming

chapters. In Chapter 3, related work based on the WPE, NMF and deep learning

techniques are described. The beamforming techniques are used in Chapters 3, 4

and 7. Techniques as the Fourier transform, cost functions and window functions

form the basis for the experiments described in Chapters 5, 6 and 7.
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(e) Noise of the SDRmir measurement of a
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Figure 2.33: The spectrogram of a gunshot in a reverberant and noisy environment
of which the noise of the SDR, SDRmir and SISDR measurements are calculated.
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Figure 2.34: The H1 results on the noisy and reverberant gunshot signals with the
result of the SDR, SDRmir and SISDR measurements.
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(i) Noise of the SISDR measurement of an
approximated noisy gunshot
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Figure 2.34: The H1 results on the noisy and reverberant gunshot signals with the
result of the SDR, SDRmir and SISDR measurements (cont.).

Figure 2.35: The flow of calculating the perceptual evaluation of speech quality
value [61]
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Related work

Many corpora have been created for the training and testing of algorithms. These

corpora are often designed with a specific task in mind whether it is to do dere-

verberation (REVERB [81]), speech recognition (TIMIT [3]) or speaker separation

(CHiME5 [82]). The task often defines the recording conditions and environments of

the corpus. These corpora are used as a benchmark to measure different algorithms

against. It is not always the case that a corpus is used for the task it was designed

for (e.g. TIMIT is being used for dereverberation and noise reduction).

Just like corpora are designed for a specific task so are algorithms. However, al-

gorithms are often less adaptable once they are trained. If their purpose is changed

the algorithm will have to be redesigned or retrained. Certain parts of the algo-

rithm (e.g. permutation invariant training) can be used for different purposes, for

example, for dereverberation or speaker separation. Deep learning techniques use

the underlying method but the network is redesigned to fit the purpose of the algo-

rithm.

This chapter consists of four main parts:

• Speech Corpora, where the different corpora are described that have been used

for dereverberation and speaker separation.

• Dereverberation, describing the different algorithms and their performance for

this purpose

• Single channel speaker separation, this is divided into non-negative matrix

factorisation and deep learning and describes the algorithms and their perfor-

mance.
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• Multichannel speaker separation, this contains different algorithms and their

performance which is divided into non-negative matrix factorisation and deep

learning.

3.1 Speech Corpora

There are multi-speaker corpora (see Tables 3.1 and 3.2), some of which do contain

reverberation, but mainly they are recordings of conversations that contain little

to no overlapping speech. Also, many of the corpora only contain static speech,

meaning that the speakers are located in a fixed place during the recording. These

corpora are compared based on:

• whether they contain scripted or natural conversations

• whether they are recorded in different environments

• whether they contain reverberation or noise

• whether they are recorded with a microphone array and/or contain a close-talk

channel

• what the maximum distance is between the speaker and the microphone

• what they are used for

• if they have multiple speakers in a single recording

• whether the speakers move around or are stationary

When a corpus contains scripted speech, it means that it can be used for mixing

recordings to create overlapping speech because the speaker is speaking continuously

during the recording. Whereas when it is a natural conversation there is a second

speaker who will fill in the pauses created by the first speaker. If a corpus is recorded

in multiple rooms or contains noise and/or reverberation it means that it can be

used for testing noise reduction and dereverberation. In addition to this, when

the corpus is used for speaker separation the problem becomes more difficult if the

algorithm has to deal with noise and reverberation than when these are not present.

The location of the recording also suggests which kind of noise can be expected

in the recording. It is unlikely to hear an extractor fan in an office environment

for example. When the corpus only contains a close-talk channel, it can be used

for simulating different rooms. On the other hand, when there is also a recording
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present from a microphone array, the close-talk channel can be used as a ground-

truth for comparing the output of an algorithm against. If the speaker is further

away from the microphone then the speech has more time to interact with the

environment, meaning that using these corpora will make it more difficult for an

algorithm to match the performance on a corpus with a shorter distance. If the

corpus has multiple speakers in a single recording it means that the recordings can

be used for speaker separation and tracking. This is more complicated when they

are moving around because the location needs to be determined every timestep and

measurements such as time-difference of arrival change continuously. These eight

items present an overview of what a corpus can be used for and what the complexity

is of this corpus.

TIMIT corpus [3] contains recordings of short utterances and is designed for

testing automatic speech recognition (ASR) systems. It contains different American

English dialects. The recordings are near-field with speakers speaking clearly in

the microphone. There is no noise or reverberation present in the recordings. The

recordings are annotated on word and phoneme level. This corpus is also used

for evaluating dereverberation algorithms and extended in GlobalTIMIT [83] which

includes speakers of different languages. However, the recordings for GlobalTIMIT

were made with head-mounted noise-cancelling microphones to get a clean recording

with as little noise as possible. The CSR-WSJ corpus [84] is similar to TIMIT but

was originally designed for statistical language modelling. Participants read Wall

Street Journal texts which were published around 1987. The corpus can be used for

speaker dependent and independent training. Like TIMIT, the recorded speech is

clean and transcribed, however it misses the phonetic description of the text which

TIMIT includes.

The TSP corpus [85] is a single channel single speaker corpus in which a stereo

microphone is placed at 15 cm from the speaker instead of a microphone close to

the mouth like TIMIT, GlobalTIMIT and CSR-WSJ have. During post-processing,

this was reduced to a single channel by averaging between the two channels. The

recordings contain speech where the speaker reads Harvard sentences which contain

an unusual word order. This is because the Harvard sentences are phonetically

balanced and use phonemes at the same frequency as used in English. The majority
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of the speakers were Canadian.

The REVERB corpus [81] is specifically designed for removing reverb from speak-

ers. Unlike the previous corpora, it contains recordings made with a single micro-

phone and with two microphone arrays (one with two microphones and one with

eight). The corpus contains simulated and real data, the former has recordings

made with three simulated rooms (small RT60=0.3, medium RT60=0.6 and large

RT60=0.7) and two distances between the microphone and the speaker (50cm and 2

metres). Recordings in the real corpus are made in one room with the microphones

at two distances (1 metre and 2.5 metres). The corpus contains text read from

the Wall Street Journal and speakers are stationary in a room. Lincoln et al. [86]

describe a corpus (MC-WSJ-AV) that contains speech of people walking around a

meeting room. This corpus contains reverberation but no noise. It is an expansion

of the original REVERB corpus with its main difference being that the speakers are

allowed to walk through a meeting room.

The vocalization corpus1 [87] contains recorded telephone conversations of 120

different subjects. Unlike the previous corpora, background speech of a second

speaker is present in the recordings. This does not provide us with a clean ground

truth but allows us to use the corpus for testing in noisy environments. The HCRC

MapTask corpus [88] is similar to the vocalization corpus. The main difference is

that people need to explain to each other how to get from A to B on a map and

use head-mounted microphones to explain this. This corpus contains speech of 64

subjects. As with the vocalization corpus, the second speaker can be heard in the

background, meaning that the corpus can be used for the same purposes as the

vocalization corpus.

The CHIL corpus [89] is used for tracking and separation and contains informa-

tion about the speakers in 2D and 3D space. The corpus contains audio and video

recordings of lectures and meetings which have been annotated on speech and loca-

tion of the speaker. This corpus has been extended into the AMI corpus [90] which

also contains recordings of multiple people in a meeting. The rooms in which the

meetings take place are fitted with close-talking and far-field microphones. However,

this corpus simulates an office environment. The speech is transcribed and objects

1http://www.dcs.gla.ac.uk/vincia/?p=378
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referred to in the spoken dialogues have been marked.

Barker et al. [91] describe a corpus (CHiME3) that contains noisy recordings.

These recordings are near-field and the speaker is stationary. The corpus can be

used for the same purposes as the HCRC MapTask and vocalization corpora. It

can also be used for denoising the speech signal. The CHiME5 corpus [82] is an

extension of the challenge for which the CHiME 3 corpus was designed. The main

differences between this and CHiME 3 are that the corpus contains speech recorded

in different rooms and with the microphone array in the Microsoft Kinect. The

Kinect is used instead of a custom designed microphone array that is attached to

the tablet computer. In addition to these changes, the speaker carried binaural

microphones for close mouth speech which both the AMI and CHIL corpora do not

have. The recorded speech is not clean, it contains noise from other speakers and

also from various noise sources in the room. It is similar to the CHiME3, vocalization

and HCRC MapTask corpora. The speakers are allowed to walk through the room

making the sound-to-microphone distance variable. There are 32 speakers in the

training set and 16 in the test set. The COSINE corpus [92] does not have the

location of the speaker but does have transcriptions of speech in noisy environments

with channel distortions. This allows the corpus to be used for the same purposes

as the CHiME3 corpus.

The VOiCES corpus [93] contains distant speech recorded in two different fur-

nished rooms. Speech and noise are played through loudspeakers and recorded by

12 distant microphones. The rooms have different sizes and contain 3 loudspeak-

ers playing noise and one main loudspeaker playing speech. Two microphones are

placed close to the main loudspeaker whereas the rest is distributed throughout the

room. There are four different conditions: one contains only ambient noise from

the room and the three others contain pre-recorded noise of overlapping speech,

television or music. This corpus has similar conditions to CHiME5, AMI and the

REVERB corpus.

The SiSEC2008 corpus [94] contains under-, overdetermined and determined

mixtures recorded in different rooms. These rooms vary from an anechoic labora-

tory to a cafeteria or a living room. The SiSEC2010 corpus [95] is an extension to

SiSEC2008 containing datasets with speech-music mixtures as well as extensions to
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datasets introduced in 2008. One of the datasets in SiSEC2010 is used for simulating

human-robot interaction where the recordings were made with a robot head con-

taining eight microphones. Both SiSEC corpora are similar to the CHiME corpora

and are used for the same purposes.
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ter

3
:
R
ela

ted
w
o
rk

corpus natural
con-
versa-
tion

many
rooms

high
reverb

many
noises

mic ar-
ray

close-
talk
chan-
nel

far-
field
speech

max
dis-
tance
mic to
source

TIMIT [3] X <1m
Global TIMIT
[83]

X <1m

CSR-WSJ [84] X <1m
TSP [85] X <1m
REVERB [81] X X X X X X 2.5m
MC-WSJ-AV
[86]

X X X X X X 2.5m

CHiME-3 [91] X X X X <1m
CHiME-5 [82] X X X X X X X <1m
vocalization [87] X X X <1m
HCRC MapTask
[88]

X X X <1m

COSINE [92] X X X X X <1m
CHIL [89] X X X X X ≈3m
AMI [90] X X X X ≈3m
VOiCES [93] X X X X X
SiSEC2008 [94] X X X X X X
SiSEC2010 [95] X X X X X X

Table 3.1: Comparison between multi-speaker corpora
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The majority of these corpora have a close talking channel (see Table 3.1) making

them suitable for speaker separation. However, not many of the corpora contain

reverberation (5 out of 16) or contain far-field speech (7 out of 16). The ones that

do contain far-field speech (i.e. an additional channel not being the close talking

channel) have recordings of less than 5 metres. This limits the testing of algorithms

that are not tested on distances over 5 metres. There is also a limited number of

corpora offering moving speakers meaning that the algorithms are trained and tested

on stationary speakers where the reverberation does not change due to a moving

speaker. In Chapter 4, a corpus is introduced which addresses these limitations.

3.2 Dereverberation

Dereverberation is the process of removing the reverberation from an audio file

creating a nonreverberant file that can be further processed such as by a speaker

separation algorithm. There are various different algorithms used for this process

from long short-term memory networks to minimum variance distortionless response.

These techniques (see Table 3.3) are where possible compared on their performance

using four different measurements:

1. cepstral distance (CD) [62]

2. signal-to-distortion ratio (SDR) [1]

3. signal-to-noise ratio (SNR) [1]

4. perceptual evaluation of speech quality (PESQ) [2]

One application of dereverberation is to improve the estimation of the time-

difference of arrival (TDoA), when an audio file has reverberation then it is difficult

to determine the TDoA. One approach is to use a neural network to select the frames

that are clean and use these for determining the TDoA. Wang et al. [96] and Mack

et al. [97] use this kind of masking to create an ideal ratio mask (IRM). However,

Wang et al. [96] use it as an input for a generalized cross correlation with phase

transform (GCC-PHAT) algorithm. This uses utterances from the TIMIT corpus

and is successful in creating the masks. On the other hand, Mack et al. [97] ap-

ply minimum mean squared error to create a ratio mask. For testing this method,

different source to microphone distances are used as well as different reverberation
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corpus usage recording
environ-
ment

multi-
speaker

moving
speak-
ers

TIMIT [3] recognition, derever-
beration, speaker sep-
aration

lab

Global TIMIT
[83]

speech recognition lab

CSR-WSJ [84] speech recognition,
speaker separation

lab

TSP [85] speech recognition,
denoising, derever-
beration, speaker
separation

lab

REVERB [81] dereverberation 4 rever-
berant
rooms

MC-WSJ-AV
[86]

dereverberation 4 rever-
berant
rooms

X

CHiME-3 [91] denoise, dereverbera-
tion, target speaker
separation

outdoor,
cafe

X

CHiME-5 [82] denoise, dereverbera-
tion, speaker separa-
tion

kitchen,
dining,
living
room

X X

COSINE [92] denoising, dereverber-
ation, target speaker
separation

noisy X X

vocalization [87] dereverberation,
speaker separation

lab X

HCRC MapTask
[88]

dereverberation,
speaker separation

lab X

CHIL [89] speaker tracking,
speaker separation

office X X

AMI [90] speaker tracking,
speaker separation

office X X

VOiCES [93] denoising, target
speaker separation

unfurnished
room

SiSEC2008 [94] speaker separation,
denoising

lab, liv-
ing room,
cafeteria

X

SiSEC2010 [95] speaker separation,
denoising

lab, liv-
ing room,
cafeteria

X

Table 3.2: Comparison of single and multi-speaker corpora on environment and
speakers.
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times. The training is done on the Libra Free speech corpus and the testing on the

TIMIT corpus. They found that mask estimation compensates for the destructive

interference, however, there is a risk of amplifying noise sources. These two bidi-

rectional long short-term memory (biLSTM) techniques are not the only ones both

Luo et al. [98] and Zhang et al. [99] use biLSTMs. Where Zhang et al. [99] creates

an IRM, Luo et al. [98] directly separates the reverberation from the original signal

using a time-domain audio separation network (TASNET). Instead of converting the

signal to the frequency domain, Luo et al. [98] keep the signal in the time domain

and use a 1D convolution auto-encoder to rescale the input before it is processed by

a biLSTM network. To revert the signal to the original scale a 1D deconvolutional

decoder is used. They simulate the reverberated speech from the WSJ0 corpus and

use three different rooms (small, medium and large) with different RT60s (0.3, 0.6

and 0.9). This network is also used to do speaker separation. On the other hand,

Zhang et al. [99] use the log-magnitude spectrum of the microphone and echo signal

as input to the network. Their network has been trained on the TIMIT corpus with

a reverberation time of 0.2 seconds in a room of 4m × 4m × 3m (L × W × H).

Gomez et al. [100, 101] describe the use of a hybrid multi- and single channel

model for the dereverberation and localisation of speakers. Their technique uses the

input of eight microphones located in the robot’s head. First, the technique removes

noise from the speech signal and transforms it to a single channel model of which

the reverberation is removed. The technique is applied to two rooms of different

size with different distances between the speaker and the robot. Takeda et al. [102]

use the ASIMO which has eight microphones, similar to that of Gomez et al. [100].

The technique used by Takeda et al. is frequency domain independent component

analysis (FD-ICA) and tries to separate the clean speech from the reverberation.

This technique is tested in two different rooms where the speaker was 1.5 metres

away from the robot.

The technique described by Li et al. [103] is another one using long short-term

memory (LSTM) layers. However, these are now used in the form of a generative

adversarial network (GAN). Unlike Ernst et al. [104], the approach of Li et al. [103]

uses a single channel as input to the network which consists of five convolution layers

followed by two biLSTM and a neural network layer. For training and testing they
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simulate five different rooms (3m × 3m × 3m, 6m × 6m × 4m, 9m × 9m × 5m, 4m

× 5m × 3m, 10m × 12m × 6m), three are used for training and two for testing. For

the audio, utterances of the WSJ0 are used. Ernst et al. [104] use the convolution

neural network (CNN), instead of biLSTMs for dereverberation and a GAN for the

improvement of the signal. They base their architecture on the u-net image-2-image

architecture and combine this with a GAN. As input to the network, they use the

REVERB corpus instead of the WSJ0 corpus. Unlike Ernst et al. [104] a CNN

can be used as a stand alone measure to remove the dereverberation as presented

by Guzewich et al. [105]. In this case, a CNN is trained on two different corpora

(TIMIT and multiroom8) for speech dereverberation. The network contains nine

convolution layers and two neural network layers. The accuracy was measured in

terms of speech enhancement and speaker verification instead of the measurements

described at the start of this section. CNNs can also be combined with self attention

as presented by Zhao et al. [66]. They use self attention as a preprocessing step that

recognises the direct signal from information it has seen in the past. This is used as

input to a temporal convolutional network (TCN) which will learn the mapping to

the clean speech spectrum. This technique is trained on the WSJ0 and REVERB

corpus separately in three rooms and using two distances between the source and

microphone (0.5 and 2 metres).

A denoising autoencoder (dAE) is a popular technique for removing noise from

a signal (see Section 2.4.3). Kodrasi et al. [106] see reverberation as noise and

concentrate on suppressing late reverberation in single channel recordings. They

combine this technique with a power spectral density estimator. The reverberation

times varied from 0.2 seconds to 2 seconds and was applied to the TIMIT corpus.

They extended this by also using utterances from the HINT database. Their ap-

proach gives a higher power spectral density (PSD) estimation accuracy and similar

dereverberation results as state-of-the-art techniques, where the latter requires prior

knowledge about the reverberation times.

Wang et al. [107] use a deep neural network for this problem as input the sub-

band inter-sensor ratios which are effective DoA cues. During the training phase,

they also use a voice activity detection network to be able to make smarter choices

about which frames to choose for the DoA estimation. As input to the network, the
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TIMIT corpus is used and is simulated in a room of 8m × 6m × 3m (L × W × H).

The testing scenario is conducted in two different rooms of 6m × 7m × 4m for the

simulation and 8.5m × 3m × 5m for the real situation.

On the other hand, a deep neural network can be combined with weighted predic-

tion error (WPE) and beamforming as presented by Drude et al. [108]. Beamforming

helps the WPE to determine the tail of the reverberation and to remove this from

the affected signal. They build three different configurations of the network one

where the beamforming is followed by WPE, one where WPE is followed by beam-

forming and a third where WPE and beamforming happen simultaneously. These

configurations are trained on the WSJ corpus with VoiceHome impulse responses.

They found that WPE, followed by beamforming gives the best result. This is not

the only technique that combines WPE with another technique. Mosayyebpour et

al. [109] describe an online dereverberation method based on a neural network and

compare this with a Kalman filter and WPE. They use MFCCs as the input to the

deep neural network (DNN) which produces the source activity posteriors which are

combined with the variance to build a filter. The official name for WPE used in the

previous papers is Normalized Delayed Linear Prediction (NDLP) and is introduced

by Nakatani et al. [26]. This technique concentrates on late reverberation and re-

moves this by modelling two processes: the capture process which is modelled using

NDLP and the sources process which is assumed to be a Gaussian process. The

extension with variance normalisation allows the technique to improve the result

using short segments of the input. This technique was extended by Parchami et al.

[110, 111] to linear prediction WPE. They used the TIMIT corpus as input for both

techniques and concentrate mainly on early reverberation. WPE can also be opti-

mised with the outcome of the minimum variance distortionless response (MVDR)

beamformer instead of the two algorithms working separately; this is introduced by

Boeddeker et al. [112]. This simplifies the algorithm because the spatial covariance

matrix is calculated by the MVDR algorithm instead of the WPE algorithm. More

successful is multiple inputs multiple outputs WPE by Yoshioka et al. [33]. This is

an expansion of WPE with the main difference that the same number of channels

coming in are also produced by the algorithm. Making the technique ideal as a

preprocessing technique for speaker separation.
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Apart from combining the MVDR with WPE, it can be combined with multi-

channel linear prediction and a Kalman filter [113] or QR decomposition [114], for

the removal of reverberation. The former is introduced by Hashemgeloogerdi et al.

[113]. Their technique removes the need for a blocking matrix by using constrained

minimization to minimise the output signal. To update the parameters they use

a filter error correlation matrix that measures the difference between the predicted

signal and the ground truth. The method is applied to the REVERB corpus and

tested in three rooms; each with two settings (far and near). On the other hand,

Cohen et al. [114] combine QR decomposition with MVDR for echo cancellation

and noise reduction. The method consists of two stages: the first stage is an IQRD

relative least squares echo cancellation followed by a weighted MVDR in the second

stage. The technique is based on a multi-channel approach where the cross corre-

lation between the reference and the microphone signal determines the echo path.

The echo is removed by using a Wiener filter. Cohen et al. [114] are using two

methods to test this technique by using a speaker and mobile phone in scenario 1

and a smart speaker reading an audiobook and a talker in scenario 2. Gannot et

al. [115] describe QR decomposition as being a suboptimal solution, instead, they

use a null subspace and total least squares for FRF estimation. Finally, they use a

decimated subband method for reducing complexity and increasing robustness. The

noise is drawn from the NOISEX database and the audio signals from TIMIT.

Mohanan et al. [116] use a convolutive nonnegative matrix factorisation (NMF)

model for doing single channel speech dereverberation instead of deep learning which

was discussed in the previous papers. Their model assumes that there are two

matrices, one for the original speech and one for the reverberation. The speech

matrix consists of one dictionary and one activation matrix. The reverberation

matrix is separated in a gain and a frequency matrix. The technique requires prior

knowledge about the room and the source to microphone distance. They apply this

technique to the TIMIT corpus. A technique similar to NMF is nonnegative tensor

factorisation (NTF), Wager et al. [117] use this with multiplicative update rules for

speech dereverberation. They convolve a second matrix with the mixture’s estimate

to replicate the reverberation. For testing, their technique they simulate three rooms

with an impulse response of 0.6, 1.2 and 1.6. These impulse responses are convolved
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with clean data from TIMIT.

Spectral subtraction [118, 119] is another technique used for dereverberation in

the subbands of the signal. The technique works by estimating the power spectral

density of the reverberation and multiplying this with the original signal.

Attics et al. [120] use a variational speech enhancement algorithm. This al-

gorithm is designed to do denoising and dereverberation. The algorithm tries to

minimise the distance between the approximated and actual conditions. For the

reconstruction of the affected signal, a Wiener filter is used. The algorithm is tested

on the WSJ corpus.

Carini et al. [121] measure the room impulse response by assuming modelling

of the acoustic path as a Legendre nonlinear filter with perfect periodic sequences

(PPs). They use Wiener filters to estimate the coefficients from the PPs. To build

the PPs for the Wiener filters, all the joint movement need to be estimated, a period

which involves measuring the first order kernel with ideal Gaussian noise. This can

be solved using the Newton-Raphson method. With this, the PPs and the Wiener

filters can be used for measuring the RIR.

Instead of the STFT, also different signal transforms can be used for the dere-

verberation of the signal, for example, the cepstrum [122], wavelet transform [123],

temporal envelope filtering [124] or modulated complex lapped transform [125]. Sub-

ramaniam et al. [122] use the cepstrum as input to a deconvolution algorithm for

dereverberating the signal. They are reconstructing two channels and first compute

the log spectral of the observations. Griebel et al. [123] use wavelet based extrema

clustering, instead of the STFT, to decompose the linear predictive coding resid-

uals. The wavelet extreme of quadratic spline wavelets proves to be appropriate

indicators of discontinuities in a signal. These extremes are well clustered across

all channels, this captures the underlying impulsive structure of the original non-

reverberant speech. To test this, a reverberation time of 200ms was used. Avendano

et al. [124] use temporal envelope filtering for the removal of reverberation. This fil-

ter works by minimising the Euclidean distance between the affected and the clean

speech. It filters the magnitude spectrum of speech. Gillespie et al. [125] apply

maximum-kurtosis as subband adaptive filtering to remove reverberation. They use

a modulated complex lapped transform which has subband filters that maximise the
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kurtosis of the linear prediction residual. This technique improves when multiple

microphones are used. They are using a mouth simulator to create speech sounds

for testing the technique. The signals are convolved with a room impulse response

to add reverberation.
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technique algorithm room size RT60 train corpus test corpus CD SDR SNR PESQ

Deep learning GCC-PHAT biLSTM [96] TIMIT TIMIT

Deep learning MMSE-biLSTM [97] Libri-speech TIMIT 0.9

Deep learning TASNET-biLSTM [98] 0.3,

0.6,

0.9

WSJ0 WSJ0 11.1

Deep learning biLSTM [99] 4m x 4m x 3m 0.2 TIMIT TIMIT 2.62

Deep learning GAT [103] 3m x 3m x 3m,

6m x 6m x 4m,

9m x 9m x 5m,

4m x 5m x 3m,

10m x 12m x 6m

0.6 WSJ0 WSJ0 2.76

Deep learning CNN+GAN [104] 0.5 REVERB REVERB 3.19

Deep learning CNN [105] TIMIT,

multiroom8

TIMIT,

multiroom8

Deep learning TCN [66]

5.6m x 3.8m x 2.5m,

6.3m x 4.9m x 2.6m,

6.2m x 6.7m x 3.0m

WSJ0,

REVERB

WSJ0,

REVERB 2.20

2.51

2.58
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technique algorithm room size RT60 train corpus test corpus CD SDR SNR PESQ

Deep learning dAE [106] TIMIT,

HINT

TIMIT,

HINT

-0.18

Deep learning DNN-SDD [107] 8m x 6m x 3m,

6m x 7m x 4m,

8.5m x 3m x 5m

TIMIT TIMIT

Deep learning WPE-DNN [108] CHiME3 CHiME3

Deep learning WPE-Kalman-DNN [109] TIMIT TIMIT

correlation NDLP [26] 3.7m x 5.5m TIMIT TIMIT -0.7

correlation LP-WPE [110] 3.7m x 5.5m TIMIT TIMIT -0.85

correlation WPE-wMVDR [112] CHiME3

REVERB

CHiME3

REVERB

beamforming MVDR [113] REVERB REVERB 3.32 2.46

beamforming QRD-MVDR [114] speech speech 36.7

total least squares [115] speech speech

NMF NMF [116] 0.7 TIMIT TIMIT 4.48

NTF NTF [117] 0.6,

1.2,

1.6

TIMIT TIMIT -1.64
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technique algorithm room size RT60 train corpus test corpus CD SDR SNR PESQ

specsub [118] 1.7 speech speech 0.06 1.2

VSE [120] WSJ0 WSJ0 6

single channel [100] 5.5m x 4.8m 0.24,

0.64

JNAS JNAS

FD-ICA [102] 0.24,

0.67

human speech human speech

single channel [101] 0.94 JNAS JNAS

Table 3.3: Comparison between different dereverberation techniques89
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Many of the techniques concentrate on short reverberation times and are not

tested in reverberation times over 1 second. Apart from this, many of the described

experiments do not describe the environment or the RT60 time but only describe

the corpus used. This makes them difficult to reproduce. When trying to compare

the techniques some papers state the improvement of the different measurements

but fail to describe which technique this is compared against or that technique also

only describes the improvement. This makes it hard to compare against others.

Currently, MIMO WPE [33] is considered to be the standard to beat. In Chapter 5,

both NDLP and MIMO-WPE are tested on the TIMIT corpus to build comparable

results to the ones described in Table 3.3.

3.3 Single channel speaker separation

Blind source separation ([126, 127]) is a technique in which one is trying to sepa-

rate the audio sources with only the knowledge of how many sources and sensors

there are. The problem is separated into two different categories: the overdeter-

mined case with a higher or equal number of sensors to sources ([128]), and the

underdetermined case with a lower or equal number of sensors to sources. The un-

derdetermined case includes single channel or monaural speech separation. These

cases have been extensively studied producing methods that show promising results.

For example, independent component analysis (ICA) is used for both cases ([129]),

and for the underdetermined category, directional Laplacian distribution ([130]),

Laplacian mixture models (LMM, [131, 132]) and hidden Markov models (HMM,

[133]) are used with success. These techniques can be compared with each other

using the measurement described by Vincent et al. [1]. An overview of this and the

corpora used is given in Table 3.4.

The ICA methods are either fixed point or use gradient descent to divide the

sources. The fixed point algorithm converges faster than gradient descent but also

uses more computing power ([134]). Smaragdis et al. [135] applied the natural gra-

dient ICA algorithm with a complex non-linear activation function. One downside

of the ICA algorithm is that when it is combined with the time-difference of arrival

(TDoA), it cannot be used to solve the permutation problem for high frequencies.
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This problem arises when the frequency exceeds the spatial aliasing limit and the

signal becomes indistinguishable. Davies [136] introduced a time-frequency model

to solve the permutation problem by adding a time dependent term to the frequency

model of the separated sources. It is possible to create a method using both fixed

point and gradient descent as shown by Hyvarinen et al. [137]. Mitianoudis [138]

used this method, described by Hyvarinen et al. [137], but replaced the gradient

descent algorithm with another fixed point algorithm that works by prewhitening

the STFT coefficient of the mixtures and storing these prewhitened matrices. The

algorithm uses a time-varying parameter aiming to model the audio signals more

effectively.

The LMM [131] is fitted to the phase difference between the two sensors and

is used to perform separation using either a soft or hard (winner takes all) thresh-

old. The directional Laplacian distribution [130] is extended by using finite impulse

response (FIR) filters to model the impulse response between the different sound

sources and the microphones to remove the influence of the room acoustics. HMMs

[133] are used to model the spatial diversity of the sources in the mixing matrix and

the more structured source priors.

3.3.1 Non-negative matrix factorisation

NMF has been applied to topic modelling [139] where it determines which topics

best describe a document. Facial feature extraction is another topic on which NMF

has been applied [140], here it dissects a photo of a face into a number of different

features. This can be applied to face recognition where the features can be used for

comparing against a new image.

Separating near field speech (less than 5 metres) and premixed audio files [7, 39,

141] is another topic to which NMF has been applied. With NMF, it is very impor-

tant to choose the optimal cost function; the Kullback-Leibler (KL) cost function is

the most popular one. Another cost function is the Itakura-Saito (IS) divergence,

which has been successfully used for music analysis to separate different instruments

in an audio track [141]. The main difference between the IS divergence and the KL

divergence is that the former is scale invariant. This means that in the cost func-

tion the same relative weight is given to small and large coefficients and results in
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that the factorisation does not only rely on the largest coefficients and has a higher

precision in the estimation of low-power components.

SAGE-NMF [142] is a different version using the expectation maximization (EM)

algorithm instead of multiplicative updates (MU). In this case, the EM algorithm is

modified to the space-alternating generalized EM. Magron et al. [143] apply this to

the GRID corpus. An EM approach converges quicker but is also computationally

more expensive than MU.

Tensor factorisation multiplies matrices with more than two dimensions together.

This is a natural extension of NMF. Stein [7] and Ikeshita [144] both explore this

in different ways. Stein describes using NTF together with direction of arrival

whereas Ikeshita uses positive semidefinite tensor factorisation to do source sep-

aration. Ikeshita works under the assumption that the sources are independent of

each other in time. The technique uses the same number of microphones as sources.

The technique is similar to NMF but according to Ikeshita outperforms NMF in the

monaural source separation tasks. For testing the algorithm they use the SiSEC2008

corpus and concentrate on stereo mixtures.

3.3.2 Deep learning

There are two main drawbacks with using NMF for speaker separation: it is trained

on each mixture individually to create the best separation mask and the non-negative

linear combination of the trained vectors does not necessarily result in the best mask.

Another approach is to use deep learning to build one mask that can be applied to

the environment in which the corpus was recorded. Deep learning needs to be used

on bigger corpora in order to build a mask that best represents the environmental

noise and reverberation. When the algorithm has converged to a solution it will

run in almost real-time on new unseen data. The downside of these masks is that

when there are major changes to the environment then the algorithm needs to be

retrained. However, for retraining the algorithm, a smaller dataset can be used and

this is best described as transfer learning, where the original model can still be used

but is now adapted to a new situation.

Deep learning is successfully applied to speech recognition providing machines

with almost human-level speech recognition. Deep neural networks (DNN) is one
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of the methods for building a T-F mask [145, 146]. A DNN consists of multiple

dense (fully connected) layers which generate a Time-Frequency mask by training

the network to recognize two files given a single file. This network can be combined

with principal component analysis to learn the orthogonal component of the inter-

ferer [147]. DNNs can also be trained to perform three separate tasks (denoising,

dereverberation and speaker separation) as shown by Sun et al. [148]. They train a

DNN on the mixture, individual speech signals and the noise to build these masks

and to create a successful separation. To simulate the noise in the recordings they

make use of the NOISEX corpus [149].

Another option is convolution neural networks (CNN) which have successfully

been applied to object tracking [150], segmentation [151–153] and music classifica-

tion [154]. These networks are versatile - the same network structure is applied to

voice reconstruction [155] and image generation [156]. Also, CNNs can be used for

localising and discriminating between sound sources [157]. In this particular case,

the sound is played through loudspeakers and recorded by the microphone array of

the pepper robot.

Recurrent neural networks provide a different way of modelling speech and are

used for speech recognition [158] and in the form of LSTMs they can be used for

multi-task learning [159] or for building a deep clustering network [160]. Xu et al.

[159] build an LSTM network to create separation masks and estimate the T-F label

as a subtask. As extra input, they use a shifted delta coefficient which ensures the

spectral continuation of a speaker. Aihara et al. [160] use LSTMs in combination

with linear layers to create a deep clustering network for speaker separation. They

are building a complex mask of the interfering sounds which can be removed from

the input signal. Another technique is a variational Autoencoder (vAE), see Pandy

et al. [161], which can be used for separating speakers in a mixture. As input to this

network, the magnitude spectrogram of the speaker in the TIMIT corpus is used.

More recently generative adversarial networks (GAN) were developed to generate

new images and audio segments based on existing ones. These networks can also

be used for speaker separation. Chen et al. [162] combine a speech enhancement

GAN (SEGAN) with permutation invariant training (PIT) to separate sources in

a single channel mixture. PIT sees the separation problem as a supervised multi-
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class segregation problem. In this case, the generator builds the masks based on

the mixture and gives clean separated speech as output. The discriminator gets

separated speech as input either from the generator or from the corpus.

Phasenet [163] expects as input the STFT of the mixture. It assumes that the

phase of the mixture is mainly affected by the source which is dominant in the

mixture at that time step. The DNN tries to minimise the loss between the phase

of the speakers it has been trained on and the predicted phase in the mixture. It

has been trained on speech signals from the WSJ0 corpus. TASnet [98] on the

other hand, works in the time domain taking the raw waveform and using this for

the separation of speakers. The input is passed through an encoder containing

a convolution layer followed by a separation network with multiple LSTMs and

a fully connected layer. After the separation, the signal will be decoded back to a

waveform. FurcaPy is another network that uses the raw waveform just like TASnet.

The FurcaPy network [164] uses dilated convolutions for speaker separation. The

network uses the same underlying principle as Wavenet which combines the dilated

convolutions with residual connections creating a temporal convolutional network.

This is to prevent input information from being lost in the convolutions.

technique algorithm corpus SAR SDR SIR

ICA Laplacian distribution

[130]

music 4.58 14.61 5.78

ICA LMM EM Hard [131] music 2.32

ICA LMM EM Soft [131] music 1.18

ICA MoWL EM hard [132] Groove (music) 0.52

ICA MoL EM hard [132] Groove (music) 0.2

ICA SCICA (alg. I) [136] unknown 22.2

ICA SCICA (alg. II) [136] unknown 16.33

HMM Spatial div all sources

[133]

unknown 4.33

HMM Spatial div closest

source [133]

unknown 26.67 9.17

HMM Spatial div 1 or 2 clos-

est sources [133]

unknown 22.33 11.2
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technique algorithm corpus SAR SDR SIR

HMM Souce priors [133] unknown 10.33 6.47

HMM spatial div + Bernoulli

source priors [133]

unknown 26.33 64.93

HMM spatial div + Markov

source priors [133]

unknown 28 14.13

HMM spatial div + source

priors oracle [133]

unknown 29.67 15.93

HMM oracle [133] unknown 47.33 25.43

NMF NMF-IS [141] music

NMF SAGENMF [142] unknown

NMF ML-MUR [143] GRID 6.7 5.7 13.5

NFM SAGE-MUR [143] GRID 4.0 1.6 12.1

NMF EM-MUR [143] GRID 6.8 5.8 13.4

NTF NTF [144] SiSEC2008

Deep Learning DNN [145] WSJ 7.8

Deep Learning DNN [146] unknown 6 6 21

Deep Learning DNN [147] TIMIT, TSP 9.89 6.39 9.72

Deep Learning DNN [148] TIMIT

Deep Learning MTNN [157] human speech

Deep Learning LSTM [159] WJS0 10.5

Deep Learning VAE [161] TIMIT 6.92 6.73 9.02

Deep Learning SEGAN [162] WSJ0

Deep Learning PhaseNet [163] WJS0 13.83

Deep Learning TASNET [98] WSJ0 11.1

Deep Learning FurcaPy [164] WSJ0 18.4

Table 3.4: Comparison between single channel speech separation techniques

When comparing the results of the different techniques (see Table 3.4), deep

learning does outperform the ICA and NMF techniques on SDR. However, in terms

of the number of artefacts and interference deep learning has difficulties in sur-

passing the HMM techniques. The latter techniques have not presented an SDR
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measurement for comparison. When concentrating on just NMF and DNNs, then

there is an overlap in performance showing that an unsupervised technique (NMF)

performs as well as a supervised technique (DNN)

3.4 Multichannel speaker separation

Multichannel speaker separation uses the information of two or more microphones

to determine where the speakers are by looking at when the signal arrives at a mi-

crophone. This allows the algorithm to calculate the difference in time of arrival

of the signal between the microphones and with knowledge of the location of the

microphones, it is able to determine the direction of arrival. The location informa-

tion helps when sources are spread through a room or moving around, but is less

valuable when the sources are behind each other (or overlap) from a microphone’s

perspective.

Beamforming (minimum variance distortionless response) gives location infor-

mation about the sources which can be used to improve source separation that can

be combined with speaker activity detection (SAD). Ceolini et al. [165] use this

algorithm to separate the speakers in a mixture created from audiobook record-

ings. The algorithm first applies SAD, which is followed by determining the steering

vectors. This information is given to the minimum variance beamformer which is

able to separate the speakers. For the recordings, a microphone array with eight

microphones is used. These have been scattered around the room.

Ito et al. [166] use a complex Gaussian mixture model with non-sparse noise

model for source separation. To improve computation they use a diagonal based

EM algorithm for the updates. This reduces the matrix inversion, multiplication

and determinant computation to scalar operations of the diagonal entries. However,

this requires computation of the generalized eigenvalues. As input to the algorithm

recordings from the SiSEC2010 corpus are used.

Within robotics, it is important to determine where the speaker is located so

that the robot can face them allowing for a more natural interaction. Nakadai et al.

[167] describe an active direction pass filter that is able to locate the speaker using

microphones located on the sides of the robot’s head. This technique allows the
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robot to locate, track and separate the speakers. This technique is an improvement

on the head related transfer function (HRTF) which according to Nakadai et al. [167]

can only be used in anechoic chambers. Keyrouz et al. [168] apply these HRTFs

to speaker separation and use multiple HRTFs to determine where the speaker is

located. For their technique, it is needed to know how many speakers there are in

the room.

These techniques can be compared with each other using the same measurements

as in Section 3.3 described by Vincent et al. [1]. An overview of this and the corpora

used is given in Table 3.5.

3.4.1 Non-negative matrix factorisation

Multichannel NMF adds a form of directionality to NMF [7, 38–40]. Intensity infor-

mation about the different sources is conveyed to the algorithm. There are two ways

of adding direction information; one is in the form of another matrix thus creating

non-negative tensor factorisation instead of NMF. The other is by multiplying the

input with the direction information. The latter will not work for larger microphone

arrays because of phase wrapping, this happens when the input is constrained to its

principal value.

Combining the knowledge of the possible source locations with information from

multiple microphones allows the algorithm to separate the sources. However, this

assumes that the location of the two sources is differentiable, which on a plane is

not always the case when sources move around. For example, when the sources

are directly behind each other this does not show up on a plane, only in a 3D

environment.

With multichannel NMF, cost functions are combined with different techniques,

among others time-difference of arrival (TDoA) [7, 39] and convolution to improve

the accuracy of NMF and to use the temporal information encoded in the exam-

ples. TDoA is used to describe the spectral covariance matrix of a source between

microphones. This, combined with the NMF approximation of the mixture, gives

a source per microphone. Another way of calculating the SCM is to calculate the

covariance between the signal before and after it is affected by reverberation. The

before (or “clean”) signal can be approximated with NMF in a joint fashion with
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calculating the mixture. The first step is to calculate how the sources are affected

by the reverberation and additional noise (i.e. calculating the frequency response

function or the room impulse response). This is followed by an approximation of the

mixture including reverberation. For demixing, a Wiener filter is used in addition

to the frequency response function (FRF) for the removal of the reverberation. A

different way of calculating the SCM is by determining the correlation between the

microphones [38, 40] and combining these to form the FRF. This is updated every

iteration to create the best fitting FRF for the separation.

Yoshii et al. [169] use independent low-rank tensor factorisation. This is based on

NMF and independent vector analysis. The latter solves the permutation problem

that ICA has and assumes that the source spectra follow multivariate probability

distributions. This technique is very similar to IS-NMF and uses the multi-channel

IS cost function. It uses EM update rules for determining the different matrices.

They use piano tones for training and testing this technique but the technique has

not been used on speech.

3.4.2 Deep Learning

As with single channel source separation, we see similar techniques used in mul-

tichannel deep learning, as well as combinations between deep learning and NMF

[170]. The DNN model estimates the variance matrix between sources and tries

to build a demixing matrix using this by estimating the source spectrogram and

updating the demixing matrix simultaneously. This method is supervised because

this network needs the original mixture matrix for the NMF part of the algorithm

as well as ground truth files for the DNN part. The DNN model can also be used

on its own to create a time-frequency mask of the different speakers [171].

Instead of using a DNN to create a mask, RNNs are also used for this [172]. These

RNNs have shared weights and are trained to output masks for all the speakers in the

mixture, which are fed into minimum variance distortionless response beamformers

for each speaker. Instead of using the audio signal as input, a mask can be built

using the interchannel phase difference (IPD). Wang et al. [173] use this input for

a permutation invariant training (PIT) network, passing it through a three layer

network with two biLSTM layers and a neural network layer.
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Another technique for building ratio masks uses a gated residual network [174]. A

GRN is based on dilated convolutions which expand the receptive fields. It requires

the use of the magnitude spectrogram and captures the patterns along the frequency

direction. The first stage is to apply denoising and after that, it separates the

speakers. The network is trained on the WSJ corpus with added noise from the

NOISEX-92 corpus [149].

Autoencoders can use the raw input signal in a similar way as TASnet does to

separate the speakers. A multi resolution convolutional autoencoder [175] passes

the input through different convolution layers to extract features from the audio

signals. These features are combined and separated in the following layers to create

the separated signals.
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technique algorithm max.
speaker-
to-mic

corpus SAR SDR SIR

beamforming MVBF-SAD [165] 20cm audiobook -1.40 -1.46 21.60
ADP[167] 50 cm newspaper
HRTF[168] human speech 21

GMM GMM [166] SiSEC2010
NMF NMF-TDoA [39] 1.5m audiobook 13.1 5.6 6.8
NMF NMF-DoA [7] TIMIT 10.4 3.0 6.8
NMF CNMF-EM [38] 1.2m SiSEC2008 12.3
NMF CNMF-MU [38] 1.2m SiSEC2008 4.4
NTF NTF-DoA [7] TIMIT 14.2 9.6 14.6
NTF NTF-SCM [40] unknown

Deep Learning/NMF DeepNMF [170] SiSEC2016
Deep Learning DNN [171] <1m CHiME3 18.23 13.25 15.58
Deep Learning PIT-RNN [172] <1m WSJ0 10.3
Deep Learning PIT-LSTM [173] <1m CHiME3
Deep Learning GRN [174] <1m WSJ0
Deep Learning MR-CAE [175] SISEC-2016-MUS 5.89 4.71 8.43

Table 3.5: Comparison between multi channel speech separation techniques
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The results of the multichannel algorithms are very similar to the ones of the

single channel algorithms. The DNN performs better than the NMF algorithms but

the difference between the techniques is not large.

3.5 Conclusion

In this chapter, several different corpora were presented. Many of these are used

for speaker separation or dereverberation. However, these corpora lack reverberant

and noisy speech and need to be run in a simulated environment or convolved with

a preselected room impulse response to be able to test this. The advantage of this

is that there is always a clean signal present and the corpus can easily be convolved

with different environments. On the other hand, the recorded sound does not have

a natural interaction with the environment resulting in additional artefacts created

by the convolution. For the noise, often the NOISEX-92 corpus is used to create

noisy speech. How the files are combined is often not described nor the kind of noise

used. In chapter 4, a corpus will be presented that address these issues.

For the dereverberation, different measurements are used to describe the perfor-

mance of the algorithms. Even within these measurements, there is a difference in

presentation. Often the improvement of a technique is given, but it is not described

to which this is compared. In Chapter 5, the performance (not improvement) of

two techniques (WPE and MIMO WPE) is presented. Another thing that makes

the comparison with other techniques difficult is the lack of RT60 times. As will

be shown in Chapter 5, the choice of RT60 times has a great influence on the per-

formance of an algorithm. Currently, the MIMO-WPE method is considered to be

state of the art for the real-time removal of reverberation.

The single and multichannel algorithms have a more unified approach to present-

ing their performance. Here the techniques can be more easily compared. However,

some still lack mentioning the training and testing corpora. Many of these tech-

niques have been tested on near-field speech (when this is described) but not on

far-field speech (> 5 metres). Knowing this distance is important for the multichan-

nel algorithms. Otherwise, it is difficult to replicate the results and compare them

with the results presented in Chapters 6 and 7.
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Acoustic camera corpus

4.1 Introduction

When addressing a robot, the speaker needs to be understood to enable the robot

to execute the tasks the speaker demands from it. In general, robots are able to

understand the speaker when tested in a lab setting with no other speakers around,

but in real-world environments, noise, reverberation and the presence of multiple

speakers make the speech recognition task more difficult. Robots need to work in

these environments and in industrial environments where there is noise from heavy

machinery. The noise makes it difficult for the speech recogniser to understand the

speaker which does not happen in the ideal, clean lab scenario.

The majority of corpora that are currently used for speaker separation, derevere-

beration or denoising contain only clean speech. This can be used as a ground truth

to which noise or reverberation is added. However, it is difficult to represent a

particular environment by adding noise or reverberation to clean speech because

the artificial noise and reverberation do not interact with each other and contain

artefacts from the recording environments. The corpus introduced here has record-

ings containing noise and reverberation recorded in realistic environments. With

72 microphones and a maximum sample rate of 192 kHz, this microphone array is

able to collect high quality recordings. The recordings in this corpus can be used

to simulate any number of speakers in the recorded environment by mixing them

together.

The recordings within the corpus can be used for speaker separation, tracking,
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dereverberation and noise cancelling. There are two types of recordings - one with a

single speaker per file and one with multiple speakers per file. The second allows for

a more natural speaker separation problem where speakers do not necessarily speak

at the same volume but naturally increase their volume in order to be heard over

the other speakers. The first allows multiple mixtures to be created by randomly

mixing speakers. For tracking speakers, there is one speaker per file, combined with

the speech is ground truth information of where the speaker is located in the room.

This location information is recorded with a Microsoft KinectV2 which gives the

location of a speaker in 3D space.

Speech is recorded with a microphone array called the Acoustic Camera (AC). All

recordings are made in one of two rooms, room A representing a realistic office and

the other (room B) representing a workshop environment, both with the presence

of noise and reverberation. These recordings contain people reading a short story

while standing still and walking around a room. These rooms allow the data to be

used for noise cancelling and dereverberation experiments.

The AC is chosen for its ability to make high quality recordings which can be

downsampled to the problem space. Apart from the high recording quality, the

number of microphones allow the device to produce accurate localisation of the

sound source and allow for usage in a problem space where multiple microphones

are needed. However, the device is not portable and cannot be mounted on a moving

platform nor does is allow for continuous recording.

Figure 4.1: Frontal view of the acoustic camera microphone array.
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4.2 Acoustic-camera

The Acoustic Camera (AC) is developed by GFAI tech as a microphone array that is

able to locate sound sources. Its primary usage is in the automotive industry where

analysis of the location of the noise allows designers to improve noise dampening

for the reduction of engine noise. This is expanded to noise reduction in office en-

vironments where the sound sources can be localised and fault detection in engines.

Compared to the Kinect v2 or MIT’s LOUD [176], the AC uses 72 (see Figure 4.1)

in three (ring, spiral and wheel) different 2D configurations (see Figure 4.2). LOUD

uses 1020 microphones in one configuration, the Kinect v2 uses four microphones

also in one configuration. Where the Kinect v2 has two cameras (RGB and depth

cameras) the AC has only one camera. On the other hand, LOUD only has micro-

phones. Another difference between these three microphone arrays is that the AC

and LOUD are specifically designed for sound engineering whereas the Kinect v2

was designed for gaming. The three microphone configurations of the AC are built

around a video camera which is located in the middle of each configuration. The

distance between two microphones located at opposite ends of each configuration is

1 metre. Each of the 72 microphones is capable of making recordings up to a sam-

ple rate of 192kHz. The Kinect v2 and LOUD have a maximum sample rate of 16

kHz. Due to the design of the AC, it is not possible to make continuous recordings

exceeding 90 seconds. After 90 seconds, the recording is stopped and written to the

hard drive (which can take up to 20 minutes). The advantage of this high sampling

rate in the quality and detail of the information in the recordings. This allows for

using the recordings to detect the onset of speech as well as highlighting the times

the speaker is breathing in or out. For this device, it means that the recordings with

the device can be used not only speaker separation but also for accurate localisation

(using up to 72 microphones), emotion detection, speech onset detection and speech

impairment detection.

The corpora discussed in Chapter 3 have a sample rate of 16kHz. This means

that for comparison purposes the sample rate of this corpus will be brought down

to 16 kHz. Downsampling means that there will be a loss of information but it does

not introduce the artefacts that upsampling will introduce.
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(a) ring (b) spiral (c) wheel

Figure 4.2: The location of the microphones (dots) and camera (square) in the three
different configuration as seen from the front of the AC.

The AC comes with four different beam-forming algorithms (delay-and-sum [177],

phase shifting [178], cross spectral matrix [179] and CLEAN [180, 181]). These

algorithms are separated into two different domains: time domain and frequency

domain. Using beam-forming techniques (see Section 2.6.3), the AC is able to locate

and display sound sources in both 2D and 3D environments. It is important to set

the correct focus (i.e. depth or distance between camera and sound source) when

using the beam-forming techniques. When the microphones of the AC are arranged

in a 2D configuration, the 3D localisation is not always accurate, and two issues

can arise. Firstly, when the AC is using an incorrect focus, the calculated sound

pressure is different compared to when the correct focus is used. From this follows an

incorrect mapping of the sound source onto a 2D plane. This occurs especially when

a sound source is moving, because the focus of the AC is set before the recording

is started and cannot be changed during the recording. This effect is dependent on

the configuration of the microphones and on the distance between the AC and the

sound source. For instance, if a source (in this particular case a computer on an

office chair) is placed in a room with varying distance between the source and the

AC, then this effect is seen in the different configurations (see Figures 4.3, 4.4 and

4.5, where the green dots represent the location of the microphones). When the

source is closer than six metres and the microphones are arranged in a ring or wheel

configuration, the effect is very small (see Figures 4.3 and 4.5). However, when the

microphones are in a spiral configuration or when the distance between AC and

sound source is more than 6 metres, the effect is more noticeable (see Figures 4.4e

and 4.4f).
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(a) Focus set to 1 metre but sound source is located at 4 metres distance

(b) Focus set to the same distance (4 metres) as the sound source

Figure 4.3: The influence of setting the correct focus on the accuracy of the beam-
forming algorithm using a ring microphone configuration. With the pink blob being
the highest detected sound pressure down to the blue areas with the lowest detected
sound pressure and the clear areas being the locations without a detectable sound
pressure. The green circles represent the microphone configuration and the black
dot represents the video camera.
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(c) Focus set to 1 metre but sound source is located at 6 metres distance

(d) Focus set to the same distance (6 metres) as the sound source

Figure 4.3: The influence of setting the correct focus on the accuracy of the beam-
forming algorithm using a ring microphone configuration. With the pink blob being
the highest detected sound pressure down to the blue areas with the lowest detected
sound pressure and the clear areas being the locations without a detectable sound
pressure. The green circles represent the microphone configuration and the black
dot represents the video camera (contd.).
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(e) Focus set to 1 metre but sound source is located at 8 metres distance

(f) Focus set to the same distance (8 metres) as the sound source

Figure 4.3: The influence of setting the correct focus on the accuracy of the beam-
forming algorithm using a ring microphone configuration. With the pink blob being
the highest detected sound pressure down to the blue areas with the lowest detected
sound pressure and the clear areas being the locations without a detectable sound
pressure. The green circles represent the microphone configuration and the black
dot represents the video camera (contd.).
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(a) Focus set to 1 metre but sound source is located at 4 metres distance

(b) Focus set to the same distance (4 metres) as the sound source

Figure 4.4: The influence of setting the correct focus on the accuracy of the beam-
forming algorithm using a spiral microphone configuration. With the pink blob
being the highest detected sound pressure down to the blue areas with the lowest
detected sound pressure and the clear areas being the locations without a detectable
sound pressure. The green circles represent the microphone configuration and the
black dot represents the video camera.
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(c) Focus set to 1 metre but sound source is located at 6 metres distance

(d) Focus set to the same distance (6 metres) as the sound source

Figure 4.4: The influence of setting the correct focus on the accuracy of the beam-
forming algorithm using a spiral microphone configuration. With the pink blob
being the highest detected sound pressure down to the blue areas with the lowest
detected sound pressure and the clear areas being the locations without a detectable
sound pressure. The green circles represent the microphone configuration and the
black dot represents the video camera (contd.).
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(e) Focus set to 1 metre but sound source is located at 8 metres distance

(f) Focus set to the same distance (8 metres) as the sound source

Figure 4.4: The influence of setting the correct focus on the accuracy of the beam-
forming algorithm using a spiral microphone configuration. With the pink blob
being the highest detected sound pressure down to the blue areas with the lowest
detected sound pressure and the clear areas being the locations without a detectable
sound pressure. The green circles represent the microphone configuration and the
black dot represents the video camera (contd.).
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(a) Focus set to 1 metre but sound source is located at 4 metres distance

(b) Focus set to the same distance (4 metres) as the sound source

Figure 4.5: The influence of setting the correct focus on the accuracy of the beam-
forming algorithm using a wheel microphone configuration. With the pink blob
being the highest detected sound pressure down to the blue areas with the lowest
detected sound pressure and the clear areas being the locations without a detectable
sound pressure. The green circles represent the microphone configuration and the
black dot represents the video camera.
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(c) Focus set to 1 metre but sound source is located at 6 metres distance

(d) Focus set to the same distance (6 metres) as the sound source

Figure 4.5: The influence of setting the correct focus on the accuracy of the beam-
forming algorithm using a wheel microphone configuration. With the pink blob
being the highest detected sound pressure down to the blue areas with the lowest
detected sound pressure and the clear areas being the locations without a detectable
sound pressure. The green circles represent the microphone configuration and the
black dot represents the video camera (contd.).
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(e) Focus set to 1 metre but sound source is located at 8 metres distance

(f) Focus set to the same distance (8 metres) as the sound source

Figure 4.5: The influence of setting the correct focus on the accuracy of the beam-
forming algorithm using a wheel microphone configuration. With the pink blob
being the highest detected sound pressure down to the blue areas with the lowest
detected sound pressure and the clear areas being the locations without a detectable
sound pressure. The green circles represent the microphone configuration and the
black dot represents the video camera (contd.).
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The AC is particularly sensitive to reverberation and noise. For instance in Fig-

ure 4.5a where the air-conditioning unit in the ceiling makes a noise which is picked

up by the acoustic camera and has the same loudness as the sound coming from the

computer. The noise is localised as a single source and classified as being louder

than the primary sound source. Reverberation, caused by the size and emptiness of

the room, interferes with these algorithms and is localised as multiple sources in the

output of the beam-forming algorithm (see Figures 4.6 and 4.7).

Figure 4.6: Pressure map showing the origin of the sound (pink blobs) and rever-
beration (red blobs) with reverberation coming from the back wall (rightside and
leftside of the head). The green circles represent the microphone configuration and
the black dot represents the video camera.
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Figure 4.7: A sound source located on the edge of the field of view of the microphone
array. The dark red blobs and the ripples show the main reverberation of the sound.
The scale shows the sound pressure (dB)

The AC is able to locate sounds on the edge of and outside the view of the camera

(see Figure 4.7) and can also distinguish between two sources only when they do not

overlap in their 2D location. This provides us with more information than having

either video and audio separately. For example, looking at the audio and video

separately, is not always evident where sound is coming from (see Figure 4.8).
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(a) Camera view

(b) Beamforming view. The red blob shows the sound source, the blue is the reverberation
of the sound. The green circles represent the microphone configuration and the black dot
represents the video camera.

Figure 4.8: A second person clapping their hands as seen on the video (a) and as
seen by beamforming (b).
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(a) Focus set to 1 metre but sound source is located at 4 metres distance directly behind
the wall

(b) Focus set to the same distance (4 metres) as the sound source directly behind the wall

Figure 4.9: The influence of setting the correct focus on the accuracy of the beam-
forming algorithm using a wheel microphone configuration with the sound source
behind a section of wall. The green circles represent the microphone configuration
and the black dot represents the video camera.
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(c) Focus set to 1 metre but sound source is located at 6 metres distance directly behind
the wall

(d) Focus set to the same distance (6 metres) as the sound source directly behind the wall

Figure 4.9: The influence of setting the correct focus on the accuracy of the beam-
forming algorithm using a wheel microphone configuration with the sound source
behind a section of wall. The green circles represent the microphone configuration
and the black dot represents the video camera (contd.).
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When there is an obstruction between the sound source and the AC it becomes

more difficult for the beam-forming algorithms to determine where the sound is

coming from (see Figure 4.9). However, this is also dependent on the distance

from obstruction to sound source. When the distance between sound source and

obstruction is large the beam-forming algorithms are more accurate because the

sound is able to travel around the obstruction more easily. Whereas, when the

sound source is close to the obstruction the sound has more difficulties in reaching

the microphones (see Figure 4.10).

(a) Sound source close to obstruction (b) Sound source away from obstruction

Figure 4.10: A comparison between obstruction when it is close to the sound source
and further away.

Applying beam-forming algorithms in the frequency domain provides greater ac-

curacy in where the sound source is located than when we apply a time-domain

beam-forming algorithm. The time-domain beam-forming algorithms are more in-

fluenced by secondary sound sources (noise or reverberation). Resulting in a source

showing up in a different location than it actually is. In frequency-domain beam-

forming algorithms these secondary sources are localised as having a lower intensity

than the main source and show up as blobs coming from the location of the main

source (see Figure 4.11). This gives a greater accuracy of where the primary source

is located.
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(a) Frequency-domain beam-forming using GCC-PHAT

(b) Time-domain beam-forming using delay-and-sum

Figure 4.11: A comparison between frequency beam-forming and time beam-
forming. The sound source is located on the right outside the view of the camera
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4.3 Recordings

For the recordings, the speakers were given a book to read from1. Pages 1-7 were

enough for the speakers to read in the timeframe it took to make a recording.

The recorded speech was mainly English by non-native English speakers2. For all

recordings, the exact time at which speaker started and finished was recorded. The

recorded text is added to the corpus in a transcript file. In addition to the ground

truth text, a single video and recordings from all the 72 microphones in individual

files were obtained.

The speakers were instructed to first stand still and then walk around. At the

start of the recordings, the minimum distance between the AC and the speaker was

6 metres. To allow for free movement through the room this was reduced to 3 metres

during the walking stage of the recording.

Separation recordings Tracking recordings

single speaker 5 12

multi-speaker 5 0

subjects 3 (2 women, 1 man) 16 (4 women, 12 men)

distance microphone to source > 5 metres > 3 metres

Table 4.1: Overview of the recordings.

4.3.1 Separation recordings

To use for speaker separation, 10 recordings were made (see Table 4.1). These

recordings were made in a room 13 metres long, 8 metres wide and 3 metres high.

The room contained several air-conditioning units, which add noise to the recordings.

This room represents a realistic office space with furnishing (12 tables and 48 chairs).

There was no specific acoustic sound proofing in the room. The absence of the

acoustic sound proofing adds reverberation to the recording.

These recordings contain speech of one, two or three speakers. The single speaker

recordings can be used to create new multi-speaker recordings by randomly mixing

two recordings together. For these recordings; the speakers were instructed to stand

1“Away in the Wilderness” by R. M. Ballantyne, pages 1-7
2There are also 5 recordings of Dutch speech
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still for 60 seconds, after which they got a signal to start walking through the room

keeping a minimum distance of 6 metres away from the AC (indicated by tape on

the floor).

4.3.2 Tracking recordings

17 recordings of single speakers were made with additional data from the Microsoft

KinectV2 in a room 8 metres long, 8 metres wide and 5 metres high. This room is

similar to a large workshop or small factory environment. There is no sound proofing

installed in the room. The roof is made of metal sheets which amplifies exterior and

interior sounds. Reverberation is an unavoidable part of the recordings made in this

room because of its size and insulation properties. These noises and reverberation

can be heard in the recordings.

During these recordings the speakers were instructed to stand still at 6 metres

from the AC for 45 seconds. After a signal, they could start walking around the

room. The speakers were instructed to keep a minimum distance of 3 metres from

the AC (indicated by markings on the floor). These recordings contain the audio

coming from the AC, the video from the AC and the manually added ground truth

of the spoken text. In addition to this, there are audio recordings made by the

Kinect microphones and the infrared and depth videos made by the Kinect. The

depth video gives a x, y, z, location of the speakers when they are in the field of

view of the Kinect.

To synchronize between the two different devices every recording starts with a

clap, which is later removed in the post processing.

N.B. these recordings can also be used for speakers separation as described in

the previous section.

4.3.3 Post processing

All of these recordings contain noise and reverberation. Removing these will simplify

the speaker separation problem. However, to be able to test the performance of

the algorithms in the real world, either or both should be present in the original

dataset. Therefore, the data is processed to create three other versions of the dataset

(no noise, no echo, original and nonoise echo), each adding a new level of complexity
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to the speaker separation problem (see Table 4.2). These complexities are compared

to the original recordings to see how the signal to noise ratio of the dataset improves

or degrades when that property is removed. Due to the nature of the removal

algorithms, the datasets where the reverberation is removed also degrades the audio

signal, whereas when only the noise is removed the audio signal is improved.

This post processing has to happen offline because the noise between the record-

ings varies. It is therefore more difficult to create a model that can remove all of

the noise in real time. This is something seen in real life too, when recordings are

too short, then noise reduction algorithms have performance issues. For the noise

reduction, spectral noise gating is used. This technique uses a quiet segment of the

audio as a noise sound fingerprint. This is then removed from the audio as a whole,

which was done for each speaker and each microphone separately. In this case, re-

verberation is the lengthening of speech by reflections. As these reflections are often

lower in amplitude, the associated frequency levels can be compressed, allowing the

persistence of the sound to be controlled. A multiband compressor is used to se-

lect the frequency levels to compress. For both techniques, the implementations in

Audacity R© v2.1.2 [182] are used.

dataset tracking recordings separation recordings

no noise 1.73 2.53

no echo -1.35 -1.39

nonoise echo -2.34 -2.34

Table 4.2: Overview of average change in signal to noise ratio (in dB) of the datasets
compared to the original recordings.

4.3.4 Corpus organisation

The corpus is divided into folders representing the number of speakers present in

the recordings. These can be used in different situations. For the recordings with

multiple people are no single speaker ground truth files available. Each of the folders

containing files with one, two or three speakers is divided per recording room (LC

and LR). Each of the rooms contains the different speakers recorded in this room

and their session number (for example, of speaker T1 there are two sessions T1 1

124



Chapter 4: Acoustic camera corpus

and T1 2). Within the speaker folder there, is a further division based on whether

the recording contains noise, reverberation, both or neither (respectively no noise,

no echo, nonoise echo and original). Next to these four folders, the video recordings

from the AC camera and Kinect (if present) can be found in this folder. Each of

the four dataset folders (no noise, no echo, nonoise echo and original) contain the

recordings of the 72 microphones at 192 kHz.

4.3.5 Use cases

The size and properties of the acoustic camera do not allow it to be mounted on

a robot. However, the corpus can be used for building models that solve problems

in robotics and these models can be used with different microphone arrays which

have similar properties to those used for creating the models. For example, the

corpus can be used for dereverberation, therefore the data has been passed through

a multiband compressor can be used as a baseline. The influence of realistic noise on

the algorithm can be tested using the original data. For noise cancelling, a similar

approach can be adopted. A total of 72 microphones can be used for a multi-channel

approach to improve the accuracy of the algorithm. The multi-speaker recordings

can be used to increase the complexity of the problem for the algorithm.

For speaker separation, the data can be mixed in several different ways. Differ-

ent microphones can be used to simulate a distance between speakers or the same

microphone can be used to simulate two speakers in the same location. However, the

mixing of single speaker files does have a disadvantage. When the mixing includes

the reverberant signal of both speakers, it will be less realistic because these have

been recorded at different times. Meaning that there is a difference in the reverber-

ation of two speakers artificially mixed together and two speakers speaking at the

same time. For the multi-channel algorithms the data from the Kinect can be used

to determine the exact location of the speakers.

The fourth usage of the data considered here is to do speaker tracking. The

array setup allows for different configurations to be used: from a linear stereo array

(by selecting two oppositely located microphones) to using all 72 microphones for

localisation. In addition to this there is location data from the Kinect which can be

used as ground truth data. However, there are instances in the recordings where the
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speaker walks out of view of the cameras but still can be heard. This is an added

level of complexity to the data.

Another usage for the corpus is onset of speech detection. The AC’s high quality

recordings allow for accurate detection of when the speaker starts to speak. For

this, the recordings of all microphones can be used and the algorithm can be tested

in the four different settings.

4.4 Conclusion

Within this chapter, a novel corpus that can be used to evaluate algorithms for

speaker separation was presented. This corpus contains realistic data that can be

used to train machine learning models for speaker separation in noisy and reverber-

ant environments (see for example Chapters 6 and 7). However, this is not the only

usage of the corpus. It can be used for speaker localisation and tracking and noise

and reverberation removal or suppression. The tracking algorithms need to work

with the reverberation present in the recordings but can also use the other three

datasets where some of the properties have been removed. Noise and reverberation

removal can be compared to the sets where that property has been removed. These

sets can be used as a baseline.

The microphone array used for recording this corpus allow for a precise locali-

sation and recording of different sound source. However, its size and ability to only

record 90 seconds make it unsuitable for real-time recordings or placement on a

robot. The recordings can be used for training a robot to respond to the correct

speaker and allow for the creating of a smaller microphone array with a similar

configuration to the one used for training the robot (or algorithm).

126



Chapter 5

Dereverberation

5.1 Introduction

With the introduction of artificial assistants and robots into our homes and work

environments, speech recognition has moved from controlled conditions to unpre-

dictable conditions. Now, instead of working in a small clean lab environment,

speech recognition has to work in different environments varying in size from, for

example, a living room with minimal furnishing to a large factory hall. These various

environments introduce reverberation from the walls and ceiling making it difficult

for a robot or artificial assistant to understand the speaker and execute critical tasks.

Reverberation is similar to echo, however in the case of reverberation the re-

flections arrive within 50ms, whereas with echo the reflection arrives after 50ms.

Reverberation is described as the persistence of sound (in this case speech) after the

sound has been produced. This leads to a richer and warmer sound which is useful

for music but also to errors in speech recognisers if they cannot determine when

a phoneme (phonetic description of combinations of letters) has ended, introduc-

ing additional letters in the transcription which should not be there. This in turn

creates an issue with the speech recogniser and with language understanding for

artificial assistants and robots further down the line. For robotics, a working speech

recogniser is important to understand what the speaker wants and what the robot

needs to do. With reverberation, it is difficult for a robot to distinguish between

actions spoken by the speaker, which may affect the robot’s choice of executing a

critical task. This can result in breaking an object, for example when the robot is
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about to push a mug off a table and it does not recognise the word “STOP” spoken

by the speaker.

This chapter concentrates on investigating the performance of existing algorithms

and novel algorithms for the removal of reverberation. There are two ways of re-

moving the reverberation from a sound signal:

• dereverberation (supervised dereverberation), where the sound signal is com-

pared with a ground truth (the signal without reverberation) and a mask is

build using the reverberant signal and the ground truth.

• blind dereverberation (unsupervised dereverberation), where multiple channels

of the reverberant sound signal are compared to build a mask for removing

the reverberation. This does not use the ground truth signal.

Both ways assume that the reverberation can be approximated by calculating the

cross-correlation between signals. Supervised dereverberation uses the non-reverberant

signal (Y) and the reverberant signal (X). For the blind dereverberation the cross-

correlation is calculated between multiple microphones that receive the reverberant

signal. This cross-correlation is assumed to describe the reverberation in the fre-

quency domain and therefore the frequency response function (FRF).

Both dereverberation and blind dereverberation methods of removing the rever-

beration are investigated in this chapter. In order to do this, two different categories

of algorithms are evaluated; learning and non-learning algorithms. The learning

dereverberation algorithms build a mask and are able to adapt this mask over a

number of iterations to match the reverberation better, thus learning the frequency

response function. For the learning correlation based algorithms the existing H1

NTF, WPE and MIMO WPE algorithms are compared with the novel Hs NTF,

Cauchy WPE and Cauchy MIMO WPE algorithms. These six learning based algo-

rithms are divided in two categories (supervised and unsupervised). The supervised

algorithms (H1 NTF and the novel Hs NTF) calculate the correlation between the

ground truth and the microphone as the reverberation. On the other hand, the unsu-

pervised algorithms (Cauchy WPE, WPE, Cauchy MIMO WPE and MIMO WPE)

only use the information coming from the microphones as input and calculate the

correlation between two microphones.

The non-learning algorithms build a mask but do not adapt this mask meaning
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that the mask is approximated once. The non-learning correlation based algorithms

are the existing H1, H2 and Hs correlation measurements. The H1 method (see

Section 2.3.2) assumes that there is noise in the reverberant signal and produces an

underestimate of the FRF when the noise is in the non-reverberant signal instead.

The H2 method (see Section 2.3.2) assumes that there is noise in the non-reverberant

signal and produces an overestimate of the FRF when the noise is in the reverberant

signal instead. Finally, the Hs method (see Section 2.3.2) tries to find the balance

between the H1 and H2 methods by scaling the influence of each of the correlation

techniques. This particular implementation by Leclere [32] has not been used before

for doing speech dereverberation. These algorithms are used for both dereverbera-

tion and blind dereverberation.

These algorithms are used because they are explainable, tractable and easily

expanded. Other algorithms such as Hidden Markov models (HMM), autoencoders

and generative adversarial networks (GAN) do not share all of these properties. For

instance, autoencoders and GAN are easily expanded but not tractable or explain-

able whereas HMMs are explainable but difficult to expand.

There are four main stages in this chapter:

• Comparing the performance of the three non-learning algorithms (H1, H2 and

Hs) in both a dereverberation and blind dereverberation setting. This is to see

the influence of the reverberation on the different correlation measurements

and to determine which is best at determining the frequency response function.

• Comparing the performance of the novel Hs NTF algorithm with the result of

the H1 NTF algorithm. The Hs NTF should give an improved performance

because it will be able to account for noise being present in the approximation

as well as in the input.

• Comparing the performance of two novel variants of the WPE and MIMO

WPE methods to the original WPE and MIMO WPE algorithms. In their

original form, WPE and MIMO WPE use the Gaussian distribution to cal-

culate the reverberation. The two novel variants are based on the Cauchy

distribution (see Section 2.2.4) which has a longer tail. This means that the

distribution is able to include more frequencies in its calculation.

• Comparing the performance of the WPE and MIMO WPE algorithms as well
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as the two novel variants using different window functions. This shows why

Drude et al. [108] suggest using a Blackman window function over the normally

used Hann window function. Instead of concentrating only on the Blackman

and Hann windows, six different window functions (Bartlett-Hann, Bartlett,

Blackman, Hamming, Hann and triangular) are compared. This is to see if

there is a different window function outside of the two normally used for these

experiments.

The performance of these algorithms is measured using five algorithms (PESQ, SDR,

SDRmir, SISDR and SNR). These are chosen to be able to compare the results with

those of the existing literature. The algorithms are run on the TIMIT dataset and

the MIMO WPE algorithm is also run on the Acoustic Camera (AC) corpus. The

TIMIT dataset is chosen to make a comparison with existing literature whereas the

AC corpus gives the MIMO WPE an environment with realistic reverberation to

test the performance on.

5.2 Algorithms

5.2.1 Hs NTF dereverberation method

The Hs method described in the previous section can be combined with work by

Ozerov et al. [40] to create a new algorithm which learns the reverberation. In this

section the reverberation matrix is being learned, not the separation of sound sources

which is the original intention of Ozerov’s work and will be described in Chapter 7.

The idea behind this is that with updating the approximation of the reverberant sig-

nal by multiplying two nonnegative matrices together and working in the frequency

domain approximates the frequency response function. This improves the quality

of speech and reduces the number of artefacts because the dereverberation mask

can be tailored to the input signal by constantly adapting the approximation of the

frequency response function.

To make the algorithm concentrate on the reverberation instead of creating the

speech signal as well, the non-reverberant signal is used as second input. This means

that the algorithm is used in a supervised fashion where both the reverberant and

non-reverberant signals are known, giving the algorithm one less matrix to learn
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and fully concentrate on calculating the difference between the non-reverberant and

reverberant signals.

As explained in Section 2.3.2, the reverberant signal in the frequency domain

is the multiplication of the non-reverberant signal with the FRF. The FRF does

not change over time (i.e. the influence of the reflections is only described in the

frequency domain).

xfn = Afnsfn + bfn (5.1)

First the reverberant signal (x) is divided into a non-reverberant signal (s), noise

(b) and the reverberation (A) (see Equation 5.1). To calculate the reverberation,

the Hs method (see Section 2.3.2) is used. This method accounts for noise being

present in both the original mixture and the approximation of this mixture.

Next Ωs is calculated which is the non-reverberant signal per microphone multi-

plied by the Hermitian transpose of the reverberation and the inverse of the rever-

beration signal per microphone (see Equation 5.2).

Ωs = ΣsA
HΣx

−1 (5.2)

This calculation is followed by calculating the cross-correlation of Ωs and the

original input (see Equation 5.3). The original input is defined by Equation 5.4.

Σ̂xs = Σ̂xΩs
H (5.3)

Σ̂x = xxH (5.4)

Both Ωs and Σ̂xs are used to calculate the reverberation (A), for this, first Σ̂xs

(the cross-correlation of Ω and the reverberant signal) is multiplied with the inverse

of the non-reverberant signal (see Equation 5.5).

A = Σ̂xsΣ̂s
−1 (5.5)

The reverberant signal per microphone is calculated using the non-reverberant

signal per microphone multiplied by the reverberation and the Hermitian transpose
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of the reverberation and finally noise is added to the signal (see Equation 5.6).

Σx = AΣsA
H + Σn (5.6)

For approximating noise, Ozerov et al. [38] is followed where the noise is de-

scribed as Equation 5.7

Σn = Σ̂x − AΣ̂xs
H − Σ̂xsA

H + AΣsA
H (5.7)

Equation 5.5 is replaced by Equation 5.8 to create the Hs NTF version. This is to

account for the noise that is present in the mixture (instead of the approximation)

or in both the mixture and the approximation. Σ̂sx is calculated by interchanging

Σ̂x and Ωs in Equation 5.3 thus forming Equation 5.9.

A = UnVn
−1 (5.8)

Σ̂sx = ΩsΣ̂x
H (5.9)

In Equation 5.8, Σhs is the result of taking the n biggest values of the singular value

decomposition (SVD) of the correlation matrix (see Equations 5.10 and 5.11). These

n values describe at most 99.9999% of the data. This means that the noise in the

signal is removed which are the parts with the lowest correlation in the correlation

matrix. The correlation matrix is built from 4 matrices namely: the input; the

cross correlation between the input and Ωs; the cross correlation between Ωs and

the non-reverberant signal and the non-reverberant signal. As explained in Section

2.3.2, the left singular vectors of the SVD (see Equation 5.11) are described by both

U and V , s describes the singular values and W the right singular vectors.

Σ̂xyxy =

 Σ̂x Σ̂xs

Σ̂sx Σ̂s

 (5.10)
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Σ̂xyxy =

U
V

 sWH (5.11)

5.2.2 Cauchy WPE

Weighted prediction error (WPE) (see Section 2.3.3) uses past information to predict

the influence of the FRF on the current frame. This method offers a trade-off

between a learning algorithm and an algorithm running in real-time. This method

is changed to use the Cauchy distribution instead of the Gaussian distribution used

in the original version of the algorithm. The original algorithm uses information from

the past to improve the dereverberation mask. However, when a source is moving

the algorithm uses information that is out-of-date. This creates an error in the

mask and does not remove all of the reverberation. Unlike the methods described

in Sections 2.3.2 and 5.2.1, WPE assumes that there is limited noise present in

the recording (see Equation 5.12). This limits the algorithm to dereverberation in

almost noiseless conditions.

Y (f) = X(f)FRF (f) (5.12)

An important part of the WPE method is the autoregression process. This works

by calculating the autocovariance of a signal at the same time step and the cross

covariance at a delayed time step.

σ =
|xf,t−D|2 + |df,t|2

3 ∗ |df,t|2

Φ = σ ∗ σT

φ = σ ∗ xHf,t−D

(5.13)
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σ =
2 ∗ π ∗ (|xf,t−D|2 + |df,t|2)3/2

|df,t|2

Φ = σ ∗ σT

φ = σ ∗ xHf,t−D

(5.14)

σ =
|xf,t−D|2

3 ∗ |df,t|2(|xf,t−D|2 + |df,t|2)+

Φ = σ ∗ σT

φ = σ ∗ xHf,t−D

(5.15)

Another change to the WPE algorithm is calculating the autocorrelation of the

approximated desired signal (df,t) which has been modified with the delayed signal.

These changes are based on the Cauchy distribution (see Section 2.2.4) which does

not use the mean of the approximated desired signal ( 1
T

∑T |df,t|2), instead the

power magnitude of the desired signal is used (|df,t|2). The cross-correlation (φ) was

changed to calculate the correlation between the approximated desired signal and

the delayed signal (xf,t−D) (see Equations 5.13 to 5.15). There are three different

modifications made which are called Cauchy v1 (see Equation 5.13), Cauchy v2 (see

Equation 5.14) and Cauchy v3 (see Equation 5.15). These modifications remove the

need to approximate the mean of the approximated desired signal as is the case with

the original version of this algorithm (see Section 2.3.3). This should increase the

speed of the algorithm.

5.2.3 Cauchy MIMO WPE

Multiple input multiple output (MIMO) WPE is an extension of WPE that outputs

the same number of signals as it gets as input. Also as described in Section 2.3.4, it

does not have the limitations that WPE has (limited noise present in the recordings).

As MIMO WPE has the same structure as the WPE algorithm, the same three

modifications can be applied without changing the overall structure of the algorithm.
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It is difficult to improve the speed of the algorithm because it is running near real-

time. However, these modifications offer a different way of approximating the desired

signal. The main increase in speed is in calculating the filter matrix. Where WPE

does this per frequency bin, MIMO WPE calculates this over all the frequency bins

at the same time. This does not affect the precision of the algorithm but does

increase the speed.

5.3 Corpora

For the dereverberation experiments, two corpora are used; TIMIT and the Acoustic

Camera (AC) corpus. The TIMIT corpus [3] contains speech from a single speaker

recorded with a close-talk microphone (see Section 3.1). These speech recordings

do not contain noise or reverberation. This corpus is used to compare the methods

against the existing literature. These recordings of this corpus are simulated in two

rooms of different sizes. One of the rooms is of similar size as the one used for the

AC corpus (see Section 4.3.2). The other room is of similar size as the one used by

Parchami et al. [110] which is smaller than the room used for the AC corpus. This

is to compare the results of the WPE and MIMO WPE variants with the six WPE

versions described by Parchami et al. [110].

The AC corpus contains recordings of a single speaker in a realistic office and

workshop environment (see Chapter 4). These recordings contain noise and reverber-

ation which have been removed to create four different datasets of the same corpus

each with their own properties (original, no noise, no echo and nonoise echo).

5.4 Experimental setup

5.4.1 Corpora

For the dereverberation experiments seven different algorithms are applied to the

TIMIT dataset. This is to compare the results from the experiments with those

presented in existing literature (see Section 3.2). Cauchy MIMO WPE has also

been applied to the AC corpus for testing in a realistic environment.

135



Chapter 5: Dereverberation

5.4.2 Environment

For the experiments two rooms with a single source and two microphones according

to the specifications described in Table 5.1 (see Figure 5.1) are simulated. Room A

is a replication of the tracking recording room used for the AC corpus (see Section

4.3.2), whereas room B is a replication of the room used by Parchami et al. [110]

(see Figure 5.2). Room A is used to simulate a workshop environment with high

levels of reverberation. This room is used for all algorithms.

Room B is used to compare the results with those of Parchami et al. [110] and

is therefore only used for the Cauchy WPE and Cauchy MIMO WPE algorithms.

For the simulation of the rooms, the pyroomacoustics [183] library is used. It

models the reflections from the wall using the image method [29]. This method

only uses those reflections that are within a radius given by the speed of sound

and the reverberation time (RT60). Three of the six performance measurements are

implemented in a library call mir eval [184], PESQ is implemented in pypesq1 and

for SNR and SISDR own implementations2 are used. The WPE and MIMO WPE

algorithms are based on the implementations2 by respectively Nakatani et al. [26]

and Drude et al. [185]. The algorithms are run on a OpenSuse Linux computer with

an Intel i3 processor with 4GB RAM.

As input to the algorithms, recordings from the TIMIT datasets are used as well

as recording from the AC corpus. These recordings are chosen at random with a

uniform distribution.

x y z

Dimensions 8m 8m 4m

Source 4 8 1.5

Microphone 1 4.75 2 1

Microphone 2 5.5 2 1

Table 5.1: Dimensions of Room A and locations of microphones and the sound
source

1https://github.com/vBaiCai/python-pesq
2https://github.com/TeunKrikke/dereverb
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Figure 5.1: Top view of room A where the stars represent the microphones and the
dot the speaker

x y z

Dimensions 4m 5m 2m

Source 1.5 3 1.5

Microphone 1 4.75 2 1

Microphone 2 5.5 2 1

Table 5.2: Dimensions of Room B and locations of microphones and the sound
source

Figure 5.2: Top view of room B where the stars represent the microphones and the
dot the speaker as described by Parchami et al. [110]
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Using the Sabine equation (see Equation 2.24) the RT60 of a room can be calcu-

lated, where V is the volume of the room, S the surface area and ᾱ the absorption

coefficient. For example, the volume of room A is 320m3, the surface area is 288m2

(four wall of 8 x 5 and the floor and ceiling of 8 x 8), the 0.161 stands for the number

of sound unit seconds travelled per metre i.e. the inverse of 320 m/s (the speed of

sound). The walls of room A have an absorption coefficient of 0.35 (corresponding

to a wall surfaced with 12.5mm thick acoustic plaster). This results in a RT60 of

0.51 seconds for room A. Similarly, room B with the same walls has a RT60 of 0.23

seconds.

5.4.3 Parameters

The STFT of the recordings from the TIMIT [3] is used as input with a window size

of 100 frames, an overlap of 128 frames between the frames and with 1024 FFT units.

In Equation 5.16 F0 is the base frequency that needs to be detected corresponding

to that of a male voice. All frequencies above this will be detected by this window

size. Fs is the sample rate of the audio recordings. The recordings are sampled

at 16kHz, these are downsampled where needed. Downsampling allows for an even

comparison between the different corpora, however this does remove information

from the recordings. This is multiplied by five, which is the size of the main lobe in

the Hann window function.

windowsize = window lobe size× Fs
lowest detectable frequency

windowsize = 5(Fs/F0)

(5.16)

The H1, H2 and Hs algorithms are non-learning algorithms (see Section 2.3.2)

where the first two require no extra parameters. The Hs algorithm, on the other

hand, is tested using 95%, 99.99% and 99.9999% of the data corresponding to λ

values (see Equation 2.30) of 0.05, 0.0001 and 0.000001 (see Table 5.3). Therefore

assuming that the majority of the so-called noise is described by respectively 5%,

0.01% and 0.0001% of the data. Next to this the scaling factors of sx and sy need

to be determined. This is done on 10 randomly selected files of the TIMIT dataset.
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For this process the sy parameter was set to 1 and sx ran on values between 1 and

100. Based on the performance of the algorithm in terms of the signal-to-artifact,

signal-to-distortion and signal-to-interference ratios, the value of 31 for sx which was

then fixed and sy was run on values between 1 and 100. This resulted in a value of

65 for the sy parameter. These parameters are not used for Hs NTF because of the

learning capabilities of the algorithm.

λ 0.05 0.0001 0.000001

sx 0.31 0.31 0.31

sy 65 65 65

Table 5.3: Parameters for the Hs algorithm

The remaining four algorithms (H1 NTF, Hs NTF, Cauchy WPE and Cauchy

MIMO WPE) are learning algorithms, the first two use nonnegative tensor factorisa-

tion to determine the dereverberation mask, the latter two use weighted prediction

error for this.

5.4.4 Performance metrics

The performance of the seven algorithms is measured using six different measure-

ments: the signal-to-artifact ratio (SAR), the signal-to-distortion ratio (SDR), the

mir eval signal-to-distortion ratio (SDR) (see Section 2.5), the scale invariant signal-

to-distortion ratio (SISDR) [60], the signal-to-interference ratio (SIR), the signal-to-

noise ratio (SNR) and the perceptual evaluation of speech quality (PESQ) [61]. The

first two measurements give an indication of the noise present in the outcome of the

algorithms whereas the latter is used to compare the performance of the algorithms

against those in the literature.

5.4.5 Experiments

All algorithms are run on the TIMIT corpus simulated in room A. This is to compare

the results of the algorithms with existing literature. Next to the original reverbera-

tion time of the room, the H1, H2 and Hs algorithms are also tested with an artificial

reverberation time of 0.4, 1 and 1.5 seconds. This is to test the performance of the
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algorithms in increasing difficulty. The longer reverberation time makes it more dif-

ficult for the algorithm to distinguish between speech and reverberation. However,

this particular point where the algorithm cannot distinguish between speech and

reverberation is different for each algorithm, using these reverberation times will

give an indication of where this point is for these three algorithms. These tests run

in a supervised and unsupervised setting in room A.

Both NTF algorithms (H1 and Hs NTF) are tested with the room reverberation

time of room A. The different WPE and MIMO WPE algorithms are also run on

the TIMIT corpus simulated in room B. This is to compare the results with those

described by Parchami et al. [110], who test six variants of the WPE algorithm.

These are tested in room B with increasing RT60 times from 0.1 to 1 second (with

increments of 0.1 seconds).

In addition to the room reverberation time, the WPE and MIMO WPE algo-

rithms are also tested with a reverberation time of 0.1 to 1 second increasing the

reverberation time by 0.1 seconds. These tests run in both rooms A and B. The

WPE and MIMO WPE algorithms are also tested with different window functions

to investigate the influence of these. Drude et al. [185] report using a Blackman

window function for STFT. However, within the field of dereverberation this is not

always explicitly mentioned. Therefore, WPE and MIMO WPE are tested with six

different window functions (Bartlett-Hann, Bartlett, Blackman, Hamming, Hann

and triangular) to see which performs best. The different MIMO WPE algorithms

are run on the AC corpus to investigate how the algorithms perform in a realistic

workshop environment.

5.5 Results

The seven algorithms are evaluated using room A where audio files from the TIMIT

corpus are played. The performance of these algorithms is displayed in terms of the

PESQ, SAR, SDR, SISDR, SIR and SNR. For all these measurements, it holds that

the higher the value the better the algorithms perform. For the WPE algorithms

the time it takes for the algorithm to run is also presented.
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5.5.1 H1, H2 and Hs algorithms

The Hs algorithm performs worse in terms of speech quality when a higher per-

centage of the data is being used. This is noticeable with the lower RT60 times

(see Figures 5.3a and 5.3b) but this difference is less noticeable in the higher RT60

times. In general when a higher percentage of data is used then it is more likely

that it contains noise thus degrading the overall speech quality. However, in terms

of distortion the performance is similar to that of the H1 and H2 algorithms. When

the RT60 time is increased to 1 second, the Hs algorithm starts to outperform the

H1 and H2 algorithm (see Figures 5.3c and 5.4c) according to the PESQ score but

this stops when the RT60 is increased to 1.5 seconds (see Figures 5.3d and 5.4d).

This shows that the Hs algorithm produces a better speech quality with higher re-

verberation times than the H1 and H2 algorithms. However with a reverberation

time of 1.5 seconds, the performance is similar due to the lack of noise present in

the recordings.
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(a) Room A’s own reverberation time
(0.51 seconds)
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(b) Reverberation time of 0.4 seconds
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(c) Reverberation time of 1 second
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(d) Reverberation time of 1.5 seconds

Figure 5.3: A comparison of the PESQ results of the supervised non-learning corre-
lation algorithms with different reverberation times applied to room A

142



Chapter 5: Dereverberation

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

H
1

H
2

H
s 
95

%

H
s 
99

.9
9%

H
s 
99

.9
99

9%

algorithm

d
B

(a) Room A’s own reverberation time
(0.51 seconds)

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

H
1

H
2

H
s 
95

%

H
s 
99

.9
9%

H
s 
99

.9
99

9%

algorithm

d
B

(b) Reverberation time of 0.4 seconds

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

H
1

H
2

H
s 
95

%

H
s 
99

.9
9%

H
s 
99

.9
99

9%

algorithm

d
B

(c) Reverberation time of 1 second

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

H
1

H
2

H
s 
95

%

H
s 
99

.9
9%

H
s 
99

.9
99

9%

algorithm

d
B

(d) Reverberation time of 1.5 seconds

Figure 5.4: A comparison of the signal-to-distortion results of the supervised non-
learning correlation algorithms with different reverberation times applied to room
A
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Figure 5.5: A comparison of the scale-invariant signal-to-distortion results of the
supervised non-learning correlation algorithms with different reverberation times
applied to room A

In the blind dereverberation case, which does not have a reference signal (see

Figure 5.6), it does not make a difference if more data is included. The Hs algorithm

shows equal performance when 95% of the data is used as when 99.9999% of the

data is being used. However when the RT60 time is increased to 0.4 seconds, then

adding more data improves the resulting signal (see Figure 5.6b). This pattern is

not noticeable with an RT60 time of 1 second (see Figures 5.6c, 5.7c and 5.8c) but

the pattern returns when the RT60 time is set to 1.5 seconds (see Figures 5.6d and

5.8d). The results show that when the reverberation time increases the difference
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correlation between the microphones is higher. Also, it is more difficult to find a

correlation between a reverberant and non-reverberant signal.
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Figure 5.6: A comparison of the PESQ results of the unsupervised non-learning
correlation algorithms with different reverberation times applied to room A
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Figure 5.7: A comparison of the signal-to-distortion results of the unsupervised non-
learning correlation algorithms with different reverberation times applied to room
A
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Figure 5.8: A comparison of the scale-invariant signal-to-distortion results of the
unsupervised non-learning correlation algorithms with different reverberation times
applied to room A

5.5.2 H1 NTF and Hs NTF algorithms

The algorithm ran only in a supervised method with the difference between the

H1 NTF and the Hs NTF algorithm being minimal. This shows that there is no

improvement in using a different way of calculating the correlation between micro-

phones. Having the Hs NTF algorithm use 99.9999% of the data is giving a similar

performance to the H1 NTF algorithm showing that in this case both algorithms are

able to remove the reverberation and produce comparative results. Showing that
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the Hs NTF is able to remove the reverberation with similar performance as the

existing H1 NTF technique.
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Figure 5.9: The performance of the correlation-based dereverberation algorithm on
the TIMIT recordings in room A with a RT60 of 0.51 seconds

5.5.3 WPE and MIMO WPE

Evaluating six window functions

Parchami et al. [110] and Nakatani et al. [26] do not explicitly describe the win-

dowing function used for WPE. Because the Hann window function is the most

popular window function used with speech, the assumption is that Parchimi et al.

use the Hann window function. However, MIMO WPE method uses a Blackmann
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window function (see Drude et al. [185]). This window function should be able to

deal better with smearing of frequencies, thus creating a more defined spectrogram

(see Section 2.2.3). Therefore, six different window functions (Blackman, Hann,

Hamming, Bartlett-Hann, Bartlett and triangular) are compared on PESQ, SISDR,

SDR, SDRmir and time. The results from these measurements are based on 10 ran-

domly selected files from the TIMIT corpus and have been run in room B to create a

comparison with Parchami et al. [110] to see which performs best and is the fastest.

When the different windows are compared, the results show that the Blackman

window is the worst performing for the MIMO WPE algorithm (see Figure 5.10a).

The Bartlett-Hann, Bartlett and triangular windows are the best performing.

Looking at the different windows for WPE a similar trend is seen (see Fig-

ure 5.10b). However, with the short reverberant times (200 and 300 ms specifically)

the Hann window performs better than the Bartlett-Hann window. A similar pat-

tern can be seen for the two modified versions (see Figures 5.10c and 5.10d).

The SDRmir shows a similar pattern for WPE and MIMO WPE (see Figure 5.11b

and 5.11a). However, the Cauchy MIMO v2 algorithm performs better with a Black-

man window on the middle RT60 times (between 500 and 700 ms) (see Figure 5.11c).

The other two measurements (SISDR and SDR) do not give conclusive results

(see Figures 5.12 and 5.13). Looking at the time it takes to run the algorithm, a

Blackman window is quicker, closely followed by the Hamming and Hann windows.

In some cases, the Bartlett and Bartlett-Hann windows are the slowest window

functions used (see Figure 5.14).

Comparing Blackman and Hann window functions

Comparing the two original algorithms (WPE and MIMO) based on the two

windows used in the papers, the results show that the MIMO algorithm outper-

forms WPE and that the Hann window outperforms Blackman window in PESQ

performance (see Figure 5.15a). The same pattern is seen in the time it takes for

the algorithm to run and the SDRmir measurement (see Figures 5.15d and 5.15e).

Again the SDR and the SISDR do not show a clear distinction between the windows

or the algorithms (see Figures 5.15b and 5.15c).
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Figure 5.10: The PESQ performance of the different MIMO and WPE algorithms
using different window functions evaluated on room B
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Figure 5.11: The SDRmir performance of the different MIMO and WPE algorithms
using different window functions evaluated on room B

151



Chapter 5: Dereverberation

Window function

Bartlett Hann
Bartlett
Blackman
Hamming
Hann
Triangular

−22

−20

−18

−16

−14

250 500 750 1000

RT60 (msec)

S
D

R
 (

d
B

)

(a) The MIMO algorithm

−22

−20

−18

−16

−14

250 500 750 1000

RT60 (msec)

S
D

R
 (

d
B

)

(b) The WPE algorithm

−22

−20

−18

−16

−14

250 500 750 1000

RT60 (msec)

S
D

R
 (

d
B

)

(c) The Cauchy v2 MIMO WPE algorithm

−22

−20

−18

−16

−14

250 500 750 1000

RT60 (msec)

S
D

R
 (

d
B

)

(d) The Cauchy v2 WPE algorithm

Figure 5.12: The SDR performance of the different MIMO and WPE algorithms
using different window functions evaluated on room B
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Figure 5.13: The SISDR performance of the different MIMO and WPE algorithms
using different window functions evaluated on room B
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Figure 5.14: The running time of the different MIMO and WPE algorithms using
different window functions evaluated on room B
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Figure 5.15: The performance of the different Hann and Blackman windowing func-
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algorithms evaluated on room B
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Figure 5.16: The PESQ performance of the Cauchy WPE and WPE algorithms
using the Bartlett-Hann and Hann window functions evaluated on room A and B

Evaluating Bartlett-Hann and Hann window functions

When concentrating on the Bartlett-Hann and Hann on the WPE algorithm, the

results show that the modifications outperform the original WPE algorithm espe-

cially at the lower RT60 times (see Figures 5.16 to 5.20). These results show the

same pattern for both window functions. Looking specifically at the running time,

the original algorithms outperform the modifications by a number of seconds with

Cauchy v3 being the quickest. There is also a difference between the performance

on the SDR and SISDR scale, which is more noticeable on the low RT60 times and

only for Cauchy v1 (see Figures 5.17 and 5.18) which has the best result on the SDR

scale and the worst of the three modifications on the SISDR scale.

Evaluating the MIMO WPE algorithms on the TIMIT and AC corpora

When looking at how the four MIMO algorithms perform on 100 random files in

room A, there is little difference compared to the 10 random files (see Figure 5.21).
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Figure 5.17: The SDR performance of the Cauchy WPE and WPE algorithms using
the Bartlett-Hann and Hann window functions evaluated on room A and B
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Figure 5.18: The SISDR performance of the Cauchy WPE and WPE algorithms
using the Bartlett-Hann and Hann window functions evaluated on room A and B
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Figure 5.19: The SDRmir performance of the Cauchy WPE and WPE algorithms
using the Bartlett-Hann and Hann window functions evaluated on room A and B
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Figure 5.20: The running time of the Cauchy WPE and WPE algorithms using the
Bartlett-Hann and Hann window functions evaluated on room A and B
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Figure 5.21: The PESQ performance of the Cauchy MIMO WPE and MIMO WPE
algorithms using the Hann window function evaluated on room A and B
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Figure 5.22: The SDR performance of the Cauchy MIMO WPE and MIMO WPE
algorithms using the Hann window function evaluated on room A and B
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Figure 5.23: The SISDR performance of the Cauchy MIMO WPE and MIMO WPE
algorithms using the Hann window function evaluated on room A and B
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Figure 5.24: The SDRmir performance of the Cauchy MIMO WPE and MIMO WPE
algorithms using the Hann window function evaluated on room A and B
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Figure 5.25: The running time of the Cauchy MIMO WPE and MIMO WPE algo-
rithms using the Hann window function evaluated on room A and B

Also, the original MIMO algorithm outperforms the modifications on all the mea-

surements except for the time (see Figure 5.25). When switching to room B there is

little improvement meaning that the size of the room or the distance between source

and microphone do not impact the performance of the algorithm (see Figure 5.22).
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(b) The no noise dataset
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(c) The no echo dataset
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(d) The nonoise echo dataset

Figure 5.26: The PESQ performance of the four MIMO algorithms on the four
datasets of the AC corpus.
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(d) The nonoise echo dataset

Figure 5.28: The running time of the four MIMO algorithms on the four datasets
of the AC corpus.
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(d) The nonoise echo dataset

Figure 5.27: The SDR, SISDR and SNR performance of the four MIMO algorithms
on the four datasets of the AC corpus.
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When the MIMO WPE algorithm is applied to the AC corpus, where the no echo

dataset is used as the ground truth, there is little difference seen between Cauchy

MIMO WPE and the original MIMO WPE algorithm. The Cauchy MIMO WPE

show little improvement on the original and no noise datasets in terms of the PESQ

measurement (see Figure 5.26). For the no echo dataset (see Figure 5.26c), there

is an improvement in reverberation removal compared to the original no echo files,

showing that the degraded files are improved.

On the nonoise echo dataset, the PESQ shows limited improvement which is

similar to the original and no noise datasets. However, on the nonoise echo, there

is an improvement regarding SNR, where Cauchy v1 outperforms the rest (see Fig-

ure 5.27d). In this case, the MIMO WPE algorithm is the worst performing. This

pattern is also seen in the no echo dataset (see Figure 5.27c), showing that this par-

ticular technique of removing the reverberation (by using a multiband compressor)

has a negative influence on the performance of the MIMO WPE algorithm in terms

of SNR. However, in terms of SDR there is no difference between the Cauchy v1

MIMO WPE and the MIMO WPE algorithms. Only Cauchy v2 and Cauchy v3 are

performing worse here.

Evaluating Cauchy v3 MIMO WPE and the original MIMO WPE algo-

rithms

Comparing the original MIMO algorithm and the worst performing modification (see

Equation 5.15) and looking at the performance on individual sentences, the results

show a bigger spread in sentences on which the original MIMO algorithm performs

better (values greater than 0) than the other way round (see Figure 5.29). This

information allows for a closer look at the outliers of each sentence to see whether

there is a specific dialect or sentence type to which this performance difference can

be attributed. A sentence is considered to be an outlier when the difference between

the algorithms is bigger than 1.5 times the difference between the 25th and 75th

quartile for that specific category.
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Figure 5.29: The difference in PESQ performance of the MIMO algorithm and the
worst performing modification (Equation 5.15). These algorithms ran in room A.
Each dot represents a spoken sentence ranging from SA1 on the left to SX on the
right.

Within TIMIT there is not an even distribution of how often a sentence is spo-

ken. For example, out of the 1718 sentences in the TIMIT training dataset, 1386

sentences are spoken once whereas there are two sentences that are spoken 462 times.

This makes it difficult to say that a particular sentence has a high impact on the

performance.

When looking at the occurrences of eight dialects (respectively New England,

Northern, North Midland, South Midland, Southern, New York City, Western and

Army Brat) or three sentences types (respectively dialect, diverse and compact), the

dialect sentences (SA) are used to expose the dialect variations of the speakers, the

phonetic diverse (SI) and compact (SX) are used for their coverage of the phonemes.

The results show that the SX (compact) sentence types are spoken most (2309 times

whereas SI, diverse, is 1386 times spoken and SA, dialect, is 924 time spoken). For

the dialects, the numbers 1 (New England), 6 (New York City) and 8 (Army Brat)

are are spoken least (380, 350 and 220 times respectively) whereas the others are

spoken between 700 to 770 times.
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Figure 5.30: Outliers based on the sentence type. Each dot represents a spoken
sentence ranging from SA1 on the left to SX on the right.

For the outliers of the three sentences types, the results between -0.5 and 0.5

in difference have been removed, leaving only the results outside of this area (see

Figure 5.30). The results within the -0.5 to 0.5 area are not considered outliers

as such because they are too close in similarity. In 7% of the outlier cases, the

difference in sentence type SA was in favour of the modification where the original

has less than 5% of the outliers. The other two types have a smaller difference (see

Figure 5.31).
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Figure 5.31: Percentage of outliers based on the sentence type.
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Figure 5.32: Percentage of female and male outliers based on the sentence type.

The gender of the speaker can have an influence on the performance of the

algorithms when these are more susceptible to higher or lower frequencies. However,

there is no clear difference in gender of the speakers when specifically looking at the

gender difference in sentence types for the outliers (see Figure 5.32).

Longer sentences can make it easier for an algorithm to build a dereverberation

mask. Also, the pronunciation of words or the word order can have an influence

on the performance on an algorithm. When words are spoken in rapid succession

with little pauses in between, then it becomes more difficult for the algorithm to

determine where the reverberant starts. This influence can be present in certain

sentences types but also be a distinguishing feature in certain dialects. When the

dialects spoken in these sentence types are plotted, there is a clear performance gain

for the MIMO algorithm in the 8th dialect. The opposite holds but with a smaller

difference for the 3rd dialect. However, all these differences account for a very small

percentage of the spoken sentences (see Figure 5.33).
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Figure 5.33: Percentage of different outlier dialects used based on the sentence type.

The same is done looking at the outliers of dialects (see Figure 5.34). However,

there is a smaller difference between the different dialects, the gender of the speaker

or the sentence type when the outliers are based on the dialects (see Figures 5.34,

5.35 and 5.36). This means it is not possible to say whether one dialect performs

better or worse with a specific algorithm.
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Figure 5.34: Percentage of dialect outliers.
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Figure 5.35: Percentage of female and male outliers based on the dialect.
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Figure 5.36: Percentage of different outlier sentence types based on the dialect.

5.6 Conclusion

The Hs correlation algorithm that has not been used for the speech dereverberation

before has been presented. This correlation algorithm also formed the basis for the

novel Hs NTF algorithm. Both have been compared with existing techniques. The

Hs algorithm outperforms the H1 and H2 correlation on the PESQ, but only in the

case of a 0.4s RT60. However, in terms of SDR, the Hs algorithm show a better

performance than the H1 and H2. This shows that even though the speech quality

(as measured by PESQ) is not as good as that ofH1 andH2, the algorithm introduces
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fewer distortions (as measured by SDR) than the H1 and H2. This algorithm in its

current form is no match for non-negative matrix factorisation. However, the basis

of this algorithm can be used within a neural network or in addition to non-negative

matrix factorisation.

When the Hs algorithm is applied in combination with NTF creating the Hs NTF

algorithm, the difference between H1 NTF and Hs NTF does not exist. However,

both versions of the NTF algorithm do outperform their equivalent algorithms in

the non-learning case. The H1 learning correlation algorithm is used as part of the

multichannel speaker separation algorithm (see Chapter 7).

Within this chapter, both WPE and MIMO WPE algorithms have been com-

pared to modifications based on the Cauchy distribution. When looking at the WPE

and MIMO WPE algorithms and the Cauchy WPE and MIMO WPE algorithms

presented in Section 5.2.2, it is shown that the Cauchy distribution improves the

performance of WPE algorithm in terms of PESQ but not of MIMO WPE. The lat-

ter still outperforms WPE, Cauchy WPE and Cauchy MIMO WPE on a simulated

dataset. When MIMO WPE is applied to a realistic dataset with moving speakers,

there is limited improvement made by the Cauchy MIMO WPE. In general, there

is a small advantage in the execution time of Cauchy WPE but only for version 1

and 2. When these are compared to the loss in PESQ, the difference stays minimal.

Within these results, there is no clear characteristic found that explains why the

best performing Cauchy MIMO WPE algorithm performs worse than the original

algorithm. The improvement on the original WPE algorithm is greater in terms of

PESQ. However, the modifications still share the limitations of the original WPE

algorithm.

N.B. there is no test for statistical significance applied to these results nor is this

reported. The files are chosen on a random basis meaning that when the experiment

is executed again the results will be similar if not the same.

Dereverberation makes it easier for a separation algorithm to determine which

speaker is speaking. The process also helps with determining the location of the

speakers that can then be used for the separation process (see Chapters 6 and 7).
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Single channel speaker separation

6.1 Introduction

For robots, it is important to be able to distinguish between speakers in order to

execute the right command at the right time and not do something by accident

that was overheard in a different conversation. Therefore, it is important to be able

to distinguish between speakers and to separate these. There are different ways of

doing this which can be defined into two classes:

• Single channel speaker separation.

• Multichannel speaker separation.

With single channel speaker separation only one microphone is used to separate

the speakers, whereas with multichannel speaker separation multiple microphones

are used. This chapter concentrates on single channel speaker separation. Given

that the separation algorithms only use one microphone for the separation, the

information they can use is limited. When the speech is degraded by artefacts from

noise or reverberation, it becomes difficult for the separation algorithms to separate

the speakers. By combining different techniques, the separation algorithms are able

to adapt to these artefacts and distinguish between speakers.

This chapter concentrates on the separation of speakers using one microphone in

a near- and far-field setting (see Section 2.6.1). For this problem two different styles

of algorithms are used: supervised and unsupervised (see Section 2.2.2). In the case

of supervised speaker separation the algorithm uses a ground truth recording from

the speakers present in the mixture. Unsupervised speaker separation (also called
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blind speaker separation) does not use a ground truth but instead tries to cluster

similar frequencies together to build a mask for separating the different speakers.

For the supervised algorithms, this chapter concentrates on applying recurrent

neural networks and convolution neural networks to this problem. These have the

advantage that once trained they can be applied to unseen data with small adap-

tations in the environment. An often discussed downside of these algorithms is the

large amounts of training data that are needed before the algorithm converges to

a solution. However, when there is a lack of training data, a model can be shared

and improved by different parties using so-called federated learning. Once trained,

the model can be retrained to suit different environments or deal with more severe

cases of noise and reverberation (this is in the form of transfer learning).

The unsupervised algorithm used here is non-negative matrix factorization (NMF).

This algorithm needs to be trained on each mixture individually and therefore has

a shorter training time. NMF has been applied successfully on near field speech

and premixed audio files [7, 39, 186]. However, single channel NMF has difficul-

ties with distinguishing between speakers at a longer distance or when noise and

reverberation are present. The noise makes it difficult to distinguish between speak-

ers because their voice quality is impaired. Whereas reverberation creates overlap

between speakers which makes it difficult to tell where one speaker starts and the

other finishes. On the other hand, when the deep learning algorithm is applied to

a similar setting (i.e. same corpus) as it has been trained on, it can unmix the

speakers in real-time. However, if the setting changes, the algorithm will have to be

trained again on hours of data representing this new setting.

These two different styles of algorithms are compared against a baseline produced

by an ideal binary filter (see Section 2.4.1). Three corpora (vocalization corpus, map

task corpus and acoustic-camera corpus) are used in this thesis to evaluate different

algorithms (see Table 6.1) for single channel speaker separation (the corpora are

introduced in Chapters 3 and 4). These three corpora have different recording

distances (i.e. distance between speaker and microphone) to test the performance

of the sparse, convolution and direction of arrival NMF techniques under different

conditions. This is to see how the algorithms perform when the recording contains

noise and reverberation and to see how the distance between the microphones and
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the speakers influences the performance of the algorithms.

Supervised Ideal binary filter

IBF

Supervised Deep Learning

biLSTM

CNN

DNN

LSTM

RCNN

Unsupervised Non-negative matrix factorisation

Sparse Euclidean NMF

Convolution Euclidean NMF

IS NMF

Sparse IS NMF

Convolution IS NMF

Sparse KL NMF

Convolution KL NMF

Direction of Arrival NMF

Direction of Arrival NTF

Table 6.1: Overview of the algorithms that are being evaluated

6.2 Algorithms

6.2.1 Non-negative matrix factorisation

Non-negative matrix factorisation (NMF) approximates the mixture by iteratively

updating two matrices (see Section 2.4.2). When a subset of each of these matrices

is selected and multiplied together, it gives an approximation of the speakers. To

measure the difference between the mixture and the approximation produced by

NMF, a cost function is used. NMF has been adapted with different cost functions

each with their own characteristics (see Sections 2.2.4 and 2.4.2). Therefore, it is

important to choose the cost function that works best with the specific problem.
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This chapter concentrates on three different cost functions (described in more detail

in Section 2.2.4):

• Kullback-Leibler

• Itakura-Saito

• squared Euclidean

These cost functions are chosen because of their adaptability and successful appli-

cation to audio source separation. Kullback-Leibler divergence (KL), is the most

popular cost function and is often used as a baseline to compare against others [141].

This cost function can easily be adapted to include directional information [39] or

used to change NMF to a probabilistic algorithm [7].

The family of beta divergence, to which the KL divergence belongs, contains the

two other cost functions (squared Euclidean distance and Itakura-Saito divergence)

that are used in this chapter (see Section 2.2.4). This creates a special version of

NMF called β-NMF, which has an additional parameter (β) in the update rules for

the W and H matrices that determines which cost function is used. The values for

β are given in Table 6.3 [141]. The squared Euclidean distance has the same adap-

tations as the KL divergence, for example sparsity or convolution. A comparison

between the squared Euclidean distance and the KL divergence is often drawn to

evaluate the performance of different adaptations [142]. The third cost function in

the beta divergence is the Itakura-Saito divergence. This cost function is used less

often for speaker separation and has not been extended in the same way as the Eu-

clidean distance and KL divergence. All of these cost functions have been applied to

different problems from speaker separation and singing voice separation to musical

instrument separation.

The choice of cost function is one way to increase the accuracy of the NMF

algorithm. Another way to adapt the algorithm is to use one of the following:

• convolution

• directionality (in the form of direction of arrival)

• sparsity

These allow the algorithm to make use of additional features in the data. Convolu-

tion (see Section 2.4.2) is useful for overlapping speech because it tries to combine

an average of multiple timesteps. In the case of overlap, this means that the al-
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gorithm is likely to find a point where there is only one speaker talking and stores

this information in the feature matrix (W, see Section 2.4.2). Another advantage of

convolution is that it should be able to deal with noise. This is because it averages a

signal over multiple timesteps, thus removing small anomalies that can be attributed

to noise.

Adding directionality (see Section 2.4.2) to a technique like NMF [7], provides

intensity information about the different sources. This combines the knowledge of

the possible source locations with information from multiple microphones allowing

the algorithm to separate the sources. Direction of arrival NMF and direction of

arrival non-negative tensor factorisation, as described by Stein [7], are not single

channel techniques. For the estimation of the direction of arrival, there is more

than one microphone needed in this case. This technique is used to compare the

advantage a multichannel technique offers over a single channel technique. The

location of the two sources is assumed to be differentiable, which on a 2D plane

is not always the case when sources move around. For example, when the sources

are directly behind each other this does not show up on a 2D plane, only in a 3D

environment (see Section 2.6.3).

Sparsity (see Section 2.4.2) is useful when there is noise present or overlapping

speech in the recordings because the algorithm is better at adapting for missing

components. Sparsity ensures that the H matrix takes longer to converge to a solu-

tion because the H matrix is constantly being slightly modified. The modification

creates W and H matrices that are more diverse and allow for a better separation

of the sources than with vanilla NMF. Overlap within the speech signal creates an

additional problem to solve for NMF, dividing the signals into their respective dic-

tionaries. The level of sparsity is indicated by the λ parameter, which is added to

the update function of the H matrix (Equation 2.42). N.B. sparsity is only enforced

when λ > 0 [36, 37].

The three cost functions are combined with three additions (sparsity, convolu-

tion, direction of arrival). Each cost function will be combined with one of these

additions and then evaluated on the corpora. These additions were chosen because

of their performance on speech. Combined, they will allow for a comparison of the

performance of the cost function and the performance of the additional functions.

175



Chapter 6: Single channel speaker separation

Due to the implementation of the DoA it is not possible to apply this technique to

the other cost functions (see Section 2.4.2). In the case of DoA NMF, the algorithm

is changed so that it will output the percentage of the frame used by each speaker

instead of building a mask using the power spectral density. In total, nine different

NMF techniques were applied to the speaker separation problem (see Table 6.3).

Four of these techniques use the Kullback-Leilbler (KL) divergence, while the others

use the Itakura-Saito (IS) divergence or the squared Euclidean distance.

6.2.2 Deep Learning

NMF is not the only technique applied to speaker separation - one alternative is the

field of deep learning where recurrent neural networks (RNN) and convolution neural

networks (CNN) have been successfully applied to supervised speaker separation

[187–189] (see Section 3.3.2). One of the advantages of deep learning is that it can

learn the unmixing mask and then be applied to unseen data without retraining the

algorithm. The main disadvantage is that it needs multiple hours of speech data and,

equally, multiple hours of training to build an unmixing mask for the separation of

speakers. These are often the main arguments against deep learning. On the other

hand, the vast volume of training data also means that deep learning can be adapted

to remove noise and reverberation from the mixtures when this is present, assuming

that the ground truth files are free of these artefacts. Furthermore, a generalised

algorithm is robust to small changes in the environment and does not need to be

retrained on each file.

Both RNN and CNN are often applied to this problem in a supervised man-

ner where there are ground truth files of the speakers available. For these tech-

niques it is very important to choose the right parameters and size of the network.

Five different deep learning techniques were applied to the speaker separation prob-

lem; bi-directional long short-term memory networks (biLSTM), convolution neural

networks (CNN), deep neural networks (DNN), long short-term memory networks

(LSTM) and recurrent convolution neural networks (RCNN). The LSTM and biL-

STM networks have the advantage of looking a number of timesteps back or forward,

which allows the network to find a segment where there is only one speaker speak-

ing. This advantage is also used by the RCNN which uses convolutions to learn the
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spectrum and a recurrent layer to find similarities between the different timesteps.

These similarities correspond to the different speakers and allow the network to

build a filter.

6.3 Corpora

For testing the different techniques, two of the 16 corpora described in Section 3.1

as well as the acoustic camera corpus (see Chapter 4) are used. The corpora vary

in recording length, the presence of noise and recording distance. The vocalization

corpus contains telephone speech, which is close to the mouth, whereas the MapTask

corpus contains speech recorded with close-talk microphones. On the other hand,

the acoustic camera corpus contains far-field speech with a large distance between

microphone and speaker (see Section 2.6.1). Both the vocalization and MapTask

corpora are recorded in a noise free environment but contain speech of a background

speaker. On the other hand, the acoustic camera corpus is recorded in a realistic

office environment and contains background noise but there is no background speaker

present. In the case of the vocalization and MapTask corpora, the recordings do

not contain reverberation whereas due to the size of the room and the room being

unfurnished, the acoustic camera corpus does contain reverberation. The features

of these corpora mean that the algorithms need to deal with:

• overlapping speech which has the same or is lower in volume than the main

speaker volume

• noise coming from appliances (i.e. air-conditioning units and computers)

• reverberation due to the size of the room.

A concise overview of the three corpora is given in Table 6.2.

The first corpus is the vocalization corpus1 [87] which contains recorded telephone

conversations of 120 different subjects. In the recording there is background speech

present of a second speaker. This does not provide a clean ground truth. For this

corpus there is no localisation information available.

The MapTask corpus [88] is the second corpus. In this corpus people are wearing

headphones and a microphone and explained how to get from A to B on a map. This

1http://www.dcs.gla.ac.uk/vincia/?p=378
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corpus vocalization MapTask acoustic-camera
subjects 120 (63 women, 57 men) 64 (32 women, 32 men) 16 (12 men, 4 women)
# mics 1 (per file) 1 (per file) 72 (per file)
# files 2763 191 7
file
length

0:10 5:00 1:30

2nd
speaker

Yes Yes No

noise No No Yes
mic-to-
source

< 1 metre < 1 metre > 6 metres

localisation No No Yes
rec. env. Lab setting Lab setting Workshop
Fs 16kHz 16kHz 192kHz
transcripts No No Yes

Table 6.2: A comparison of the three corpora used for speaker separation

corpus contains speech of 64 subjects. As with the vocalization corpus, the second

speaker can be heard in the background because the people were recorded in pairs.

This means that this does not provide a clean ground truth nor does this corpus

have localisation information available.

The third and last corpus is a small corpus recorded with the Acoustic Camera

(AC) (see Table 6.2 and Chapter 4). The room used for these recordings has back-

ground noise along with reverberation due to the room size, as is typical of many

home and office environments. The high sensitivity of the microphones to noise and

echo means that post processing is needed to create a clear approximation of the

speaker.

6.4 Experimental setup

6.4.1 Corpora

The vocalization corpus and MapTask corpus were used to determine how well each

technique performs on the separation task. In using these two corpora the mixtures

of the recordings contain overlapping speech coming from a background speaker.

This increases the difficulty of doing a clean separation.

With the AC corpus (see Chapter 4), the performance of the different techniques

when there is noise and reverberation in the recording was measured. This means
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that the algorithms have to be able to separate the speakers in a natural environment

which increases the difficulty of the problem. The recordings of the AC corpus

are downsampled to the same sampling frequency as those of the vocalization and

MapTask corpora.

6.4.2 Environment

All of the NMF algorithms (except for DoA NMF and DoA NTF [7] algorithms)

are implemented in NMFlib a library for MATLAB2. For the DoA NMF and DoA

NTF the implementation of the author is used. These algorithms run on MATLAB

2013b on a 2013 MacPro with Intel Xeon E5 3.7 GHz and 16 GB of RAM. The deep

learning algorithms are implemented in Keras and TensorFlowv1 and are published

on GitHub3. The deep learning algorithms run on the NVIDIA DGX-1. The results

are measured using the BSS eval library [190] for MATLAB and the mir eval library

for Python [184].

6.4.3 Parameters

As explained in Section 2.4.2, the output of the Short-time Fourier transform (STFT,

see Section 2.2.3) was used as input for the NMF algorithms with a windows size of

30 ms and an overlap of 10 ms. These algorithms have two fixed parameters (F and

K), while parameter N depends on the length of the file. For F, 513 frequency bins

were used, determined in the same way as in Section 5.4.3. For the NMF algorithms

K is set to be the desired number of speakers, in this case 2. The algorithms were

stopped after 1000 iterations, by which time the cost function has converged.

The sparsity parameter setting was selected independently for each algorithm

and each corpus independently. The sparsity parameter started at 0.001 and was

increased with increments of 0.001 until the convergence of the algorithm. When the

sparsity parameter reached 0.9 the experiment was stopped and the best parameter,

corresponding to the highest signal-to-artifact, signal-to-distortion and signal-to-

interference ratios, was chosen (in this case a sparsity parameter of 0.001). The

results showed that the sparsity parameter was robust over different corpora also

2https://github.com/audiofilter/nmflib
3https://github.com/TeunKrikke/SourceSepDL
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when noise and reverberation were introduced.

Technique Cost function Parameters
λ β

Sparse Euclidean Euclidean 0.0001 2
Convolution Euclidean Euclidean 0 2

IS Itakura-Saito 0 0
Sparse IS Itakura-Saito 0.0001 0

Convolution IS Itakura-Saito 0 0
Sparse KL Kullback-Leibler 0.0001 1

Convolution KL Kullback-Leibler 0 1
DoA NMF Kullback-Leibler 0 1
DoA NTF Kullback-Leibler 0 1

Table 6.3: Overview of the parameters and cost functions used by the evaluated
NMF techniques.

To apply DoA NMF and DoA NTF to the vocalization and MapTask corpora,

localization information is created artificially because this is not provided by the

corpus. To do this, a time delay of one audio frame is used. This means that the

artificially created microphones are spaced at a relative distance of 1 audio frame

apart, dependent on the frame rate of the recording. For example, when a recording

is made at 16 kHz the microphones would be spaced at c
fs

metres or in this case

340.29
16000

metres which is equal to 0.021 metres.

IBF has been applied with a varying volume for the primary speaker in the

range of -10 dB to +10 dB with increments of 5 dB. This means that the two

speakers are mixed with different volume levels. For example, -10 dB means that

the primary speaker is 10 dB lower in volume than the secondary speaker. On the

other hand, +10 dB means that the primary speaker is 10 dB higher in volume than

the secondary speaker.

The five deep learning algorithms (see Section 2.4.3) contain a separation layer

which contains an additional hidden layer with 512 units and a Wiener filter that

is used for the separation. The loss function which optimises the network is the

mean squared error between the output of the network, which is two signals, and

the ground truth of the sources. Apart from this configuration each algorithm has

a specific configuration:

• recurrent neural network (RNN) with two long-short term memory (LSTM)

nodes with 512 units [189]
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• recurrent neural network (RNN) with two directional long-short term memory

(LSTM) nodes with 512 units [189]

• convolution neural network (CNN) with two convolution layers with 64 filters

of 3 x 3 [154]

• deep neural network (DNN) with two hidden layers [189] each with 150 units

• recurrent convolution network (RCNN) with two convolution layers (64 filters

of 3 x 3) and one recurrent layer (512 units)

6.4.4 Performance measurements

For testing the different techniques, three objective measurements were introduced in

[1] (see Section 2.5) namely: signal-to-distortion ratio (SDR); signal-to-interference

ratio (SIR) and signal-to-artefact ratio (SAR). Positive values indicate better per-

formance for all measurements.

6.4.5 Experiments

The IBF and nine different NMF algorithms (see Section 6.2.1) were run on the

three different corpora (see Section 6.3) to compare their performance in different

situations (telephone to workshop environment) and with different file lengths (10s

to 5 minutes). The IBF algorithm does not have additional parameters that can be

set, only the volume of the primary speaker is adjusted.

Furthermore, the four different deep learning networks have been applied to

the vocalization corpus. This corpus contains the most recordings out of the three

corpora and is therefore the most suited to train a neural network on.

6.5 Results

The different algorithms are all run on the vocalization corpus with the perfor-

mance of the algorithms presented as measures of signal-to-distortion ratio (SDR);

signal-to-interference ratio (SIR) and signal-to-artefact ratio (SAR). For these mea-

surements, it holds that the higher value is the best performing algorithm. The

NMF variants and IBF have also been run on the MapTask and AC corpora.
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6.5.1 Vocalization corpus

Ideal binary filter

When the IBF is applied to the vocalization corpus (see Figure 6.1), the results show

that when the primary speaker is higher in volume than the secondary speaker (i.e.

> 0dB on the algorithm axis) the IBF performs better. This is seen in the SAR and

SIR measurements but the biggest improvement is seen in the SDR.

50

100

−1
0 −5 0 10 5

algorithm

d
B

measurements

SAR
SDR
SIR

Figure 6.1: A comparison of IBF on the vocalization corpus.

Deep Learning

Looking at the deep learning techniques (see Figure 6.2), the normal LSTM (thus

the recurrent network with two LSTM nodes) outperforms the other three tech-

niques. Changing this particular network into a bidirectional network where it has

information from the past and the future performs worse than the normal LSTM but

similar the other techniques. The DNN has the lowest SDR results of the techniques

meaning that it has issues with removing the removing distortion and introduces

new distortion to the separated speech. Both CNN based techniques are able to

remove the artefacts in the separation whereas the LSTM seems to introduce new

artefacts.
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Figure 6.2: A comparison of deep learning algorithms on the vocalization corpus.

Non-negative matrix factorisation

The NMF results (see Figure 6.3) show that having a multiple microphone solution

improves the ability to separate speakers. However this is in a completely clean

environment where there is not interference except from a second speaker. The

normal NMF techniques are able to remove the artefacts but struggle to reduce the

distortion. On the vocalization corpus, the IS based techniques are all very similar

in terms of removing artefacts and interference, there is a minor difference between

vanilla IS and the convolution and sparse techniques in favour of the latter two.

A similar pattern is seen between the convolutive and sparse algorithms for both

the squared Euclidean and Kullback-Leibler cost functions. However the pattern

is reversed in both cost functions. For the squared Euclidean cost function, the

convolution algorithm outperforms the sparse whereas for the KL cost function, the

sparse outperforms the convolution. This is most noticeable for the distortion and

less so for the other two measurements.
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Figure 6.3: A comparison between different NTF and NMF techniques on the vo-
calization corpus.

6.5.2 MapTask corpus

Ideal Binary Filter

For the MapTask corpus when the second speaker is lower in volume (i.e. a positive

number on the algorithm scale), the IBF performs better (see Figure 6.4). However,

the difference between the SAR and the SIR measurements is very small and the

improvement overall is lower than the SDR. This means that there is a relationship

between the volume of the second speaker and the amount of distortion present in

the separation. The result of the IBF on the MapTask corpus is very similar to

that on the vocalization corpus. This is due to the similarity in data. Both corpora

contain single near field speech with a secondary background speaker.
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Figure 6.4: A comparison of IBF on the MapTask corpus.

Non-negative matrix factorisation

The NMF results of the MapTask corpus (see Figure 6.5) show that a multi mi-

crophone solution works best, especially when looking at the interference results.

For the single channel results, the sparse Itakura-Saito performs similarly to the

sparse squared Euclidean technique but is better at removing artefacts from the

results. There is also a high similarity between the convolution Kullback-Leibler

and the vanilla Itakura-Saito techniques, both have similar performances across the

three measurements. This shows that the modifications do not always improve per-

formance. Another similarity is between the distortion results of the convolutive

squared Euclidean and the sparse Kullback-Leibler techniques. Both techniques are

unable to remove the distortion from the separated speech. When comparing the

multichannel DoA NMF technique to the single channel techniques the results show

a similar performance on the removal of artefacts as the sparse Kullback-Leibler

technique does. In terms of distortion, DoA NMF performs better than the vanilla

IS technique but worse than the sparse modification of the same cost function.
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Figure 6.5: A comparison between different NTF and NMF techniques on the Map-
Task corpus.

6.5.3 Acoustic Camera corpus

Ideal Binary Filter

Looking at the IBF results for the AC corpus, it shows that the filter has more

difficulty separating the speakers when they have the same volume (0 dB on the

algorithm scale) than when one of the speakers has a higher volume (< 0db for

the second speaker having a higher volume and > 0 db for the first speaker). High

distortion removal can be seen at both ends of the scale with the lowest point around

0 dB when both signals are equal (see Figure 6.6). An opposite pattern is seen for

the interference.

For the no echo dataset the peak interference is higher as well as the valley

of the distortions being deeper (see Figure 6.6c). This shows that without the
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reverberation, the IBF is better at removing the interference when both speakers

have the same volume but has more difficulties controlling the distortions.
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Figure 6.6: A comparison between of IBF on the nonoise echo, no echo, no noise
and original AC corpus recordings.

Non-negative matrix factorisation

Looking at the performance of NMF on the AC corpus, the results show that DoA

NTF outperforms the other techniques in all subsets of the corpus (see Figure 6.7).

However, the technique had limited gain when it was run on the original and the

no noise recordings. This also applies to DoA NMF. On the no noise dataset, the

IS technique outperforms the other technique (see Figure 6.7b). The same can be

seen on the no echo dataset (see Figure 6.7c) but not on the nonoise echo or on the

original datasets (see Figures 6.7a and 6.7d). These latter two have mixed results

where there is no one cost function better than another. On both the no echo and
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the no noise datasets the convolution adaptation of NMF outperforms the vanilla

and sparse adaptations. This shows that when one feature of the corpus is removed,

convolution still best describes the mixing of the speakers. However, this is not the

case when both are present or both are removed. In these latter two cases, both

adaptations (sparse and convolution) have similar performance with the Kullback-

Leibler cost function being the best performing for both adaptations.
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Figure 6.7: A comparison between different NMF techniques on the nonoise echo,
no echo, no noise and original AC corpus recordings.

6.6 Conclusion

The NMF results show that all techniques have a good SAR on the vocalization

corpus and the MapTask corpus, meaning not many artefacts are introduced (see

Figures 6.3 and 6.5). The SDR and SIR values are poor for all techniques except
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for NTF. This shows that NTF is able to remove both speakers from a single file

more clearly than the other techniques. However, the combined speech files have no

noise or reverb. Which in the real world is rarely the case, with the exception of

telephone conversations.

The results of the NMF techniques applied to the vocalization and MapTask

corpora are worse than the baseline provided by IBF. This is because the lack of

noise makes it easier for the IBF algorithm to do a separation of the speakers. On

the other hand, when looking at the results from the AC corpus, the baseline is

lower. In the case of the no echo dataset, the DoA NTF algorithm is removing a

similar amount of artefacts as the IBF does (see Figures 6.6c and 6.7c).

The different NMF techniques were applied to compare the performance with

and without noise and reverb on the acoustic camera corpus (see Figure 6.7). The

IS cost function performs the best when noise is removed (see Figure 6.7b). The

same applies when only the reverb (see Figure 6.7c) was removed and when the

results were compared to the original (non post-processed) files (see Figure 6.7d).

On removing both noise and reverb (see Figure 6.7a), the sound gets distorted to

an extent that the KL and squared Euclidean versions of NMF outperform the

IS and DoA versions. This happens because the technique used to remove the

reverberation is a multi-bandpass filter which suppresses certain frequencies in the

recordings, thereby introducing distortions.

Comparing the results of all techniques on the different versions of the acoustic

camera corpus against to original dataset, when the reverb was removed, all tech-

niques show an improvement in the SAR and SDR values but get lower SIR values.

The squared Euclidean cost function has the greatest improvement compared to

the rest of the techniques. However, over all three corpora, the squared Euclidean

cost function has the lowest SAR of all the techniques and is therefore the worst

performing technique on this corpora. Both the sparse and convolution techniques

work better on the noisy version of the acoustic camera corpus. With this version,

more positive values were seen. However, all the algorithms are outperformed by

the IS cost function without the use of sparsity or convolution on the reverberant

speech.

When specifically comparing the results of the AC corpus when both noise and
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reverberation (see Figure 6.7a) have been removed with the results of the vocaliza-

tion and MapTask corpora, the performance on the AC corpus is lower than of the

other two corpora. However, there is a similarity between the AC corpus and the

vocalization corpus, making it difficult to be conclusive about the influence of the

distance between speaker and microphone.

The deep learning results are difficult to compare with the NMF results because

they are different techniques. The deep learning algorithms are all used as supervised

algorithms where there is a ground truth which the algorithm uses to adapt the

weights to. On the other hand, NMF is an unsupervised technique using only the

mixture (which is the input) to adapt towards. For deep learning, a LSTM shows

the best performance on the reduction of distortion and interference. The LSTM

network and sparse Euclidean NMF algorithms are comparable in terms of signal-

to-distortion and signal-to-interference ratios. When the LSTM network is changed

to bidirectional, then there is an improvement on the reduction of artefacts but

has a negative influence on the other two measurements. However, because the

vocalization corpus does not provide enough training data, the algorithm does not

perform as well as the NMF algorithms. This lack of training data can be resolved

by applying federated learning where the model is shared among different entities.

These try to solve the same problem and have similar data (i.e. a single channel

mixture containing two speakers without noise or reverberation). Similarly the three

corpora can be combined without mixing the speakers between corpora. This gives

the model more training data thus improving the overall result. Another usage for

corpora of this size is to apply transfer learning where a model has been trained on

a similar (sometimes broader) problem and is changed to learn the specifics. In this

case a model used for single channel speaker separation can be retrained using the

AC corpus for separating speakers in noisy and reverberant environments using far

field speech.

Using multiple microphones and information as direction of arrival increases the

performance of the NMF algorithm in a clean environment which can be seen by

the results of the DoA NMF and NTF algorithms. However, algorithms which

use multiple microphones are designed to work in more complex environments as

described in Chapter 7.
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Multichannel channel speaker

separation

7.1 Introduction

We, humans, are good at determining where sound is coming from and concentrate

on particular sounds/voices that we are interested in. This is possible because we

have two ears that act as a stereo microphone array. These allow us to remove noise

from the things we are listening to and determine where the sound is coming from.

When robots make use of microphone arrays they can determine, by calculating the

direction of arrival or the time difference of arrival, where the sound is coming from.

This information helps with noise and reverberation reduction but also with speaker

separation.

For speaker separation, multi-channel NMF and non-negative tensor factorisation

(NTF) are algorithms that use multiple microphones in an array. This can be a stereo

array where two microphones are placed in the room with some space between them

(in height, width or depth) or a multi microphone array where microphones are

placed in a specific configuration (see Section 2.6.2). In the case of robotics, the

microphones are typically placed on the robot in a forward facing configuration,

i.e. listening where the robot is looking. This allows for a direct mapping between

sound and vision but has problems with recognising when the sound is coming from

behind. Having additional location information coming from multiple microphones

allows the robot to distinguish between speakers in more complex environments.

191



Chapter 7: Multichannel channel speaker separation

Multiple microphones are able to reduce reverberation as shown in Chapter 5.

For source separation, having multiple microphone gives the algorithm the abil-

ity to distinguish between speakers in a 3D environment. One way to describe the

location is by determining a spatial covariance matrix (see Sections 2.4.2 and 2.4.2),

another is using the direction of arrival (see Section 2.4.2). This tells the algorithm

where the greatest overlap is between microphones, this corresponds with the loca-

tion of a speaker. This chapter concentrates on two different ways of determining

the location of the different sources by using:

• a spatial covariance matrix (time-difference of arrival NTF and Covariance

NTF).

• the direction of arrival (direction of arrival NMF and direction of arrival NTF).

This chapter concentrates on four different algorithms, two of which use direction

of arrival (DoA NMF and DoA NTF), the other two use spatial covariance ma-

trix (TDoA NTF and Covariance NTF). This matrix can be calculated using the

covariance between the different microphone or using the time-difference of arrival

(TDoA). Both the TDoA and DoA are beamforming techniques to calculate the

location of the sound source (see Section 2.6.3). Covariance NTF uses the spatial

covariance matrix without calculating the TDoA first. In this case the algorithm

calculates the correlation between the different microphones to determine where the

sound is coming from, which is similar to what dereverberation algorithms do (see

Chapter 5). N.B. the DoA NMF and DoA NTF are the same algorithms as used for

single channel speaker separation in Chapter 6.

Three corpora (vocalization corpus, map task corpus and acoustic-camera cor-

pus) are used to evaluate four different algorithms (Covariance NTF, DoA NMF,

DoA NTF and TDoA NTF) for multichannel speaker separation (the corpora are

introduced in Chapters 3 and 4). Two of these corpora (vocalization and MapTask

corpora) have reverberation added from a simulated environment with the same size

as the room used for the AC corpus recordings. Whereas the recordings in the AC

corpus contain noise and reverberation from the recording environment. This is to

see how the algorithms perform when the recording contains only reverberation and

how the reverberant and noise influences the performance of the algorithms.
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7.2 Algorithms

The algorithms used in this chapter are described as non-negative tensor factorisa-

tion (NTF) algorithms, which is an extension of non-negative matrix factorisation.

Instead of working with two matrices to try to approximate the multi-channel mix-

ture, the NTF algorithms work with 3 or more matrices to approximate the mixture.

N.B. the multi-channel mixture is considered to be a tensor because it has more than

2 dimensions.

7.2.1 DoA NTF

Direction of arrival (DoA) NMF (see Section 2.4.2) changes the updates rules for

the W matrix. NMF multiplies the W matrix with the DoA matrix.

In comparison to the NMF version, DoA NTF factorises 3 matrices instead of

2. The third matrix is made up of the information from the DoA [7] containing the

direction of the sound. This changes NMF into non-negative tensor factorisation

(NTF). The additional information improves performance because it builds a mask

taking into account the sound that is coming from each individual microphone.

This has an advantage over NMF where the information is present in one of the two

matrices (W or H) as an extra dimension, now it is seen as a separate multiplication

over the whole mixture. Extra complexity and accuracy are therefore added to the

algorithm.

An important change Stein [7] introduces is the change to probabilistic NMF

where the mask is changed to a maximum-likelihood mask. As input the probabil-

ities of the mixture is used instead of the power density spectrum. This keeps the

update rules the same but changes the cost function to maximising the cross-entropy

of the prediction and original mixture.

7.2.2 TDoA NTF

The time-difference of arrival NTF [39] (see Section 2.4.2) is one of the two SCM

based algorithms used in this chapter. This algorithm uses look directions for each

individual microphone instead of using the direction of arrival. For the look direc-

tions, the algorithm uses the phase difference per frequency for those look directions.
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This information gives an approximate location of the speaker and can be used to

approximate the mixture. Combined with a directional weight (Q) this can also be

used to cluster the NMF components and separate the speakers. Using look direc-

tions allows the algorithm to describe the dominant frequencies per look direction

and a field of view showing the location of the source.

Another difference is that this algorithm uses the Hermitian transpose of the

input instead of the probabilities (as used in Section 7.2.1).

7.2.3 Covariance NTF

The covariance NTF [40] is another SCM based method and calculates the SCM by

using the covariance between microphones (see Section 2.4.2). This method is similar

to the WPE method discussed in Section 2.3.3. It accounts for the reverberation of

the environment making the resulting signal free from reverberation. This should

make it easier for the speech recogniser to determine when a speaker finishes and

what the speaker has said.

The main difference between this algorithm, the DoA NTF and the TDoA NTF,

is the usage of the spectral correlation matrix which is dependent on the spatial

covariance matrix. The spectral correlation matrix shows the dominant (loudest)

features in the spectrum which correspond with the different speakers. The informa-

tion of the spectral correlation matrix is used in calculating the spatial covariance

matrix together with the H1 cross-correlation between the original mixture and the

approximation. N. B. this H1 cross-correlation takes in to account the noise that is

present in the relative error and shows the strongly correlated components between

the two which can be used to determine the spatial covariance matrix.

Another difference between the DoA NTF, the TDoA NTF and this algorithm

is the separate calculation of the noise. This allows the algorithm to increase the

similarity between the approximated mixture and the original mixture by assuming

that the missing information can be modelled by the noise.
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7.3 Corpora

Three corpora (vocalization, MapTask and acoustic-camera corpora) are used as

input for the different algorithms which are the same corpora used for evaluating

single channel speaker separation (these corpora are introduced in Chapters 3 and

4). Two of these corpora (vocalization and MapTask corpora) use a simulated

environment because they are recorded with head-mounted microphones or with

telephones. However, the AC corpus is recorded in realistic office and workshop

environments using a microphone array. The simulated environment used for the

vocalization and MapTask corpora is similar in size as the workshop environment

used for the AC corpus.

7.4 Experimental setup

7.4.1 Corpora

The performance of the two DoA techniques (DoA NMF and DoA NTF) and the

two SCM based techniques (Cov NTF and TDoA NTF) are compared by running

them on three different corpora. These corpora are the same corpora as used for

the single channel, namely the vocalization corpus, MapTask corpus and Acoustic

Camera corpus (see Section 6.3).

7.4.2 Environment

The recordings of the first two corpora (the vocalization and MapTask corpora)

are played in a simulated environment (called Room A, see Section 5.4.2) where

there is only reverberation, and no noise, present. To simulate this room, the same

library is used as for the dereverberation experiments (see Section 5.4). However,

in this case only room A is being used because this room is similar in size as the

environment in which the AC corpus is recorded. For the DoA NMF and DoA

NTF the implementation of the author is used, the Covariance and TDoA NTF

algorithms are based on implementations by Nikunen et al. [39] and Ozerov et

al. [38, 40]. These algorithms implemented in Python, run on a OpenSuse Linux
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computer with an Intel i3 processor with 4GB RAM and published on GitHub1.

The results are measured using the mir eval library for Python [184].

7.4.3 Parameters

The algorithms depend on several parameters (see Tables 7.1, 7.2 and 7.3), these

have been empirically chosen by running them on 10 randomly chosen mixtures

of the vocalization corpus, which are played in room A. The distance between the

speakers and microphones in the simulated room A (> 5 metres) and in the room

used for the AC corpus is the same. However, this only holds for the time that the

speaker in the AC corpus is standing still. When the speaker is moving the distance

is less than in room A. The shorter duration of the files within this corpus allows

for multiple parameters to be tested in quick succession. All the permutations were

run till convergence.

The settings for the short-term Fourier transform (STFT, see Section 2.2.3) are

kept the same as for the single channel speaker separation case (see Section 6.4) and

are used for all the multichannel speaker separation algorithms. A microphone array

with two microphones are used for the algorithms. The recordings of the AC corpus

are downsampled to the same sampling frequency as those of the vocalization and

MapTask corpora.

Frequency bins 1024

window 256

overlap 128

microphones 2

Table 7.1: General settings for the algorithms

DoA NMF/NTF

The DoA algorithms do not take any additional parameters except for the number

of components which is set equal to the number of speakers i.e. two.

Cov NTF

The Cov NTF algorithm takes two parameters: S which is the number of sources and

1https://github.com/TeunKrikke/SourceSeparationNMF
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Ks the number of components per source (see Table 7.2). In this case K is the sum

of Ks. The parameters for Ks were in the range of 3 to 300 per source omitting the

range of 20 to 100. This was done to test if a larger number has a positive influence

on the separation of the sources. The results for the different parameters show that

when the Ks value increased, the performance on the SAR and SDR measurements

dropped. However, there was not much difference in performance between a Ks

value of 5 or 10. Therefore, the smaller number was chosen to increase the speed of

the algorithm.
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Figure 7.1: Cov NTF on the vocalization corpus with different parameters

Parameter value

S 2

Ks 5, 5

K 10

Table 7.2: General settings for the Cov NTF

TDoA NTF

For the TDoA algorithm there are also three parameters, the azimuth, theta (com-

bined define the number of look directions) and the number of components (see

Table 7.3). The azimuth and theta are varied between 5 and 10, the results were

checked after 5, 10, 20 and 100 iterations to see what the influence of the parameter

was. After the TDoA algorithm ran on 10 files, the results showed that there was
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little difference between it running for 5 iterations with 5 azimuth and 5 theta and

it running for 100 iterations with 10 azimuth and 10 theta. Therefore, the lower

number of iterations with lower numbers for azimuth and theta where chosen to

increase the speed of the algorithm.
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(a) The difference in SAR, SDR and SIR measurements using different settings for the
TDoA NTF algorithm on the vocalization corpus
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(b) This graph has the SAR measurement of figure 7.2a removed to show the difference
between the parameters using the SDR and SIR measurments

Figure 7.2: TDoA NTF on the vocalization corpus with different parameters, where
figure 7.2a shows the overview of the three measurements and figure 7.2b excludes
the SAR measurement to concentrate on the SDR and SIR measurements.
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Parameter value

K 3

azimuth 5

theta 5

Table 7.3: General settings for the TDoA NTF

7.4.4 Performance measurements

To measure the performance of the algorithms, the same measurement algorithms

as discussed in Sections 2.5 and 6.4, are used namely the signal-to-artifacts (SAR),

signal-to-distortion (SDR) and signal-to-interference (SIR) ratios. Positive values

indicate a better performance for all algorithms.

7.4.5 Experiments

The four algorithms (Cov NTF, DoA NMF, DoA NTF and TDoA NTF) were applied

to the three corpora (vocalization, MapTask and AC corpora). This is to test the

algorithms with different settings in different environments. The experiments on

the vocalization and MapTaks corpora were run in a simulated environment without

additional noise, whereas the AC corpus was recorded in a workshop environment

with additional noise. This is to test how the algorithms deal with the additional

noise, the difference in environment and the length of the files (10 s to 5 min).

As input to the algorithms, the STFT is used with a window size of 30 ms and

10 ms overlap between the windows. For Cov NTF, Ks is set to 5,5 (see Table 7.2).

TDoA NTF uses a K of 3, azimuth of 5 and a theta of 5 (see Table 7.3).

7.5 Results

The two DoA (DoA NMF and DoA NTF) algorithms and two SCM (Cov NTF )

algorithms are compared using the three different measurement: signal-to-artefact

ratio (SAR), signal-to-distortion ratio (SDR) and signal-to-interference ratio (SIR).

This comparison happens per corpus because of the different characteristics of each

corpus. For the AC corpus, a comparison is made between the four different datasets
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(original, no echo, no noise and nonoise echo) that this corpus contains.

7.5.1 Vocalization corpus

The results on the vocalization corpus show that the covariance NTF method is

least successful at removing artefacts and distortion compared to the three other

methods (see Figure 7.3). Instead, it introduces new artefacts when the signals are

separated. On the other hand, the TDoA algorithm, which also uses a spectral

covariance matrix, is better at removing the artefacts. The TDoA allows for a more

accurate calculation of the location of the source, making it easier for the algorithm

to separate the sources. Both SCM algorithms fail to remove the distortion from the

mixtures. Determining the time-difference of arrival allows the algorithm to reduce

the number of artefacts in the separated speech. Whereas determining the cross-

correlation between the microphones allows for a better interference detection. The

two DoA algorithms are able to match the covariance algorithm on the interference

measurement, but these need to run for a long time.

Overall, the two DoA algorithms perform well on the distortion and interference,

meaning that they remove the distortion from the files and are able to separate the

speakers. These two algorithms show a similar performance to when they are applied

to the single channel problem (see Section 6.5). However, in this case the algorithms

have to deal with reverberation as well, because the mixtures are coming from a

simulated yet realistic environment. In comparison, they perform as well as the

covariance algorithm on the interference but are better than both SCM algorithms

(TDoA NTF and Covariance NTF) at dealing with the distortions. This would

suggest that the SCM based techniques do not account for the distortions in the

mixtures or introduce distortions when the mixtures are separated into different

speakers. The latter happens when the two speakers are unmixed in the Wiener

filter which means that the approximated masks are not correct.
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Figure 7.3: Multichannel algorithms on the vocalization corpus

7.5.2 MapTask corpus

For the longer MapTask files, the results show that the TDoA NTF algorithm is

better at removing the artefacts than the other two algorithms (see Figure 7.4a).

However, looking at the results of the other two measurements, they show that

the TDoA algorithm is worse at removing the distortions created by the separation

process (see Figure 7.4b). The two DoA techniques (DoA NMF and DoA NTF)

outperform the two SCM based techniques (Cov NTF and TDoA NTF). There is

not much difference between the two DoA techniques. The results show that the

DoA NMF technique performs similarly on removing the distortions but is better at

removing the interference. This means that the NTF algorithm does not separate

the sources as well as the NMF algorithm in this case.

Of the two SCM techniques, Cov NTF is better at removing the distortions than

TDoA NTF is. This means that modelling the noise as a separate matrix allows for

the removal of distortions that are otherwise introduced in the separated speakers.

However, this process does not work for the interference which is higher in Cov

NTF than it is in TDoA NTF. Therefore, TDoA NTF is better at locating the other

speaker in the environment and subsequently removing that speaker.
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Figure 7.4: Multichannel algorithms on the MapTask corpus with and without the
signal-to-artifact ratio

7.5.3 Acoustic Camera corpus

The AC corpus contains 4 different datasets each with their own properties. Looking

at the overall results (see Figure 7.5), on the basis of the SAR the TDoA NTF

algorithm outperforms the other algorithms. Therefore, this algorithm is best at

removing artefacts from the separated recordings. However, when the SAR is ignored

the results show a different picture (see Figure 7.6). Now on the basis of the SIR,

the Cov NTF algorithm outperforms the rest except from when the algorithm is
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applied to the no echo dataset (see Figure 7.6c). With the latter recordings, the

TDoA NTF algorithm outperforms the rest.

On the no noise dataset, the DoA NTF algorithm as well as the Cov NTF algo-

rithm outperform the TDoA NTF algorithm on the SIR measurement (see Figure

7.6b). Whereas on the nonoise echo this measurement shows very little difference

between the three NTF algorithms. The DoA NMF algorithm performs worse than

the rest (see Figure 7.6a). Cov NTF introduces distortions into the separation,

which is more noticeable in the no noise and the original datasets than in the other

two where the SDR value is close to -10 dB. This shows that the Cov NTF attributes

certain frequencies to the wrong speaker. On the other hand, TDoA NTF has the

worst performance on the no noise dataset out of all four datasets, showing that the

algorithms have trouble with separating the speakers in a reverberant environment.

This is also seen in the original dataset.

The algorithms’ best performance is on the no echo dataset, where it has the

highest values for both the SIR and SDR measurements. Overall, both DoA algo-

rithms perform worse than the other two algorithms on all four datasets. Only on

the no noise dataset the result is comparable between the DoA NTF and the TDoA

NTF techniques. Showing that both techniques are comparable in removing the

second speaker but DoA NTF is worse at removing the distortions. The same goes

for the Cov NTF algorithm where the SDR is the highest on the no echo dataset.

Showing that the Cov NTF technique has difficulties with removing the noise that

is present in the recordings.
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Figure 7.5: A comparison between different NMF techniques on the nonoise echo,
no echo, no noise and original AC corpus recordings.
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Figure 7.6: A comparison between different NMF techniques on the nonoise echo,
no echo, no noise and original AC corpus recordings without the signal-to-artifacts
ratio using the same data as Figure 7.5 however, now excluding the SAR measure-
ment to show the difference in SDR and SIR measurements.

7.6 Conclusion

Multi-channel algorithms have the advantage of using the information coming from

more than one microphone. This also increases the complexity of the algorithm and

dependency on the right parameters. In simulated environments, the algorithms

work independently of the speech or the length of speech, meaning that given an

environment their performance is predictable and does not depend on whether the

speaker speaks for 10 seconds or 5 minutes. For all algorithms, the change of envi-

ronment changes the performance of the algorithm. A workshop environment where

the speakers are recorded separately is easier for the TDoA algorithm to distinguish
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between speakers than in a simulated environment. In the former setting, the re-

verberation of one speaker is mixed with that of another, meaning that they do not

necessarily interact with, whereas in the simulated environment the reverberation

of each speaker interacts with that of the other. Given the nature of this algorithm,

it shows that it is important to take the reverberation of a speaker into account. A

similar thing is seen with the Cov NTF algorithm that works better in the workshop

environment than in the simulated one.

For all three corpora, the distance between the speakers and the microphones

is kept the same, meaning that there is no performance degradation because the

speakers were further away from the microphones. Instead, the AC corpus contains

noise, whereas the corpora played in the simulated environment are clean from noise

only containing reverberation.

When the TDoA algorithm is compared with the DoA algorithms, the results

show that the TDoA algorithm is better at removing artefacts. However, the inter-

ference of a second source is still present when the speakers are separated. N.B. this

is the second speaker used in the mixture not the second speaker already present in

the files of the vocalization and MapTask corpora.

On the acoustic camera corpus, TDoA NTF also performs better on distortions,

showing that when the audio is distorted TDoA NTF is able to separate the speak-

ers and produces a cleaner result than the DoA algorithms. However, with shorter

recordings the DoA algorithms outperform the SCM based techniques. When the

recordings get longer then this pattern is less noticeable. Cov NTF is an algorithm

that can be improved using different techniques to determine the correlation be-

tween the different microphones. The technique works well when there is noise and

distortion in the recordings because this is modelled by a different matrix.

These results look very similar to the vocalization corpus. This shows that the

algorithms work well independent of the data and their performance mainly depends

on the environment.

206



Chapter 8

Conclusion

This chapter summarises the conclusions of previous chapters and compares them

against the related work. Suggestions for future work are also described.

8.1 Discussion

This thesis concentrated on the introduction of novel algorithms for the derever-

beration of speech signal and a new corpus which has been used for dereverbera-

tion and the separation of speakers. Both of these problems (dereverberation and

speaker separation) are important for speech recognisers and robots in real world

environments. When a speech recogniser is able to get a file that is free from noise,

reverberation and overlapping speech, it is easier to create a correct transcription

and let the robot execute the correct tasks. Correlation based dereverberation tech-

niques were evaluated on different corpora, including the newly introduced corpus.

Existing non-negative matrix techniques (NMF) and deep learning were applied to

speaker separation and the influence of the cost function on the NMF result was

compared. For deep learning, the performance of different algorithms on speaker

separation was evaluated.

Corpus

The current corpora that are used for dereverberation and speaker separation often

contain speech recorded in a lab environment with a close talk microphone. These

corpora are clean, i.e. contain no reverberation or noise. To use a more complex
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corpus for the evaluation of these problems a new corpus was presented in Chap-

ter 4. This corpus contains realistic data with noise and reverberation. Instead of

using a close-talk microphone, this corpus only contains far-field recordings. Dur-

ing the recording, the speakers are standing still as well as walking freely through

the environment. This creates a more complex problem for speaker separation and

dereverberation with the reverberations altering as the speaker moves. The corpus

consists of four datasets, one original dataset, one without either noise or reverber-

ation and one without noise and reverberation. These datasets can be used as a

ground truth for the different problems making the corpus more versatile. Com-

pared to the corpora described in the literature (see Section 3.1), this corpus is not

limited to only dereverberation and speaker separation but can also be used for noise

cancelling and speaker localization and tracking for example.

Dereverberation

The performance of the reverberation algorithms introduced in Chapter 5 was first

measured on the TIMIT corpus in a simulated room to create a baseline for compar-

ison against the algorithms discussed in Section 3.2. Correlation based algorithms

can be easily modified from non-learning versions to create new learning versions.

Combining the Hs correlation algorithm with non-negative tensor factorisation cre-

ates Hs NTF, a novel algorithm, which can adapt the approximation of the rever-

berant signal. The overall results of the non-learning algorithm are inconclusive,

with none of the three algorithms outperforming the others. These algorithms are

outperformed by the other algorithms within the literature, showing that only using

the correlation between two microphones (or a clean signal and a reverberant signal)

does not give a good approximation of the reverberant signal.

When these algorithms are used in a supervised learning setting and are combined

with non-negative tensor factorisation, the results show an improvement to those

of spectral subtraction and the non-negative matrix/tensor factorisation techniques

in literature. This also shows that adapting the approximation of the reverberant

signal improves the removal of the reverberation over using the correlation between

two microphones. The downside of this technique is that it needs the ground truth

signal as input next to the reverberant signal.
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For purely unsupervised multichannel correlation-based learning techniques, weighted

prediction error (WPE) and multiple input multiple output WPE (MIMO WPE)

are compared with the novel Cauchy WPE and Cauchy MIMO WPE techniques.

MIMO WPE is widely used for real-time dereverberation. Both WPE and MIMO

WPE are based on the Gaussian distribution however, in Chapter 5 Cauchy WPE

and Cauchy MIMO WPE are introduced. These latter two are based on the Cauchy

distribution. For the WPE algorithm, this leads to an improvement in the perfor-

mance. Therefore, changing the probability distribution affects the calculation of

the reverberant signal. Both these techniques in their original form are comparable

with the existing literature and Cauchy WPE and Cauchy MIMO WPE does not

improve this.

Furthermore, both versions of WPE and MIMO WPE were tested in two rooms of

different sizes. This was to investigate the influence of room size on the performance

of the algorithm and to make a direct comparison with Parchami et al. [110].

However, there is no significant difference between the performance of the WPE

and MIMO WPE algorithms on the rooms. This means that the algorithms are

equally as effective in a larger room as in a smaller room. Another test was the

difference in window functions used for the short time Fourier transform (STFT).

This is because the original authors of both algorithms (Nakatani et al. [26] and

Yoshioka et al. [33]) were using a different window function (Blackman) for the

STFT, where normally a Hann window is used. In this case, the Hann window

outperforms the Blackman window. This has as an advantage that the STFT is less

likely to introduce artefacts into the frequency domain.

Single channel speaker separation

Two kinds of algorithms were compared in Chapter 6 for single channel speaker sep-

aration, supervised deep learning and unsupervised non-negative matrix factorisa-

tion (NMF). These algorithms were applied to three different corpora (vocalization,

MapTask and AC). There are five different deep learning algorithms (convolution

neural network, CNN, deep neural network, DNN, long short-term memory, LSTM,

bidirectional long short-term memory and recurrent convolution neural network,

RCNN). The deep learning algorithms are applied to the vocalization corpus and
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non-negative matrix factorisation (NMF) is applied to all three corpora.

The differences between the corpora is the recording equipment, setting and task

of the participants. For the vocalization corpus the recordings were made using a

telephone, whereas the MapTask corpus used a close-talk microphone. The first

two (vocalization and MapTask) corpora contain close-talk speech recorded in a

lab environment, whereas the AC corpus contains far-field speech recorded in a

workshop environment. In the first two corpora there is a second speaker present

in the background of the recordings. This adds an additional complication for the

algorithms to test their sensitivity to noise. Furthermore, for the AC corpus there

are four datasets available to test the sensitivity of the different NMF algorithms to

noise and reverberation.

For deep learning, it is important to use information from the past signal to

create a separation between speakers. The three techniques that are able to use

this outperform the other two. When this is expanded to using information from

the future in a bidirectional LSTM, there is also a reduction in artefacts. When

deep learning is compared to NMF, the results show that NMF out performs deep

learning on the tested corpora. This is due to deep learning needing more data to

be able to converge to a solution. However, the three corpora that were used for

single channel speaker separation did not contain enough data for deep learning to

converge to a solution.

Nonnegative matrix factorisation was tested with three different cost functions

(squared Euclidean, Kullback-Leibler and Itakura-Saito). The cost functions have

a different response to the speech signal. Where the Kullback-Leibler (KL) cost

function relies on the larger data values, the Itakura-Saito (IS) is scale invariant,

meaning that the smaller values in the recordings are of equal importance as the

larger ones. Therefore, the latter should be better at separating the speakers. These

cost functions are combined with sparsity, convolution and direction of arrival. In

general, the performance on the AC corpus is lower than on the other two corpora

showing that the AC corpus is a more difficult corpus for the different NMF algo-

rithms. This is most clearly seen in the nonoise echo dataset which shows that the

distance between the speaker and microphone array has a negative influence on the

performance. This also shows that different cost functions influence the performance
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of the algorithms. The smaller values used by the IS cost function reduce the perfor-

mance of the algorithms on the MapTask corpus and the orginal and nonoise echo

datasets of the AC corpus. This supports the idea that the larger values are more

discriminative for the results.

Using directionality helps with the separation of speakers more in clean environ-

ments than in reverberant environments. The specific technique applied here uses

the angle of arrival, which is more difficult to determine when there is reverbera-

tion present in the recordings. This is why directionality performs better on the

vocalization and MapTask corpora.

Comparing the results of all techniques with the literature, it shows that the

techniques applied to both the AC corpus and the vocalization corpus decrease in

performance. For the AC corpus, this is because it contains far-field speech instead of

close-talk speech and there is noise and reverberation present in the recordings. For

the vocalization corpus, the main reason is the second speaker, which is interfering

more than for the MapTask corpus. For example when comparing against the three

techniques described by Magron et al. [143] only the sparse NMF with the Itakura-

Saito cost function outperforms the ML-MUR technique on the signal-to-artifacts

and signal-to-distortion ratios. This is also only the case for the MapTask corpus.

This show that the other two corpora present the techniques with a bigger challenge

to create a clean separation between the different speakers.

Looking at the results of deep learning, the networks presented in this thesis

underperform those in the literature. However, this can be for two reasons. First,

only a small amount of data is presented to the network making it difficult to

converge to a solution. Second, looking at the result of the vocalization corpus

on the NMF techniques it shows that this corpus presents a bigger challenge for

an algorithm to create a clean separation between the different speakers. However

looking ath the result of the LSTM network and comparing specifically the signal-

to-interference ratio with those in the literature, it shows that his particular network

shows competitive results towards those presented by Gang et al. [147] and Pandey

et al. [161].
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Multichannel speaker separation

Four different multi-channel techniques (Cov-NTF, DoA NMF, DoA NTF and TDoA

NTF) have been tested on the same corpora as used for the single channel techniques.

However, now a room simulator is used to provide reverberation to the recordings.

The simulated room is the same size as the one used for creating the AC corpus (see

Chapter 4). Multi-channel algorithms have the advantage of using the information

coming from more than one microphone. This also increases the complexity of the

algorithm, for it now needs to calculate where the sound is coming from and is

more dependent on the right parameters. The environment has an influence on the

performance of these algorithms.

Using the same simulated environment for two of the corpora (vocalization and

MapTask), the performance of the algorithms stay the same. However, when com-

paring between a simulated with a real environment, a difference in performance is

shown. For example, in the workshop environment it is easier for the TDoA NTF to

distinguish between speakers than in the simulated environment. This shows that

it is important to take the reverberation of a speaker into account, which in the

workshop environment is more present than in the simulated environment. There is

no degradation in performance when the distance from the speakers to the micro-

phones is kept the same between the environments. The AC corpus contains noise

whereas the simulated environment is clean from noise (only containing reverbera-

tion), showing that the TDoA NTF is better at dealing with noise than the other

three algorithms. This is because it uses look directions to determine the speaker

location and k-means clustering for separating the speakers.

Three of the four algorithms (DoA NMF, DoA NTF and TDoA NTF) perform

very similarly to the existing literature (see Section 3.4). The TDoA NTF algorithm

outperforms the version that ran in the simulated environment of Nikunen et al.

[39]. Cov NTF, on the other hand, does not perform as well as the algorithms in

the literature, but it shows improvement when it is applied to the real environment.

In this thesis a new corpus was presented, and different dereverberation and

speaker separation algorithms were evaluated on it. This corpus focused on far-

field speech in noise and reverberant environments. The new corpus shows the

limits of the different techniques by presenting a challenging situation to perform
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dereverberation and separation in. The techniques for dereverberation and speaker

separation often matched the performance of the existing literature in simulated

environments, but surpassed their performance in real environments.

8.2 Future work

The Cauchy WPE and Cauchy MIMO WPE algorithms, that change the estima-

tion of the dereverberant signal, show small improvements in performance. Instead

of using the Cauchy distribution for making modifications to the algorithms, the

Gamma or Poisson distribution can be used for estimating the dereverberant signal.

These distributions can be linked to different cost functions, where for example the

Gamma distribution corresponds to a Itakura-Saito cost function. This allows for a

comparison between these distributions with their respective cost functions and will

show which performs better. In addition to this, it would allow for a comparison

with the performance of the Itakura-Saito cost function on the speaker separation

problem.

For both the multi- and single channel speaker separation techniques, it is im-

portant to choose the best performing cost function. Here the focus should be

more on the multi-channel rather than on the single channel techniques because the

existing multichannel non-negative matrix factorisation literature uses mainly the

Kullback-Leibler cost function. In addition to this, the multi-channel algorithm is

an extension of the single channel so can be easily adapted for this purpose. An

example of this is the implementation of Cauchy NMF (Liutkus et al. [191]). This

has not been implemented in a multichannel NTF algorithm but shows potential

when used with WPE for dereverberation. The current version of the Cov NTF

algorithm makes use of a correlation algorithm that assumes noise being present in

the approximated signal (the so-called H1 algorithm). This algorithm was tested on

reverberant data for removing the reverberation. The outcome was compared to the

Hs algorithm which assumes there is noise in the reverberant signal as well as in the

approximation. Therefore, the H1 algorithm could be replaced by the Hs algorithm

to increase the accuracy of the Cov-NTF algorithm.

The corpus that has been presented is only a small corpus however, it highlights
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the challenges on real data that may not be apparent in synthetic data. To make

this usable for different algorithms (especially deep learning) this corpus needs to

be expanded to include more participants. In addition to the number of recordings,

the recording environments can be more varied including more noise from printers,

television and machinery to create a more complex corpus. This complexity can also

be increased by adding different environments, for example a sports hall, lecture

theatre or a church where multiple speakers talk at the same time instead of having

one speaker per recording.

The recordings of the corpus can be applied to speaker localisation for robots to

learn where the speaker is located and subsequently tracking the speaker through

the room.

The deep learning models are suited for applying to federated and transfer learn-

ing. For this purpose the models are available on GitHub. This is to train the models

further and work towards convergence of the networks.

8.3 Conclusion

This thesis compared existing and novel dereverberation and speaker separation

techniques on existing corpora and a new corpus. For dereverberation there is a

dependency on whether a realistic or simulated environment is used for the testing

of the algorithms. Where in a simulated environment the novel algorithms were not

able to match the existing algorithm, in a realistic environment the opposite was

the case. In addition to this, a learning based algorithm is better at removing the

reverberation from the speech than a non-learning based algorithm. The learning

phase of the algorithm allows it to adapt its prediction to fit the situation.

The introduced corpus has helped to show the limits of the non-negative matrix

factorisation techniques as well as the importance of the cost function. In the multi-

channel situation, the corpus allows comparison of a simulated environment with a

realistic environment. In the latter, the algorithms show a decrease in performance

when the reverberation of the environment is manually removed. This corpus is

recorded with a device that is capable of making high quality recordings but unsuit-

able for positioning on a robot. However, when the recordings are used for training
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a deep learning algorithm or a technique that is not concerned with the exact loca-

tion of the microphones but concentrates on the recordings or viewing angles of the

microphone (e.g. weighted prediction error or covariance NTF), then the recordings

can be used for training the algorithm and the robot can be equipped with a smaller

microphone array containing a similar configuration (stereo, triangular or square)

of the microphones as used in training.

The corpus can used for far-field speech detection. However, the high sample rate

allows it to be used for breath detection which can be used for detecting a possible

interruption point for the robot or from the speaker. This creates a more natural

dialogue between a robot and a speaker. Simialrly the high samplerate provides

more features for emotion detection and the cancellation of unwanted interference.

The limits of the existing algorithms were shown by testing using realistic envi-

ronments. In these environments, it was possible for the novel algorithms to match

or improve the performance of the existing algorithms. Many of the existing al-

gorithms have been evaluated on corpora containing near field speech. Instead,

this thesis showed that on corpora containing far field speech, these algorithms are

still able produce competitive results when the speaker is further away from the

microphones.
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[34] Cédric Févotte and Jérôme Idier, “Algorithms for nonnegative matrix factor-

ization with the beta-divergence,” CoRR, vol. abs/1010.1, 2010.

[35] Wikipedia, NMF image, 2013 (accessed April 15, 2020).

[36] Julian Eggert and Edgar Korner, “Sparse coding and NMF,” in IEEE Inter-

national Joint Conference on Neural Networks, 2004. IEEE, 2004, vol. 4, pp.

2529–2533.

[37] Mikkel N Schmidt, “Speech separation using non-negative features and sparse

non-negative matrix factorization,” Elsevier, 2007.

219



BIBLIOGRAPHY

[38] Alexey Ozerov and Cédric Févotte, “Multichannel nonnegative matrix factor-

ization in convolutive mixtures for audio source separation,” IEEE Transac-

tions on Audio, Speech, and Language Processing, vol. 18, no. 3, pp. 550–563,

2010.

[39] Joonas Nikunen and Tuomas Virtanen, “Direction of arrival based spatial co-

variance model for blind sound source separation,” IEEE/ACM Transactions

on Audio, Speech, and Language Processing, vol. 22, no. 3, pp. 727–739, 2014.

[40] Alexey Ozerov, Cédric Févotte, and Emmanuel Vincent, “An introduction to

multichannel nmf for audio source separation,” in Audio Source Separation,

pp. 73–94. Springer, 2018.

[41] Georg Thimm and Emile Fiesler, “High-order and multilayer perceptron ini-

tialization,” IEEE Transactions on Neural Networks, vol. 8, no. 2, pp. 349–359,

1997.

[42] Javatpoint, “Single layer perceptron,” https://www.javatpoint.com/

single-layer-perceptron-in-tensorflow, 2008, [Online; accessed 09-02-

2021].

[43] d2l, “Multilayer perceptron,” http://d2l.ai/chapter_

multilayer-perceptrons/mlp.html, 2008, [Online; accessed 09-02-2021].

[44] Anastasia Kyrykovych, “Deep neural networks,” https://www.kdnuggets.

com/2020/02/deep-neural-networks.html, 2008, [Online; accessed 09-02-

2021].

[45] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams, “Learning

representations by back-propagating errors,” nature, vol. 323, no. 6088, pp.

533–536, 1986.

[46] Michael I Jordan, “Serial order: A parallel distributed processing approach,”

in Advances in psychology, vol. 121, pp. 471–495. Elsevier, 1997.

[47] Jeffrey L Elman, “Finding structure in time,” Cognitive science, vol. 14, no.

2, pp. 179–211, 1990.

220

https://www.javatpoint.com/single-layer-perceptron-in-tensorflow
https://www.javatpoint.com/single-layer-perceptron-in-tensorflow
http://d2l.ai/chapter_multilayer-perceptrons/mlp.html
http://d2l.ai/chapter_multilayer-perceptrons/mlp.html
https://www.kdnuggets.com/2020/02/deep-neural-networks.html
https://www.kdnuggets.com/2020/02/deep-neural-networks.html


BIBLIOGRAPHY

[48] Christopher Olah, “Understanding LSTM networks,” http://colah.github.

io/posts/2015-08-Understanding-LSTMs, 2008, [Online; accessed 09-02-

2021].

[49] Tim Jones, “Elman and Jordan RNN,” https://developer.ibm.com/

articles/cc-cognitive-recurrent-neural-networks/, 2017, [Online; ac-

cessed 23-02-2021].

[50] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio, “On the difficulty of

training recurrent neural networks,” 30th International Conference on Ma-

chine Learning, ICML 2013, , no. PART 3, pp. 2347–2355, 2013.

[51] Yoshua Bengio, Patrice Simard, and Paolo Frasconi, “Learning Long-Term De-

pendencies with Gradient Descent is Difficult,” IEEE Transactions on Neural

Networks, vol. 5, no. 2, pp. 157–166, 1994.

[52] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutnik, Bas R. Steunebrink, and

Jurgen Schmidhuber, “LSTM: A Search Space Odyssey,” IEEE Transactions

on Neural Networks and Learning Systems, vol. 28, no. 10, pp. 2222–2232,

2017.

[53] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[54] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Imagenet classifica-

tion with deep convolutional neural networks,” Communications of the ACM,

vol. 60, no. 6, pp. 84–90, 2017.

[55] Dana H Ballard, “Modular learning in neural networks.,” in AAAI, 1987, pp.

279–284.

[56] Jürgen Schmidhuber, “Deep learning in neural networks: An overview,” Neu-

ral networks, vol. 61, pp. 85–117, 2015.

[57] Chervinskii, “AutoEncoder,” https://commons.wikimedia.org/w/index.

php?curid=45555552, 2008, [Online; accessed 09-02-2021].

221

http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs
https://developer.ibm.com/articles/cc-cognitive-recurrent-neural-networks/
https://developer.ibm.com/articles/cc-cognitive-recurrent-neural-networks/
https://commons.wikimedia.org/w/index.php?curid=45555552
https://commons.wikimedia.org/w/index.php?curid=45555552


BIBLIOGRAPHY

[58] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio, “Generative ad-

versarial nets,” Advances in neural information processing systems, vol. 27,

pp. 2672–2680, 2014.

[59] Google, “Generative adversarial networks,” https://developers.google.

com/machine-learning/gan/gan_structure, 2008, [Online; accessed 09-02-

2021].

[60] Jonathan Le Roux, Scott Wisdom, Hakan Erdogan, and John R Hershey,

“Sdr–half-baked or well done?,” in ICASSP 2019-2019 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,

2019, pp. 626–630.

[61] Antony W Rix, John G Beerends, Michael P Hollier, and Andries P Hekstra,

“Perceptual evaluation of speech quality (pesq)-a new method for speech qual-

ity assessment of telephone networks and codecs,” in 2001 IEEE International

Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.

01CH37221). IEEE, 2001, vol. 2, pp. 749–752.

[62] Nobuhiko Kitawaki, Hiromi Nagabuchi, and Kenzo Itoh, “Objective quality

evaluation for low-bit-rate speech coding systems,” IEEE Journal on Selected

Areas in Communications, vol. 6, no. 2, pp. 242–248, 1988.

[63] Colin H Hansen, “Fundamentals of acoustics,” Occupational Exposure to

Noise: Evaluation, Prevention and Control. World Health Organization, pp.

23–52, 2001.

[64] D Siano, M Viscardi, and MA Panza, “Experimental acoustic measurements in

far field and near field conditions: characterization of a beauty engine cover,”

Recent Advances in Fluid Mechanics and Thermal Engineering, pp. 50–57,

2014.

[65] Simon Doclo and Marc Moonen, “Design of far-field and near-field broadband

beamformers using eigenfilters,” Signal Processing, vol. 83, no. 12, pp. 2641–

2673, 2003.

222

https://developers.google.com/machine-learning/gan/gan_structure
https://developers.google.com/machine-learning/gan/gan_structure


BIBLIOGRAPHY

[66] Yan Zhao, DeLiang Wang, Buye Xu, and Tao Zhang, “Monaural speech

dereverberation using temporal convolutional networks with self attention,”

IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020.

[67] David Gelbart and Nelson Morgan, “Double the trouble: handling noise and

reverberation in far-field automatic speech recognition,” in Seventh Interna-

tional Conference on Spoken Language Processing, 2002.

[68] Yuki Tamai, Yoko Sasaki, Satoshi Kagami, and Hiroshi Mizoguchi, “Three

Ring Microphone Array for 3D Sound Localization and Separation for Mobile

Robot Audition,” .

[69] Guinness world Records, “largest-microphone-array,” .

[70] Sorama, “World’s largest microphone array,” .
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