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Resumo

O modelo de Schroer [1] é um modelo bidimensional construído a fim de discutir as carac-

terísticas estruturais da Eletrodinâmica Quântica, mais especificamente, as particularidades

que ocorrem no espaço de Hilbert e na dinâmica devido ao caráter de infrapartícula do

elétron. A interação nesse modelo é dada pelo bóson sem massa φ. Os campos do modelo

não vivem no espaço de Fock de férmions livres devido a divergências no infravermelho e,

portanto, é necessário definir o modelo através das funções de Wightman e reconstruir o

espaço de Hilbert. Neste trabalho estudamos o modelo que contêm o bóson φ de massa m

que é livre, no sentido de obedecer a equação de Klein-Gordon, e um férmion ψq de massa

M , que são acoplados pela equação de movimento (i/∂ −M)ψq = −q(/∂φ)ψq, onde q é a

constante de acoplamento. A solução não-perturbativa é dada pelo campo de Dirac livre

vestido ψq
.=: eiqφ(x)ψ(x) : de [1], onde ψ é o campo de Dirac livre. Nós o chamaremos de

modelo de Schroer massivo. As divergências no infravermelho não aparecem no caso mas-

sivo. Aqui, sugerimos como o modelo de Schroer massivo surge a partir do campo de Dirac

livre com a interação Lint = ∂µφj
µ no contexto da teoria de perturbação de Epstein-Glaser,

com φ sendo o bóson massivo e jµ a corrente de Dirac. Esse modelo é renormalizável, com

um número infinito de gráficos a serem normalizados. Nós então impomos certas condições

de normalização, que entre outras, estão as identidades de Ward extendidas. Para gráficos

de árvore, essas condições de normalização são automaticamente satisfeitas, enquanto

gráficos com loops são fixados unicamente pelas respectivas normalizações. Isso torna o

modelo superrenormalizável. Nós mostramos que, no limite adiabático, a matrix S é igual

a unidade, os observáveis interagentes jµ, ∂µφ se tornam livres e a versão interativa do

campo de Dirac livre coincide com o campo de Dirac livre vestido ψq mencionado acima.

Palavras-chave: Campos quânticos. Eletrodinâmica Quântica. Modelo de Schroer. Epstein-

Glaser. Renormalização





Abstract

The Schroer model [1] is a 2-dimensional model built to discuss the structural charac-

teristics of Quantum Electrodynamics (QED), namely the Hilbert space and dynamic

particularities due to the infraparticle character of the electron. The interaction there is

set through a massless boson φ. In this case, the fields do not live in the Fock space of free

fermions due to IR divergences, and so one has to define the model through the Wightman

functions and then reconstruct the Hilbert space. The model we studied contains the boson

φ of mass m that is free, in the sense of obeying Klein-Gordon equation, and a fermion ψq
of mass M , which are coupled through the equation of motion (i/∂ −M)ψq = −q(/∂φ)ψq,

where q is the coupling constant. The non-perturbative solution is the dressed Dirac field

ψq(x) .=: eiqφ(x) : ψ(x) from [1], where φ is the free boson and ψ is the free Dirac field.

We will call this the massive Schroer model. The IR divergences do not appear in the

massive case. We suggest how the massive Schroer model arise from the free Dirac field

with the interaction L = ∂µφj
µ in the context of Epstein-Glaser perturbation theory,

with φ being the massive boson and jµ the Dirac current. This model is renormalizable,

with an infinite number of graphs to be normalized. We impose certain normalization

conditions, which among others are the extended Ward identities. For tree graphs, these

normalization conditions are automatically satisfied, while loop graphs are uniquely fixed

by the respective normalization. This turns the model superrenormalizable. We show that,

in the adiabatic limit, the S-matrix equals the unity, the interacting observables jµ, ∂µφ

become free fields, and the interacting version of the free Dirac field coincides with the

free dressed Dirac field ψq mentioned above.

Keywords: Quantum Fields. Quantum Electrodynamics. Schroer Model. Epstein-Glaser.

Renormalization.





Notation

γµ Dirac’s gamma matrix

In two dimensions, the two gamma matrices can be given by

γ0 =




0 1

1 0



 γ1 =




0 −1

1 0





ψ Dirac fermion

ψ∗ Hermitian conjugate

ψ† = (ψ∗)T

ψ
.= ψ†γ0

jµ =: ψγµψ : Dirac current

/∂
.= γµ∂µ

: eif : =
∞∑

k=0

ik

k!
: fk :

ηµν Minkowski metric η =




1 0

0 −1



 = diag(1,−1)

Throughout this work we shall use natural units, i.e., c = ℏ = 1.
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Introduction

The most accurate theory in history is Quantum Electrodynamics (QED), agreeing

to twelve decimal places with experiments [2]. Nevertheless, we still struggle with the

Infrared (IR) divergences that naturally occur in the structure of QED. These divergences

were initially found by looking at the scattering of electrons by atomic nuclei. Mott was

the first to address these divergences in [3, 4]. Bloch and Nordsieck also came across this

infrared problem and presented a model describing an ideal scattering process as a way to

contour the divergences [5]. They showed that the probability of a finite number of “soft”

photons1 escaping detection is zero. In other words, in a scattering of a charged particle

the emitted radiation has a finite energy but an infinite number of soft photons. The

main result of the Bloch-Nordsieck model is that the cross-section obtained is finite. More

than two decades later, Yennie, Frautschi and Suura [6] built a treatment of the infrared

divergences based on Bloch-Nordsieck and Pauli-Fierz’s [7] models. These developments

motivated the first ideas about infraparticles by Bert Schroer [1] in 19632,3.

Buchholz introduced in 1982 a characterization of infraparticles and showed the

existence of asymptotic electromagnetic fields in all charge sectors [10]. In 1986, he showed

that through a quantum version of the Gauss Law [11] an electrically charged state cannot

be an eigenstate of the mass operator, obtaining thereby the infraparticle structure and

that a spontaneous breakdown of the Lorentz symmetry happens in charged supersectors.

In 1974, Ferrari, Picasso and Strocchi proved that electrically charged fields cannot

be pointlike localized [12]. Buchholz and Fredenhagen [13] showed later in 1982, that the

most general localization allowed by the mass gap hypothesis combined with the existence

of a pointlike generated neutral subalgebra is a semi-infinite spacelike cone. Following

this idea, Mund, Yngvason and Schroer [14,15] in the ’00s presented the string-localized

quantum fields, where the “strings” are idealized narrow spacelike cones. This type of

localization can improve the UV behaviour of perturbative interactions and avoids the use

of an indefinite metric [15–17].

In the last decade infraparticles came back to the attention of the community as the

problem of infrared divergences resurfaced [18–28]. We will mention a few recent important

papers. Mund, Schroer and Rehren [29] addressed the relation between the implications of

the Gauss Law and the structure obtained in [1] considering string-localized fields. Dybalski

and Mund also computed a scattering amplitude for charged infraparticles living in the

GNS representation of the two dimensional massless scalar free field [30]. Mund, Rehren

1 Photons with energy less than the energy resolution of the experimental apparatus.
2 For a complete historical background of the approaches made to avoid the infrared divergences see [8].
3 An anthology on infraparticles was made by Prof. Schroer in [9].
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and Schroer [31] presented a new roadmap towards the perturbative off-shell construction

of QED, including its charged fields, with Hilbert space positivity being the guidance.

Their construction is based in string-localized quantum fields and helps to clarify some

parts of the so-called “infrared triangle” composed of the relations between soft photon

theorems, asymptotic symmetries and memory effects4.

The purpose of this work is to implement the perturbative construction of a model

containing a free boson φ of mass m and a fermion ψq of mass M , which are coupled

through the equation of motion (i/∂ −M)ψq = −q/∂φψq, where q is the coupling constant.

The non-perturbative solution is the dressed Dirac field ψq(x) .=: eiqφ(x) : ψ(x) from [1],

where φ is the free boson and ψ is the free Dirac field. The interaction of this model is

∂µφj
µ, where φ is the massive boson and jµ is the Dirac current. We call this model the

massive Schroer model. Our aim was to show that the perturbative construction coincide

with the exact solution of the model. Since we consider a massive boson, the infrared

divergence will not appear.

This master thesis is composed of three chapters. The first chapter contains key basic

concepts. We present some important mathematical topics, a brief review on the structure

of spacetime and the Wightman axiomatic construction of fields. The second chapter

comprises a general set-up of the Epstein-Glaser scheme. Our motivation to work within

this scheme, also known as causal perturbation theory, is that no ultraviolet divergences

appear, i.e. the time-ordered products are finite and well defined. The only adversity we

face is a non-uniqueness of the time-ordered products due to finite renormalization terms.

In the first section of the third chapter, we summarize the most important topics of the

Schroer model [1]. The next section is divided in three subsections, where in the first

subsection we analyze the renormalizability of the massive Schroer model. The second

subsection is dedicated to verify the Ward identities and a new set of normalization

conditions concerning the derivatives of the massive boson that we called extended Ward

Identities. These new conditions are motivated by the requirement that in the adiabatic

limit, where the test function g(x) goes to a fixed constant (coupling constant) q, in

symbols g → q, we obtain

S[g∂µφjµ]→ 1 X
∣
∣
∣
g∂µφjµ

→ X ψ
∣
∣
∣
g∂µφjµ

→ ψq =: eiqφ : ψ (1)

where S is the S-matrix, X is an observable, i.e. X ∈ {∂µφ, jµ}, and ψq is the free dressed

Dirac field from [1]. In the last subsection, we prove a theorem stating that the requirements

above are indeed satisfied.

4 Over the last years, infrared divergences were revisited by Strominger and collaborators and organized
in this triangle. A extensive review can be found in [32].
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1 Quantum Fields

The structure of this chapter is the following: In Section 1, we introduce a collection

of mathematical concepts. In Section 2, we discuss the structure of the spacetime. The

axiomatic framework of Gårding and Wightman is presented in Sections 3 and 4.

1.1 Mathematical Preamble

This section will cover some topics, mainly about distribution theory, which are

going to be used throughout this work and is based in [33–35]. In Physics, distributions

first appeared in Quantum Mechanics as Dirac introduced his δ-function and it quickly

thrived in the community, founding applications in other areas such as Electrodynamics,

Statistical Physics and QFT [36–38].

Definition 1. A Hilbert space H is a vector space with an inner product that is complete

with respect to the norm defined by the inner product.

Definition 2. Let H be a Hilbert space and H⊗s/an the symmetrized (anti-symmetrized)

n-fold tensor product H⊗s/an = H⊗s/a · · · ⊗s/a H. Set H0 = C and define

F(H) =
∞⊕

n=0

H⊗s/an (1.1)

where F(H) is known as the bosonic (fermionic) Fock space over H.

Definition 3. Let X ⊂ R
n. The support of a continuous function ϕ : X → C is the

closure of the set of non-vanishing points of ϕ, that is1,

suppϕ = {x ∈ X|ϕ(x) 6= 0} (1.2)

Definition 4. Let X ⊂ R
n be an open set. The set of the infinitely differentiable functions

ϕ : X → C with compact support is called space of test functions on X and is denoted by

C∞0 (X) (or D(X)).

To properly give the definition of a distribution we need to introduce a topology or

at least a notion of convergence in D.

Definition 5. A sequence (ϕn) of elements of D converges to ϕ ∈ D, in symbols ϕn −→
n→∞

ϕ,

iff

1 The bar above the set denotes the closure.
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i) The supports of all functions ϕn are contained in the same bounded set, regardless

of the n;

ii) The sequence of the derivatives of any order of the functions ϕn converges uniformely

to the corresponding derivatives of ϕ.

Here we only ask for the uniform convergence of each order of differentiation taken

separately.

Definition 6. Let X ⊂ R
n be an open set. A continuous linear functional T : C∞0 (X)→ C

is a distribution in X. So, for ϕ1, ϕ2 ∈ C
∞
0 (X), λ ∈ C and {ϕn}n∈N ⊆ C∞0 (X)

• T (ϕ1 + λϕ2) = T (ϕ1) + λT (ϕ2)

• ϕn −→
n→∞

ϕ⇒ T (ϕn) −→
n→∞

T (ϕ)

Example 7 (Dirac Delta Distribution). This distribution is defined by

δ(ϕ) =
∫

dxδ(x)ϕ(x) = ϕ(0).

At a point a ∈ R
n it is defined as follows

δa(ϕ) = ϕ(a).

Definition 8. Let C∞(Rn) be the set of complex functions defined in R
n that possess all

orders of partial derivatives. For f ∈ C∞(Rn) and the multi-index α = (α1, . . . , αn) ∈ N
n
0

we define

∂αf =
∂|α|f

∂α1
x1
· · · ∂αn

xn

, |α| = α1 + · · ·+ αn , xα = xα1

1 · · ·x
αn
n .

Now, we define the Schwartz space2 as

S(Rn) = {f ∈ C∞(Rn)|sup
x∈Rn
|xα(∂βf)(x)| <∞ ∀α, β ∈ N

n
0}. (1.3)

Definition 9. A sequence (fn) of functions of S(Rn) converges to f ∈ S(Rn) iff the

sequence (xα∂βfn) converges uniformely to xα∂βf for every α, β ∈ N
n
0 .

Definition 10. A tempered distribution is a linear continuous functional over S. As D ⊂ S,

if ϕn → ϕ in D then ϕn → ϕ in S, in such manner that a tempered distribution is a linear

continuous functional in D is extendable to a linear continuous functional in S. The space

of tempered distributions is denoted by S ′.

Theorem 11 (Nuclear Theorem). Let T be a multilinear functional of arguments

f1, . . . , fn ∈ S(Rk) which is continuous in each of its arguments while the others are

fixed. Then there is a unique distribution G ∈ S ′(Rk.n) in all the variables of f1, . . . , fn

such that T (f1, . . . , fn) = G(f1, . . . , fn).
2 Sometimes it is referred in the literature as the space of the well behaved functions.
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1.2 Relativistic spacetime

Historically, Quantum Field Theory was born as an attempt to conciliate Einstein’s

Special Relativity and Quantum Mechanics in a more satisfactory way than relativistic

quantum mechanics. For this reason, we should first give an outline of the structure of

spacetime3. This section is heavily based on the ideas contained in [40, 41]. An interesting

reflection about the nature of physical space is present in [42,43].

In the theory of relativity, Lorentz transformations are used. The change from

Galilean to Lorentz transformations is highly motivated by the incompatibility of Galilean

transformations with electrodynamics. A few years after the birth of relativity, Minkowski

introduced the concept of spacetime, unifying space and time in an absolute concept

regardless of the choice of a referential.

An important notion in spacetime, are the so-called events, which are phenomena

occurring in such a small region of spacetime that the dimensions can be neglected. Let M

be the spacetime. After the choosing of a reference frame, an event in M can be identified

by an element of R4,

x = (ct, ~x) = (x0, x1, x2, x3) (1.4)

where c is the speed of light, t is the time and ~x is the position vector relative to the

reference frame used to identify M with R
4. It is possible to define a quadratic quantity4

Q : M×M→ R

(x, y) 7→ Q(x, y) = (x0 − y0)2 − |~x− ~y|2.
(1.5)

This quantity represents the interval between two events. One can notice that for a

luminous signal, Q(x, y) = 0. Due to the invariance of the speed of light, this result does

not depend on the choice of the reference frame. It is also possible to prove that Q is

invariant to changes in the coordinate system.

Q(x, y) = Q(x′, y′) (1.6)

Let (x1, y1), (x2, y2) ∈ M × M be two pairs of events. We define the following

equivalence relation

(x1, y1) ∼ (x2, y2)⇔ xµ1 − y
µ
1 = xµ2 − y

µ
2 µ = 0, 1, 2, 3. (1.7)

This relation divides M into equivalence classes. The representative of one of this classes

is called a four-vector and we denote it [(x, y)]. The space of all four-vectors is denoted by

D(M).
3 A different approach is given in [39] where the construction is based in manifolds and is an excellent

alternative literature regarding relativity.
4 Nondegenerate, symmetric and bilinear form



18 Chapter 1. Quantum Fields

We can define a general transformation which preserves the spacetime interval Q

(Lx)µ = aµ + Λµ
νx

ν (1.8)

where aµ ∈ D(M) and Λ is a Lorentz transformation, i.e., a matrix Λ that satisfies η = ΛTηΛ

with η = diag(1,−1,−1,−1) being the Minkowski metric. This transformation L is called

Poincaré transformation and is a composition of translations, rotations and boosts. Notice

that every Poincaré transformation is a linear non-homogeneous transformation.

Since translations and rotations do not alter (1.7), our definition of four-vectors

holds in every inertial frame. Furthermore, Q(x, y) only depends on the equivalence class,

allowing one to define Q ([x, y]) := Q(x, y). It is important to remark that given a reference

frame, one can identify M to the quotient (M×M)/∼
.= D(M), where ∼ was defined in

(1.7), and both to R
4 equipped with the pseudo-metric η.

We can define the inner product as

a · b = a0b0 − ~a ·~b. (1.9)

With this definition, we obtain the notion of orthogonality in spacetime which is very

different from the usual Euclidean version [39].

Since this is an extensive subject and for the sake of brevity, as we have already

covered the basics of spacetime structure, let us focus on giving a few fundamental

definitions.

Definition 12. Let x ∈ D(M). Then, x is said to be timelike if x2 ≡ x · x > 0, lightlike if

x2 = 0 and spacelike if x2 < 0.

Definition 13. We can now define a region called lightcone. Let x ∈ M. The future

lightcone of x is given by V+(x) := {y ∈M|(y − x)2 > 0 ∧ (y − x)0 > 0}. In words, this is

the set of all time-like future-pointing vectors.

In the same idea, we define the past lightcone V−(x) := {y ∈ M|(y − x)2 >

0 ∧ (y − x)0 < 0} which is the set of all time-like past-pointing vectors.

The boundary of the future lightcone is ∂V+(x) = {y ∈M|(y−x)2 = 0∧(y−x)0 ≥ 0}.

Similarly, ∂V−(x) = {y ∈ M|(y − x)2 = 0 ∧ (y − x)0 ≤ 0} is the boundary of the past

lightcone.

Remark. All these regions (V±, ∂V±) are invariant under the proper orthochronous Lorentz

group L↑+, i.e. det Λ = 1 and Λ0
0 ≥ 1.

Definition 14. A notion of geometric time ordering is that x is later than y, in symbols

x � y, if x /∈ V−(y) and is equivalent to saying that there exists a reference frame such

that x0 > y0.
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To close this Section, we present one last Lemma which will be useful below in

Section 2.2.

Lemma 15. Let x, y ∈ R
4 be events in a given inertial frame. Thus, the set

P
.= {(x, y) : x � y} (1.10)

is open in R
4 × R

4.

1.3 Wightman Axioms

The many successes, and failures, of relativistic QFT motivated physicist and

mathematicians to investigate its foundations. Moreover, a long list of mathematical

problems led Wightman and Gårding to extract general postulates that later became

known as the Wightman axioms.

These “axioms” were only named like this to bring attention to their consistency

and mathematical rigor. They are well formulated physical requirements constructed to

emphasize the spectral condition, relativistic invariance, and locality and will be presented

below [44–46].

Structure of the Theory: The space in question is a separable Hilbert space H and the

states are described by unit rays. This space possesses a continuous unitary representation

of the non-homogeneous group SL(2,C)5 given by U(a,A), a ∈ R
4, A ∈ SL(2,C) and by

its unity we can write U(a,1) = eiP
µaµ where P µ is an unbounded self-adjoint operator,

seen as the energy-momentum operator.

Energy-Momentum Spectral Condition: The joint spectrum of P µ lies in the closed

forward cone V + := {pµ : p2 ≥ 0, p0 ≥ 0}, and P µPµ is the mass operator6.

There is a vector Ω which is translation invariant in H, U(a,1)Ω = Ω, unique up

to a constant. This vector is named vacuum state.

Field Operators: Fields are operator-valued distributions in H [47]. For each f ∈

S(R4), there exists a set of operators along with its adjoints defined in a domain D

dense in H7. Let {ϕ1, . . . , ϕn} be fields. The domain D always contains a domain D0 :=

span{ϕi1(f1) . . . ϕin(fn)Ω;n > 0} , i.e. obtained by the application of polynomials of

smeared fields on the vacuum state (cyclicity of the vacuum [48]). Further details about

the domain and operator in [44].

5 Special Linear group with complex entries SL(2,C)
.
= {A,n× n matrix, Aij ∈ C, det(A) = 1}. This is

known to be the universal covering of SO↑
+(1, 3) which is the proper orthochronous Lorentz group.

6 This spectral condition is the relativistic version of the condition that the Hamiltonian is bounded
from below.

7 A set S is said to be dense in H if, for each vector ϕ ∈ H and ǫ > 0, there exists a vector ψ ∈ S such
that |ϕ− ψ| < ǫ.
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Covariance: The fields transform under the Poincaré transformations U(a,A)

U(a,A)ϕi(x)U(a,A)−1 = S(A−1)ijϕj(Λx+ a) (1.11)

with S(A) being a finite dimensional representation of SL(2,C).

Given the fact that all finite-dimensional representations of SL(2,C) are the sum

of irreducible representations, one can take into account the components of an irreducible

representations as part of the field and distinguish different fields within the theory by

looking at different irreducible representations. The same idea is used when grouping

together components transformed by a reducible representation in a field.

Causality: Let f, g ∈ S(R4). If the support of f, g are spacelike separated, (x− y)2 < 0,

then

[ϕi(f), ϕj(g)]± = 0 [ϕi(f), ϕj(g)∗]± = 0 (1.12)

∀i, j when applied to a vector in D. The plus or minus sign means that the fields either

anticommute or commute. They anticommute iff both fields are fermions.

1.4 Wightman Functions

In this section we will discuss the properties of the vacuum expectation values

which are also known as Wightman functions8. We note that the axiom regarding field

operators implies that

〈ϕi1(f1) · · ·ϕin(fn)〉 .= (Ω, ϕi1(f1) · · ·ϕin(fn)Ω) (1.13)

exists and is a separately continuous multilinear functional of the arguments f1, . . . fn as

they vary over S(Rn). From Theorem 11, we have that this functional can be uniquely

extended to be a tempered distribution of the n four-vectors x1, . . . , xn. We shall denote

wi1,...,in(x1, . . . , xn) ≡ 〈ϕi1(x1) · · ·ϕin(xn)〉.

(W1) Covariance: For (a,A) ∈ P↑+ there holds

wi1...in(x1, . . . , xn) = S(A−1)i1j1 . . . S(A−1)injnwj1...jn(a+ Ax1, . . . , a+ Axn) (1.14)

with S a finite dimensional representation of SL(2,C) (or of the Lorentz group if

the spin is integer, i.e. a boson).

We need to introduce a convention before the next property. The Fourier transform

of a function f ∈ S(R2n) is given by

f̃(p) .=
∫

dnxf(x)eip·x (1.15)

8 These are detailed in [44][Chapter 3.3]
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with p · x =
n∑

k=1

(pk)µ(xk)µ.

We will describe the next properties for one scalar field (boson).

(W2) Spectral property: The support of the Fourier transform w̃ of w is contained in the

product of forward lightcones

w̃(p1, . . . , pn) = 0, if, for some j, pj /∈ V +. (1.16)

(W3) Locality: From causality one has

w(x1, . . . , xj, . . . , xl, . . . , xn) = w(x1, . . . , xl, . . . , xj, . . . , xn), if (xj − xl)2 < 0

(1.17)

(W4) Positivity: Consider the Hilbert space structure required in the first axiom. For any

terminating sequence f = (f0, . . . , fn), fi ∈ S(R2i), one has

∑

j,k

∫

dx1 · · · dxjdy1 · · · dykf j(xj, . . . , x1)fk(y1, . . . , yk)w(x1, . . . , xj, y1, . . . , yk) ≥ 0

(1.18)

This is equivalent to the positivity of the norm of any state of the form

Ψf = f0Ω + ϕ(f1)Ω + ϕ(f (1)
2 )ϕ(f (2)

2 )Ω + . . . (1.19)

where f = (f0, . . . , fN), fj =
j
⊗

k=1

f
(k)
j , f

(k)
j ∈ S(R2).

(W5) Cluster Property: For any spacelike vector a and for λ→∞, the uniqueness of the

translationally invariant state is equivalent to

w(x1, . . . , xj, xj+1 + λa, . . . , xn + λa)→ w(x1, . . . , xj)w(xj+1, . . . , xn) (1.20)

here the convergence has to be understood in the sense of distributions.

This last property says that the correlation function of two monomials of smeared

fields, known as clusters, factorize in the limit of infinite spacelike distance between the

two clusters. This property plays a crucial role for the existence of asymptotic free fields

and the construction of the S-matrix.

The cluster property implies that if two clusters B1, B2 are localized in bounded

regions O1,O2, respectively, the state vectors B1 Ω, B2 Ω become orthogonal, apart from

their vacuum component, in the limit in which the spacelike separation between their

localization regions becomes infinite.
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Theorem 16 (Wightman Reconstruction Theorem). Let (wn)n∈N be a family of distribu-

tions wn ∈ S ′(R2n) satisfying (W1 - W5). Then, there exists a separable Hilbert space

H, a continuous unitary representation U of P↑+ in H with a unique invariant vector Ω,

and a hermitian scalar Wightman field ϕ which is covariant under U , such that

〈Ω, ϕ(f1) . . . ϕ(fn)Ω〉 = wn(f1 ⊗ · · · ⊗ fn). (1.21)

Moreover, any other field theory with these vacuum expectation values is unitary equivalent

to this one.

Definition 17 (Wick product). We define the Wick products of free fields (normal ordering)

by writing the free field as creation and annihilation operators, ϕ(x) = a(x) + a∗(x), and

bringing the annihilation operators to the left hand side of the creation operators,

: ϕ(x1) . . . ϕ(xn) : =
∑

I⊂{1,...,n}

∏

i∈I

a∗(xi)
∏

j /∈I

a(xj)

Theorem 18 (Wick’s Theorem). Let ϕ1, . . . , ϕn be free fields. Then, we have

a) The weak form of the theorem:

: ϕk1

1 : · · · : ϕkn
n :

k1! · · · kn!
=

∑

l1,...,ln

: ϕl11 · · ·φ
ln
n :

l1! · · · ln!
〈: ϕk1−l1

1 : · · · : ϕkn−ln
n :〉

(k1 − l1)! · · · (kn − ln)!
(1.22)

with 0 ≤ li ≤ ki.

b) The strong form:

〈: ϕk1

1 : · · · : ϕkn
n :〉 =

∑

lij(i<j)
∑

i6=j
lij=ki

∏

i<j

〈ϕiϕj〉
lij

lij!
(1.23)

Define Wi as a polynomial of a free field ϕki
i . Then, we can rewrite a) as

W1 · · ·Wn =
∑

: W ′
1 · · ·W

′
n : 〈W ′′

1 · · ·W
′′
n 〉

where the sum goes over the possible factorizations of each Wi.
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2 The Epstein-Glaser Scheme

The most successful approach to interacting field theories is the definition of the

S-matrix by a formal power series in the test function g. Unfortunately, this approach

has a longstanding problem, the so-called Infrared(IR) and Ultraviolet(UV) divergences.

The UV divergences can be treated by various methods of renormalization. Up to now, IR

divergences can not be completely treated.

A mathematically rigorous method of perturbative construction is the causal

perturbation theory, which was elaborated by Epstein and Glaser [49] based on the ideas of

Stückelberg, Bogoliubov and Shirkov [50]. In this approach, the Bogoliubov S-matrix and

the interacting fields are constructed using time-ordered products of (Wick polynomials

of) free fields. One first specifies the set of axioms that are satisfied by the time-ordered

products and then performs an inductive construction. The physical S-matrix is obtained by

taking the so-called adiabatic limit of the Bogoliubov S-matrix. We discuss the construction

of both the S-matrix and the interacting observable fields in Section 3.3.

The solution of the UV problem in this framework consists of finding an extension

of distributions which are initially defined only on a suitable subspace of the space of all

test functions. The freedom in renormalization is the consequence of the non-uniqueness

of the extension. This chapter serves as an intuitive introductory contact to the results

in the next chapter and follows [51–53]. The infrared problem remains in the adiabatic

limit [54, 55], but it will not appear here since the massless limit of the boson φ is not

taken.

2.1 Time-Ordered Products

The time-ordered products T [W1(x1) · · ·Wn(xn)], with Wk(x) being Wick poly-

nomials of free fields, are the building blocks to construct interacting fields and obtain

the S-matrix. They are multilinear maps with C∞ functions as coefficients, symmetrical

operator-valued distributions on the dense domain D 1 which satisfies the following axioms

(P1) Translation Covariance :

U(a,1)T [W1(x1) . . .Wn(xn)]U(a,1)−1 = T [W1(a+ x1) . . .Wn(a+ xn)] (2.1)

where (a,1) ∈ P↑+ and U is a unitary positive energy representation of the Poincaré

group.

1 This is usually referred as the well-posedness property (P0) of T -products.
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(P2) Causality : If xi � xj ∀i ∈ {1, . . . , k} and j ∈ {k + 1, . . . , n}, then

T [W1(x1) · · ·Wn(xn)] = T [W1(x1) · · ·Wk(xk)]T [Wk+1(xk+1) · · ·Wn(xn)] (2.2)

(P3) Graded Symmetry :

T [W1(x1) · · ·Wn(xn)] = (−1)f(π)T [Wπ(1)(xπ(1)) · · ·Wπ(n)(xπ(n))] (2.3)

where π ∈ Sn is any permutation of the set {1, . . . , n} and f(π) is the number of

transpositions in π involving two fermion fields {ψ, ψ, : ψφ :, : ψφ :, : ψ/∂φ :, : /∂φψ :}.

We also require that

T [∅] .= 1 T [W (x)] .= : W (x) : . (2.4)

If the time-ordered products of less than n factors are everywhere defined, the time

ordered product is uniquely determined up to the total diagonal Dn
.= {(x1, . . . , xn), xi ∈

R
2|x1 = · · · = xn}. Therefore, the renormalization problem, in this scheme, amounts as

the problem of extending the n−th order time-ordered products to the diagonal Dn.

2.2 Inductive Construction

In this section we formulate the inductive construction of the time-ordered products2.

This procedure was first presented by Epstein and Glaser [49]. First, we assume that all

time-ordered products have been constructed up to n − 1 arguments, as defined in the

last section. We begin with the inductive construction up to Dn. For each proper subset

I ⊂ {1, . . . , n}, let

UI := {x ∈ R
2n \Dn|xi � xj for all (i, j) ∈ I × Ic}. (2.5)

Proposition 19. Let Dn be the total diagonal of R2n and a proper subset I ⊂ {1, . . . n}.

Then, UI is an open set in R
2n.

Proof. Let I ⊂ {1, . . . , n} be a proper subset. Given x ∈ R
2n\Dn, we write x = (x1, . . . , xn),

where we are considering the decomposition R
2n = (R2)n. Consider now the set

P k
j := {(x1, . . . , xn)|xj � xk}, k ∈ {1, . . . , n− 1} \ {j} (2.6)

By Lemma 15, each set P k
j , . . . , P

n−1
j is open. Thus, X1 = ∩ni=kP

i
1 is open. This means

that Xj = ∩ni=kP
i
j is also open. Therefore,

UI = X1 ∩ · · · ∩Xk (2.7)

is also open since it is a finite intersection of open sets.
2 For the string-localized version see [56].
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The family of open sets UI , when I runs through the proper subsets of {1, . . . , n},

is a covering of R2n \Dn, that is, every x ∈ R
2n \Dn is in some UI , see [51, Lemma 4.1].

On UI , the factorization property implies that

T [W1(x1) · · ·Wn(xn)] .= Tn(x1, . . . , xn) = T|I|(I)Tn−|I|(Ic) (2.8)

which is known by hypothesis since 1 ≤ |I| ≤ n− 1, |I| is the number of elements of I,

and Ic is the complement of I in {1, . . . , n}.

Lemma 20 (Uniqueness outside Dn). Let W be a linear space of Wick polynomials with

lower or equal order with respect to the interacting Lagrangian of the model in question.

If the time-ordered products are known for up to n− 1 Wick polynomials in W , then the

time-ordered product is fixed and well defined on the complement of Dn by the above

formula (2.8).

Proof. First we need to prove that UI is indeed a covering. For this we refer the reader

to [51, Lemma 4.1]. It remains only to show that Tn does not depend on the choice

of I. To this end, let J be another set such that xi � xj for all i ∈ J , j ∈ J c. Then

write3 I = I ∩ J ∪̇ I ∩ J c, hence T (I) = T (I ∩ J)T (I ∩ J c) by equation (2.2). Similarly,

Ic = Ic ∩ J ∪̇ Ic ∩ J c and hence T (Ic) = T (Ic ∩ J)T (Ic ∩ J c). Thus,

T ({1, . . . , n}) = T (I ∩ J)T (I ∩ J c)T (Ic ∩ J)T (Ic ∩ J c).

Let now i ∈ I ∩ J c and j ∈ Ic ∩ J . Then, xi is larger and smaller than xj. But

this implies that xi and xj are spacelike separated. Therefore, the two factors in the

middle commute. Applying the factorization property (2.2) again, yields T (J)T (J c). This

establishes independence of the choice of I in (2.8).

This inductive construction of T -products leaves us with operator-valued distribu-

tions well defined in D(R2n \Dn) satisfying (P1-P3). It remains to extend these products

to the total diagonal Dn, and this will be done below at Section 3.2. The Epstein-Glaser

scheme requires that the pointwise products of Wick polynomials Wi(xi) with transla-

tional invariant numerical distributions t to be well defined. This product indeed exists

and is the result of a Theorem, known as Theorem 0 in [49]. There is also a microlocal

version due to Brunetti and Fredenhagen [51, Theorem 3.1]. Hence, the construction of Tn
reduces to finding an extension of the numerical distribution t across the total diagonal

Dn. From translational invariance, the numerical distributions depend only on the relative

coordinates and we can write the total diagonal as the origin of these coordinates.

3 The symbol ∪̇ stands for the disjoint union of two sets.
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2.3 Extension of Distributions

The last section ended with a problem, how to extend the numerical distribution t

across the origin. This problem requires the introduction of a quantity that measures the

singularity of distributions at the origin. First, we define the rescaling of a distribution

and then introduce the definition of a well-known quantity, the scaling degree.

Definition 21 (Distribution Rescaling). Let t be a distribution on R
k. The rescaled

distribution tλ, λ > 0 is defined as

tλ(f) := t(fλ) with fλ(x) := λ−kf(λ−1x). (2.9)

Definition 22 (Steinmann scaling degree). Let t ∈ D′(Rk) and λ > 0. The scaling degree

of t with respect to the origin is4

sd(t) := inf{s ∈ R : lim
λ→0

λstλ(f) = 0}. (2.10)

By definition, inf ∅ :=∞, i.e. if there is no such s, the scaling degree is said to be infinite.

At this point, some examples may be helpful.

Example 23. Let δ ∈ D′(Rk). Then δ(λx) = |λ|−kδ(x), so sd(δ) = k.

Example 24. Let us now calculate the scaling degree of the two-point function in d = 1+1.

The invariant measure rescales as

dµm(λ−1p) =
d2λ−1~p

2
√

λ−2|~p|2 +m2
= λ0 d2~p

2
√

|~p|2 + (λm)2
= dµλm(p) (2.11)

where p = (p0, ~p). Then, the rescaled two-point function is,

wm,λ(x) = wm(λx) = (2π)−1
∫

H+
m

dµm(p)e−iλp.x = λ0
∫

H+
m

dµλm(p)e−ip.x = λ0wλm(x)

(2.12)

where H+
m is the mass shell. Since lim

λ→0
wλm = w0 is logarithmic divergent the scaling degree

of w is 0.

The scaling degree have some interesting properties which we state in the following

proposition [51, Lemma 5.1].

Proposition 25. Let X ⊂ R
k and u,w ∈ D′(X) distributions, and α a multi-index,

(i) sd(∂αu) = sd(u) + |α|.

(ii) sd(xαu) = sd(u)− |α|

(iii) sd(u⊗ w) = sd(u) + sd(w), where ⊗ denotes the tensor product of distributions.

(iv) sd(f) ≤ 0, sd(fw) ≤ sd(w), f ∈ D(Rk).

4 This defining condition is to be understood in the sense of distributions.
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Theorem 26. Let t0 ∈ D′(Rk \ {0}). Then,

(i) If sd(t0) < k, there is a unique extension t ∈ D′(Rk) fulfilling the condition sd(t0) =

sd(t).

(ii) If k ≤ sd(t0) <∞, there are several extensions t ∈ D′(Rk) satisfying the condition

sd(t0) = sd(t). In this case, given a particular solution t̄, the general solution is of

the form,

t = t̄+
∑

|α|≤sd(t0)−n

cα∂
αδ(n) (2.13)

with the multi-index α = (α1, . . . , αl) ∈ N
l
0 and |α| = α1 + · · ·+ αl.

In (2.14), the addition of a term
∑

|α|≤sd(t0)−k

cα∂
αδ(n) is called a finite renormalization.

2.4 Normalization Conditions

From Theorem 26, there is some freedom of choice of the extension to the origin,

and we formulate conditions to restrict them in this section. The first normalization

condition implements the conservation of Poincaré covariance. Let U be a unitary positive

energy representation of the Poincaré group P↑+(or its universal covering for fermions).

Then, we require

(N1) U(a,Λ)T [W1(x1) · · ·Wn(xn)]U(a,Λ)−1 =

T [U(a,Λ)W1(x1)U(a,Λ)−1 · · ·U(a,Λ)Wn(xn)U(a,Λ)−1]
(2.14)

where (a,Λ) ∈ P↑+. We can see that (N1) is an extension of property (P1). It is remarked

by Epstein-Glaser in [49] that property (P1), i.e. translational covariance, is crucial for

the causal construction, and is used in their Theorem 0. Brunetti and Fredenhagen [51]

have shown that this condition can be replaced by a weaker one, spectrality. This condition

is connected to wave front set properties required in their work. The next condition comes

from unitarity,

(N2) T [W1(x1) · · ·Wn(xn)]∗ =
∑

P∈Part{1,...,n}

(−1)|P |+n
∏

p∈P

T [Wi(xi)∗, i ∈ p] (2.15)

being ∗ the adjoint on D.

In order to reduce the arbitrariness of time-ordered products we require the causal

Wick expansion and we will set some notation. We can factorize a Wick polynomial

W ∈ {ψ, ψ, φψ, φψ, jµ, φjµ} as

W =: W ′W ′′ :
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where W ′,W ′′ are sub polynomials of W . Note that this is not a unique factorization5.

Then, we can write the Wick expansion as

(N3) T [W1 · · ·Wn] =
∑

G

: W ′
1 · · ·W

′
n :

︸ ︷︷ ︸

WG

〈TW ′′
1 · · ·W

′′
n 〉

︸ ︷︷ ︸

tG

(2.16)

where the sum goes over the possible factorizations of each Wk. Each term can be associated

to a graph G.

This association might seem abstract, so it is interesting to look at a simple example.

We will see more details on the graphs appearing in the Wick expansion in Section 3.2.1.

Notation: From now on we denote Wk := Wk(xk). We also omit the dependence of the

variable x, i.e. ψ := ψ(x), φ1 := φ1(x1), ∂µ := ∂
∂xµ .

Example. Consider the Wick expansion of T [φ1ψ1ψ2φ2].

T [: φ1ψ1 :: ψ2φ2 :] =: φ1ψ1ψ2φ2 : + : ψ1ψ2 : 〈T : φ1φ2 :〉+ : φ1φ2 : 〈T : ψ1ψ2 :〉+ 〈Tφ1ψ1ψ2φ2〉

=
∑

G

: W ′
1W

′
2 : 〈TW ′′

1 W
′′
2 〉

︸ ︷︷ ︸

tG

We can represent these terms as

=

φ

ψ

φ

ψ

: φ1ψ1ψ2φ2 : +
x1 x2

: ψ1ψ2 : 〈T : φ1φ2 :〉 +

x1 x2

: φ1φ2 : 〈T : ψ1ψ2 :〉 + x1 x2 〈Tφ1ψ1ψ2φ2〉

We also require condition (N4) from [57]. We will write it out for the massive

Schroer model. Let ψ be the free Dirac field and φ the massive free scalar field. We consider

Wi ∈ W sub polynomials as defined in (3.6). Then the normalization condition reads

(✷ +m2)T [φW1 · · ·Wn] = −i
n∑

k=1

δ(x− xk)T [W1 · · ·
∂Wk

∂φ
· · ·Wn]

(N4) (/∂ + iM)T [ψW1 · · ·Wn] =
n∑

k=1

(−1)f(W1···Wk−1)δ(x− xk)T [W1 · · ·
∂Wk

∂ψ
· · ·Wn]

T [W1 · · ·Wnψ](
←−
/∂ − iM) = −

n∑

k=1

(−1)f(Wk+1···Wn)δ(xk − x)T [W1 · · ·
∂Wk

∂ψ
· · ·Wn]

(2.17)

5 For example, take jµ. These factorizations are possible W ′ = jµ, ψ, ψ and 1.



2.4. Normalization Conditions 29

where

f(W1 · · ·Wk−1)
.=







0, k = 1

f(W1), k = 2
k∑

i=1

f(Wi), k > 2

with f(Wi) =
{ 1, Wi fermion

0, Wi boson
.

This condition uniquely determines time-ordered products with additional free field

factors [57], namely

〈T [W1 · · ·Wnφ]〉 = i
n∑

k=1

∆F (x− xk)〈T [W1 · · ·
∂Wk

∂φ
· · ·Wn]〉

(N4’) 〈T [ψW1 · · ·Wn]〉 = i
n∑

k=1

(−1)f(W1···Wk−1)SF (x− xk)〈T [W1 · · ·
∂Wk

∂ψ
· · ·Wn]〉

〈T [W1 · · ·Wnψ]〉 = i
n∑

k=1

(−1)f(Wk+1···Wn)SF (xk − x)〈T [W1 · · ·
∂Wk

∂ψ
· · ·Wn]〉

(2.18)

where iSFαβ = 〈Tψαψ
′

β〉, and i∆F = 〈Tφφ′〉, where φ is the free scalar field with mass m.



3 Schroer Model

In this chapter, we make a brief revision of the Schroer model in the first section.

Afterwards, we analyze the renormalizability of the massive model and verify the Ward

Identities. Then, we show a new normalization condition that we called extended Ward

Identities in Section 3.2.3. In the last section, we construct perturbatively the S-matrix,

the interacting observable fields, and show that the construction coincides with the exact

solution.

3.1 The Formulation of the massive Schroer Model

In the ’60s, two-dimensional toy models of QED appeared and became really

popular, as they proved to be a useful test laboratory1. In QFT, there is a class of models

that present a coupling between fermionic currents and derivatives of scalar or pseudo-scalar

fields in the classical Lagrangian. These models are called derivative coupling models. The

Schroer, Thirring, Schwinger and Rothe-Stamatescu models provide well-known examples

of this class of models [1, 59–62]. For an alternative presentation of the Schroer model and

a refreshed analysis, see [31].

Let φ be a massive scalar field and ψ the Dirac field. Then, the massive Schroer

model is defined by the following Lagrangian

LSchroer = L0
φ + L0

ψ + Lint (3.1)

where

L0
φ =

1
2
∂µφ∂

µφ−
1
2
m2φ2 L0

ψ = ψ(i/∂ −M)ψ Lint = q∂µφψγ
µψ.

The equations of motion are given by

(✷ +m2)φ = 0 (i/∂ −M)ψq(x) = −q∂µφ(x)γµψq(x) (3.2)

The classic solution has the form

ψq(x) = eiqφ(x)ψ(x) (3.3)

with ψ a free Dirac field of mass M , φ a free scalar field of mass m, and q ∈ R is the

coupling constant. As one may expect from the discussion of the previous sections, the

UV singularities of quantum fields require much more attention for the definition of the

1 The construction and discussion of some two-dimensional models can be found in [58].
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equations and solutions. The general Wightman framework discussed above provides the

clear guide for the solution of the mathematical problems which arise. We may then take

ψq(x) =: eiqφ(x) : ψ(x) (3.4)

as an operator solution instead of the solution (3.3) that only makes sense for classic

fields. This is the exact solution of the model. The obtained solution is a well defined

operator-valued non-tempered distribution, with well defined Wightman functions. The

Schroer model from [1] is then obtained when we set the mass of the boson φ to zero, i.e.

the limit m→ 0.

In the case m = 0, we have that a few immediate results appear due to this solution

and we will mention two of them. The first is that the Hilbert space H obtained from

the reconstruction is different from the Wigner-Fock space of the original particles. The

central consequence is the fact that there are no one-particle states of mass M , in the

sense of Wigner, in H. These states are called infraparticles.

3.2 Perturbation Theory

In this section, we are interested in obtaining the massive Schroer model perturba-

tively within the Epstein-Glaser scheme from an interaction between the free Dirac field

and the massive boson ∂µφ. The massless case presents infrared problems and we will not

treat this in our work. The interaction density in the model is

L(x) .= (∂µφjµ) = ∂µ(φjµ) (3.5)

where jµ is the Dirac current. Notice that here we begin by setting the interaction of the

quantized fields differently from the Schroer model.

3.2.1 Renormalizability of the Model

The proof of renormalizability in this work was divided into two steps, the inductive

construction and the extension across Dn. The first part was done in Section 2.2. Now, it

remains to extend our Tn from any of the open sets UI across the total diagonal Dn. If

relative coordinates are employed, then the diagonal coincides with the origin of R2(n−1).

As seen in Section 2.2, it suffices to extend the numerical distributions tG appearing in its

Wick expansion (2.16). The task is thus to determine their scaling degrees. To this end,

consider the set of Wick polynomials of V µ .= : φjµ : and of the form φrψ, φrψ, r ∈ N,

W
.= {φ, ψ, ψ, jµ, φψ, φψ, φjµ, φ2ψ, φ2ψ, φ3ψ, . . . }. (3.6)

The study of these polynomials will help us understand the behavior of the time-

ordered products without derivatives that appear in the massive Schroer model. This is
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a preparatory step and the importance of this analysis will become evident later on, as

we enunciate Theorem 33. With the help of this analysis we also show that our model is

completely defined modulo one vacuum expectation value.

Before we move on, let us elaborate on the graphs appearing in the Wick expansion.

The points in the Minkowski space M, i.e. events, are represented by the vertices and fields

are represented by lines. Each vertex of the graph can have at most one factor ψ, one ψ,

and k boson lines, which is shown by the first graph in Figure 1.

φ
x

ψα

ψβ

= :ψαψβφ : (x)

x y
= :ψ(x) 〈T : ψ(x)φ(x) :: ψ(y)φ(y) :〉

︸ ︷︷ ︸
ψ(y) :

tG

Figure 1 – Graphical representations of time-ordered products.

These lines coming out of vertices can connect to external lines of other vertices

and form internal lines of the graph, an example is the second graph of Figure 1. The

external lines of the graph represent real particles and the internal lines represent virtual

particles.

Heuristically, the bound on sd(tG) can be found by Wick expanding the ordinary

product W1 · · ·Wn instead of the T product. In this case, the strong form of Wick’s

Theorem can be used,

w = 〈W1 · · ·Wn〉 =
∑

aij ,bij

∏

i<j

wψψ(xi, xj)aijwφφ(xi, xj)bij (3.7)

where aij ∈ {0, 1} and bij ∈ N. The powers of φ increases the number of wφφ and

consequently the number of internal boson lines. To obtain the desired results, we need to

calculate the scaling degree of the two-point function. This was done in example 24.

Considering that sd(wφφ) = 0 and sd(wψψ) = 12 are the scaling degrees w.r.t. the

origin, then, the scaling degree of the numerical distribution w in (3.7) is given by

sd(w) = iψψ (3.8)

with iψψ being the number of internal ψψ-lines. Since we have n monomials and ψ is

always linear we have that ψ appears at most n times in the product W1 · · ·Wn. Using

this fact, we arrive at the following relation

f + iψψ ≤ n (3.9)
2 Using the fact that 〈ψψ〉 = (i/∂−M)〈ϕϕ〉 where ϕ is a massive scalar free field, and sd(∂αu) = sd(u)+|α|.
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where f is the number of external ψ-lines in the graph associated with the VEV. Applying

this relation we obtain

sd(w) ≤ n− f. (3.10)

With this bound in mind, we can try to obtain the scaling degree of tG. To this end,

we will proceed with an inductive construction à la Epstein-Glaser. The Wick expansion

(2.16) of time-ordered product T [W1(x1) · · ·Wn(xn)] with each Wi ∈ W can be written

as follows. Let Gn
f,f̄ ,b

be the set of graphs with n vertices, f external ψ-lines, f̄ external

ψ-lines and b external φ-lines. Then, the Wick expansion (2.16) reads

T [W1 · · ·Wn] =
∑

f,f̄ ,b

∑

G∈Gn
f,f̄,b

tG(x)WG(x) (3.11)

where tG is a numerical distribution and WG is the Wick ordered product of f factors ψ,

f̄ factors ψ, and b factors φ.

Proposition 27. Let G be a graph appearing in the Wick expansion of the time-ordered

product Tn given in Eq.(3.11) with Wi ∈ W and tG the numerical distribution associated

with G. The scaling degree of tG with respect to Dn is, for n ≥ 1,

sd(tG) ≤ n− f (3.12)

Proof. First, recall that Tn factorizes as (2.8), that is Tn(X) = T (I)T (Ic) on UI , when

xi � xj with i ∈ I, j ∈ Ic. Let us relate each tG with the numerical distributions tG1
, tG2

appearing in the Wick expansions of T (I) and T (Ic),

T (I) =
∑

f1,f̄1,b1

∑

G1∈G
|I|

f1,f̄1,b1

tG1
(I)WG1

(I) (3.13)

T (Ic) =
∑

f2,f̄2,b2

∑

G2∈G
|Ic|

f2,f̄2,b2

tG2
(Ic)WG2

(Ic) (3.14)

Thus,

Tn(X) = T (I)T (Ic) =
∑

tG1
tG2

WG1
WG2

︸ ︷︷ ︸
∑

G′ wG′WG′

=
∑

tG(X)WG(X). (3.15)

Now, let us look at the relation between tG, tG1
and tG2

that appeared in (3.15),

tG(X) = tG1
(I)tG2

(Ic)wG′(X). (3.16)

We need to determine wG′ and to this end, we look at the graphs G,G1 and G2. The graph

G decomposes into two subgraphs G1 and G2. A part of the external fermion lines of G1

are also external lines of G, while the other part is connected to some of the fermion lines

of G2 and turns into an inner fermion line of G. Similarly, a part of the external φ-lines of

G1 can be connected to external φ-lines of G2 and vice versa. Let us denote by iψψ and
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iφφ the number of internal lines in G arising this way between G1 and G2 of type ψψ and

φφ, respectively. Then,

wG′(X) =
∏

(i,j)∈I×Ic

wψψ(xi, xj)aijwφφ(xi, xj)bij

where wψψ and wφφ are the two-point functions of ψψ and φφ and aij ∈ {0, 1} and bij ∈ N

are the number of internal lines of type ψψ and φφ between the vertices i and j, respectively.

Then,
∑

i,j aij = iψψ and
∑

i,j bij = iφφ. Denote by sd1 and sd2 the scaling degrees with

respect to Dn of tG1
and tG2

, respectively. Then equation (3.16) leads to

sd(tG) ≤ sd1 + sd2 + iψψ (3.17)

As we have mentioned before, external fermion, or boson, lines from G1, G2 can connect to

form internal lines in G. So, the number of external is the number of external lines from

G1 and G2 deducted by the number of internal lines they form, and this is expressed in

relation

f1 + f2 = f + iψψ. (3.18)

This implies that

sd(tG) ≤ sd1 + sd2 + (f1 + f2 − f) (3.19)

where fi, f is the number of external ψ−lines of Gi, G, respectively.

The inequality (3.9) along with the hypothesis sd1 ≤ n1 − f1 and sd2 ≤ n2 − f2

implies the inductive step sd(tG) ≤ (n1 + n2) − f = n − f . For the base case, i.e.

n=1, take W1 ∈ W. In this case, f ≤ 1 and tG(X) = 1 ⇒ sd(tG) = 0. Therefore,

n− f ≥ 1− (1) = 0 = sd(tG).

Definition 28. Let t ∈ D′(Rk \ {0}) be a distribution and sd(t) the scaling degree of t.

Then, the superficial degree of divergence is defined as

ω(t) .= sd(t)− 2k. (3.20)

Fact: Based on Theorem 26, we can obtain a criteria for the uniqueness of distributions

by looking at the superficial degree of divergence ω. If ω(t) < 0 there is a unique extension

of t. Now, if 0 ≤ ω(t) <∞ we have the case of finite renormalization.

Corollary 29. Let G be a graph appearing in the Wick expansion of the time-ordered

product Tn, with Wi ∈ W and tG ∈ D′(R2(n−1)) the numerical distribution associated with

G. Then, the superficial degree of divergence of tG is bounded by

ω(tG) ≤ 2− n− f (3.21)

The case of finite renormalization occurs when f = 0 and n = 2 leading to ω(tG) = 0.

There are only two correlation functions that need to be renormalized and are represented
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x y x y

Figure 2 – Graphs representing renormalization cases of VEV 〈Tjµjν〉 and 〈Tφjµφjν〉,
respectively.

in Figure 2. Notice from the Remark on page 32 that the 〈Tjµjν〉 is unique by the Ward

Identities. Then, the only case left that is open to finite renormalization is 〈Tφjµφjν〉.

We obtain uniquely defined T [W1 · · ·Wn] if ω(tG) < 0, which happens when f ≥ 1

and n = 2 or any value of f and b for n ≥ 3.

We can proceed in an analogous way and try to obtain the previous results including

derivatives of the massive boson. With this in mind we consider the set

W ′
.=W ∪ {∂µφr, /∂φrψ, ψ/∂φr, ∂µφjµ, . . . } (3.22)

with r ≥ 1.

We have that the product Tn factorizes similarly to (3.13) and (3.14). The scaling

degree increases by 1 for each derivative, therefore sd(wφ∂φ) = 1 and sd(w∂φ∂φ) = 2. The

bound on sd(tG) will be found in a similar way as before. This time we face a slightly

different case since there are fields with and without derivatives. Thus, sd(w) ≤ iψψ + 2ibb
with ibb being the number of internal bose-bose lines, bb ∈ {φφ, φ∂φ, ∂φ∂φ}, in G. A

relation similar to (3.9) can be found,

b+ 2ibb ≤ n (3.23)

where b is the number of external bose-bose lines of G. This relation applied to sd(w)

leads to the inequality

sd(w) ≤ 2n− f − b. (3.24)

We now show that this inequality is the same for tG.

Proposition 30. Let G be a graph associated with the Wick expansion of the time-ordered

product Tn given in Eq.(3.11) with Wi ∈ W
′ and tG the numerical distribution associated

with G. The scaling degree of tG with respect to Dn is

sd(tG) ≤ 2n− f − b. (3.25)
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Proof. Begin by denoting sd1 and sd2 the scaling degrees with respect to Dn of tG1
and

tG2
, respectively. Thus, equation (3.17) becomes

sd(tG) ≤ sd1 + sd2 + 2ibb

= sd1 + sd2 + (f1 + f2 − f) + (b1 + b2 − b)
(3.26)

where fi, f is the number of external ψ−lines and bi, b the number of external bose lines

of Gi, G, respectively. The relations

f1 + f2 = f + iψψ b1 + b2 = b+ 2ibb (3.27)

were used.

To prove the inductive step, consider along with the hypothesis sd1 ≤ 2n1− f1− b1

and sd2 ≤ 2n2 − f2 − b2. It implies that sd(tG) ≤ 2(n1 + n2)− f − b = 2n− f − b.

Now, for the base case, take W1 ∈ W
′. There will be only one graph G, so f ≤ 1,

b ≤ 1 and tG(X) = 1⇒ sd(tG) = 0. Thus, 2n− f − b ≥ 2− 1− 1 = 0 = sd(tG).

Corollary 31. Let G be a graph associated with the Wick expansion of the time-ordered

product Tn, with Wi ∈ W
′ and tG ∈ D

′(R2(n−1)) the numerical distribution associated

with G. Then, the bound on the superficial degree of divergence is

ω(tG) ≤ 2− f − b (3.28)

The case of finite renormalization, i.e. ω(tG) ≥ 0, occurs when f = 0 and b = 0, 1, 2

or when f = 1, b = 0, 1 and or f = 2, b = 0. Since n is arbitrary, our model is only

renormalizable. This means that there is an infinite number of graphs to be renormalized.

For f > 2 and b = 0, f = 0 and b > 2 or f = 1 and b > 1 or f > 1 and b = 1 one obtains

ω(tG) < 0.

3.2.2 Ward Identities

We can introduce one more normalization condition, the well-known Ward Identi-

ties3. These identities are connected to physical requirements and closely related to the

gauge invariance of the theory [38,63].

Notation: From now on we denote Wk := Wk(xk). We also denote the dependence of the

variable x by omitting the index, i.e. ψ := ψ(x), ∂µ := ∂
∂xµ , and omit the dots from Wick

ordering ::, e.g. φ1ψ1ψ2φ2
.= : φ(x1)ψ(x1) : : ψ(x2)φ(x2) :.

We define q(ψ) := 1, q(ψ) := −1 and q(φ) := 0 as convention of the charge4. We

also define q(: W1 · · ·Wn :) .= q(W1) + · · ·+ q(Wn).
3 In fact, these are the Ward-Takahashi identities, but for brevity we call them Ward identities.
4 This coincides with the definition in [57].
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Theorem 32 (Ward Identities). Let Wi ∈ W be a Wick sub polynomial as defined in

(3.6). Then, the vacuum bubbles can be normalized such that

∂µT [jµW1 · · ·Wn] = −
n∑

l=1

δ(x− xl)q(Wl)T [W1 · · ·Wn] (3.29)

where q(Wl) is the charge of Wl.

Proof. Let us remember that the VEVs of the time-ordered products are fixed, except for

the vacuum bubbles. A possible violation of a Ward identity, an anomaly, can only appear

in the vacuum sector [57]. We show that the Ward identities are automatically satisfied

for all cases except one that needs an appropriate choice of normalization of the vacuum

expectation value of the time-ordered product. Hence, we divide this proof in two cases,

when n = 1 and n ≥ 2.

Case I: n = 1.

In this case, we analyze the anomaly of the form 〈TjµW1〉. The only non-zero

vacuum expectation is the one with W1 = jν1 . Given an extension 〈T0j
µjν1 〉, we know that

∂µ〈T0j
µjν1 〉 = 0 outside the origin5 and that sd(〈T0j

µjν1 〉) = 2. Hence, by Theorem 26, we

have that

∂µ〈T0j
µjν1 〉 = cνδ(x− x1) + c1 ∂

νδ(x− x1). (3.30)

The renormalization required to remove the anomaly is only admissible if it has the same

symmetries as 〈T0j
µjν1 〉. In particular, by Lorentz covariance, the LHS of (3.28) coincides

with

∂µ〈T0U(Λ)jµ(x)U(Λ)−1

︸ ︷︷ ︸

(Λ−1)µ
σj

σ(Λx)

U(Λ)jν1 (x1)U(Λ)−1

︸ ︷︷ ︸

(Λ−1)ν
τ j

τ
1

(Λx1)

〉 = (Λ−1)µσΛρ
µ(Λ−1)ντ ∂̄ρ〈T0j

σ(Λx)jτ1 (Λx1)〉

(3.31)

where we used that
∂

∂xµ
= Λρ

µ
∂

∂(x̄ρ)
with x̄ρ = Λρ

µx
µ. On one hand, by using Λµ

σ(Λ−1)ρµ =

δρσ and (3.28), we have that the RHS of (3.29) becomes

(Λ−1)ντ ∂̄σ〈T0j
σ(Λx)jτ1 (Λx1)〉 = (Λ−1)ντc

τδ(Λx− Λx1) + c1 (Λ−1)ντ ∂̄
τδ(Λx− Λx1)

= (Λc)νδ(Λx− Λx1) + c1 ∂
νδ(Λx− Λx1)

= (Λc)νδ(x− x1) + c1 ∂
νδ(x− x1)

(3.32)

where in the last line we used δ(Λx) = |det(Λ)|δ(x) = δ(x). On the other hand, this should

be equal to the right hand side of (3.28), so

(Λc)νδ(x− x1) + c1 ∂
νδ(x− x1) = cνδ(x− x1) + c1 ∂

νδ(x− x1). (3.33)

5 Outside the origin holds ∂µ〈Tj
µjν

1 〉 = 〈Tψ1ψ〉(
←−
/∂ + /∂)〈Tψψ1〉γ

ν = 0.



38 Chapter 3. Schroer Model

To preserve the covariance of the extension T0, the 4-vector cν must also be Lorentz

invariant. But the only vector with such characteristic is the null-vector, so cν = 0. Then,

there remains the following anomaly

∂µ〈T0j
µjν1 〉 = c ∂νδ(x− x1) (3.34)

Thus, defining 〈Tjµjν1 〉 := 〈T0j
µjν1 〉 − c ηµνδ(x − x1), ηµν is the Minkowski metric, we

obtain

∂µ〈Tj
µjν1 〉 = c ∂νδ(x− x1)− c ∂νδ(x− x1) = 0 (3.35)

which removes the anomaly and satisfies Eq. (3.29).

Case II: n ≥ 2

The second and last case left to be analyzed is when n ≥ 2 and ω ≤ 0. The anomaly is

given by

∂µ〈Tj
µW1 · · ·Wn〉−

n∑

k=1

δ(x−xk)q(Wk)〈TW1 · · ·Wn〉 = P (∂)δ(x−x1) · · · δ(x−xn) (3.36)

and from [57, Appendix B] we know that P (∂) has the form

P (∂) =
n∑

k=1

∂xk
µ P

µ
1 (∂), P µ

1 (∂) is a polynomial in ∂ ≡ (∂x1
, . . . , ∂xn). (3.37)

In particular, P (∂) is a differential operator of degree at least one. We have that, by

Corollary 29, T [W1 · · ·Wn] with Wk ∈ W are uniquely defined. Then,

∂µ〈Tj
µW1 · · ·Wn〉

︸ ︷︷ ︸

ω≤−1
︸ ︷︷ ︸

ω≤0

−
n∑

k=1

q(Wk)δ(x− xk)〈TW1 · · ·Wn〉
︸ ︷︷ ︸

ω≤0
︸ ︷︷ ︸

ω≤0

=
n∑

k=1

∂xk
µ P

µ
1 (∂)δ · · · δ

= −∂µP
µ
1 (∂)δ · · · δ

︸ ︷︷ ︸

ω≥1

(3.38)

We can look at how the superficial degree of divergence ω of each term of (3.38) is obtained.

The first term of the LHS has n+ 1 factors, so ω = sd(〈TjµW1 · · ·Wn〉)− 2(n+ 1− 1) ≤

1−n− f ≤ 1− 2− f = −1− f , where f is the number of external ψ−lines. The derivative

increases the scaling degree and ω by one. The second term has n factors in the VEV so

sd(〈TW1 · · ·Wn〉) ≤ n− f , where f is the number of external ψ−lines. We also know that

in two dimensions sd(δ) = 2. Then, by definition6, ω ≤ sd(δ) + n − f − 2(n + 1− 1) ≤

2 − 2 − f = 0 − f . Thus, this equation can only be satisfied when P µ
1 (∂) = 0, and we

obtain equation (3.29).

Remark. 〈Tjµjν1 〉 satisfying the VEV of the Ward Identities is unique.

6 When we take the δ into account, the codimension is calculated with respect to the n+ 1 variables.
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Proof. Let 〈Tjµjν1 〉 and 〈T ′jµjν1 〉 be two extensions satisfying ∂µ〈Tjµjν1 〉 = 0 = ∂µ〈T
′jµjν1 〉.

As we have seen in the proof of the Theorem, they must differ at most by c ηµνδ(x− x1).

Then,

∂µ〈T
′jµjν1 〉 = ∂µ

(

〈Tjµjν1 〉+ c ηµνδ(x− x1)
)

= ∂µ〈Tj
µjν1 〉+ c ∂νδ(x− x1)

⇒ c ∂νδ(x− x1) = 0⇒ c = 0.

3.2.3 Extended Ward Identities

Now, our next task is to understand what happens to the time-ordered products

when we consider Wick polynomials containing derivatives of φ and how these derivatives

can be pulled out of the T -product. With this in mind, we will analyze one example,

namely 〈T∂µφ1φ2〉. We know that outside the origin

〈T∂µφ1φ2〉 =
{
〈∂µφ1φ2〉, x1 � x2

〈φ2∂µφ1〉, x2 � x1

}

= ∂µ〈Tφ1φ2〉 (3.39)

and we must define 〈T∂µφφ〉
.= ∂µ〈Tφφ〉 across the origin, because

〈T∂µφ1φ2〉 − ∂µ〈Tφ1φ2〉 = c0δ + cµ∂
µδ + . . .

where the sd(δ) = 2 and the scaling degree of the VEVs is 1. Therefore, the constants

must be zero.

Notation: We remind the reader of the notation given in (2.17) regarding the factorization

of Wick polynomials. The derivative acts on the nearest factor, e.g. ∂XY Z = (∂X)Y Z

and we also consider ∂µφr = ∂µ(φr), and ∂µφ
rψ = (∂µ(φr))ψ.

The next theorem is dedicated to the formulation of normalization conditions

represented in (3.40 - 3.42) and what we call the extended Ward identities (3.43).

Theorem 33. Let Wk ∈ W
′ be a sub polynomial as defined in (3.22). Then, it is possible
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to define the time-ordered products such that, up to second order7,

∂µT [φrW1 · · ·Wn] = T [∂µφrW1 · · ·Wn] (3.40)

(/∂ + iM)T [: φrψ : W1 · · ·Wn]

−
n∑

k=1

(−1)f(W1···Wk−1)δ(x− xk)T [W1 · · · : φr
∂Wk

∂ψ
: · · ·Wn] = T [: /∂φrψ : W1 · · ·Wn]

(3.41)

T [W1 · · ·Wn : ψφr :](
←−
/∂ − iM)

+
n∑

k=1

(−1)f(Wk+1···Wn)δ(xk − x)T [W1 · · · : φr
∂Wk

∂ψ
: · · ·Wn] = T [W1 · · ·Wn : ψ/∂φr :]

(3.42)

∂µT [: φjµ : W1 · · ·Wn]+
n∑

k=1

δ(x−xk)q(Wk)T [W1 · · · : φWk : · · ·Wn] = T [: jµ∂µφ : W1 · · ·Wn]

(3.43)

where r ∈ N, q(Wk) is the charge of Wk, and f(W1 · · ·Wk) defined as in (2.17).

Before we prove the Theorem, let us introduce a helpful lemma.

Lemma 34. Let W1 ∈ {φ, φψ, φψ, φj
µ}, W2 ∈ W

′ and q(W ) the charge of W . Then,

q(W1)T [W1W2] =
∑(

q(W ′′
1 ) : W ′

1W
′
2 : 〈TW ′′

1 W
′′
2 〉 − : ψ1W

′
1W

′
2 : 〈T

∂W ′′
1

∂ψ
W ′′

2 〉

+ 〈T
∂W ′′

1

∂ψ
W ′′

2 〉 : ψ1W
′
1W

′
2 :
)

where the sum goes over all possible factorizations.

Proof. We can separate the proof for each W1 and their possible factorizations.

1. W1 = φ: LHS = 0 since the charge q(φ) is zero. For the same reason the first term of

the RHS is also zero. The other terms of the RHS are zero since there is no ψ or ψ.

2. W1 = φψ: LHS = T [: φ1ψ1 : W2].

On the RHS: The factorization W ′
1 = φ, W ′′

1 = ψ gives us the terms

∑

: φ1W
′
2 : 〈Tψ1W

′′
2 〉+ : φ1ψ1W2 :

With the factorization W ′
1 = 1, W ′′

1 = φψ, the RHS becomes

∑(

: W ′
2 : 〈Tφ1ψ1W

′′
2 〉+ : ψ1W

′
2 : 〈Tφ1W

′′
2 〉
)

7 By second order we mean the number of test functions g that appear in the expansion of the S-matrix
an the interacting version of the fields. Here, it means we need to investigate T [W1W2], T [W1W2j

µ],
T [W1W2∂µφ], T [W1W2ψ], and T [W1 : φψ :] with W1,W2 a sub polynomial of ∂V or of V .
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Both factorizations W ′
1 = φψ, W ′′

1 = 1 and W ′
1 = ψ, W ′′

1 = φ yield zero. Therefore,

LHS = RHS.

3.W1 = φψ: This case is analogous to the previous one.

4. W1 = φjµ: LHS = 0. On the RHS: The factorization W ′
1 = φ, W ′′

1 = jµ gives us

∑(

− : ψ1φ1W
′
2 : γµ〈Tψ1W

′′
2 〉+ 〈Tψ1γ

µW ′′
2 〉 : ψ1φ1W

′
2 :
)

The factorization W ′
1 = 1, W ′′

1 = φjµ gives

∑(

− : ψ1W
′
2 : γµ〈Tψ1φ1W

′′
2 〉+ 〈Tψ1γ

µφ1W
′′
2 〉 : ψ1W

′
2 :
)

If we consider the other possible factorizations, namely W ′
1 = φψ and W ′′

1 = ψγµ,

∑(

q(ψ1)〈Tψ1γ
µW ′′

2 〉 : φ1ψ1W
′
2 : − : φ1ψ1γ

µψ1W2 :
)

W ′
1 = φψγµ and W ′′

1 = ψ,

∑(

q(ψ1) : φ1ψ1γ
µW ′

2 : 〈Tψ1W
′′
2 〉+ : φ1ψ1γ

µψ1W2 :
)

W ′
1 = ψ and W ′′

1 = φψγµ,

∑(

q(φ1ψ1)〈Tφ1ψ1γ
µW ′′

2 〉 : ψ1W
′
2 : − : ψ1γ

µψ1W
′
2 : 〈Tφ1W

′′
2 〉
)

W ′
1 = ψγµ and W ′′

1 = φψ, we obtain the following terms

∑(

q(φ1ψ1) : ψ1γ
µW ′

2 : 〈Tφ1ψ1W
′′
2 〉+ : ψ1γ

µψ1W
′
2 : 〈Tφ1W

′′
2 〉
)

The factorization W ′
1 = φjµ and W ′′

1 = 1 yields zero. Then, the sum of all contributions

to the RHS cancel out and are equal to the LHS = 0.

Proof of Theorem 33. This proof will be divided in three steps. In the first step we show

that the T products can be defined such that the vacuum expectation values of (3.40 - 3.43)

are satisfied. Note that in (3.41) and (3.42) we have : φr
∂Wk

∂ψ
: δ and not : φr :

∂Wk

∂ψ
δ which

would be ill-defined. Let W1 be a sub polynomial of ∂V or of V and W2 ∈ {ψ, j
µ, ∂µφ}.
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We wish to show the following equations

∂µ〈Tφ
rW1W2〉 = 〈T∂µφrW1W2〉 (3.44)

(/∂ + iM)〈T : φrψ : W1W2〉 − δ(x− x1)〈T : φr
∂W1

∂ψ
: W2〉

− (−1)f(W1)δ(x− x2)〈TW1 : φr
∂W2

∂ψ
:〉 = 〈T : /∂φrψ : W1W2〉

(3.45)

〈TW1W2 : ψφr :〉(
←−
/∂ − iM) + δ(x2 − x)〈TW1 : φr

∂W2

∂ψ
:〉

+ (−1)f(W2)δ(x− x1)〈T : φr
∂W1

∂ψ
: W2〉 = 〈TW1W2 : ψ/∂φr :〉

(3.46)

∂µ〈T : φjµ : W1W2〉+ δ(x− x1)q(W1)〈T : φW1 : W2〉

+ δ(x− x2)q(W2)〈TW1 : φW2 :〉 = 〈T : jµ∂µφ : W1W2〉
(3.47)

To this end, one can take any8 renormalization of the VEVs on the LHS and then

define the RHS by the LHS.

We must show that the construction above is consistent, i.e. the order we pull

out the derivatives does not interfere with the result. We take the derivatives out in one

specific order and we invite the reader to convince himself in each case that the result is

the same no matter the order the derivatives are being taken out of the VEV. The sub

polynomials that contain derivatives are ∂µφjµ, /∂φψ, ψ/∂φ and ∂µφ
ν . If we look at charge

conservation, the number of cases we need to consider is reduced. The cases we have to

analyze are displayed in Appendix A. First, consider case 1a)〈T∂µφ∂νφ1〉. In this case we

simply use (3.44) two times, 〈T∂µφ∂νφ1〉 = ∂µ∂
1
ν〈Tφφ1〉.

Now, take 1b)〈T∂µφrψ1
/∂φs1ψ2〉.

〈T∂µφ
rψ1

/∂φs1ψ2〉 = ∂µ〈Tφ
rψ1

/∂φs1ψ2〉

= ∂µ
(

〈Tφrψ1φ
s
1ψ2〉(

←−
/∂ 1 − iM) + δ(x1 − x2)〈Tφrφs1〉

) (3.48)

where we used (3.44) and (3.46).

The next case is 2a)〈T /∂φrψψ1/∂φ
s
1〉.

〈T /∂φrψψ1
/∂φs1〉 = (/∂ + iM)〈Tφrψψ1

/∂φs1〉 − δ(x− x1)〈T : φr /∂φs1 :〉

= (/∂ + iM)
(

〈Tφrψψ1φ
s
1〉(
←−
/∂ 1 − iM) + δ(x− x1)〈T : φrφs1 :〉

)

= (/∂ + iM)〈Tφrψψ1φ
s
1〉(
←−
/∂ 1 − iM)

(3.49)

where we used (3.45), (3.46), and that 〈T : φrφs1 :〉 = 0.

8 It is interesting to remind ourselves that almost all of the VEVs are unique.
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Let us look now to 2b)〈T /∂φrψψ1
/∂φs1∂µφ2〉.

〈T /∂φrψψ1/∂φ
s
1∂µφ2〉 = (/∂ + iM)〈Tφrψψ1/∂φ

s
1∂µφ2〉 − δ(x− x1)〈T : φr /∂φs1 : ∂µφ2〉

= (/∂ + iM)
(

∂2
µ〈Tφ

rψψ1φ
s
1φ2〉(

←−
/∂ 1 − iM) + δ(x1 − x)/∂

1
∂2
µ〈T : φrφs1 : φ2〉

)

= (/∂ + iM)∂2
µ〈Tφ

rψψ1φ
s
1φ2〉(

←−
/∂ 1 − iM)

(3.50)

where we used (3.44 - 3.46) and that 〈T : φrφs1 : φ2〉 = 0 for r, s ≥ 1.

Now, we analyze case 2c)〈T /∂φrψψ1
/∂φs1j

µ
2 〉 as

〈T /∂φrψψ1/∂φ
s
1j
µ
2 〉 = (/∂ + iM)〈Tφrψψ1/∂φ

s
1j
µ
2 〉 − δ(x− x1)〈T : φr /∂φs1 : jµ2 〉

+ δ(x− x2)〈Tψ1/∂φ
s
1 : φrγµψ2 :〉

= (/∂ + iM)〈Tφrψψ1φ
s
1j
µ
2 〉(

←

/∂
1
− iM) + (/∂ + iM)δ(x1 − x)〈T : φrφs1 : jµ2 〉

+ (/∂ + iM)δ(x1 − x2)〈Tφrψ : φs1ψ2 : γµ〉

+ δ(x− x2)〈Tψ1φ
s
1 : φrγµψ2 :〉(

←

/∂
1
− iM)

+ δ(x− x2)δ(x1 − x2)〈T : φrφs1 :〉γµ

= (/∂ + iM)〈Tφrψψ1φ
s
1j
µ
2 〉(

←

/∂
1
− iM)

+ δ(x1 − x2)(/∂ + iM)〈Tφrψ : φs1ψ2 : γµ〉

+ δ(x− x2)〈Tψ1φ
s
1 : φrγµψ2 :〉(

←

/∂
1
− iM)

(3.51)

where we used equation (3.45) in the first equality and equations (3.44) and (3.46) in the

second equality.

Consider case 2d)〈/∂φrψψ1∂µφ
s
2〉. This is the same as case 1b if we exchange ψ and

ψ. The result is analogous to the one in case 1b.

Let us look at 3)〈Tψ/∂φr∂µφs1ψ2〉.

〈Tψ/∂φr∂µφ
s
1ψ2〉 = 〈Tψφr∂µφs1ψ2〉(

←−
/∂ − iM) + δ(x− x2)〈T∂µφs1φ

r〉

= ∂1
µ〈Tψφ

rφs1ψ2〉(
←−
/∂ − iM) + δ(x− x2)∂1

µ〈Tφ
s
1φ

r〉
(3.52)

where we used (3.44) and (3.46).

Now, consider case 4a)〈T∂µφjµ∂νφ1j
ν
1 〉,

〈T∂µφj
µ∂νφ1j

ν
1 〉 = ∂µ〈Tφj

µ∂νφ1j
ν
1 〉+ q(φ1j

ν
1 )δ(x− x1)〈T : φ∂νφ1j

ν
1 :〉

= ∂µ
(

∂1
ν〈Tφj

µφ1j
ν
1 〉+ q(φjµ)δ(x1 − x)〈T : φ1φj

µ :〉

= ∂µ∂
1
ν〈Tφj

µφ1j
ν
1 〉

(3.53)

where we used (3.47) and that q(φ) = q(jµ) = 0.
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Now, we look at 4b)〈T∂µφjµ∂νφ1j
ν
1 j

λ
2 〉,

〈T∂µφj
µ∂νφ1j

ν
1 j

λ
2 〉 = ∂µ〈Tφj

µ∂νφ1j
ν
1 j

λ
2 〉+ q(φ1j

ν
1 )δ(x− x1)〈T : φ∂νφ1j

ν
1 : jλ2 〉

+ q(jλ2 )δ(x− x2)〈T∂νφ1j
ν
1 : φjλ2 :〉

= ∂µ
(

∂1
ν〈Tφj

µφ1j
ν
1 j

λ
2 〉+ q(φjµ)δ(x1 − x)〈T : φ1φj

µ : jλ2 〉

+ q(jλ2 )δ(x1 − x2)〈Tφjµ : φ1j
λ
2 :〉

)

= ∂µ∂
1
ν〈Tφj

µφ1j
ν
1 j

λ
2 〉

(3.54)

where we used (3.44) and (3.47).

Consider case 4c)〈T∂µφjµ∂νφ1j
λ
2 〉.

〈T∂µφj
µ∂νφ1j

λ
2 〉 = ∂µ〈Tφj

µ∂νφ1j
λ
2 〉+ q(φ1)δ(x− x1)〈T : φ∂νφ1 : jλ2 〉

+ q(jλ2 )δ(x− x2)〈T∂νφ1 : φjλ2 〉

= ∂µ∂
1
ν〈Tφj

µφ1j
ν
1 j

λ
2 〉

(3.55)

where we used (3.47) and (3.44).

And, the last case 4d) 〈T∂µφjµψ1/∂φ
r
1ψ2〉.

〈T∂µφj
µψ1

/∂φr1ψ2〉 = ∂µ〈Tφj
µψ1

/∂φr1ψ2〉+ q(φr1ψ1)δ(x− x1)〈T : φψ1
/∂φr1 : ψ2〉

+ q(ψ2)δ(x− x2)〈Tψ1
/∂φr1 : φψ2 :〉

= ∂µ
(

〈Tφjµψ1φ
r
1ψ2〉(

←−
/∂ 1 − iM) + δ(x− x1)〈T : φr1φψγ

µ : ψ2〉
)

+ δ(x− x2)〈Tψ1φ
r
1 : φψ2 :〉(

←−
/∂ 1 − iM) + δ(x1 − x2)δ(x− x2)〈T : φr1φ :〉

= ∂µ〈Tφj
µφr1ψ1ψ2〉(

←−
/∂ 1 − iM) + δ(x− x2)〈Tψ1φ

r
1 : φψ2 :〉(

←−
/∂ 1 − iM)

(3.56)

where we used (3.46), (3.47), and that 〈T : φrψ : ψ〉 = 0.

The second step is to show (3.40 - 3.43). To this end, we Wick expand (3.40 - 3.43)

and use (3.44 - 3.47). First, let us expand the left hand side of (3.40).

∂µT [φrW1W2] =
∑ r∑

λ=0

(

r

λ

)
(

∂µ : φλW ′
1W

′
2 : 〈Tφr−λW ′′

1 W
′′
2 〉+ : φλW ′

1W
′
2 : ∂µ〈Tφr−λW ′′

1 W
′′
2 〉
)

(3.57)

But the derivative enters the normal ordering and by (3.44) we get

∂µT [φrW1W2] = T [∂µφrW1W2] (3.58)

which is (3.40).

Next, we consider the first term on the LHS of (3.41). We can write it as

T [φrψW1W2] =
∑ r∑

λ=0

(

r

λ

)
(

: φλψW ′
1W

′
2 : 〈Tφr−λW ′′

1 W
′′
2 〉+ : φλW ′

1W
′
2 : 〈Tφr−λψW ′′

1 W
′′
2 〉
)

(3.59)
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Using equations (3.44) and (3.45), the fact that the derivative enters the normal ordering,

and Dirac equation (/∂ + iM)ψ = 0 gives us

(/∂ + iM)T [φrψW1W2] =
∑ r−1∑

λ=0

(

r

λ

)
(

: /∂φr−λψW ′
1W

′
2 : 〈TφλW ′′

1 W
′′
2 〉

+ : φλγµψW ′
1W

′
2 : 〈T∂µφr−λW ′′

1 W
′′
2 〉+ : /∂φr−λW ′

1W
′
2 : 〈TφλψW ′′

1 W
′
2〉

+ : φλW ′
1W

′
2 : 〈T /∂φr−λψW ′′

1 W
′′
2 〉
)

+
r∑

λ=0

(

r

λ

)

: φλW ′
1W

′
2 :
[

δ(x− x1)〈T : φr−λ
∂W ′′

1

∂ψ
: W ′′

2 〉

+ (−1)f(W ′′
1

)δ(x− x2)〈TW ′′
1 : φr−λ

∂W ′′
2

∂ψ
:〉
]

(3.60)

Observe that the terms where λ = r do not contribute to the first sum since /∂φr−r = 0.

Now, we can use that /∂φr = rφr−1/∂φ and
(
r
λ

)

= r
r−λ

(
r−1
λ

)

,

(/∂ + iM)T [φrψW1W2] =
∑ r−1∑

λ=0

r

(

r − 1
λ

)
(

: φr−λ−1/∂φψW ′
1W

′
2 : 〈TφλW ′′

1 W
′′
2 〉

+ : φλγµψW ′
1W

′
2 : 〈Tφr−λ−1∂µφW

′′
1 W

′′
2 〉+ : φr−λ−1/∂φW ′

1W
′
2 : 〈TφλψW ′′

1 W
′′
2 〉

+ : φλγµW ′
1W

′
2 : 〈Tφr−λ−1∂µφψW

′′
1 W

′′
2 〉
)

+ δ(x− x1)T [: φr
∂W1

∂ψ
: W2]

+ (−1)f(W1)δ(x− x2)T [W1 : φr
∂W2

∂ψ
:]

where we used that T [: φr
∂W1

∂ψ
: W2] =

∑∑r
λ=0

(
r
λ

)

: φλW ′
1W

′′
2 : 〈T : φr−λ ∂W

′′
1

∂ψ
: W ′′

2 〉. On

the other hand, we know that

T [/∂φrψW1W2] = rT [φr−1/∂φψW1W2]

=
∑ r−1∑

λ=0

r

(

r − 1
λ

)
(

: φλ/∂φψW ′
1W

′
2 : 〈Tφr−1−λW ′′

1 W
′′
2 〉

+ : φλψW ′
1W

′
2 : 〈Tφr−1−λ/∂φW ′′

1 W
′′
2 〉+ : φλ/∂φW ′

1W
′
2 : 〈Tφr−1−λψW ′′

1 W
′′
2 〉

+ : φλW ′
1W

′
2 : 〈Tφr−1−λ/∂φψW ′′

1 W
′′
2 〉
)

.

Thus,

(/∂ + iM)T [φrψW1W2] = T [/∂φrψW1W2] + δ(x− x1)T [: φr
∂W1

∂ψ
: W2]

+ (−1)f(W1)δ(x− x2)T [W1 : φr
∂W2

∂ψ
:]

(3.61)

which is Eq.(3.41). The steps required to prove equation (3.42) are analogous.

We can proceed to the last case and take the LHS of (3.43) and analyze its parts
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separately. Let us begin with T [φjµW1W2],

∂µT [φjµW1W2] =
∑

∂µ
(

: φjµW ′
1W

′
2 : 〈TW ′′

1 W
′′
2 〉+ : φW ′

1W
′
2 : 〈TjµW ′′

1 W
′′
2 〉

+ : jµW ′
1W

′
2 : 〈TφW ′′

1 W
′′
2 〉+ : W ′

1W
′
2 : 〈TφjµW ′′

1 W
′′
2 〉

+ : φψγµW ′
1W

′
2 : 〈TψW ′′

1 W
′′
2 〉+ 〈TψγµW ′′

1 W
′′
2 〉 : φψW ′

1W
′
2 :

+ : ψγµW ′
1W

′
2 : 〈TφψW ′′

1 W
′′
2 〉+ 〈TφψγµW ′′

1 W
′′
2 〉 : ψW ′

1W
′
2 :
)

.

(3.62)

The derivative acts on the normal ordering and on the VEV. Thus, using (3.44 - 3.47),

(N4), Dirac equation, the Ward Identities from Theorem 32, and the current conservation

∂µj
µ = 0, we obtain

∂µT [φjµW1W2] =
∑

: ∂µφjµW ′
1W

′
2 : 〈TW ′′

1 W
′′
2 〉+ : ∂µφW ′

1W
′
2 : 〈TjµW ′′

1 W
′′
2 〉

− q(W ′′
1 )δ(x− x1) : φW ′

1W
′
2 : 〈TW ′′

1 W
′′
2 〉 − q(W

′′
2 )δ(x− x2) : φW ′

1W
′
2 : 〈TW ′′

1 W
′′
2 〉

+ : jµW ′
1W

′
2 : 〈T∂µφW ′′

1 W
′′
2 〉+ : W ′

1W
′
2 : 〈T∂µφjµW ′′

1 W
′′
2 〉

− q(W ′′
1 )δ(x− x1) : W ′

1W
′
2 : 〈T : φW ′′

1 : W ′′
2 〉 − q(W

′′
2 )δ(x− x2) : W ′

1W
′
2 : 〈TW ′′

1 : φW ′′
2 :〉

+ δ(x− x1) : φψW ′
1W

′
2 : 〈T

∂W ′′
1

∂ψ
W ′′

2 〉+ (−1)f(W ′′
1

)δ(x− x2) : φψW ′
1W

′
2 : 〈TW ′′

1

∂W ′′
2

∂ψ
〉

+ : ψ/∂φW ′
1W

′
2 : 〈TψW ′′

1 W
′′
2 〉+ 〈TψW ′′

1 W
′′
2 〉 : /∂φψW ′

1W
′
2 :

− δ(x1 − x)〈T
∂W ′′

1

∂ψ
W ′′

2 〉 : φψW ′
1W

′
2 : −(−1)f(W ′′

1 )δ(x2 − x)〈TW ′′
1

∂W ′′
2

∂ψ
〉 : φψW ′

1W
′
2 :

+ : ψW ′
1W

′
2 : 〈T /∂φψW ′′

1 W
′′
2 〉+ δ(x− x1) : ψW ′

1W
′
2 : 〈T : φ

∂W ′′
1

∂ψ
: W ′′

2 〉

+ (−1)f(W1)δ(x− x2) : ψW ′
1W

′
2 : 〈TW ′′

1 : φ
∂W ′′

2

∂ψ
:〉+ 〈Tψ/∂φW ′′

1 W
′′
2 〉 : ψW ′

1W
′
2 :

− δ(x1 − x)〈T : φ
∂W ′′

1

∂ψ
: W ′′

2 〉 : ψW ′
1W

′
2 : −(−1)f(W1)δ(x2 − x)〈TW ′′

1 : φ
∂W ′′

2

∂ψ
:〉 : ψW ′

1W
′
2 :

(3.63)

Note that all iM -terms cancel out. This can be written as (1) + (2) + (3), where

(1) =
∑

: ∂µφjµW ′
1W

′
2 : 〈TW ′′

1 W
′′
2 〉+ : ∂µφW ′

1W
′
2 : 〈TjµW ′′

1 W
′′
2 〉+ : jµW ′

1W
′
2 : 〈T∂µφW ′′

1 W
′′
2 〉

+ : W ′
1W

′
2 : 〈T∂µφjµW ′′

1 W
′′
2 〉+ : ψ/∂φW ′

1W
′
2 : 〈TψW ′′

1 W
′′
2 〉+ 〈TψW ′′

1 W
′′
2 〉 : /∂φψW ′

1W
′
2 :

+ : ψW ′
1W

′
2 : 〈T /∂φψW ′′

1 W
′′
2 〉+ 〈Tψ/∂φW ′′

1 W
′′
2 〉 : ψW ′

1W
′
2 :

(2) = −δ(x1 − x)
(∑

q(W ′′
1 ) : φW ′

1W
′
2 : 〈TW ′′

1 W
′′
2 〉+ q(W ′′

1 ) : W ′
1W

′
2 : 〈T : φW ′′

1 : W ′′
2 〉

− : φψ1W
′
1W

′
2 : 〈T

∂W ′′
1

∂ψ
W ′′

2 〉+ 〈T
∂W ′′

1

∂ψ
W ′′

2 〉 : φψ1W
′
1W

′
2 :

− : ψ1W
′
1W

′
2 : 〈T : φ

∂W ′′
1

∂ψ
: W ′′

2 〉+ 〈T : φ
∂W ′′

1

∂ψ
: W ′′

2 〉 : ψ1W
′
1W

′
2 :
)

(3) = −δ(x2 − x)
(∑

q(W ′′
2 ) : φW ′

1W
′
2 : 〈TW ′′

1 W
′′
2 〉+ q(W ′′

2 ) : W ′
1W

′
2 : 〈T : φW ′′

1 : W ′′
2 〉

− (−1)f(W1) : φψ2W
′
1W

′
2 : 〈TW ′′

1

∂W ′′
2

∂ψ
〉+ (−1)f(W1)〈TW ′′

1

∂W ′′
2

∂ψ
〉 : φψ2W

′
1W

′
2 :

− (−1)f(W1) : ψ2W
′
1W

′
2 : 〈TW ′′

1 : φ
∂W ′′

2

∂ψ
:〉+ (−1)f(W1)〈TW ′′

1 : φ
∂W ′′

2

∂ψ
:〉 : ψ2W

′
1W

′
2 :
)

.
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We can see that (1) coincides with T [∂µφjµW1W2]. By Lemma 34, we can see that

(2) coincides with −δ(x1 − x)q(W1)T [: φW1 : W2], and analogously (3) coincides with

−δ(x2 − x)q(W2)T [W1 : φW2 :]. Then,

∂µT [φjµW1W2] =T [∂µφjµW1W2]− q(W1)δ(x− x1)T [: φW1 : W2]

− q(W2)δ(x− x2)T [W1 : φW2 :]
(3.64)

which is exactly (3.43).

Now, our third and last step is to verify that all the axioms of the time-order

are still satisfied after our inclusion of derivatives. Note that covariance and the graded

symmetry are not changed. We now show that the causal factorization property holds.

As we have shown previously, the derivatives can be pulled out irrespective of the order

from the VEVs and we obtain a time-ordered product9 with every Wi ∈ W. Then, we

can use the factorization property for Wk ∈ W on the RHS. Since each variable has at

most one derivative and the derivatives commute, it is possible to rearrange them in each

time-ordered product they should act. We show this property for every case in Appendix

B. Here, we present an example and, as the reader may perceive, the other cases can be

verified in a similar fashion. Take T [∂µφjµ∂νφ1j
ν
1 j

λ
2 ] and suppose x � x1, x2. We have that

T [∂µφjµ∂νφ1j
ν
1 j

λ
2 ] = ∂µ∂

1
νT [φjµφ1j

ν
1 j

λ
2 ] = ∂µ∂

1
νT [φjµ]T [φ1j

ν
1 j

λ
2 ]

= ∂µT [φjµ]∂1
νT [φ1j

ν
1 j

λ
2 ]

= T [∂µφjµ]T [∂νφ1j
ν
1 j

λ
2 ].

Therefore, we have that causal factorization is also valid with every W ′
k ∈ W

′.

Remark. In Theorem 33, we can see that up to second order the derivatives can be pulled

out in any order yielding

〈TXY Z〉 =
∑

i

ciPiδi〈TXiYiZi〉
←−
P i

where X,Y, Z ∈ W ′ and Xi, Yi, Zi ∈ W, ci = ±1, δi is a multidimensional delta function

or 1, Pi is a differential operator composed of {∂µ, (/∂ + iM), (
←−
/∂ − iM)}. Here, in our case,

the variables of Pi and δi are always different. For higher orders, the differential operators

might act on the delta distribution and require a more careful analysis10.

Conjecture: Theorem 33 is valid in all orders, in other words, the Theorem holds for

every n.

Theorem 33 implies the following Corollary.
9 In this time-ordered product act generalized differential operators that are composed of the multiplica-

tion of derivatives with deltas.
10 An example is 〈T /∂φ1ψ1ψ2

/∂φ2φ
2
3〉. On one hand, if we take first /∂

1
outside we obtain

〈T /∂φ1ψ1ψ2
/∂φ2φ

2
3〉 = (/∂

1
+ iM)〈Tφ1ψ1ψ2φ2φ

2
3〉(
←−
/∂ 2 − iM)− (/∂

1
+ iM)

(
δ(x1 − x2)〈T : φ1φ2 : φ2

3〉
)

+ δ(x1 − x2)/∂
2
〈T : φ1φ2 : φ2

3〉
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Corollary 35. The following normalization conditions are satisfied for all Wk ∈ {V
µ, ∂.V }

up to second order

T [
←→
∂ VW1 · · ·Wn] = 0 (3.65)

T [
←→
∂ V (x)X(y)W1 · · ·Wn] = 0, X ∈ {jµ, ∂µφ} (3.66)

T [
←→
∂ V (x)W1 · · ·Wn : φr(y)ψ(y) :] = δ(x− y)T [W1 · · ·Wn : φ(x)φr(y)ψ(y) :] (3.67)

Here,

T [
←→
∂ VW · · ·W ] .= T [∂µV µW · · ·W ]− ∂µT [V µW · · ·W ]

denotes the obstruction to pulling the divergence of V µ through T .

Notation: We denote

T [∂.V · · · ∂.V ](g⊗n) =
∫

d2x1 · · · d
2xng(x1) · · · g(xn)T [∂.V (x1) · · · ∂.V (xn)].

Note. After smearing with functions f, g, g1, . . . , gn, equation (3.67) yields

T [∂V · · ·Wn : φrψ :](g ⊗ · · · ⊗ gn ⊗ f) = T [V µW1 · · ·Wn : φrψ :](−∂µg)⊗ · · · ⊗ gn ⊗ f)

+ T [W1 · · ·Wn : φr+1ψ :](g1 ⊗ · · · gn ⊗ gf)
(3.68)

The last factor is the pointwise product g.f .

Remark. In the massive model, both φ and ∂µφ are observable. Such fact is no longer

true when we move to the massless case, where only the latter is an observable.

Proposition 36. The only open constant in the model comes from the vacuum bubble.

More precisely: Let T, T0 be two time-orders that satisfy all the normalization conditions,

then 〈Tφ1j
µ
1φ2j

ν
2 〉 = 〈T0φ1j

µ
1φ2j

ν
2 〉+ c ηµνδ(x1 − x2).

The freedom in the choice of the constant c in the extension of 〈Tφ1j
µ
1φ2j

ν
2 〉, plays

no role after the adiabatic limit is taken, as we can see in the expressions from (3.74).

Proof. Recall that T [W1 · · ·Wn], Wi ∈ W
′ are fixed by T [W1 · · ·Wn], Wi ∈ W via (3.40 -

3.43). Now, recall that from Corollary 31 we have that the only VEVs with freedom in the

On the other hand, if we take /∂
2

outside first yields

〈T /∂φ1ψ1ψ2
/∂φ2φ

2
3〉 = (/∂

1
+ iM)〈Tφ1ψ1ψ2φ2φ

2
3〉(
←−
/∂ 2 − iM) + (/∂

2
− iM)

(
δ(x1 − x2)〈T : φ1φ2 : φ2

3〉
)

− δ(x1 − x2)/∂
1
〈T : φ1φ2 : φ2

3〉

The two expressions coincide iff −/∂
1
(δ(x1 − x2)t) + δ(x1 − x2)/∂

2
t = /∂

2
(δ(x1 − x2)t)− δ(x1 − x2)/∂

1
t,

where t
.
= 〈T : φ1φ2 : φ2

3〉. This is indeed true, and the derivatives can be taken out in both orders
yielding the same result.
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choice of the extension were 〈Tjµ1 j
ν
2 〉 and 〈Tφ1j

µ
1φ2j

ν
2 〉. The Ward Identities fix 〈Tjµ1 j

ν
2 〉.

Let 〈T0φ1j
µ
1φ2j

ν
2 〉 be another extension across the origin, then

〈Tφ1j
µ
1φ2j

ν
2 〉 − 〈T0φ1j

µ
1φ2j

ν
2 〉 = cµνδ(x1 − x2)

From symmetry we have that cµν = c ηµν , with c being a real constant.

3.3 S-matrix and Interacting Fields

Our final task is to construct Bogoliubov’s S-matrix [50], that is a functional

defined upon the time-ordered products and is given by the formal series

S(g∂µV µ) :=
∞∑

n=0

in

n!

∫

dx1 . . . dxng(x1) . . . g(xn)T [∂µV µ(x1) · · · ∂µV µ(xn)] (3.69)

where g ∈ D(R2) is a test function, and ∂µ(φjµ) is the interaction Lagrangian of our model.

The physical S-matrix is given by the so-called adiabatic limit where g(x)→ q and q ∈ R

is fixed. The fixed constant q ∈ R is commonly known as the coupling constant. The

existence of the adiabatic limit for purely massive theories was proven by Epstein and

Glaser in [49]. The problem lies in theories containing massless particles [53]. In this work,

we will not address this issue nor the massless limit m→ 0.

With Bogoliubov’s S-matrix in hand, we can define the interacting fields. Now,

let X be a free field. Then, X
∣
∣
∣
gL

is the interacting version with interaction L(x) via

Bogoliubov’s formula
∫

d2xf(x)X
∣
∣
∣
gL

(x) ≡ X
∣
∣
∣
gL

(f) := −i
d

dλ
S[gL]−1S[gL+ λfX]

∣
∣
∣
λ=0

. (3.70)

Since our interaction is a divergence, it is expected that the S-matrix is the identity

and that the interacting observable fields are equal to the free fields after the adiabatic

limit is taken.

Historically, Dirac was the first to propose a formulation of QED containing a

gauge invariant electrically charged field [64]. This formulation resembles what we call

the dressed Dirac field11 (3.4). Mandelstam and Steinmann also obtained a similar result

while working with gauge invariant fields, but still, this formula needed to be put “by

hand” [65,66]. In the Schroer model, the dressed Dirac field appears as a solution of the

classical Euler-Lagrange equations. We present a very interesting formula that connects the

interacting Dirac field with the dressed Dirac field. We will call it the “magic formula”. As

we will see, here it appears naturally. These results are grouped in the following theorem.

Notation: We denote by X(n) the n-th order of the quantity X. For example, S[gL] =

S(0) + S(1) +O(g2). We also denote g⊗n = g ⊗ · · · ⊗ g
︸ ︷︷ ︸

n−times

.

11 An explanation of this dressing and a way to obtain this dressed Dirac field non-perturbatively can be
found in [31].
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Definition. Let φ be the massive scalar field, ψ the free Dirac field, and g a test function.

We call free dressed Dirac field ψg(x) .= : eig(x)φ(x)ψ(x).

Theorem 37. Let Wk ∈ W
′. Suppose that the normalization conditions (3.65-3.67) are

satisfied. Thus, we have that, up to second order,

i) The interactions g∂µV µ and −(∂µg)V µ have the same Bogoliubov S-matrix and inter-

acting observables X ∈ {jµ, ∂µφ}, that is

S[g∂µV µ] = S[−(∂µg)V µ] (3.71)

X
∣
∣
∣
g∂.V

= X
∣
∣
∣
−(∂g).V

(3.72)

ii) The “magic formula” holds

ψ
∣
∣
∣
g∂.V

= ψg
∣
∣
∣
−(∂g).V

(3.73)

We can look at the adiabatic limit of the expressions given in Theorem 37. In [49,67],

Epstein and Glaser have shown that for massive theories the adiabatic limit exists in the

“strong sense” of operators in a domain in the Fock space. Taking the the adiabatic limit

g → q, with q a fixed real constant, ∂µg → 0 and hence the expressions of the theorem

become
S[gL] = S[(−∂g).V ]→ S[0] = 1

X
∣
∣
∣
g∂V

= X
∣
∣
∣
(−∂g).V

→ X

ψ
∣
∣
∣
g∂V

= ψg
∣
∣
∣
(−∂g).V

→ ψq =: eiqφ : ψ.

(3.74)

This is the exact solution of the massive Schroer model presented in Section 3.1.

We see that the freedom in the choice of the constant c in the extension of

〈Tφ1j
µ
1φ2j

ν
2 〉, discussed in Proposition 36, plays no role after the adiabatic limit is taken,

as we can see in the expressions above.

Proof Theorem 37. i)The Bogoliubov S-matrix, up to second order, is given by

S[g∂.V ] =
∞∑

n=0

in

n!

∫

d2x1 · · · d
2xng(x1) · · · g(xn)T [∂.V (x1) · · · ∂.V (xn)]

︸ ︷︷ ︸

T [∂.V ···∂.V ](g⊗n)

= S(0) + S(1) + S(2) +O(g3)

(3.75)

By the normalization condition (3.65), the derivatives can be pulled through the T symbol,

yielding12

S[g∂.V ] = 1 + iT [V ](−∂g)−
1
2
T [V V ]((−∂g)⊗2) +O(g3). (3.76)

But this is just S[(−∂g).V ], as claimed.
12 Here, we used the definition of distributional derivative, ∂µV

µ(g) = −V µ(∂µg).
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Let X ∈ {jµ, ∂µφ be an observable. Using Bogoliubov’s formula (3.70) and setting

the interaction L = ∂µV
µ, we have that

1
i

d

dλ
S[gL+ λfX]

∣
∣
∣

(ν)

λ=0
=
iν

ν!
T [∂.V · · · ∂.V
︸ ︷︷ ︸

ν−times

X](g⊗ν ⊗ f)

=
iν

ν!
T [V · · ·V
︸ ︷︷ ︸

ν−times

X]((−∂g)⊗ν ⊗ f) =
1
i

d

dλ
S[−∂g.V + λfX]

∣
∣
∣

(ν)

λ=0

(3.77)

for ν = 0, 1, 2, where we used the normalization condition (3.66). Also, we know that [63],

S[gL]−1 = 1− iT [L](g) +
1
2
T [LL](g⊗2)− (LL)(g⊗2) +O(g3)

Thus,

(S[gL]−1)(1) = −iT [∂V ](g) = −iT [V ](−∂g) = (S[(−∂g).V ]−1)(1)

(S[gL]−1)(2) =
1
2
T [∂V ∂V ](g⊗2)− (∂V ∂V )(g⊗2)

=
1
2
T [V V ]((−∂g)⊗2)− V V ((−∂g)⊗2) = (S[(−∂g).V ]−1)(2).

(3.78)

where we have used (3.65). Thus,

(X(f)
∣
∣
∣
g∂.V

)(ν) = (X(f)
∣
∣
∣
−(∂g).V

)(ν) (3.79)

for ν = 0, 1, 2.

ii) Let ψg be the dressed free Dirac field. The interacting version of the Dirac field

according to Bogoliubov’s formula goes

ψ(f)
∣
∣
∣
g∂.V

=
1
i
S[gL]−1 d

dλ
S[gL+ λfψ]

∣
∣
∣
λ=0

(3.80)

and we have that
d

dλ
S[gL+ λfψ]

∣
∣
∣

(1)

λ=0
= iT [∂V ψ](g ⊗ f) = iT [V ψ]((−∂g)⊗ f) + iT [: φψ :](gf)

= iT [V ψ]((−∂g)⊗ f) + i : gφψ : (f)

=
d

dλ
S[(−∂g).V + λf : eigφ : ψ]

∣
∣
∣

(1)

λ=0

=
d

dλ
S[(−∂g).V + λfψg]

∣
∣
∣

(1)

λ=0

where we applied the normalization condition (3.68). The second order term is,

1
i

d

dλ
S[gL+ λfψ]

∣
∣
∣

(2)

λ=0
= −

1
2
T [∂V ∂V ψ](g⊗2 ⊗ f)

= −
1
2
T [V V ψ]((−∂g)⊗2 ⊗ f)− T [V : φψ :]((−∂g)⊗ gf)−

1
2
T [: φ2ψ :](g2f)

= −
1
2
T [V V ψ]((−∂g)⊗2 ⊗ f) + iT [V : igφψ :]((−∂g)⊗ f) +

(ig)2

2
: φ2ψ : (f)

=
1
i

d

dλ
S[(−∂g).V + λf : eigφ : ψ]

∣
∣
∣

(2)

λ=0

=
1
i

d

dλ
S[(−∂g).V + λfψg]

∣
∣
∣

(2)

λ=0
.
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Here, we have two expansions in the test functions, g∂V and eigφ. Combined with equation

(3.78), we obtain

(ψ(f)
∣
∣
∣
g∂.V

)(ν) = (ψg(f)
∣
∣
∣
(−∂g).V

)(ν) (3.81)

for ν = 0, 1, 2. This is the desired "magic formula".
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Conclusion

In this thesis, we have perturbatively investigated the Schroer model with a massive

boson. Here, we summarize the main achievements of this thesis and point out a few exciting

directions for the future. IR divergences were not a problem since they are only present in

the massless case. Our model is defined by the interaction ∂µφjµ and we began our analysis

by checking the renormalizability of the T -products and consequently of the model. We

verified explicitly that for an interaction φjµ the model is superrenormalizable and after

the inclusion of derivatives, i.e. an interaction ∂µφj
µ, the model is only renormalizable,

that is: there is an infinite number of graphs that permit renormalization and a finite

number of open parameters to be fixed. By looking at the superficial degree of divergence

we also determined the possible divergent Feynman graphs.

The next step was to check the fulfillment of the Ward identities, known from QED.

We have done this in Theorem 32 for every order of perturbation. Since the interaction of

our model is a divergence, according to the common physics folklore, we had the following

requirements: after the adiabatic limit is taken, 1. Our model should provide a trivial

S-matrix, 2. Interacting observable fields should become free fields. We also have one

more requirement: 3. Since the “magic formula” holds in first order and it is a rigorous

expression of a formula known for many years [64–66], it should hold in every order.

These requirements are expressed and discussed in Theorem 37, and are the central result

of the work. They also motivate a new set of normalization conditions that we called

extended Ward identities. We proved these conditions up to second order in Theorem 33

and conjecture that they hold in every order. These new normalization conditions assure

the validity of our requirements and completely determine the open parameters mentioned

in the paragraph above, that is, although the model ∂µφjµ is only renormalizable, all

parameters (but one) are completely fixed through these renormalization conditions, as

shown in Proposition 36. This open parameter plays no role after the adiabatic limit is

taken. The adiabatic limit of our model exists since this is a massive theory, see [49]. If we

take the adiabatic limit g → q, our last theorem states that the mentioned features in fact

are satisfied, to wit

S[g∂µφjµ]→ S[0] = 1, X
∣
∣
∣
g∂µφjµ

→ X, and ψ
∣
∣
∣
g∂µφjµ

→ ψq =: eiqφ : ψ. (1)

where X is an observable, i.e. X ∈ {jµ, ∂µφ}. This shows that the perturbative construction

provides the exact solution of the massive Schroer model.

We present now future directions in three steps. The first step is to take the limit

to the massless boson, that is, m→ 0. It is worth to mention some particularities to this

model when m = 0. Here, the adiabatic limit only exists in the “weak sense” of correlation
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functions [53–55], the Wick exponential in : eig(x)φ(x)ψ(x) : must be replaced by an IR-

regularized one, and the electron is an infraparticle [29, 31]. We expect that the (massless)

Schroer model can be obtained via the perturbative construction of Epstein-Glaser just

as in the present massive case. A second step is to extend the model to d = 4 where it

coincides with the toy model mentioned in [31] when we replace φ, massive or not, by the

string-localized escort field.

The final step is to obtain full QED. It has been proposed in [29, 31] to consider a

QED interaction L(e) whose potential is string-localized and lives in a Hilbert space. It

differs from the usual Feynman gauge interaction LK by a divergence of the type considered

in the present work,

L(e) = LK + ∂µφj
µ. (2)

We conjecture that one can show the analogue of Eq.(3.73) along the lines of the

present work. If so, one would have, in the adiabatic limit, the relation

ψ
∣
∣
∣
qL(e)

= ψq
∣
∣
∣
qLK

, (3)

where ψq is the dressed Dirac field defined in (1) with φ replaced by the string-localized

escort field. This relation has been conjectured in [29, 31], and is a rigorous version, in the

Epstein-Glaser scheme, of formulas proposed by Dirac [64], Steinmann [66], and others. It

explains the infraparticle nature of the electron, photon cloud superselection, and Gauss’

Law, see [31].
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Appendix A – Table of Cases - Theorem 33

The tables below display all non-zero VEVs after we consider charge conservation.

Table 1 – Table of VEVs for Eq.(3.44) - 〈T∂µφrW1W2〉.

W1 W2

1a) ∂µφ
s

1

1b) ψ/∂φs ψ

Table 2 – Table of VEVs for Eq.(3.45) - 〈T /∂φqψW1W2〉.

W1 W2

2a) ψ/∂φr 1

2b) ψ/∂φr ∂µφ
s

2c) ψ/∂φr jµ

2d) ψ ∂µφ
r

Table 3 – Table of VEVs for Eq.(3.46) - 〈TW1W2ψ/∂φ
r〉.

W1 W2

3) ∂µφ
s ψ

Table 4 – Table of VEVs for Eq.(3.47) - 〈T∂µφjµW1W2〉.

W1 W2

4a) ∂V 1

4b) ∂V jν

4c) ∂νφ
r jν

4d) ψ/∂φr ψ



Appendix B – Factorization - Theorem 33

In this appendix we show that all cases analyzed in Theorem 33 satisfy the

factorization property with every Wk ∈ W
′. To this end, we will use (3.40 - 3.43).

Case 1a)

T [∂µφr∂νφs1] = ∂µT [φr∂νφs1] = ∂µ∂
1
νT [φrφs1] (B.1)

Then, suppose x � x1,

T [∂µφr∂νφs1] = ∂µ∂
1
ν : φr :: φs1 :=: ∂µφr :: ∂νφs1 : (B.2)

The case x1 � x is analogous.

Case 1b)

T [∂µφrψ1/∂φ
s
1ψ2] = ∂µT [φrψ1/∂φ

s
1ψ2]

= ∂µ
(

T [φrψ1φ
s
1ψ2](

←−
/∂ 1 − iM) + δ(x1 − x2)T [φrφs1]

) (B.3)

Consider, for example, the case x � x1, x2,

T [∂µφrψ1
/∂φs1ψ2] = ∂µ

(

: φr : T [ψ1φ
s
1ψ2](

←−
/∂ 1 − iM) + δ(x1 − x2) : φr :: φs1 :

)

= : ∂µφr : T [ψ1/∂φ
s
1ψ2]

(B.4)

In the other cases x1 � x, x2 and x2 � x, x1, we have that δ(x1 − x2) = 0. Then, we have

respectively,

T [∂µφrψ1/∂φ
s
1ψ2] = : ψ1/∂φ

s
1 : T [∂µφrψ2] (B.5)

T [∂µφrψ1/∂φ
s
1ψ2] = − : ψ2 : T [∂µφrψ1/∂φ

s
1] (B.6)

Case 2a)

T [/∂φrψψ1
/∂φs1] = (/∂ + iM)T [φrψψ1

/∂φs1]− δ(x− x1)T [: φr /∂φs1 :]

= (/∂ + iM)
(

T [φrψψ1φ
s
1](
←−
/∂ 1 − iM) + δ(x− x1)T [: φrφs1 :]

)

− δ(x− x1)/∂
1
T [: φrφs1 :]

(B.7)

Suppose x � x1. In this case, δ(x− x1) = 0. Then, (B.7) becomes

T [/∂φrψψ1
/∂φs1] = (/∂ + iM) : φrψ :: ψ1φ

s
1 : (
←−
/∂ 1 − iM)

= : /∂φψ :: ψ1
/∂φ1 :

(B.8)

The other case x1 � x is analogous.
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Case 2b)

T [/∂φrψψ1/∂φ
s
1∂µφ2] = (/∂ + iM)T [φrψψ1/∂φ

s
1∂µφ2]− δ(x− x1)T [: φr /∂φs1 : ∂µφ2]

= (/∂ + iM)
(

∂2
µT [φrψψ1φ

s
1φ2](

←−
/∂ 1 − iM) + δ(x1 − x)/∂

1
∂2
µT [: φrφs1 : φ2]

)

− δ(x− x1)/∂
1
∂2
µT [: φrφs1 : φ2]

(B.9)

Suppose x � x1, x2. Thus,

T [/∂φrψψ1
/∂φs1∂µφ2] = (/∂ + iM)∂2

µ : φrψ : T [ψ1φ
s
1φ2](

←−
/∂ 1 − iM)

= : /∂φrψ : T [/∂ψ1φ
s
1∂µφ2]

(B.10)

The case x1 � x, x2 is analogous. Now, consider the case x2 � x, x1. Then, (B.9) becomes

T [/∂φrψψ1/∂φ
s
1∂µφ2] = ∂2

µ : φ2 :
[

(/∂ + iM)
(

T [φrψψ1φ
s
1](
←−
/∂ 1 − iM) + δ(x1 − x)/∂

1
: φrφs1 :

)

− δ(x− x1)/∂
1

: φrφs1 :
]

=: ∂µφ2 :
[

(/∂ + iM)T [φrψψ1/∂φ
s
1]− δ(x− x1) : φr /∂φs1 :

]

= : ∂µφ2 : T [/∂φrψψ1
/∂φs1]

(B.11)

Case 2c)

T [/∂φrψψ1
/∂φs1j

µ
2 ] = (/∂ + iM)T [φrψψ1

/∂φs1j
µ
2 ]− δ(x− x1)T [: φr /∂φs1 : jµ2 ]

+ δ(x− x2)T [ψ1
/∂φs1 : φrγµψ2 :]

= (/∂ + iM)
(

T [φrψψ1φ
s
1j
µ
2 ](
←

/∂
1
− iM) + δ(x1 − x)T [: φrφs1 : jµ2 ]

+ δ(x1 − x2)T [φrψ : φs1ψ2 : γµ]
)

− δ(x− x1)/∂
1
T [: φrφs1 : jµ2 ]

+ δ(x− x2)T [ψ1φ
s
1 : φrγµψ2 :](

←

/∂
1
− iM)

+ δ(x− x2)δ(x1 − x2)T [: φrφs1 : γµ]

(B.12)

Consider the case x � x1, x2. Then,

T [/∂φrψψ1/∂φ
s
1j
µ
2 ] = (/∂ + iM)

(

: φrψ : T [ψ1φ
s
1j
µ
2 ](
←

/∂
1
− iM) + δ(x1 − x2) : φrψ :: φs1ψ2 : γµ

)

= : /∂φrψ : T [ψ1
/∂φs1j

µ
2 ]

(B.13)

Now, consider x1 � x, x2. Then,

T [/∂φrψψ1/∂φ
s
1j
µ
2 ] = (/∂ + iM) : ψ1φ

s
1 : T [φrψjµ2 ](

←

/∂
1
− iM)

+ δ(x− x2) : ψ1φ
s
1 :: φrγµψ2 : (

←

/∂
1
− iM)

= : ψ1/∂φ
s
1 : T [/∂φrψjµ2 ]

(B.14)
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Consider x2 � x, x1. Thus,

T [/∂φrψψ1/∂φ
s
1j
µ
2 ] = jµ2 (/∂ + iM)

(

T [φrψψ1φ
s
1](
←

/∂
1
− iM) + δ(x1 − x) : φrφs1 :

)

− δ(x− x1)j
µ
2 /∂

1
: φrφs1 :

= jµ2 (/∂ + iM)T [φrψψ1/∂φ
s
1]− δ(x− x1)j

µ
2 : φr /∂φs1 :

= jµ2T [/∂φrψψ1/∂φ
s
1]

(B.15)

Case 2d) Analogous to case 1b.

Case 3)

T [ψ/∂φr∂µφs1ψ2] = T [ψφr∂µφs1ψ2](
←−
/∂ − iM) + δ(x− x2)T [∂µφs1φ

r]

= ∂1
µT [ψφrφs1ψ2](

←−
/∂ − iM) + δ(x− x2)∂1

µT [φs1φ
r]

(B.16)

Consider the case x � x1, x2. Thus,

T [ψ/∂φr∂µφs1ψ2] = ∂1
µ : ψφr : T [φs1ψ2](

←−
/∂ − iM)

= : ψ/∂φr : T [∂µφs1ψ2]
(B.17)

The case x1 � x, x2 becomes

T [ψ/∂φr∂µφs1ψ2] = ∂1
µ : φs1 : T [ψφrψ2](

←−
/∂ − iM) + δ(x− x2)∂1

µ : φs1 :: φr :

=: ∂1
µφ

s
1 : T [ψ/∂φrψ2]

(B.18)

Now, consider the case x2 � x, x1. Then,

T [ψ/∂φr∂µφs1ψ2] = −ψ2∂
1
µT [ψφrφs1](

←−
/∂ − iM)

= −ψ2T [ψ/∂φr∂µφs1]
(B.19)

Case 4a)

T [∂µφjµ∂νφ1j
ν
1 ] = ∂µT [φjµ∂νφ1j

ν
1 ] + q(φ1j

ν
1 )δ(x− x1)T [: φ∂νφ1j

ν
1 :]

= ∂µ
(

∂1
νT [φjµφ1j

ν
1 ] + q(φjµ)δ(x1 − x)T [: φ1φj

µ :]
)

= ∂µ∂
1
νT [φjµφ1j

ν
1 ]

(B.20)

Consider x � x1. Therefore,

T [∂µφjµ∂νφ1j
ν
1 ] = ∂µ∂

1
ν : φjµ :: φ1j

ν
1 : = : ∂µφjµ :: ∂νφ1j

ν
1 : (B.21)

We proceed analogously for x1 � x.

Case 4b)

T [∂µφjµ∂νφ1j
ν
1 j

λ
2 ] = ∂µT [φjµ∂νφ1j

ν
1 j

λ
2 ] + q(φ1j

ν
1 )δ(x− x1)T [: φ∂νφ1j

ν
1 : jλ2 ]

+ q(jλ2 )δ(x− x2)T [∂νφ1j
ν
1 : φjλ2 :]

= ∂µ
(

∂1
νT [φjµφ1j

ν
1 j

λ
2 ] + q(φjµ)δ(x1 − x)T [: φ1φj

µ : jλ2 ]

+ q(jλ2 )δ(x1 − x2)T [φjµ : φ1j
λ
2 :]

)

= ∂µ∂
1
νT [φjµφ1j

ν
1 j

λ
2 ]

(B.22)
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Consider the case x � x1, x2. Then,

T∂µφj
µ∂νφ1j

ν
1 j

λ
2 ] = ∂µ∂

1
ν : φjµ : T [φ1j

ν
1 j

λ
2 ] =: ∂µφjµ : T [∂νφ1j

ν
1 j

λ
2 ] (B.23)

The other cases x1 � x, x2 and x2 � x, x1 are analogous.

Case 4c)

T [∂µφjµ∂νφ1j
λ
2 ] = ∂µT [φjµ∂νφ1j

λ
2 ] + q(φ1)δ(x− x1)T [: φ∂νφ1 : jλ2 ]

+ q(jλ2 )δ(x− x2)T [∂νφ1 : φjλ2 ]

= ∂µ∂
1
νT [φjµφ1j

λ
2 ]

(B.24)

Consider the case x � x1, x2. Thus,

T [∂µφjµ∂νφ1j
λ
2 ] = ∂µ∂

1
ν : φjµ : T [φ1j

λ
2 ] = : ∂µφjµ : T [∂νφ1j

ν
2 ] (B.25)

The other cases x1 � x, x2 and x2 � x, x2 are analogous.

Case 4d)

T [∂µφjµψ1/∂φ
r
1ψ2] = ∂µT [φjµψ1/∂φ

r
1ψ2] + q(φr1ψ1)δ(x− x1)T [: φψ1/∂φ

r
1 : ψ2]

+ q(ψ2)δ(x− x2)T [ψ1/∂φ
r
1 : φψ2 :]

= ∂µ
(

T [φjµψ1φ
r
1ψ2](

←−
/∂ 1 − iM) + δ(x1 − x)T [: φr1φψγ

µ : ψ2]

− δ(x1 − x2)T [φjµφr1]
)

− δ(x− x1)T [: φφr1ψ1 : ψ2](
←−
/∂ 1 − iM)

− δ(x− x2)δ(x1 − x2)T [: φφr1 :] + δ(x− x2)T [ψ1φ
r
1 : φψ2 :](

←−
/∂ 1 − iM)

+ δ(x1 − x2)δ(x− x2)T [: φr1φ :]

= ∂µ
(

T [φjµψ1φ
r
1ψ2](

←−
/∂ 1 − iM) + δ(x− x1)T [: φr1φψγ

µ : ψ2]

− δ(x1 − x2)T [φjµφr1]
)

− δ(x− x1)T [: φφr1ψ1 : ψ2](
←−
/∂ 1 − iM)

+ δ(x− x2)T [ψ1φ
r
1 : φψ2 :](

←−
/∂ 1 − iM)

(B.26)

Consider the case x � x1, x2. Then,

T [∂µφjµψ1
/∂φr1ψ2] = ∂µ : φjµ : T [ψ1φ

r
1ψ2](

←−
/∂ 1 − iM)− δ(x1 − x2)∂µ : φjµ :: φr1 :

= : ∂µφjµ : T [ψ1
/∂φ1ψ2]

(B.27)

Now, consider the case x1 � x, x2. Thus,

T [∂µφjµψ1/∂φ
r
1ψ2] =: ψ1φ

r
1 : ∂µT [φjµψ2](

←−
/∂ 1 − iM) + δ(x− x2) : ψ1φ

r
1 :: φψ2 : (

←−
/∂ 1 − iM)

= : ψ1/∂φ1 : T [∂µφjµψ2]
(B.28)

The idea is the same for x2 � x, x1.
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