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Resumo

O modelo de Schroer [1] é um modelo bidimensional construido a fim de discutir as carac-
teristicas estruturais da Eletrodinamica Quantica, mais especificamente, as particularidades
que ocorrem no espacgo de Hilbert e na dinamica devido ao carater de infraparticula do
elétron. A interagao nesse modelo é dada pelo béson sem massa ¢. Os campos do modelo
nao vivem no espaco de Fock de férmions livres devido a divergéncias no infravermelho e,
portanto, é necesséario definir o modelo através das fung¢oes de Wightman e reconstruir o
espaco de Hilbert. Neste trabalho estudamos o modelo que contém o bdson ¢ de massa m
que ¢ livre, no sentido de obedecer a equagao de Klein-Gordon, e um férmion 9, de massa
M, que sdo acoplados pela equagdo de movimento (i — M)y, = —q(@¢)1,, onde q é a
constante de acoplamento. A solucao nao-perturbativa é dada pelo campo de Dirac livre
vestido 1, =: %@ (z) : de [1], onde ¢ é o campo de Dirac livre. Nés o chamaremos de
modelo de Schroer massivo. As divergéncias no infravermelho ndo aparecem no caso mas-
sivo. Aqui, sugerimos como o modelo de Schroer massivo surge a partir do campo de Dirac
livre com a interacao L;,; = 0,¢7" no contexto da teoria de perturbacao de Epstein-Glaser,
com ¢ sendo o boson massivo e j* a corrente de Dirac. Esse modelo é renormalizavel, com
um numero infinito de graficos a serem normalizados. Nés entao impomos certas condigoes
de normalizacao, que entre outras, estao as identidades de Ward extendidas. Para graficos
de arvore, essas condi¢oes de normalizagao sao automaticamente satisfeitas, enquanto
graficos com loops sao fixados unicamente pelas respectivas normalizac¢oes. Isso torna o
modelo superrenormalizavel. Nos mostramos que, no limite adiabatico, a matrix S é igual
a unidade, os observaveis interagentes j*,d,¢ se tornam livres e a versao interativa do

campo de Dirac livre coincide com o campo de Dirac livre vestido 1, mencionado acima.

Palavras-chave: Campos quanticos. Eletrodindmica Quantica. Modelo de Schroer. Epstein-

Glaser. Renormalizagao






Abstract

The Schroer model [1] is a 2-dimensional model built to discuss the structural charac-
teristics of Quantum Electrodynamics (QED), namely the Hilbert space and dynamic
particularities due to the infraparticle character of the electron. The interaction there is
set through a massless boson ¢. In this case, the fields do not live in the Fock space of free
fermions due to IR divergences, and so one has to define the model through the Wightman
functions and then reconstruct the Hilbert space. The model we studied contains the boson
¢ of mass m that is free, in the sense of obeying Klein-Gordon equation, and a fermion v,
of mass M, which are coupled through the equation of motion (i — M)y, = —q(d¢)t,,
where ¢ is the coupling constant. The non-perturbative solution is the dressed Dirac field
Vg(z) =: €9%@) 1 9(z) from [1], where ¢ is the free boson and 1 is the free Dirac field.
We will call this the massive Schroer model. The IR divergences do not appear in the
massive case. We suggest how the massive Schroer model arise from the free Dirac field
with the interaction £ = 0,¢j" in the context of Epstein-Glaser perturbation theory,
with ¢ being the massive boson and j# the Dirac current. This model is renormalizable,
with an infinite number of graphs to be normalized. We impose certain normalization
conditions, which among others are the extended Ward identities. For tree graphs, these
normalization conditions are automatically satisfied, while loop graphs are uniquely fixed
by the respective normalization. This turns the model superrenormalizable. We show that,
in the adiabatic limit, the S-matrix equals the unity, the interacting observables j*, d,¢
become free fields, and the interacting version of the free Dirac field coincides with the

free dressed Dirac field 1, mentioned above.

Keywords: Quantum Fields. Quantum Electrodynamics. Schroer Model. Epstein-Glaser.

Renormalization.






Notation

ola Dirac’s gamma matrix

In two dimensions, the two gamma matrices can be given by

0 1 0 -1
0_ 1_

WY Dirac fermion

Y* Hermitian conjugate
Uf = ()"

¥ =yl

g =:4py*Mp . Dirac current

P =9,
if . — ik k
k=0
. : : 1 0 ,
n Minkowski metric n= 0 1] diag(1,—1)

Throughout this work we shall use natural units, i.e., c=h = 1.
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Introduction

The most accurate theory in history is Quantum Electrodynamics (QED), agreeing
to twelve decimal places with experiments [2]. Nevertheless, we still struggle with the
Infrared (IR) divergences that naturally occur in the structure of QED. These divergences
were initially found by looking at the scattering of electrons by atomic nuclei. Mott was
the first to address these divergences in [3,4]. Bloch and Nordsieck also came across this
infrared problem and presented a model describing an ideal scattering process as a way to
contour the divergences [5]. They showed that the probability of a finite number of “soft”
photons! escaping detection is zero. In other words, in a scattering of a charged particle
the emitted radiation has a finite energy but an infinite number of soft photons. The
main result of the Bloch-Nordsieck model is that the cross-section obtained is finite. More
than two decades later, Yennie, Frautschi and Suura [6] built a treatment of the infrared
divergences based on Bloch-Nordsieck and Pauli-Fierz’s [7] models. These developments
motivated the first ideas about infraparticles by Bert Schroer [1] in 1963%3.

Buchholz introduced in 1982 a characterization of infraparticles and showed the
existence of asymptotic electromagnetic fields in all charge sectors [10]. In 1986, he showed
that through a quantum version of the Gauss Law [11] an electrically charged state cannot
be an eigenstate of the mass operator, obtaining thereby the infraparticle structure and

that a spontaneous breakdown of the Lorentz symmetry happens in charged supersectors.

In 1974, Ferrari, Picasso and Strocchi proved that electrically charged fields cannot
be pointlike localized [12]. Buchholz and Fredenhagen [13] showed later in 1982, that the
most general localization allowed by the mass gap hypothesis combined with the existence
of a pointlike generated neutral subalgebra is a semi-infinite spacelike cone. Following
this idea, Mund, Yngvason and Schroer [14,15] in the ’00s presented the string-localized
quantum fields, where the “strings” are idealized narrow spacelike cones. This type of
localization can improve the UV behaviour of perturbative interactions and avoids the use

of an indefinite metric [15-17].

In the last decade infraparticles came back to the attention of the community as the
problem of infrared divergences resurfaced [18-28]. We will mention a few recent important
papers. Mund, Schroer and Rehren [29] addressed the relation between the implications of
the Gauss Law and the structure obtained in [1] considering string-localized fields. Dybalski
and Mund also computed a scattering amplitude for charged infraparticles living in the

GNS representation of the two dimensional massless scalar free field [30]. Mund, Rehren

1 Photons with energy less than the energy resolution of the experimental apparatus.

For a complete historical background of the approaches made to avoid the infrared divergences see [8].

3 An anthology on infraparticles was made by Prof. Schroer in [9].
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and Schroer [31] presented a new roadmap towards the perturbative off-shell construction
of QED, including its charged fields, with Hilbert space positivity being the guidance.
Their construction is based in string-localized quantum fields and helps to clarify some
parts of the so-called “infrared triangle” composed of the relations between soft photon

theorems, asymptotic symmetries and memory effects?.

The purpose of this work is to implement the perturbative construction of a model
containing a free boson ¢ of mass m and a fermion v, of mass M, which are coupled
through the equation of motion (i) — M) g = —q(?gzﬁwq, where ¢ is the coupling constant.
The non-perturbative solution is the dressed Dirac field v, (z) =: €®(®) : 4 (x) from [1],
where ¢ is the free boson and 1) is the free Dirac field. The interaction of this model is
0,¢7", where ¢ is the massive boson and j* is the Dirac current. We call this model the
massive Schroer model. Our aim was to show that the perturbative construction coincide
with the exact solution of the model. Since we consider a massive boson, the infrared

divergence will not appear.

This master thesis is composed of three chapters. The first chapter contains key basic
concepts. We present some important mathematical topics, a brief review on the structure
of spacetime and the Wightman axiomatic construction of fields. The second chapter
comprises a general set-up of the Epstein-Glaser scheme. Our motivation to work within
this scheme, also known as causal perturbation theory, is that no ultraviolet divergences
appear, i.e. the time-ordered products are finite and well defined. The only adversity we
face is a non-uniqueness of the time-ordered products due to finite renormalization terms.
In the first section of the third chapter, we summarize the most important topics of the
Schroer model [1]. The next section is divided in three subsections, where in the first
subsection we analyze the renormalizability of the massive Schroer model. The second
subsection is dedicated to verify the Ward identities and a new set of normalization
conditions concerning the derivatives of the massive boson that we called extended Ward
Identities. These new conditions are motivated by the requirement that in the adiabatic
limit, where the test function g(x) goes to a fixed constant (coupling constant) ¢, in

symbols g — ¢, we obtain

Sl90,05" — 1 — Py =t ey (1)

’gauqﬁj“ - X w‘gamj“

where S is the S-matrix, X is an observable, i.e. X € {0,¢, 7"}, and 1, is the free dressed
Dirac field from [1]. In the last subsection, we prove a theorem stating that the requirements

above are indeed satisfied.

4 Owver the last years, infrared divergences were revisited by Strominger and collaborators and organized

in this triangle. A extensive review can be found in [32].
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1 Quantum Fields

The structure of this chapter is the following: In Section 1, we introduce a collection
of mathematical concepts. In Section 2, we discuss the structure of the spacetime. The

axiomatic framework of Garding and Wightman is presented in Sections 3 and 4.

1.1 Mathematical Preamble

This section will cover some topics, mainly about distribution theory, which are
going to be used throughout this work and is based in [33-35]. In Physics, distributions
first appeared in Quantum Mechanics as Dirac introduced his -function and it quickly
thrived in the community, founding applications in other areas such as Electrodynamics,
Statistical Physics and QFT [36-38].

Definition 1. A Hilbert space H is a vector space with an inner product that is complete

with respect to the norm defined by the inner product.

Definition 2. Let H be a Hilbert space and H®s/«" the symmetrized (anti-symmetrized)
n-fold tensor product H¥:/a" = H Qg/q - - - @s/q H. Set H? = C and define

F(H) = é”ﬂ‘&/“" (1.1)

where F(H) is known as the bosonic (fermionic) Fock space over H.

Definition 3. Let X C R". The support of a continuous function ¢ : X — C is the

closure of the set of non-vanishing points of ¢, that is*,

suppp = {z € X|p(x) # 0} (1.2)

Definition 4. Let X C R" be an open set. The set of the infinitely differentiable functions

¢ : X — C with compact support is called space of test functions on X and is denoted by
C(X) (or D(X)).

To properly give the definition of a distribution we need to introduce a topology or

at least a notion of convergence in D.

Definition 5. A sequence () of elements of D converges to ¢ € D, in symbols ¢, =%
iff

1

The bar above the set denotes the closure.
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i) The supports of all functions ¢, are contained in the same bounded set, regardless
of the n;

ii) The sequence of the derivatives of any order of the functions ¢, converges uniformely
to the corresponding derivatives of (.

Here we only ask for the uniform convergence of each order of differentiation taken
separately.
Definition 6. Let X C R” be an open set. A continuous linear functional 7" : C§°(X) — C
is a distribution in X. So, for 1,2 € C§°(X), A € C and {p, }nen C C5°(X)

o T(p1+ Ap2) = T(p1) + AT (p2)

© on 2 o= Tlen) =2 T(p)

Example 7 (Dirac Delta Distribution). This distribution is defined by

() = [ ded()p(w) = 2(0).

At a point a € R" it is defined as follows

0a(p) = p(a)
Definition 8. Let C*°(R") be the set of complex functions defined in R™ that possess all
orders of partial derivatives. For f € C>°(R™) and the multi-index a = («y, ..., a,) € Ny

we define

olel f
Ogt---Ogn

Now, we define the Schwartz space? as

Qn
n -

Oaf =

ol =out - by, ot =afn

S(R") = {f € C*(R")| sup|2®(9pf)(z)] < 00 Vo, f € No}. (1.3)

Definition 9. A sequence (f,) of functions of S(R™) converges to f € S(R™) iff the

sequence (z*0zf,) converges uniformely to z*0gf for every a, f € Nj.

Definition 10. A tempered distribution is a linear continuous functional over S. AsD C S,
if ¢, = ¢ in D then ¢, — ¢ in S, in such manner that a tempered distribution is a linear
continuous functional in D is extendable to a linear continuous functional in §. The space

of tempered distributions is denoted by S’.

Theorem 11 (Nuclear Theorem). Let 7" be a multilinear functional of arguments
fi,--, fn € S(R*) which is continuous in each of its arguments while the others are
fixed. Then there is a unique distribution G' € &'(R*¥") in all the variables of fi,..., f,
such that T'(f1,..., fn) = G(f1,. .., fn)-

2

Sometimes it is referred in the literature as the space of the well behaved functions.
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1.2 Relativistic spacetime

Historically, Quantum Field Theory was born as an attempt to conciliate Einstein’s
Special Relativity and Quantum Mechanics in a more satisfactory way than relativistic
quantum mechanics. For this reason, we should first give an outline of the structure of
spacetime®. This section is heavily based on the ideas contained in [40,41]. An interesting

reflection about the nature of physical space is present in [42,43].

In the theory of relativity, Lorentz transformations are used. The change from
Galilean to Lorentz transformations is highly motivated by the incompatibility of Galilean
transformations with electrodynamics. A few years after the birth of relativity, Minkowski
introduced the concept of spacetime, unifying space and time in an absolute concept

regardless of the choice of a referential.

An important notion in spacetime, are the so-called events, which are phenomena
occurring in such a small region of spacetime that the dimensions can be neglected. Let M
be the spacetime. After the choosing of a reference frame, an event in M can be identified
by an element of R?,

v = (ct,¥) = (2°, 2", 2%, 2°) (1.4)

where c¢ is the speed of light, ¢ is the time and ¥ is the position vector relative to the

reference frame used to identify M with R*. It is possible to define a quadratic quantity*

Q: MxM-—R

(1.5)
(z,y) = Qz,y) = (2" —y")* — |7 — 7%

This quantity represents the interval between two events. One can notice that for a
luminous signal, Q(x,y) = 0. Due to the invariance of the speed of light, this result does
not depend on the choice of the reference frame. It is also possible to prove that @) is

invariant to changes in the coordinate system.
Qlz,y) = Q",y) (1.6)

Let (x1,41), (x2,y2) € M x M be two pairs of events. We define the following

equivalence relation
(xlayl) ~ (Q?g,yg) <:>*T/1L_yii :xg_yg M:O?17273' (17)

This relation divides M into equivalence classes. The representative of one of this classes
is called a four-vector and we denote it [(x,y)]. The space of all four-vectors is denoted by
D(M).

3

A different approach is given in [39] where the construction is based in manifolds and is an excellent
alternative literature regarding relativity.

4 Nondegenerate, symmetric and bilinear form
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We can define a general transformation which preserves the spacetime interval @)
(L)t = a* + Abx” (1.8)

where a# € D(M) and A is a Lorentz transformation, i.e., a matrix A that satisfies n = ATpA
with n = diag(1, —1,—1, —1) being the Minkowski metric. This transformation L is called
Poincaré transformation and is a composition of translations, rotations and boosts. Notice

that every Poincaré transformation is a linear non-homogeneous transformation.

Since translations and rotations do not alter (1.7), our definition of four-vectors
holds in every inertial frame. Furthermore, Q(z,y) only depends on the equivalence class,
allowing one to define @ ([z,y]) := Q(z,y). It is important to remark that given a reference
frame, one can identify M to the quotient (M x M)/ = D(M), where ~ was defined in
(1.7), and both to R* equipped with the pseudo-metric 7.

We can define the inner product as

00 — G- b. (1.9)

a-b=a

With this definition, we obtain the notion of orthogonality in spacetime which is very

different from the usual Euclidean version [39].

Since this is an extensive subject and for the sake of brevity, as we have already
covered the basics of spacetime structure, let us focus on giving a few fundamental

definitions.

Definition 12. Let x € D(M). Then, z is said to be timelike if 22 = x - x > 0, lightlike if

2% = 0 and spacelike if 22 < 0.

Definition 13. We can now define a region called lightcone. Let x € M. The future
lightcone of x is given by V, (z) := {y € M|(y — z)? > 0 A (y — z)° > 0}. In words, this is

the set of all time-like future-pointing vectors.

In the same idea, we define the past lightcone V_(z) := {y € M|(y — z)* >
0A (y—x)° < 0} which is the set of all time-like past-pointing vectors.

The boundary of the future lightcone is OV, (z) = {y € M|(y—x)* = 0A(y—z)° > 0}.
Similarly, OV_(z) = {y € M|(y — x)?> = 0 A (y — 2)° < 0} is the boundary of the past
lightcone.

Remark. All these regions (V, 0V.) are invariant under the proper orthochronous Lorentz
group L1, i.e. det A =1 and AJ > 1.

Definition 14. A notion of geometric time ordering is that x is later than y, in symbols

x =y, if x ¢ V_(y) and is equivalent to saying that there exists a reference frame such
that 20 > ¢°.
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To close this Section, we present one last Lemma which will be useful below in
Section 2.2.

Lemma 15. Let x,y € R* be events in a given inertial frame. Thus, the set

P={(z,y):z =y} (1.10)

is open in R* x R*.

1.3 Wightman Axioms

The many successes, and failures, of relativistic QFT motivated physicist and
mathematicians to investigate its foundations. Moreover, a long list of mathematical
problems led Wightman and Garding to extract general postulates that later became

known as the Wightman axioms.

These “axioms” were only named like this to bring attention to their consistency
and mathematical rigor. They are well formulated physical requirements constructed to
emphasize the spectral condition, relativistic invariance, and locality and will be presented
below [44-46].

Structure of the Theory: The space in question is a separable Hilbert space H and the
states are described by unit rays. This space possesses a continuous unitary representation
of the non-homogeneous group SL(2,C)° given by U(a, A),a € R, A € SL(2,C) and by
its unity we can write U(a, 1) = €% where P* is an unbounded self-adjoint operator,

seen as the energy-momentum operator.

Energy-Momentum Spectral Condition: The joint spectrum of P* lies in the closed

forward cone V. == {p, : p* > 0,po > 0}, and P*P, is the mass operator®.

There is a vector €2 which is translation invariant in H, U(a, 1)Q = €2, unique up

to a constant. This vector is named vacuum state.

Field Operators: Fields are operator-valued distributions in H [47]. For each f €
S(R?), there exists a set of operators along with its adjoints defined in a domain D
dense in H'. Let {¢1,...,©,} be fields. The domain D always contains a domain Dy :=
span{y;, (f1) .. @i, (fn);n > 0} , i.e. obtained by the application of polynomials of
smeared fields on the vacuum state (cyclicity of the vacuum [48]). Further details about

the domain and operator in [44].

®  Special Linear group with complex entries SL(2,C) = {A,n x n matrix, 4;; € C,det(A) = 1}. This is
known to be the universal covering of 501(1, 3) which is the proper orthochronous Lorentz group.
This spectral condition is the relativistic version of the condition that the Hamiltonian is bounded
from below.

A set S is said to be dense in H if, for each vector ¢ € H and € > 0, there exists a vector ¢ € S such
that | — 9| <e.

6

7
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Covariance: The fields transform under the Poincaré transformations U(a, A)
Ula, A)pi(z)U(a, A)~" = S(A™Y)ij0;(Az + a) (1.11)

with S(A) being a finite dimensional representation of SL(2,C).

Given the fact that all finite-dimensional representations of SL(2,C) are the sum
of irreducible representations, one can take into account the components of an irreducible
representations as part of the field and distinguish different fields within the theory by
looking at different irreducible representations. The same idea is used when grouping

together components transformed by a reducible representation in a field.

Causality: Let f,g € S(R?). If the support of f, g are spacelike separated, (z —y)? < 0,
then

[i(f) i@+ =0 [0i(f) ¢i(g)]+=0 (1.12)

Vi, 7 when applied to a vector in D. The plus or minus sign means that the fields either

anticommute or commute. They anticommute iff both fields are fermions.

1.4 Wightman Functions

In this section we will discuss the properties of the vacuum expectation values
which are also known as Wightman functions®. We note that the axiom regarding field

operators implies that

(i (1) - @i (fn)) = (00, (f1) - 03, (fn) Q) (1.13)

exists and is a separately continuous multilinear functional of the arguments fi,... f, as
they vary over S(R™). From Theorem 11, we have that this functional can be uniquely

extended to be a tempered distribution of the n four-vectors x4, ..., x,. We shall denote

wil,...,in(ifl, . 7-7:11) = <90i1($1) s %’n(@"n»-

(W1) Covariance: For (a, A) € P1 there holds
wilmin(xl, Ce ,le'n) = S(Ail)iljl . S<A71>1n]nwﬁjn (CL -+ Ai[)l, Lo, a -+ Axn) (114)

with S a finite dimensional representation of SL(2,C) (or of the Lorentz group if

the spin is integer, i.e. a boson).

We need to introduce a convention before the next property. The Fourier transform
of a function f € S(R*") is given by

fo) = [ daf@er (1.15)

8  These are detailed in [44][Chapter 3.3]
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n

with p-x = Z(pk;)u(xk)”-
k=1

We will describe the next properties for one scalar field (boson).

(W2) Spectral property: The support of the Fourier transform @ of w is contained in the

product of forward lightcones

w(p1,...,pn) =0, if, for some j, p; ¢ V. (1.16)

(W3) Locality: From causality one has

WLy, Ty Ty ) = W(T1 T Ty ), 1 (25— 2)? <0
(1.17)

(W4) Positivity: Consider the Hilbert space structure required in the first axiom. For any
terminating sequence f = (fo,..., fn), fi € S(R*), one has

Z/d%d%d?ﬂ '"dyk?j(xjv"'axl)fk(yl7"'7yk)w(x1a'"7xj7y17"'ayk‘) Z 0
7,k
(1.18)

This is equivalent to the positivity of the norm of any state of the form

Uy = fo+ o(f)Q+ o( ) () + ... (1.19)

J
where f = (fo,.., fn), [; = @ 17, 1 € S(R?).
k=1

(W5) Cluster Property: For any spacelike vector a and for A — oo, the uniqueness of the

translationally invariant state is equivalent to
W(T1, . Ty, i1 + A, T+ AA) = w (X, ) W(T g, - T (1.20)

here the convergence has to be understood in the sense of distributions.

This last property says that the correlation function of two monomials of smeared
fields, known as clusters, factorize in the limit of infinite spacelike distance between the
two clusters. This property plays a crucial role for the existence of asymptotic free fields

and the construction of the S-matrix.

The cluster property implies that if two clusters B;, By are localized in bounded
regions Oy, Oy, respectively, the state vectors B €2, By €2 become orthogonal, apart from
their vacuum component, in the limit in which the spacelike separation between their

localization regions becomes infinite.
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Theorem 16 (Wightman Reconstruction Theorem). Let (w,,)nen be a family of distribu-
tions w, € §'(R*") satisfying (W1 - W5). Then, there exists a separable Hilbert space
‘H, a continuous unitary representation U of 771 in H with a unique invariant vector €2,

and a hermitian scalar Wightman field ¢ which is covariant under U, such that

(Q,0(f1) - o(fa)) = wa(fr® -~ ® fa). (1.21)

Moreover, any other field theory with these vacuum expectation values is unitary equivalent

to this one.

Definition 17 (Wick product). We define the Wick products of free fields (normal ordering)
by writing the free field as creation and annihilation operators, ¢(x) = a(x) + a*(z), and

bringing the annihilation operators to the left hand side of the creation operators,

co(xr) . oo(xy) = Z H a*(x;) H a(z;)

Ic{1,..,n}i€l Jj¢I

Theorem 18 (Wick’s Theorem). Let ¢1,...,p, be free fields. Then, we have

a) The weak form of the theorem:
R N AR O 2 R 2 D)

1.22
Tl ey Ll (k=) (kb — 1)! (122)

b) The strong form:

on\ij
Gtk = Y 1 W (1.23)
L=k
iy =

Define W; as a polynomial of a free field . Then, we can rewrite a) as
Wi Wy =3 W W (W W)

where the sum goes over the possible factorizations of each W;.
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2 The Epstein-Glaser Scheme

The most successful approach to interacting field theories is the definition of the
S-matrix by a formal power series in the test function g. Unfortunately, this approach
has a longstanding problem, the so-called Infrared(IR) and Ultraviolet(UV) divergences.
The UV divergences can be treated by various methods of renormalization. Up to now, IR

divergences can not be completely treated.

A mathematically rigorous method of perturbative construction is the causal
perturbation theory, which was elaborated by Epstein and Glaser [49] based on the ideas of
Stiickelberg, Bogoliubov and Shirkov [50]. In this approach, the Bogoliubov S-matrix and
the interacting fields are constructed using time-ordered products of (Wick polynomials
of) free fields. One first specifies the set of axioms that are satisfied by the time-ordered
products and then performs an inductive construction. The physical S-matrix is obtained by
taking the so-called adiabatic limit of the Bogoliubov S-matrix. We discuss the construction

of both the S-matrix and the interacting observable fields in Section 3.3.

The solution of the UV problem in this framework consists of finding an extension
of distributions which are initially defined only on a suitable subspace of the space of all
test functions. The freedom in renormalization is the consequence of the non-uniqueness
of the extension. This chapter serves as an intuitive introductory contact to the results
in the next chapter and follows [51-53]. The infrared problem remains in the adiabatic
limit [54,55], but it will not appear here since the massless limit of the boson ¢ is not

taken.

2.1 Time-Ordered Products

The time-ordered products T[Wy(z1) - - Wy (x,)], with Wi (z) being Wick poly-
nomials of free fields, are the building blocks to construct interacting fields and obtain
the S-matrix. They are multilinear maps with C'* functions as coefficients, symmetrical

operator-valued distributions on the dense domain D ! which satisfies the following axioms

(P1) Translation Covariance :
Ua, )T[Wy(x1) ... Wa(z)|U(a, 1) = T[Wi(a+21) ... Wala+x,)]  (2.1)

where (a, 1) € 731 and U is a unitary positive energy representation of the Poincaré

group.

L This is usually referred as the well-posedness property (P0) of T-products.
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(P2) Causality : If ; = z; Yie {1,...,k}and j € {k+1,...,n}, then

TWi(21) - Wi(w,)] = TWi(21) - - Wi(zp) | T [ Wit (Thg1) - Walzn)]  (2:2)

(P3) Graded Symmetry :
TIWi(21) - Walza)] = (=) T W) (@r(n) - Wagy (@a)]  (2:3)
where 7 € S,, is any permutation of the set {1,...,n} and f(7) is the number of

transpositions in 7 involving two fermion fields {1, 1,: ¢ :,: P 1, : VP =, ) :}.

We also require that
T =1 TW (z)]=:W(x): . (2.4)

If the time-ordered products of less than n factors are everywhere defined, the time
ordered product is uniquely determined up to the total diagonal D,, = {(x1,...,2,),z; €
R?|z; = --- = x,}. Therefore, the renormalization problem, in this scheme, amounts as

the problem of extending the n—th order time-ordered products to the diagonal D,,.

2.2 Inductive Construction

In this section we formulate the inductive construction of the time-ordered products?.
This procedure was first presented by Epstein and Glaser [49]. First, we assume that all
time-ordered products have been constructed up to n — 1 arguments, as defined in the

last section. We begin with the inductive construction up to D,,. For each proper subset
I'c{1,...,n}, let

Up = {z € R*"\ D,|x; = x; for all (i,j) € [ x I°}. (2.5)

Proposition 19. Let D,, be the total diagonal of R*" and a proper subset I C {1,...n}.

Then, U; is an open set in R?".

Proof. Let I C {1,...,n} bea proper subset. Given z € R?*"\ D,,, we write x = (z1, ..., %),

where we are considering the decomposition R** = (R?)". Consider now the set

Pf ={(z1,...,xn)|z; =2k}, ke{l,....n—1}\{j} (2.6)

By Lemma 15, each set Pf, cee Pj”_1 is open. Thus, X; = N, P/ is open. This means

that X; = Ni, P} is also open. Therefore,
U= X, M- N X, (2.7)

is also open since it is a finite intersection of open sets. [

2 For the string-localized version see [56].
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The family of open sets Uy, when I runs through the proper subsets of {1,...,n},
is a covering of R?*"\ D,,, that is, every x € R*"\ D, is in some Uy, see [51, Lemma 4.1].

On Uy, the factorization property implies that
TWi(xq) - Wilzn)] = Tu(z, ... 2n) = Tin(L) Toeyn (1°) (2.8)

which is known by hypothesis since 1 < |I| < n — 1, |I] is the number of elements of I,

and [¢ is the complement of I in {1,...,n}.

Lemma 20 (Uniqueness outside D,,). Let W be a linear space of Wick polynomials with
lower or equal order with respect to the interacting Lagrangian of the model in question.
If the time-ordered products are known for up to n — 1 Wick polynomials in VW, then the
time-ordered product is fixed and well defined on the complement of D, by the above
formula (2.8).

Proof. First we need to prove that U; is indeed a covering. For this we refer the reader
to [51, Lemma 4.1]. It remains only to show that 7, does not depend on the choice
of I. To this end, let J be another set such that z; < «; for all i € J, j € J° Then
write? I = INJUINJS hence T(I) =T(INJ)T(INJ by equation (2.2). Similarly,
Ic=1°NJUrl“n J¢and hence T(I¢) = T(I°N J)T(I°N J¢). Thus,

T({1,...,n}) = T(INJ)T(I N JTI N J)T(I° N J°).

Let now ¢ € I N J°and j € I°N J. Then, x; is larger and smaller than z;. But
this implies that z; and x; are spacelike separated. Therefore, the two factors in the
middle commute. Applying the factorization property (2.2) again, yields 7'(J)T(J¢). This
establishes independence of the choice of I in (2.8). O

This inductive construction of T-products leaves us with operator-valued distribu-
tions well defined in D(R**\ D,,) satisfying (P1-P3). It remains to extend these products
to the total diagonal D,,, and this will be done below at Section 3.2. The Epstein-Glaser
scheme requires that the pointwise products of Wick polynomials W;(z;) with transla-
tional invariant numerical distributions ¢ to be well defined. This product indeed exists
and is the result of a Theorem, known as Theorem 0 in [49]. There is also a microlocal
version due to Brunetti and Fredenhagen [51, Theorem 3.1]. Hence, the construction of T,
reduces to finding an extension of the numerical distribution ¢ across the total diagonal
D,,. From translational invariance, the numerical distributions depend only on the relative

coordinates and we can write the total diagonal as the origin of these coordinates.

3 The symbol U stands for the disjoint union of two sets.



26 Chapter 2. The Epstein-Glaser Scheme

2.3 Extension of Distributions

The last section ended with a problem, how to extend the numerical distribution ¢
across the origin. This problem requires the introduction of a quantity that measures the
singularity of distributions at the origin. First, we define the rescaling of a distribution

and then introduce the definition of a well-known quantity, the scaling degree.

Definition 21 (Distribution Rescaling). Let t be a distribution on R*. The rescaled
distribution ¢y, A > 0 is defined as

ta(f) = t(f) with fA(z) .= XFf(A o). (2.9)
Definition 22 (Steinmann scaling degree). Let t € D'(R*) and A > 0. The scaling degree

of t with respect to the origin is*

sd(t) == 1inf{s € R : /l\ii%)\st,\(f) = 0}. (2.10)

By definition, inf () := oo, i.e. if there is no such s, the scaling degree is said to be infinite.

At this point, some examples may be helpful.
Example 23. Let § € D'(R¥). Then §(\x) = |\|7%6(x), so sd(d) = k.
Example 24. Let us now calculate the scaling degree of the two-point function in d = 1+1.
The invariant measure rescales as

dpm(N'p) = ) A’ il

= =d Am
N TN e e

where p = (p°, p). Then, the rescaled two-point function is,

WA (2) = wp(Az) = (2m) 7! /H L A (p)e™ 7 = X0 /H L A (p)e” P = Nwyy (2)
" " (2.12)

where H is the mass shell. Since /l\ir% Wxm = Wy is logarithmic divergent the scaling degree
—

(2.11)

of wis 0.

The scaling degree have some interesting properties which we state in the following

proposition [51, Lemma 5.1].

Proposition 25. Let X C R* and u,w € D'(X) distributions, and o a multi-index,
(i) sd(0%u) = sd(u) + |«
(ii) sd(z®u) = sd(u) — |«
(iii) sd(u ® w) = sd(u) + sd(w), where ® denotes the tensor product of distributions.

(iv) sd(f) <0, sd(fw) < sd(w), f € D(RF).

4 This defining condition is to be understood in the sense of distributions.
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Theorem 26. Let t° € D'(R*\ {0}). Then,

(i) If sd(t°) < k, there is a unique extension ¢ € D'(R¥) fulfilling the condition sd(t") =
sd(t).

(i) If k < sd(t°) < oo, there are several extensions t € D'(R*) satisfying the condition

sd(t°) = sd(t). In this case, given a particular solution ¢, the general solution is of

the form,
t=t+ Z Caﬁaé(n) (2.13)
laf<sd(t%)—n
with the multi-index a = (ay, ..., ;) € N} and |a| = a; + -+ + .

In (2.14), the addition of a term Y ¢40%d(,) is called a finite renormalization.
|| <sd(t9)—k

2.4 Normalization Conditions

From Theorem 26, there is some freedom of choice of the extension to the origin,
and we formulate conditions to restrict them in this section. The first normalization
condition implements the conservation of Poincaré covariance. Let U be a unitary positive
energy representation of the Poincaré group 731 (or its universal covering for fermions).

Then, we require

(N1) U(a, NT[Wy(z1) - Wy(z)]U(a, A) ! = (2.14)
TIU (a, Wi (z1)U(a, A)~ - Ula, W, (2,)U(a, A) 7]

where (a, A) € P1. We can see that (N1) is an extension of property (P1). It is remarked
by Epstein-Glaser in [49] that property (P1), i.e. translational covariance, is crucial for
the causal construction, and is used in their Theorem 0. Brunetti and Fredenhagen [51]
have shown that this condition can be replaced by a weaker one, spectrality. This condition
is connected to wave front set properties required in their work. The next condition comes

from unitarity,

(N2)  TWi(w) - Wale)) = X ()P [ TWiw) i€ p]  (215)

PecPart{l1,...,n} peP

being * the adjoint on D.

In order to reduce the arbitrariness of time-ordered products we require the causal
Wick expansion and we will set some notation. We can factorize a Wick polynomial
W e {4, 9, o, o, ", ¢} as
W= Ww":
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where W', W" are sub polynomials of W. Note that this is not a unique factorization®.

Then, we can write the Wick expansion as

(N3)  T[Wi- W] =S Wi W (TWY - W) (2.16)
G

Wa [7¢]
where the sum goes over the possible factorizations of each Wj. Each term can be associated
to a graph G.

This association might seem abstract, so it is interesting to look at a simple example.

We will see more details on the graphs appearing in the Wick expansion in Section 3.2.1.

Notation: From now on we denote Wy, := Wy (xy). We also omit the dependence of the
variable z, i.e. ¥ := ¥(x), ¢1 = ¢1(z1), O, == 32
Example. Consider the Wick expansion of T'[¢11)115¢s].

T[: prihy == hotby 2] =1 G11gda - + : Y1y : (T 2 drpa )+ 1 P1ba = (T yapy =) + (Thrih1hyho)
=S WL (TWIWY)
G \W—/

tg

We can represent these terms as

A X2

W ¥
— > < L0112t e e 010y (T i z) +
¢ )

e 0102 (T 21Dy ) + 2y m (Thp1i1)y¢2)

Z2
I T2 w

We also require condition (N4) from [57]. We will write it out for the massive
Schroer model. Let 1) be the free Dirac field and ¢ the massive free scalar field. We consider

W; € W sub polynomials as defined in (3.6). Then the normalization condition reads

(O +m*)T[pW; - W, = —i En: §(x — xp)T[Wy - aavg’f W)
k=1
(N4) (@+iM)T[W;---W,] = i(—l)f(wl'”w’“*l)é(x — 2,)T[W; - - - a;;k W]
k=1
T[Wl .. Wn@](g — ZM) = — i(_l)f(Wkﬂ---Wn)é(ajk — x)T[WI R aavzc - Wn]
k=1

5  For example, take j*. These factorizations are possible W’ = j*, 4,4 and 1.
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where
0, k=1
ﬂWr~Wkg;{ fm), k=2
> W), k>2

1, W, fermion
0, W; boson

This condition uniquely determines time-ordered products with additional free field

mmﬂwa:{

factors [57], namely

_ oWy,

(T W) =13 A% = ) (T, - S0,
(N4’) <TW}WI . Wn]> — Z'kzn:(_l)f(W:l---WkﬂSF(x _ Jik)<T[W1 - 8;; . Wn]>
(T[Wy -+ Woih]) = Z'kﬁ:(_l)f(WkJrl'"Wn)SF(xk — 2)(T[W; -+ - a;;;’“ W)
- (2.18)

where iS; = (Ta3), and iAF = (T¢¢'), where ¢ is the free scalar field with mass m.

«Q



3 Schroer Model

In this chapter, we make a brief revision of the Schroer model in the first section.
Afterwards, we analyze the renormalizability of the massive model and verify the Ward
Identities. Then, we show a new normalization condition that we called extended Ward
Identities in Section 3.2.3. In the last section, we construct perturbatively the S-matrix,
the interacting observable fields, and show that the construction coincides with the exact

solution.

3.1 The Formulation of the massive Schroer Model

In the ’60s, two-dimensional toy models of QED appeared and became really
popular, as they proved to be a useful test laboratory!. In QFT, there is a class of models
that present a coupling between fermionic currents and derivatives of scalar or pseudo-scalar
fields in the classical Lagrangian. These models are called derivative coupling models. The
Schroer, Thirring, Schwinger and Rothe-Stamatescu models provide well-known examples
of this class of models [1,59-62]. For an alternative presentation of the Schroer model and

a refreshed analysis, see [31].

Let ¢ be a massive scalar field and 1 the Dirac field. Then, the massive Schroer

model is defined by the following Lagrangian
ES’chroer = ['25 + E?/, + Eint (3].)

where

1 1 - v
L5 = 50u00"0 = gm*¢* Ly =90 = M)V Lin = 00,807

The equations of motion are given by

(O +m*)e=0 (i = M)py(z) = —q0.$(x)7"1)y(x) (3.2)

The classic solution has the form

Ug(x) = e Py(a) (3.3)

with 1 a free Dirac field of mass M, ¢ a free scalar field of mass m, and ¢ € R is the
coupling constant. As one may expect from the discussion of the previous sections, the

UV singularities of quantum fields require much more attention for the definition of the

1 The construction and discussion of some two-dimensional models can be found in [58].
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equations and solutions. The general Wightman framework discussed above provides the

clear guide for the solution of the mathematical problems which arise. We may then take

y(w) = €4 2 o)) (3.4)

as an operator solution instead of the solution (3.3) that only makes sense for classic
fields. This is the exact solution of the model. The obtained solution is a well defined
operator-valued non-tempered distribution, with well defined Wightman functions. The
Schroer model from [1] is then obtained when we set the mass of the boson ¢ to zero, i.e.
the limit m — 0.

In the case m = 0, we have that a few immediate results appear due to this solution
and we will mention two of them. The first is that the Hilbert space H obtained from
the reconstruction is different from the Wigner-Fock space of the original particles. The
central consequence is the fact that there are no one-particle states of mass M, in the

sense of Wigner, in ‘H. These states are called infraparticles.

3.2 Perturbation Theory

In this section, we are interested in obtaining the massive Schroer model perturba-
tively within the Epstein-Glaser scheme from an interaction between the free Dirac field
and the massive boson d,¢. The massless case presents infrared problems and we will not

treat this in our work. The interaction density in the model is

L(x) = (0u05") = 0u(5") (3.5)

where j# is the Dirac current. Notice that here we begin by setting the interaction of the

quantized fields differently from the Schroer model.

3.2.1 Renormalizability of the Model

The proof of renormalizability in this work was divided into two steps, the inductive
construction and the extension across D,,. The first part was done in Section 2.2. Now, it
remains to extend our 7, from any of the open sets U; across the total diagonal D,,. If
relative coordinates are employed, then the diagonal coincides with the origin of R2™~1),
As seen in Section 2.2, it suffices to extend the numerical distributions ¢; appearing in its
Wick expansion (2.16). The task is thus to determine their scaling degrees. To this end,
consider the set of Wick polynomials of V# = : ¢j* : and of the form ¢", ", r € N,

W = {¢, 9,9, ", 00, ¢, ¢5", §*, 9, 67, .. }. (3.6)

The study of these polynomials will help us understand the behavior of the time-

ordered products without derivatives that appear in the massive Schroer model. This is
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a preparatory step and the importance of this analysis will become evident later on, as
we enunciate Theorem 33. With the help of this analysis we also show that our model is

completely defined modulo one vacuum expectation value.

Before we move on, let us elaborate on the graphs appearing in the Wick expansion.
The points in the Minkowski space M, i.e. events, are represented by the vertices and fields
are represented by lines. Each vertex of the graph can have at most one factor 1, one 1,

and k boson lines, which is shown by the first graph in Figure 1.

wa
¢ “V‘53< = 3@%@;@ L (z)
Vg
e S T Bl « P)e) ST

Z Y

7€)

Figure 1 — Graphical representations of time-ordered products.

These lines coming out of vertices can connect to external lines of other vertices
and form internal lines of the graph, an example is the second graph of Figure 1. The
external lines of the graph represent real particles and the internal lines represent virtual

particles.

Heuristically, the bound on sd(ts) can be found by Wick expanding the ordinary
product Wy --- W, instead of the T product. In this case, the strong form of Wick’s
Theorem can be used,

w= (Wi Wo) = Y [[wyglai ;) weg (i, 2;)" (3.7)
aij,bij 1<j
where a;; € {0,1} and b;; € N. The powers of ¢ increases the number of wgs and

consequently the number of internal boson lines. To obtain the desired results, we need to

calculate the scaling degree of the two-point function. This was done in example 24.

Considering that sd(wgg) = 0 and sd(w,;) = 1% are the scaling degrees w.r.t. the

origin, then, the scaling degree of the numerical distribution w in (3.7) is given by
sd(w) = i, (3.8)

with 4,7 being the number of internal ynp-lines. Since we have n monomials and 1) is
always linear we have that 1) appears at most n times in the product Wy ---W,,. Using

this fact, we arrive at the following relation

2 Using the fact that (1)) = (id—M)(pp) where @ is a massive scalar free field, and sd(0%u) = sd(u)+|al.
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where f is the number of external ¢-lines in the graph associated with the VEV. Applying
this relation we obtain

sd(w) <n-— f. (3.10)

With this bound in mind, we can try to obtain the scaling degree of t5. To this end,
we will proceed with an inductive construction a la Epstein-Glaser. The Wick expansion
(2.16) of time-ordered product T'[Wy(zy)--- W, (z,)] with each W; € W can be written
as follows. Let g;}’ b be the set of graphs with n vertices, f external ¢-lines, f external
t-lines and b external ¢-lines. Then, the Wick expansion (2.16) reads

T Wl =Y Y to@Walo) 1)
FFbGEGY £y

where tg is a numerical distribution and W is the Wick ordered product of f factors 1,
f factors 1, and b factors ¢.

Proposition 27. Let G be a graph appearing in the Wick expansion of the time-ordered
product T,, given in Eq.(3.11) with W; € W and tg the numerical distribution associated
with G. The scaling degree of ts with respect to D,, is, for n > 1,

sd(tg) <nm—f (3.12)

Proof. First, recall that T,, factorizes as (2.8), that is T,,(X) = T'(I)T(I°) on U;, when
x; = x; with ¢ € I, j € I°. Let us relate each t¢ with the numerical distributions t¢,, tq,

appearing in the Wick expansions of T'(1) and T'(1°),

T(h= % % ta(hWel(l (3.13)

fi,f1,01 11
Glegﬁ,fhbl

T<IC) = Z Z th([c)WGQ (IC> (314>

f2,f2,b2 el
G2egf2,f2,b2

Thus,
T.(X)=T()T(I°) = Ztgltg2 WeWa, = ZtG(X)Wg(X). (3.15)
Z Wt W

Now, let us look at the relation between tg,tq, and tg, that appeared in (3.15),
tg(X) = tGl (I)tG2 (Ic)wG/(X) (316)

We need to determine we and to this end, we look at the graphs G, G; and G5. The graph
G decomposes into two subgraphs GG; and G5. A part of the external fermion lines of G4
are also external lines of G, while the other part is connected to some of the fermion lines
of G5 and turns into an inner fermion line of G. Similarly, a part of the external ¢-lines of

(G can be connected to external ¢-lines of G5 and vice versa. Let us denote by in and
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iss the number of internal lines in G arising this way between G| and Gy of type ¥ and
¢¢, respectively. Then,
we(X) = [ wyplwi 25) " we(xi, ;)™
(i.j)elxIe

where w,; and wy, are the two-point furictions of Yn) and ¢¢ and a;; € {0,1} and b;; € N
are the number of internal lines of type 1) and ¢¢ between the vertices i and j, respectively.
Then, 2; ; a;; = i,y and 3, 5 bij = ig4. Denote by sdy and sdy the scaling degrees with
respect to D, of tg, and tq,, respectively. Then equation (3.16) leads to

Sd(tg) S Sd1 + Sdg + Z’/’E (317)

As we have mentioned before, external fermion, or boson, lines from G, Gy can connect to
form internal lines in G. So, the number of external is the number of external lines from
(GG1 and G5 deducted by the number of internal lines they form, and this is expressed in

relation
fi+ o= [+ iy (3.18)
This implies that
sd(tg) < sdy + sdo + (fi + fo — f) (3.19)

where f;, f is the number of external ¥y —lines of G;, G, respectively.

The inequality (3.9) along with the hypothesis sd; < ny — f; and sdy < ny — fo
implies the inductive step sd(tg) < (n; + na) — f = n — f. For the base case, i.e.
n=1, take Wy € W. In this case, f < 1 and t5(X) = 1 = sd(tg) = 0. Therefore,
n—f>1-(1)=0=sd(tg). O

Definition 28. Let ¢t € D'(R*\ {0}) be a distribution and sd(t) the scaling degree of ¢.

Then, the superficial degree of divergence is defined as

w(t) = sd(t) — 2k. (3.20)

Fact: Based on Theorem 26, we can obtain a criteria for the uniqueness of distributions
by looking at the superficial degree of divergence w. If w(t) < 0 there is a unique extension

of t. Now, if 0 < w(t) < co we have the case of finite renormalization.

Corollary 29. Let G be a graph appearing in the Wick expansion of the time-ordered
product T}, with W; € W and tg € D'(R*"1) the numerical distribution associated with
G. Then, the superficial degree of divergence of ¢ is bounded by

w(tg) <2—n—f (3.21)

The case of finite renormalization occurs when f = 0 and n = 2 leading to w(tg) = 0.

There are only two correlation functions that need to be renormalized and are represented
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Figure 2 — Graphs representing renormalization cases of VEV (T'j#3*) and (T'¢j ¢j"),
respectively.

in Figure 2. Notice from the Remark on page 32 that the (Tj#;") is unique by the Ward
Identities. Then, the only case left that is open to finite renormalization is (T'¢j*¢j").

We obtain uniquely defined T'[W --- W,,] if w(te) < 0, which happens when f > 1
and n = 2 or any value of f and b for n > 3.

We can proceed in an analogous way and try to obtain the previous results including

derivatives of the massive boson. With this in mind we consider the set
W' =WU{9,¢6", 36", 0d¢", i, ... } (3.22)

with » > 1.

We have that the product T,, factorizes similarly to (3.13) and (3.14). The scaling
degree increases by 1 for each derivative, therefore sd(wgps) = 1 and sd(wagos) = 2. The
bound on sd(tg) will be found in a similar way as before. This time we face a slightly
different case since there are fields with and without derivatives. Thus, sd(w) < i, + 2y,
with 4y, being the number of internal bose-bose lines, bb € {¢@, p0p, 0pdp}, in G. A

relation similar to (3.9) can be found,
b+ 2 <n (323)

where b is the number of external bose-bose lines of G. This relation applied to sd(w)

leads to the inequality
sd(w) < 2n— f —b. (3.24)

We now show that this inequality is the same for ts.

Proposition 30. Let G be a graph associated with the Wick expansion of the time-ordered
product T, given in Eq.(3.11) with W; € W’ and tg the numerical distribution associated
with G. The scaling degree of t; with respect to D,, is

sd(tg) <2n—f —0b. (3.25)
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Proof. Begin by denoting sd; and sds the scaling degrees with respect to D,, of t5, and

ta,, respectively. Thus, equation (3.17) becomes

sd(tg) < sdy + sdy + 2ip

(3.26)
:Sdl+8d2+(f1+f2—f)+(b1+bg—b)

where f;, f is the number of external ¥»—lines and b;, b the number of external bose lines

of G;, G, respectively. The relations
fitfo=[f+ig  bit+br=0b+2iy (3.27)

were used