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CHAPTER 1

INTRODUCTION AND BACKGROUND

The most significant challenge in continuous time series modelling using deep learning

is predicting a shorter time step and variable sampling rate in real-valued time series

data. For example, each sensor sends continuous-time data at different sampling rates

and short time steps in processing sensor data. A neural network needs numerous

amounts of computation and power consumption to predict the outcome. In this

case, the network needs to compute the output at every step. The computation for

each step itself is an expensive operation in memory, computation and performance.

Another relevant challenge in time series modelling is real-time prediction. The existing

neural networks used for time series modelling are mostly discrete dynamic systems.

The computation takes place at a constant time step with an optimised gap. These

network models also have a different mechanism for skipping a step to optimise the

computation. For example, the Phased LSTM model [1] uses a time gate in order to

distinguish between phases when incoming data is available or not. Skip- RNN [2]

computes several skipped time steps ahead of time and skips their computation within

a budget constraint. The Gru-D [3] mdoel incorporates two different representations

of missing patterns, i.e., masking and time interval, into a deep model. These models

have a substantial success rate in different use cases, but they have an architecture

of a discrete system dynamic, so they still have significant limitations for real-time

prediction. These models consider continuous time series as a discrete sequence of

observations. This existing approach is not very suitable for several real-time data-

driven applications. These constraints on constant time steps also significantly impact

efficiency and precision.
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Recent deep learning problems are primarily data-driven and continuous. For example,

industries like automobiles, energy, finance, and the internet of things (IoT) analyses

real-time data continuously. The system collects data from different sources at different

dynamic sampling rates. These collected data need to be sampled at irregular sampling

rates with higher frequency for accuracy and efficiency. Modelling real-time data using

a continuous-time sequence is a very challenging task. Different research works have

tried to solve different challenges of modelling continuous time series using different

neural network models and processing data and learning approaches. In this regard,

Recurrent Neural Network (RNN) has become a state of art choice for solving several

challenges and complexities in time sequence analysis tasks, e.g., short-term forecasting,

time series analysis, continuous time series processing etc. [1]. Several ongoing types

of research [1, 2, 4, 5] on RNN have demonstrated its impressive efficiency in analysing

temporal sequences with a fixed data sampling rate. However, the existing deep

learning models are not free from challenges and limitations. Due to diversity among

different attributes, behaviour, duration of steps, energy, data sampling rate and other

challenges, modelling continuous-time data using these models is challenging.

This work aims to design a neural network model that can overcome the limitation of

constant time steps and process data in real-time. This model can compute within

the marginal budget cost with shorter time steps and accurate timing. It can also

process data at an irregular sampling rate with a higher frequency.

1.1 Problem Domain

In a traditional residual neural network, most of the time, two consecutive cell states

are related. Although each cell state is computed using the previous state and input

from the previous state, it is necessary to establish a relation among the consecutive

time steps. Eq. (1.1) describes a residual neural network, where f is the update
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function of the n-th state and its activation.

yn+1 = yn + f(yn) (1.1)

The time interval between two consecutive time steps can be important for modelling

the system and the subsequent prediction at the k-th time step. In addition, each of

the k-th time steps may aim at different goals [1]. Therefore, along with the previous

cell state, it is also essential to consider the time interval between the current and

previous time step while computing the current cell state. However, the computation

overload and the energy consumption are enormous for a neural network. Furthermore,

the traditional residual neural network also has some architectural limitations. For

example, Fig. [1.1] shows the typical architecture of a neural network which is a series

of layers. Each of the layers is a matrix operation that possesses some error. Moreover,

each of the hidden states propagates to the next layer. Therefore, To design a neural

network, it is required to determine the number of layers, as the number of layers and

the number of neurons impact the output significantly.

Figure 1.1: A general neural network and its layers

Fig [1.2] describes the influence of several hidden layers on the final output of a neural
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network. If the number of layers is too small, it may cause under-fitting; on the other

hand, too many layers would cause computation overhead, longer training time, and

even an over-fitted output. Therefore, in the case of designing a neural network, it is

a significant factor to choose the number of layers correctly.

Figure 1.2: Influence of the number of layers of a neural network

On the other hand, RNN and its different variations are usually a discrete system model

that accepts input at a constant time step. This limitation may lead to inaccurate

prediction for irregular sampling rates, higher frequency, and dynamic input systems.

In addition, modifying or re-designing any neural network is often not straightforward.

Every problem needs to design for the architecture corresponding network.

Recent work [6] has proposed that the activation function of the neural network,

as described in Eq. (1.1), can be depicted as Euler discretization of continuous

transformations, as shown in Eq. (1.2).

yn+1 = yn + hf (yn) (1.2)

Neural ODE [7] proposed that a neural network can be defined as a differential

equation by parametrising the continuous dynamics of hidden states using an ordinary

differential equation. Eq. (1.3) represents the dynamics of hidden state as an ordinary
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differential equation.

d(ht)

dt
= f (h (t) , t, δ) (1.3)

Neural ODE introduces a whole new family of ordinary neural networks. Neural

ODE can compute at an accurate time with fewer parameters and constant memory

cost. Furthermore, this model does not require backpropagating through the solver’s

operations; instead, an ordinary differential equation (ODE) solver computes the state

at any time t and helps the gradient train itself with marginal budget cost.

1.2 Research Question

The main research question for this work is finding a method that can model the

continuous temporal process using deep learning as a continuous function of time. This

method would overcome the limitation of missing patterns, vanishing gradient, higher

sampling rate and efficiency. Moreover, this method will use a minimum number of

parameters and a faster training time.

Recurrent Neural Network is one of the pioneer deep learning models for realistic

high-dimensional time-series prediction tasks, and it has some pitfalls. This PhD

work mainly focuses on leveraging ordinary differential equation capability to design

recurrent neural network architecture (RNN). The main goal of this work is to answer

the following research questions:

• Q1. What are the significant challenges in the domain of continuous-time series

modelling?

• Q2. How to leverage the functionality of the ODE solver in deep learning with

higher efficiency?

• Q3. Can the two widely used recurrent neural networks, e.g., GRU and LSTM,
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be modelled using ordinary deep neural networks?

• Q4. Can ODE base deep neural network overcome the limitations of missing

patterns in continuous time series learning?

• Q5. Can ODE based deep neural network solve the following problems of deep

neural network (i) irregular sampling rate, (ii) short time steps, and (iii) high

sampling frequencies?

• Q6. How to improve the influential feature selection for deep learning models?

Chapter 2 conveyed a detailed survey on the characteristics of time series and the

challenges and limitations of existing models for continuous-time series modelling.

To tackle these questions, we first propose a neural ordinary-based GRU model that can

leverage the capabilities of an ordinary differential equation (ODE) solver to compute

the update functions and train the model. The main contribution of this work is

the development of a formal model architecture for GRU with ordinary differential

equations and evaluating its performance for different optimiser and loss functions.

Then, we implemented the algorithm emerging from this theory in Python and used

the HIPS autograd and PyTorch framework.In Section 2.1, this proposed model is

formally introduced along with performance evaluation results. The performance

evaluation of this proposed model would answer the questions mentioned above. We

plan to design a similar ODE-based model for the LSTM unit for our future work.

1.3 Motivation

Most existing deep learning models represent continuous-time data as a sequence of

discrete events at a fixed time step. However, a time series is mainly a sequence of

observations, and it is not a series of time points with related events at those time

points. These models are better suited for sequential data where the time step between
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two consecutive observations does not affect the model’s efficiency or the time step

is permanently fixed. However, for time data in most real-time applications such as

Electronic Health Records (EHR), and Sensor data from different IoT devices, the time

step is not fixed, and observation of event data timing is also essential. For example,

the time gap between patients’ consecutive visits is vital for doctors to analyze their

health condition. For sensor data, the time steps are dynamic and very small.

The most significant challenge in time series prediction is predicting a smaller time

difference in real-valued time series. It needs numerous amounts of computation and

speedy result generation. Another relevant changeless in time sequence prediction

is to predict continuous time series. Recurrent neural network (RNN) has become

state of the art for time series modelling for its unique and dynamic characteristics.

RNN considers continuous-time data as a discrete dynamic system with constant time

steps and a constant sampling rate at each time step. However, these constraints on

regular time steps significantly impact efficiency and precision for continuous-time

series. Therefore, some research has been performed. Some others are still ongoing to

re-model or re-design different RNN architectures such as LSTM and GRU. Due to

the dependency on the computation of previous states, RNN models are still prone to

some vulnerabilities. If the time step is too big, it may adversely affect the model’s

efficiency. A longer time step might make sense for weather prediction and energy

consumption prediction, but application areas like event-based sensor signal processing

need higher frequencies and smaller time steps. It is often expected to record states

with short time steps and accurate timing for data-driven applications. For example,

for a sine wave prediction in continuous time series, the most suitable choice is the

RNN model. However, RNN still discretizes the continuous-time series, as shown in

Fig [1.3]. However, it would be more efficient if RNN models could model the time

series in continuous time with accurate timing as a function in Fig [1.3].
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Figure 1.3: Continuous function

Traditional RNN models compute the states either cell (ct) or hidden (ht) by composing

a sequence of previous states:

ct+1 = ct + f(ct, δt) (1.4)

ht+1 = ht + f(ht, δt) (1.5)

Recent work [6] proposes considering a neural network as a combination of n number

of layers. It can be presented as a continuous function, and the hidden state can be

parametrized using an ordinary differential equation (ODE) solver:

dh(t)

dt
= f(ht, t, δt) (1.6)

Here f is an initial problem-based ODE solver. Using the initial h(0) condition, the

ODE solver computes the output h(t) at time t. This approach provides faster training

time than residual network; constant memory cost instead of linearly increasing

memory cost and simpler architecture design for any neural network model. Fig [1.4]

was presented by [6] to distinguish the difference in learning vector transformation

between residual neural network and ODE neural network. As depicted in Fig [1.4],

the residual neural network usually models time series as a discrete sequence of finite
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transformation where the learning vector for the ODE neural network is a continuous

transformation of states.

Figure 1.4: Influence of the number of layers of a neural network [6]

This new family of neural networks has some substantial improvement over the residual

neural network as following

• Ordinary Differential Equations require one independent variable and one

derivative of an unknown function. An unknown ODE solver can compute

the value of the independent variable at any time t with the desired accuracy.

• There are two different methods for first-order differential equations, e.g., the

Euler method [8] and the adjoint sensitive method.

• The construction of the neural network is much easier. Any optimizer can be

used for learning without determining the number of layers.

• It does not need to define the number of discrete layers. Instead, the network is

a continuous function where the gradient can train itself within marginal error.

• Finally, it would help design the neural network model as a function of time t
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for continuous-time learning problems.

In this PhD, I target to leverage these characteristics of the ODE neural network for

the architecture of deep models to learn continuous time series in real-time.

1.3.1 Ordinary Differential Equation (ODE) based Neural Network

A simple problem helps us understand the strength of ODE based neural network for

continuous time series. For this problem, I explore the Projectile Motion: Shooting a

Basketball Problem. In this problem, a basket has its initial position X0, and overtime

T , it crosses the path and appears at a new position XT . I use a simple ODE solver to

determine XT for any input of initial condition X0 and time T . This result, shown in

Fig 1.3.1, motivates us to explore Ordinary Differential Equation (ODE) based Neural

Networks as a Solution to continuous time series modelling and prediction problems.
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Figure 1.5: Predicting the projectile for a basketball using ODE solver
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1.4 Contributions

In my PhD thesis, I have focused on minimizing the gap between discrete time steps

based time series modelling to continuous time series modelling with the dynamic

characteristics of Ordinary Differential Equations.

1. I analyzed different deep neural network model family members for modelling

different continuous time series problems. I identified the limitations and

challenges for existing models in the case of continuous-time series modelling. I

also surveyed several deep neural network models. This survey compares the

strengths and weaknesses of available models for continuous-time series problems.

I also conducted a detailed survey on the characteristics of continuous-time series

as follows

• Irregular and higher sampling rate

• informative missingness due to missing values

• high frequency and dimension

•

2. I introduced two neural network models based on Recurrent Neural Network

and Neural ODE. The first model, GRU-ODE, is a Neural ODE implementation

of the Recurrent GRU model. Another model is the Ordinary differential neural

network model architecture for LSTM. These two models can compute the

hidden state and cell state using an Ordinary Differential Equation solver at any

point in time. This model reduces the computation overhead of hidden state

and cell state with a huge amount of parameter. The continuous-time latent

variable model demonstrated the performance of learning continuous time series

with irregular sampling rates. This proposed LSTM models use a differential

equation solver to compute the hidden and cell state at any time. As the model
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is designed as a function, it can learn continuous series without discretizing the

actual time series. Proposed ODE-LSTM and ODE-GRU models predict the

output (yt) at any time t using the initial value of the observation (y0) at time

t = t0. Therefore, the predicted output is generated as a function instead of

computing each state based on its previous state individually. I have shown that

these models can provide stability to the structure of the existing Neural ODE

model.

3. I introduce two different Neural ODE models based on the GRU-D model

to resolve the informative missingness problem of traditional models where

time-series data is presented as discrete observations at a fixed time step.

4. Together with my co-authors, I introduce a range of Generative Adversarial

Network (GAN) and Neural ODE based GAN architectures to generate synthetic

medical data such as ECG or continuous time series such as sine wave. I

demonstrate that Neural ODE architecture outperforms GAN in terms of data

quality. The GAN triumph in terms of the variety or length of the time series.

5. I introduce the architecture of Convolutional Neural Network (CNN). I develop

a couple of Partial Differential Equation (PDE) solvers and Ordinary Differential

Equation (ODE) solvers to construct this model.

6. Together with my co-authors, I introduced two models that leverage the dynamic

characteristics of the Heun method to design a new deep Neural Network

architecture. This new model is an extension of Residual Neural Networks

(ResNet) based on an idea from Heun’s method for numerically solving ODEs.

7. 7. I introduce a neural network architecture that works as a temporal wormhole

connection based on the explicit iterate-to-fixedpoint operator that derives the

associated system for forward and reverse mode algorithmic differentiation to

connect with the previous hidden state. This model can optimize the parameter
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by creating a temporal wormhole connection between different layers instead

of following only a feed-forward sequential connection to the next state. This

model can retrain the model from a previous state to optimize the parameter

and generate a better solution.

1.5 Thesis structure

Chapter 1 provides a high-level abstraction of the problem domain, my research

questions, motivation for this work and an overview of the scientific contributions

introduced by this thesis.

Chapter 2 presents a comparative survey on available models and application areas

that motivate this work. First, I formally define the time series and the challenges in

the case of modelling continuous time series using available models. Next, I overview

traditional models for time series modelling, forecasting, classification, augmentation

and anomaly detection. Finally, I described how an Ordinary Differential Equation

(ODE) could be a building block for a deep neural network model for continuous time

series. I also explained how ODE could improve model performance by moving away

from the discrete-time sequence-based data modelling toward continuous time-series

data.

Chapter 3 introduces the Ordinary differential neural network model architecture

for LSTM [5] and GRU [9] Recurrent Neural Networks. These proposed models in

this chapter use differential equation solvers to compute the hidden and cell state at

any time. This model reduces the computation overhead of hidden states and cell

states with a massive amount of parameters. The continuous-time latent variable

model demonstrated the performance of learning continuous time series with irregular
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sampling rates. These proposed models use an ordinary differential equation solver to

compute the cell state and hidden dynamics of the time series at any given time. As

the model is designed as a function, it can learn continuous series without discretizing

the actual time series.

Chapter 4 introduces two Ordinary differential neural network models for GRU-D [3]

resolve the informative missingness problem in multivariate time series data in practical

applications. These two models solve the informative missingness in multivariate time

series by leveraging a black box ordinary differential equation solver to compute the

instant change in decay, hidden dynamics and GRU-D cell state as a derivative of

time. In addition, these models also leverage the decay mechanism of GRU-D as a

derivative of the change in the hidden states over time.

Chapter 5 investigates the ability of generative adversarial networks (GANs) and

Neural ODE based models to produce realistic medical time series data. I introduce a

new generative model based on neural ODE to generate training data for the medical

dataset in continuous time series. I also demonstrated the ability of the Neural ODE

based model to generate continuous time series that are diverse in nature, shape and

pattern.

Chapter 6 introduces a new architecture for the Convolutional Neural Network

(CNN) as a function of continuous-time. A couple of Partial Differential Equation

(PDE) solvers and Ordinary Differential Equation (ODE) solvers produce this new

architecture for better performance within a short training time and with fewer

parameters.
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Chapter 7 introduces a new architecture for the Neural Network as an extension

of the existing Residual Neural Network or ResNet. This Idea also leverages the

characteristics of the Ordinary Differential Equation solver especially using Heun’s

method. This proposed model benefits from the dynamic characteristics of the Heun

method, which improves the proposed model’s performance over other traditional

models.

Chapter 8 introduces a new architecture for the Neural Network where the fixed

point iteration method controls the training for different layers in a ResNet model.

This model can control the training for different layers in the ResNet model. The

training for the different layers is optimized based on the characteristics of fixed-point

iteration.

Chapter 9 contains final remarks and discussion on the problem domain and proposed

models, the significance of contributions of this thesis and topics for future research.
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missingess in multivariate time series.” 2020 31st Irish Signals and Systems
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CHAPTER 2

RECENT TRENDS IN MODELLING THE CONTINUOUS TIME

SERIES USING DEEP LEARNING: A SURVEY.

Continuous-time series is essential for different modern-day application areas, e.g.

healthcare, automobile, energy, finance, Internet of things (IoT) and other related

areas. Different practical applications need to process and analyze a massive amount of

continuous time-series data to determine a data-driven result. For example, financial

trend prediction, potential probability of a particular event occurrence identification,

patient health record processing and other practical applications continuously analyze

time-series data. However, modelling real-time data using a continuous-time series

is challenging since the dynamical systems behind the data could be a differential

equation. Several research works have tried to solve the challenges of modelling the

continuous-time series using different neural network models and data processing and

learning approaches. The existing deep learning models are not free from challenges

and limitations due to diversity among different attributes, behaviour, duration of

steps, energy, and data sampling rate. In this paper, we have described the general

problem domain of time series and reviewed the challenges in modelling the continuous

time series. We have presented a comparative analysis of recent developments in deep

learning models and their contribution to solving different challenges of modelling the

continuous time series. We have also identified the limitations of the existing neural

network model and open issues. The main goal of this review is to understand the

recent trend of neural network models used in a different real-world applications with

continuous-time data.
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2.1 Introduction

Time series modelling is very challenging due to the unique nature of the problem

domain and the data structure. The challenges for continuous-time series processing

using deep learning are that (i) the data can be collected at a different rate, and (ii) this

variable sampling rate needs a very complex deep learning architecture. Furthermore,

the data collection and sampling rate can be quite irregular. For example, the sampling

of sensors in the Internet of Things (IoT) framework can be sporadic. Additionally,

continuous time series often have many parameters to provide a real-time result.

Some of these parameters are unknown, uncertain, and dynamic; therefore, they are

sometimes even unobservable. As a result, an efficient neural network model needs to

be well-equipped to deal with high-dimensional data.

One of the main limitations of time series modelling is that existing models are

suitable for the static problem domain, but real-time time series are noisy and dynamic.

Additionally, there is not enough research tackling the problems of dealing with sparse

and asynchronous continuous time series, processing multi-variate time series with

a massive number of parameters and dealing with the dynamic, heterogeneous and

uncertain nature of the time series. Besides, in most cases, existing deep learning

models fail to collect real-time data due to the complex and higher-order temporal

dynamics. In order to avoid the challenges of dynamic input size and variable sampling

rate, most deep learning research mainly focuses on fixed-size inputs and consistent

data format to represent time series which lacks of continuity. However, to get a better

result for a dynamic system with uncertain nature in the era of Internet-of-Things

(IoT), it is essential to improve the performance of deep learning algorithms. . In this

survey, we aim to identify different challenges for time series modelling using deep

learning algorithms.

Continuous time data hold revolutionary potential. For example, Helbing et al. [1]
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describes the design of a complex system to understand the data flow of crime,

terrorism, wars, epidemics, and other crowd disasters using continuous time data.

Helbing et al. [1] also demonstrates the potential of real-time data analysis to address

several serious issues that are disrupting human life over the last decades. We are in

the prime time where there is no alternative of real-time data analysis for continuous

time data. For example, self-driving cars are already on the street; Alexa [2] is

analysing our daily activity in real-time. As the applications of autonomous objects

are increasing widely, scientists can no longer settle with the result of approximate

accuracy; they need real-time as a well accurate results.

Different types of deep learning neural network models have been researched and

analysed to solve different challenges in terms of modelling time series modelling.

However, these traditional algorithms show measurable limitations, when applied to

continuous time data. This survey attempts to identify the challenges in different

research fields with continuous time data as well as different aspects of existing Deep

learning algorithms to overcome those challenges. This paper primarily focuses on the

following questions,

1. What challenges for continuous-time data processing evolve with emerging

technologies and research fields, e.g., IoT, healthcare and others?

2. How is the state of the art deep learning algorithms closing the gap to mitigate

existing challenges?

3. How does continuous data processing using deep learning affect research in

different real-life applications?

4. What are some recent promising neural networks for processing continuous-time

data?

5. How ordinary and partial differential equations are changing the behaviour of
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neural networks?

To understand the answer of above mentioned questions, we reviewed the recent trend

in using deep learning algorithms for modelling continuous time data. We studied

the problem domain to determine the main challenges. We also taxonomise different

challenges and identified the state of art solutions for existing limitations in the case

of modelling continuous-time series. Another significant contribution of this paper

is that it discusses a comparative analysis of some promising recent research works

corresponding to addressing challenges regarding computing efficiency in processing

continuous time series. This survey aims to analyses the strength and weakness

of existing deep learning algorithms to process continuous time series and related

problems with real time continuous time data.

To achieve these goals, the rest of the paper is organised as follows: Section §2.2

uses deep learning to describe time-series properties and different aspects of the

continuous-time series learning problem domain. Section §2.3 discusses different

types of a continuous series of data. Comparative analysis of some existing neural

network architectures and algorithms is described in Section §2.6. Section §2.5 analyses

the existing challenges for modelling time sequences and several recent research to

overcome those challenges. In §2.4, a wide range of applications of the continuous-time

series is discussed. Some future research areas regarding time series modelling are

described in Section §2.8.

2.2 Time Series Analysis

Due to the dynamic nature of the time series, learning the continuous time data

with deep learning algorithms is a very complex task. Moreover, efficient and precise

computation is even more challenging. In addition, continuous time series vary in

length, which imposes additional complexity. Besides, there is an implicit dependency
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between different time states in a series. The previous input and past computation

have a significant role in calculating the current or future state in a time series.

Therefore, most of the time, there is a requirement for memorizing the previous state.

As a result, a traditional feed-forward neural network, where input at each state

is independent of each other, cannot learn continuous time series. Therefore, it is

essential to understand the dynamic nature of continuous time series to design an

efficient neural network model. In this section, we discuss the unique characteristics

of a time series.

2.2.1 What is the time series?

Time series is a sequence of numeric observations of a variable at a continuous time.

For example, Fig. 2.1shows the observation of certain variables, i.e. the stock price of

Dell over a definite period. More precisely, a time series is a function x : T → RN ,

where T ⊆ R, with a probability distribution P , i.e., (xt)t∈T ∼ P . If t ∈ T , then x(t)

or xt refers to the observed value (x) at time t. If T is a finite period of time, we have

the definition of discrete-time series. If T = {t1, . . . , tn} with ti+1 − ti = h then (xt)

where t ∈ T generates a discrete time sequence. If T = [a, b] then a continuous time

series [3] is produced.

Figure 2.1: Continuous time series for the stock price of Dell company from 2 January
2018 until 5 June 2020
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For example, any variable x can have values as x1, x2, . . . , xn at different time steps,

such as t1, t2, . . . , tn. Here, Eq (2.1) shows the time series as a vector [4], where each

value xt ∈ R. Each entry in the X vector is the real-time value of a time-dependent

variable measured at a corresponding time t of a continuous or discrete time series T ,

i.e., x1 = x(t1), x2 = x(t2), . . . , where t1, t2, · · · ∈ T .

Xn = (x1, x2, . . . , xn) (2.1)

2.2.2 What are the properties of a continuous time series?

Continuous time data has unique properties. Some of them are listed as follows:

• Length: Different applications such as automobiles and health need to observe

the value for any variable for a very long period to get correct data. Therefore,

most continuous real-time data is usually very long. Here are some real-time

data examples, such as the weather data analysis for ten years, financial trend

analysis for the last decade, unemployment statistics analysis, and event data

from sensors for a self-driving car for one hour. They all use continuous time data

for an extended period. Furthermore, for accurate analysis of any time series

problem, including classification, anomaly detection, and synthetic generation,

it is essential to either train a very large data set and/or train the data set for a

very long time.

• Higher Sampling Frequency: The intermediate time step is short for a

continuous time series, and the sampling frequency is much higher. Existing

Recurrent Neural Network (RNN) models struggles to model such time series

with higher sampling rate as they usually use a fixed intermediate time step.

Instead of modelling a continuous time series, these models first convert the

time data to a discrete time series data with fixed intervals.
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• Pathological dependencies: One of the main goals for time series modelling

using deep learning algorithms is to identify the underline temporal relation of

consecutive data points to detect the pattern. In the case of most time series,

there are dependencies between consecutive data points. This dependency can

be either implicit or explicit. However, the Length of this mutually dependent

sequence is unknown. A time state can be dependent on a near past time state,

on the other hand, time state can also depend on a state that occurs in the time

series very long ago. For example, xt can depend on previous observations at a

very distant past(xt−n) or a very short distance past(xt−1).

• Higher Dimension: Every data point xt in Eq. (2.1) consists of thousands of

attributes. Multiple parameters are a common feature for continuous real-time

data. For example, xt in Eq. (2.1) can be rich in dimension with a large number

of parameters in order to describe an individual observation. Multi-variate time

series show very high dimensional. The value for x at time t does not only depend

on time t but also depend on other variables(multivariate time series), i.e., if

X(t) = [x1(t), . . . , xN (t)] then X(t) = A1X(t− 1) + · · ·+ ApX(t− p) + b + ε(t)

in its simplest form, where Ai are N ×N autoregressive matrices and error term

e and (xi(t))t∈T for i = 1, . . . , N are different time series [5].

• Additional Noise: Along with the real-time value of any observations xt at a

time t, continuous-time also contains excessive noise components for the entire

series.

• Higher Energy Consumption: The dimension of a continuous-time series is

often very long, requiring extensive computation and energy.

• Uncertainty: Continuous-time series is often very dynamic and uncertain with

the missing pattern and irregularities. Therefore, it is often impossible to model

the complete time sequence. However, different well-known data imputation

25



techniques are used to replace the missing values in a time series.

• Irregular Sampling Rate : Besides having a higher sampling rate, continuous-

time series also exhibit an irregular sampling rate. The irregular sampling rate,

high complexity, and massive Length of real-world continuous time series often

cause missing data points that negatively affect the result of the neural network.

As a result, it is impossible to process an incomplete model precisely. An irregular

sampling rate often causes missing observations. The value of observation x can

be missing at any time step t in the continuous-time series. Not every step has

enough information to describe the observed value for x at time t.

• Memory: Time series needs Memory to encapsulate information from previous

steps. Sometimes, the interrelation between different steps in the time sequence.

In short, continuous-time data is dynamic, enormous in amount, unique, sophisticated,

and high dimensional. Moreover, the characteristics of different time series are

extensively dynamic. All these properties of continuous-time series make it very

challenging to process. However, several research works have set in in the recent era

and significantly improved results with continuous-time data. Therefore, a recent trend

is to design deep learning models to process continuous-time data without converting

the continuous-time series to discrete-time series. This paper discussed how recent

deep learning models are designed to adjust to continuous-time data characteristics

mentioned above. The architecture of deep learning models has to consider all these

unique time-series behaviours to achieve a better result with higher accuracy precision.

The complexity, training data requirement, and computation power can vary a lot

based on the characteristics of time series and the architecture of the neural network

model.
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2.3 Problem Domain Analysis

Time series related problems are not new, and the categories of these problems are wide.

Primarily, these problems can be classified into four categories [6],as shown in figure

[2.2]. Again Modeling can be either sequence-to-sequence mapping or augmentation.

Time series classification has a wide range of applications, as shown in Table 2.4.

Classification problems can be related to classifying a pattern embedded in the data

or classification of continuous-time series data such as video, text, wavelet and others.

Prediction is probably the most popular problem type in continuous time series.

Besides these, sometimes detection of embedding pattern in the continuous-time data

is also an essential problem category. Another kind of problem in time series is

anomaly detection. There is no abundant number of work in this area of the time

series problem domain. [7] proposed an anomaly detection mechanism using low-level

tracking algorithms, and [8] highlights the following questions that need to be solved

for deep learning to be ready to provide accurate results.

• How does understanding (explicitly extracting the geometrical structure of a

low-dimensional system) relate to learning (adaptively building models that

emulate a complex system)?

• When a neural network correctly forecasts a low-dimensional system, it has to

have formed a representation of the system.

• What is this representation?

• Can the representation be separated from implementing the corresponding

network?

• Can a connection be found between the entrails of the internal structure

in a possibly recurrent network, the accessible structure in the state-space

reconstruction, the structure in the time series, and ultimately the structure of
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the underlying system?

It is fascinating to say that most of the questions are now known. The answer to

the third question is that the time series can be represented using a graph or N × M

vector as a neural network input. The neural network proposed in [9, 10] describes a

neural network model where the structure of space, as well as the structure of the time

series, are considered for neural network model architecture. These works are practical

examples to answer the fifth question mentioned above. Spatiotemporal-graph [9] has

become a popular representation of space and time sequence.

Figure 2.2: Different category of time series problems

The unique behaviour of continuous-time series attracts the attention of deep learning

researchers in the early 90s. Table 2.4 shows some related works in every type of

continuous-time series-based problem. I have evaluated recent works in mainly the

last decade in this work.

There is no single solution for each problem as mentioned above. Different types of

neural network models are suitable for different problems types. For example, an

Artificial wavelet neural network (ANN) [4] is suitable for modelling and prediction

of continuous time series. On the other hand, RNN is a pioneer in time series

modelling, classification and prediction problem domains due to its properties. For

time series classification, CNN is the most popular model. CNN can learn classes

from a continuous-time series through unsupervised learning with minimum human
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interaction. In most cases, CNN and time series modelling are not a practical choice.

CNN is often used in a hybrid model and other neural networks such as AWNN or

RNN, which can significantly improve performance. A recent trend in using hybrid

neural network models is becoming very popular in a different applications of deep

learning, where the model has the attribute from both RNN and CNN is promising to

achieve a better result. Table 2.1 describes the usage of the different neural network

models in the case of solving different categories of problems.

Classification: Time series classification task is a complex task for any deep learning

frameworks. Time series can be either univariate as described by Eq (2.1) or M-

Dimensional as described by Eq. (2.2), where Xi itself is a univariate time series.

Sometimes time series can be even more complex where Xi in Eq. (2.2) can be a

multi-variate time series instead of being uni-variate.

X = X1, X1 . . . Xn (2.2)

For the Time series classification task, time series is described as a collection of a

tuple in [11] as shown in Eq.(2.3). Here time series is a data set, D, which consists of

a collection of pair (Xi, Yi), where Xi can be either uni-variate or multi-variate time

series and Yi is a label.

D = {(X1, Y1) , (X2, Y2) , . . . , (XN , YN)} (2.3)

The time series classification task becomes more challenging as the number of

dimensions increases.

prediction : Prediction tasks use previous observations for any variable such as

stock price, rainfall, house price, energy consumption and others; and forecast a future
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Figure 2.3: Time series prediction for confirmed covid-19 case in Ireland

observation value for the corresponding variable. [4, 12] describes the time series

prediction using a neural network that identifies the relationship between the previous

value and the current value of a variable. For example, in Eq. (2.4a), f is a neural

network that can identify the relation between past values of x from time t − n to

time t− 1 with it’s current value x(t) at time t. This is an example of the simplest

time series prediction with one step. Similarly Eq. (2.4b) shows multi-step ahead

prediction, where the next h-the value for variable x is predicted using neural network

f .

x(t) = f{x(t− 1), x(k − 2), . . . , x(t− n− 1)} (2.4a)

x(t+ h) = f{x(k), x(k − 1), x(k − 2), . . . , x(k − n− 1)} (2.4b)
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In Fig 2.3 the predicted number of confirmed Covid-19 cases in Ireland are platted.

Detection: Detection task is often used for classification and prediction. For

example, to understand the difference or anomaly in the Actual value and Predicted

value is shown in Fig2.3, time series anomaly detection is essential.

Augmentation: A recent survey work, [13] describes different techniques for successful

time series augmentation used for generating synthetic time series data. 2.4 shows the

taxonomy of time series augmentation for deep learning algorithms proposed by [13].

This review finds the most available time-series augmentation technique. However,

due to the complex nature of different fields, the time series data has particular

characteristics that need additional treatment. For example, finance multi-variate

time data often shows intrinsic probabilistic patterns as a relationship among different

variables; health record data shows a direct relationship among different variables at

any time point, represented as a graph. In this section, these additional time-series

augmentation techniques are analysed at length.

Figure 2.4: Taxonomy of time series data augmentation proposed by [13].

Fig. 2.3, 2.3 and 2.3 show different kind of augmentation for a continuous audio file

Pokemon - pokecentre theme.wav from the Pokemon-midi [14] dataset.
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(a) Time Domain (b) Frequency Domain

(c) Time-Frequency Domain

Figure 2.5: Different types of augmentation for time series

Besides these time series data augmentation techniques, some other advanced augmentations,

such as (i) Graph Augmentation (ii) Embedding Entropy with Ordinal patterns to

describe the intrinsic patterns, are increasingly getting attention among researchers.

2.3.1 Different dataset

This section discusses some well-known datasets used for additional research. Different

dataset focuses on different characteristics of continuous-time data as discussed in 2.3.

Table 2.2 shows the feature for some well-known datasets.

Different libraries and packages are developed to generate time targeting different

algorithms for time series problems. For example, [37] is a python package that

provides the implementation along with an example dataset for different time series

classification algorithms such as Dynamic Time Warping, Shapelet Transform, Markov
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Table 2.1: Different Neural Network Models for Different Time Series Problems

Deep
Model

Modelling
/Augmentation

Classification Prediction Detection

ANN [4, 15] [4, 16, 17]
CNN [11]
RNN [18, 19]
LSTM [20–23] [19]
GRU [24] [6, 19]
DNN [25]
Hybrid [26–28] [29–31] [32]
AWNN [33] [34] [35]
Graph [9, 10]

Table 2.2: Well-known datasets for continuous-time data research

Dataset Data type Application Nature

MIMIC-III Electronic Health Record (EHR) Health Care Missing pattern, irregular sampling rate

GMIS Energy High Dimension

DMSP/OLS (NSL) Energy Missing pattern

Global Population Density Grid Time Series Estimates Energy

British Petroleum (BP) Statistical Review of World Energy Energy irregular sampling rate

BreizhCrops satellite image time series Agriculture

MNIST [36] Image processing object detection and classification complex series

Multivariate Time Series Search (NASA) sensor generated data for media and event Aerospace Multi-variate

Transition Field, Time Series Forest and others.

For healthcare, the availability challenges of dynamic datasets are more severe than in

other research fields. Due to data privacy issues, a limited number of the dataset is

publicly available, which focuses on a limited number of aspects of health care. Most

research in health care with continuous-time data is biased towards these same EHR

datasets, which significantly impacts overall research for health care. There are some

efforts [38] to generate synthetic health data that can simulate the temporal relations

of multiple variables in a patient’s health record.

Like health care, some other research areas also suffer from the absence of enough
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labelled data. These fields generate their data. They are using automated tools to

generate a synthetic dataset for unexplored input space in various time series problems,

including time series classification, forecasting, and anomaly detection. A successful

tool requires the following feature.

1. can generate very long time series with multiple variable

2. can generate high-quality continuous-time data

3. uses an efficient data augmentation technique.

Table 2.3 shows some well-known dataset used in different problem-solving in the

problem domain of continuous time series.

Table 2.3: Some well-known dataset for time series problems

Classification Modelling Prediction Regression

Human Activity
Recognition[39]

SPSS with USDA feed
grains [40]

Daily Demand
Forecasting [41] Air Quality [42]

Gesture Phase
Segmentation [43] EEG [44] Google Web Traffic

Time Series Forecasting

MINST [36]
Activities modelling as
Fuzzy Temporal Multivariate
model

Population Time Series

CIFAR10 Free Music
Archive (FMA)

Climate Change
Earth Surface Temperature

PhysioNet
Challenges dataset[45]

Hourly Energy
Consumption

MMIC-III [45] Financial Distress Prediction
Time Series [46]

2.4 Different Applications of Continuous Time Series

There are several applications of sequential data modelling, for example, speech

recognition, bioinformatics and human activity recognition. The input is a continuous

or discrete audio clip P in speech recognition, which must be mapped to the corresponding

text transcript Q. In this example, the input and the output are sequential data

containing temporal information. Input, P , is an audio clip that plays out over time
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and output, Q, is a sequence of words. Therefore, deep learning models, suitable for

sequential data such as recurrent neural networks and their other variations, have

become promising for speech recognition, another example of continuous-time series

modelling in music generation. In the case of music generation, only the output

Q is a sequence of music notes, where the input can be an empty set, or a single

integer, just representing the genre of music. The input can also be a set of the

first few notes. The output Q is a sequence of data. This sequence also has implicit

temporal information. A third example is sentiment classification, where the input

P is a sequence of information, and the output is a discrete set of values. Even in

bio-informatics, sequential data modelling is extensively essential for the different

fundamental research areas, such as DNA sequence analysis. For example, in DNA

analysis, the input P is a sequence of the alphabetic letter. The corresponding output

is a corresponding label (Q) such as protein for each part of the input sequence.

So here input, P is a sequence of data and output, Q is a set of labels. Human

activity recognition or video activity recognition is also related to research fields where

sequential data models like time series can benefit. For example, the input P is a

sequence of video frames, and the output is the corresponding activity. Future trend

prediction in financial data or event prediction from a continuous sequence of sensory

information is some recent area where sequence modelling can bring a revolution in

inaccuracy and efficiency. These are just a small subset of sequence modelling problem

domains. There are a whole lot of different types of sequence modelling problems.

These kinds of problems have some common structure and challenges. Following are

some features from different sequence modelling problem

• Both input (P ) and output (Q) can be sequenced

• Only one of the Input (P ) and Output (Q) can be sequenced, either input or

output

35



• P and Q can have different length

• P and Q can have the same length

• P and Q can be either continuous or discrete

Time sequences can be different in length, characteristics, nature and behaviour. On

top of that, the corresponding output can also vary in type. Therefore, the deep

learning model needs to be coherent, robust, dynamic and efficient to achieve a better

result.

Different applications and problem domains are prone to different challenges of the

continuous-time series. For example, in [20] the main challenges of event prediction

using sensor data have been described are as follows.

Table 2.4: Different applications of time series problems

Application Modelling /
Augmentation

Classification Prediction Detection

Time series behaviour [47, 48] [11, 35, 49–51] [34, 52, 53] [32, 54]
Climate [23, 55, 56]
Financial trend
forecasting [9, 57, 58] [41, 59, 60]

Event prediction [20] [61, 62]
Human Activity
Tracking

[23, 63] [43]

Image Processing [64]
Helath Data [38] [65, 66] [47, 67–69] [70]
Speech recognition [2, 25, 71]
Character detection [71] [30, 31] [2]
Human activity
recognition [63]
Signal processing [72–75] [76, 77]
Climate [15, 78] [79–82] [42]
Robotics [83]
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2.5 Different challenges in modelling time sequence

Continuous-time dataset possesses several unique behaviours, making modelling data

and learning the hidden dynamics or patterns extensively challenging. This section

elaborates on different challenges of continuous-time data processing using neural

networks and highlights the recent trend for solving those challenges.

2.5.1 Modelling hidden dynamics of dynamic temporal system

Modelling continuous time series is the fundamental task for each of the continuous-

time series problem categories mentioned in section 2.3. Different deep learning models

demonstrate various techniques to overcome challenges and design seamless dynamical

systems with continuous-time data. ANN, RNN, CNN, DNN, DBN, and other hybrid

neural network models exhibit higher precision accuracy among different deep learning

models. However, their performance varies based on the system architecture and

characteristics of underline data. No single model is suitable for all different continuous-

time dynamics systems. For example, for a continuous-time dynamical system with

regular as well as irregular data sampling rat, LSTM and different variations of LSTM

show more promising results than other neural networks [20, 22]. LSTM can capture

the long-term dependency in continuous-time series, which increases the success rate,

model efficiency, and accuracy precision. Still, LSTM has some weaknesses as well.

One of the limitations of LSTM based neural network models is that they cannot

explicitly model the pattern in the frequency distribution, which is a critical component

in solving the time series prediction problem. To solve this limitation of LSTM, a

recent novel work [84] decomposes the memory states of an input sequence into a set

of frequency sets. [84] uses the time sequence of length of T represented by Eq. (2.1)

in section 2.2 as the input, where each observation (xt) belongs to an N-dimensional

space RN , i.e., xt ∈ RN . Similar to LSTM, this model uses a sequence of the memory
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cell, with a length same as the time duration (T), to model the dynamics of the input

sequence. However, each memory cell state is decomposed into a set of frequency

components as shown in Eq. (2.5). Here, F represents a state-frequency decomposition

of the input sequence across different states and frequencies.

F = w1, w2, . . . , wK (2.5)

To update the cell state, this model uses a State Frequency Memory (SFM) matrix,

St ∈ CD×K , where D is the number of dimensions and K is the number of frequency

states as shown in Eq. (2.6). Forget gate (ft) and input gate (gt) control the current

as well as previous memory state and frequency to update the SFM at time t using a

modulation (it) of the current input. Eq. (2.7) shows that (it) combines the current

input and the output vector from previous state zt. SFM combines memories from

the previous cell to the current input, similar to LSTM.

St = ft ◦ St−1 + (gt ◦ it)


ejω1t

· · ·

ejωKt


T

∈ CD×K (2.6)

it = tanh (Wizt−1 + Vixt + bi) ∈ RD (2.7)

This work proposed an improved forget gate which is a combination of state forget

gate (fste
t ), described in Eq (2.8), and frequency forget gate(f fre

t ),described in Eq (2.9).

Therefore the forget gate as shown in Eq. (2.10)) is decomposed over memory states

and frequency of the states and control the input.

fste
t = σ

(
Wstezt−1 + Vstext + bste

)
∈ RD (2.8)
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f fre
t = σ

(
Wfrezt−1 + Vfrext + bfre

)
∈ RK (2.9)

ft = f ste
t ⊗ f fre

t = f ste
t · f fre′

t ∈ RD×K (2.10)

Here, W and V in Eq (2.8) and (2.9) are the weight vectors and zt is an output vector

computed from the amplitude (Ak
z) of SFM at time t and the output of the output

gate for each frequency component (k), of the previous cell as shown in Eq. ((2.11)).

The multi-frequency aggregated output(zt) as shown in Eq. ((2.12)) controls the input

for forget and input gate.

zkt = okt ◦ fo
(
Wk

zA
k
z + bkz

)
, for k = 1, · · · , K (2.11)

zt =
K∑
k=1

zkt =
K∑
k=1

okt ◦ fo
(
Wk

z Ak
z + bkz

)
∈ RM (2.12)

Finally, the output of the output gate as shown in Eq. (2.13) uses a weight matrix Uk
o

okt = σ
(
Uk

oA
k
t + Wk

oz
k
t−1 + Vk

ox
k
t + bko

)
∈ RM (2.13)

The frequency state helps learn the dependencies of both low and high-frequency

patterns. Learning frequency pattern ultimately improves the performance in the case

of time series prediction problems. Time-frequency analysis is most famous for noisy

time series prediction problems. This is a common feature for multivariate time series

data, e.g. weather data, financial time series, pattern recognition from continuous-time

data, etc.

Table 2.5 shows several works where time-frequency analysis is used for time series
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prediction. The most popular neural network for time-frequency analysis is based on

ANN, LSTM, FFT and back-propagation neural network (BPNN) models. However,

a few one-dimensional CNN based works also exhibit better performance in case of

insufficient training data.

Table 2.5: Application of Time-frequency analysis

Application Base Neural
network

Proposed work

Rain-fall prediction ANN [82]
Multi-variate time
series forecasting(e.g.
wind, financial, energy
consumption)

LSTM [85]

Sea surface temperature
forecasting

BPNN [81]

Intelligent Fault diagnosis CNN [83]
Sleep stage classification Cascade LSTM [65]
Signal processing Short-Time Fourier

(STFNet)
[73]

Irregular data sampling rate and fixed time step

Existing deep learning models for solving continuous-time data usually use fixed data

sampling rates, but the real-time rate is primarily irregular. For example, event stream

data in the automobile industry, patient records in healthcare, weather data in climate

applications, and real-time data demonstrate irregular sampling rates. So far, RNN

based model is the pioneer among all state-of-art neural network models for modelling

irregularly sampled data by considering the continuous-time data as a sequence of

discrete fixed-step data that often suffers from loss inaccuracy.

The variable data sampling rate is another significant challenge for continuous-time

data. Most of the time, in a continuous-time series, the state value does not update

at every time step. Therefore, the value of the selected parameter cannot be found at
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Table 2.6: Potential deep learning-based solutions for irregular sampling rate

Proposed works Neural Network Model
[24] GRU-D
[20] Phased LSTM
[86] Dilated RNN
[23] Time- LSTM
[55] SKIP -RNN
[87] Latent-ODE
[50] Temporal clustering
[48] Multi-resolution Flexible Irregular Time

series Network (Multi-FIT)
[88] Neural Differential equation
[89] RNN based Neural Differential equation

every state of the time sequence, which may lead to an inaccurate result. Therefore,

solving irregular data sampling is very important. Moreover, every continuous-time

series suffers from the problem of having an irregular sampling rate, where the interval

between consecutive data collection points can vary in length. An excellent example

of such a scenario in the healthcare industry is a patient health record. The interval

of two consecutive hospital visits for a patient can be a few days or even a few years.

Similarly, the voice command for Alexa can be sampled within a few minutes or even

days. Therefore, an efficient deep learning model needs to understand the irregularity

in the data sampling rate. Temporal clustering invariance[50] is a unique technique to

solve irregular healthcare data by grouping regularly spaced time-stamped data points

together and then clustering them, yielding irregularly-passed time-stamps. Another

recent neural network called Multi-resolution Flexible Irregular Time-series Network

(Multi-FIT) [48] fights against irregularly-paced observation of a multivariate time

series. Instead of using the data imputation technique to replace missing observation

used by [24], [48] uses a FIT network to create an informative representation at each

time step using the last observed value or time interval since the last observed time

stamp and overall mean for the series. Some recent works, as shown in Table [2.6],
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mainly focus on sampling irregular data sampling.

Informative missingness

One of the severe outcomes of the irregular sampling rate is informative missingness

[24]. Informative missingness is a significant challenge in terms of processing time

series. Problems in the prediction category suffer missingness challenges the most.

Missing values in the time series and their missing patterns are often correlated.

Understanding this correlation can lead to better prediction results. Although due to

some valuable attributes in the design, RNN is well equipped to capture long-term

temporal dependencies and variable-length observations. There are some relevant

models based on RNN, as shown in table 2.7. Among these works, [24] impressively

improves RNN structures to incorporate the patterns of missingness for time series

classification problems. Besides, the sparse and asynchronous nature of the data

sampling rate causes missing observations. For each missing observation, the time

series modelling gets interrupted and can never recover again. The primary way to

battle this irregular data sampling rate is to impute the missing data to provide value

for missing observations similar to proposed in GRU-D[24] model. Another efficient

mechanism, usually used by RNN based models, is to let the model know when there

is data available and take action accordingly, as demonstrated in Phased-LSTM [20]

model. Over the last decades, several research works have been motivated to fix the

informative missingness due to missing observations in the time series. Here are some

conventional approaches to solve this problem as follows:

1. To ignore the missing data point and to perform the analysis only on the observed

data. The limitation of this approach is that if the missing rate is high and the

sampling rate is too few, the performance decreases significantly.

2. To substitute in the missing values using data imputation. Data imputation

mechanism [24, 90, 91] are widely popular for solving missing data. However,
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data imputation does not always capture variable correlations, complex patterns

and other essential attributes. GRU-D [24] is based on the idea that. This model

combines two representations of missing patterns, such as masking and time

interval, in the deep learning architecture to detect the long-term pathological

time dependencies in the time series and uses the missing pattern to achieve

better prediction results.

3. To Leverage ordinary and neural networks based on partial differential equation

helps to learn the change in data over time and use the instant derivative of the

state of any dynamical system over time to replace the missing observation state

value.

Table 2.7: Different NN models as solution for informative missingness

Proposed work Underline Neural network model
[24] GRU-D
[57] Phased -LSTM- D
[20] Phased LSTM
[92] partial Differential equation based
[93] GRU-D based Neural Differential

equation

Recovering Missing data from the asynchronous at a heterogeneous sampling rate is

challenging but essential for the model’s efficiency. The missing entries in a continuous-

time series can result in large and random distribution. The phased-LSTM [20] has

introduced the time gate to overcome complexity with the asynchronously sampled

data, and it can sample data at any continuous-time within its open period. Several

recent works emphasise hybrid LSTM to recover missing data. For example, J. Zhou

et al. [74] proposed a neural network consists of the standard LSTM [22] for regularly

sampled data and the Phased-LSTM [20] for irregularly sampled data as shown in

Eq. (2.14). The benefit of model learning is that it utilises the information from

collected observations and previous input’s missing values and, thereby, deals with
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the data sparsity caused by missing data.

hfs = LSTM f (hs−1, xs)

hbu = LSTM b (hu+1, xu)

(2.14)

Interpolation and data imputation are the most commonly used mechanism to overcome

the informative missingness. Here is a list of widely used imputation mechanism

• PCA (Principle component analysis)

• MICE (Multiple Imputation by chained equation)

• MF (Matrix Factorization)

• Miss Forest

One well-known technique is to sample the data only when available. Several neural

networks [20, 23, 55] are designed with this principle. A discrete-time series can be

defined as Eq. (2.1), which is a sequence of observed data points at consecutive time

steps. For the time series X, xi is a set of observations at time step ti. Usually, the

time sequence is long, and it needs sampling to optimise the observation data set at

different time steps. Some steps can have data, while others may have no data for

the underlined subject of observation. Therefore, neural networks require learning a

long time series where data is collected at an arbitrary sampling rate. Missing data

patterns in time series impact the outcome significantly. As a result, neural network

models must overcome the informative missingness.

Temporal and Spatial Coherence

Real-world continuous-time data dynamically evolve continuously with noise as well

as statistical properties. Both temporal and spatial coherence influence the neural

network’s efficiency used for time series modelling. Temporal coherence refers to the
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correlation between z(t1) and z(t2), z is a vector representing any dynamical system,

and z(t1) and z(t2) are the state value of z in two different data points t1 and t2.

Different real-world applications [94] are tightly dependent on temporal coherence. The

recent trend of data-driven neural network [89, 95] supports the importance of temporal

coherence in most time series problems. Some domain-specific continuous-time data,

such as prediction of wind, energy consumption, climate phenomenon [96, 97], exhibits

coherent spatial pattern in corresponding multivariate time series. Wavelets analysis

[33, 98, 99] is one of the most popular mechanisms to learn transient coherent patterns

in time series. Dynamic spatial correlation for multivariate time series [54] combines

wavelet analysis along with a non-stationary Multifractal surrogate-data generation

algorithm to detect short-term spatial coherence in multivariate time series. The

stochastic process generates the surrogated data, preserving the amplitude and time-

frequency distributions of the original data. An LSTM based neural network [10]

demonstrates the usage of spatial coherence in neural network modelling for time

series with Spatial Coherence.

High Dimensionality

Real-world time series contain noise components that may add additional complexity

to the modelling and processing of time series [54, 76]. Besides, multivariate time-

series data samples exhibit high dimensionality. For time-series data processing, it

is essential to optimise the noise and Dimension. There are several mechanisms to

overcome high dimensionality problems for multivariate time series, such as restricted

Boltzmann Machine [21], feature extraction, wavelet analysis, filtering feature and

others. One solution is to use Wavelet analysis which removes some noise and reduces

the dimensionality. Different kinds of optimisation functions can be used to optimise

the weight matrix. Peng et al. [53] have transformed the weight matrix optimisation

problem into a dual Lagrangian problem to overcome the high dimensionality. Another
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popular solution is feature extraction. In feature extraction, neural network models

only focus on a set of features from the long time series for computation. However,

this can negatively affect the time series process as an essential or relevant feature

can be excluded, resulting in misleading results. On the other hand, if the number

of selected features is large, the associated computation, time, memory, and energy

would be extensive, negatively influencing the performance.

Over-fitting

Any deep learning model must provide a mechanism for avoiding over-fitting. In

the case of modelling continuous-time data, it is mandatory and challenging. Some

common approaches for avoiding over-fitting are listed as follows.

1. Bach normalization [100]

2. Dropout [25]

3. Optimizing weight matrix [53]

4. Using un-tuned weight matrix

5. Reducing the Dimension of the representation of the input vector by shifting a

row or column

6. Using Gaussian or similar process for feature extraction

7. Using comparatively less memory size so the model cannot memorise the input

sequence

8. ANN-based model uses an early stopping procedure to avoid the over-fitting

problem. In the case of early stopping, a predetermined number of steps controls

an automated stopping procedure.

9. Using a broad set of training and test datasets can reduce the chances of
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over-fitting.

10. Regularisation is a well-known procedure for overcoming over-fitting. Sampling

noise is a very excellent solution for Regularisation.

11. Fine-tuning of the neural network model prone to stop early, thereby reducing

over-fitting.

12. A unique method generative pre-training [101], where representation mapping

of input data is done using feature detectors before the actual training. In this

process, multiple layers of feature detectors are for a discriminative fine-tuning

phase and adjust the weight found in the pre-training phase. This process

significantly reduces the chances of over-fitting.

Length of Sequence

Recently, several works, as shown in Table 2.8, argue that the long time series is more

efficient for learning the continuous-time data. Usually, a long time series has shorter

time steps that improve the result’s accuracy, but it still needs to overcome the higher

sampling rate complexity. At the same time, the longer the sequence is, the more

complex the neural network needs to be.

A minimal number of works demonstrate efficient processing of lengthy continuous-

time series. The usual approach is to normalise the long continuous-time data and

train it in multiple batches with a subset of data for each batch. The Wavenet [102]

is one of the most popular works on long sequence time series classification. Dilated

convolutional neural networks are often used to overcome the sequence length problem.

Another new addition to this solution is phased-LSTM, a number of variations [23]

of Phased-LSTM [20] have been proposed since 2016 to combat the larger sequence

length problem.
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Memory size

Memory size is another problem that may arise due to the sequence length of the time

series. RNN is more famous for memory-related problems than ANN and CNN due

to its ability to recover memory from long past events. However, recently Temporal

Convolution Networks (TCNs) have achieved better performance in maintaining a

more extended history than RNNs.

Table 2.8: Accuracy on the copy memory task

Model Sequence
Length

Accuracy

LSTM 50 < 20%
GRU 200 <20%
TCN 250 100%

Table 2.8 shows that for the same data set as described in [91] TCNs maintains 100%

accuracy for all sequence lengths. On the other hand, the accuracy level falls below 20%

for LSTMs and GRUs after the sequence length reaches 50 and 200, respectively. For

LSTM and GRU, the model quickly degenerates to random guessing as the sequence

length grows. TCN is an excellent example of a hybrid deep learning model, where

the attributes of CNN and RNN are combined efficiently. Large memory size is not a

feasible choice for modelling neural networks as that may cause an over-fitted training

model.

2.5.2 Pathological long-term dependencies

Another sequence-related limitation of deep learning architecture for time series

problems is pathological long-term dependencies [103]. Some of the data points in a

long time series dataset, as shown in 2.1, can be related, while some others are entirely

independent. An excellent example is described in [57], where N consecutive visits of

a single patient can be related to the same physical problem where the range between
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two consecutive visits is comparatively short, while N consecutive visits of a single

patient can be for entirely independent of each other. However, the range between

two consecutive visits is relatively broad in this case. Usually, problems in long-term

time series prediction problems have a long sequence of inputs. The future prediction

for such an input series can only depend on a few time-stamps at the end of the input

series, and there is a long irrelevant part of random input in the sequence. Healthcare

shows this kind of problem more often than in other sectors. This kind of long-term

pathological dependency makes the problem even harder to solve. The challenges

increase relative to the length of the sequence (L) as longer sequences exhibit a broader

range of dependencies.

Influential feature selection

Time series usually have a massive number of parameters. In order to model the time

series, some of the parameters are more significant than others. Also, domain-specific

feature strongly influences the accuracy of the result generated by different neural

network model. As a result, different models demonstrate different performance for

similar tasks with the same dataset and domain. The correct feature for each task is

critical for time series modelling, especially in the time series classification problem.

However, it is not feasible to design a domain-specific neural network for different

tasks. Therefore, it is essential to distinguish the essential parameters and removes

irrelevant parameters to reduce noise. If the length of the time series is L and M is the

number of features to describe any problem, the scope of M features is M×L. For this

reason, influential feature selection is crucial. Many methodologies are available for

feature extraction from different static domain-specific data, for example, static images

and computer vision. However, extracting features from continuous-time data is still

an open problem. One solution to improve the efficiency of a neural network model in

terms of feature selection is that the design of the models needs to be data-driven.
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Several data-driven neural networks, as shown in Table 2.9 demonstrate promising

results for feature selection and optimising the performance of neural network models.

Table 2.9: Data driven neural network

Proposed work Underline Neural Network
[104] Neural ODE
[92] Neural PDE
[95] PDEs with Differentiable Physics
[95] PDEs with Differentiable Physics
[105] Symplectic ODE-Net

Another approach to overcome the challenges of proper feature selection is using

external methodologies to select features during the data collection and cleaning phase

before training the neural model and later using that feature during the training phase.

Some of the efficient methodologies for feature selection are mentioned in Table 2.10.

Table 2.10: Efficient methodologies for feature selection

Proposed
work

Methodology Remark

[35] Generic time series classification.
[47] multi-objective evolutionary

algorithms (MOEA) along
with evaluators based on the
most efficient state-of-the-art
regression algorithms

This method improves the
performance of multivariate
time series forecasting

2.5.3 Challenges faced by different Applications

There are several applications of sequential data modelling, for example, speech

recognition, bioinformatics and human activity recognition. Different real-world

application data suffers from different challenges mentioned in this section. Table 2.11

shows how different characteristics of continuous-time data affect different applications.
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Table 2.11: Challeneges for proecessing continous-time data in different applications

Challenges HealthCare Finance Event
Based IoT

Frequency
Anasis &
Prediction

Classification

Informative
Missingness

X X X

Irregular sampling
rate

X X

Higher sampling
frequency

X

High Dimensional
Data

X X

Pathological
dependencies

X X

High Memory
Consumption

X

Complex
Computation

X X X X

Table 2.12: Different Projects in Health care with time series

Health care projects Deep learning models
Heart failure prediction Doctor AI [106]
Patient Visit analysis Time LSTM [23], Phased–LSTM-D [57]

Choi, Edward, et al. [2]
Multi-outcome Prediction DeepPatient [107]
Sleep stage classification [66]

As shown in the table 2.11, healthcare data significantly suffers from informative

missingness, sampling irregularity and Pathological dependencies. Table [2.12] depicts

the current trends of using continuous time series as the data model for health care

problems. As a result, most research in the Healthcare industry uses RNN based

neural networks. However, due to privacy, the Healthcare industry suffers from a lack

of actual clinical data. Therefore, some researchers use GAN based neural networks

to generate sample clinical data for further research.

Continous-time data is the primary block for the Internet of Things(IoT). The work
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presented [20] has significantly contributed to opening new areas of investigation for

processing asynchronous sensory events that carry timing information. This work

has been extended and used in several applications [26, 75, 108, 109]. Some core

characteristics of sensor-based data are explained by[20], such as Irregular sampling rate,

Higher sampling frequency and High Dimension. A high Dimension is an unavoidable

outcome of multivariate time series. Most sensor-generated data for weather, climate,

automobile and other applications are generally multivariate. For example, sensor data

from wearables consists of multiple data channels, such as step-count in intelligent

mobile devices that use the accelerometer and optical heart rate sensor. This sensor

collects data on heart rate and step count. There are several use cases where data

is coming from multiple channels. For a more specific example, the heart rate

monitor in smart mobile devices. In recent days, most research fields deal with a

temporal sequence where the input channel is more than one. In addition, another

significant limitation is that it requires long time series with higher frequencies and

short time steps to predict an asynchronous future event from n previous events

from the sequence. This processing possesses a huge computation load and energy

consumption. For multivariate sensor-generated time series, RNN and CNN based

hybrid models [10, 20, 24, 84] are comparatively better in performance as well as

accuracy.

The early and most popular application of time series is Time series frequency analysis

for future prediction. Deep learning state of artworks for predicting future events

has achieved impressive accuracy and performance. However, the current works are

mainly based on an underlying assumption that the test data and the train data

share a similar scenario [62]. However, in reality, that is hardly true. Therefore, only

a few relatively simple practical sequence models with a fixed data rate and some

semi-supervised learning algorithms can provide satisfactory results under specific

circumstances with state-of-the-art research works. In addition, the performance
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of these deep learning models for processing time series does not provide expected

performance in real-world problem-solving.

Besides time-series frequency analysis, continuous-time data has become very popular

in event prediction. Both regular and rare event prediction tasks, deep learning

algorithms use time series analysis. However, this is challenging as the time series is

mainly a multi-variant series consisting of heterogeneous variables. In addition, the

dependency between variables is very complicated. Data are sparse and not sampled

uniformly. The irregular sampling rate is prevalent in the case of event prediction.

Furthermore, the series is asynchronous, making the task even more complicated. So

far, the most used solution is to divide the problem up into a homogeneous variate.

Therefore, several works[20, 23, 24, 57] focus on dealing with the irregular data

sampling rate and asynchronous time series.

Visual recognition is a perfect example of time series classification or detection from

continuous-time data. Recently, human activity recognition from the video has become

a trendy field as an example of temporal sequence learning using a deep learning

algorithm. The main challenge in processing the time sequence from the video is

that the data is spatially imbalanced with an irregular sampling rate. The quality

of the image and the object’s place in the image make this even more challenging.

In a single video frame, there can be many parameters. On top of that, additional

noise in the data set makes it harder for a deep learning algorithm. Hybrid neural

network models are more successful than traditional vanilla models in this area. A

combination of CNN and LSTM networks can successfully overcome the problem

of spatially imbalanced data. In most cases, CNN models outperform other neural

network models for continuous data visual recognition and image classification tasks.

For example, a recent deep learning model [63] has proposed a similar architecture,

where a CNN model is used for the feature extraction phase. Later the feature vector
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an LSTM was placed in the model architecture for human tracking detection and

result tuning as shown in Fig[2.5.3]. Fig[2.5.3] shows a similar deep learning model

[110] where multiple CNN models are used as a cascaded CNN model.

(a) Hybrid CNN-LSTM Model (b) Cascaded CNN Model

2.6 Different Neural Networks Models For Time Series Processing

This section presents different neural network architectures, which are generally used

to learn a continuous time series. The different neural network models have their

strengths and weaknesses in modelling continuous time series. For example, fig. 2.6

shows the primary types of neural networks for modelling continuous-time series over

decades.

A single type of neural network is not suitable for all different solutions. Based on the

nature of the time series, the different model performs better than others.

2.6.1 Artificial Neural Network (ANN)

Wind speed prediction, energy prediction, financial time series forecasting, and many

other continuous series prediction problems have been solved using the Artificial neural

network (ANN). In early 2000, along with the CNN and the RNN based solution, ANN

became a widely popular neural network for modelling non-linear time series. ANN

does not need any previous assumption or linearity. The ANN successfully provides a

mechanism to determine the number of neurons fired in the hidden layer. Some other

characteristic features of ANN are listed below
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Figure 2.6: Different types of neural network used in continuous time series modelling

• ANN can derive its computing power through massively parallel distributed

structure and learn the corresponding model.

• The architecture of the model is straightforward. It consists of units. These

units are connected using the symmetric weighted connection. This connection

can be either one-directional or bi-directional. The weight of the connection can

be inhibitory or excitatory.

• Usually, a sigmoid function is used as the activation function, also known as the

squashing function. Other activation functions such as Linear, Atanh, Logistic,

Exponential and Sinus are used as the activation function in the hidden and
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output layers.

• As the ANN is simple in terms of design and system structure, it is possible to

use different artificial intelligence algorithms, such as particle swarm optimisation

algorithm (PSO), for learning and adjusting the parameters. Furthermore, due

to the simplicity of the underlying design of ANN, most ANN-based models are

hybrid, whereas other algorithms are integrated to improve the performance

of ANN. Some of the most popular methods used with ANN for time series

prediction, classification and detection problems are as follows:

– Hidden Markov model (HMM)

– Genetic Algorithms (GA)

– Generalised regression neural networks model (GRNN)

– Fuzzy regression models

– Simulated Annealing algorithm (SA)

– Echo State Network (ESN)

– Particles Swarm Optimisation algorithm (PSO). [111]

– Elman Recurrent Neural Networks (ERNN) [60]

– Hydrodynamic Neural Network

– Back Propagation Neural Network (BPNN)

– Recurrent Multiplicative Neuron Model (RMNM)[112]

– Wavelet Neural network (WNN) [78]

– Hilbert-Huang transform (HHT) [15]

– Multilayer Perceptron Networks (MLP)

56



– Support Vector Machine (SVM) [79, 80]

• Mean square error (MSE) and mean absolute percentage error (MAPE) is the

loss functions used in ANN-based models.

• Artificial neural networks (ANNs) are very suitable for time series prediction,

univariate forecasting, financial trend detection, wind speed and water fluctuation

detection, and similar continuous-time problems. This neural network is also

beneficial for pattern classification, and pattern recognition [34].

• ANN models are mostly data-driven without any initial assumption.

• ANN models usually perform better for time series prediction because of their

ability to model any continuous functional relationship between input and output.

• ANN models can capture the underlying non-linearity of the system with highly

non-linear dynamics by using a non-linear activation function.

• ANN model can adapt conditional training quickly. Therefore, conditional time

series forecasting is one of the most used areas for ANN.

Challenges of ANN

The main challenges of ANN models are as follows

• Less Robust : Noise data influences the optimisation as well as the robustness

of the model. if the noise is not handled properly in the design of the network

model, it can reduce the robustness of unknown input data.

• Optimum architecture: The structure of the neural network model controls the

performance of the model. therefore, it is crucial to determine the architecture

or structure design of the network, including the number of layers, number of

neurons and other parameters.
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• No previous memory : ANN models can not preserve the previous state in the

memory.

• Back-Propagation Error :

• Performance accuracy : ANN models often suffer from reduced accuracy for

multi-variate, missing patterns and other complex problem. So, the feasibility

of the proposed methodology needs to be evaluated against a different kind of

dataset. The prediction accuracy of ANN models directly depends on the right

choice of parameters.

• Selection of right related variable and parameters: Different related variable

such as the weight for each connection between neuron controls the accuracy

and robustness of the model. Therefore, most ANN models pay attention to

determining intelligent techniques to choose the correct variable and evaluate

them over time. Selection of the right variable or parameters also expands

to determine data transformation, initial values of the parameters, and stop

criterion. It is essential to choose the right parameter to avoid unnecessary

overfitting.

• Time series learning: ANN models need to capture the main features of the

continuous-time series and its generalisation.

Recent ANN models to overcome different challenges

Recurrent Multiplicative Neuron Model(RMNM) proposed by [112] is a recent work

deal the lagged variable of error as input along with its recurrent structure in the case

of learning time series. It overcomes the traditional challenge of ANN of deciding the

number of neurons in the hidden layer. Fig 2.7 shows the RMNM model architecture.

Another significant limitation of ANNs is that they cannot preserve the previous

state in memory. SRWNN [113] proposes an outstanding solution for memory state
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O

Figure 2.7: The Architecture of RMNM [112]

preservation. Fig 2.8 shows the architecture of SRWNN. SRWNN accepts N inputs

but generates only one output. SRWNN usually consists of four different layers. The

first layer accepts the input signal. The second layer consists of wavelet neurons

(wavelon). Each of the wavelon has its self-feedback loop, introducing the recurrent

nature in traditional Artificial wavelet neural networks (AWNN). The wavelon loss

function described in Eq. (2.17) computes the wavelet. The input of the second layer

contains the memory term, as shown in (2.18). In this layer, the current dynamics of

the system is conserved for the next step. The third layer is a product layer, and the

fourth layer generates the output. Compared to AWNN, SRWNN shows that better

performance is inefficient in solving the sequential temporal problem. SRWNN can

store information temporarily. As a result, SRWNN is suitable for chaotic time series

and non-linear systems.

Most of the above mentioned ANN models use hybrid methodologies to improve

their performance. Despite AWNN’s performance in sequence modelling, it has some

limitations which often set obstacles to achieving a better result. The recent trends of

using AWNN and CNN or RNN can overcome some limitations and achieve better
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Figure 2.8: Architecture of SRWNN [113]

performance. However, AWNN is not famous for its sophisticated time series modelling.

[114] presented a comparative qualitative analysis of different ANNs proposed for

forecasting time series in the time between the years 2006 and 2016. This analysis

shows that the most successful ANN model is hybrid and different algorithms are used

to improve the performance and overcome different challenges of multi-variate time

series. Hybrid ANN models demonstrate better performance than basic ANN models,

especially for dynamic datasets with a missing pattern, and hidden non-linear and

non-stationary characteristics.

Choosing the correct variable, weight, and the initial parameter value is significant for

artificial neural network modelling. Therefore, artificial intelligence algorithms such

as Genetic Algorithms (GA), Simulated annealing algorithms and PSO algorithms are

usually used in ANN to adjust the model’s parameters.

Different ANN-based models adopt several approaches to overcome the limitation of

back-propagation. For example, [115] combines a three-dimensional hydrodynamic
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model in conjunction with an ANN to improve prediction accuracy. Integration with

reinforcement learning (RL) is another solution for back-propagation. Usually, the

BP learning algorithm uses the traditional Euclidean distance to determine the error

between the output of the model and the training data. However, in RL, the reward

can be defined as an error zone. Therefore, the influence of the noise data can be

reduced; at the same time, the robustness of the anonymous data may be raised [52].

There are different ANN-based neural network models, as shown in Table 2.13. These

recent models adopt different hybrid mechanisms in order to overcome the challenges

described in §2.6.1.

Table 2.13: Different Kind of ANN

Proposed

work

Challenges To

Solve

Characteristics

Recurrent

Multiplicative

Neuron Model

(RMNM) [112]

ARMA TYPE

PI-SIGMA

ANN [116]

Adjust the parameter

as well as a related

variable such as

weights of neuron

connection to avoid

over-fitting and

improve accuracy.

Use a PSO algorithm for learning.
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Proposed

work

Challenges To

Solve

Characteristics

Wavelet net [78,

113]

Support vector

machine, Wavelet

decomposition

Usually Wavelet nets are hybrid models

combining data-driven least square support

vector machine (LSSVM), (ANN) and

wavelet decomposition for disaggregation of

continuous-time series. Instead of identifying

the correlation among feature, [113] model

proposed a new parameter named as mutual

information (MI) which can be defined by

Eq. (2.15)

I(X, Y ) =

∫∫
dxdyµ(x, y) log

µ(x, y)

µx(x)µy(y)

(2.15)

Hybrid [117] Learn hidden patterns

or dynamics of the

system

Uses different methods such as singular

spectrum analysis (SSA) to identify hidden

oscillation patterns in the data

Multi-layer

artificial neural

networks [17]

Multi-variate and

interdependent

dataset

Uses Mutual Information(MI)based feature

selection process

In addition to the input layer and output

layer of the neuron, this model has multiple

layers of hidden units. These hidden units

learn features and hidden dynamics of data

with multiple layers of abstraction.
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Proposed

work

Challenges To

Solve

Characteristics

Functional

link artificial

neural network

(FLANN) [59]

Multi-variate time

series, where along

with continuous-time

data, location is

also an influential

parameter for future

prediction

Introduces a low-complexity artificial neural

network and employing incremental and

diffusion learning strategies

Hilbert-Huang

transforms [15]

Analysing the spectral

and temporal

information of

non-linear and

non-stationary time

series

Introduce hybrid ensemble empirical mode

decomposition (EEMD)-ANN that uses HHT

to identify the time scales and change in

continuous data.

Hybrid

ANN-(U-

)MIDAS[118]

Explore hidden non-

linear patterns in raw

mixed frequency data

without information

loss

introduce mixed data sampling to use

raw input directly without any latent

preprocessing.

Use back-propagation and chain rule to

derive the gradient vector for optimisation

algorithms

SciANN [119] Solution and discovery

of partial differential

equations (PDE)

Uses Physics Informed NN and Variational

Physics-Informed Neural Networks With

Domain Decomposition
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Proposed

work

Challenges To

Solve

Characteristics

hline

Multiplicative

Neuron Model

[112]

Use simple activation

function for hidden

layer

The output of time series at step t , yt for a

typical MLP can be defined by Eq. 2.16.

yt = G

(
α0 +

h∑
j=1

αjF

(
p∑
i=1

βijyj−1

))
(2.16)

Here, α, β are the weight for the neural

network model. F and G is the activation

function of the hidden and output layer,

respectively, as described by (2.17) and

(2.18).

F (x) =
1

1 + e−x
(2.17)

G (x) = x (2.18)

Self recurrent

wavelt neural

network

(SRWNN)

[120]

This model is suitable

for chaotic time series

described in §2.2

The main self recurrent wavelet layer uses

gradient descent method, which is derived

from stability theorem along with adaptive

learning.
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2.6.2 Recurrent Neural Network(RNN)

In processing continuous sequence, the recurrent neural network is the pioneer. A

repetitive cell connected with a lateral connection creates a more extensive neural

network in an RNN that processes data sequentially, precisely what a temporal

data sequence requires. Therefore, it is very efficient to model sequence structure.

Even though RNN has demonstrated significant satisfactory result for modelling

variable-length time sequence, as mentioned by [9] RNN architecture lack an intuitive

spatiotemporal structure. To model time sequence is much more comfortable in RNN

due to some novel features of RNN as follows

• RNN processes data sequentially, one record at a time. It can model sequences

with recurrent lateral connections.

• It extracts the inherent sequential nature of time series.

• It can model different lengths of the series.

• It supports time distributed joint processing.

Although RNN is one of the pioneer deep learning models for realistic high-dimensional

time-series prediction tasks, it has some its pitfalls. Some of the main drawbacks of

RNN are as follows

Vanishing gradient problem: [121, 122]. Most of the current work mainly focuses

on the Vanishing gradient problem. There is already a significant improvement in

the case of dealing with the Vanishing gradient. The continuous-time series can be

extended in length, where the data point in the later of the sequence can have a

long-term dependency on the data point at the earlier state of the sequence. So, a much

earlier time state can affect a much later time state in the sequence. As the neural

network can be profound, even for a 100-layer neural network, it is challenging for the
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gradient to propagate back to affect the earlier state in the sequence. Back-propagate

to an earlier state of the sequence to modify the computation in the earlier state. One

of the major limitations of RNN and its different variants in the case of modelling a

continuous time series is to overcome the Vanishing gradient. Training a complex deep

learning architecture with multiple layers of hidden units becomes critical due to the

vanishing gradient problem when the error is usually backpropagated. LSTM [22] is an

impressive addition to the RNN family, which solves the vanishing gradient problem.

Another way to solve the problem is to use unsupervised greedy layer-wise pre-training

of each layer. This kind of regularisation helps to achieve better initialisation of a

model.

Exploding gradient problems: Another significant limitation when using RNNs

for time sequence modelling is the exploding gradient problem [123]. This problem

makes it difficult to train a continuous time series using RNN.

Butterfly Effect: For example, due to the dependencies among different time

states in a long term time sequence, a minimal change in an iterative process of an

RNN can result in a significant change in future time states after n iterations, where

n→∞ [124]. The main reason is that the loss function reacts significantly to small

changes and can be ultimately discontinuous, which would result in a complete failure

in terms of predicting real-time continuous time series [122]. Some of the conventional

approaches to deal with the butterfly effect are to use different data imputation

methods, e.g., PCI, MissForest, and KNN SoftImpute.

In this section, some of the critical architecture designs of RNN are discussed.

Long Short-Term Memory (LSTM)

Vanilla RNN has been used for time sequence processing for past years. However,

processing time sequence using vanilla RNN requires extensive modification in the
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architecture. Therefore, several works have been presented in the last few years,

where Vanilla RNN, mainly LSTM, has been modified and extended to improve the

performance and accuracy of time series processing. In an LSTM, it is possible to pass

information from one cell to the next selectively. This model can process long term

pathological dependency along with short term dependency, which is one of the most

significant challenges in sequence modelling [20]. Long Short-Term Memory (LSTM)

[121] has already become famous for both long-term and short-term time steps for its

performance and efficiency.

Figure 2.9: Traditional LSTM

As depicted in Fig. 2.9, traditional LSTM cell is composed of 5 different non-linear

components described in Eq. (2.19) to Eq. (2.23). They interact with each other

through linear interaction, therefore, information can be transferred through back

propagation across time. Each cell has an input gate i[t] Eq. (2.20), output gate, o[t],

Eq. (2.21) and forget gate f[t], Eq. (2.19). The cell state c[t], Eq. (2.22) represents

the current state of the cell and hidden output vector [h[, Eq. (2.23) influence the

computation of cell state of the next cell in the RNN sequence.

f [t] = σf (Wxfx [t] + h [t− 1]Whf + wcf � c [t− 1] + bf ) (2.19)
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i [t] = σi(Wxix [t] + h [t− 1]Whi + wci� c [t− 1] + bi) (2.20)

o [t] = σo(Wxox [t] + h [t− 1]Who + wco� c [t− 1] + bo) (2.21)

c [t] = f [t]� c [t− 1] + i [t]� σc(Wxcx [t] + h [t− 1]Whc + bc) (2.22)

h [t] = o [t]� σh(c [t]) (2.23)

Here xt is the input vector and ht is the hidden output of LSTM cell at time t. Fig 2.9

represents an overview of how different components of the different cell in traditional

LSTM cell interacts with each other.

Several recent research works [6, 9, 108, 125] have demonstrated significantly impressive

results for modelling as well as processing time series. The main idea behind the

success of LSTM in the case of modelling time-series is its universal approximation

ability for the open dynamical system [120] which can learn the dynamics of the

system and can generate it at the same time. For a deep LSTM neural model, it is

not recommended to use a considerable memory size, as the model can be over-fitted

by memorizing the input sequence data.

Several works [20, 23] have used different systems for time series modelling. For

example, Shengdong Zhang et al. [10] have used a set of the temporal sequence of

observation collected in n consecutive steps, as shown in Eq. (2.1). They also have

considered that the number of observations in each set is not constant. Then they have

used a sequence of labels {e1, e2, . . . . , en } for X where ei{0, 1 }. ei= 1 indicates
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the event is observed, on the other hand, ei= 0 indicates absence of the event. In

order to define the time gap between time duration between consecutive change in

the value of ei, this work has used a target label sequence y = {y1, y2, . . . . , yn }

yi = 1 refers that an event is observed in the next K time-steps, i.e. j+K j=i+1 ej

> 0, and yi = 0 refers otherwise. In this work, K is referred to as a monitor window.

This monitor window helps to build the distribution of positive as well as negative

events efficiently as the value of ei indicates if the event at a particular time step is

either positive or negative. Feeding the entire sequence to the network at once is not

recommended. This can impact the outcome negatively. An alternative best practice

is to feed the time series by batch. The time sequence of length T is divided into

M subsequence; each of them is of maximum length of T
M
. This technique is known

as time sequence chopping. The chopped size is selected very carefully; otherwise,

this technique sacrifices temporal dependency longer than T
M

time steps. This LSTM

based architecture has been used for fault prediction on multi-variant heterogeneous

time-series data. One of the most significant contributions of this work is that it

handles time sequence modelling for rare events where the distribution of positive and

negative samples are highly imbalanced.

LSTM is the most used neural network model to solve time series problems. Table

[2.14] shows some recent work where LSTM has been used on order model time series.

Recent trends are focusing on improving or modifying the architecture to model time

series and related problems. Some of the promising models are described here as

follows:

Adaptive time scales Recurrent Units (ARU) Adaptive time scales Recurrent

Units is a recent variation of RNN [126], where time constraints τr is used to drive
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Table 2.14: Different Types of RNN for Modelling Continuous Time Series

Neural network Model Related work
Vanilla RNN Skip-RNN [55], Structural-RNN[9],

State-Frequency-RNN
LSTM Phased LSTM [20], Time LSTM

[23], Phased LSTM-D [57]
LSTM + CNN Fcn-rLSTM [10]
GRU GRU-D [24]

the rate of firing −rn neuron of a neural network unit as shown in Equation.

τr
drn
dt

= −rn + f (In) (2.24)

Here f is a sigmoid activation fucntion.

Eq (2.6.2) shows the complete model for Adaptive time scales Recurrent Units (ARU).

The input signal x is processed using weight matrices W,U and V . N-dimensional

Intermediate state variable I and r are used to capture synaptic couplig between

neurons. αs = ∆t/τs and αr = ∆t/τr are rate constants to define the relation between

state variable and time constraints τr and τs.

It = (1− αs) It−1 + αs (Wrt−1 + Uxt))

rt = (1− αr) rt−1 + αr (f (It))

yt = f (Vrt)

The significant contribution of this paper is to identify the impact of slower rate

constants that can lead to longer memory retention, which enables the maintenance of

memory for more extended periods. ARU is a suitable solution for vanishing gradients

problems.
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Phased-LSTM Neil et al. [20] have added a new time gate to the existing LSTM,

and the timestamp, which is the input for the new time gate, controls the update

of the cell state, hidden state and the final output. For improved performance, this

model of LSTM has been designed to sample time rates captured in the model’s active

state only. Therefore, associated sample time rates are captured only when the time

gate is open. As a result, Phased-LSTM can attain a faster learning convergence in

the training phase. The phased LSTM described in Fig [9] shows that the time gate

decides the phase as either openness when the time gate value raises from 0 to 1 or

closed when the corresponding time gate value drops from 1 to 0. The cell state is

only updated when the time gate is open. Eq. (2.25, 2.26 and 2.27) describes the time

gate in three different phases shown in Fig [2.6.2 and 2.6.2]

ktopen1 =
2∅t
ron

if ∅t <
1

2
ron and ∅t =

(t− s) mod τ

τ
(2.25)

ktopen2 = 2− 2∅t
ron

if
1

2
ron < ∅t < ron (2.26)

ktclose = α∅t (2.27)

The leakage rate (α) is active when the closed time gate. The ratio (ron) of time

duration when the gate is open to the entire period helps to control the open phase

and close phase of the gate to fine-tune the sequence. Another important controlling

parameter is s, which controls the shit between the open and close phase of the time

gate (τ) to determine the duration for each oscillation period.

The main advantages of this model are that it uses the time gate to convert the

continuous-time series to a discrete sequence of sensor input with a minimum loss.
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(a) The openness of Phased LSTM (b) Phased LSTM Model Cell

Therefore existing LSTM can deal with the discretized sensory event. One of the

limitations is that this work is still converting the continuous-time series to a discrete

sequence; therefore, the accuracy is still not 100 percent. Another limitation of this

work is that it cannot de-sparsifying sparse sensor data. Furthermore, this model

cannot reverse back to the original continuous time series from the discretized sequence.

Therefore, there are still missing inputs, and the input is not entirely asynchronous.

Phased LSTM-D For continuous sequences such as Electronic Health Records

(EHR), where each feature is asynchronously sampled, it is challenging to apply

Phased-LSTM straightforwardly. EHR data sampling can be used for disease diagnosis

and prediction. In the case of EHR related problems for an individual patient, the

time gap between two consecutive visits is irregular, and also, all the clinical data

about the patient collected during other visits are not the same. Some features may be

collected the first time and may not be collected next time. Therefore, continuous data

sampling is irregular and has missing parameters. Therefore, S. J. Bang et al. [57] have

proposed Phased-LSTM-D based on Phased-LSTM [20] to achieve better prediction.

Phased-LSTM-D is mainly designed to solve the irregularity of the sampling interval

and the asynchronous feature.

Phased-LSTM-D, as shown in Fig [2.10], is a new predictive deep learning model that
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can simultaneously however, individually deal with two missing patterns are as follows

• The irregularity of sampling interval

• Asynchronous sampling features

The new feature introduced in Phased-LSTM-D is the decay rater (γt) in the existing

Phased-LSTM. This additional parameter introduces a decay mechanism. Input and

hidden states have corresponding decay rater γx and γh for each event-driven time

point t. Therefore, if the inputs are missing at some time t, the missing features are

replaced with a weighted sum of the last and average measurements. The decay rate

at time t controls these. Similarly, the previously hidden state is also updated with a

fraction of the previously hidden state controlled by the decay rate.

Figure 2.10: Cell of a Phased LSTM-D model

Phased-LSTM-D is designed to take advantage of both Phased-LSTM and GRU-D[24].

In this work, the new vector j, which keeps track of the timestamps when the time gate

of Phased-LSTM [20] was open, and the cell state was updated. Therefore, j and j-1

represent the timestamp when the cell was updated consecutively. Phased-LSTM-D
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adopts Phased-LSTM to solve the irregularity, and the additional requirement for

Electronic Health Records (EHR) is to solve the missing feature at every update time

point. In this work, in terms of EHR, the state of an individual patient (n) is updated

at each time sequence for j =1, 2,3 . . . . Tn and only then the time gate is opened. At

the same time, at each timestamp, the missing feature xj is replaced by a weighted

sum of the previous measurement (xj−1) and an average measurement (xj) of the

same feature, controlled by decay rate (γj). According to Phased-LSTM-D, along

with cell state, which is the state of the patient, the previous hidden state (hj−1)

is also replaced by a fraction of the previous hidden state controlled by decay rate

(γj). Therefore, when the time gate is open, the missing feature can be described as

Eq. (2.28)

x
(d)
j = m

(d)
j x

(d)
j +

(
1−m(d)

j

)
γ(d)
xj
x

(d)
j′ +

(
1−m(d)

j

)
(1− γ(d)

xj
)x̂(d) (2.28)

x
(d)
j determines the value of the d-th variable at time tj, The empirical mean of the

d-th variable (x̂(d)) and the previous value of the d-the variable x(d)
j′ are used as weight

is an order to determine x(d)
j . The value for masking variable m(d)

j is either 1 in the

case of the feature is not missing and 0 otherwise. Therefore, this masking variable

controls if the measured value for the missing feature would be replaced or not. If

m
(d)
j =1, the observed value is used, otherwise, it is replaced by a weighted sum of

x
(d)
j′ and x̂(d).The decay rate is presented as a D-dimensional vector as in Eq. (2.29)

γxj = exp−max(0,Wγxδj + bγx) (2.29)

Wγ and bγ are modelled parameters which are trained jointly. δj the time difference

between two consecutive time sequences when the missing feature was observed and

available. In this work, the decay rate also controls the change in the hidden state as
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shown in Eq. (2.30),

hj−1 = γhj � hj−1 (2.30)

In addition to existing Phased-LSTM [20], Phased-LSTM-D has used masking variables

and time interval vectors for training additional hidden layers to estimate the decay

coefficient. Therefore, the proposed work enables simultaneous decay in input and

hidden state and model training. This work introduces Phased-LSTM in the field

of predictive modelling for continuous-time series with sampling irregularity. The

benefits of this proposed work over another approach is that it introduces additional

masking and time interval to impute missing features instead of the direct imputation

of the missing features. This significantly improves the performance and accuracy.

Time LSTM The recommendation system can demonstrate another essential use

of continuous-time series prediction. Recommendation systems need to analyze the

insight of some features in the continuous or discrete sequences of the user’s action.

The different recurrent neural network architectures are recently being used for the

recommendation system. In the case problem domain such as recommendation system,

it is not enough to only consider the order of different time steps as, like a traditional

recurrent neural network, it is also necessary to establish a relationship between the

sequence of time series. In a recommendation system, it is necessary to store the

user’s short-term actions. Such as, if a user has purchased a flight ticket, he/she

might need to have a recommendation for the hotel. This is an example of short-

term dependencies. At the same time, some recommendations needed to consider

a user’s past actions for a long time ago. Time-LSTM [23] designed the time gate

of Phased-LSTM to capture both long-term as well as a short-term dependency to

predict the next time sequence or recommendation for the user. However, Time-LSTM

has adopted the time gate of Phased-LSTM to model the timestamp time gate may or
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may not implicitly capture the time intervals and the consecutive data points, where

Time-LSTM explicitly models time intervals, thereby capturing the relation between

two consecutive observations or data points. The main component of Time-LSTM is

the time gate which has been designed in three different ways to capture the relation

between time intervals.

Based on the nature of the time gate, Time-LSTM has three different models as follows

1. Time-LSTM 1

2. Time-LSTM 2

3. Time-LSTM 3

Time-LSTM 1 This Time-LSTM architecture has only a one-time gate used to

exploit time intervals simultaneously, both long term and short term. The newly

introduced time gate for Time-LSTM 1 for m-th sequence in the time series can be

described as Eq. (2.31).

T [m] = σ(x [m]Wxt+ σ(∆t∆tmWtt+ bt)) (2.31)

In this proposed architecture of LSTM, the cell state and the output gate has been

modified as follows Eq. (2.32) and Eq. (2.33)

c [m] = f [m] �c [m− 1]+i [m] �T [m] � σc (x [m]Wxc + h [m− 1]Whc + bc) (2.32)

o [m] = σo(x [m]Wxo + t [m]Wto+ hm− 1Who+ wco� c [m] + bo) (2.33)
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Here M t is the time interval, and σ is the sigmoid function. Therefore, the cell state

c[m] is filtered by the input and time gates. The time interval M t is stored in the

time gate (T[m]) and later transferred to the cell to compute the cell state. Like the

Phased-LSTM, time gate controls the input vector for any m-th sequence. Fig[2.11]

shows the architecture of Time-LSTM 1.

Figure 2.11: Architecture of Time-LSTM 1

Time-LSTM 2 The second type of Time-LSTM architecture has two different

time gates. One time gate exploits time intervals to capture the short-term time value,

and another is used to save the time intervals to model long-term time values. The

first-time gate for Time-LSTM 2 for m-th sequence in the time series can be described

as Eq. (2.34). T1 [m] deals with only short-term time values.

T1[m] = σ1 (x[m]Wx1 + σ∆t (∆t[m]Wt1) + b1) , s.t Wt1 ≤ 0 (2.34)

Where the second gate can be described as follows Eq. (2.35).

T2[m] = σ2 (x[m]Wx2 + σ∆t (∆t[m]Wt2) + b2) (2.35)
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Time-LSTM 2 also modifies the actual cell state, output gate and the hidden state

equations (2.21, 2.22 and 2.23) of the cell as follows in Eq. (2.36, 2.37, 2.38 and 2.39).

c̃m =fm � cm−1

+ im � T1m � σc (xmWxc + hm−1Whc + bc)

(2.36)

cm =fm � cm−1

+ im � T2m � σc (xmWxc + hm−1Whc + bc)

(2.37)

om =σo (xmWxo

+4tmWto + hm−1Who + wco � c̃m + bo)

(2.38)

om =σo (xmWxo

+4tmWto + hm−1Who + wco � c̃m + bo)

(2.39)

hm = om � σh (c̃m) (2.40)

The new cell state c̃m is later aggregated with output state to compute hidden state.

Time-LSTM 2 can distinguish the impact of current recommendation and future

recommendation, therefore, it can give a better prediction for rare event prediction

and where the interval between consecutive event can be longer. Along with the input

gate i[m], the time gate T1 [m[ is another filter for σc(x [m]Wxc+h [m−1]Whc+bc).

The intermediate cell state c [m[ store the result which is later passed to output gate

o [t[ to generate the hidden state h [m[ which is used for short term time sequence

prediction.

On the other hand, T2 [m[ stores the time interval δt [m[ and later pass it to cell

state c [m[ as the current cell state for computing the next cell state in a recurrent
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neural network, ∆t [m[ is transferred to c [m+ 1[, c [m+[ and so on. Therefore, T2 [m[

influences the long-term time series prediction.

Therefore, if ∆t [m[ is smaller, according to Eq. (2.36), T1 [m[ would be larger and

T1 [m[, the cell state has a larger influence on short-term time intervals. On the other

hand, if ∆t [m[ is a larger input vector x [m[, the influence and correspondingly would

be smaller. Fig [2.12] shows the architecture of Time-LSTM 2.

Figure 2.12: Architecture of Time-LSTM 2

Time-LSTM 3 The third type of Time-LSTM architecture has two different time

gates. One time gate exploits time intervals to capture the short-term time value,

and another is used to save the time intervals to model long-term time values. The

first-time gate for Time-LSTM 2 for m-th sequence in the time series can be described

as Eq. (2.41 and 2.42). T1 [m] deals with only short-term time values.

c̃m = (1− im � T1m)� cm−1

+ im � T1m � σc (xmWxc + hm−1Whc + bc)

(2.41)
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cm = (1− im)� cm−1

+ im � T2m � σc (xmWxc + hm−1Whc + bc)

(2.42)

Figure 2.13: Architecture of Time-LSTM 3

FCN-rLSTM FCN-rLSTM. [10] proposed a spatial-temporal neural network by

combining FCN [127] and LSTM [22] to overcome the limitation of continuous sequence

due to co-relation between the sequence. This model has used a residual learning

framework.

Figure 2.14: Network architecture and parameters of FCN-rLSTM

Grated Recurrent Unit (GRU)

Grated Recurrent Unit (GRU) is the other recurrent neural network [128]. Fig 2.15

explains the architecture of the GRU cell.
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The GRU cell usually has two gates reset gate (r) and update gate (z). Fig [2.15]

explains the gate performance in a GRU cell.

Figure 2.15: Reset and update gate of GRU

There are several variations of GRU, as shown in Table2.15. The total number of the

parameter (N) for different GRU cells differs from one to another, and it is dependent

on the dimension of the hidden state, n, and m, the dimension of the input vector.

For example, the reset gate (rt) decides how much data needs to be forgotten, whereas

the update gate (zt) determines the amount of data to be passed to the future cell.

Table 2.15: Different type of GRU cell
Gates

Cell Reset gate Update gate Number of Parameters

GRU rt = σ (Wrxt + Urht−1 + br) zt = σ (W2xt + U2ht−1 + b2) N = 3
(
n2 + nm+ n

)
GRU-1 rt = σ (Urht−1 + br) Gru-1 N = 2 × nm
GRU-2 rt = σ (Urht−1) zt = σ (U2ht−1) N = 2 (n× (m+ n))
GRU-3 rt = o (br) zt = 0 (bl)

GRU-D rt = σ
(
Wrx̂t + Urĥt−1 + Vrmt + br

)
zt = σ

(
Wzx̂t + Uzĥt−1 + Vzmt + bz

)

GRU1 considers only the previous hidden state and bias to determine the output,

while GRU2 uses the previous hidden state to compute the output, and GRU3 uses

only bias to compute the cell state. GRU1, GRU2 and GRU3 use fewer parameters

than traditional GRU.

GRU-D [24] is a variant of GRU which is mainly focused on solving the informative

missingness problem of recurrent neural networks in general. This model uses a decay
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mechanism to decay the input over time towards the empirical mean. So, it does not

use the value of the observation (xt) as it is. Therefore, instead of xt, it uses the vector

defined by Eq. (2.41). Here, x̂dt is the last observation of the d-th variable, and xd is

the empirical mean of the d-th variable.

x̂dt = md
tx

d
t + (1−md

t )(γ
d
xtx

d
t + (1− γdxt)x

d) (2.43)

Another decay mechanism used in this mode to understand the missingness. Eq. (2.44)

defines the hidden state decay.

ĥt−1 = γt−1 � ht−1 (2.44)

The equivalent equation for Eq. (2.41) and (2.42) for GRU-D can be defined using

Eq. (2.45a) and (2.45b).

h̃t = tanh
(
Whx̂t + Uh

(
rt � ĥt−1

)
+ V mt + br

)
(2.45a)

ht = (1− zt)� ĥt−1 + zt � ĥt (2.45b)

In Table 2.15 the equation for GRU-D has some new parameters, e.g., Vr, Vz and V .

The masking vector mt is fed into the model. This model succeeds to have a better

result in terms of informative missingness with the help of different interpolation

and imputation methods, e.g., Mean, Forward, Simple, K- nearest neighbor [129],

CubicSpline [130], matrix factorization (MF)[131], principal component analysis (PCA)

model [132], missforest [133], softimpute [134] and multiple imputations by chained

equations (MICE)[135].
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The main limitation is that it may fail or provide inefficient results in the absence

of informative missingness or if the relationship between the missing patterns and

the prediction tasks is not clear enough for the model. Therefore, this model is not

suitable for unsupervised learning. The model’s significant contribution is to use

trainable decay to correlate the missing pattern and the task to determine a better

prediction result. In terms of time and space complexity, this model is the same as

RNN.

2.6.3 Convolutional Neural Network (CNN)

Convolutional neural networks are widely used for image processing. However, several

recently proposed using CNN for modelling continuous time series and related problems

such as anomaly detection and structured time series classification. Usually, for time

series problems, 1D CNN architecture is widely used. Another popular approach is

combining LSTM and other RNN models and designing a hybrid-CNN model for time

series processing. Most of the related works focus on modifying the existing traditional

design of CNN to make it adjustable to work with the unique behaviour of continuous

time series. Some other works focus on combining the different valuable features from

both CNN and RNN and developing the architecture of the hybrid neural network.

Table 2.16 describes an overall trend in CNN models for time series problems

A convolutional neural network (CNN) is mainly used to classify and augment problem

categories. In most cases, CNN is used in a hybrid model. CNN mainly suffers

over-fitting less than other fully connected networks. Still, some specific time series

augmentation techniques are used to improve the performance. One of the most used

data augmentation techniques for the CNN model is Window Slicing (WS)[49] to

slice up the time series into several slices and train those slices in batches, and each

slice from a test time series is classified using the learned classifier. another data
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augmentation often used for CNN based time series classification algorithms is window

wrapping (WW)[49]

Table 2.16: CNN models and associated time series applications
CNN Model Design Type Application Performance
TCN [136] Fully convolutional

neural network
(FCN)

Sequence
Modelling

Demonstrate
better performance
than vanilla RNN

CNN-LSTM
[77]

Hybrid Prediction

CNN-RNN
[32]

Hybrid Anomaly
Detection
/Pattern
Recognition

Works for multi-
variate time series

CNN [64] CNN Classification
CNN-FCM
[137]

Hybrid (CNN+
Fuzzy Cognitive
Block)

Prediction Shows promising
performance for
anomaly detection
during training
for handling data
deviation

As the non-stationary and dynamic data of any time series evolves, most deep learning

models suffer from uncertainty during training. One of the most challenging problems

is maintaining the stability of the neural networks. Different CNN based models

mentioned in table 2.16 shows that often hybrid approaches, where CNN can contribute

to sequence modelling, data processing or classification phase with the help of other

artificial intelligence techniques. Therefore, hybrid models are getting attention from

different research areas for the time series problem domain. For example, combining

LSTM and CNN is also a popular hybrid model for time series classification, anomaly

detection, pattern recognition, and prediction problems.

This section discusses some popular CNN models for time series problem domains.
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Temporal Convolutional Neural Network (TCN)

Most recent deep learning models for the time series are mainly based on RNN

architecture (LSTM or GRU). However, convolutional neural network architecture

also contributes to the learning time sequence for deep learning. TCN[136] outperform

standard recurrent architectures across a broad range of sequence modelling tasks.

Figure 2.16: Architectural element in TCN [136]

TCN is based on one fully convolutional neural network (FCN) where each hidden

layer and the corresponding input layer are of the same length. TCN uses causal

convolutions, where the elements from time t and earlier in the previous layer convolved

the output at time t. Fig.[2.16] shows the architectural element of the TCN architecture.

The input sequence x0 . . . . . . xT , and corresponding outputs y0 . . . . . . yT at each time.

d is the dilation factor, k is the filter size. The main advantages of TCN over standard

RNN are as follows

• Any long-time sequence can be processed simultaneously, unlike RNN which

needs sequential processing.

• Authors claimed that TCN is better than RNN in memory size management.
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Filter size and dilation factor provide better control over memory usage. This

work has also shown that RNNs likely to use up to a multiplicative factor more

memory than TCNs.

• TCN battles against the vanishing gradient problem by imposing a back-

propagation path different from the temporal direction of the sequence.

• TCN also supports arbitrary input length.

Instead of all the advantages mentioned above of TCN over standard RNN, there is

some limitation of TCN: it requires comparatively more memory during the evaluation

period. Besides, TCN performs very poorly in the absence of many parameters

regarding the time series. The primary concern of TCN is to minimise the memory

size, reduce time by imposing parallel processing and overcome the vanishing gradient

problem.

Spiking Neuron Neural Network(SNNN)

Michael et al. [138] proposed a relatively new variation of convolutional neural network

SNNN, which has a straightforward mechanism for ignoring data points. Instead of

complex computation, additional gates like RNN or phase parameters like Phased-

LSTM [20], SNNN only computes whenever sudden bursts of activity are recorded

and create more spikes, but when the recorded information is too little, it does not

compute.

SNNNs are a suitable candidate for modelling Spatio-temporal event-based time

sequences. This model only computes data when there is a high spike of neurons, and

it is very power efficient. Furthermore, this model ignores irrelevant data when the

spike is too low. Therefore for real-time data analysis, the model can learn data in

a more data-efficient training than other traditional neural networks model. Unlike

DNN and DCN, it does not wait for the entire input sequence to be finished to start
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Table 2.17: Different type of hybrid model proposed for time series modelling
Proposed Work Used Neural Network Model
Shi et al. [139] Convolutional LSTM
Shaojie et a. l [136] TCN
Bradbury el al. [140] Quasi-RN

the learning phase. However, as a relatively new model, there is no benchmark data

to measure efficiency and accuracy vastly. Moreover, designing training algorithms for

this model is also very difficult. Therefore, this model is not a suitable candidate for

all sorts of problems. However, this model can achieve results faster in the case of

classification problems.

2.6.4 Hybrid Deep learning model

The recent trend in deep learning research is to find an optimised way to design a

model architecture that can combine all useful attributes of RNN and CNN. Table

[2.17] shows some works in this field.

Deep Belief Neural Network(DBN)

T. Hirata et al. [141] have proposed a novel time series prediction model using ARIMA

and DBN. There are some other works [75, 142] based on DBN. DBN only takes care

of the non-linear feature of time series. Therefore, it is not a suitable model for linear

time series features. The fundamental component of DBN is Restricted Boltzmann

machine (RBM) [56] and Multi Later perceptron (MLP) [75]. DBM may also consist

of only multiple RBM as well as [26]. RBM is one of the well-known mechanisms to

reduce the number of dimensions. Fig 2.6.4 shows the architecture of RBM, which

consists of one visible layer (v) and one hidden layer (h). Each visible unit is connected

with the asymmetric weight matrix (wij). One important feature of RBM is that the

connection between units is bidirectional. Each unit outputs either 1 or 0.

Another core component of DBN is an MLP. MLP usually has three layers like other
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(a) Architecture of RBM (b) Architecture of MLP system

neural networks, such as input, hidden, and output layers, as shown in Fig [2.6.4]. The

activation function for MLP is a logistic sigmoid as shown in Eq. (2.46) . If wixi > bi.

the neuron of the hidden layer gets fired, where xi is the input, wi is the weight, and

the threshold is the biases (bi).

f (x) =
1

1 + exp
(
−x

ε

) (2.46)

Here ε is the gradient. Fig [2.17] describes the architecture of DBN, where the inputs

are feed into an RBM and output is learned by an MLP.

Figure 2.17: Architecture of DBN

The time series prediction work proposed in [108] re-write the time series as the
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following equation Eq. (2.47).

y (t) = L (t) +N(t) (2.47)

Here L is the linear part of the time series, where N is the non-linear feature of y(t).

In [108], an ARIMA has been used to determine the prediction value from the L(t),

and a DBN predicted the prediction value from N(t). Therefore, the output time

series from [108] can be described using Eq. (2.48). Here L̂ (t) is the predicted result

from ARIMA and the N̂ (t) is the predicted result of DBN.

ŷ (t) = L̂ (t) + N̂(t) (2.48)

This kind of hybrid neural network shows the exact result for chaotic time series.

Cen et al. [26] have proposed another type of DBN which is a combination of DBN and

a non-linear kernel-based parallel evolutionary support vector machine (ESVM). This

model extracted different features from different relevant parameters of the time series

using DBN and combined them with the original attribute of the series; this combined

attribute vector is imported to a non-linear SVM for training and solving classification

or prediction problems. A parallel PSO algorithm is used to optimise SVMs. Different

optimisation function has been used to overcome the curse of dimensionality caused

by the high dimensionality of ω, the weight vector.

Deep-Sense Model

This neural network model is a perfect example of a hybrid model where the nature

of recurrent and convolutional models have been used together for better performance

in the case of solving the sequential temporal problem. This model has three different

layers, the CNN layer, the RNN layer and the output layer. Fig 2.18 shows the
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architecture of this model.

Figure 2.18: Architecture of Deepsense - a hybrid neural network model [26]

This model successfully uses the strong feature of both of the general model CNN and

RNN and provides an architecture where different design components can be added or

removed as required.

Semi-Supervised Sequence Learning

B. Ballinger et al. [68] have recently proposed a neural network model architecture

to process multi-channel input data through semi-supervised learning. The proposed

architecture is a combination of the convolutional 1D neural network [143], and a

bidirectional LSTM [144]. Fig 2.19 shows that the proposed model takes multi-channel

as well as multi-timescale input from the various data source and pass them through

three layers of temporal convolutional 1 D layer, where all the required features are

90



efficiently extracted and model temporal translation invariance [136].

Once the features are extracted, the model is first trained with a purely-supervised

four bi-directional layer of LSTM without pre-training. Then this supervised LSTM is

initialised with weight from the heuristic pre-training. The author has demonstrated

that the LSTM without pre-training performs significantly better than the LSTM with

pre-training for some data. On the other hand, the insights of some data discovered

by the heuristic pre-training influence positively the corresponding output. This work

contributes to processing multi-channel input data using semi-supervised learning.

Figure 2.19: Semi-supervised deep learning model for multi-channel input
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Graph based Neural Network model

[67] proposed a graph based augmentation for continuous-time data with relation

between multiple variables of the data. In this graphical augmentation method, a

patent record D consists of U clinician and v patients. Therefore each record in a

continuous sequence of individual patient’s visit (S), each visit record (D) is represented

as a graph, G = {U, V, E} , where E =
{
{wij}Mi=1

}N
j=1

, represents the set of edges

connecting U and V; wij is the count of patient j visiting clinician i.

Runge-Kutta Neural Network

The core component of Runge-Kutta Neural Network [145] is higher-order Runge-

Kutta methods. Higher-order RK methods are utilized to build network models with

higher accuracy. Generally, RK methods are widely-used procedures to solve ODEs

in numerical analysis. RK methods can also be used for image data processing. If

a system x can be described as ODE as Eq. 2.49 with initial condition x(0) = x0

and the boundary value for t is [0,T]. This ODE represents the rate of change of the

system states. The rate of change is a function of time and the current system state

x(t) = f(x(t)) (2.49)

2.6.5 Physics Informed Neural Network (PINN)

As defined in [27, 146, 147] Physics Informed Neural Networks are models for supervised

learning that follow any given law of physics described by general non-linear partial

differential equations (PDE). PINN has successfully established the foundation for

a new paradigm to model time series using physics informed mathematical model

which is fully differentiable using partial differential equations. This model is suitable

for both discrete as well as a continuous-time series. PINN uses a one-dimensional
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non-linear Schrodinger equation [148] to represent a continuous-time model and uses a

large number of data points to enforce physics informed constraints. This large amount

of data points can introduce a severe bottleneck in processing higher dimensional

continuous time series. This work mainly focuses on data-driven solutions and data-

driven discovery using partial differential equations. The general form of PINN model

is f(t,x) as defined by Eq. (2.50)

f := ut +N [t] (2.50)

Here ut is the hidden latent and N [.] is a non-linear differential operator. The

chain rule of differentiating compositions of functions using automatic differentiation

[149] is used to derive this neural network. This novel neural network model has

successfully demonstrated the success of using automatic differentiation to differentiate

the network concerning corresponding input and model parameters and finally obtain

a novel physics informed neural network f . The authors have improved their work to

the next level by defining a deeply hidden physics model as described in Eq. (2.51)

f :=ut−N(t, x, ux, uxx, . . . . . . . . . ) (2.51)

In Eq. (2.51) u is the derivative of neural network work to time t and space x, which has

been used in the processes described in their earlier work which is simply applying the

chain rule of differentiating compositions of functions using automatic differentiation.

This work is a novel addition to the research field of continuous-time modelling using

the neural network and automatic differentiation. Although, there are several questions

open, such as

• Is it possible to design the architectural components of LSTM neural network

in partial differential equations and obtain an efficient model that is fully

93



differentiable for a continuous-time sequence as input?

• What are the potential relation between neural network and classical physics?

• How to resolve the over-fitting and vanishing gradients problems?

PINNs are valid for an inverse problem where data is unstructured, noisy and multi-

variate. Furthermore, PINN models are suitable for continuous data where the state can

be at any time with an irregular time interval. However, this neural network does not

deal with the variable parametrised model. Therefore, it requires further collaborative

work to improve the performance of data-driven dynamics and infer the parametrised

partial differential equations. Still, the model is subject to the high complexity

associated with neural networks for input with a higher dimension. Furthermore, this

neural network model only supports fixed model parameters; therefore, this network

is not efficient enough in the case of the dynamic model parameters.

A generative adversarial networks (GAN) implementation [150] of PINN encoded the

governing physical laws of the dataset in the form of stochastic differential equations

(SDEs) using automatic differentiation into the architecture of GANs. This model

uses three generators; two are the feed-forward deep neural network, and SDE induces

the third one to capture the inherent stochasticity and uncertain extrinsic dynamics

of the system. This model, PI-GAN, is the best fit for the dynamic system where

the underlying physics is partially known, but with the help of some measurement,

e.g. initial as well as boundary conditions, it is possible to determine missing pattern

and parameters in the PDE as well as the system. To avoid the instability of GAN,

this model uses weight-clipped WGANs. Similar to DNN, PI-GAN trains multiple

generators and descriptors iteratively with the loss function for the optimiser. PI-GAN

is suitable for forwarding, inverse and mixed problems, but the computational cost of

training is much higher than training a single feed-forward neural network or PINN

[27]. Both generator and discriminator exhibit over-fitting. The structure of the model
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is relatively complex, with multiple generators and descriptors with multiple levels of

depth and width.

The main focus of the PINN-based model is to find a data-driven solution for PDEs.

One of the significant limitations of PINN is the vanishing gradient issue, and it fails

to represent the high-frequency sampling rate of the data. PINN also struggles to

represent complex functions; therefore, it uses additional continuity constraints as

a global regulariser. Distributed PINN (DPINN) [151] model provides a solution to

these challenges by using a local regulariser instead of a global regulariser, which helps

DPINN to be comparatively more data-efficient. This model divides the computational

domain into uniformly distributed non-overlapping cells and installs a PINN in each

cell with a local regulariser for initial and boundary conditions. each PINN in the

corresponding cell compute loss, which is later aggerated to compute the total loss for

the gradient descent algorithm of the optimiser.

One of the hybrid PINN models [152] where Convolutional Neural Networks(CNN)

Furthermore, conditional Generative Adversarial Neural Networks(cGANs) are used

to extract the hidden dynamics of the data simulated by PDE e.g. Shallow Water

Equation (SWE). Due to the hybrid nature, this model provides real-time flood

predictions with comparatively higher precision. The main challenges of this model

are that it can ensure the stability of SWE dynamics. Another winning point of this

model is that it can overcome the limitation of cGAN where a trivial missing point

in the continuous-time series can result in a noticeable divergence of the prediction

result.

Table 2.18 shows several application of PINN with real-time data.
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Table 2.18: Different type of PINN
PINN Applications Characteristics
[153] Wind Turbine Main Bearing

Fatigue Life Estimation
PI-GAN [150] Solving stochastic differential

equation
GAN with multiple generators
and discriminators

[69] Non-invasive 4D flow
modelling for MRI data

Solve conservation laws in
graph topologies

(DPINN) [151] Solve Advection algorithm Divide the computational
domain and deploy PINN for
each each division

fPINN [154] solve space-time fractional
advection-diffusion equations
(fractional ADEs)

[152] Flood Prediction CNN and cGANs
nPINNs [155] High-dimensional parameter

spaces.
Flexible and minimal
implementation

2.6.6 Differential Equation Neural Network (DiffNN)

The main goal of deep learning is to find an unknown function (f) that can correctly

predict the value in future time for any given observations based on their past values.

Generally, this function f concatenates the hidden layer and non-linear functions.

This section reviews the recent trend in neural networks architecture based on both

Ordinary Differential equations (ODE) and Partial Differential Equations (PDE).

Different challenges and strengths are identified for existing limitations in this recent

family of Differential Equations based neural networks. One of the significant challenges

of the neural network model is that they process a continuous time series as a discrete-

time sequence with a fixed sampling rate and fixed sampling frequency [20]. This

characteristic makes real-time continuous data processing difficult. It also imposes

a high computation load and memory usage. Besides, due to the dependency on

the computation of previous states for some neural networks, such as RNN models,

they are prone to vulnerabilities such as if the time gap between two consecutive

observations is too big, it can affect the efficiency of the model adversely. Therefore,
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the neural network performs better for discrete-time series of moderate length with a

fixed sampling rate, few missing values, and short time intervals between observations.

However, the neural network model needs different additional techniques when it

comes to continuous real-time series with multiple variables and irregular sampling

rates.

A differential equation can learn the underlying hidden dynamics of continuous-

time data [156] in real-time. [26, 87] demonstrate the strength of Neural Ordinary

Differential Equations (Neural-ODEs). Neural-ODEs mainly re-factored the design of

the Residual Neural Network (ResNet).

Residual neural network

ResNets can be re-designed as a dynamic system []. The architecture of a ResNet can

be described using Euler Integration, as shown in Algorithm 1. First, take the initial

step of the vector, and then on every step, compute the update and add that with the

hidden vector. This is similar to Euler integration.

Algorithm 1 ResNet as Euler Integration
1: procedure resnet(z, θ)

2: while t < T do

3: z = z + f(z, t, θ)

4: returnz

Here f is a ResNet as defined in Algorithm 2. Simply feed the current depth to the

ResNet block and use the fixed set of parameters for the entire block. That refers the

hidden dynamics can change between layer continuously by ODEs.

Algorithm 2 ResNet Function
1: procedure f(z, t, θ)

2: returnresnet(z, θ[t])
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The while loop in Algorithm 1 can be replaced by an ODE solver. Algorithm 1 is

same as Algorithm 3. As a result, [157, 158] considers pre-active ResNets as forward

Euler method.

Ordinary Differential Equation as Neural Network

Residual Neural Network is discritization of Euler method. In the residual network,

the state of the layer i+ 1 is related to the state of the layer i as shown in Eq. (2.52);

yi+1 = yi + f(yi, θi) (2.52)

However, we obtain a residual network if we consider the Euler method for solving ODE

with step size h = 1. So ResNet is a special case of the Euler method. Briefly, the Euler

method is a first-order numerical method for solving an ordinary differential equation

with the initial condition introduced by Leonhard Euler. Differential equations can

model the dynamics of continuous systems that are changed by time since time is not

countable in physics, and it is a real number. Therefore, it is not feasible to use a

differential equation for the systems’ dynamics. Nevertheless, discretise a continuous

dynamical system for modelling time series for the computer. So if x(t) is the state of

a system at time t, ẋ(t) refers to the derivative of x for time, i.e., rate of change of x

to time. For example, if x(t) is a population of an entity at time t then ẋ(t) is the

rate of change in population at time t. Differential equations are the relations of the

rate of changes with the original state, i.e.,

ẋ(t) = f(x(t))

Solving a differential equation means finding the function x(t) that satisfies the

differential equation with the initial condition(the starting point of the computation).

So if the state of the system at the starting time is x0, i.e., x(t0) = x0, where t0 is the
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starting time of the computation, then the initial condition for solving an ordinary

differential equation(ODE) are as follows,

ẋ(t) = f(x(t))

x(t0) = x0

The solution of 2.6.6 is given by the following formula,

x(t) = x(t0) +

∫ t

t0

f(x(s))ds

∀t ∈ (a, b)

(2.53)

where (a, b) is the domain of the definition of solution and t0 ∈ (a, b). Euler used the

first-order approximation of the function f by Taylor’s formula, so:

x(t+ h) = x(t) + hẋ(t) + o(h2)

where o(h2) is the term containing hk with k ≥ 2 such that limh→0
o(h2)
h2

= 0. If we

replace ẋ(t) with f(x(t)) in this formula and ignore o(h2) term we have Euler formula

for solving ODEs, i.e.,

x(t+ h) = x(t) + hf(x(t))

x(t0) = x0

If the parameter of the system θ change with time, i.e., θ : R→ R, we have Neural

Ordinary Differential Equation with parameter θ as in Eq. (2.54):

x(t+ h) = x(t) + hf(x(t), θ(t))

x(t0) = x0

(2.54)

If h = 1 it is a ResNet. Suppose the loss function is a real-valued function of the

state, i.e., L : C → R, where C is the class of functions x : R → RN which are the
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solutions of ODE of the system. The goal is to minimize L() with respect to the

controls parameter θ(t). Let us consider a system of differential equations consisting

of n differential equations with initial conditions is given as follows:

ẋi(t) = fi(x1(t), . . . , xn(t), t, θ(t)), i = 1, . . . , n

x1(t0) = x̃0, . . . , xn(t0) = x̃n

(2.55)

A specific choice of control function θ(t) yield a solution of (2.55), xi(t) for t0 ≤ t ≤ t1,

where we assume θ : R→ R is a piecewise continuous function. We call this solution

a trajectory. The control function θ is chosen in such a way that at time t1, a set of

equations holds as like Eq. (2.56):

Ψi(x1(t1), . . . , xn(t1), t1) = 0, i = 1, . . . , p ≤ n (2.56)

This set of equations is called terminal conditions. The problem of Mayer is to find

the optimal control function θ(t) such that minimize the function:

Φ(x1(t), . . . , xn(t), t) (2.57)

At the terminal time t1 such that (2.56) holds. This function is called criterion or

objective function. Note that 2.57 is first calculated at t1 and then minimization

applied with respect to θ such that (2.56) holds. The set of all point (x1, . . . , xn, t)

that satisfies in (2.56) is called terminal manifold. The control function θ that yield

trajectories reach to the terminal manifold is called admissible. The goal is to find an

admissible control function θ such that minimize the objective function which known

as optimal control function (Φ). The corresponding trajectories is called optimal

trajectories. Let (x1, . . . , xn, t) be a point in terminal manifold such that minimum

value of Φ attained if the admissible trajectory satisfy the initial condition (x1, . . . , xn)
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at time t. Let L be a function of (x1, . . . , xn, t) with this property, i.e.,

L(x1, . . . , xn, t) = minumum value of Φ with the above conditions (2.58)

so the optimal control also depend on (x1, . . . , xn, t), i.e., if θ∗ is the optimal control

value then,

θ∗(t) = u(x1, . . . , xn, t)

For some objective value function u, the optimal policy function.

If we expand xi(t) to the first order Taylor expansion in the neighbourhood of t and

put this value in L and use optimality of L we have,

xi(t+ ∆t) = xi(t) + ẋi(t)∆t+ o(∆t2)

= xi(t) + fi(x1(t), . . . , xn(t), t, θ∗(t))∆t+ o(∆t2)

(2.59)

Now by calculating L on xi(t+ ∆t) and use (2.59) we have,

L(x1(t+ ∆t), . . . , xn(t+ ∆t), t+ ∆t)

= L(x1(t) + f1(x(t), t, θ∗(t))∆t+ o(∆t2), . . . , xn(t) + fn(x(t), t, θ∗(t))∆t+ o(∆t2), t+ ∆t)

≥ L(x1(t), . . . , xn(t), t)

(2.60)

where x(t) = (x1(t), . . . , xn(t)). The last inequality holds because (x1(t), . . . , xn(t), t)

is the optimum trajectory in the interval [t, t+ ∆t]. Thus,

L(x1(t), . . . , xn(t), t) = min
θ

[L(x1(t)+f1∆t+o(∆t2), . . . , xn(t)+fn∆t+o(∆t2), t+∆t)]

(2.61)
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Now if we apply first-order Taylor formula to L we obtain,

L(x1(t) + f1∆t+ o(∆t2), . . . , xn(t) + fn∆t+ o(∆t2), t+ ∆t)

= L(x1(t), . . . , xn(t), t) +
n∑
i=1

∂L

∂xi
fi∆t+

∂L

∂t
∆t+ o(∆t2)

(2.62)

if we remove L(x1(t), . . . , xn(t), t) from both hand side of (2.61) we have,

0 = min
θ

[
n∑
i=1

∂L

∂xi
fi∆t+

∂L

∂t
∆t+ o(∆t2)] (2.63)

by deviding both hand side of 2.63 and letting ∆t→ 0 we have,[159],

0 = min
u

[
n∑
i=1

Lxifi + Lt

]
(2.64)

where Lxi = ∂L
∂xi

and Lt = ∂L
∂t
. If u∗ = argminu [

∑n
i=1 Lxifi + Lt] then,

n∑
i=1

Lxifi(x1, . . . , xn, t, u
∗) + Lt = 0 (2.65)

since L is not explicitly depend on u, then ∂L
∂u

= 0. Our goal is to obtain an ODE to

describe the dynamic of Lxj with respect to time. The first step is to compute (
dLxj

dt
)u

which subscribe u means that L is computed with respect to the control u. By the

chain rule and the fact that L is a function of (x1, . . . , xn, t) and each xi is a function

of t we have,

(
dLxj
dt

)u =
n∑
i=1

∂Lxj
∂xi

dxi
dt

+
∂Lxj
∂t

=
n∑
i=1

∂Lxj
∂xi

fi +
∂Lxj
∂t

(2.66)
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The partial derivative in Eq. (2.65) with respect to xj can be described as Eq. (2.67),

n∑
i=1

(
∂Lxi
∂xj

fi + Lxi
∂fi
∂xj

) +
∂Lt
∂xj

=
n∑
i=1

∂Lxi
∂xj

fi +
n∑
i=1

Lxi
∂fi
∂xj

+
∂Lt
∂xj

=
n∑
i=1

∂Lxi
∂xj

fi +
∂Lt
∂xj

+
n∑
i=1

Lxi(
∂fi
∂xj

+
∂fi
∂u

∂u

∂xj
)

=
n∑
i=1

∂Lxi
∂xj

fi +
∂Lt
∂xj

+
n∑
i=1

Lxi
∂fi
∂xj

= 0

(2.67)

the last equality holds because of 2.72. If we combine Eq. (2.66) and Eq. (2.67) we

derive the following differential equation,1

(
dLxj
dt

)u = −
n∑
i=1

Lxi
∂fi
∂xj

(2.68)

Let ai(t) = ∂L
∂xi

then Eq. 2.68 is the adjoin equation for Eq. (2.69),

(
daj
dt

)u = −
n∑
i=1

ai(t)
∂fi
∂xj

(2.69)

In the matrix notation, if a(t) = [a1(t), . . . , an(t)]> and f(x(t), t, θ) = [f1, . . . , fn]>

then Eq. (2.69) can also be described as Eq. (2.70),

(
daj(t)

dt
)u = −a(t)>

∂f(x(t), t, θ)

∂xj
(2.70)

If we know the value of aj(t) at time t1 then we could compute the value of aj(t) at

time t0, where t0 ≤ t1, by,

aj(t0) = aj(t1)−
∫ t0

t1

a(t)>
∂f(x(t), t, θ)

∂xj
dt (2.71)

1If L and its partial derivative are continuous then ∂2L
∂xi∂t

= ∂2L
∂t∂xi

so
∂Lxj

∂t = ∂Lt

∂xj
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but to solve this integral, we need to know the value of x(t) at the entier time interval

[t0, t1] but since we know the initial condition of x(t0) we could obtain the trajectory

of x(t) for all t ∈ [t0, t1].

Now, we can obtain the sensitivity of L with respect to the control parameter u. If we

compute partial derivative of (2.65) with respect to u, the control parameter, then we

have,
n∑
i=1

Lxi(
∂fi
∂u

)u∗ +
∂Lt
∂u

= 0 (2.72)

or equivalently,
n∑
i=1

ai(t)(
∂fi
∂u

)u∗ +
∂Lt
∂u

= 0 (2.73)

since a(t) = Lxi(x1(t), . . . , xn(t), t, u), but we know ∂Lt

∂u
= dLu

dt
so,

∂Lu
dt

= −
n∑
i=1

ai(t)(
∂fi
∂u

)u∗ (2.74)

the solution of this equation at time t0 is obtaine by taking integral from t1 to t0

backward in time, because we know the value of Lu at time t1, i.e.,

∂L

∂u
= (

∂L

∂u
)|t=t1 −

∫ t0

t1

n∑
i=1

ai(t)(
∂fi
∂u

)u∗ (2.75)

but (∂L
∂u

)|t=t1 = 0 and in matrix notation we have,

∂L

∂u
= −

∫ t0

t1

a(t)>
∂f(x(t), t, u(t))

∂u
dt (2.76)

The value of ∂f(x(t),t,u(t))
∂u

and the Jacobian ∂f(x(t),t,u(t))
∂x

can be computed by automatic

differentiation [160]. If we consider the ODE solver as the black box then the initial
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value problem,

ẋ(t) = f(x(t), t, u(t))

x(t0) = x0

t ∈ [t0, t1]

(2.77)

then this equation can be solve by calling an ODE solver ODESOLVER(x(t0), f , t0, t1, u)

which get initial condition x(t0), dynamic of the problem f , start time t0, end time of

t1 and control parameter u as input and produce x(t1) as the output. So the reverse

mode derivative of an ODE can be computed by Algorithm 3.

Algorithm 3 Reverse-mode derivative for ODE
1: procedure Reverse-ODE(u, t0, t1,x(t1), a(t1))
2: a(t0) = ODESOLVER(a(t1),−a(t) ∂f

∂x
, t1, t0, u)

3: ∂L
∂u
|t0 = ODESOLVER(0,−a(t)∂f

∂u
, t1, t0, u)

4: Return (a(t0), ∂L
∂u
|t0)

As an example, consider the following ODE as the dynamic of the problem,

dx(t)

dt
= −kx

x(0) = 1

(2.78)

where the control parameter k is constant. By calling the odeint from scipy we

could obtain x(1)2. Then the dynamic of the lose function is as follow,

da(t)

dt
= ka(t)

a(1) = x(1)

(2.79)

i.e., we start from x(1) backward in time until t = 0. Note that by definition a(ti) =

∂L
∂x(ti)

. We use grad from autograde(Python) to obtain ∂f(x,t,k)
∂x

where f(x, t, k) =

−kx(t). By another call to theODEsolver we obtain a(t) in [1, 0]3.The optimal control
2In fact by calling theODEsolver we obtain x(t) in all t ∈ [0, 1]
3since a(t) is calculated backward we write the time interval in the opposit order

105



policy is a value of k such that Lk(t) is minimum at t = 0. But the dynamic of Lk is

as follow,
dLk(t)

dt
= a(t)x(t)

Lk(1) = 0

(2.80)

where a(t) and x(t) are the solutions of 2.78 and 2.79, respectively. In the Figure 2.20

we plot the graph of x(t), a(t) and Lk(t) for k = 0.9 and k = 2 in the intgerval [0, 1].4

Figure 2.20: Reverse ODE withODEsolver from scipy of Python

Continuous Normalising Flows and Neural ODE

Now suppose we have a evolution of a random variable. Let x0 ∈ RN be a N -

dimentional random variable and suppose it continously transform to another random
4Note that the whole process is done automatically by obtaining dynamic of adjoin and dynamic

of control function by automatic differentiation and solving with the ODE solver
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variable xT ∈ RN at time T via the following dynamic,

dx

dt
= f(x(t), t)

x(t0) = x0

x0 ∼ px0

(2.81)

where in the last line we mean the probability density function of the random variable

x0 is px0 . The probability density function of a continous random variable x ∈ RN is

a real valued function p : Rn → R such that,[161] ,

1. p(z) ≥ 0 for all z ∈ RN

2.
∫
RN p(z)dz = 1

To obtain the dynamic for px(t) we need to undrestand the nature of transformation in

one step. Suppose x ∈ RN is a random variable with probability density function px.

Suppose x change continously to random variable y ∈ RN via the smooth function

f : RN → RN , i.e., y = f(x). For simplicity suppose J(f(x)) is invertible for every

value of x ∈ RN . To obtain probability density function of y we use change of variable

formula [162] we have,

∫
RN

px(x)dx =

∫
RN

px(x)| det(
∂x

∂y
)|dy

=

∫
RN

px(x)| det(J(f(x)))−1|dy

=

∫
RN

px(x)| det(J(f(x)))|−1dy

= 1

(2.82)

where J is the Jacobian5 operator6. Since px(x)| det(J(f(x)))|−1 ≥ 0 and its integral

5If x = g(y) then ∂x
∂y is another notation for the Jacobian Jg(y)

6By the Inverse Function Theorem if Jf(x0) is invertible, then the function f has an inverse in
the neighborhood of x0 and J(f−1(y0)) = (J(f(x0)))

−1 where y0 = f(x0),[162]

107



over RN is equal to 1 it is probability density function of y, i.e., py(y) = px(x)| det(J(f(x)))|−1,

where y = f(x).

Now if we divide both side of this equation by px and apply log function in both side

we have,

log(
py(y)

px(x)
) = log | det(J(f(x)))|−1

= − log | det(J(f(x)))|
(2.83)

hence,

log(py(y)) = log(px(x))− log | det(J(f(x)))| (2.84)

Now suppose x0 ∼ px0 and,

xi = fi(xi−1), i = 1, . . . ,M (2.85)

,i.e., xM = fM ◦ · · · ◦ f1(x0). We can compute the probability destribution of pxM
by

applying equation 2.84 M times. So if we suppose xi ∼ pxi
we have,

log(pxM
(xM)) = log(pxM−1

(xM−1)− log | det(J(fM−1)(xM−1))|

= log(pxM−2
(xM−2)− log | det(J(fM−1(xM−2)))| − log | det(J(fM(xM−1)))|

...

= log(px0(x0))− log | det(J(f1(x0)))| − · · · − log | det(J(fM(xM−1)))|

= log(px0(x0))−
M∑
i=1

log | det(J(fi(xi−1)))|

(2.86)

Now suppose x(t) change continuously by the following ODE,

ẋ(t) = f(x(t), t)

x(t0) = x0 ∼ px0

(2.87)
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Now let x(t) transform continiously to x(t+ ε) for small positive value of ε via smooth

function F, i.e., x(t+ ε) = F(x(t)). If we use first order Taylor expansion of x(t+ ε)

we have,

x(t+ ε) = x(t) + εẋ(t) + o(ε2)

= x(t) + εf(x(t)) + o(ε2)

(2.88)

So F(x(t)) = x(t) + εf(x(t)) + o(ε2). On the other hand by equation 2.84 we have,

log(px(t+ε)(x(t+ ε))− log(px(t)(x(t)) = − log | det(J(F(x(t))))| (2.89)

If we divide both hand side of this equation by ε and take limit while ε→ 0 we have,

lim
ε→0

log(px(t+ε)(x(t+ ε))− log(px(t)(x(t)))

ε
= − lim

ε→0

log | det(J(F(x(t))))|
ε

(2.90)

The left hand side is the definition of dpx(t)(x(t))

dt
. We need to simplify the right hand

side of the equation by unfolding J(F(x(t))),

J(F(x(t))) =
∂F(x(t))

∂x(t)

=
∂x(t)

∂x(t)
+ ε

∂f(x(t), t)

∂x(t)
+

∂

∂x(t)
o(ε2)

= I + ε
∂f(x(t), t)

∂x(t)
+

∂

∂x(t)
o(ε2)

(2.91)

so in limit we have,

lim
ε→0

log | det(J(F(x(t))))|
ε

= lim
ε→0

log | det(I + ε∂f(x(t),t)
∂x(t)

|)
ε

(2.92)

Before proceed, we need some results from linear algebra. If A is a N ×N positive

definite matrix then all of its eigenvalues are positive real numbers [163] and its
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characteristic polynomial is

χA(ε) = det(εI − A)

= (ε1 − ε) . . . (εN − ε)
(2.93)

where ε1, . . . , εN are eigenvalues of A. By applying the log function7 on both hand

side of the charactristic polynomial and taking derivative with respect to ε we have,

χ′A(ε)

χA(ε)
=
−1

ε1 − ε
+ · · ·+ −1

εN − ε
(2.94)

now if ε→ 0 we have,

lim
ε→0

χ′A(ε)

χA(ε)
=
−1

ε1

+ · · ·+ −1

εN

= − tr(A−1)

(2.95)

we have det(I + εA) = det(A) · χ−A−1(ε) since,

det(I + εA) = det(A(A−1 + εI))

= det(A) · det(εI − (−A−1))

= det(A) · χ−A−1(ε)

(2.96)

so if A is a positive definite matrix we have

lim
ε→0

log | det(I + εA)|
ε

= lim
ε→0

log | det(A) · χ−A−1(ε)|
ε

= lim
ε→0

χ′−A−1(ε)

χ−A−1(ε)

= tr(A)

(2.97)

Here we used L’Hopital’s rule since the first limit is in the indeterminate forms 0
0
.

7here we mean loge which is ln function
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Hence if ∂f(x(t),t)
∂x(t)

is positive definit at x(t) then,

lim
ε→0

log | det(I + ε∂f(x(t),t)
∂x(t)

)|
ε

= tr(
∂f(x(t), t)

∂x(t)
) (2.98)

and finaly,
d log(px(t)(x(t))

dt
= − tr(∂f(x(t), t)

∂x(t)
) (2.99)

by solving this ODE with respect to px(t)(x(t)) we obtain probability density function

at each instant of time and we could compute density at the final time ,i.e., px(T ),8.

In Figure 2.21 we show the evolution of the exponential distribution px(0)(x) = e−x

for x ≥ 0 under the dynamic dx
dt

= x(t)
t−2

. In Figure 2.22 we have shown the evolution

of the exponential distribution under the dynamic dx
dt

= x(t)(1− x(t)) and finaly in

Figure 2.23 we show the evolution of the probability density function of a normal

distributed random variable x(0) ∼ N (2, 1), i.e., px(0)(x) = 1√
2π
e−

(x−2)2

2 , under the

dynamic dx
dt

= x(t)(1− x(t)).

Time complexity comparsion For computing pxM
(xM) using equation (2.86)

we need to compute M determinant of N × N Jacobian matrices Jfi(xi−1), i =

1, . . .M . We could compute the partial derivative of the function g : RN → R by

automatic differentiation with cost O(size( ∂g
∂xi

)) = O(size(g)) where size(g) is the size

of computational graph of g. But by Strassen algorithm we have an O(N3 · size(fi))

algorithm to compute Jfi(xi−1). So the time complexity for computing pxM
(xM) is,

O(N3 · (size(f1) + · · ·+ size(fM)) (2.100)

On the other hand, for computing continious normalizing flow we need to compute
8If f is Lipschits continious with respect to x then by Rademacher’s theorem f is differentiable

almost everywhere(the points where f is not differentiable is of measure zero). So we need a stronger
condition for f to be sure that ∂f

∂x exists.
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Figure 2.21: Evolution of px(0)(x) = e−x by dx
dt

= x
t−2

tr(∂f(x(t),t)
∂x(t)

) and a call to an ODE solver. We know that,

tr(
∂f(x(t), t)

∂x(t)
) =

∂f1(x(t), t)

∂x1(t)
+ · · ·+ ∂fN(x(t), t)

∂xN(t)
(2.101)

then the time complexity for computing tr(∂f(x(t),t)
∂x(t)

) is O(N · size(f)) which is less

than standard normalizing flow with time complexity O(N3).

Table 2.19 shows several Neural-ODE and their characteristics.

Different applications are explored to understand the efficiency of Neura-ODE. Table

2.20

This new family of neural networks has some substantial improvement over the residual

neural network as follows

• Ordinary Differential Equations require one independent variable and one
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Table 2.19: Different type of Neural-ODE
Neural-ODE Characteristics

ODE-RNN [26] The ODE-RNN model is a combination of RNN and Neural
ODE model. It demonstrates the capabilities of Neural ODE
between consecutive observations, and similar to RNN, it also
also updates observations at every step.

Latent-ODE [87] Similar to ODE-RNN, Latent ODEs can also take care of irregular
sampling rate and the intermediate gap between observations.

GRU-ODE-
Bayes [164]

A continuous-time version of the GRU, built on Neural-ODE
and a Bayesian update network that processes the sporadic
observations of continuous-time series.

Ordinary
Differential
Equation
Variational
Auto-Encoder
(ODE2VAE) [28]

A latent second-order ODE model for high-dimensional sequential
data. This model demonstrates probabilistic latent ODE
dynamics, which are parameterized by deep Bayesian neural
networks.

Table 2.20: Different applications of Neural-ODE
Neural-ODEs Application Characteristics

Continuous
ODE-GRU-D
and Extended
ODE-GRU-D
[93]

Multi-Variate time series with
irregular sampling rate

Leverage ODESolve similar to
Neural-ODEs and compute
hidden as well as input decay
rate based on the dynamics of
the data

[165] Detection of Heart Rate from
Facial Videos

Train Neural-ODE using heart
rate from original videos, and
predict heart rates of deepfake
videos using trained Neural-
ODE.

[166] Data Augmentation Used the optimized
parameters from a Neural
ODE network to compute
local gradient of the time
series and later used for
gereting perturbed adversarial
samples.
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Figure 2.22: Evolution of px(0) = e−x by dx
dt

= x(1− x)

derivative of an unknown function. An unknown ODE solver can compute

the value of the independent variable at any time t with the desired accuracy.

• two different methods can be used for first-order differential equations, e.g., the

Eulers method [167]and adjoint sensitive method.

• The construction of neural networks is much easier. it is no longer required to

determine the number of layers, and any optimizer can be used for learning.

• It does not need to define the number of discrete layers. Instead, the network is

a continuous function where the gradient can train itself within marginal error.

• Most common neural networks used for time series modelling are vulnerable to

adversarial attacks. Therefore, high robustness is essential for time series data

augmentation. [166] shows that Neural ODE can generate a local guided gradient

which improves the robustness of time series data augmentation significantly.
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Figure 2.23: Evolution of x(0) ∼ N (2, 1) by dx
dt

= x(1− x)

• Finally, it would help design the neural network model as a function of time t

for continuous-time learning problems.

However, Neural ODE based neural network still has some limitations to overcome as

follows

Less Accuracy: The accuracy of Neural-ODE is comparatively low for long term

prediction than short term prediction. Neuro-ODE is mainly a generative neural

network. For parallel mode prediction, the past values in the series are usually not

actual system output; instead, they are the predicted value of the network. Therefore,

the accuracy can be reduced over time for long term prediction. The main reason for

this limitation is that a Nero-ODE network learns the system’s state over time instead

of the changing rate of system states over the training period. This causes potential

obstacles for the network to learn the long term behaviour of the system.
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Training time: Neural-ODEs are usually slower than other neural networks; at the

same time, it requires longer training time.

High error rate: The error rate is higher for Neural-ODE in comparison to

the stranded neural network. One missing component of Neural-ODEs is various

regularisation mechanisms, which are crucial for reducing generalisation error and

improving the robustness of neural networks against adversarial attacks. The initial

input for Neural SDE [72] is the output of a convolutional layer, and the value at time

t is passed to a linear classifier after average pooling. The unique characteristics of

neural SDE are that it adds randomness to the continuous neural networks using a

Stochastic Differential Equation (SDE) framework.

Difficult architecture: The proper order of the neural identifier for identifying an

ODE system is not easy to know.

Stabilization of the structure: ODE-GRU and ODE-LSTM [89], GRU-ODE-

Bayes [164] models also contribute to the stabilization of the structure of the Neural-

ODEs. Neural SDE [72] also uses stochastic noise injection in the SDE network to

regularise the continuous ODEs,

Fixed time interval : The existing neural identifier can only predict the system

behaviour well at a fixed time interval (using a fixed, regular sampling rate). This

is not the nature of an ODE system. Although a high-order discretisation is more

accurate than the first-order discretisation, the resulting ordinary differential equations

of the former are usually complex and intractable.

Informative Missingness : Continuous ODE-GRU-D and Extended ODE-GRU-D

[93] leverage ordinary differential equation solver (ODESolve) to compute the hidden

dynamics of the model. These models use ODESolve to replace the missing value in
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continuous time series (T ) by the derivative of the value of available observations of T .

These models are evaluated against the multi-variate time series. Over time, the decay

in hidden dynamics and input has a significant impact on the final output on multi-

variate time series. Both models compute the decay rate as the derivatives of time

(t). Therefore, the decay rate can control the gradient optimisation of the model over

time. The continuous ODE-GRU-D model is used to generate the hidden dynamics of

the GRU-D model [24] as continuous-time dynamics using ODESolve. The Extended

ODE-GRU-D model computes the decay rate and continuous hidden dynamics of the

GRU-D model and exhibits an efficient way to generate both hidden and input decay

rates based on the data dynamics. Experiment on Physio net demonstrates that these

models can successfully solve the informative missingness from continuous data.

High Dimension datasets : Neural-ODEs suffer from higher computation cost

for time series with higher dimension. Unlike black-box ODEs, the ODE2VAE model

explicitly decomposes the latent space (żt) into momentum (ṡt) and position (v̇t)

components similar to variational auto-encoders (VAEs) and solves dynamical system

governed by a second order Bayesian neural ODE model fW (st,vt) as shown in

Eq. (2.102). As first-order ODEs are incapable of modelling high-order dynamics,

ODE2VAE uses three different components; (i) a distribution for the initial position

p(s0) and velocity p(v0) in the latent space , (ii) hidden dynamics defined by an

acceleration field, and (iii) a decoding likelihood p(xi|si) , which is only computed by

the velocity positions. .

żt = (ṡt, v̇t) = {
ṡt = vt

v̇t = fW (st,vt)
,

 sT

vT

 =

 s0

v0

+

∫ T

0

 vt

fW (st,vt)


︸ ︷︷ ︸

−→
f w(z1)

dt

(2.102)
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Representation of continuous function : [168] demonstrate that even some

straightforward function can not be represented using Neural-ODE as this model

preserve the state of the input and follow continuous limit or boundary. This limitation

often leads to expensive computation for Neural-ODE. To overcome such limitations,

Augmented Neural ODEs (ANODEs)[168] add dimension to learn complex functions

using simple flow. Therefore, instead of Rd , ANODEs uses Rd+p to move points

to an additional dimension and avoid intersection among trajectories. Eq (2.52) is

formulated for ANODEs as Eq. (2.103).

d

dt

 h(t)

a(t)

 = f


 h(t)

a(t)

 , t
 ,

 h(0)

a(0)

 =

 x

0

 (2.103)

Fig. 2.24 describes the differences between Neural-ODE and ANODEs for the function

g(x). ANODEs achieve better precision for learning the functions and are consistently

faster than Neural-ODEs. As ANODEs always learn simpler flow, the computation

cost is less than Neural-ODEs.

Figure 2.24: (Left) Loss plots for Neural-ODEs and ANODEs (Right) Flows learned
by NODEs and ANODEs.
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Partial Differential Equation as Neural Network

Partial Differential Equation (PDE) contributes significantly to the advancement of

the neural network. Convolution neural networks (CNN) are highly appropriated in

image processing and computer vision. The basic architecture of a CNN model can be

represented through mathematical equations. Recent works have been proposed to pre-

process the image dataset as a dynamical system of continuous-time series. Therefore,

a series of ODEs can be used to interpret these systems. [169] shows the relation

between PDE and CNN. Convolution neural networks (CNN) are highly appropriated

in image processing and computer vision. For example, RKNN [145] as described in

section 2.6.4 has some strong characteristics along with some limitations. In order to

use RKNN for a system like image classification, it requires some adjustment. For

example, each period is modelled by a time-dependent first order dynamical system.

Besides, all coefficients and time step size (T ) can be computed implicitly. The time

step size (h) of RK methods, as shown in (1.5) needs to be predefined to control the

truncation error. With these modifications, RKNet [170] is proposed.

X = x1, x2, ........., xn ∈ Rn (2.104)

The main characteristics of RKNet are as follows

• In an RKNet, a period is composed of iterations of time steps.

• A particular RK method is adopted throughout the time steps in a period to

approximate the increment in each step

• The increment in each step is broken down into increments in several stages

according to the adopted RK method.

• A convolutional subnetwork approximates each stage due to the versatility of
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neural networks on approximation.

For PDE based CNN, the neural network function f filters the input feature Y as

shown in Eq. 2.106. Here f consists of layers (F) of liner transformations and pointwise

nonlinearities.

The core layer of deep neural network architecture can be simplified as described

as Eq. (2.105). Any deep neural network can be formalized as concatenation of

many of the layers (F) given in Eq. (2.105). The linear operations K2 and K1 in

Eq. (2.105). Each of these two operators is parametrized θ3 and θ1 respectively. N is

the normalization layer parametrized with θ2. A common choice for N in (1) is the

batch normalization layer. θ2 represents the scaling factors and biases. of a neural

network For activation function any activation method can be used, e.g. σ.

F (θ, Y ) = K2(θ3)σ(N(K1(θ1)Y, θ2) (2.105)

Most of the cases, the input Y is a time despondent data and can be represented

as can be seen as a discretization of a continuous function Y (x). For example, time

series forecasting, weather prediction, image data speech and other applications [169]

has modified Eq. (2.105). The linear operators K1 = K1(θ)εR
(wxwin) and K2 =

K2(θ)εR(woutxw) are considered as convolution operators as shown in Eq. (2.106).

Fsym(θ,Y) = −K(θ)>σ(N (K(θ)Y,θ)) (2.106)

In this section, we discuss the Physics Informed Neural Network, which uses a

combination of neural networks and partial differential equation(PDE) to obtain the

hidden dynamic of the model. In this model, we should consider a penalty for the loss

function of a neural network that deviates from the model’s dynamic. In [27], authors
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introduced Physics Informed Neural Network to obtain not only the solution of the

PDE but also obtain the parameters of the PDE for an optimization task. Assume we

want to obtain the solution of a PDE by a neural network. Here there is no training

set. By converting the PDE to an optimization problem, we can solve the PDE by a

neural network using initial conditions and boundary value conditions and use the new

solutions as the training set of the neural network. As the new value of approximation

of the solution is obtained, a neural network uses them to learn and produce the new

solution.

We consider the general form of a class of PDE in the form:



ut(x, t) +N [u(x, t), λ] = 0, x ∈ Ω ⊂ RN , t ∈ [0, T ]

u(x, 0) = g(x), x ∈ Ω Initial Condition

u(x, t) = h(x, t), x ∈ ∂Ω Boundary Value Condition
∂u

∂n
(x, t) = k(x, t), x ∈ ∂Ω Boundary Value Condition

(2.107)

where N is a nonlinear differential operator, λ is the parameter, ∂Ω is the boundary

of Ω, and boundary condition is the Cauchy boundary condition. In this setting,

g : Ω ⊂ Rn → R, h : ∂Ω× R → R and k : ∂Ω× R → R are known function and we

want to find unknown function u : Ω× R→ R.

Assume there is a neural network neural_net that approximate the function u(x, t),

i.e., on input (x, t) it compute approximation of u(x, t). So if we assume û =

neural_net(x, t) then by reverse mode Automatic Differentiation we could compute

partial derivatives of û with respect to t and x, [160]. But, what is the loss function?

Our goal is to find an approximation of u such that it is the solution of the Eq (2.107).

So,

ût +N [û, λ] (2.108)

121



is not exactly zero. Thus we need to minimize the following function,

Minimize[ût +N [û, λ]]2 (2.109)

since û has been obtain by weights and biases, we need to find optimum value of

weights and biases to find the solution. But we need also our approximation respect

the initial condition and boundary value conditions, so,

L(θ, x, t, λ) =[ût +N [û, λ]]2 + [û(x, 0)− g(x)]2+

χ∂Ω(x).([û(x, t)− h(x, t)]2 + [
∂û

∂n
(x, t)− k(x, t)]2)

(2.110)

where θ is the parameter of the neural network and χ∂Ω is the characteristic function

of ∂Ω, i.e.,

χ∂Ω(x) =


1 if x ∈ ∂Ω

0 otherwise
(2.111)

The loss function depends not just on the neural network parameter but also on space

and time. So, we have a loss function for every instant (x, t). Suppose we fixed the

parameter λ. Let Nb be the number of boundaries and initial training data and Nc be

the number of collocation points. Then the cost function is as follows:

MSE = MSEb +MSEc (2.112)

where,

MSEb =
1

Nb

Nb∑
i=1

[û(xbi , 0)−g(xbi)]
2+χ∂Ω(xbi).([û(xbi , t

b
i)−h(xbi , t

b
i)]

2+[
∂û

∂n
(xbi , t

b
i)−k(xbi , t

b
i)]

2)

(2.113)
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and

MSEc =
1

Nc

Nc∑
i=1

[ût(x
c
i , t

c
i +N [û(xci , t

c
i , λ]]2 (2.114)

As an example consider one-dimentional heat equation with homogeneous Dirichlet

boundary conditions on (x, t) ∈ [0, 5]× [0, 1]


ut = uxx

u(x, 0) = x(5− x)

u(0, t) = u(5, t) = 0

(2.115)

we know the analytic solution of this equation is as follow,

u(x, t) =
1√
4πt

∫ 5

0

e−
(x−y)2

4t y(5− y)dy (2.116)

the solution and the evolution of initial condition is depicted in Fig. 2.25.

Figure 2.25: Heat equation on [0, 5]× [0, 1]

If we represent MSE0 as mean squar error of the initial condition, MSEb the mean

squar error of the boundary points andMSEc as the mean squar error of the collocation
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points then we have,

MSE0 =
1

N0

N0∑
i=1

(û(xi0, 0)− xi0(5− xi0))2 (2.117)

where {xi0}1≤i≤N0 are training data of initial condition in [0, 5].

MSEb =
1

Nb

Nb∑
i=1

(|û(0, tib)|2 + |û(5, tib)|2) (2.118)

where {tib}1≤i≤Nb
are training data of boundary conditions in [0, 1].

MSEc =
1

Nc

Nc∑
i=1

(ût(x
i
c, t

i
c)− ûxx(xic, tic))2 (2.119)

where {(xic, tic)}1≤i≤Nc are training data of the collocation points in [0, 5]× [0, 1].

We know we can compute partial derivative of a neural network by reverse mode

automatic differentiation, [160], i.e.,

û(xi, ti) = neural_net(xi, ti)

ût(x
i, ti) =

∂

∂t
(neural_net(xi, ti))

ûxx(x
i, ti) =

∂2

∂x2
(neural_net(xi, ti))

(2.120)

so the cost function of the heat equation with the given initial and boundary condition

is as follow;

MSE(θ) = MSE0 +MSEb +MSEc (2.121)

by minimizing MSE(θ) with respect to θ we could find the learning parameter of the

heat equation.
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2.7 Short Overview

From these comprehensive survey we have found some characteristics of continuous

time series

• Irregular Sampling rate reduce the efficiency of the fixed-length and fixed-time-

step based time series model such as RNN, CNN, ANN and other deep neural

networks

• High dimension of time series and Discrete time sequence with fixed time steps

do not allow traditional neural network to model continuous time series with

higher accuracy.

• Pathological dependency introduces additional memory consumption and computation

for traditional neural network models.

• Pathological dependency can be resolved with efficient technique to recognize

Influential state of neural network models training

In this thesis, I have focused on resolving the above issue by introducing different

neural network models.

2.8 Future Direction for Potential Research Area

Therefore, the primary concern of this survey work is "How can we ensure efficient

event-based sensor’s signal processing that generates an asynchronous data-driven

output on a continuous-time sequence?" To have a better solution for this raised

question, we also need to answer some other questions:

• How the existing neural network model can be improved to provide a solution.

• How does open data helps in risk assessment, fault tolerance, failure detection,

real-time accuracy?
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• How can output be updated asynchronously to be mapped with data from one

or multiple events on a continuous-time series?

• How energy consumption and computation time can be optimised?

The main aim of the proposed work is to define a recurrent neural network-based

(RNN) deep learning model for processing and modelling event-based sensor signal with

a short and dynamic time gap in continuous time series and generate an asynchronous

output at higher frequencies to deal with the following challenges:

• To reduce the high amount of computation for the short time gap in data

sampling.

• To design the LSTM model using an ordinary differential equation solver.

• To develop asynchronous output in continuous time series. Asynchronous output

can be beneficial for learning continuous series data generated by event-based

sensors of IoT devices. For example, sensors in an autonomous vehicle are

synthesised and processed in real-time with more accuracy.

• To immolate human brain workflow to generating asynchronous and event-

triggered a spike in continuous time.

Recent emerging technologies, such as the Internet of things (IoT), cloud computing,

edge computing, and 5G, use continuous-time data analysis and time-frequency analysis

as a core fundamental technology for the interconnected ecosystem. For example,

different cloud providers are extensively using deep learning algorithm for processing

continuous-time data for multiple purposes, such as, to monitor performance and

activity within a software-defined network (SDN), to allocate dynamic resources, to

scale up or down the memory and power of compute engine and other resources, and

to track activity for security and privacy purpose. Table 2.21 shows the use of a deep

learning algorithm for continuous-time data analysis in different emerging technology.
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Table 2.21: Different Projects in Health care with time series
Applications Popular neural Network
Resource Scheduling LSTM[171]
Edge Intelligence RF [172]
Software defined Network (SDN) DNN[173]
Self-protective framework DNN[174]
Network Management CNN[175]

2.9 Conclusion

In this paper, we have reviewed several recent research works focusing on time series

modelling and prediction using a neural network and providing the mathematical

background of these models. We have investigated all different challenges in the

case of continuous-time series modelling with neural networks. In this paper, we

have reviewed recent works mainly focused on dealing with the different challenges

of modelling the continuous-time series using deep learning. We investigate several

promising types of research that have established the foundation to introduce a new

paradigm for modelling continuous-time series overcoming most of the associated

challenges. There has been enormous attention to sensory event containing temporal

information in recent days. Events happening continuously for the different real-time

autonomous scenarios are significant for different research practitioners. For example,

an automobile vehicle with different sensor types can continuously collect information

from the context in real-time. In most cases, the information is a sequence of events

in either a long or short time duration. Events occurred over continuous time are

interrelated by either longer-term or short-term dependency. This dependency needs

to be recognised, processed, stored, and analysed to predict the next event with similar

behaviour correctly. For example, a sequence of events can detect the lane change

behaviour of the driver or detect potential system failure or accident. There are

also many similar research areas like mobile sensor information, where the temporal

sequence plays a significantly important role. Research with time series is not a new
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thing. Different applications use continuous time series classification, prediction and

generation. However, in most cases, real-time data are presented as a discrete-time

model with a fixed sampling rate to avoid the complexity due to the massive length

of series or higher dimensions. This cause a loss in the precision and accuracy of the

result. In that context, most existing NN models are ill-suited to model a real-time

continuous time series with a higher dimension and a long length. Continuous-time

series modelling is one of the most promising research areas in deep learning for future

research. Based on the comparative analysis, some of the significant research areas

are as follows

• Sampling irregular data

• Reduce energy consumption

• Reduce the amount of computation

• Optimize performance

• Improve memory capacity

• Modelling long time sequence

• Efficient feature extracting

• Represent time sequence as a differential function

• Implementation of the deep learning algorithm in mobile sensor data

• Reduce the imbalance between positive and negative event

• Optimise overlapping events
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CHAPTER 3

NEURAL ORDINARY DIFFERENTIAL EQUATION BASED

RECURRENT NEURAL NETWORK MODEL

This chapter is an expanded version of a paper published in 2020 31st Irish

Signals and Systems Conference (ISSC)

Neural differential equations are a promising new family member of

machine learning models. They show the potential of differential equations

for time series data analysis. The main goal of this work is to answer

the following questions:

1. Can ODE redefine the existing neural network model?

2. Can Neural ODEs solve the irregular sampling rate challenge of existing neural

network models for a continuous time series, i.e., length and dynamic nature?

3. How do we reduce existing Neural ODE systems’ training and evaluation time?

This work leverages the mathematical foundation of ODEs to redesign traditional RNNs

such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The

main contribution of this section is to illustrate the design of two new ODE-based

RNN models (GRU-ODE model and LSTM-ODE), which can compute the hidden

state and cell state at any point in time using an ODE solver. These models reduce

the computation overhead of hidden states and cell states by a vast amount. The

performance evaluation of these two new models for learning continuous time series

with irregular sampling rates shows that these new ODE based RNN models require less

training time than Latent ODEs and conventional Neural ODEs. Moreover, they can
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quickly achieve higher accuracy, and the neural network design is more straightforward

than previous neural ODE systems.

3.1 Introduction

Continuous-time series is a fundamental data structure for different research areas,

i.e., sensor-based IoT, energy consumption, weather, music generation and other

applications. It also has dynamic characteristics such as high sampling frequency,

inconsistent sampling rate, multiple variables and parameters, higher dimension and

higher length. In many applications, such as automobiles, time series can be very

dynamic. Neural network models need to support these characteristics to process

continuous time series. RNN has become the pioneer in time series modelling and

processing among all the available neural network models due to its gating unit and

memory storing capacity. However, the majority of existing RNNs process continuous

time series as a discrete-time sequence with a fixed sampling rate and fixed sampling

frequency [1]. This makes real-time processing difficult. It also imposes a high

computation load and memory usage. In addition, due to the dependency on the

computation of previous states, such RNN models are prone to some vulnerabilities.

For example, if the time gap between two consecutive observations is too big, it can

adversely affect the model’s efficiency. Therefore, such RNNs are only suitable for

time series of moderate length with fixed sampling rates, few missing values, and short

time intervals between observations.

Chen et al. [2] and Rubanova et al. [3] demonstrated the strength of Neural ODEs

[4, 5] for processing time series. Chen et al. [2] proposes to compute iterative updates

of RNN as Euler discretization of continuous transformation [6]. Based on this idea,

the continuous hidden dynamics of a neural network can be parametrized by ordinary

differential equation (3.1). Equation (3.1) explains that a small change in the value

of hidden dynamics h(t) over time t can parameterize the continuous dynamics of
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hidden states of a neural network. Therefore, an ordinary differential equation (ODE)

specified by (3.1) can compute the continuous change in the dynamics of hidden states

of a neural network. This is the core concept of Neural ODEs or NODE models. Using

the initial value problem to compute h(T ) at any time T from the initial hidden units

h(0) at time t0, this continuous-depth model leverages a black-box ODE solver (f) to

define and evaluate models. Another version of neural ODE, known as Latent-ODE

[2], uses an ODE as an encoder whereas ODE-RNN [3] uses an RNN as an encoder.

d

dt
h(t) = f(ht, t, δt) (3.1)

ODE-RNN [3] uses an encoder and decoder to compute the hidden dynamics of the

neural network. First, the input is fed to an encoder, and a differential equation solver

is used to calculate the hidden state. Later, the decoder generates the output. This

is an auto-regressive model, similar to [2], ODE-RNN can also compute the hidden

dynamics at any time t. The dynamics between observations are learned rather than

pre-defined, making ODE-RNN a suitable model for irregular and sparse data. As the

computation is not dependent on the availability of data points, both ODE-RNN and

Latent-ODE take more time for training and evaluation. The time depends on the

length of the time series and the complexity of the data. The focus of this section is

to consider the neural network as a function of continuous time; therefore, the new

model proposed in this work does not use any additional encoder or decoder.

In the case of time series processing, RNN based neural network model is already

ahead of others [1]. However, different RNN models consider continuous-time data

as a discrete sequence of observations with a fixed sampling rate. Therefore, often it

is challenging to compute a time series in real-time. The main goal of this work is

to leverage the continuousness of neural ODE to design Neural Ordinary Differential

Equation based RNN, which can reduce the overhead of additional encoding and
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decoding for simple time-series data processing. These proposed models can overcome

the challenges imposed due to fixed time steps with marginal budget cost in shorter

time duration and accurate real-time computation.

This work proposed to design the architecture of different RNN, e.g., GRU [7], or

LSTM [8] using an ordinary differential equation (ODE), which is referred to as ODE-

GRU and ODE-LSTM throughout this section. These proposed models can train the

gradients themselves within marginal error using the ordinary differential equation

solver. All parameters are learned during the training. The cell state and hidden

state dynamics are computed using a black-box ODE solver. The update and reset

functions of existing RNN models are redefined to leverage the ODE solver. These

proposed models can process continuous time series in real-time with comparatively

less computation and memory usage. These models also provide a generative process

over time series similar to [3]. We compare the proposed models to several RNN

variants and find that these new models can perform better when the data is sparse.

3.2 Motivation

Our main goal is to overcome the limitation of instability in the Neural Ordinary

Differential Equation (NODE) model. This chapter explores the structure of Recurrent

Neural networks and their potential to improve the performance of NODE models.

Chapter 2 discusses different characteristics of the Neural ODE model. Some of these

characteristics of the Neural ODE model are described as follows

3.2.1 Memory Efficiency

Neural ODE can compute gradients of loss concerning an ODE as shown in (3.1). For

gradients computation, Neural ODE with a black box ODE solver, a Neural ODE

model does not need backpropagating through the operations of the ODE solver.

Neural ODE does not store the intermediate computation of the forward pass for
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a later back pass during this computation. Therefore, it is possible to train Neural

ODE models with constant memory cost as a function of several states. I proposed

two separate Neural ODE models using the RNN model structure in this work. The

intermediate cell state for RNN is also computed in the proposed models for each

forward pass. However, proposed models do not need to store the states for the later

back-pass.

3.2.2 Efficient Computation

Although [3] describes the implementation of Neural ODE with the Euler Method,

which is one of the most straightforward ODE solvers, Neural ODE can also be

implemented with a modern ODE solver that can guarantee the flexibility of the solver

along with the growth of the error along with capabilities for monitoring the change

in the hidden dynamics. Therefore, any modern ODE solver can enrich Neural ODE

computation and real-time monitoring.

3.2.3 Efficient Error and Loss function for optimization

ODE solvers are the core component of any Neural ODE model. Neural ODE model

leverage the capability of ODE solvers to ensure a tolerance boundary for the output

and the loss for each iteration. Therefore, to ensure a balance between accuracy and

computational cost by tuning the tolerance. One of the limitations of neural networks

is that if the training is done with higher accuracy with very relevant input data, and

the test data are less relevant, the model often shows significantly lower accuracy for

test data, which may result in wrong prediction less accurate result. However, as

Neural ODE leverage the capabilities of the ODE solver to keep a balance between

computation cost and accuracy, it is possible to train the model with high accuracy

but switch that to a lower accuracy during test time.
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3.2.4 Handling Irregular Sampling rate

Neural ODE is a suitable candidate for irregular sampling rates for continuous-time

series and the characteristics above. Unlike RNN, the pioneer model for continuous-

time series modelling, Neural ODE computes or learns the hidden dynamics of the

system over time in the fashion of an Ordinary differential equation. On the other

hand, RNN discretizes the entire time series of small and fixed-step. However, Latent

ODE [3] leverages encoder and decoder based structure to simulate the continuous

generation of observations. In this work, I proposed a continuous-time version of

the two different RNN models, such as (i) Gated Recurrent Unit (GRU) and (ii)

Long-Short Term Memory (LSTM), as these proposed models described in this chapter

of my thesis focuses on integrating the input processing mechanism along with the

hidden dynamics of the model. Therefore, instead of the encoder-decoder architecture

of Latent ODE [3], my proposed model interwoven the input processing along with

learning the hidden dynamics of the ODE directly in the sporadic incoming inputs.

3.2.5 Handle Missing Values

As discussed in chapter 2, Standard RNNs performs well when the time series has

shorter gaps between consecutive observation in the continuous-time data and the data

set. For RNNs to perform well, it is also essential that the missing observation values

are very few. However, Neural ODEs, such as ODE-RNN and RNN-decay, do not

depend on the time gap between two consecutive observations in the continuous-time

data. Therefore, neural ODEs can predict the value and compute the hidden state at

any desired time (t) and are suitable for interpolation tasks.

3.2.6 Dynamic depth of Neural ODE

Convolutional Neural Network (CNN) is from a Deep Neural Network (DNN) with a

certain depth level in the families of neural networks. On the other hand, memory-based
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RNN models have a long sequence of memory states representing their corresponding

depth level. However, an ODE does not have any certain depth; therefore, defining

the depth of Neural ODE is not straightforward. Often, the number of evaluations

of the hidden state dynamics required during the ODE solution by the ODE solver

is considered the depth of the model. However, as the number of evaluations of the

hidden state is a variable dependent on the initial state or input, the depth of the

Neural ODE mode can change depending on the input and the increasing complexity

of the model throughout training.

All the characteristics mentioned above provide an efficient mechanism for learning

the hidden dynamics of a system regardless of irregular or missing hidden dynamics.

However, Neural ODE models need more freedom and stability to simulate the

continuous generation of observations while learning the hidden dynamics of the

system. In this paper, we focused on the structure of the Neural model and tried to

increase stability in the structure by leveraging the structure of a much more stable

neural network model.

The core motivation is to make the RNN models more continuous. Therefore, we can

leverage the strength of RNN models for learning and the consciousness of the Neural

ODE model. The strength of these two network families improves the performance of

continuous-time series modelling using neural network models. Neural ODEs require

constant memory, and the RNN model can ensure stability along with accuracy for

time series generation, reduction and classification

3.3 Proposed Models

In a standard RNN cell either GRU or LSTM, the input (xt), output (ot) and hidden

state (ht) are controlled by gating units, i.e reset gate (rt) and update gate (zt)

as shown by (3.3a) and (3.3b) respectively. Fig. 3.1 shows the architecture of the
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standard GRU [7] model. A single cell of the GRU model is connected with other

cells sequentially. Each cell of GRU model contains a reset gate (rt) and an update

gate (zt). The reset gate controls the amount of previous memory that needs to be

forgotten, and the update gate controls the amount of previous memory that needs

to be forwarded to the next state. Both gates reset gate (rt) and update gate (zt)

contribute to the current state of the cell. These gates contribute to minimizing the

vanishing gradient problem for the neural network. The GRU model does not wash all

input at every stage. Rather only the irrelevant part of previous memory is forgotten,

and the relevant part is forwarded to the next state. Therefore, each cell in standard

RNN, uses the hidden state of previous cell (ht−1) as input along with raw data input

(xt) at time t.

Figure 3.1: Architecture of GRU model

Different types of Neural ODE, such as Latent ODE and ODE-RNN, leverage the

RNN model as encoder and decoder alongside the ODE solver. Fig. 3.2 shows that

the Latent ODE, uses a ODE-RNN encoder. Besides encoding the input over time t,

the encoder also runs backwards to produce an approximate posterior over the initial

state. For example, based on the initial encoded value (z0) for the ODE-Solver, it

is possible to find the latent state (zt) at any point of time (t) by solving the ODE

initial-value problem. As the ODE solver solves an augmented ODE backwards in

time as shown in Fig. 3.2, therefore, the model contains both the original state over

time as xt and the sensitivity of the loss with respect to the state along with the
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Figure 3.2: Architecture of Latent ODE [2]

derivative zt with respect to time.

In this chapter, the existing RNN cell is redesigned as a function of ordinary differential

equations of variable x over time t. Two different RNN models are proposed using

the similar cell structure of GRU and LSTM. In these new RNN models, the hidden

dynamics are computed using the derivative of the hidden state between consecutive

observations. Fig. 3.3 shows that the proposed models progress over continuous time,

where h0 is the initial hidden state passed through an ordinary differential equation

(ODE) that uses an update function for solving ODE similar to standard GRU or

LSTM cell (odeRNNCell). Unlike Latent ODE shown in Fig 3.2, the proposed models

do not have any encoder and decoder for encoding as well as decoding the hidden

states (zt) at any time t. Therefore, the structure of the proposed model is more

straightforward than other variants of Neural ODEs. Instead of using separate RNN

for input processing for the Neural ODEs, these proposed models use the RNN update

and reset function as part of the ODE solver to update the hidden state (ht) at any

time t with only relevant information about the hidden dynamics of the system or the

target ODE that can be interpreted as the ODE form of the system. In this section,

both RNN structure GRU and LSTM are redesigned using the concept of Neural

ODE, and new two different ODE-based RNN models are as follows:

1. ODE-GRU
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2. ODE-LSTM

The proposed ORD-RNN model as shown in Fig 3.3, contains the original value of

time series at any time such as yt and the hidden state (ht) similar to any RNN model.

The ODE solver for the proposed ORD-RNN model levelrage RNN forward function ,

either LSTM or GRU to solve the ODE with respect to time t.

Figure 3.3: Architecture of ODE-RNN model

These two proposed models leverage the capabilities of ODE solvers. The final cell

state yt for the model can be computed using Eq. (3.2). In Eq. (3.2), odeRNNCell

refers to an ODE based RNN cell, either GRU-ODE or LSTM-ODE.

yt = ODESOLVER(odeRNNCell, y0, t) (3.2a)

yt = ODESOLVER(odeRNNCell, tuple(y0, h0), t) (3.2b)

ODESOLVER can be any kind of ODE solver, e.g., an Euler, Heun, adjoint or implicit

method. Models proposed in this section use a neural ordinary function odeRNNCell

to compute change or derivative of the hidden dynamics at any time t. odeRNNCell

is usually an initial value problem function as shown in (3.2a) which requires the

initial observation y0 and hidden state h0 at time t = t0 as initial input. In the case

of (3.2a), the cell state at time t is computed based on initial time statet0, and the

hidden dynamics is considered as gradient dynamics and computed by the gradients

update. odeRNNCell, can be either odeGRU, as shown in Algorithm 4 or odeLSTM,
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as shown in Algorithm 6. In other case as in Eq. (3.2b), the cell state or output at

any time is computed based on the initial cell state (y0) and hidden dynamics (h0) at

time t0. In this implementation, the proposed neural network is initialized with initial

hidden state (h0), and only the initial observation value is passed as the input for the

model.

3.3.1 Proposed ODE-GRU model

GRU model inspires the first model proposed in this thesis. The proposed ODE-GRU

model is designed to propagate in time through the continuous-time state of the

hidden dynamics of the system between consecutive observations. At the same time,

the proposed ODE-GRUcan also updates the current hidden state of the model to

incorporate the incoming observations at each time step t.

Algorithm 4 ODE-GRU ode solver function
Input:: initial hidden and cell state,time series and weight as well as bias parameters
1: procedure odeGRU(states, t, parameters)
2: x← states[0]
3: h← states[1]
4: rt, zt, h̃t ← updateGRUFunction(x, h, parameters)
5: ht ← h̃t(1− zt)
6: ot ← σ(Woht + bo)
7: return dot

dt
, dht
dt

Algorithm 4 considers states as the initial hidden state along with the observation value

at initial time, t = t0, t is the time series, parameters is a tuple of all weight parameters

(Wr, Ur,Wr, Uz,Wh, Uh) and bias parameters (br, bz, bh). updateGRUFunction takes

the input and compute the traditional GRU update functions as shown in Eq. (3.3a)

and (3.3b). This procedure described in algorithm 4 also allow end-to-end training

of the dynamic system to minimize the loss with respect to the irregularly sampled
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observations.

rt = σ (Wrxt + Urht−1 + br) (3.3a)

zt = σ (Wzxt + Uzht−1 + br) (3.3b)

h̃t = tanh (Wrxt + Urrτ + br) (3.3c)

ot = σ (Woht + bo) (3.3d)

ODE-GRU pass the changes to the ODE solver and uses only the change in hidden

state as (3.4a). The proposed RNN models do not carry hidden state of previous

cell (ht−1) as like standard RNN models. Only the derivative of hidden state over

time(fracd (ht)dt) is progressed as a function of time .

dht
dt

=
dh̃t
dt

(1− zt) (3.4a)

Algorithm 5 describes the complete flow for the training the ODE-GRU model. Here,

in algorithm 5, optimizer and lossFunction can be used based on the complexity of

the dataset. GRADF is the gradient function uses by the optimizer.

Algorithm 5 Train the ODE-GRU model
Input:: Initial condition (y0 and h0), continuous time series(t) and Initial parameter
1: procedure train(y0, h0, target, t, initalParams)
2: input← tuple(y0, h0)
3: trainedParams ← optimizer (gradient(GRADF),

initalParams, iterations,
callback = GRADFUNCTION.backward())

4: return trainedParams

procedure GRADF(input, t, initalParams, target)
2: prediction ← ODESOLVE( odeGRU , input, t,

initalParams)
loss← lossFunction(prediction, target)

4: return loss

162



Fig 3.4 shows that the ODESOLVER in the proposed ODE-GRU model leverage the

reset gate (rt) and update gate (zt) of GRU model as described in Eq. (3.3a) and

Eq. (3.3b) to determine the hidden state (h̃t) and the output (ot) of any time t. Finally,

the hidden state and output state is considered as the value for input at the next step

(t+ 1). The proposed model can archive high performance with a simple architecture

without using any secondary encoder and decoder in Latent ODE. The ODE solver

uses the ODEGRU function to solve the ODE that represents the system. Therefore,

the solution to an ODE (yt) is the hidden state between consecutive observations.

Figure 3.4: Archietcture of porposed ODE-GRU model

3.3.2 Proposed ODE-LSTM Model

Proposed ODE-LSTM model predicts the output (yt) at any time t using odeLSTM

ODE solver with the initial value of the observation (y0) at time t = t0. Therefore,

instead of computing each state based on its previous state individually, the predicted

output is generated as a function of time. (3.5) describes ODE Solvers, those that

have been used for the ODE-LSTM model.

yt = ODESOLVER(odeLSTM, tuple(y0, h0, c0), t) (3.5)

Here, odeLSTM is the function that constructs the dynamics of hidden as well as cell

states and calls the ODE solver to compute all the gradients at once. The algorithm of
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odeLSTM is discussed in 6. This model uses the same input parameter as ODE-GRU,

described in section 3.3.1, the initial observation value, (y0) and the initial hidden state

of the network h0. Besides, this model also uses the initial cell state (c0) as an input

parameter. This proposed ODE solver function, as shown in Eq. 3.5 constructs the

network as an initial value problem function. Therefore providing the initial condition

is the only input required for the proposed model.

Algorithm 6 ODE-LSTM update function
Input:: initial hidden and cell state,time series and weight as well as bias parameters
1: procedure odeLSTM(states, t, param)
2: x← states[0]
3: h← states[1]
4: c← states[2]
5: rt, zt, ct, ht, ot ← updateLSTMGate(x, h, c, param)
6: cell← dft

dt
∗ c+ dit

dt
∗ ct

7: hidden← dot
dt
∗ dcell

dt

8: return dot
dt
, hidden, cell

Algorithm 6 uses states to contain the initial hidden state, initial cell state and the

observation value at starting time, t = t0, t is the time series, param is a tuple of weight

parameters (Wr, Ur,Wr, Uz,Wh, Uh) and bias parameters (br, bz, bh). updateLSTMGate

takes the input and compute the traditional LSTM update functions as shown in

Eq. 3.6b and 3.6c.

it = σi (xtWxi + ht−1Whi + wci � ct−1 + bi) (3.6a)

ft = σf (xtWxf + ht−1Whf + wcf � ct−1 + bf ) (3.6b)

ct = ft � ct−1 + it � σc (xtWxc + ht−1Whc + bc) (3.6c)

ot = σo (xtWxo + ht−1Who + wco � ct + bo) (3.6d)

ht = ot � σh (ct) (3.6e)

Different update gate function such as input (it), forget(ft) and output(ot) use the
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typical sigmoidal non-linearities (σi, σf , σo), on the other hand, cell (ct) and hidden

(ht) activation functions uses tanh non-linearities. σc and σh along with weight

parameters( Whi, Whf , Who, Wxi, Wxf , Wxo), connect the different inputs and gates

with the memory cells and outputs, as well as biases (bi, bf , and bo). Both biases and

connection weights (wci, wcf , and wco) are optional for the update of input, forget,

and output gates.

ODE-LSTM pass the changes in input, forget, hidden gate to the ODE solver and

uses only the change in smaller fraction to compute the final output, hidden and cell

state using (3.7b), (3.7c) and (3.7a):

ct =
dft
dt
∗ c0 +

dit
dt
∗ ct (3.7a)

õt =
dot
dt

(3.7b)

ht = õt ∗
dct
dt

(3.7c)

Algorithm 7 describes the complete flow for the training of the model using the proposed

ODE-LSTM model. odeLSTM is computing all gradients at once for the model. The

parameters are learned during training using the loss function lossFunction. The

change in hidden data dynamics is computed and learned during the training session

of the proposed model. Similar to algorithm 5, optimizer uses gradient function

(GRADF )

3.4 Experiments

Several experiments are done in order to understand the dynamic characteristics of

datasets. These experiments also show how the complexity of the data influences the

proposed models. We have used different experiments to exhibit the performance of
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Algorithm 7 Train the ODE-LSTM model
Input:: Initial conditions (y0, h0), input(t), initialParams
1: procedure train(y0, h0, c0, target, t, initalParams)
2: input← (y0, h0)
3: trainedParam ← optimizer(gradient(GRADF ),

initalParams, iterations,
callback = GRADFUNCTION.backward())

4: return trainedParameters

procedure GRADF(input, t, initalParams, target)
2: prediction← ODESOLV E(odeLSTM, input, t,

initalParams)
loss← lossFunction(prediction, target)

4: return loss

proposed models for different tasks as follows

• Continuous time series generation

• Continuous time series classification with irregular sampling rate

3.4.1 Continuous time series generation with Curve datasets

In order to understand the learning mechanism of the proposed models, two different

curve time series, e.g., (i) eight-curve with low complexity and (ii) tri-knot with medium

complexity, are chosen. Each of them is of different complexity. This experiment

helps to understand the impact of time series flow and its complexity and sparseness

on the learning of the proposed model. The learning vector for the tri-knot curve

also demonstrates that the proposed model can learn itself comparatively faster than

traditional LSTM and other ODE based RNN [2, 3]. For example, fig. 3.5 shows that

the proposed ODE-GRU model needs only 20 iterations to identify the learning vector

and the curve dynamics.

Fig. 3.6 shows the learning vector of the first and 20th iterations for eight curves.

This demonstrates that the learning rate is swift, even for only 50 hidden dimensions.

ODE-GRU and ODE-LSTM models can play a significant role in identifying the types
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Figure 3.5: Learning Tri-Knot curve function at iteration 1(Left) and 20(Right)

of the dynamic lie in the corresponding time-series data. This experiment shows that

these proposed models can learn time series data faster than traditional RNN cells

with fewer parameters.

Figure 3.6: Learning eight curve function at iteration 1 (Left) and 20(Right)

Learning the curve path or trajectory for a different types of curves with proposed

ODE-RNN models had some challenges. The proposed model is based on an ODE

solver, which uses GRU or LSTM function to update the hidden state based on the

initial state of the curve path at any time t. At the same time, the value of time

and the time gap between two consecutive observations do not affect the model’s

training. As a result, the proposed model started its learning for the Tri-Knot curve

considering the path as a sine wave. Therefore, we have leveraged the mini-batch

training mechanism. The output of the ODE solver for each time point for one batch

needs to be generated as a time series as well. The time for training then depends on

the length of the time duration, but it depends on the number of observations during

the entire time duration.
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3.4.2 Continuous time series generation with Toy dataset

A simple time series with a variable sampling rate or frequency is used to learn the

dynamics of the proposed model by mimicking a spiral ODE. The spiral ODE used

in this test consists of 1000 spirals, and each spiral has 100 irregularly sampled time

points. In [9], a simple Feed Forward Neural network (FFN) is used for ODE solver

as shown in (3.2a).

def forward(self, t, y):
return self.net(y**3)

predy = odeint(FFN, batchy0 , batcht) (3.8)

Fig. 3.7 shows the comparative result after the 25 iterations of [2] (left) and our

proposed ODE-GRU (right). This demonstrates that the proposed ODE-GRU can

reduce the training time significantly, which is one of the limitations of existing Neural

ODE [2]. Also, for this experiment, we have used a dataset of only 500-time values

ad 500-time points as a training dataset. Proposed Neural ODE-RNN models need a

comparatively smaller dataset for training.

Figure 3.7: Result of ODE neural network (left) and the proposed ODE-GRU (right)
after 25 iterations of training.

3.4.3 Continuous time series classification with Human Activity dataset

For this experiment, a comparative performance evaluation of proposed models and

[3] is executed using the human activity recognition dataset [10] is used. This dataset
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consists of 6 different activities along with 12 features. After normalization, this

dataset can be transferred to a time series of 6554 sequences at 211-time points. The

configuration of Latent-ODE [3] for this comparative analysis is shown at Fig. 3.8a.

Three different neural networks are used for Latent-ODE, i.e., encoder, differential

equation solver, and decoder. On the other hand, the proposed neural networks

(ODE-GRU and ODE-LSTM) only require a single recurrent neural network in order

to compute the derivative of hidden dynamics, as shown in Fig. 3.8b. Proposed models

need a single neural network which is used by a simple differential equation solver

function as shown in Algorithm 4. The proposed models are elementary in structure

in comparison to other neural ODE [2, 3]. Therefore, the training time is less than

[3] and [2]. I have also compared the proposed model against standard GRU and

LSTM. An important characteristic of the proposed models is that the difference in

loss between consecutive iterations during the training process is comparatively lower

than in other neural network models. This model only computes the derivative of

hidden dynamic d
dt
ht at any time t; therefore, the proposed models progress through

iterations with small changes in loss value, as shown in Fig. 3.9.

(a) Latent-ODE (b) Proposed ODE-GRU/ODE-LSTM

Figure 3.8: Configuration for neural network used in Human activity experiment

3.4.4 Evaluation of proposed model

The significant contributions of these proposed models are as follows

1. Simple architecture: The architecture design of the proposed models is straightforward,

it uses the update functions of standard RNN models and ODE differential

equation solver ODESOLVER to design RNN models as a function of the
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Figure 3.9: Loss value for 20 iteration for Latent-ODE and proposed models

continuous-time. As RNN models are already pioneering in terms of time series

modelling, these proposed models leverage the strength of RNN and neural

ODE in a single neural network. As shown in Eq (3.9a) and Eq (3.9b), Latent

ODE has two building blocks, such as a ODESOLVER to solve the ODE and

an RNNCell to update the hidden state of the neural network based on the

solution of the ODESOLVER. On the other hand, the proposed model has

only a ODESOLVER. The ODESOLVER of proposed models internally uses

RNNCell as the function for ODESOLVER to solve the ODE. The ODE solution

is then used as the updated hidden state of the system. Eq. (3.2a) shows that

ODESOLVER itself can compute the updated hidden state of the system using

the update functions of standard RNNcell, either GRU or LSTM.

h′i = ODESolve (fθ, hi−1, (ti−1, ti)) (3.9a)

hi = RNNCell (h′i, xi) (3.9b)
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2. Data dynamics: Due to continuous and straightforward characteristics, these

models are very suitable for understanding the hidden dynamics of corresponding

datasets. These models can compare the dynamics of different dynamics to

understand the data. This feature can significantly contribute to the design of a

data-driven system. These models can also participate in explainable machine

learning.

3. Fewer parameters: In comparison to standard RNN cells and other neural ODEs,

even fewer weight, as well as bias parameters, can achieve the result even faster

for proposed models.

4. Memory Usage: Proposed models use the automatic gradient [11] to compute

graphs for storing the previous state. However, not all previous states are relevant

as it only focuses on the parameters of the model and the hidden dynamics.

Based on the complexity of the dataset, the graph length can vary.

3.5 Conclusion

This work introduced a family of continuous RNN models enriched by ordinary

differential equations (Neural ODEs). Unlike traditional RNN models, these proposed

models do not need to discretize continuous time series into discrete-time sequences.

In contrast to the generic RNN model, this proposed ODE-GRU and ODE-LSTM

models can update the dynamics at irregularly sampled time points. Besides, the

proposed ODE based two RNN models leverage the distinctive architecture of GRU

and LSTM gating units to model data-driven, event-driven, asynchronously sampled

input of continuous series. These ODE-GRU and ODE-LSTM models have significant

advantages. Any large time series can be learned within a short time and with fewer

parameters. ODE-GRU and ODE-LSTM models compute continuously, therefore

it is updated at every time slot where there is a change d
dt
ht > 0. If there is no
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change in consecutive time slot, ODE solver would compute d
dt
ht = 0. As a result, no

additional masking vector is required to distinguish missing values. The significant

contribution of these proposed models is that they are effortless to compute with faster

training and evaluation time. In this chapter’s result evaluation for these proposed

models, we only focus on time-series data with Gaussian observations as the dataset.

Gaussian observations ensure an irregular sampling rate in the dataset. For the toy

dataset experiment, we focus on the generative nature of the proposed ODE-RNN

models. ODE-RNN model can act as a generative model and generate continuous time

series. Human activity dataset, However, GRU-ODE-Bayes can also be extended to

binomial and multinomial observations since the respective NegLL and KL-divergence

are analytically tractable. The proposed technique allows the modelling of sporadic

observations of both discrete and continuous variables.
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CHAPTER 4

NEURAL ODES FOR INFORMATIVE MISSINGESS IN

MULTIVARIATE TIME SERIES

This chapter is an expanded version of of a paper published in: 2020 31st

Irish Signals and Systems Conference (ISSC)

Informative missingness is unavoidable in the case of processing of continuous-time

series, where the value for one or more observations at different time points is missing.

Such missing observations are significant limitations of time series processing using

deep learning. Real-time applications, e.g., sensor data, healthcare, weather, generate

continuous data, and informative missingness is common in these datasets. These

datasets often consist of multiple variables, and often there are missing values for

one or many of these variables. This characteristic makes time series prediction

more challenging, and the impact of missing observations on the accuracy of the final

output can be significant. A recent novel deep learning model called GRU-D is one

early attempt to address informative missingness in time series data. On the other

hand, a new neural network called Neural ODEs (Ordinary Differential Equations)

is natural and efficient for processing time-series, continuous data. This section

proposes a deep learning model that leverages the effective imputation of GRU-D and

the temporal continuity of Neural ODEs. A time series classification task performed

on the PhysioNet dataset demonstrates the performance of this architecture.
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4.1 Introduction

Continuous-time series usually consists of data collected at different time points at

different sampling frequencies. Based on the sampling frequency and data availability,

some time points in the series can have missing observations for many of the time

points. A recent work [1] demonstrates some findings using the MIMIC-III datasets

[2] which reflects the significance of missing patterns in time series prediction tasks.

Suppose the value for certain variables in a multivariate time series is missing for

a significant time. In that case, the impact of corresponding input variables fades

away over time and can result in inaccurate predictions for output. Over time, various

experiments for data processing with missing values tried to overcome the imposed

challenges. These techniques are suitable for small as well as simple time series. As

the complexity, dynamics, length, sampling frequencies, and the number of variable

increases, these techniques become irrelevant. Some of the methods are as follows

• Omit the missing data and perform the task on only available time-series

observations. This approach helps to ignore the unavailable data. However, if

the missing rate is high and a significant amount of data is ignored, this solution

often results in an inaccurate outcome and misguiding prediction.

• Use data imputation to fill out the missing observation with substitutes value.

There are several imputation techniques to determine substitute value. The

limitation of this approach is that its only suitable for simple time series. It

is often too hard to find the correct substitute values for complex time series.

Therefore, for complex time series, rather than using a single data imputation

method, multiple imputation methods are often used combined to deal with the

complexity of data series and reduce the uncertainty.

• Another practice is to apply data imputation multiple times iteratively with a

target to reach an average value for the missing observations. However, data
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imputation is only effective for simple data series with fixed missing rates and

time series lengths. In reality, time series are often variable in length, and

missing observations occur in entirely random order.

Among all different Neural network families, Recurrent Neural Networks (RNN) have

shown significant efficiency in solving missing patterns in time series with different

gating units and their capacity to store memories [3]. Various time series tasks such

as classification, prediction, and generation are usually solved using RNN models.

Different gating units for RNNs (e.g., Long Short-Term Memory (LSTM) [4], Gated

Recurrent Units (GRU) [5], and GRU-D [1]) typically consider time series as a

dynamical system of the discrete and fixed time step. Theoretically, a fixed step can be

enough for time series modelling if it is too small. However, real-world time series data

are usually sampled at an irregular rate. Therefore, a short time step is necessary for

some applications such as sensors to cope with the higher data sampling frequencies.

On the other hand, patients’ health records need to be sampled at a higher time step,

as the time gap between two consecutive patient visits can be very long due to the

irregular data sampling rate and variable length. Therefore, it requires a structured

and dynamic model to defeat the uncertainty of informative missingness.

[1] try to handle missing pattern in continuous time series with data imputation.

GRU-D [1] successfully exploits the strength of RNN models for time series to capture

the long term dependencies in multivariate time series. Another recent family of neural

networks, Neural Ordinary Differential Equations (ODE-NN) [6–8] helps to solve time

series by using black-box differential equation solver. This kind of neural network

leverages the initial value problem to compute the hidden dynamics (f) as a function

of continuous time at any time t. As shown in (4.1), Neural ODE can compute the

hidden state of time t (ht) from the initial hidden state(h0) and the hyperparameters
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(θt−1) update over time. Here t ∈ {0, . . . , T} and ht ∈ R.

ht = ht−1 + f(h0, θt−1) (4.1)

In this section, two different neural network models are introduced. I call them

Continuous GRU-D and Extended ODE-GRU-D. Both models leverage the differential

equation solver to compute the model’s hidden dynamics. They use differential

equation solver ODESolve to impute data, where the missing observations of variables

are replaced by the derivative of the value of available observations of corresponding

variables. Over time, the decay in hidden dynamics and input significantly impact

the final output of multivariate time series. This work computes the decay rate

as the derivatives of time (t). Therefore, the decay rate can control the gradient

optimization of the model over time. The proposed Continuous GRU-D model uses

the GRU-D model’s hidden dynamics as continuous-time dynamics using a differential

equation solver. However, the Extended ODE-GRU-D model computes the decay rate

in addition to the continuous hidden dynamics of the GRU-D model. For both models,

the time series is a function of time t rather than a discrete sequence in this work.

The Extended ODE-GRU-D model also shows an efficient way to generate hidden

and input decay rates based on the data dynamics. Experiment on the PhysioNet

dataset demonstrates that the proposed models outperformed the existing GRU-D

model in the time series classification task. These experiments show that ODE based

neural network model can successfully solve the informative missingness. The main

goal of this work is to use an ODE solver as a black box ODE solver and compute

the gradient for the optimizer, which is in charge of optimizing the parameters of the

neural network model.
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4.2 State of the Art

A multivariate time series (Xt) with D variables and of T length can be described as in

(4.2). Time series (Xt) can have missing observation. Any observation for time series

(Xt) is xt ∈ RD which represents t-th observation of all variables and xdt represents

the value of the d-th variable at time t.

Xt = x1, x2, . . . , xT
D ∈ RT×D (4.2)

Fig. 4.1 depicts the problem domain. Here X is a continuous multivariate time series

with some missing values. The masking vector M identifies missing observations. The

timestamp vector S records the time of the t-th observation of each variable—the

time interval vector ∆ measures the duration of unavailability. The strength of the

existing GRU-D implementation is that it uses the masking and time interval vectors

to characterize the missing pattern rather than adopting the traditional missing-

completely-at-random model. This approach helps to quantify the influence of missing

observations and adapt accordingly.

Figure 4.1: Continuous time series with missing values, from [1]

4.3 Existing GRU-D implementation

The main contribution of the GRU-D model is that it can identify the long term

dependencies and missing functional patterns in data. It can utilize long term temporal

missing patterns in time series. Generally, GRU-D outperforms the other two RNNs

(GRU and LSTM) in continuous time series prediction. The performance evaluation
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and comparison described in [1] shows that GRU-D scored 2.5% higher accuracy than

other RNN implementations. Using the GRU-D model can predict time series without

relying on previous missing observations in the time series. As a result, this model

achieves higher accuracy within less time. The core components of GRU-D are as

follows:

Masking Vector

A masking vector (M) mt ∈ [0, 1]D indicates either the observation is available with

value 1 or missing with value 0 at any time step t as shown in Eq. (4.3).

md
t =


0 if xdt is missing

1 if xdt is available
(4.3)

Time Interval Vector

This vector computes the time interval δtd for each d-th variable since its last

observation. If the first observation for d-th variable is measured at time s0 = 0, then

the time interval can be measured by Eq. (4.4).

δdt =


st − st−1 + δdt−1 t > 1,md

t−1 = 0

st − st−1 t > 1,md
t−1 = 1

0 otherwise

(4.4)

Data Imputation Value

For replacing the missing data, three different approaches, GRU-Mean, GRU-Froward

and GRU-Simple, are used in the GRU-D model [1].
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GRU-Mean

Each missing observation is replaced with the mean (xdt ) of the individual variable

across the training examples. Both training and testing datasets is processed to

compute the dynamics (x̃d) of GRU-Mean as shown in (4.6). Here, N is the length of

time series.

xdt ← md
tx

d
t +

(
1−md

t

)
x̃d (4.5)

Where, x̃d =
N∑
n=1

Tn∑
t=1

md
t,nx

d
t,n/

N∑
n=1

Tn∑
t=1

md
t,n (4.6)

GRU-Forward

Missing value is replaced with last available observations as shown in (4.7) . Here

t′ < t is the last time when the d-th variable was observed.

xdt ← md
tx

d
t +

(
1−md

t

)
xdt (4.7)

GRU-Simple

This approach identifies the missing variable along with the duration of informative

missingness by concatenating the measurement, masking and time interval vectors as

shown in (4.8).

x
(n)
t ←

[
x

(n)
t ;m

(n)
t ; δ

(n)
t

]
(4.8)

Hidden State Decay

The importance of decay rate is that it can control the decay mechanism of the model

considering underlying properties associated with each variable. As a result, the
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individual variable of a multivariate time series can influence the prediction based

on its actual weight of decay. The decay rate (γt) is modelled as Eq. (4.9) with its

associated weight (Wγ) and bias parameter(bγ). The negative rectifier force the decay

rate to decrease monotonically between ranges [0,1].

γt = exp {−max (0,Wγδt + bγ)} (4.9)

There are two different decay rate, hidden decay rate (γht) and input decay rate (γxt).

Hidden decay rate controls the decrease in decays of the previous hidden state ht−1

before computing current hidden state ht as like Eq. (4.10). Here, ĥt−1 represents

a state between observations, but it has less control over the raw input variable.

Therefore, a second decay rate, the input decay rate, directly controls the decay of

raw input variables.

ĥt−1 = γht � ht−1 (4.10)

As shown in Figs. 4.3 and 4.3, the main difference between traditional GRU and

GRU-D is that it uses two different decay mechanisms hidden state and raw input.

Using additional hidden state decay helps to capture the complete missing patterns.

(a) GRU Model Cell (b) GRU-D Model Cell [1]

Figure 4.2: GRU vs GRU-D Model Cells

The update functions for different gate units and intermediate states of GRU-D are

explained by Eq. (4.11a) (Reset Gate), (4.11b) (Update Gate), (4.11c) (Intermediate

state), and Eq. (4.11d) (Hidden state). The typical GRU cell update functions [5] are

181



modified in GRU-D. The input (xt) and hidden (ht) vectors are replaced by ŷt and ĥt

respectively. Besides, a new set of parameter vectors, Vr, Vz and V are introduced for

mask vector mt.

rt = σ(Wrx̂t + Urĥt−1 + Vrmt + br) (4.11a)

zt = σ(Wzx̂t + Uzĥt−1 + Vzmt + bz) (4.11b)

h̃t = tanh(Wx̂t + U(rt � ĥt−1) + V mt + b) (4.11c)

ht = (1− zt)� ĥt−1 + zt � h̃t (4.11d)

The neural network architecture of GRU-D shown in Fig. 4.3 shows that the input

variable (xt), masking vector (mt) and time interval vector (δt) are used as input

for each cell. The GRU-D cell Fig. 4.3 implement the GRU-Mean data imputation

method to overcome the informative missingness problem. Different decay rates (γht

and γxt) shape the input and hidden state of the GRU-D cell. Finally, the output (yt)

for a GRU-D is the state of the GRU-D cell at time t.

Figure 4.3: Architecture of GRU-D
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4.3.1 ODE-RNN

This model leverages Neural Ordinary Differential Equation [9]. This neural network

defines the hidden state between observations as the solution of an Ordinary Differential

Equation (ODE) as shown in Eq. (4.12a)

h′t = ODESolve(fθ, h0, (t− 1, t)) (4.12a)

ht = RNNCell(h′t, xt) (4.12b)

Here, the function fθ describes the dynamics of the hidden state using a neural network

with parameters θ. The previous hidden state at time t− 1 can be computed using

a differential equation solver. ODE-RNN uses a standard RNN update function as

shown in (4.12b) to compute current hidden state with input the intermediate state h′t.

The hidden state can be computed without depending on the time interval implicitly.

The hidden state is defined by an ODE solver and later updated by another RNN

network at each observation. ODE-RNN [9] is an auto-regressive model which makes

one step ahead of predictions based on the previous observation. This model consists

of three different neural networks: (i) an encoder, (ii) a decoder and ODE solver, as

shown in Fig. 4.4.

Figure 4.4: Architecture of ODE-RNN

4.3.2 Latent-ODE

latent-ODE [9] is a variational auto-encoder based continuous-time model. Both

training and prediction use auto-encoder. ODE-RNN is the encoder for Latent-ODE.
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This model can be characterized as encoder-decoder or fully ODE based sequence-

to-sequence architecture for neural network model. Initial value problem is used to

compute the latent state (zt) at any time t. A neural network (g) generates the final

hidden state of the ODE-RNN encoder as the mean and stranded deviation of the

initial latent state z0 as shown in (4.13a). To get the approximate posterior, both the

encoder and decoder are trained jointly. The posterior distribution over latent states

is a function of the final hidden state as shown in (4.13b). This indicates the explicit

uncertainty not available in traditional RNN or ODE-RNNs.

µz0 , σz0 = g(ODE-RNNφ({yi, ti}Ni=0)) (4.13a)

q(z0|) = η(µz0 , σz0) (4.13b)

The significant benefit of latent-ODE is that the hidden dynamics of the system

and distribution of observations get decoupled from each other. As a result, each

hidden state at any time t can be computed independently. In addition, the posterior

distribution over latent states can measure uncertainty which is a unique feature for

latent-ODE.

4.4 Proposed Model Design

Two different models are proposed in this section to solve the informative missingness

of multivariate continuous time series, as shown in Fig. 4.1.

4.4.1 Continuous GRU-D

This model leverages an ODE solver in order to compute the hidden dynamics of

continuous time series at any time t. Similar to [1], the hidden decay rate (γht) and

input decay rate (γxt) are computed using Eq. (4.9). These decay rates are used as
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parameters for the network. However, instead of computing the hidden state as a

dynamical system of discrete sequential value, this proposed model uses the initial

value problem to calculate the continuous dynamics using derivatives generated by

ODE solver. Therefore, the value of d-th variable at time t (yt) is computed using

Eq. (4.14). Eq. (4.8) shows that yt is a vector concatenating the value of last available

observation (xt ), masking vector (mt) value and hidden state value (ht) at time t. The

hidden dynamics y0 is the initial value of the observation vector, yn0 ← [xn0 ;mn
0 ;hn0 ].

Here n is the number of variable and y0 is an n× 3 vector. The resulting vector yt

provides the value of hidden state at time t and observation value (yt) of n variables

at time t is yt ← [xnt ;mn
t ;hnt ].

(y1, y2, . . . , yt) = ODESolve(N , y0, T ) (4.14)

Here N is a neural network similar to the update functions of existing GRU-D model

cell, described in Eq. (4.11a), Eq. (4.11b), Eq. (4.11c), and Eq. (4.11d). An ODE

neural network, as shown in Fig. 4.5 is used to compute the update in hidden state

and generate the target output. The input for GRU-D and ODE-GRU-D are same as

shown in Fig. 4.5. The proposed ODE-GRU-D cell in Fig. 4.5 shows that instead of

computing the intermediate hidden state value using the decay rate and imputation

method, the proposed ODE-GRU-D leverage a neural network (N ) to compute the

intermediate hidden and cell states. The neural network (N ) is a Neural ODE model

that takes the intermediate input variable (x′t), masking vector(m′t) and hidden vector

(h′t) after the decay mechanism of GRU-D is applied on the original value of input;

and generate the final value for intermediate hidden and cell state by solves the ODE

derivative of them using a ODE solver (f). The ODE solver (f) then generates the

hidden state (ht). Finally, the output cell state (yt) is derived from the hidden state

(ht) is similar fashion as GRU-D.
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Figure 4.5: Architecture of ODE-GRU-D

This model leverage the ODE solver and uses the update functions as described

in Eq. (4.11a), Eq. (4.11b), Eq. (4.11c) and Eq. (4.11d). No additional training of

encoder or decoder, unlike Neural ODE in [6] or ODE-RNN in [9], is required in this

proposed model. ODE-RNN [9] separately generates the hidden dynamics using a

Neural ODE [6] and then computed hidden state is updated using standard RNN

cell as shown in (4.1). However, proposed Continuous GRU-D model continuously

update the hidden dynamics using a Neural ODE network (N ) which use the update

functions of GRU-D. Eq. (4.15) shows that the proposed neural network (κ) takes the

same inputs (X,M,∆, T ) similar to GRU-D as shown in Fig. 4.1. In addition to these

inputs, Continuous GRU-D model has additional components, i.e. (i) an ODE based

neural network (N ) and (ii) a loss function (L ) which helps the optimizer to leverage

the dynamics of ODE in order to compute the update of hidden state. As shown in

Eq. (4.15), the time interval between two consecutive observations is not considered

in hidden dynamics computation. Therefore, the length of time interval is irrelevant
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and the proposed model works for both high as well as low sampling frequencies.

yt = κ(X,M, T,L ,N ) (4.15)

Algorithm 8 shows that an ODE based neural network (f) updates the hidden state.

Here, (f) is the update function that constructs the dynamics of hidden as well as

derivative of the cell states and call the ODE solver to update all the parameters for

optimizer at once. Algorithm 9 describes the steps for computing the derivative of

hidden dynamics (dy). The parameters of this neural network are optimized based on

the output of loss function (L ). The input for γxt , γht are computed using the existing

GRU-D computation described in Eq. (4.9). Similarly, xdt and h̃t are computed using

Eq. (4.7) and Eq. (4.15). Here N is a neural network which uses xdt and ĥt as input

for a ODE based implementation of GRU-D cell update function. T is the time series.

Algorithm 8 Compute the state of an ODE-GRU-D cell
procedure N (xtd, h̃t, T, hiddenDynamics)

y0 ← tuple(xd0,m0, ĥ0)
yt,

δL
δθ
← ODESolve(f, y0, T, h, θ)

return yt

Algorithm 9 uses the same update functions as [1] to compute the continuous hidden

dynamics of the neural network.

Algorithm 9 Update the derivative, the hidden state, and parameters for the optimizer
procedure N (y, T, θ)

x, h,m← y
Compute rt using (4.11a)
Compute zt using (4.11b)
Compute h̃t using (4.11c)
h← (h− h̃t) ∗ zt
yt ← tuple(x, h,m)
return yt
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4.4.2 Extended ODE-GRU-D

The second proposed model (Q) characterized the missing pattern of the time series

using an Adjoint ODE solver. Fig. 4.6 shows the architecture of the proposed Extended

ODE-GRU-D neural network model. The input for Extended ODE-GRU-D and

GRU-D are same as shown Fig. 4.6. Similar to ODE-GRU-D (Fig. 4.5), Extended

ODE-GRU-D also leverage the neural network (N ) to compute the intermediate

states after the decay mechanism is applied to the original input to the Extended

ODE-GRU-D cell (the blue box in Fig. 4.6). For Extended ODE-GRU-D, the decay

mechanism is different than GRU-D or ODE-GRU-D models. Instead of using a static

decay parameter in the GRU-D cell, we used a ODE Filter Linear neural network

(FL) as the controller for the decay rates. Fig. 4.6 shows that two FL models are

controlling the decay rate for the two different decay rate controller parameter, as a

result, we do not need any explicit imputation method or manual control over the

decay rate. FL model is learning the value for decay parameterise and updating it

during training. in the Finally, the output cell state (yt) is derived from the hidden

state (ht) is similar fashion as GRU-D.

in Existing GRU-D model computes decay rate as shown in (4.9), where Wγ and bγ

are parameters of the same GRU model. They are trained jointly with all the other

parameters. However, if the dynamics of the decay rate can be computed as the

derivative original input ∆, for time, it can provide the accurate value of the decay

rate over time. Therefore, in this proposed model, a Filter Linear neural network FL is

used to compute the derivative of the decay rate over time. Wγ and bγ are parameters

of FL, and they are trained separately to compute the derivative of decay rate (∂γ
∂t
) as

shown in (4.16a). ODE solver solves the neural network (FL) concerning ∆ over time

to compute the derivative. This derivative is used for computing the decay rate as

shown in (4.16b).
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Figure 4.6: Architecture of Extended ODE-GRU-D Model

Fig. 4.6 shows that two ODE Solver using Filter Linear neural network as function

is used in proposed model to compute hidden state decay rate and input decay rate.

The third ODE Solver compute the update in hidden state of the model.

δγ

δt
= ODESolve(FL,M, h0, T,L ,N ) (4.16a)

γt = exp

{
−max

(
0,
δγ

δt

)}
(4.16b)

This γt from (4.16b) compute xdt ∈ XD using (4.17).

xdt ← md
tx

d
t +

(
γxdtx

d
t +

(
1− γxdt

))
xdmeant

(4.17)

XD = {xd0, xd1, ...., xDT } is used as the input for the proposed Extended ODE-GRU-D

model. Similar to proposed ODE-GRU-D described in §4.4.1, Extended ODE-GRU-D

also uses ODE based neural network (N ) to compute the update in hidden dynamics
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(a) ALP (b) ALT (c) Cholesterol (d) Creatinine

(e) Glucose (f) Height (g) Age (h) Weight

Figure 4.7: Different parameters of the PhysioNet Challenges 2012 dataset

of the continuous time series as shown in (4.18). Here, h0 is the initial hidden state.

yt = Q(XD,M, h0, T,L ,N ) (4.18)

Proposed Extended ODE-GRU-D exploits ODE solver to understand the decay

dynamics of the time series; therefore, controlling change in the decay rate is more

accurate than the existing GRU-D model. this model learns the decay mechanism

for raw input as well as the hidden dynamics of the continuous-time series. The

main advantages of these proposed models are that they naturally handle the decay

mechanism and the gap between consecutive observations.

4.5 Results

As neural ODE is used to compute the hidden state at any time (t), no additional data

processing is required for these two proposed neural network models. Furthermore,

unlike ODE-RNN [9], the proposed models use a single neural network. Therefore, it

does not require a separate encoder and decoder.
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4.5.1 Dataset and Task Description

For demonstrating the performance evaluation of proposed models, we use the

PhysioNet Challenges dataset [10], a collection of multivariate time series with missing

observations. It contains 8000 intensive care unit records (ICU), each a time series of

48 hours with 33 parameters. Fig. 4.7 shows the histogram for some of the parameters,

i.e., ALP, glucose, age, height, weight, etc. This experiment uses Training Set A for

training as the output of this set is available only. As in the original section, two

prediction tasks below are attempted using this dataset.

Mortality task (Binary classification problem)

Predict a patient’s death in the hospital. There are 554 patients with positive mortality

labels. For this task, reference models are trained using 10% data (5898, 30) for test

and 90% data for training (53078, 30)—however, Continuous GRU-D training itself

uses the initial condition. Therefore, a smaller subset of data (1000,30) can provide

better training results along with another small subset (100,30) for the test. Therefore,

the model is trained for 500 iterations, and Fig. 4.8 shows the loss of the proposed

Continuous GRU-D model for the Mortality task (Binary classification problem) Task.

Figure 4.8: Loss in Continuous GRU-D model training for Mortality Classification
task
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Table 4.1: AUC on PhysioNet
Method AUC

GRU-D 0.824+0.0.12
ODE-RNN 0.833+0.009
Latent-ODE (RNN Encoder) 0.781+0.018
Latent-ODE (ODE Encoder) 0.829+0.004
Latent-ODE + Poisson 0.826+0.007
ODE-GRU-D 0.8947+0.001
Extended ODE-GRU-D 0.9147+0.005

Multi-task classification problem

Predict in-hospital mortality, length-of-stay less than three days, patient’s chance of

having a cardiac condition, and patient’ recovery state from surgery.

Table 4.1 shows that the proposed ODE-GRU-D and Extended ODE-GRU-D significantly

outperform the existing GRU-D and Neural ODEs.For the comparative analysis area

under curve (AUC) comparison.

4.6 Performance Evaluation

4.7 Conclusions

The most available solutions for handling missing values in continuous time series use

data imputation. However, data imputation requires extensive data pre-processing;

it can also impair performance. This proposed model learns the hidden dynamics

of time series as progress. It can compute the hidden state at any time t without

directly depending on the previous value. As the proposed model learns the derivative

of changes, it does not depends on additional data imputation. The derivatives of

hidden states help differentiate between longer and shorter dependencies; therefore, the

proposed model works evenly fine for data with a higher sampling rate and a shorter

sampling rate. As for using ODE based neural network, this proposed model requires
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more training time than testing time. Training time is relative to the dataset. Also,

memory costs can be either fixed or incremental based on implementation. The future

extension of this work mainly focuses on using a similar model when the informative

missingness in any dataset is not random. Instead, it follows a particular distribution.

If the time pattern of occurrence of the missing observation can be identified, it is

possible to switch on or off the derivative computation. That can help predict the

missingness of the information and design the model accordingly.
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CHAPTER 5

NEURAL ODE BASED MODELS FOR ECG SYNTHESISE

This chapter is an expanded version of a paper published in 1st International

Conference on Electrical, Computer and Energy Technologies (ICECET),

2022

Continuous medical time series data such as ECG is one of the most complex time

series due to its dynamic and high dimensional characteristics. In addition, due to its

sensitive nature, privacy concerns and legal restrictions, it is often even complex to use

actual data for additional medical research. As a result, generating realistic synthetic

continuous medical time series has significant practical application. Furthermore,

several research works have already shown that the ability of generative adversarial

networks (GANs) in the case of continuous medical time series generation is promising.

Therefore, most medical data generation works, such as ECG synthesis, are mainly

driven by the GAN model and its variation. On the other hand, some recent work on

Neural Ordinary Differential Equations (Neural ODEs) demonstrates their strength in

the face of informative missingness, high dimension, and continuous dynamic time

series. Instead of considering continuous-time series as a discrete-time sequence,

Neural ODEs can continuously train continuous time series in real-time. This thesis

used a Neural ODE-based model to generate synthetic sine waves and synthetic ECG.

We introduced a new technique to design the generative adversarial network with Neural

ODE based Generator and Discriminator. We developed three new models to synthesise

continuous medical data. Different evaluation metrics are then used to quantitatively

assess the quality of generated synthetic data for real-world applications and data
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analysis. Another goal of this thesis is to combine the strength of GAN and Neural

ODE to generate synthetic continuous medical time series data such as ECG. We

also evaluated both the GAN and Neural ODE models to understand the comparative

efficiency of models from the GAN and Neural ODE family in medical data synthesis.

5.1 Introduction

Neural Ordinary Differential Equations (NODE) [1] introduces a new family of neural

networks, which has shown impressive performance for a continuous-time series

generation. On the other hand, Generative Adversarial Network (GAN) models

demonstrate impressive performance in synthetic image generation. However, the

performance of GAN in terms of synthetic time series generation [2–4] is comparatively

weak. ECG signal is a complex data structure. In addition, ECG signal often exhibits

dynamic characteristics, such as irregular sampling rate, informative missingness [5],

high dimension, multiple variables or parameters, long sequence, high frequency or

data sampling rate, pathological dependency on long term memory and dynamic

pattern in the dataset. Neural Ordinary Differential Equations based models [1, 6–9]

demonstrate improved performance to overcome different challenges in continuous

time series, such as high frequency, pathological dependency on long term memory

and others.

Continuous medical time series are susceptible and require additional security. In

addition, due to privacy issues, using actual data in medical research is often challenging.

Therefore, we have introduced a new NODE based Generative Adversarial Network

(GAN) model to generate continuous medical time series data, e.g., electrocardiogram

(ECG). These generated data can be used instead of actual ECG without compromising

the quality of analysis.

The main objectives of this work are as follows:
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• Develop NODE based models for continuous medical time series generation

• Improve the performance of Generative Adversarial Neural Network to generate

continuous medical time series

• Evaluate the performance of proposed models.

5.2 Background

GAN models are top-rated for signal synthesis. Several recent works show excellent

outcomes for signal synthesis problems. However, most GAN model for signal synthesis

problems is often Recurrent neural networks. This thesis focuses on developing a

NODE model for signal synthesis problems. We also introduced a GAN model based

on NODE to provide a better result for the signal synthesis problem. NODE [10, 11],

can be presented as a continuous function instead of several layers, and the hidden

state can be parametrised using an Ordinary Differential Equation (ODE) solver.

ODE solvers help to compute the changes in hidden dynamics as shown in 5.1.

dh(t)

dt
= ODESOLVER(f, ht, t, δt) (5.1)

Here f is an initial problem ODE solver. Using the initial condition of h(0), the ODE

solver can compute the output h(t) at time t. This approach provides faster training

time than a residual network, constant memory cost instead of linearly increasing

memory cost, and designing any neural network model is much simpler. NODE is a

promising model in the field of continuous time series generation.

In another aspect, research shows that continuous time series or signal modelling

can achieve a better result with recurrent neural network [12]. If the ODE solver in

NODE can leverage the architecture of a Recurrent neural network (RNN), it can

learn continuous time series in real-time with higher precision[6, 11]. Eq 5.2 shows
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that generic NODE based RNN cell [11] is used by ODE solver to compute the output

yt at time t from the initial input y0 at time t0.

yt = ODESOLVER(ODERNNCell, y0, t) (5.2)

Several recent works [6, 9–11, 13] show that NODE models show significantly better

performance for continuous-time series (We.e., sine wave, ECG, etc.) generation. This

work introduced three models for continuous medical time series synthesis.

Our research aims to use deep learning models to generate synthetic electrocardiogram

(ECG) data representing real ECG. The goal is to generate high-quality data that

can reduce medical research limitations for lack of data. Fig 5.1 shows typical ECG

signal. Fig. 5.1 (a) represents Normal Sinus data and Fig. 5.1 (b) represents irregular

ECG for Arrhythmia. Both ECG signals are continuous in time with a higher data

sampling rate. Learning ECG signals require higher efficiency and better quality. As

these ECG signals are continuous, the corresponding deep learning model needs to

learn them as a function of time (t) at different layers of incoming signal data.

(a) MIT-BIH Normal Sinus (b) MIT-BIH Arrhythmia

Figure 5.1: Loss analysis for training GAN model

GANs are leading the research for ECG data generation among different deep learning

models. Different models [14–17] show how GANs generate ECG data with high quality.

Among these works, [16, 17] shows domain-specific knowledge such as personalisation
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or external stimulation can improve the performance of GANs model. Nevertheless,

training personalised data with ECG data is time-consuming and needs multiple

environments for training. On the other hand, [14, 15] adopt the hybrid model

concept to design the architecture for GAN. GANs described in [14, 15] use Recurrent

Neural Networks (RNN) as Generator and a combination of sequential RNN as well

as convolutional neural networks as the Discriminator. Nevertheless, there are still

limitations, as GANs are unstable in training and do not have suitable evaluation

measures. In addition, learning ECG using GANs require time and memory. Therefore,

the training is time-consuming. Moreover, a training model with such data as an ECG

signal often requires a large training dataset. The dynamical equations of motion

for ECG signal can be described as ordinary differential equations [18]. Therefore,

ODE can model ECG signals as a function of continuous time. Ordinary Differential

Equations also help model the heart rate’s dynamic characteristics, for example, the

mean and standard deviation of the ECG signal and spectral properties such as the

LF/HF ratio. Therefore, NODE can provide better performance than GAN. In this

thesis, we focus on using NODE to reduce the limitation of GAN and other deep

learning models for ECG data generation.

5.3 Motivation

Adversarial generative approaches, like GANs, have remarkably successfully created

realistic synthetic data. These approaches are usually combined with convolutional

methods for images or other regularly sampled data, like speech or music. However,

some signals obey physical constraints more readily modelled by differential equations

and may be sparse or irregularly sampled. Here we combine the Neural ODE approach

for signals of this nature with GANs to generate realistic ECG signals that can exhibit

apparent non-gaussian noise processes like sensors losing contact.
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5.4 Model Design

In this work, we focused on exploring the strength of NODE for ECG synthesis.

Firstly, we designed a NODE based model to produce synthetic continuous-time data,

which is described in section 5.4.1. Secondly, we tried to enrich the architecture of the

traditional GAN model using NODE. Finally, we designed two separate GAN models,

where we tried to design the Generator and Discriminator using NODE.

5.4.1 Neural ODERNN Model (ODEECGGenerator) Design for ECG Synthesis

The first model has an ODE-RNN [11] model, called ODEECGGenerator which is

simply an Neural ODE-RNN [11] NODE model. Fig. 5.4.1 shows the architecture for

the ODEECGGenerator model to generate ECG. The building block for this model is

a NODE block that leverages Ordinary Differential Equation Solver ODESOLVER to

train an ODEGRU, or ODELSTM model [11].

Figure 5.2: The architecture for proposed ODEECGGenerator model to generate ECG
data

ODEECGGenerator model learns the dynamics of ECG signal in the form of Ordinary

Differential Equation (ODE). The proposed Generator in this GAN model, called
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ODEECGGenerator , receives ECG signal as a continuous function of time (t).

Therefore, input for ODEECGGenerator is a value at a specific time step xt and

produces the derivative of the system at that time step. ODEECGGenerator takes the

initial value y0 for ECG signal at time t0 as shown in Eq. 5.3a. ODEECGGenerator

can be described as an ODEn as shown in Eq. 5.3b. The NeuralODEBlock in Fig. 5.4.1

converts the incoming signal and the hidden state of the system as ODE which is

passed to the ODESOLVER. ODESOLVER uses an ODERNNCell as shown Eq. (5.2),

which is an ODE-RNN (either ODEGRU or ODELSTM ) model. To solve the ODE

within time boundary [t0, t], ODERNNCell is optimized using the parameter γ. The

incoming signal contains additional noise (z) to preserve data privacy and keep the

model efficient against Adversarial attack. which is also passed as parameter for

Eq. (5.2). Therefore, θ = tuple(z, γ).

yt = ODEECGGenerator(xt, t) (5.3a)
dy

dt
= NeuralODEBlock(ODESOLVER, yt, t, θ) (5.3b)

This model is not a GAN model, and rather it is simply an Ordinary Differential

Equation based RNN model. An ODESOLVER solves the Ordinary Differential

Equation shown in Eq. (5.3b) within time [t0, t]

5.4.2 ODEGAN Model with NODE based Generator and Discriminator

The second model proposed in this work is called ODEGAN Model which has a

NODE generator, called ODEGenerator. The discriminator model is similar to the

discriminator model used in [15]. Eq. (5.4b) shows that the NeuralODEBlock of

ODEGenerator uses a GeneratorFunc as the neural network (f) for ODESOLVER
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Figure 5.3: Block Diagram of Generator Architecture

Figure 5.4: Block Diagram of Discriminator Architecture

in the generator (ODEGenerator). GeneratorFunc is an recurrent neural network,

which can be optimized using parameter θ. Fig. 5.3 shows the architecture for the

ODEGenerator generator. NeuralODEBlock computes the derivative of the input

w.r.t. time. Later ODESOLVER produces a solution for the Ordinary differential

equation as shown in Eq. (5.4b) for time T [t0, ..., t].

yt = ODEGenerator(y0) (5.4a)
dy

dt
= NeuralODEBlock(GeneratorFunc, y0, t, θ, noise) (5.4b)

The Discriminator for this GAN model is a four-layer 2-dimensional convolutional

neural network with a Minibatch discrimination layer. The discriminator model is

similar to the discriminator model used in [15]. The discriminator model also has

noise added to the gradient of the optimiser to preserve privacy. Fig 5.4 shows the

architecture for the discriminator model for this model.

Table 5.1 describes the parameter used in the Discriminator model.
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Table 5.1: Parameter used in proposed ODE based Discriminator
seq_length Length of the Input Sequence
batch_size Size of each batch
minibatch_normal_init Cell body
num_cv Number of convolution Layer. Here it is 2.
cv1_out Output shape of the first convolution Layer
cv1_s Stride shape of the first convolution Layer
p1_k Padding length of the first convolution Layer
cv1_k Kernel size of the first convolution Layer
cv2_out Output shape of the second convolution Layer
cv2_s Stride shape of second convolution Layer
p2_k Padding length of the second convolution Layer
cv2_k Kernel size of the second convolution Layer
ODEDBlock The ODE block for the ODE based Discriminator
ode_discriminator the proposed Discriminator

Fig. 5.5 shows the pipeline for ODEGAN model. The discriminator in Fig. 5.5 is

similar to the Discriminator shown in Fig 5.4. On the other hand, the Generator in

Fig. 5.5 is a ODE-RNN neural network described in chapter 2. The Generator leverage

an ODE solver to find the hidden state of the ECG signal at any point of interest by

solving an ODE initial-value problem. The core component of the ODEGenrator is an

an ODESolver, a NeuralODEBlock. The ODEGenrator uses NeuralODEBlock

to generate the hidden state at any point of time. ODEGenrator passes the input

as an ODE to NeuralODEBlock , which later uses ODESolver to solve the initial

value problem for the input ODE. The hidden state then generates the fake values

or sample ECG signal which is then passed through the Discriminator as shown in

Fig. 5.5 to be compared against the real value.

Sample ECG signal yt is passed to the ODEGenerator model. The initial value for

the signal is y0. In order to preserve privacy, additional noise η is added along with

parameter (γ) of the GeneratorFunc, therefore, θ = tuple(z, γ). NeuralODEBlock

converts the signal to ODE, and then ODESOLVER solves the ODE, yielding a

generated noisy ECG signal for time T [t0, ..., t]. The Discriminator then learn to
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Figure 5.5: pipeline for GAN model with ODE generator

distinguish between the real and the generated signal.

During the training phase, ODEGenerator generates continuous time series similar

to an actual ECG signal. A log probability (L matrix evaluates the ODEGenerator

model by computing L of negative identification of the generated signal by the

Discriminator. The optimiser optimises the parameter of the ODEGenerator model

with a target to minimise L. On the other hand, a cross-entropy loss function evaluates

the Discriminator by computing L of the correct classification of the natural and

generated signal. During the training, the optimiser designated for the Discriminator

reduces L to its minimum value.

5.4.3 GAN Model with NODE based Generator and Discriminator

For the third model proposed in this work, the ODE-GAN-2 model, we designed both

Generator and Discriminator using NODE models. The generator model described in
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Figure 5.6: Block Diagram for the Discriminator

section 5.4.1 is the Generator for this generative adversarial neural network. Eq. (5.3)

shows that the NeuralODEBlock uses an ODERNNCell, which can be either LSTM or

GRU, to generate a continuous time series yt by using an ODESOLVER on the ODE

defined in Eq. (5.3b).

We have used two different kinds of discriminators for this model as follows.

• Convolution layer with NODE layer

• NeuralCDE network [7]

Convolution layer with NODE layer-based Discriminator

This Discriminator has one convolutional layer followed by a NODE layer and then

two more convolutional and max-pooling pair layers. Fig 5.6 shows the block diagram

of the Discriminator.

Table 5.1 describes the parameter used in proposed ODE based Discriminator.

DiscriminatorFunc is the neural network to learn the difference between real and

generated ECG signals. The ODESOLV ER also uses DiscriminatorFunc in the

Discriminator. This Discriminator distinguishes between the derivative of ECG signal

w.r.t. time of the real and generated signal.

NeuralCDE network as Discriminator

The Discriminator for this model is a NeuralCDE network [7]. NeuralCDE network,

as shown in Fig 5.7, converts the data to a conditional continuous path X using
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interpolation and this path X is passed through ODESOLVER to solve the ODE

derived from path X in order to lean the hidden dynamics of the ODE system. For

our third model, we leverage the concept of the NeuralCDE network to learn the

difference between a real ECG signal and the generated ECG signal. The Discriminator

model described in Algorithm 5.4.3 uses a Neural controlled differential equations [7]

as the ODESOLVER function. Fig. 5.7 shows that the input time series for this

Discriminator has two-channel, e.g., for real ECG signal and generated ECG signal.

Figure 5.7: NeuralCDE model [7]

Algorithm 10 The Neural CDE based Discriminator
discriminatorFunc = NeuralCDE(input_channels=seq_length,
hidden_channels=hidden_dim, output_channels=out_dim) ode_discriminator =
nn.Sequential(discriminatorFunc)

Table 5.2 describes the parameter used in proposed NeuralCDE based Discriminator.

Table 5.2: The Parameters of NeuralCDE based Discriminator
input_channels Length of the Input Sequence
hidden_dim Hidden dimension of the NeuralCDE network
output_channels Output dimension of the NeuralCDE network

Fig. 5.8 shows that the discriminator takes real ECG signal xt and generated ECG

signal yt as input. Both signals xt and yt are controlled ordinary differential equations.

interpolation between xt and yt generates an intermidieate continuous path U . NeuralCDE
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Figure 5.8: NeuralCDE based Discriminator

based Discriminator learns the hidden dynamics (Z) of U to distinguish real signal

and generated signal correctly.

5.5 Performance Evaluation

The quality and performance of the proposed model are assessed using an experiment

with two different tasks, i.e. (i) Generate Normal Sinus ECG and (ii) Generate

Arrhythmia ECG. Furthermore, the proposed model is evaluated against state art

Neural Network used for ECG Synthesis as described in [15] and NeuralCDE.

5.5.1 Dataset

This experiment uses two different kinds of multi-channel publicly available ECG

datasets, e.g., (i) MIT-BIH Arrhythmia dataset on PhysioNet [19] and (ii) MIT-

BIH Normal Sinus Rhythm Database [19]. Both of the Databases show unique

characteristics. For example, MIT-BIH Normal Sinus Rhythm Database consists of

clean ECG recordings. As shown in Fig. 5.2, this Database shows minimal noise in

the ECG continuous series. On the other hand, the ECG recordings for MIT-BIH
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Arrhythmia on PhysioNet were created by adding calibrated noise to clean the MIT-

BIH Normal Sinus Rhythm Database. Therefore, the MIT-BIH Arrhythmia dataset

contains a significant amount of noise, as shown in Fig. 5.2.

(a) MIT-BIH Normal Sinus Rhythm Database
First Channel

(b) MIT-BIH Normal Sinus Rhythm Database
Second Channel

(c) MIT-BIH Arrhythmia dataset on PhysioNet
First Channel

(d) MIT-BIH Arrhythmia dataset on PhysioNet
Second Channel

Figure 5.9: Configuration for neural network used in Human activity experiment

On the other hand, the MIT-BIH Arrhythmia dataset on the PhysioNet database

has significant noise. Therefore, the ECG recordings for MIT-BIH Arrhythmia on

PhysioNet were Database was created by adding calibrated amounts of noise to clean

ECG recordings from the MIT-BIH Normal Sinus Rhythm Database.

5.5.2 ODEECGGeneratormodel Training

Fig. 5.10 shows the architecture for proposed ODEECGGenerator model used in this

experiment.
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Figure 5.10: Proposed ODEECGGenerator model for ECG Synthesis

Table 5.3 describes the settings used for performance evaluation. The dynamic

characteristics of proposed models enable us to train them quickly and with fewer

parameters. For robust training, the dataset was split at random into 80% for training

and 20% for the test.

Table 5.3: The Parameters of Experiment for ODEECGGenerator and GAN models
training

Parameters ODEECGGenerator GAN
Batch Size 50 64
dataseize 100 1000
Sequence Length 240 240
Hidden Dimension 50 50
Learning rate 0.0001 0.00005
Number of epoch 100 30×1000

5.5.3 GAN model for ECG Synthesis

For comparative analysis, the proposed model is evaluated against the GAN model

for ECG synthesis described in [15]. Fig 5.12 shows the block diagram for Generator

and Discriminator used in [15].

The Generator for GAN model [15] as shown in Fig. 5.12 has two consecutive RNN

layers (LSTM), followed by a fully connected layer.

The Discriminator proposed in [15] has a comparatively complex architecture as shown

in Fig. 5.13 and Fig. 5.11.
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(a) Block Diagram of Generator Architecture (b) Block Diagram of Discriminator
Architecture

Figure 5.11: Block Daigram for Generator and Discriminator for GAN model for ECG
synthesis described in [15]

Figure 5.12: Generator model architecture

Table 5.1 describes the parameter used in GAN implementation of [15]. GAN model

training requires a comparatively higher number of parameters than the proposed

ODEECGGenerator model. It also needs to be trained for a longer time for each

epoch. Out of 30 epochs runs through 1000 iterations. A comparatively longer series

of 1000 data sizes are required for the GAN model. The training requires three to five

hours for 30 epochs.

Fig. 5.14(b) and Fig. 5.14(c) shows the generated ECG for Normal and Arrhythmia

signal by the proposed ODEECGGenerator model after training for 100 iterations.

Fig 5.15 shows training loss for the generated ECG by by Model proposed in [15] after

training for 100 iterations.

The training loss analysis shown in 5.15 shows that ODERNN based model reach a

stable result within 20 iteration, which is significantly quicker than GAN based model

[15].

Similarly, Fig 5.16 shows the loss for Generator and Discriminator training for the

GAN model over 100 epochs.

The result evaluation between the proposedODEECGGeneratormodel and the existing
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Figure 5.13: Discriminator model architecture

GAN model shows that NODE enables ODEECGGenerator to achieve comparatively

higher accuracy with fewer parameters and a concise data series. As a result, the

ODEECGGenerator model does not need to be trained for a longer time and is

essentially a hidden dimension.

Fig. 5.17 shows the generated ECG by Neural CDE and proposed ODE GAN model

with ODEECGGenerator as well as the ODE GAN model with NODE based Generator

and Discriminator. These generated ECG signals demonstrate that NODE based

models can perform significantly better in continuous medical data generation.

5.5.4 Comparative Analysis of GAN and proposed models for medical time series

generation

The normal sinus rhythm in the Normal Sinus Rhythm Database has a rate between 50

and 100 beats/minute at rest. This is the standard heart rate with a periodic pattern.

There are two separate channels in the dataset. The first channel (Fig. 5.5.1) contains
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ECG of continuous rhythm, whereas the Second Channel of the Normal Sinus Rhythm

Database ((Fig. 5.5.1)) presents ECG with variant rhythm. The loss is shown in

Fig. 5.5.3 and 5.5.3 shows that ECG with the minor variant in the series can quickly

achieve high accuracy in the case of the ODEECGGenerator model. However, when

there is more variant in the time series and the pattern changes frequently, it takes a

comparatively higher time to achieve acceptable accuracy. However, the training time

for the ODEECGGenerator model is still significantly lower than the GAN.

ODEECGGeneratormodel achieve acceptable accuracy for Arrhythmia dataset comparatively

later than Normal Sinus dataset as shown in Fig. 5.5.3 and Fig. 5.5.3.

A similar model, called ECG-ODE-GAN [20] as the proposed ODEGAN model

described in 5.4.2 tries to learn purely data-driven dynamics from ECG signal. This

ECG-ODE-GAN model also shows the impact of physical parameters in morphological

descriptors of the ECG signal instances.
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(a) Original MIT-BIH Normal Sinus Rhythm (b) ODEECGGenerator generated MIT-BIH
Normal Sinus Rhythm

(c) Original MIT-BIH Arrhythmia First
Channel

(d) ODEECGGenerator generated MIT-BIH
Arrhythmia First Channel

(e) GAN generated MIT-BIH Arrhythmia
First Channel

(f) ODEECGGenerator generated MIT-BIH
Arrhythmia First Channel

Figure 5.14: Comparative result analysis for proposed model
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(a) ODEECGGenerator model training loss
for MIT-BIH Normal Sinus Rhythm Database
First Channel

(b) ODEECGGenerator model training loss
for MIT-BIH Normal Sinus Rhythm Database
Second Channel

(c) ODEECGGenerator model training
loss for MIT-BIH Arrhythmia dataset on
PhysioNet First Channel

(d) ODEECGGenerator model training
loss for MIT-BIH Arrhythmia dataset on
PhysioNet Second Channel

Figure 5.15: Loss analysis for training ODEECGGenerator model

(a) Generator training loss for MIT-BIH Normal
Sinus Rhythm Database

(b) Discriminator training loss for MIT-BIH
Normal Sinus Rhythm Database

Figure 5.16: Loss analysis for training GAN model
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(a) NeuralCDE generated ECG Signal (b) ODE GAN generated ECG Signal

(c) ODE GAN 2 generated ECG Signal

Figure 5.17: Generated ECG signals by different models
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5.6 Conclusion

We have presented three different models for continuous medical data synthesis. Firstly,

we introduce a new technique to learn the hidden dynamics of ECG signals by ODE-

RNN only. Secondly, we introduced a generative adversarial network with a NODE

Generator and a standard CNN based Discriminator. We experimented with a NODE

as Generator for the third model and NeuralCDE as the Discriminator. Finally, we

demonstrated that NODE models could improve the accuracy of standard generative

adversarial networks. NODE models are data-driven generative models, they perform

better as the Generator in generative adversarial networks. These hybrid Neural

generative adversarial networks can be used to generate any system that can de be

described as ODE. The performance evaluation also shows that these models perform

better when the batch size for training data is small (20-50) and with fewer parameters.

Furthermore, if the pattern in the signal is regular, the train time is lower than in the

case of a periodic signal. This model can be a suitable candidate to generate systems

described by PDEs, as they are data-driven and continuous in time.
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CHAPTER 6

CONTINUOUS CONVOLUTIONAL NEURAL NETWORKS:

COUPLED NEURAL PDES

This chapter is an expanded version of a paper published in the 1st

International Conference on Electrical, Computer and Energy Technologies

(ICECET), 2021

Recent work in deep learning focuses on solving physical systems in Ordinary Differential

Equations or Partial Differential Equations [1]. This work proposes a variant of

Convolutional Neural Networks (CNNs) that can learn the hidden dynamics of a physical

system using ordinary differential equation (ODE) systems and Partial Differential

Equation (PDE) systems. Instead of considering the physical system to consist of

multiple layers, such as image or time-series processing systems, these new technique

models a system in Differential Equation (DEs). Therefore, it is possible to model the

system with a certain continuity. The proposed method has been assessed by solving

several steady-state PDEs on irregular domains, including heat and Navier-Stokes

equations.

6.1 Introduction

It is challenging to have an optimal balance between accuracy and efficiency while

finding a solution for a Partial Differential Equation (PDE) system. Some recent

research in deep learning has focused on Physics informed neural networks [2–4]. At

the same time, some other research on data-driven neural networks [5–7] explains that

if the system can be represented as a function of continuous-time series, corresponding

220



data-driven neural networks demonstrate impressive results. Recently, Neural ODE

or NODE [8] is becoming promising for solving systems of ODE. However, we are

still looking for a robust model for solving the PDE system. This paper presents a

continuous CNN model that can learn a PDE system continuously. Traditional CNN

models consider a continuous PDE system as a system with multiple layers, as shown

in Fig.6.1. However, learning continuous time series in real-time is a very challenging

task. Moreover, the sampling rate for PDE or ODE systems can be irregular and bursty

[9]. As a result, despite the excellent performance of CNN in several research areas,

they fail to exhibit similar performance with continuous data. On the other hand, a

one-dimensional CNN or a Time Delay Neural Network (TDNN) [10], can achieve

a better result for continuous data in comparison to other CNN architectures. For

example, TDNN models are used for Natural Language Processing (NLP). However,

a continuous system such as an integral PDE system is very complex for TDNN to

achieve high accuracy.

In this work, we leverage the strength of a PDE solver and an ODE solver to define such

a complex system. First, we propose a new CNN model that acts like a one-dimensional

TDNN to generate the integral of a PDE system and later convert that to an ODE

system. Finally, an ODE solver is used to generate the output of the continuous

system. Here, a continuous system is a system that takes inputs continuously with

higher frequency. For example, an IoT device continuously collected sensor data over

time duration T . We have adopted the architecture of a dimensional Convolutional

Neural Network similar to TDNN and introduced continuous learning by coupling a

PDE and an ODE system in the model. We call it Continuous Convolutional Neural

Network (CCNN).

The main contribution of this paper is as follows:

• A novel Continuous Convolutional Neural Network (CCNN).
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• A new technique to learn PDE systems using deep learning.

• Finally, a comprehensive performance evaluation of the proposed model using a

simulated system for Chirps [11].

6.2 Motivation

CNN models are primarily used for spatial data, such as object recognition and image

processing. Only a few specialised CNN-based models have been developed to process

and learn non-uniform data. These CNN models are mainly standard feed-forward

models. However, CNNs are not suitable models for continuous-time series modelling.

The fundamental characteristic of a CNN model is that the sampling rate is regular

and fixed for the same pattern. For example, CNN shows better performance for

an object recognition task. Therefore, CNN can recognise data with a regular and

fixed sampling rate, but traditional CNN can not perform well if the sampling rate

varies. On the other hand, RNN models use memory-based architecture to store the

pattern and learn the dynamic pattern changes for time series modelling. As a result,

CNN is not used for continuous-time series modelling. In order to use CNN for time

series modelling problems, time series are re-sampled uniformly; however, if we can

design CNN architecture so that the CNN model can learn the change in the dynamic

pattern, it can ultimately improve the performance of learning.

To leverage the strength of the CNN model for continuous-time series modelling, CNN

needs the following capabilities to be able:

• to convert non-uniform time series to uniform time series with minimum variation

in the pattern.

• to run continuous convolution operation on the continuous signal.

• to estimate the implicit continuous signal. Therefore, the missing value does not
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affect the efficiency of the model

• to capture the relevant patterns in the input signal regardless of the irregular

sampling rate.

• to optimise performance based on external parameters.

Therefore, this work proposes a model that can act as a continuous CNN model. In

this proposed model, the interpolation and convolution kernels are not performed on

data separately but rather co-related. We leverage the solution of the PDE solver

and ODE solver to execute the interpolation and convolution operations. Instead

of running interpolation and convolution separately on the input signal, they are

executed in an interconnected manner. The proposed Continuous CNN (CCNN) model

is inspired by Neural ODE and NeuPDE models. The CCNN convolves the input with

continuous kernel functions defined by a PDE solver. At the same time, to recover the

continuousness in the input data at an irregular sampling rate, the proposed model

leverages ODE solvers to run interpolation on the input signal. The proposed model

is data-driven, as it learns from the changes in the input and hidden dynamics of the

system. Therefore, the time intervals and missing values in the time series data can

be tolerated.

6.3 Model Design

The problem domain for the proposed model is a continuous time series with regular

or irregular sampling, as shown in Eq. (6.1), where ti < ti+1 but ti+1 − ti varies.

yi = y(ti) (6.1)

Eq. (6.1) can be also written as a function of time f(t), so that, a continuous

convolutional layer can produce an output y(t) = f(t) at any time t. The proposed
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CCNN model needs to overcome the irregular sampling rate and non-uniformity in

the input signal by conducting some implicit interpolation and continuing to execute

continuous convolution. The goal of this proposed model is to generalise Convolutional

Neural Networks (CNNs) [12] to continuous space and time. The proposed model

needs to have the capabilities mentioned in 6.2 section. We need a mechanism which

can ignore the irregular pattern of the data. In order to achieve that, data need to

be interpolated implicitly during the training regardless of the time. Secondly, the

convolution operation should be executed continuously.

TDNN models [10, 13] have shown some progress in modelling time series using one

dimensional CNN architecture. The proposed model leverage the strength of TDNN

architecture. For CCNN model, the foundation is a TDNN with a single unit which can

generalise the input signal to continuous time series. Fig. 6.1 shows the architecture

of a TDNN model.

Figure 6.1: Time-delay neural network (TDNN) with hidden layers

In discrete time a TDNN model can be represented by Eq. (6.2)

y(t+ 1) = f(
T∑
τ=0

K(τ,WK , t)y(t− τ)) (6.2)

where y(t) is the activity of the unit at time t, the function f is a convenient nonlinearity,
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and K(τ,Wk) is a kernel function parameterized by Wk, typically using an explicit

representation in the form of an array so K(τ,Wk) = Wk[τ ]. This is defined for

T0 ≤ t ≤ T1, with boundary conditions (i.e., initialization) handled specially.

To move to continuous time, a TDNN model can be described as Eq. (6.3).

d
dt
y(t) = f(

∫ T

τ=0

K(τ,Wk, t)y(t− τ)dτ) (6.3)

Here, the generalised kernel function K(τ,Wk, t) is continuous and parametric rather

than discrete and explicit. This nature is causal, but involves an integral for

implementation. As a result, the generalised kernel function can be described as

a delay-differential equation. When coding, this would mean that the differential form

passed to the ODE solver would contain an invocation of an integration operator,

to which the solution of y(t′) for t′ ≤ t would be passed. However, typically, this is

not available: only the current value of y(t) is available. So instead, we encode the

integral in a PDE system as shown in Eq. (6.4)(a).

u(t, 0) = 0 (6.4a)
∂

∂τ
u(t, τ) = K(τ,Wk, t)y(t− τ) (6.4b)

with 0 ≤ τ ≤ T . Note that

u(t, τ ′) =

∫ τ ′

τ=0

K(τ,Wk, t)y(t− τ)dτ (6.5)

So in particular for a time duration T=[0,T], Eq. (6.4) provides the integral form of

the PDE system.

u(t, T ) =

∫ T

τ=0

K(τ,Wk, t)y(t− τ)dτ (6.6)

At this point, the integral from the driving term of y can be removed, instead expressing
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Figure 6.2: The block diagram of proposed Continuous CNN model

it in terms of u as shown in Eq. (6.6).

d
dt
y(t) = f(u(t, T )) (6.7)

Now we have a standard PDE for u as shown in Eq. (6.6) and an ODE for y as shown

in Eq. (6.7), with no delays or integrals, and therefore Eq. (6.7) is suitable for standard

solvers. Fig. [6.2] shows the block diagram of the CCNN model. Inputs are processed

through a PDE system that leverages the kernel function as shown in Eq. (6.6) and

encodes the integral in the PDE system as u(t, T ). PDE system then forwards the

output u(t) to a coupled ODE system. The PDE system uses the output of the ODE

system from the previous state, and similarly, the ODE system leverage the output of

the current state from the PDE system. So these two systems are coupled together.

In summary, CCNN is a coupled system of PDE and ODE systems.

Fig. 6.3 shows the architecture diagram of proposed CCNN model. The core component

of the CCNN model is an one dimensional TDNN model. CCNN model consists of

a fully connected TDNN model which takes input Y = {y1, y2, ... yt−1} continuously

at each time step T = {t1, t2, ... t− 1}. In addition, TDNN also takes the parameter

Wk for the kernel function K as shown in Eq. (6.2). The second component in the

model is a PDE solver, which solves the input of the PDE system using Eq. (6.4)(a).

In the next step, the Integral encoder converts the output of the PDE system into an
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Figure 6.3: The architecture diagram of proposed Continuous CNN model

integral form as u(t, T ), which is a suitable continuous equation and can be passed

to an ODE solver similar to NODE models. Finally, the ODE solver in Fig. 6.3

solves the continuous signal and generates the output yt. The proposed CCNN model

also handles high dimensional inputs by leveraging a similar technique as NODE

models. For example, if y(t) : Rn for n ≥ 2, i.e., a vector, then the system immediately

generalises by adding some different indices for the missing values at different time

step and thereby convert the discrete and irregular time series to a continuous one.

6.4 Implementation

We have leveraged the neurodiffeq [14] library to implement the proposed model. For

the implementation, we have a PDE system described as Eq. (6.6), and an ODE system

described as Eq. (6.7). Using an exceptional architecture TDNN neural network with

the capabilities of using a PDE solver and ODE solver to reduce the delay in the time

series, we can have solutions for both systems.

6.4.1 Challenges

We need some additional sophisticated components to design the model for the

following challenges.

• The ∂
∂τ
u(t, τ) = K(τ,WK , t)y(t− τ) equation in Eq.(6.4)(a) has a shift, t− τ ,
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which can change dynamically over time and increase the delay. Standard CNN

architecture finds it difficult to solve discrete time series. We have considered

re-parameterising u, with a change of variables (y), to eliminate the delay. It is

okay to shift the t argument to K, since K is fixed for the solver of the PDE

system.

• A proper mechanism for driving term for external input, instead of burying

it in the initial conditions. Therefore, we have used the optimiser and model

parameter as additional inputs to the model, as shown in Fig. 6.3.

• CCNN model uses standard error function which works fine for the simple heat

equation and signals with one-dimensional chirps. However, we need to design

error function and adjoint system for complex time series. In future work, we

will implement an adjoint ODE solver. For now, we have leveraged the ODE

solver from Neurodiffeq [14] library.

6.4.2 Simulation with Chirps Signal

At this stage, we construct a one-dimensional input containing a "chirps" [13] which

needs to be detected against a background white Gaussian noise. The shape of

chirps varies systematically with time due to the nature of the white Gaussian noise.

Fig.6.4 shows the original signal in the blue curve and the noisy signal in the orange

signal. The chirps can be easily detected with a time-varying matched filter. The

kernel function K of the proposed CCNN model converges to the correct time-varying

matched filter over time. The performance evaluation of the CCNN model shows that

with learning, K can eventually detect the chirps out of the input signal.
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Figure 6.4: One-dimensional input containing “chirps” for proposed model

The ODE system solver function can be described as algorithm 11. The ODE solver

can solve the input signal as an ODE equation over time steps t. During the process,

the ODE solver can be parametric by using the internal delay for the TDNN model,

weight and bias for the optimiser of the neural network.

Algorithm 11 ODE System Solver Function
Input:: input signal (y),time steps (t), internal (τ) and weight (Wk) as well as bias
parameters (b)
1: procedure ode_solver(y, t, parameters = (τ,Wk, b))
2: return ODESOLV ER(y, t)

Similarly, the PDE system solver function can be described as Algorithm [12]. Here

kernelfunction is the function shown in Eq. (6.6) to generate the integral form of the

signal. The ODE solver function described in Algorithm [11] is used in Algorithm[ 12]

to define the coupled system architecture for the proposed CCNN model.

The proposed model uses both an ODE solver and PDE Solver. Appendix 5 shows

the implementation of the proposed CCNN model. Fig. 6.5 shows the training loss for

the noisy signal in Fig. 6.4.
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Algorithm 12 PDE System Solver Function
Input:: input signal (y),time series (t), internal (τ) and weight (Wk) as well as bias
parameters (b)
1: procedure pde_system_solver_function(y, t, parameters)
2: y ← kernel_function(y,Wk, b)
3: u, v ← ode_solver(y, t, parameters)
4: return [diff(u, t, order = 1) + diff(u, tau, order = 1)]

Figure 6.5: Training loss for proposed CCNN model One-dimensional input containing
“chirps”

6.5 Performance Evaluation

TDNN is the foundation block of the proposed CCNN model, but this framework can

be generalised to train multidimensional non-uniform data. We also have observed

that the computational complexity is similar for CCNN and TDNN, where the runtime

of standard CNN is much longer than the proposed CCNN as the training error for

CCNN reduces drastically over iterations. This is because the nature of the input

signal for CCNN is more continuous as it is processed using a coupled PDE an ODE

system. Therefore, learning the change in the input time series is more manageable,

so the corresponding error rate falls very quickly. Therefore, in most cases, CCNN
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requires less runtime than standard CNN.

Standard CNN models are less efficient for time series classification tasks as they

require extensive training data sets for training. Therefore, the training runtime is also

much longer for CNN than for other neural networks. Similar to other Neural ODE

described in Chapter 3 and, Chapter 4. Therefore, the ODE system in the proposed

CCNN does not require large training data sets for training. However, if the training

data sets contain too much noise, CCNN may become unstable, and the optimisation

may be disrupted. The training error becomes very much unstable in the presence

of noise of more than 45%. For example, in the Chirps Signal task, the dataset was

prepared with a noise of 40%. We also observed that the CCNN model could not work

with a noisy signal with a noise level of more than 45%. The training error became

unstable for such a noisy signal, and the CCNN model takes longer runtime to become

stable again.

Similar to RNN and other traditional, CNN also uses fixed-length signals for training,

where time series for different batches is fixed length discrete time series with a fixed

step between consecutive observations. CNN prefers raw time series, as it requires

encoding the fixed-length signals, but, in most cases, these training fixed-length signals

cannot be further encoded into new representations as opposed to raw time series.

Therefore, the data processing and encoding also occur during training runtime and

increases the runtime significantly compared to RNN models. In addition, CNN also

uses several pre-processing techniques, such as the sliding window, to make discrete

signals continuous. However, the CCNN model encodes a PDE system using the

integral of the kernel function K and in parallel, it also contributes to the optimisation

of the parameter and reduces the training error. Therefore, the proposed model does

not require fixed-length signals for training and additional pre-processing technique

for encoding.
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The error function is the controller for the training time reduction. Therefore, designing

flexible and efficient adjoint error functions can improve the performance of CCNN

models.

6.6 Discussion

Convolutional neural networks (CNNs) have shown enormous utility in various tasks

where the data is evenly sampled, contains local features and exhibits translation

invariance. Attempts to generalise them to situations where the data is irregularly

sampled or varying scales have mainly been ad-hoc. Neural ODEs are a natural fit to

irregularly sampled data but do not use filters or convolutions. We have attempted

to combine the two ideas so that convolutions are continuous rather than discrete,

length scales and other details of the convolution filters can vary, and data can be

sampled irregularly. Because the convolutions introduce extra dimensions, the ODEs

become PDEs, and the resulting system can be implemented using PDE solvers and

optimised using standard adjoint constructions for PDEs. It might be speculated that

other hardware substrates, such as chemical reaction-diffusion equations, might be

used to implement these computations directly.

6.7 Conclusion

This chapter proposes a new variant for continuous Convolutional Neural Networks

(CCNN) and evaluates its performance for processing noisy signals (chips). This model

can also process high dimensional time series with more than one dimension. CCNN

model leverages the strength of the Convolutional Neural Network (CNN) to process

continuous data. In addition, CCNN helps to train PDE systems.
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CHAPTER 7

HEUNNET: EXTENDING RESNET USING HEUN’S METHOD

This chapter is an expanded version of a paper published in: 2021 32nd Irish

Signals and Systems Conference (ISSC)

There is an analogy between the ResNet (Residual Network) architecture for deep neural

networks and an Euler solver for an ODE. The transformation performed by each

layer resembles an Euler step in solving dx/dt = f(t, x), namely xt+1 = xt + hf(t, xt).

We consider the Heun Method, which involves a single predictor-corrector cycle, x̃t+1 =

xt + hf(t, xt);xt+1 = xt + h(f(t, xt) + f(t + 1, x̃t+1))/2, and complete the analogy,

building a predictor-caorrector variant of ResNet, which we call a HeunNet. Just as

Heun’s method is more accurate than Euler’s, experiments show that HeunNet achieves

high accuracy with low computational (both training and test) time, in comparison to

both vanilla recurrent neural networks and other ResNet variants.

7.1 Introduction

A significant limitation of recurrent neural networks is that they can access past states

but not future states [1]. Bi-directional recurrent neural networks (BRNN) [2] overcome

this limitation by computing two distinct RNN hidden layers with similar output in

opposite directions. Bi-directional recurrent neural networks have the capabilities

to access both the past and future. Each pass of a Bi-directional RNN consists of

a forward pass and a corresponding backward pass. The training time for BRNN is

similar to other recurrent neural networks such as LSTM. Instead of computing the

output of a BRNN in two different directions, Heun Methods [3] compute the previous
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and next step at the same time, and optimise the current state based on those two

past and future states.

A ResNet or Residual Network [4] can be viewed as using Euler’s Method to integrate

a time-dependent ordinary differential equation. Since Euler’s Method is wildly

inaccurate, with error = O(∆t), one might conjecture that some of the power

of a ResNet with many layers is being devoted to compensating for integration

error introduced by this crude approximation. This suggests using a more accurate

integration method, reducing the approximation error, allowing the same number of

layers to perform more efficiently.

Here we use the Heun Method [3], which is much more accurate: error = O(∆t2). In

our HeunNet model, each block computes xt, the cell state at time t, along with an

initial estimate of the next cell state, xt+1. The Heun Method finds xt using both xt+1

and an initial estimate of xt. This approach helps the proposed HeunNet model to

provide better result with a lower memory footprint.

Using multiple neural networks in a hybrid model is not a new concept. Several

hybrid models, such as BRNN and Generative Adversarial Networks (GANs), have

succeeded significantly. Recently, researchers have been finding RNN-based hybrid

models to be very efficient for various applications. The main reason for the success

of RNNs is their ability to store memory from previous states. However, such memory

requires additional mechanisms and storage. Therefore, it is essential to optimise

the memorising mechanism. This paper proposes a new technique to optimise the

mechanism by which this neural network can depend on the previous state.

The fundamental block of each recurrent neural network is its memory block, which

holds the previous state. This capability helps a Recurrent Neural Network (RNN)

fight against the vanishing gradients problem. Similar to RNN, ResNet architectures

do not have continuous memory blocks, and cannot hold values over a long duration.
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This Heun Method approach can be adapted for a wide variety of layered neural

network architectures. The HeunNet model only takes input for each state. It then

computes both the current and the following cell states using the Heun Method, as

shown in Eq. (7.5).

Each block of the HeunNet neural network uses the same weight and computation

method. Therefore, it does not cause additional memory or computation energy.

Although each iteration can take longer than simple neural networks, the result shows

that the proposed neural network achieves higher accuracy than other neural networks

at an early stage of training.

The main objectives of this work are:

• Design a new neural network architecture based on the Heun Method (HeunNet).

• Investigate different evaluation metrics to assess the performance of the proposed

model.

7.2 Heun’s Method for solving ODEs

Figure 7.1: Euler vs Heun Method for ẋ = 2
√
x with x(0) = 1, and h = 0.6 (left) or

h = 0.9 (right). The analytic solution of this ODE is x(t) = (t+ 1)2 (red curve).

Heun’s Method is a numerical method for solving ordinary differential equations

(ODEs). Heun’s Method is sometimes referred to as an “improved Euler” method, but

it is better viewed as similar to a two-stage Runge-Kutta method [3]. For solving an
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ODE ẋ = f(t, x) with initial condition x(0) = x0 using Euler’s method, we use the

slope f at x0 and move along the tangent line to x at x0 to reach to estimate xt+1,

xt+1 = xt + hf(t, xt) (7.1)

where h is the step size. If the actual solution is convex (or concave), the Euler method

will underestimate (or overestimate) the next state of the system. So in the long term,

the numerical solution diverges from the correct solution. A better estimate can be

obtained using an estimate of the slope at the next step and using the average of this

slope with the current step’s slope. This is the essence of Heun’s Method,

x̃t+1 = xt + hf(t, xt) (7.2a)

xt+1 = xt + h
f(t, xt) + f(t+ 1, x̃t+1)

2
(7.2b)

In predictor-corrector methods like this there are two steps, “prediction” and “correction.”

A “predictor” (7.2a) estimates the value at the next step, and this estimate is improved

by a “corrector” (7.2b). The Euler and Heun Method solutions for the ODE ẋ = 2
√
x

with initial condition x(0) = 1 are shown in Fig. 7.1.

7.3 Motivation

Consider a neural network with L layers such that the number of neurons in all the

layers is equal. Let X0 be the network’s input and let W0 be the square matrix (since

all layers have the same number of neurons) of weight between the input and the first

layers. Let Z1 = W0X0 and X1 = σ(Z1). So we define F(Xk) = σ(WkXk) = Xk+1.

The regular architecture of a neural network is straightforward, as shown in Eq. (7.3):

Xk+1 = F(Xk) (7.3)
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A residual neural network (ResNet) uses skip connections to deal with the problem of

vanishing gradients during the training.

Xk+1 = Xk + F(Xk) (7.4)

This architecture is quite efficient when dealing with an intense neural network, even

with convolutional layers. However, if we look closely, we realise that this is similar

to Euler’s Method for solving an ODE with step size h = 1 [5]. So the motivation is

that ResNet is a modification of the Euler method, so HeunNet is the modification of

Heun’s Method.

7.4 Proposed Model: HeunNet Model

Our motivation is inspired by the Heun Method [3]. Since ResNet [4] is a discretisation

of the Euler method, we could see the Heun Method as the extension of ResNet. In a

nutshell,

ResNet : Euler’s Method :: HeunNet : Heun’s Method

We propose another architecture for neural networks motivated by the Heun Method

for solving ODE. In our model, the output of the next layer is a combination of the

output from ResNet and the output of the previous layer as shown in Eq. (7.5a).

X̃k+1 = Xk + F(Xk) (7.5a)

Xk+1 = Xk + 1
2
(F(Xk) + F(X̃k+1)) (7.5b)

Fig. 7.2 shows the essence of this architecture.

Residual Neural Network is a discretization of the Euler method. In the residual

network, the state of the layer k + 1 is related to the state of the layer k as shown

in (7.4), where F can be an arbitrary layer transition function. But if we use Heun’s
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Figure 7.2: The architecture of proposed Heun based Recurrent Neural Network
(HeunNet)

Method for solving ẋ(t) = F(x(t)) with initial condition x(0) = x0 and let step size

be h = 1, we obtain the architecture of the Heun Neural Network (HeunNet), i.e.,

Eq. (7.5).

The Heun Method has quadratic accuracy, while the accuracy of Euler’s Method is

linear. For this reason, the Heun Method is generally preferred to Euler’s Method

when numerically solving ODEs. A similar situation occurs for the Heun Neural

Network (HeunNet), which appears to converge to a more accurate result in fewer

layers.

7.4.1 Gradient Propagation in a HeunNet

The original motivation for ResNet was to avoid the vanishing gradient problem

by causing the Jacobian of the transition between layer k, and layer k + 1 to be a

near-identity matrix. Both the ResNet equation (7.4) and the analogous HeunNet

equation (7.5) are of the form Xk+1 = Xk + something, which accomplishes this.

Like ResNet, HeunNet is an entirely feedforward computational process that can

be expressed using standard numeric linear algebra routines. It is straightforward
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to implement in any deep learning framework, such as PyTorch. Furthermore, the

gradient can be automatically calculated via backpropagation, i.e., reverse mode

Automatic Differentiation [6], and that process is just as automatic as for ResNet.

Despite its conceptual similarity, and as we see below, numerical simulations show

that HeunNet obtains better performance than ResNet across various tasks.

7.5 Extension of HeunNet Model

In the Heun’s Method for solving ODEs, if we put more weights on the corrector’s

second term we will have a better approximation of the actual function. In the Heun’s

Method, we first compute the f(xk) as the slope of the current state and f(x̃k+1)

as the approximation coming from Euler method and get the average of these two

as the corrector. But if we put more weights on the f(x̃k+1) and use convex hull of

f(xk) and f(x̃k+1), i.e., (1−α)f(xk) +αf(x̃k+1) with α near to 1, then we have better

approximation than Heun’s Method:

x̃k+1 = xk + h f(xk) (7.6a)

xk+1 = xk + h ((1− α)f(xk) + αf(x̃k+1)) (7.6b)

where 0 ≤ α ≤ 1 and h is the step size. Fig. 7.1 shows the difference between Heun’s

Method and extended Heun’s Method for ẋ = 2
√
x with x(0) = 1.

For h = 1 we obtain the architecture of a Neural Network which is an extension of

HeunNet (ExtendedHeunNet), i.e.,

x̃k+1 = xk + f(xk) (7.7a)

xk+1 = xk + (1− α)f(xk) + αf(x̃k+1) (7.7b)

• If α = 0 then xk+1 = x̃k+1 and we have ResNet.
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• If α = 1
2
then we have HeunNet.

• If α 6= 1
2
then we have ExtendedHeunNet.

The question is, which values of α give us a better approximation? Does this

modification improve the performance of HeunNet? Since we need more weights

on the next state to better approximate the actual function, we choose α to be close

to 1. The architecture of this extended Neural Network is shown in Fig. 7.5.

Figure 7.3: The architecture of proposed Extended Heun based Recurrent Neural
Network (ExtendedHeunNet)

7.6 Results

For performance evaluation of proposed new model, we have chosen two tasks:

(i) MNIST dataset classification [7], and (ii) ECG classification [8]. We compared the

HeunNet model with other Recurrent Neural Network, e.g., LSTM [9] and GRU [10].
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7.6.1 MNIST classification Task

Fig. 7.4 shows the comparative analysis of loss and accuracy for LSTM and HeunNet

models over ten iterations. LSTM achieves an accuracy of 95.44% after the 10th

iteration. On the other hand, the HeunNet model achieves an accuracy of 98.26% at

the 10th iteration.

Figure 7.4: HeunNet and LSTM model loss (left) and accuracy (right) for 10 iterations
on MNIST classification task

7.6.2 ECG heartbeat classification Task

For this Task, we used the dataset for MIT-BIH Arrhythmia Database v1.0.0 PhysioNet

[11]. Table 7.1 shows some characteristics of the used datasets. This dataset consists of

signals corresponding to electrocardiogram (ECG) shapes of heartbeats for the normal

case and shapes caused by arrhythmias and other myocardial infarctions. There are

five categories of beats present in the dataset as Nonectopic beat (N), Supraventricular

ectopic beat (S), Ventricular ectopic beat (V), Fusion beat (F) and Unknown beat

(Q).

Fig. 7.5 shows the loss and accuracy for LSTM model over 100 iterations. The best

iteration for the LSTM model in the ECG heartbeat classification task is 79, with an

accuracy of 90.40%. With the HeunNet model, we get the best accuracy of 98.80%.

Fig. 7.5 shows the loss and accuracy for LSTM model for only 50 iterations. The
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Table 7.1: Parameters of Dataset Used
# Parameter Value

1 Number of Samples 109446
2 Number of Categories 5
3 Sampling Frequency 125 Hz
4 Classes [N: 0, S: 1, V: 2, F: 3, Q: 4]

proposed model can achieve higher accuracy within only half of the iterations required

for other recurrent neural networks.

Figure 7.5: LSTM model Loss (left) and accuracy (right) for 100 iterations on ECG
heartbeat classification task

Figure 7.6: HeunNet model loss (left) and accuracy (right) for 50 iterations on ECG
heartbeat classification task
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7.6.3 Time Series prediction

As shown in (7.5), the neural network F can be any neural network. For time series

generation task, we used a simple LSTM neural network for F in (7.5). This Heun

neural network-based LSTM model is compared against Phased LSTM [12] and vanilla

LSTM model. A sine wave of length 16π is used for the dataset for this Task. Each

model is trained for 100 iterations. Fig. 7.7 shows the comparative performance

analysis for three models. As shown in Fig. 7.7, the HeunNet model outperformed the

other two model.

The proposed ExtendedHeunNet model’s prediction is more accurate than other

HeunNet and other neural network models. ExtendedHeunNet provides an accuracy

of 97.30% with α = 0.8 in just two iterations for Task C. For ExtendedHeunNet,

0.75 < α ≤ 0.8 provides best accuracy. If α moves towards 1, the accuracy starts to

drop.

Figure 7.7: Loss for LSTM, Phased-LSTM, and HeunNet models over 100 iterations
for Sine Wave generation

Fig. 7.7 shows generated sine wave for LSTM, Phased-LSTM and HeunNet model.

The HeunNet and ExtendedHeunNet model’s predictions are more accurate than the
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predictions of the other two models.

Figure 7.8: LSTM model trained for 100 iterations

Figure 7.9: Phased-LSTM model trained for 100 iterations

Figure 7.10: HeunNet model trained for 25 iterations
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Figure 7.11: ExtendedHeunNet model trained for 2 iterations with α = 0.8

Figure 7.12: ExtendedHeunNet model trained for 10 iterations with α = 0.8
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7.6.4 Performance Evaluation

Typically, the accuracy of RNN models (LSTM or GRU) increase with the increase

in the number of iteration. Therefore, the training time is comparatively long. I

experimented with different ranges of iteration for different problems. For Task A,

LSTM achieves 95.44% accuracy within ten iterations, and GRU achieves 92.01%

accuracy. However, the HeunNet model achieves 97.98% accuracy for the same number

of iterations. The result shows that the proposed model needs less training time to

achieve high accuracy.

In a traditional bi-directional vanilla recurrent neural network, corresponding parameters

are combined into a single LSTM. On the other hand, in this proposed model, the

results of two individual neural networks are combined using the Heun Method (7.5).

In this section, both classification and time series prediction tasks are evaluated for

different recurrent models against the HeunNet model. We can conclude that the

proposed model can achieve higher accuracy with almost half the number of iterations

than other models. The HeunNet model does not need to train for a long time to get

the optimised result for time series synthesis, prediction and generation tasks. The

proposed model takes significantly lower time as Phased LSTM and slightly higher

than the LSTM model for the classification task. From several tests, we can conclude

that proposed HeunNet takes less time to train than ResNet-50 for classification tasks.

In addition, the proposed model is better suited for time-series synthesis, prediction,

and generation, like Task for time series prediction. However, the proposed model

performed better than other models for time series classification but not as good as it

performed for the prediction task. We can conclude that proposed HeunNet model

works better for time series synthesis, prediction and generation tasks.
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7.7 Discussion

ResNet has the form of an Euler method for discretising and solving ODEs, and

HeunNet and its extensions can be similarly viewed as having the form of Heun’s

Method. Some other groups have independently explored similar ideas for extending

ResNet based on other numeric ODE solvers. In particular, MomentumNets [13] are

constructed using an analogy with a numeric solver for second-order ODEs, while our

HeunNet and its extension are derived from solution methods for first-order ODEs.

Since second-order ODEs can be reduced to first-order ODEs using standard techniques,

it should be possible to put these all into a common framework. Furthermore,

momentumNets have ResNet as a particular case, but our extended HeunNet has both

ResNet and HeunNet as exceptional cases. Finally, in MomentumNets, the velocity

term for the first stage is defined as a function of the current state. For the second

stage, the same term represents a combination of the input of the previous layer and

the current layer. On the other hand, our HeunNet or its extension uses ResNet to

capture the approximation for the next state and leverage correction to reduce the

error introduced in the first step. As a result, the HeunNet makes an approximation

for the next state and a weighted average of this approximation. Later, Huennet

corrects the space of candidates for the next stage of the system.

Heun’s Method falls in the general class of predictor-corrector methods: it makes an

initial guess of the correct state of the next time step, then corrects that estimate

using more accurate information based on this first estimate. This can be viewed as a

local causality violation, as it makes the update between layers t and t + 1 depend

not just on the state of layer t, but also on that of layer t+ 1. However, the Method

remains causal, unlike time-series processing techniques like a Bi-directional RNN,

which consists of a forward-in-time pass along with a corresponding backwards-in-time

pass. The technique proposed here might be naturally extended to that setting by
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making each of these passes update using a Heun’s Method step rather than an

Euler step. So we should not view these as in competition but rather as potentially

synergistic.

7.8 Conclusion

We propose a new neural network model that leverages Heun’s Method for hidden state

optimisation. We also developed a general architecture that includes the HeunNet as

a particular case. Performance evaluation demonstrates that both proposed models

outperform recurrent neural networks on a few problems. The proposed models also

take less time for training and achieve higher accuracy. These architectures leverage

the strength of Heun’s Method, which provides higher accuracy. The error generated

by the first step of the Heun Method is compensated by the corrector, i.e., the second

term, thus reducing the error [3].
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CHAPTER 8

AN ADAPTIVE DEPTH NEURAL NETWORK BASED ON

ALGORITHMIC DIFFERENTIATION OF NUMERIC

ITERATE-TO-FIXEDPOINT

This chapter is an expanded version of a paper published in the 1st

International Conference on Electrical, Computer and Energy Technologies

(ICECET), 2021

This chapter proposes a Deep Neural Network model called Temporal Wormhole Neural

Network (TWNN) that can control its depth using an iterate-to-fixed-point operator.

The architecture of TWNN starts with a standard layered network where often the

connections are added to the higher layer, similar to a stranded Res-Net. On the

other hand, the TWNN model adds connections to previous or lower layers. These

backwards connections would dramatically slow the convergence of learning. As a

result, TWNN adds gates to control information flow backwards. These gates control

the flow of information among layers and can make backwards connections inactive

under certain circumstances. Therefore, the adequate depth of the deep neural network

is reduced, as is the training time. However, when the backward connections are

active again, the depth of the TWNN model increases, and it takes a long time to

settle down. In addition, the gradient calculation also becomes more laborious for a

deeper neural network. Furthermore, the flow of information follows in a fashion that

seems vaguely analogous to the afferent and efferent flow of information through layers

of processing in the brain. We evaluate the proposed model on different long-term

dependency tasks. The results are competitive with other studies, showing that the
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proposed model contributes significantly to overcoming the vanishing gradient problem.

At the same time, the training time is significantly shortened, as the “easy” input cases

are processed more quickly than “difficult” ones.

8.1 Introduction

Neural networks use a different technique to memorize the previous state in a time

series to learn the changes in the series over time. For example, traditional Memory

Augmented Neural Networks (MANN) [1] as well as Recurrent Neural networks (RNN)

preserve previous states in the model by explicitly storing previous hidden states in the

"memory" buffer. However, if storing states in memory is too frequent, that can cause

the "memory" to become very unstable. Moreover, in the beginning, the training

gradients are unstable, and a significant fraction of "memory’ gets overwritten at each

step during the training. Therefore, unstable "memory" causes the fast vanishing of

memory and gradients.

Another well-known technique to preserve memory is wormhole connection [2]. Neural

Turing machines [3]leverage these connections to provide a shortcut connection to the

previous hidden state through time by explicitly storing the previous hidden state

in the memory. Temporal Automatic Relation Discovery in Sequences (TARDIS) [2]

shows that these connections created by the controller of the MANN can significantly

reduce the effects of the vanishing gradients. Wormhole connections for MANN shorten

the signal’s paths to travel between the dependencies. At every step of training, the

controller φ in TARDIS, as shown in Eq. (8.1), controls the hidden state ht−1 based

on the content of weights wt and memory Mt read from external memory. In this

work, we focus on storing only the influential memory of any previous state rather
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than storing all of them.

ht = φ(xt,ht−1, (M
>
t w

r
t )) (8.1)

Some inputs can be more complicated than others because more computation is

required to process them in processing data. For example, we can rapidly interpret

an image of a snarling tiger, while a scene of Dalmatians in the snow may require

considerable time to recognize. The recent construction of deeper and deeper models

for image processing can make the system able to devote considerable computation to

processing an image. However, due to their static nature, this level of processing is

devoted to all inputs, even easy ones. The similarity of the computations in many

layers also suggests that these intense networks may perform an iterative computation

rather than a sequence of heterogeneous calculations. We attempt to address this by

building a new class of networks which is iterative. It can be viewed as a recurrent

network which massages the data repeatedly until it concludes. Alternatively, unrolling

the computation can be viewed as an intense network that can terminate at any level

and whose layers are identical. This seems vaguely similar to how biological nervous

systems can take more or less time to interpret an input and are recurrent but not

very deep.

On the other hand, a deep neural network, such as a Residual neural network, creates

multiple layers (from 50 to 152 or more) of repetitive blocks. A ResNet with 100 layers

provides 94% accuracy for the MNIST dataset. A recent work suggested 1001-layer

deep ResNet architecture [4]. However, depth is not the only strength of this 1001-layer

deep ResNet; identity mapping and better techniques to resolve vanishing gradient

problems helped achieve a better result. Making a deep neural network is not always

effective. Therefore, recent research works are focusing on Wide Residual Neural

network [4], U-Net [5] and Neural ODE [6]. This proposed work is also based on a
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similar concept. Instead of making an even deeper model, we focus on the model’s

structure so that the same deep neural network model can act as a shallow and deep

model based on the circumstances.

This work introduces a novel neural network model that uses Algorithmic Differentiation

(AD) Transformation of the Numeric Iterate-to-Fixedpoint methodology to train each

batch in the training datasets. In addition to dynamic training time for each layer,

the proposed model can push backwards during training using a novel block in the

architecture of a deep neural network. Some of the significant contributions of this

work are

• A novel deep neural network that leverage Fixed point iteration which is also

controlled by backward mode of Algorithmic differentiation (AD).

• New technique for training a deep neural network with the dynamic amount

of time for different layers by creating a push-backwards connection with the

previous layer of the model.

Models like RNN using Backpropagation through time require saving multiple copies

of previous states. The fixed point iteration takes a busy time to settle down.

8.2 Background

The core concept of the proposed new model is to design a deep network that can

have lower depth but higher accuracy. Instead of a fixed training time on each layer,

this new model can dynamically change the training time for each layer. The target

model also can have a low depth level, i.e. 50, but each layer can have a dynamic

training time. Mainly, this new model trains each layer until it achieves an error

less than or equal to a threshold value for local error, a.k.a tolerance error (ε). For

example, instead of using a 256-layer ResNet, we can achieve similar accuracy by

learning the data using a 50-layer ResNet for a longer time. It is well-known that a
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machine learning algorithm can reach the outcome sometimes right away, or sometimes

it needs to think for a longer time. Based on the data, the proposed model can behave

like a shallow or deep model. For each individual input x used in a deep learning

model y = f(x), the computation time of primal solution y varies. The computation

time is short for some input xa, where the corresponding solution can be achieved in

time T1. Similarly, for some input xb, the computation time, T2, where T2 � T1. As a

result, a constant depth for the deep learning neural network model does not help to

optimize the training. In addition, the depth of the model should also vary for different

batch inputs during the training to achieve higher accuracy. Moreover, the memory

requirement for different models is usually either constant such as Neural ODE [7] or

constantly increasing overtime throughout the training period. In addition, models

like RNN also overwrite the same memory too many times, making them expensive.

Similarly, most deep neural network models adopt the forward technique where the

training is uni-directional and skip connections are created to a future layer instead of

a previous one. However, we find that learning a particular layer for a long time can

achieve better accuracy. Therefore, it is essential to connect with the previous layer

by adopting a push-backwards technique. Also its not always required to learn all

layer of a model. As a result, having dynamic memory and training time for different

layers is also essential.

Each layer is executed in a sequence for a traditional ResNet, or the IdentityBlock

creates a skip connection between the current layer and the last ReLU layer. ResNet

model always moves forward. Identity Block help to optimize the training for ResNet,

but at the same time, it also has some limitation. Creating skip connection using

Identity Block enable the gradient to avoid the main-stream flow of residual block

weights, and it can avoid learning anything during training. Therefore, the training

should be more stable, and the flow of gradients should be well defined. In addition,

only a few blocks can represent the hidden dynamics of the dataset, while many
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other blocks contain very little information to learn useful representations. Therefore,

learning only a few blocks for a long time can optimize the performance of deep neural

network models. In this work, we introduce Fixed-point iteration [8] to control the

learning or training duration for each block. Instead of learning each block, this new

model focuses on blocks that provide good representations of the hidden dynamics of

the data for a more extended period.

8.3 Model Design

A ResNet usually have three different blocks

1. basic - two consecutive 3 × 3 convolutions followed by a batch normalization

and ReLU unit

2. bottleneck - one 3× 3 convolution surrounded by dimensionality reducing and

expanding 1× 1convolution layers

3. identityBlock - one skip connection with input and the ReLU unit

The Fixed − Point − Iterator block in Fig. 8.1 takes the input (x) and runs a

fixed-point iteration loop until the error is less than or equal to the threshold for

tolerance (ε). The output for Fixed− Point− Iterator block is the output (x) and

the following selected layer to be trained L. If (L) refers to a previous layer, the

training restarted from that previous layer by creating a push-backwards connection

between the selected layer (L) and the main-stream for training. As shown in Fig 8.1,

Fixed − Point − Iterator block can send the training to the previous layer or can

forward it to the next layer of a Residual neural network.

At every layer, a local objective function finds the fixed point. Eq. (8.2) shows the

condition for the fixed point. This loop iterate until difference between consecutive

values xt−1 and xt of variable x is less than the tolerance (ε) or the number of iteration is

258



more than max-iter (the maximum number of iteration for each Fixed-Point-Iterator

block). F the actual numeric fixed-point, z = x∞, assuming that the objective

function g(Â · b) has appropriate convergence properties. F continues looking for

z until ‖xt − xt−1‖ is less than some predefined threshold ε. This loop iterate until

difference between consecutive values xt−1andxt of variable x is less than the tolerance

(ε). Fig. 8.1 shows the block diagram of proposed model. Similar to traditional

Res-Net, the proposed FWNN model has the following layers

• Residual Block

• Identity Block

• Normalization Layer (e.g. ReLU)

In addition to the above layers, this model also has Fixed-Iteration-Loop Block. The

fixed-Iteration-Loop block is responsible for selecting the next Residual Block or

Identity Block to be trained for the model. As the proposed model can move in both

directions, therefore the next layer for training can be in either direction, as shown in

Fig. 8.1. For example, if the first Fixed-Iteration-Loop Block in Fig. 8.1 produces the

x_next_layer = 0, the first Residual Block will be trained again, and the training

will continue. Similarly, for x_next_layer = 2, the next (third) layer will be trained.

The main function of Fixed-Iteration-Loop Block in the proposed model is to identify

the influential part of the dataset by configuring blocks of the proposed model.
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Figure 8.1: Block Diagram of architecture of push-backward technique for deep model
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for t = 1, . . . ,∞ {

xt ← g (xt, α,Ht−1, Ot−1) ;

if ‖xt − xt−1‖ ≤ ε break; }

z = xt

(8.2)

Here g computes the cost for each step locally. Fig. 8.2(c) shows that g takes the input

of any current state(xt), weight(α), hidden matrix(Ht−1) and output (Ot−1) of previous

step(t − 1) as input. For first iteration,t=1, H0 = null and O0 = null, therefore,

H1, O1 = g(x1, α). Here, the hidden matrix H1 = hidden1, hidden2, hidden3 as shown

in Fig. 8.2(a). The hidden matrix of previous step(t-1) is used as input for g in current

step (t). Fig. 8.2(b) shows g computes the output for previous step (t-1), which is used

as input for current step t as shown as shown in Fig. 8.2(c). The loop t = 1, . . . ,∞

iterates until z settle down. However, with the "wormhole" reverse connections as

shown in "green" color in Fig. 8.2, the execution of g may iterate a bunch of times for

z to settle down.

Figure 8.2: The workflow for objective Neural Network g in Eq. (8.2)
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Fig. 8.2 shows that the sequence of three blocks repeats for a ResNet model based on

the number of layers. These redundant networks can be described as Eq. (8.3).

xD =
D−1∑
i=d

F(xi,Wi) (8.3)

Here, F is a residual function. Between the shallow layer (d) and deep layer (D), some

layer (Dw) contribute to the final result more than other layers (Dp). If a ResNet

model is of depth D with the number of layers= D, Eq. (8.4) shows the distribution

of layers of the ResNet model.

D =
P∑
j=0

Dw +
K∑
j=0

Dp (8.4)

Here, let us consider layers denoted by Dw, and learn valuable representations of the

hidden dynamics of the system, where layers in ResNet model architecture, denoted

by Dp, provide very little information with a small contribution to the final goal for

learning the system. To optimize the model’s performance, it is essential to identify

layers (Dw) with good representations of the hidden dynamics. In this work, we

introduce a new model that can identify the Dw layers and learn the system’s hidden

dynamics by learning these layers only. This new model has a fixed−point−iterative

operator to control the training for the (Dw) layers. The fixed− point− iterative

operator continues training for each (Dw) layer until one of the following two conditions

are met:

• The number of iteration for each block training exceeds the maxiter

• the corresponding training loss is less than tolerance error (ε).

This process a new block called Fixed− Point− Iterator block in the architecture

of the ResNet Model as shown in Fig. 8.1. Fixed − Point − Iterator block trains
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the current Dw layer. Once the training for the current Dw layer is complete in the

Fixed − Point − Iterator block, identify the next layer L and create a connection

between L layer and the mainstream of training. Fixed − Point − Iterator block

uses fixed − point − iterative operator to control the training for the current Dw

layer and enforce the conditions as mentioned earlier to stop the loop. The fixed−

point− iterative operator leverage Banach Fixedpoint finder fix :(β → β)→ β that

takes a contraction of a closed region which contains the initial point. The reverse

AD transform has a signature as shown in Eq. (8.5).

←−
J : (α1 → · · · → αn → β)→

α1 → · · · → αn →

(β × (T ∗β → (T ∗α1 × · · · × T ∗αn)))

(8.5)

The forward and reverse transform of fix are shown as (8.6).

z = fix(fx) f : α→ β → β (8.6)

Tz = fix(
−→
J f(Tx)) f̄ : T ∗β → (T ∗α× T ∗β)

T ∗x = ρ1

fix(ρ2(
←−
J fxz)︸ ︷︷ ︸
f̄

◦ (+ (T ∗z)) ◦ ρ2)

 (8.7)

Here in Eq. (8.6), f , is a Neural Network. The weight to network (f) is defined by

α. β represents the activity of all input. Therefore, (β → β) → β can be used to

compute the next moment activity. Table 8.1 describes different parameters in Eq. 8.5,

Eq. 8.6 and Eq. 8.7.

Fig 8.3 explains the computational graph for a single computational block of proposed
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TWNN based on Eq. (8.5). x is the input passed to the neural network (f) or residual

block in the proposed TWNN model. The gradients of all activity of the model

(u, T ∗u) are generated as the output of neural network (f) during the forward pass

of the model. The output for neural network (f) is y. The updated parameter for

neural network (f) is z. During the backward pass, z, T ∗u, y are used as input for

the backward layer (f̄), which generates the gradients T ∗x and T ∗y w.r.t input x and

output of forward pass y.

f

x

z

y

u

f−bar

T*u

T*z

T*y

T*x

+

Figure 8.3: Forward and backward computation of proposed model

The gradient for each fixed-point iteration loop for each layer is also calculated over

the same number of iterations in a loop.

As shown in Eq.(8.6), the proposed Temporal Wormhole Neural Network (TWNN)

uses Fixed-point iterations [8]. For each input x, the forward pass of TWNN continue

iterate until the output z in Eq.(8.6) settles. Fig 8.4 shows the loop for each fixed-point

iteration for each batch input x. At the end of each loop, the controller cntrl checks

either z settles by checking if the conditions in Eq (8.2) are met.
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Table 8.1: The Notation Used in Temporal Wormhole neural Network
←−
J Forward mode Algorithmic differentiation(AD) of Network f
−→
J backward mode Algorithmic differentiation(AD) of Network f
α Weight to the proposed network
β Activity to the proposed network
f Neural Network
f̄ Neural Network for efferent connection
T ∗z Gradient of all the activity with respect to z
T ∗α Gradient of all the activity with respect to α
T ∗β Gradient of all the activity with respect to β
T ∗x Gradient of all the activity with respect to x

Fig. 8.4 shows the flow diagram of the Fixed-Point iteration block of the proposed

TWNN. Here x is the input for the model. The res-net model f generates the gradient

of all activity w.r.t and inputs and the parameter (α), such as T ∗X and T ∗α using

Eq.(8.6). There is fixed-point loop in the model which starts f and ends in f̄ . We

consider the flow of computation from f to f̄ as the forward pass and the flow of

computation in the opposite direction from f̄ to f as the backward pass. The parameter

(α) is optimized to β by the gradients T ∗z and T ∗α. On the other hand, during the

backward pass, the gradients T ∗X and T ∗β optimized the neural network (f). The

fixed point loop of computation between f and f̄ , is controlled by the local tolerance

error (ε), which is optimized by the global error and loss function.

Algorithm 13 explains the training method for proposed TWNN, the model in

algorithm 13 can be any Neural Network block such as GRU [9], ResNet [10] and

others. The main training function for the proposed model is exercise training data in

batches. Therefore inputs are divided into different batches. There are local errors and

global errors in the training model. The tolerance error (ε) variable in the algorithm 13

indicates the local error for training each batch. initializeNNBlock function initialize

the proposed model with initial hyperparameter α. The actual training of the model

is executed in several batches. For each batch, the model’s correct Residual Block

is selected using the next function. Then the model will be trained for each layer.
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Figure 8.4: Loop for Fixed-Point iteration of the model training method

After training each layer, the Fixed-Point-Iterator block selects the next layer to be

trained with an optimized parameter. This layer can be a previous layer which is

already trained or a new layer in the sequence of the model structure. The training is

controlled by the local error that updates the loss function(LossFun).

The proposed TWNN is initialized with the initial parameter params. Then, Fixed-Point-Iterator

can be computed using Forward mode AD and backward mode AD as shown in

Eq. (8.8).

fixed-point-iterative = (
−→
J {f},

←−
J {f}) (8.8)

Algorithm 14 describes the forward pass and backward pass for a single block of TWNN.

Figure 8.5 explains the forward and backward computation of the fixed-point-iterative

operator of proposed TWNN.Forward computation takes the input and parameter to

generate the optimized parameter β and output z. At the same time, the gradients

T z and Tα are also generated. Similarly, for the backward pass, the proposed model
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Algorithm 13 Fixed point temporal wormhole based Neural Network
Input: Inputs are divided among batches, for each loop, a batch of inputs x0

b ,
corresponding target yb, learning rate lr, tolerance error (ε), maximum iteration
maxitr;

Output: predicted output z
1: procedure trainTWNNModel(x_init)
2: model, α← initializeNNBlock()
3: for each b in range (total_batch) do
4: model_block ← next(model_layers)
5: loss = 1.0
6: while modelblock! = null do
7: zb ← Fixed− Point− Iterator(modelblock, α, xb)
8: loss = LossFun(z, yb)
9: modelblock = next(model_layers)||identify_prev_layer(model)

return trainedmodel
10:

takes output (z) and the optimized parameter β to generate the gradients T x and T β.

Finally, these gradients optimized the trained parameters of the model.

Algorithm 14 Forward and Backward Pass for fix function for a single block of
TWNN

Input: The value of x at time t xt, parameters α;
Output: Gradient of x

1: procedure fix(f, α, xt)
2: Forward Pass:
3: z, β ← f(xt, α)
4: T ∗z, T ∗α = grad(f, z, β)
5: Backward Pass:
6: T ∗x, T ∗β ← f(T ∗z + T ∗α)
7: return T ∗x

8.4 Experimental Result

The performance of proposed model is evaluated against two common tasks:

1. MNIST [11] classification and

2. Sine wave generation.

The training parameters for the two tasks are described in Table 8.2.
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(a) Forward Mode for fixedPoint (b) backward Mode for fixedPoint

Figure 8.5: Forward and backward computation of the controller of TWNN

Table 8.2: Parameters for proposed model evaluation for MNIST classification
Learning Rate (lr) 0.001
Tolerance Error (ε) 0.001
Batch Length Size 64
Maximum Number of Iteration per batch (max_iter) 300
ε 0.01

8.4.1 Task-A : CIFR classification

For the training for this task, we have chosen a TWNN model described in Fig. 8.6.

After the second block and fourth block, there is Fixed-Point-iterator Block. After

finishing 2nd block of the ResNet model, Fixed-Point-iterator Block identify the next

suitable block as B1 and the model continue training B1 and B2 blocks until the

loss > ε or iteration < max-iter. After the condition is met, Fixed-Point-iterator

forward the training to the B3 layer. Then, Fixed-Point-iterator Block after B3

identify the next layer as the final layer of the network and forward the training to

layer B. Instead of training a deep ResNet-50 layer for this training, we trained a less

deep RestNet-36 model. However, we trained specific layers of the model for a longer

time. Therefore, the memory consumption is significantly less than in DNN models.

In addition, this model skipped block B4 during training. Therefore, the training time

is not higher than ResNet.

Moreover, they show that the TWNN offers better results than the different DNN
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Figure 8.6: TWNN model for CIFR training

configurations. For example, table 8.3 shows the difference between the test accuracy

of different similar configurations of ResNet and TWNN for CIFR.

Table 8.3: Comparative accuracy for proposed model against ResNet
Neural Network Accuracy
RestNet- 36 88.25%
RestNet- 50 90.63%
TWRNN 96.54%

8.4.2 Task-B: Sine Wave Generation

In this task, a corresponding sine wave is generated using the proposed TWNN model

for a time series T. Table 8.4 shows the parameters used in this task.

Table 8.4: Parameters for proposed model evaluation for CIFR classification
Learning Rate (lr) 0.001
Tolerance Error (ε) 0.001
Sequence Length Size 10000
Maximum Number of Iteration per batch (max_iter) 300
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For this task, we take a simple Neural Network as the objective function shown in

15. loss function as shown in 16 used this net procedure to compute gradient for the

proposed TWNN.

Algorithm 15 Neural Network as the objective function for the proposed model
Input: The value of x at time t xt, parameters α;
Output: the predicted value at time t xt

1: procedure net(f, α, xt)
2: w1, b1, w2, b2← α
3: hidden← tanh(dot(w1, xt) + b1)
4: yt ← sigmoid(dot(w2, hidden) + b2)
5: return yt

Algorithm 16 Loss function for the proposed model
Input: The value of x at time t xt, parameters α, target ;
Output: the predicted value at time t xt

1: procedure loss(net, α, inputs, target)
2: solver ← fix(net, α, inputs)
3: predictions← solver(inputs, params)
4: return mean((targets− predictions) ∗ ∗2)

Fig. 8.7(a) shows the gradients are optimized within 300th iteration and loss is stable.

Also Fig. 8.7(b) shows the generated sine wave by training TWNN model for 300

iterations.

(a) Loss for 300 iterations (b) Generated Sine Wave for time series

Figure 8.7: Result of continuous Sine wave generation by TWNN
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8.4.3 Discussion

The proposed TWNN model can be a suitable alternative against deep ResNet models

with larger batch sizes; the TWNN model can achieve better accuracy than a shallow

ResNet model. In the TWNN model, the same parameters are trained for a more

extended period. Therefore, the corresponding memory requirement is lower than

traditional DNN models. The most appropriate boundary for the threshold value for

tolerance error is 0.015 < ε < 0.15. If the value for tolerance error is too small, it

significantly increases the training time for each layer. To overcome this issue, we have

used another control, the maximum number of iterations. The following function will

select the next layer once the loop runs for the defined maximum number of iterations.

Observation 1 — Only the best output are chosen for training

Lets say the data-set can have m number of batches. For a ResNet-50, the number of

layers is l = 50. The maximum number of iteration is m. For a generic Res-Net, the

output of the K-th residual block can be explained as the summation of the output of

lower layers as shown in Eq. (8.9).

OK+1(x) =
T∑
l=1

f(Ol(x))) (8.9)

On the other hand, the output of the K-th residual block is the best output of lower

layers, where some of the layers were not processed, and some other layers were

processed multiple times, as shown in Eq. (8.10).

OK+1(x) = γ(F (Ol(x))), ε, d) (8.10)

Here F is the fixed-point iterator block for each layer l and γ determines the influential

layer based on the batch dataset d and local error ε.
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Observation 2 — The computation time and memory are low

For a traditional ResNet, the computation time and memory are linear in the neural

network’s depth. For example, for a TWNN with depth h, the computation time is

O(m · h), where m is the average number of iterations of the Fixed-Iterator Block of

the TWNN model.

A TWNN is computationally more efficient than the end-to-end Backpropagation

of a deep ResNet. There is local Backpropagation for individual layers, which is

data-driven only if the corresponding batch data is influential in identifying the target

pattern. The backward function (f̄) in Eq. (8.2) conducts a backward computation in

order to optimize the training parameters.

Observation 3 — The training error decreases over layers exponentially

For example, if the local error is ε, the training error for the first layer (err1) will

already be close to ε, and for the next layer, it will be exponentially closer to ε as

only the influential layer will be selected based on the local error and controlled by

the Fixed-Iterator Block. The training error for any layer can be changed if that layer

is selected for training again. For example, the error for layer 1 is err1. After training

layer 1, Fixed-Iterator Block selects layer two as the next layer to be trained. However,

the Fixed-Iterator Block in the second layer selects layer one as the next layer for

training. At this time, the training error for layer 1 will be reduced, err1 � err1.

Therefore, the training error decreases exponentially as only the influential layers are

selected.

Observation 4 - Training time is data-driven depending on the batch technique

For Task B, the training for the proposed TWNN shown in Fig 8.6 progresses between

layers: B1 → B2 → B1 → B2 → B3 → B. The local error for B1 does not reach below
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the threshold (ε) in the first round. Once the number of iterations of a Fixed-Iterator

Block reaches the maximum number of iterations, the forward pass selects B2 as the

next layer. At the same time the next function also check if the local error (err2)

for B2 is more than the local error for B1; err2 > err1, the, the next function of

Fixed-Iterator Block selects B1 as the next layer and runs the training until the local

error reaches an acceptable value for err1. The first layer is training twice, and then

the model progresses toward the third layer B3. As a result, the higher accuracy is not

received right away, taking time. However, the proposed TWNN model chooses the

influential layer to be trained. Therefore, instead of training each layer for the same

number of iterations and the same time duration, it picks the more influential batches

to run for a longer time, and that helps the proposed model reach a higher accuracy

quicker than traditional ResNet with higher depth. For Task B, the same TWNN

trains as B1 → B. On the other hand, for Task B, the data used in the minibatch

was distributed. Therefore, the model reaches an accuracy of 98% just after running

the first layer until the local error err1 < ε. Therefore, training the model for each

layer is not required, and quickly achieving higher accuracy.

8.5 Conclusion

TWNN neural network leverages fixed-point iteration with automatic differentiation. In

addition, it is capable of explicitly providing more efficient performance by computing

gradients for input, hidden states and parameters. Although only the influential

layers are trained for a longer time, this new model can optimize the hidden dynamics

learning. The proposed model reaches accuracy faster than the related Neural Network

as each batch is trained under fixed point constraint through a fixed point iterated

block. In the TWNN model, the accuracy is achieved faster than in other batches for

batches. Therefore, the optimization of the TWNN model is more straightforward

compared to other Deep Neural Networks.
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CHAPTER 9

CONCLUSION

This thesis mainly focused on the applications involving continuous time series. We

primarily identified different challenges and limitations of existing research in the

case of modelling continuous time series. In addition, we find out that traditionally

continuous time series are converted into discrete ones to match the input of the

existing neural network models. However, these types of methods can not provide

real-time modelling as in order to mirror the continuous-time series, the sampling rate

needs to be very small, which causes higher frequency and computation to become too

chaotic to handle. In this thesis, we presented models to overcome those challenges such

as irregular sampling rate, higher frequency, gradient vanishing problem, informative

messiness, the large amount of computation power, memory and time requirement

for modelling and the size of parameters for the neural network. Furthermore, we

explored different technology to leverage Ordinary differential equations to model

continuous time series.

9.1 Neural ODE based Recurrent Neural Network

The main achievement of this model is that it provides stability to the internal

structure of Neural ODE. In addition, this model leverage the strength of RNN to

provide better performance compared to Neural ODE.

9.2 Neural ODE and Generative Adversarial Neural Network

Time series modelling suffers from plenty of challenges. Missing informativeness is one

of the core problems of using model-driven learning for continuous time series. This
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proposed model in section 4.1 provides a data-driven deep learning model in order to

provide the solution for missing informativeness and vanishing gradient problems.

9.3 Neural ODE based GAN models for ECG synthesis

GAN model provides a state-of-art solution for ECG synthesis. However, the GAN

model suffers from different challenges. Three different models leverage the dynamic

characteristics of Neural ODE to design generator and Discriminator models for a

GAN model. Neural ODE strengthens generator and Discriminator characteristics by

learning data as continuous-time data. This new technique enables the GAN model

to learn the hidden dynamics from the derivative of incoming data, which is an ODE

w.r.t time.

9.4 Heun method based Neural Network

This model contributes significantly to recent work where ODE can be used as a neural

network. Finally, this section introduces a data-driven deep, deep learning model

for continuous-time series modelling. HeunNet adopts the architecture of the Heun

method for Ordinary Differential equation solvers. This new model help to model

continuous time series as a function of time instead of the sequence of discrete-time

steps.

9.5 Continuous Convolutional Neural Network

Continuous Convolutional Neural networks leverage the strength of the Partial

Differential Equation solver and the simplicity of ordinary Differential Equations.

This model can train the PDE system continuously. This novel technique enables

Convolutional Neural networks to be continuous. We have used the architecture of a

1-dimensional Convolutional Neural Network, a.k.a Time Delay Deep Neural Network
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(TDNN) and ODE solver and PDE solver, to construct a continuous 1-dimensional

Convolutional Neural Network.

9.6 Fixed point iteration based Neural Network

Deeper neural networks vs more comprehensive neural networks is an ongoing discussion

in the field. It is now a concern: “How deep the model can be?” Or, “How comprehensive

can it be?” Just developing a deeper neural network is not always a the best decision.

Finally, the main goal of my thesis was to develop different neural network architectures

which can be used for continuous-time series modelling. We have presented five different

models in my thesis. Instead of following the traditional discrete fixed time step based

model, these models consider the time series as a continuous function of time. We have

introduced twelve different machine learning algorithms to lean data as continuous

time series instead of discrete sequences.

This thesis’s methodologies and models were motivated by practical applications

where data is generated in real-time with a dynamic sampling rate. For example,

include sensor data from IoT devices, Electronic health records containing patients’

health history, weather data, etc. Therefore, the machine learning model needs to be

data-driven instead of model-driven. In retrospect, the primary motivation for this

thesis is to develop machine learning algorithms that provide a better match to the

properties of certain actual datasets than previous architectures.
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.1 Pytorch implementation of ODE based GRU model

from .ODEGRU import ODEGRU

import torch . nn as nn

class ODEGRUFunc(nn . Module ) :

def __init__( s e l f , input_size , hidden_size , output_size ) :

super (ODEGRUFunc, s e l f ) . __init__ ( )

s e l f . net = \ODEGRU( input_size , hidden_size , output_size )

s e l f . hidden = s e l f . net . i n i t i a l_h idden ( )

def forward ( s e l f , t , y ) :

h = s e l f . hidden

res , h = s e l f . net (y , h)

s e l f . hidden = h

return r e s

import torch

import torch . nn as nn

from torch . autograd import Var iab le

import autograd . numpy as np

class ODEGRU(nn . Module ) :

def __init__( s e l f , input_size , hidden_size , output_size ) :

super (ODEGRU, s e l f ) . __init__ ( )

s e l f . input_units = input_s ize

s e l f . output_units = output_size

s e l f . hidden_units = hidden_size

# input embedding
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#s e l f . encoder = nn . Embedding ( input_size , embed_size )

# ls tm we i gh t s

s e l f . weight_wz = nn . Linear ( input_size , hidden_size )

s e l f . weight_uz = nn . Linear ( hidden_size , hidden_size )

s e l f . weight_wr = nn . Linear ( input_size , hidden_size )

s e l f . weight_ur = nn . Linear ( hidden_size , h idden_size )

s e l f . weight_wy = nn . Linear ( hidden_size , output_size )

s e l f . weight_wh = nn . Linear ( input_size , hidden_size )

s e l f . weight_uh = nn . Linear ( hidden_size , h idden_size )

s e l f . decoder = nn . Linear ( hidden_size , output_size )

s e l f . hidden = s e l f . i n i t i a l_h idden ( )

def i n i t i a l_h idden ( s e l f ) :

# h_0 = Var iab l e ( torch . z e ro s (1 , s e l f . h idden_units ) )

h_0 = Var iab le ( torch . z e r o s (1 , s e l f . hidden_units ) )

return h_0

def forward ( s e l f , inp , h=None ) :

i f h i s None :

h= s e l f . hidden

# update ga te

z= s e l f . weight_wz ( inp ) + s e l f . weight_uz (h)

z_g = torch . s igmoid ( z )

dz= s e l f . s igmoidPrime ( z )

# re s e t ga te
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r= s e l f . weight_wr ( inp ) + s e l f . weight_ur (h)

r_g = torch . s igmoid ( r )

dr = s e l f . s igmoidPrime ( r )

# hidden ga te

h1= ( s e l f . weight_wh ( inp ) + s e l f . weight_uh ( dr ∗ h ) )

dh = torch . tanh ( h1 )

# hidden s t a t e

hx = dh ∗(1−dz )#+ z_g#+ (dh ∗ s e l f . sigmoidPrime ( z_g ))

o = s e l f . decoder (hx )

out =torch . s igmoid ( o )

s e l f . hidden = hx

return out , hx

.2 Pytorch implementation of ODE based LSTM model

from .mLSTM import mLSTM

import torch . nn as nn

class ODELSTMFunc(nn . Module ) :

def __init__( s e l f , input_size , hidden_size , embed_size ,

output_size ) :

super (ODELSTMFunc, s e l f ) . __init__ ( )

s e l f . net = mLSTM( input_size , hidden_size , embed_size ,

output_size )

def forward ( s e l f , t , y ) :

hidden , c e l l = s e l f . net . cur rent_state ( )
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res , h , c e l l = s e l f . net (y , hidden , c e l l )

return r e s

def compute ( s e l f , y , h , c e l l ) :

res , h , c e l l = s e l f . net (y , h , c e l l )

return r e s

import torch

import torch . nn as nn

from torch . autograd import Var iab le

import torch . nn . f un c t i o n a l as F

c l a s s mLSTM(nn . Module ) :

de f __init__( s e l f , input_size , hidden_size , embed_size ,

output_size ) :

super (mLSTM, s e l f ) . __init__ ( )

s e l f . h idden_size = hidden_size

# input embedding

s e l f . encoder = nn . Linear ( input_size , embed_size )

# lstm weights

s e l f . weight_fm = nn . Linear ( hidden_size , hidden_size )

s e l f . weight_im = nn . Linear ( hidden_size , h idden_size )

s e l f . weight_cm = nn . Linear ( hidden_size , hidden_size )

s e l f . weight_om = nn . Linear ( hidden_size , hidden_size )

s e l f . weight_fx = nn . Linear ( embed_size , h idden_size )

s e l f . weight_ix = nn . Linear ( embed_size , h idden_size )

s e l f . weight_cx = nn . Linear ( embed_size , h idden_size )

s e l f . weight_ox = nn . Linear ( embed_size , hidden_size )
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# mu l t i p l i c a t i v e weights

s e l f . weight_mh = nn . Linear ( hidden_size , h idden_size )

s e l f . weight_mx = nn . Linear ( embed_size , hidden_size )

# decoder

s e l f . decoder = nn . Linear ( hidden_size , output_size )

s e l f . hidden , s e l f . c e l l = s e l f . in i t_hidden ( )

de f forward ( s e l f , inp , h_0 , c_0 ) :

# encode the input cha ra c t e r s

inp = s e l f . encoder ( inp )

# c a l c u l a t e the mu l t i p l i c a t i v e matrix

m_t = s e l f . weight_mx( inp ) ∗ s e l f . weight_mh(h_0)

# f o r g e t gate

f = s e l f . weight_fx ( inp ) + s e l f . weight_fm (m_t)

f_g = torch . s igmoid ( f )

df = s e l f . s igmoidPrime ( f )

# input gate

i= s e l f . weight_ix ( inp ) + s e l f . weight_im (m_t)

i_g = torch . s igmoid ( i )

d i = s e l f . s igmoidPrime ( i )

# output gate

o= s e l f . weight_ox ( inp ) + s e l f . weight_om(m_t)

o_g = torch . s igmoid ( o )

do = s e l f . s igmoidPrime ( o )

g_g = s e l f . weight_cx ( inp ) + s e l f . weight_cm(m_t)

# inte rmed ia t e c e l l s t a t e

c_t i lda = torch . tanh (g_g)
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dc_ti lda = s e l f . tanhp (g_g)

# cur rent c e l l s t a t e

#cx = f_g ∗ c_0 + i_g ∗ c_t i lda

cx = df ∗ c_0 + di ∗ dc_ti lda

# hidden s t a t e

hx = o_g ∗ torch . tanh ( cx )

out = s e l f . decoder ( hx )

out = torch . s igmoid ( out )

s e l f . c e l l =cx

s e l f . hiden = hx

return out , hx , cx

de f in i t_hidden ( s e l f ) :

h_0 = Var iab le ( torch . z e r o s (1 , s e l f . h idden_size ) )

c_0 = Var iab le ( torch . z e r o s (1 , s e l f . h idden_size ) )

re turn h_0 , c_0

de f cur rent_state ( s e l f ) :

r e turn s e l f . hidden , s e l f . c e l l

.3 Pytorch Implementation of ODE-GRU-D-Extension

import torch

from torch . autograd import Var iab le

from torch . nn import Parameter , L inear

import numbers , warnings , math

from models . F i l t e rL i n e a r import F i l t e rL i n e a r

from t o r c h d i f f e q import ode int_adjo int as od

from models . dGru import dGru
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c l a s s dGRUExt( torch . nn . Module ) :

de f __init__( s e l f , input_size , hidden_size , output_size ,

num_layers=1, x_mean=0, b i a s=True ,

ba t ch_f i r s t=False , b i d i r e c t i o n a l=False ,

dropout_type=’mloss ’ , dropout =0):

super (dGRUExt, s e l f ) . __init__ ( )

s e l f . input_s ize = input_s ize

s e l f . h idden_size = hidden_size

s e l f . output_size = output_size

s e l f . num_layers = num_layers

s e l f . z e r o s = torch . autograd . Var iab le ( torch . z e r o s ( input_s ize ) )

s e l f . x_mean = torch . autograd . Var iab le ( torch . t enso r (x_mean) )

s e l f . b i a s = b ia s

s e l f . ba t ch_f i r s t = batch_f i r s t

s e l f . dropout_type = dropout_type

s e l f . dropout = dropout

s e l f . b i d i r e c t i o n a l = b i d i r e c t i o n a l

num_directions = 2 i f b i d i r e c t i o n a l e l s e 1

s e l f . i d e n t i t y = torch . eye ( input_s ize )

i f not i s i n s t a n c e ( dropout , numbers . Number)

or not 0 <= dropout <= 1

or i s i n s t a n c e ( dropout , bool ) :

r a i s e ValueError (" dropout should be a number in range [ 0 , 1 ] " )

i f dropout > 0 and num_layers == 1 :

warnings . warn (" non−zero dropout expect s ")

################################
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gate_s ize = 1 # not used

################################

s e l f . _all_weights = [ ]

# decay r a t e s gamma

w_dg_x = Parameter ( torch . Tensor ( input_s ize ) )

w_dg_h = Parameter ( torch . Tensor ( hidden_size ) )

# y ( output )

w_hy = Parameter ( torch . Tensor ( output_size , h idden_size ) )

# b ia s

b_dg_x = Parameter ( torch . Tensor ( hidden_size ) )

b_dg_h = Parameter ( torch . Tensor ( hidden_size ) )

b_y = Parameter ( torch . Tensor ( output_size ) )

layer_params = (w_dg_x, w_dg_h,w_hy, \

b_dg_x , b_dg_h, b_y)

param_names = [ ’ weight_dg_x ’ , ’weight_dg_h ’ , \

’ weight_hy ’ ]

i f b i a s :

param_names += [ ’ bias_dg_x ’ , ’ bias_dg_h ’ , \

’ bias_y ’ ]
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f o r name , param in z ip (param_names , layer_params ) :

s e t a t t r ( s e l f , name , param)

s e l f . _all_weights . append (param_names )

s e l f . gamma_x_l = F i l t e rL i n e a r ( s e l f . input_size ,

s e l f . input_size , s e l f . i d e n t i t y )

s e l f . gamma_h_l = Linear ( s e l f . input_size ,

s e l f . input_s ize )

s e l f . f l a t ten_parameters ( )

s e l f . reset_parameters ( )

de f f la t ten_parameters ( s e l f ) :

any_param = next ( s e l f . parameters ( ) ) . data

i f not any_param . is_cuda or not torch . backends . cudnn . i s_acceptab l e (any_param ) :

re turn

a l l_we ights = s e l f . _f lat_weights

unique_data_ptrs = s e t (p . data_ptr ( ) f o r p in a l l_we ights )

i f l en ( unique_data_ptrs ) != l en ( a l l_we ights ) :

r e turn

with torch . cuda . device_of (any_param ) :

import torch . backends . cudnn . rnn as rnn

with torch . no_grad ( ) :

torch . _cudnn_rnn_flatten_weight (

a l l_weights , (4 i f s e l f . b i a s e l s e 2 ) ,

s e l f . input_size , rnn . get_cudnn_mode ( s e l f . mode ) , s e l f . hidden_size , s e l f . num_layers ,

s e l f . batch_f i r s t , bool ( s e l f . b i d i r e c t i o n a l ) )
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de f _apply ( s e l f , fn ) :

r e t = super (dGRUExt, s e l f ) . _apply ( fn )

s e l f . f l a t ten_parameters ( )

r e turn r e t

de f reset_parameters ( s e l f ) :

stdv = 1 .0 / math . s q r t ( s e l f . h idden_size )

f o r weight in s e l f . parameters ( ) :

torch . nn . i n i t . uniform_ ( weight , −stdv , stdv )

de f check_forward_args ( s e l f , input , hidden , batch_sizes ) :

is_input_packed = batch_sizes i s not None

expected_input_dim = 2 i f is_input_packed e l s e 3

i f input . dim ( ) != expected_input_dim :

r a i s e RuntimeError (

’ input must have {} dimensions , got {} ’ . format (

expected_input_dim , input . dim ( ) ) )

i f s e l f . input_s ize != input . s i z e (−1):

r a i s e RuntimeError (

’ input . s i z e (−1) must be equal to input_s ize .

Expected {} , got {} ’ . format ( s e l f . input_size ,

input . s i z e (−1)))

i f is_input_packed :

mini_batch = in t ( batch_sizes [ 0 ] )

e l s e :

mini_batch = input . s i z e (0 ) i f s e l f . ba t ch_f i r s t e l s e input . s i z e (1 )
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num_directions = 2 i f s e l f . b i d i r e c t i o n a l e l s e 1

expected_hidden_size = ( s e l f . num_layers ∗ num_directions ,

mini_batch , s e l f . h idden_size )

de f check_hidden_size (hx , expected_hidden_size ,

msg=’Expected hidden s i z e {} , got { } ’ ) :

i f tup l e ( hx . s i z e ( ) ) != expected_hidden_size :

r a i s e RuntimeError (msg . format ( expected_hidden_size ,

tup l e ( hx . s i z e ( ) ) ) )

i f s e l f . mode == ’LSTM’ :

check_hidden_size ( hidden [ 0 ] , expected_hidden_size ,

’ Expected hidden [ 0 ] s i z e {} , got {} ’ )

check_hidden_size ( hidden [ 1 ] , expected_hidden_size ,

’ Expected hidden [ 1 ] s i z e {} , got {} ’ )

e l s e :

check_hidden_size ( hidden , expected_hidden_size )

de f extra_repr ( s e l f ) :

s = ’{ input_s ize } , { hidden_size } ’

i f s e l f . num_layers != 1 :

s += ’ , num_layers={num_layers } ’

i f s e l f . b i a s i s not True :

s += ’ , b i a s={b ia s } ’

i f s e l f . ba t ch_f i r s t i s not Fa l se :

s += ’ , ba t ch_f i r s t={batch_f i r s t } ’
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i f s e l f . dropout != 0 :

s += ’ , dropout={dropout } ’

i f s e l f . b i d i r e c t i o n a l i s not Fa l se :

s += ’ , b i d i r e c t i o n a l={b i d i r e c t i o n a l } ’

r e turn s . format (∗∗ s e l f . __dict__)

de f __setstate__ ( s e l f , d ) :

super (dGRUExt, s e l f ) . __setstate__ (d)

i f ’ a l l_weights ’ in d :

s e l f . _all_weights = d [ ’ a l l_weights ’ ]

i f i s i n s t a n c e ( s e l f . _all_weights [ 0 ] [ 0 ] , s t r ) :

r e turn

num_layers = s e l f . num_layers

num_directions = 2 i f s e l f . b i d i r e c t i o n a l e l s e 1

s e l f . _all_weights = [ ]

weights = [ ’ weight_dg_x ’ , ’weight_dg_h ’ , \

’ weight_xz ’ , ’ weight_hz ’ , ’weight_mz ’ , \

’ weight_xr ’ , ’ weight_hr ’ , ’ weight_mr ’ , \

’ weight_xh ’ , ’ weight_hh ’ , ’weight_mh ’ , \

’ weight_hy ’ , \

’ bias_dg_x ’ , ’ bias_dg_h ’ , \

’ bias_z ’ , ’ bias_r ’ , ’ bias_h ’ , ’ bias_y ’ ]

i f s e l f . b i a s :

s e l f . _all_weights += [ weights ]

e l s e :
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s e l f . _all_weights += [ weights [ : 2 ] ]

@property

de f _flat_weights ( s e l f ) :

r e turn l i s t ( s e l f . _parameters . va lue s ( ) )

@property

de f a l l_we ights ( s e l f ) :

r e turn [ [ g e t a t t r ( s e l f , weight ) f o r weight in weights ] f o r weights in s e l f . _all_weights ]

de f forward ( s e l f , input ) :

# input . s i z e = (3 , 33 ,49) : num_input or num_hidden , num_layer or s tep

X = torch . squeeze ( input [ 0 ] ) # . s i z e = (33 ,49)

Mask = torch . squeeze ( input [ 1 ] ) # . s i z e = (33 ,49)

Delta = torch . squeeze ( input [ 2 ] ) # . s i z e = (33 ,49)

Hidden_State = Var iab le ( torch . z e r o s ( s e l f . input_s ize ) )

s t ep_s i ze = X. s i z e (1 ) # 49

output = None

h = Hidden_State

# decay r a t e s gamma

w_dg_x = ge t a t t r ( s e l f , ’weight_dg_x ’ )

w_dg_h = ge t a t t r ( s e l f , ’weight_dg_h ’ )

# b ia s

b_dg_x = ge t a t t r ( s e l f , ’ bias_dg_x ’ )

b_dg_h = ge t a t t r ( s e l f , ’ bias_dg_h ’ )

func = dGru (1 , s e l f . hidden_size , 1)
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t_l= torch . l i n s p a c e ( 0 . , 1 . , 3 3 )

f o r l a y e r in range ( s e l f . num_layers ) :

x = torch . squeeze (X[ : , l a y e r : l a y e r + 1 ] )

m = torch . squeeze (Mask [ : , l a y e r : l a y e r + 1 ] )

d = torch . squeeze ( Delta [ : , l a y e r : l a y e r + 1 ] )

# (4)

gamma_h = torch . exp(− torch .max( s e l f . zeros ,

(w_dg_h ∗ d + b_dg_h) ) )

t_d = torch . l i n s p a c e ( 0 . , 1 . , 5)

delta_x = od ( s e l f . gamma_x_l , d , t_d)

#delta_h = od ( s e l f . gamma_h_l , d , t_d)

gamma_x = torch . exp(− torch .max( s e l f . zeros , delta_x ) )

gamma_x =gamma_x[gamma_x. shape [0 ] −1 ]

#gamma_h = torch . exp(− torch .max( s e l f . zeros , delta_h ) )

h= gamma_h

x = x ∗ (gamma_x ∗ x + (1 − gamma_x) ∗ s e l f . x_mean)

# (5)

with torch . no_grad ( ) :

func . in i t_hidden ( )

i = torch . t en so r ( [ x [ 0 ] ] )

j = torch . t enso r ( [m[ 0 ] ] )

g = od ( func , tup l e ( [ i , h , m] ) , t_l )

[ x , h , m] = g

# (6)

w_hy = ge t a t t r ( s e l f , ’ weight_hy ’ )

b_y = ge t a t t r ( s e l f , ’ bias_y ’ )
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output = torch . matmul (w_hy, x ) + b_y

output = torch . s igmoid ( output )

re turn output

.4 Pytorch implementation of Continuous Colvolutional Neural Network

from neu r od i f f e q import d i f f

from neu r od i f f e q . s o l v e r s import Solver1D , Solver2D

from neu r od i f f e q . c ond i t i on s import IVP , DirichletBVP2D

from neu r od i f f e q . networks import FCNN, SinActv

from neu r od i f f e q . monitors import Monitor1D

import numpy as np

cond i t i on s = [

DirichletBVP2D (

x_min=0, x_min_val=lambda y : torch . s i n (np . p i ∗y ) ,

x_max=1, x_max_val=lambda y : 0 ,

y_min=0, y_min_val=lambda x : 0 ,

y_max=1, y_max_val=lambda x : 0 ,

)

]

net s = [TDNN( n_input_units=1, n_output_units=100 , hidden_units =(512 , ) ) ]

pde_solver = Solver2D ( pde_system , cond i t i ons , xy_min=(0 , 0 ) , xy_max=(10 , 1 . 5 ) , net s=nets )

pde_solver . f i t (max_epochs=500)
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class PDE_solver_Module (nn . Module ) :

def __init__( s e l f , pde_solver ) :

super (PDE_solver_Module , s e l f ) . __init__ ( )

s e l f . pde_solver = pde_solver

def forward ( s e l f , y , t , parameter ) :

s o l u t i o n =s e l f . pde_solver . ge t_so lut ion ( )

return s o l u t i o n (y , t , parameter )

class ODE_solver_Module (nn . Module ) :

def __init__( s e l f , ode_solver ) :

super (ODE_solver_Module , s e l f ) . __init__ ( )

s e l f . ode_solver = ode_solver

def forward ( s e l f , y , t , parameter ) :

s o l u t i o n =ode_solver . ge t_so lut ion ( )

return s o l u t i o n (y , t , parameter )

class CCNN(nn . Module ) :

def __init__( s e l f , pde_solver , ode_solver , input_dim , output_dim ) :

super (CCNN, s e l f ) . __init__ ( )

s e l f . pde_solver = pde_solver

s e l f . ode_solver = ode_solver
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s e l f . net = nn . Sequent i a l (PDE_solver_Module ( pde_solver ) ,

ODE_solver_Module ( ode_solver ) )

s e l f . l i n e a r = nn . Linear ( input_dim , output_dim )

for m in s e l f . net . modules ( ) :

i f isinstance (m, nn . Linear ) :

nn . i n i t . normal_ (m. weight , mean=0, std =0.1)

nn . i n i t . constant_ (m. bias , va l=0)

def forward ( s e l f , y , t , parameters ) :

y = s e l f . net (y , t , parameters )

y = s e l f . l i n e a r ( y )

return y

.5 Pytorch implementation of HeunNet

import torch

class HuneLSTM( torch . nn . Module ) :

def __init__( s e l f , input_size , hidden_size , b i d i r e c t i o n a l=True ) :

super ( ) . __init__ ( )

s e l f . h idden_size = hidden_size

s e l f . lstm = torch . nn .LSTM(

input_s ize=input_size ,

hidden_size=hidden_size ,
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b i d i r e c t i o n a l=b i d i r e c t i o n a l ,

ba t ch_f i r s t=True

)

s e l f . b i = 2 i f b i d i r e c t i o n a l else 1

def forward ( s e l f , u_sequence ) :

c0 = u_sequence . new_zeros ( ( s e l f . bi , u_sequence . s i z e ( 0 ) ,

s e l f . h idden_size ) )

h0 = u_sequence . new_zeros ( ( s e l f . bi , u_sequence . s i z e ( 0 ) ,

s e l f . h idden_size ) )

outputs = [ ]

for i in range ( u_sequence . s i z e ( 1 ) ) :

u_t = u_sequence [ : , i , : ] . unsqueeze (1 )

t_t = u_sequence [ : , i , −1]

lstm_out , ( c_t , h_t) = s e l f . lstm (u_t , ( c0 , h0 ) )

x_hat = lstm_out [ : , : , − 1 ] . unsqueeze (1 )

x_hat_prime = u_t + x_hat

lstm_next , ( c_s , h_s) = s e l f . lstm (x_hat_prime , ( c_t , h_t ) )

x_hat_next = lstm_next [ : , : , − 1 ] . unsqueeze (1 )

out = u_t +(x_hat_prime +x_hat_next ) ∗0 .5

c0 , h0 = c_s , h_s

outputs . append ( out )

outputs = torch . cat ( outputs , dim=1)

return outputs

.6 Pytorch implementation of Extended HeunNet

import torch
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c l a s s ExHuneLSTM( torch . nn . Module ) :

de f __init__( s e l f , input_size , hidden_size , alpha ,

b i d i r e c t i o n a l=True ) :

super ( ) . __init__ ( )

s e l f . h idden_size = hidden_size

s e l f . a lpha = alpha

s e l f . lstm = torch . nn .LSTM(

input_s ize=input_size ,

hidden_size=hidden_size ,

b i d i r e c t i o n a l=b i d i r e c t i o n a l ,

ba t ch_f i r s t=True

)

s e l f . b i = 2 i f b i d i r e c t i o n a l e l s e 1

de f forward ( s e l f , u_sequence ) :

c0 = u_sequence . new_zeros ( ( s e l f . bi , u_sequence . s i z e ( 0 ) ,

s e l f . h idden_size ) )

h0 = u_sequence . new_zeros ( ( s e l f . bi , u_sequence . s i z e ( 0 ) ,

s e l f . h idden_size ) )

outputs = [ ]

f o r i in range ( u_sequence . s i z e ( 1 ) ) :

u_t = u_sequence [ : , i , : ] . unsqueeze (1 )

t_t = u_sequence [ : , i , −1]
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lstm_out , ( c_t , h_t) = s e l f . lstm (u_t , ( c0 , h0 ) )

x_hat = lstm_out [ : , : , − 1 ] . unsqueeze (1 )

x_hat_prime = u_t + x_hat

lstm_next , ( c_s , h_s) = s e l f . lstm (x_hat_prime , ( c_t , h_t ) )

x_hat_next = lstm_next [ : , : , − 1 ] . unsqueeze (1 )

out = u_t +(1− s e l f . a lpha )∗x_hat_prime

+ x_hat_next ∗ s e l f . a lpha

c0 , h0 = c_s , h_s

outputs . append ( out )

outputs = torch . cat ( outputs , dim=1)

return outputs
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