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Editorial on the Research Topic

Ecology, Metabolism and Evolution of Archaea-Perspectives From Proceedings of the

International Workshop on Geo-Omics of Archaea

INTRODUCTION

The Archaea is the most recently discovered and the least understood of life’s domains. Archaea
include several of the most extreme of extremophiles (e.g., Bolhuis et al., 2004; Dopson et al., 2004;
Takai et al., 2008; Zeng et al., 2009; Glynn, 2017): they possess unusual physiologies (Schäfer et al.,
1999; Thauer et al., 2008; Stahl and de la Torre, 2012; Evans et al., 2019; Tahon et al., 2021); perform
key roles in elemental cycles in a variety of extreme environments (Baker and Banfield, 2003; de la
Torre et al., 2008; Dodsworth et al., 2011; He et al., 2016; Mayumi et al., 2016; Colman et al., 2018;
Hua et al., 2019); inhabit deep crust ecosystems and deep-sea hydrothermal vents (e.g., Stevens
and McKinley, 1995; Ver Eecke et al., 2012), and their most ancient CO2 fixation pathway can be
catalyzed in vitro by a piece of metal (Martin, 2020; Preiner et al., 2020). They have also left isotopic
evidence indicating their prevalence among the most ancient microbial communities (Ueno et al.,
2006; Wei et al., 2011; Schopf et al., 2018; Cavalazzi et al., 2021).

Despite fascination for their ability to conquer extremes, broader appreciation of the importance
of archaea as ubiquitous members of microbial communities in “non-extreme” habitats continues
to evolve in parallel with advances in environmental genomics, taxonomically resolved microbial
activity studies, and laboratory cultivation studies (Wang et al., 2021a). The emerging view is that
archaea are prominent members of all terrestrial and marine communities (DeLong) and play
central roles in global carbon and nitrogen cycles in the ocean and on land (Hatzenpichler, 2012;
Spang et al., 2017; Yu et al., 2018; Evans et al., 2019; Qin et al., 2020; Zhang et al., 2020). Recent
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environmental genomics on uncultured asgard archaea (Eme
et al., 2017; Spang et al., 2017; van der Gulik et al., 2017;
Zhou et al., 2018; Liu et al., 2021; Xie et al., 2021) and the
isolation of co-cultures of the microscopically characterized
obligate symbiotic archeaon Candidatus Prometheoarchaeum
syntrophicum (Imachi et al., 2020) has led to exciting insights
into the role of the Archaea in eukaryogenesis. However, most
archaea remain uncultivated (Zhang et al., 2015; Spang et al.,
2017; Rinke et al., 2021) and therefore the world of the Archaea
remains an exciting frontier in biology.

To facilitate global efforts in addressing fundamental
questions related to the biology of archaea, an international
consortium of experts organized the International Workshop on
Geo-Omics of Archaea (IWGOA), with the overarching themes
of Ecology/Biogeochemistry, Metabolism, and Evolution. The
IWGOA was held in Shenzhen, China, from October 25th to
27th, 2019. Themeeting was attended bymore than 200 attendees
from China, Japan, USA, Australia, Germany, and France. Some
of the most exciting oral and poster presentations made at the
IWGOA are celebrated in this Research Topic Figure 1. The 21

FIGURE 1 | Conceptual framework to study archaeal biology. Archaea can be studied in a variety of environments in part through cultivation, environmental genomics,

and lipidomics. Diverse data streams can be integrated computationally and intellectually to address questions about archaeal metabolism, evolution, and ecology.

Archaeal biomarkers can be retrieved from modern and ancient systems to reconstruct the co-evolution of archaea and earth system within a geological framework.

manuscripts herein span different aspects of archaeal biology
in both extreme and “non-extreme” environments in both
marine and terrestrial settings and use a variety of approaches—
community ecology, environmental lipidomics and genomics,
organismal biology, and nucleic acid biochemistry—embodying
diverse research thrusts that makes archaeal biology so exciting.
At the same time, the manuscripts include over 100 authors from
Asia, North America, and Europe, realizing our goal to engage a
global audience in the biology of archaea.

ECOLOGY OF ARCHAEA IN
“NON-EXTREME” MARINE
ENVIRONMENTS

Several papers in the Research Topic explore the ecology of
archaea in marine environments. These studies are framed
by a perspective article by Ed DeLong on planktonic marine
archaea (DeLong). The perspective chronicles the exciting
discovery in the 1990s by DeLong and contemporaries that
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planktonic marine archaea are not methanogens within anoxic
niches in particulate organic matter, as originally hypothesized,
but rather physiologically and ecologically distinct organisms,
with distinct roles including chemolithoautotrophic ammonia
oxidation. The perspective then carries the torch to present and
future generations by highlighting the need to better understand
the flood of metagenome-assembled genomes (MAGs), advance
cultivation efforts, and further explore the importance of viruses
infecting these organisms. A minireview follows this lead but
focuses instead on archaea in estuaries, especially ammonia-
oxidizing archaea (AOA) and Bathyarchaeota (Zou et al.).
The review pegs Nitrosopumilales and Nitrosospharales as the
dominant AOA in estuarine waters and sediments and identifies
specific estuarine sub-lineages of AOA and Bathyarchaeota based
on a meta-analysis of 16S rRNA gene surveys. Emerging evidence
for the importance of Bathyarchaeota in both C1 metabolism
and the consortial degradation of complex organic carbon is
also reviewed.

Research papers on marine archaea included three studies
on factors affecting the distribution and diversity of archaea
in marine environments. One paper examined 16S rRNA
genes and transcripts in samples from the epipelagic and
deep chlorophyll maximum layer that were mixed to simulate
upwelling by western Pacific eddies (Dai et al.). Although less
abundant than AOA, heterotrophic Marine Group IIb (MGIIb)
Euryarchaeota were enriched in response to upwelling. Two
other studies focused on sediment cores collected from the
Pearl River Estuary in southeastern China. The first established
strong vertical stratification of dissolved organic matter (DOM)
consistent with increases in recalcitrant DOM with depth,
and corresponding stratification of microbial communities
(Wang et al., 2021b). Lignin and carboxyl-rich alicyclic
molecules were strongly correlated with Bathyarchaeia in deeper
sediments; correspondingly, BathyarchaeiaMAGs were enriched
with genes predicted to encode enzymes for the reductive
dearomatization and carboxylation of aromatic compounds.
Lai and colleagues examined vertical patterns in bathyal
sediments (water depth: 2,125m) associated with the Pearl
River Submarine Canyon and associated increased terrestrial
input during Pleistocene glacial maxima with increases in the
terrestrial Soil Crenarchaeotic Group (SCG; Nitrososphaerales)
along with heterotrophic Bathyarchaeia and Thermoprofundales,
implying a role for terrestrial input to the deep benthos in
structuring archaeal communities on millennial scales (Lai
et al.).

Two studies focused on roles of archaea in C1 metabolism
in marine settings. The first investigated the effects of organic
phosphate addition to coastal marine sediments with or
without the seagrass Zostera marina on methylotrophic
methanogenesis (Zheng et al.). Methanogenesis was stimulated
by organophosphates in both enrichments and pure cultures,
but responses were both taxonomically and spatially distinct.
Another study used DNA and RNA to probe community
structure and activity associated with sulfate-dependent
anaerobic oxidation of methane (AOM) in three cold seeps
in the northern South China Sea (Zhang et al., 2020). 16S
rRNA amplicons from DNA and RNA were distinct and

showed three different stages of community development
concordant with the development of communities of
Calyptogena clams.

Three studies focused on the archaeal lipidome and another
explored an archaeal exometabolome. Two of these studies
analyzed lipids extracted from ocean surface waters with
abundant MGII Euryarchaeota populations. The first correlated
surface planktonic communities dominated by MGII to a
distinct lipidome dominated by acyclic isoprenoid glycerol
dibiphytanyl glycerol tetraethers (GDGTs) with diglycosidic and
monoglycosidic headgroups (Ma et al.). The second reported
extremely low intact polar lipid content of GDGTs (1.21 × 10−9

ng lipid/cell) with surface planktonic communities from the
North Pacific Subtropical Gyre comprised of Thermoplasmatota
(MGII/MGIII) and devoid of AOA. This suggests a minimal
contribution of Thermoplasmatota to GDGT pools in ocean
waters, despite the detection of homologs of the archaeal
GDGT ring synthase genes encoding GrsA and GrsB (Li
et al.). A third paper reported on a novel application of
liquid chromatography ion mobility mass spectrometry (IM-
MS) to enhance the coverage and structural interpretation of
archaeal lipids (Law et al.). The approach was then used to
identify a novel phosphate- and sulfate-containing lipid in pure
cultures of the AOA Nitrosopumilus maritimus. Finally, another
paper characterized the exometabolome of N. maritimus by
liquid chromatography coupled to IM-MS (Law et al.). The
exometabolome was dominated by biologically active nitrogen-
containing metabolites, peptides, cobalamin, and cobalamin
biosynthetic intermediates, enforcing the important role of
N. maritimus in oceanic carbon and nitrogen cycles and
as a source of cobalamin. The latter two papers highlight
the importance of developing new technologies in mass
spectrometry for promoting research on archaeal lipidomics
and metabolomics.

ECOLOGY OF ARCHAEA IN EXTREME
AND TERRESTRIAL ENVIRONMENTS

Archaea are traditionally viewed to be important members
of microbial communities in extreme environments, such as
terrestrial hot springs. This is still true, and the importance
of archaea is expanded into other terrestrial environments, as
exemplified by papers on archaea in acid mine drainage, shallow
subsurface sediments, and suboxic swamp soils. One paper
extends the AOA theme from oceans to terrestrial geothermal
systems by describing nine new MAGs representing Candidatus
Nitrosocaldaceae (Luo et al.). The genomes represent two novel
species of Candidatus Nitrosocaldus and a member of a second
genus, Candidatus Nitrosothermus. The genomes contained
genes related to thermal adaptation and vitamin synthesis,
including cobalamin, extending the possible role of AOA in
cobalamin synthesis to thermophiles. A similar approach was
used to obtain five MAGs from acid mine drainage sediments
representing a novel family of the Parvarchaoeta (Luo et al.).
Like other Parvarchaeota genomes, the new MAGs lacked amino
acid biosynthetic pathways, but they did contain genes related
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to carbohydrate and protein utilization, adaptation to acid and
heavy metals, and sulfocyanin, the latter suggesting energy
conservation based on chemolithotrophic iron oxidation.

Two papers explored archaea in less extreme terrestrial
environments. The first described archaeal and bacterial
communities in oxic and anoxic clays from different depths
in a terrestrial borehole in the Jianghan Plain, China (Song
et al.). Archaea were abundant at all depths, comprising up to
∼60% of the microbial community. The dominant community
members were Bathyarchaeota, Euryarchaeota, Thaumarchaeota,
and Woesearchaeota. Another paper quantified methanotrophy
and nitrogen fixation and used stable isotope probing to identify
active methylotrophs in suboxic alpine swamp soils of the
Qinghai–Tibetan Plateau, Methylobacter-like bacteria as the
dominant active population, rather than archaea (Mo et al.).

NOVEL METABOLISM AND NUCLEIC ACID
BIOCHEMISTRY OF DIVERSE ARCHAEA

The Research Topic also included important contributions to
archaeal physiology and nucleic acid biochemistry. One review
article summarized mounting evidence for direct interspecies
electron transfer (DIET) between methanogens and other
microorganisms (Gao and Lu). The review article discusses
several examples of DIET as an alternative to electron-transfer
mediators like H2 or formate both for methanogenesis and
AOM, and rare occurrences of membrane-bound multiheme c-
type cytochromes (MHC) and electrically conductive cellular
appendages that may mediate these processes in methanogens.

Two papers explored proteomic responses to stress in
hyperthermophilic archaea from marine and terrestrial
systems. The first examined multiple stress responses in the
hyperthermophilic and piezophilic archaeon Thermococcus
eurythermalis A501 (Zhao et al.). A high percentage of
differentially abundant proteins were shared between thermal,
hydrostatic, and salinity stresses, particularly those involved
the biosynthesis and protection of macromolecules, amino acid
metabolism, ion transport, and binding activities. Another paper
probed the DNA damage response of Sulfolobus islandicus to
UV-induced DNA damage by a quantitative phosphoproteomic
analysis (Huang et al.). The study revealed 562 phosphorylated
sites in 333 proteins, including 30 that were induced by
UV treatment. Several of the UV-induced phosphorylations
were dependent on an Rio1 kinase homolog, based on
phosophorylation in the wild-type strain but not a deletion
mutant of rao1.

Finally, three papers provided insights into nucleic acid
biochemistry of archaea. The first shows one of the three B-
family DNA polymerases of S. islandicus, Dpo2, to be the main
DNA polymerase responsible for DNA damage tolerance (Feng
et al.). Dpo2 expression was induced by DNA damage, enhanced
viability to cells with DNA damage when overexpressed, and
participated in mutagenic translesion DNA synthesis. Also in S.
islandicus, Ye et al. used a combination of genetic and molecular
biology approaches to show that the CRISPR-associated factor
Csa3b is a repressor for acquisition of CRISPR spacers and

a transcriptional activator of Cmr-mediated RNA interference,
adding a key piece to the puzzle of the mechanism of immunity
in S. islandicus. Finally, the characteristics of the archaeal RNaseZ
in the maturation of 3’-ends of pre-tRNAs was investigated
in Methanolobus psychrophilus and Methanococcus maripaludis
(Wang et al.). Endoribonuclease activity was dependent on
cobalt ions, independent of CCA motifs, and active on intron-
embedded archaeal pre-tRNAs that are common in some archaea.

OUTLOOK ON ARCHAEAL RESEARCH
AND GLOBAL COOPERATION

We are sure you will enjoy the diverse and exciting research
contained in this Research Topic and share in our enthusiasm
for continued international collaboration on all areas of
archaeal biology. As exclaimed 4 years ago, “These are exciting
times for archaeal research” (Adam et al., 2017). Continuing
progress is expected to be made on archaea, particularly on
archaeal evolution and systematics, the functions of major yet-
uncultivated lineages, the role of archaea in eukaryogenesis, and
lipidomics approaches as biomarkers for understanding ancient
and modern archaeal communities.

In terms of evolution and systematics, we are seeing
increased use of the Genome Taxonomy Database (GTDB)
to aid in the taxonomic classification of both cultivated and
uncultivated archaea (Rinke et al., 2021). The GTDB, along
with the impending development of a code of nomenclature
to name and catalog archaea and bacteria by using genome
sequences as common currency (Murray et al., 2020), promises a
more robust evolutionary framework and better communication
among scientists studying archaea. We suggest that our research
community may be early to adopt these systems compared to
our counterparts studying bacteria due to the smaller size of
the community and better appreciation for the prevalence of
uncultivated archaea in nature and the power of meta-omics
technologies to study them. These systems form a foundation
for genome-focused studies across the domain, keeping in
mind that some MAGs suffer from data quality problems
not encountered in sequences from cultured organisms (Garg
et al., 2020), particularly when closely related strains cohabitate
and confound existing assembly and binning methods (Sczyrba
et al., 2017). Problems related to MAG binning fidelity of short
read assemblies are increasingly solved by including long-read
sequencing data to produce hybrid assemblies (Frank et al., 2016;
Xie et al., 2020; Ciuffreda et al., 2021), by utilizing Hi-C to
assay the physical proximity of DNA sequences (DeMaere et al.,
2020), and by employing single-cell genomics (Stepanauskas,
2012; Rinke et al., 2013; Pachiadaki et al., 2019).

Nevertheless, genomes from a plethora of both cultivated
and uncultivated archaea discovered at an unprecedented rate
(Nayfach et al., 2021; Rinke et al., 2021) are serving as invaluable
resources for studying both extant organisms and for probing
deep evolutionary relationships and key evolutionary transitions.
Eukaryogenesis will continue to be a major research frontier in
this area, but other important insights into archaeal evolution
await. For example, recent progress on the genomic evolution
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of diverse archaea in the context of Earth history provide
better ties between genome-based evolutionary models and the
sedimentary record (e.g., Colman et al., 2018; Wang et al., 2021b;
Yang et al., 2021). The fast-increasing volume and diversity
of high-quality environmental genomes should lead to fruitful
new ground in archaeal evolutionary studies along geological
time scales, which has been hampered by the lack of physical
fossils of microorganisms. We suggest that studies that integrate
molecular and sedimentary records, such as lipid biomarkers, will
be especially fruitful going forward.

Synthetic biology is also allowing breakthroughs in elucidating
the long-standing enigma of the “lipid divide” that distinguishes
the bacterial and archaeal cell membrane compositions (Martin
and Russell, 2003; Villanueva et al., 2017; Caforio et al., 2018).
These studies provide important insights into modern biology
and improve interpretations of contemporary and fossil archaea
and on the evolution of membrane biochemistry and function
(Zeng et al., 2019). At the same time there is a need to distinguish
between genomic potential for physiological traits and bona fide
expressed traits in situ or in cultured cells. For example, Sun et al.
(2021) and Villanueva et al. (2021) report exciting collections
of genes from uncultured archaea that suggest the ability for
coexistence of archaeal and bacterial lipids in the same cell. But
do they really synthesize those lipids? In order to learn more, we
need cultured cells.

As another example, He et al. (2016) reported the possibility of
widespread acetogenesis in archaea based on genomic potential,
but the only acetogenic growth of cultured archaea reported
so far was obtained from laboratory cultures of a methanogen
forced to grow on carbon monoxide (Rother and Metcalf, 2004).
There is a clear gap between our ability to ascertain novel
(meta)genomic potentials and our ability to link these inferred
abilities to physiological traits in cultured cells. Two of the
most prominent metagenomic-identified archaea from sediment
that have been brought to culture so far are Ca. Korarcheaum
cryptofilum (Elkins et al., 2008) and Ca. Prometheoarchaeum
syntrophicum (Imachi et al., 2020), both of which grow from
simple peptide fermentations, even though the former and its
close relatives (McKay et al., 2019) possesses a number of genes
for methanogenesis-related pathways (Xavier and Martin, 2019).

The flood of genomic data from archaea in new environments
highlights the need to cultivate new archaea in both mixed
and pure cultures in combination of traditional methods, and
new genome-guided approaches (Wang et al., 2021a). The fore-
mentioned Ca. Prometheoarchaeum syntrophicum can serve as a

great example of successful cultivation, which grows very slowly
to low cell density in culture with one or more hydrogenotrophs
(Imachi et al., 2020). Ca. Prometheoarchaeum needed over 7
years of enrichment cultivation to gain sufficient purity and
biomass for incisive experimentation. Despite being notoriously
difficult to grow, Ca. Prometheoarchaeum syntrophicum and
other challenging archaea (e.g., Ca. Korarchaeum) provide
irreplaceable templates for physiological and biochemical studies
of these novel organisms under controlled laboratory conditions.
Thus, cultivation must be a priority for future research,
and it will be a long-term endeavor. With all the exciting
challenges in archaeal research, improved cooperation would
be helpful to combine our expertise and accelerate archaeal
research in the next decade. Borrowing a phrase from the
early days of microbial ecology—“Everything is everywhere, but,
the environment selects” (Baas-Becking, 1934)—archaea truly
are everywhere and play important roles in any environment
that supports them. Illuminating these roles can help scientists
across the globe to identify and pursue common goals in
archaeal research.
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