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Abstract 

 

Urban traffic light control is a challenging problem that emerged the recent years, concerning many 

researchers all over the world. Inefficient traffic light control may lead to congestion phenomena 

which impact severely not only the economy but also the environment and peoples’ health. 

Controlling a traffic network system efficiently, is an arduous task since the system is governed 

by unknown varying dynamics, disturbances are sudden and sometimes unmeasurable, and 

measurements obtained are subject to high noise. Extremum Seeking is an adaptive control 

technique that does not require a model or any a priori knowledge of the system’s dynamics, 

therefore it is suitable for application on a traffic network. In this thesis, Extremum Seeking is 

utilized in an open loop scheme to estimate the unknown prevailing critical occupancy, that 

maximizes the system’s throughput. This estimate is destined to be utilized from a perimeter 

controller as its reference set point. The proposed scheme is simulated with real data exhibiting a 

Network Fundamental Diagram (NFD), which were collected from the Central Business District 

(CBD) of Chania. 

 

 

 

 

 

 

 

 

Key words: Network Fundamental Diagram (NFD), Extremum Seeking Control (ESC), Perimeter 

Controller 



 

7 

 

ΕΛΕΓΧΟΣ ΕΥΡΕΣΗΣ ΑΚΡΟΤΑΤΟΥ ΓΙΑ ΕΛΕΓΧΟ ΚΥΚΛΟΦΟΡΙΑΚΗΣ 

ΣΥΜΦΟΡΗΣΗΣ 

ΑΜΟΡΓΙΑΝΟΣ ΠΑΝΑΓΙΩΤΗΣ-ΣΠΥΡΙΔΩΝ  

Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας, 2022 

 

Επιβλέπων Καθηγητής: Δρ. Κωνσταντινος Αμπουντωλας 

Αναπληρωτής Καθηγητής 

 

Περίληψη 

 

Ο έλεγχος των αστικών φωτεινών σηματοδοτών είναι ένα δύσκολο πρόβλημα που εμφανίστηκε 

τα τελευταία χρόνια και απασχολεί πολλούς ερευνητές σε όλο τον κόσμο. Ο αναποτελεσματικός 

έλεγχος των φωτεινών σηματοδοτών μπορεί να οδηγήσει σε φαινόμενα κυκλοφοριακής 

συμφόρησης που επηρεάζουν σοβαρά όχι μόνο την οικονομία αλλά και το περιβάλλον και την 

υγεία των ανθρώπων. Ο αποτελεσματικός έλεγχος ενός συστήματος κυκλοφοριακού δικτύου είναι 

ένα δύσκολο έργο, δεδομένου ότι το σύστημα διέπεται από άγνωστη μεταβαλλόμενη δυναμική, οι 

διαταραχές είναι ξαφνικές και μερικές φορές μη μετρήσιμες και οι μετρήσεις που λαμβάνονται 

υπόκεινται σε υψηλό θόρυβο. Ο Ελεγχος Ευρεσης Ακροτατου είναι μια προσαρμοστική τεχνική 

ελέγχου που δεν απαιτεί μοντέλο ή οποιαδήποτε εκ των προτέρων γνώση της δυναμικής του 

συστήματος, επομένως είναι κατάλληλη για εφαρμογή σε ένα δίκτυο κυκλοφορίας. Στην παρούσα 

διατριβή, ο Ελεγχος Ευρεσης Ακροτατου χρησιμοποιείται σε ένα σύστημα ανοικτού βρόχου για 

την εκτίμηση της άγνωστης επικρατούσας κρίσιμης πληρότητας, η οποία μεγιστοποιεί την 

απόδοση του συστήματος. Αυτή η εκτίμηση προορίζεται να χρησιμοποιηθεί από έναν περιμετρικό 

ελεγκτή ως σημείο αναφοράς του. Το προτεινόμενο σύστημα προσομοιώνεται με πραγματικά 

δεδομένα που παρουσιάζουν ένα θεμελιώδες διάγραμμα δικτύου (NFD), τα οποία συλλέχθηκαν 

από την κεντρική επιχειρηματική περιοχή των Χανίων. 
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1. INTRODUCTION 
 

1.1 Motivation 

 

 Urban transportation is essential to contemporary civilization, yet it confronts mounting 

challenges due to rising population density and automobile ownership. Multiple major cities 

experience traffic congestion, which is affecting many domains of our society, including being 

costly. Cities are becoming hotter while transportation times for people and commodities are larger 

than they could be, because of the saturation of urban networks or even of some crucial parts of 

them. According to [1] in 1994, traffic congestion in several large urban areas of the United States 

had already cost an average of US$640 per driver per year due to transportation delays. Moreover, 

driving delays lead to higher emissions of carbon dioxide and particulate matter such as fine 

particles (𝑃𝑀2.5),  which impacts severely the environment and the people. In [2] the authors 

suggest that a 10
𝜇𝑔

𝑚3⁄  raise in (𝑃𝑀2.5) levels originating from vehicles’ combustion engines, 

caused a 3.4% raise in day-to-day mortality while, authors in [3] suggest that, extended exposure 

to fine particles (𝑃𝑀2.5) can cause atherosclerosis, thrombosis, and vascular remodeling. The 

issues stated above could be diminished by decreasing the traffic congestion in urban areas. This 

thesis aims at contributing to the solution of this problem, by proposing Extremum Seeking Control 

as an estimation algorithm that seeks, online, for the optimal occupancy value of the network. This 

estimation is then actuated by a perimeter controller.  

1.2 Introduction to Literature Review 

1.2.1 Traffic Congestion Problem 
 

The traffic congestion problem has been attempted to be solved following several approaches. A 

slower time-scale approach focuses on infrastructure’s further development. Expansion of road 

networks aim at increasing the networks’ capacity in vehicles, but as modern cities become more 

densely populated, it is becoming an increasingly sophisticated and expensive venture. 

Nonetheless, expansion of road networks is challenging and needs proper research and planning. 

The Pigou-Knight-Downs paradox, as described in [1], suggests that, increasing road’s capacity in 

vehicles can attract more drivers, thus failing to avoid the congested regime. Therefore, this 

approach needs to be investigated thoroughly in terms of its effect on travel times before its 

implementation is decided. Building infrastructure is necessary, but it shall be accompanied by 

sophisticated traffic light controller programs, to utilize its potential. 

 Numerous researchers have been investigating how traffic light controllers can tackle the problem 

of underutilization of the existing infrastructure. Urban traffic light controllers’ purpose is to 

ensure that collisions between conflicting flows are avoided, while Travel Time Spent (TTS) and 

Total Travel Distance (TTD), are minimized and maximized, respectively. Efficient traffic light 

control systems can be of great benefit towards a network’s performance, without long time 

construction requirements and at a relatively low cost. Because a traffic network of an entire city 



 

13 

 

is a very complex dynamical system which is usually disturbed by unexpected events (e.g., creation 

of bottleneck due to collided vehicles), a pre-fixed signal plan is not able to maintain good 

performance and avoid congestion. Therefore, researchers over the last years focused on online, 

model or non-model-based traffic light controllers such as: Perimeter Control [4],[5], SCATS [6], 

and self-organizing traffic lights (SOTL) [7]. Perimeter Control, through which, this thesis 

addresses the traffic congestion problem, is a traffic light controller relied upon the existence of a 

Network Fundamental Diagram (NFD) within a protected area. Essentially, a Perimeter Controller, 

adjusts the accumulation of vehicles inside the network, towards a reference set point, in which 

the (NFD) exhibits maximum flow. The controller can achieve it by regulating, the percentage of 

vehicles waiting at the entrance links, that will finally enter the protected area. The optimal 

accumulation of vehicles of an NFD is subject to various unpredictable factors, making the a priori 

selection of a reference set point inefficient. This problem drastically calls for an adaptive control 

technique, resetting, in real-time the critical occupancy value, by utilizing sensor measurements of 

flow and occupancy. In [8], a Kalman filter-based estimation algorithm is proposed to tackle this 

problem, while in this Thesis, an Extremum Seeking algorithm is proposed for estimating the 

critical occupancy. 

  

1.2.2 Extremum Seeking Control 
Extremum seeking control is an adaptive, model-free technique dating back in 1922 [9], making it 

the first adaptive control technique developed. It attracted researchers’ interest mainly after its 

stability guarantees, proven in 2000 in [10]. Extremum Seeking Control is a perturb and observe 

method, where an excitation signal is perturbing the input with an additive sinusoid, and then it 

observes the objective criterion’s output to estimate the gradient. The next step of the algorithm is 

headed towards the extremum and is proportional to the estimated gradient. The scheme’s purpose 

is to seek for the gradient of an extremum (which is zero), thus minimizing or maximizing the 

objective function. It has been utilized to control numerous applications of hard-to-model systems, 

such as: Anti-lock Braking System (ABS) [11],[12], Maximum Power Point Tracking (MPPT) of 

Photovoltaics [13] and Wind Energy Conversion Systems (WECS) [14],[15] while it has even 

been applied on an industrial scale, on a biochemical wastewater treatment process called CANON 

[16], or to minimize the thermoacoustic pressure oscillations of industrial combustors [9]. Finally, 

Extremum Seeking has also been proposed to control traffic lights in [17] and [18]. See Chapter 

3, for a general overview of ESC’s methodology. 

 

1.3 Thesis Organization 

The rest of this thesis is divided into four chapters, from Chapter 2 to 5. 

Chapter 2 covers literature review, beginning from ESC’s background and evolution throughout 

the last century. Then, a thorough investigation of ESC’s applications and modifications is 

presented. 

In Chapter 3 the theory and methodology of Extremum Seeking Control as well as of its 

generalization, Slope Seeking Control, are presented 
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Chapter 4 is divided into two parts. The first part, from Chapter 4.1 to Chapter 4.4 contains a series 

of Numerical examples beginning with a simple application of ESC to an LTI system and an 

application of SSC to an LTI system. Then ESC is applied to an LTV system without input and 

output dynamics and in 4.3.2 an example with input and output dynamics, inspired by the 

benchmark example of Krstic in [9], is presented. In 4.4, a uni-cycle model is modeled on Simulink 

in order to simulate the Antilock Braking System with an Extremum Seeker. In 4.5, ESC is utilized 

as an estimation algorithm firstly for seven static objective functions (one for each day of the week) 

and then on an open loop scheme, estimating the critical occupancy values based on data collected 

from the CBD network of Chania. 

The conclusions of this study are presented in Chapter 5, accompanied by propositions for further 

investigation of the topic. 
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2. LITERATURE REVIEW 
 

In this chapter, a literature review of Extremum Seeking is presented. At first ESC’s background 

and evolution are presented beginning from Leblanc in 1922 [9], up until its proof of convergence 

from Krstic and Wang in [10], and the latest breakthroughs concerning the method. Then, follows 

a presentation of various applications for which ESC has been utilized, industrial or not, but also 

various extensions of the original scheme that were mostly proposed the years following its 

mathematical underpinning [10]. Finally, an analysis is performed on the work of Kutadinata, [17]  

where an augmented ESC scheme is applied to three distinct traffic light controllers (Perimeter 

controller, SCATS, SOTL). This is the first work ever, to implement ES on urban traffic light 

controllers, and it has showcased promising results. 

 

2.1  Background 

 

Extremum Seeking Control (ESC) (or peak seeking) is an Adaptive Control, model-free technique 

which dates back at 1922 [9] and is considered as the first method of adaptive control. The decades 

following its “birth” Extremum Seeking Control (ESC) has not been a significant pole of attraction 

for the scientific community up until the 1940s. Researchers in the USSR made significant steps 

towards its development but under the shadow of the 2nd world war these works remained 

untranslated and were only available in Russian, therefore the International Control Community 

was not particularly attracted at the time. A little later, in the 1950s Extremum Seeking Control 

experienced its revival through some outstanding works such as the publication of Draper and Li 

in 1951 cited in [16], in which the nowadays called “classical” Perturbation Based-Extremum 

Seeking Control method was utilized in order to maximize the power output of an airplane’s 

combustion engine. The proposed scheme is seeking for the optimal ignition timing of the engine 

which maximizes the output in real-time, while the system is subject to uncertainties, varying 

conditions and disturbances. This work has been cited by plenty of Control researchers [16] as the 

work that brought back the interest of the Control community by highlighting ESC’s efficiency as 

a non-model-based technique. Combined with the increasing complexity of engineering problems, 

ESC started to attract researchers again in the 1960s, and there were even published books (some 

of them exclusively) about extremum seeking such as [19], and others  which are cited in [9]. 

These two decades the scientific community proposed many new schemes and applied them in 

numerous problems, thus expanding the available information on ESC. Despite this, the 

researchers’ interest shifted towards model reference adaptive control methods and ESC went 

through a dormant period for the following years up until the work of Krstić and Wang [10]. The 

proof of local convergence in [10] encouraged researchers to study and publish about ESC, 

therefore widening the spectrum of its variations. Perturbation Based-Extremum Seeking Control 

(PESC), Slope Seeking Control [9], Sliding Mode Based Extremum Seeking Control [20] and 

Lyapunov-based Extremum Seeking Control [21] are some of the variations proposed by 

researchers the last years.  
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2.2 Applications 
 

Extremum-Seeking has been applied to many complex systems since it comes with ease of 

implementation and guaranteed convergence with the only restriction that the dynamics be open-

loop stable. To begin with, ESC has been widely used and researched for implementation on Wind 

Energy Conversion Systems (WECSs) in [14], [15], [20],  [22],  and on arrays of solar panels in 

[13], [23], as a Maximum Power Point Tracking (MPPT) method aiming at maximization of the 

power output compared to the theoretical maximum. Another popular application of ESC is on 

Anti-lock Braking Systems (ABS), which may be the most widely known of its applications, with 

numerous extensions and novel schemes proposed such as those in [9], [24], [11], [12] all with the 

purpose of avoiding slipping under hard braking conditions and thus retaining the vehicle’s 

controllability. Moreover, ESC has been applied to Mode-Locked fiber lasers by Brunton, Fu and 

Kutz in [25]. In order to provide maximum energy pulses, a multi-parameter Extremum Seeking 

Control algorithm is utilized for tuning four optical components which in their turn they will 

maximize a properly designated objective function. The objective function introduced is the raw 

energy output divided by the kurtosis of the pulse spectrum, so that the algorithm favors coherent 

energy solutions. Simulations results suggested that the proposed scheme can track the required 

tuning that maximizes the objective function even though it is subject to significant disturbances 

from the fiber Birefringence. In [26], an ESC algorithm is proposed to control a thermal 

environment in real time. Model based techniques for buildings climate control are costly and 

require too much effort both to design and construct them but also to frequently update the models 

to compensate for the uncertainties arising such as weather changes or activities inside the building 

with thermal imprint. For the reasons stated above, the authors in [26] chose to address this issue 

via perturbation-based ESC which is a model-free method, suitable for hard-to-model cases. The 

simulations conducted, confirmed that ESC is efficient in controlling thermal environments since 

it does not have the drawbacks of model-based techniques. Many researchers have published work 

on engines’ optimization performance via ESC such as in [27] where the authors propose an ESC 

scheme aiming at maximum fuel efficiency, which is approximated by cylinder pressure sensors, 

by adjusting the spark timing online. Another interesting approach to the fuel efficiency problem 

is the one proposed in [28] where the authors employ an objective function primarily based on 

brake specific fuel consumption (BSFC) estimations in order to achieve maximum efficiency with 

respect to a set of emission constraints. The conducted experiments on a Euro-VI heavy-duty truck 

engine suggest that the proposed scheme is robust enough to withstand real world disturbances 

while optimizing the fuel efficiency with respect to the imposed emission levels. In [29], the 

authors applied three extremum seeking control schemes in fuel cell hybrid electric vehicles to 

reduce hydrogen consumption by retaining the system’s operating point within the high efficiency 

region. A first order Extremum Seeker, a high pass filter-based Extremum Seeker and a bandpass 

filter-based Extremum Seeker were scrutinized. They were all found to track the optimum 

operation point of the system with respect to the battery’s constrained conditions, and to 

dynamically adapt the output power, so that the battery’s state of charge is retained in an a priori 
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set range. The proposed schemes’ performance was evaluated through experimental 

implementation. Other applications of ESC, include minimum power demand formation flights 

[9], optimization of aircraft control [30] and maximization of compressor pressure rise [9]. In [31] 

ESC was utilized for maintaining desired illumination levels, while optimizing the energy 

consumption in hybrid lighting offices, in [32] for control of Tokamaks, tuning a fractional order 

PI controller in [33], biochemical wastewater treatment process in [16] and even optimal function 

of an ellipsoidal trajectory orientation using muscle effort in [34]. 

2.2.1 Bioreactors 
ESC has been applied in bioreactors for a mass structured cell population balance [16] ,[35]. The 

underlying dynamics of this process are governed by a nonlinear partial integral-differential 

equation bounded by a nonlinear condition accounting for the cell population growth and a 

nonlinear ordinary integral-differential equation describing the substrate consumption. In this case 

the controlled input is the feed substrate concentration through which the algorithm steers the input 

value towards the desired set point that maximizes the value of a cell density objective function. 

A Lyapunov-based Extremum Seeking Control technique is proposed in order to estimate the 

unknown state and to track the unknown optimum value. The Lyapunov function and the design 

parameters are selected in such manner that a persistent of excitation condition is satisfied and it 

has also been shown mathematically that the proposed ESC scheme guarantees exponential 

convergence to within a small region of the system’s maximum cell density.  

2.2.2 Solar Panels and Photovoltaics 
Extremum seeking Control has been also applied to an array of solar panels in [36], in order to 

track the optimizing power condition for which the output power is maximized. In this application 

the input is the set current which is adjusted in order to track the maximum power point. The 

proposed ES controller, instead of utilizing, the classical in ES, perturbation by injection of 

sinusoidal signal, it perturbs the input using the inverter ripple. Simulations were conducted, 

applying this novel, ripple-based Extremum Seeking scheme to experimental data, obtained from 

a rooftop in Princeton, NJ and it was shown that even in days where the irradiance follows an 

unpredictable trajectory, because of the partially shaded conditions (clouds covering the sun etc.), 

the proposed ESC scheme manages to track down the theoretical maximum power point very 

efficiently and thus it is achieving real time convergence to the optimal output for the solar panels 

array.     

The control of solar panels array has been also approached through a Lyapunov based switching 

scheme in [16], [21]. While the traditional ESC scheme enters a region of the optimal value without 

converging to the optimal point itself, the Lyapunov based switching scheme (Lyap-ES) on the 

other hand converges to the optimal value by exponentially decaying the perturbation signal since 

the system has reached to a small region around the extremum. Thus, the Lyap-ES addresses one 

of the main challenges of traditional extremum seeking which is the elimination of the limit cycle 

and the convergence to the extremum point itself, asymptotically. The proposed scheme is applied 

to the maximum power point tracking (MPPT) problem in photovoltaics, and it has been assessed 

via simulation by utilizing experimentally measured environmental data. From the simulation 

results, it derives that Lyap-ES produces larger energy conversion efficiencies than the common 

MPPT methods. 
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Another challenge that has retrieved from studying the maximum power point tracking (MPPT) 

for solar arrays is the existence of suboptimal solutions. The reference-to-output map may not have 

only one Global maximum power point (GMPP) but also some local maximum power points 

(LMPP). The global MPP is the one the algorithm should track in order to achieve the maximum 

feasible power output. In [13], the author proposes a new perturbed based Extremum seeking 

control (PESC) scheme which is able to avoid getting stuck in one of many local maximum power 

points (LMPP) as opposed to most of the common MPP tracking algorithms that haven been 

proposed in the past decades. The (PESC) scheme proposed utilizes a feedforward control of the 

dither gain according to the 1st derivative of the photovoltaic power. Unlike other schemes the one 

proposed in [13] detects and tracks the GMPP in one step, thus increasing its tracking speed. 

Moreover, while the system is on steady-state regime, an outstanding 99.9% (and higher) accuracy 

is achieved with this technique. The simulation results under partially shaded conditions indicate 

that the proposed (GPESC) scheme can efficiently be applied to maximize the power output of a 

photovoltaics array. 

2.2.3 Wind Energy Conversion Systems 
Wind energy conversion systems (WECS) have also been approached by extremum seeking based 

Maximum Power Point Tracking (MPPT) methods in different variations. Similarly, to the 

photovoltaics (MPPT) approach, in (WECS), the algorithm’s purpose is to keep the system’s 

operating point at the neighborhood of the optimal Power Coefficient 𝐶𝑝 value by controlling the 

tip speed ratio 𝜆, which is the ratio between the speed of the blade tips and the wind speed. In [22], 

the authors implement the MPPT method for the output maximization problem in wind energy 

system but instead of utilizing the perturbation based ESC in its classical form, the wind turbulence 

is employed as search disturbance. The phase lag between the normalized signals 𝐶𝑝 and 𝜆, which 

are obtained from measurements of the electrical power, the wind speed and the rotational speed, 

are utilized to define the actual distance between the current operating point and the maximum 

point of the 𝐶𝑝(𝜆) curve. This is achieved by computing the Fast Fourier Transform (FFT) of both 

signals and thus, after the phase information is extracted, the mean phase lag 𝜃(𝑡) is computed. 

Simulations were conducted in the partially loaded region for a wide range of wind speed. The 

proposed scheme is efficient even though there is lack of information about the plant’s dynamics. 

Because of that, there are no guarantees that the scheme will be able to converge to the optimal 

𝜆𝑜𝑝𝑡 and therefore eliminate the steady-state error. What makes the proposed scheme attractive is 

the absence of information about the system’s parameters and state and that the input’s variations 

are slow, thus minimizing the fatigue of the mechanical components and extending their life 

expectancy.  

As it was observed in [22], the proposed ESC scheme was sensitive to wind speed fluctuations and 

more specifically the method seemed to be less effective for low turbulence levels. Later, in [37] 

it was shown that plain ESC algorithms are not robust enough when implemented in Wind Energy 

Conversion Systems (WECS). The algorithm climbs very slowly towards the optimum when there 

is low wind speed, while it climbs abruptly when the wind speed is higher. The authors’ proposition 

in [37] for counter measuring this problem was a saturation nonlinearity in order to moderate the 

effect of the wind speed fluctuations. The same problem was also approached in [14] where the 

author proposed a simple but efficient modification. Instead of using the power output feedback, 
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the logarithm of the power output is employed as the feedback. In contrast to the proposition in 

[37], the logarithmic power feedback does not require additional tuning. As it is stated in [14], 

when the logarithm of the power is used, the relevant slope is independent of the wind. Simulations 

were conducted for both power feedback and log-of-power feedback and were based on a simple 

differential equation model. The results support the proposed theory, since the ESC algorithm with 

log-of-power feedback produced almost identical settling times for all three wind speeds 

simulated. Therefore, the modified ESC scheme is more robust to wind speed and presents 

consistent performance.  

In [15], the author proposed a new MPPT method for WECS which does not demand sensor 

measurements of the wind’s or tip’s speeds. This method utilizes only the voltage and the current 

as its parameters. The method is particularly attractive because, unlike most MPPT methods, it 

tracks the maximum power point of WECSs and not of their wind turbines therefore the output 

power of WECS is maximized. The proposed technique was simulated, and the results indicated 

small convergence time and efficiency of more than 98.5%.    

2.2.4 Anti-lock Braking System 
Finally, one of the most well-known and deeply investigated applications of extremum seeking 

control is the Anti-lock braking system (ABS). ABS is a crucial active safety component for 

passenger vehicles that has been widely employed in numerous car models since Mario Palazzetti, 

Giancarlo Michellone and Giovanni Tabasso invented the modern ABS system for automotives in 

1971 in the Fiat Research Center [38]. Nonetheless, its ancestor, the Dunlop Maxaret anti-skid 

braking system was introduced in the early 1950s and had been broadly utilized in the British 

aviation.  

  The braking process’ performance depends on countless varying factors such as the vehicle’s 

speed, the applied braking pressure, the condition of the wheels, the road’s surface and the friction 

between them. Most of those factors cannot be measured by the vehicle or any of its sensors and 

therefore they compose a nonlinear process with high uncertainty. The purpose of the Anti-lock 

braking system is to prevent the wheels from lockups and skidding in slippery conditions which 

would not only decrease the deceleration of the vehicle, but it would also make the steering of it 

under heavy breaking situations impossible. Therefore, the objective of the ABS scheme is to 

maximize the friction coefficient which is proportional to the friction force or in other words 

minimize the stopping distance. The input this system needs to extremize in order to achieve 

maximization of the objective function is the wheel slip 𝜆. The ABS has been approached in 

numerous forms besides the traditional Extremum Seeking Control [9]. From the work of [39] 

about tyre dynamics it has been revealed that for varying external inputs, the force response of the 

tire presents a time lag. Because ABS controllers command very abruptly the brakes and therefore 

the tyres, such an impact must be taken seriously into consideration. A response to that has been 

given in [12] where two different time anticipation methods are embedded in a modified five phase 

Anti-lock braking algorithm. Both the open-loop pressure steps and the Pressure derivative profiles 

compensate for the time delays at a satisfying degree as shown in the experimental results. Another 

study in [11], confronts the undesirable drop in lateral tyre forces that appears while the system 

attempts to maximize the breaking forces. In order to address this issue, the algorithm is adjusted 

so that it analyzes the steering input information to determine the operational zone of the search 
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algorithm. Simulations were conducted for both the modified ABS algorithm which enhances the 

lateral stability and for the ABS algorithm which only prevents the longitudinal slip. The 

comparison between them showed that the enhanced scheme has a slightly larger stopping time, 

however the vehicle’s lateral stability has improved significantly thus offering the vehicle 

enhanced capability of turning under abrupt braking situations. Moreover, the extremum seeking 

control scheme without steady-state oscillation (ESCWSSO) which has been proposed in [24] was 

applied in Anti-lock braking system and was compared to the traditional perturbation-based ESC 

scheme and sliding-mode-based ESC scheme. The simulation results showed that under the same 

circumstances the proposed scheme behaved more efficiently by stopping the vehicle within the 

shortest time. Although the sliding-mode-based scheme reached higher braking torque than the 

proposed scheme, it appeared very large oscillations which call for higher requirements on 

actuators. 

 

 

2.3 ESC for traffic congestion  
 

Extremum Seeking Control has also been utilized for tuning or estimating parameters of three 

types of traffic light controllers in [17], modified as a Nash Equilibrium Seeking scheme. The road 

network in this work, is considered as a non-cooperative game, where the agents are the 

intersections, or neighborhoods (set of neighboring intersections) whose purpose is to solely 

maximize their own output ignoring the system’s overall performance. Meaning, that an agent may 

command increased external flow to alleviate the congestion locally (maximize its performance 

measure), thus, possibly creating congestion to a neighboring agent. Nonetheless, the author 

manages to ease the task of assigning frequencies to each intersection compared to [40], where the 

authors proposed a Nash Equilibrium Seeking scheme which required unique frequency for each 

agent. Instead, the author of [17], exploited the decaying effect that a road network (in accordance 

with many physical systems) exhibits spatially, by re-using dither frequency signals to agents far 

enough from each other in order to reduce the system’s computational load while making the 

assigning task easier. The proposed scheme was combined with Perimeter Controller [4],[5], 

SCATS [6], and self-organizing traffic lights (SOTL) [7] and they were simulated on SUMO in a 

simple handmade road network. In the perimeter controller’s case, the internal network’s 

intersections are governed by SOTL, which was shown in [6], to homogenize the region in terms 

of congestion, therefore exhibiting a robust NFD. Simulations results, shown a significant increase 

in performance compared to the controllers working on pre-set, fixed parameters, especially for 

the perimeter controller which showcased an impressive performance enhancement of 29%. 
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3. METHODOLOGY 
 

In this chapter, the theory and methodology of the Perturbation Based Extremum Seeking Control 

(PESC) are investigated. A common ESC block diagram is presented, as well as the analytical 

proof of convergence for the linear time invariant case. Then, a generalization of the method, called 

Slope Seeking Control (SSC) is presented and analyzed together with its corresponding block 

diagram. In SSC, instead of seeking for the extremum, the method tracks the gradient it is 

commanded to seek. An intuitive analysis of how the method works (PESC and its generalization 

SSC) also takes place in this Chapter. 

 

3.1 Perturbation Based – Extremum Seeking Control 
Perturbation based Extremum Seeking Control (PESC) is the foundation of Extremum Seeking 

Control (ESC) by being its classical and most common method. It was introduced from Leblanc 

in order to optimize the power transfer from an overhead power - line to a train. It has been studied 

for many years since then and it has been tested in many applications. It relies on a sinusoid to 

perturb the system’s input and in some cases this sinusoidal excitation can as well be an already 

existing disturbance of the plant. Then, the controller observes the corresponding output and 

decides whether the input was perturbed towards the direction that extremizes the output. If that is 

the case, the next step will also be to that direction, and it will be proportional to the estimated 

gradient of the objective function for the current operating input value. Otherwise, the algorithm 

is steered to the opposite direction with a step, again, proportional to the estimated gradient.  

Extremum Seeking is an Adaptive control method which tracks the extremum (maximum or 

Figure 3. 1:Extremum Seeking Control block diagram 
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minimum) of an objective function P. The values of the cost function P are usually provided by 

some sensor measurements however the final value of P depends on the input signal and the 

underlying dynamics. A common extremum seeking control block diagram is shown in Figure 

(3.1). 

The purpose of the Extremum Seeking Control scheme is to minimize (or maximize) a quadratic 

objective function. Under Taylor’s approximation, any 𝐶2 function can be approximated locally 

by eqn. 

𝑃(𝑢) = 𝑃∗  +  
𝑃’’

2
(𝑢 − 𝑢∗)2    (3.1.1) 

Where, for 𝑃′′ > 0 negative integration gain 𝑘 < 0 is selected, while for 𝑃′′ < 0, positive 𝑘 > 0 

is selected. Overall, the scheme’s purpose is to track the optimal value 𝑢∗ for which the objective 

function is optimized. �̂�   stands for the estimate of the unknown variable 𝑢∗ . A sinusoidal 

perturbation is added to �̂�   resulting in signal u  

𝑢 = �̂� + 𝑎𝑠𝑖𝑛𝜔𝑡    (3.1.2)  

Signal 𝑢 passes through the plant resulting in a cost function 𝑃 which is oscillating, around some 

mean value (the current operating point). 

 

𝑃(𝑢) = 𝑃∗ + 
𝑃′′

2
(�̂� +  𝑎𝑠𝑖𝑛𝜔𝑡 − 𝑢∗)    (3.1.3) 

The output 𝑃  is passing through a washout high-pass filter resulting in a zero mean output 

perturbation (signal μ) by excluding the mean Direct current component. A representation of a 

simple high-pass filter in the frequency domain follows: 

𝐻𝑃𝐹 =
𝑠

𝑠 + 𝜔ℎ
    (3.1.4) 

 

Where, 𝑠 is the Laplace variable and 𝜔ℎ is the filter cutoff frequency 

Thus, the information about the objective function’s gradient has already been separated from the 

DC component of the map, 𝑃∗(𝑢).The high-pass filer is not required but it enhances the scheme’s 

performance [30] therefore it is included.  

The high-pass filtered signal μ is then demodulated by a sinusoidal perturbation which might as 

well be phase-shifted. Multiplication of signal μ with the input sinusoid results in signal τ  

𝜏 = 𝛼 sin(𝜔𝑡 − 𝛷) 𝜇    (3.1.5) 

It is noted that when the input signal is greater than the optimal value 𝑢 > 𝑢∗  , the output 

perturbation is out of phase thus resulting in a mostly negative signal τ which drags the input 𝑢 

towards the extremum. If the input signal is smaller than the optimal value 𝑢 < 𝑢∗, the output 
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perturbation, colored red, is in phase and the produced signal τ is mostly positive as shown in 

Figure (3.2). 

 

Figure 3. 2: Schematic illustrating extremum-seeking control acting on a static quadratic criterion P(u). 

Signal τ essentially estimates the gradients of the objective function in the current operating point 

and thus steer the algorithm towards the optimal value rapidly when the gradient is larger and 

slower when the gradient is smaller. This can easily be noticed for plants with constant dynamics, 

where the cost function P is only a function of the input signal u. Substituting, equation (3.1.2) in 

the cost function P gives 

𝑃(𝑢) = 𝑃(�̂� + asin(𝜔𝑡))    (3.1.6𝑎) 
  

Assuming that perturbation amplitude a is small and expanding the cost function 𝑃(𝑢) to the 

perturbation amplitude, yields. 

𝑃(𝑢) = 𝑃(�̂�) + 
𝜕𝑃

𝜕𝑢
|
𝑢=𝑢

∙ asin(𝜔𝑡) +  𝑂(𝑎2)    (3.1.6𝑏) 

 

Averaging signal 𝜏 = 𝛼sin (𝜔𝑡 − 𝛷)𝜇, and substituting the leading order term in the high pass 

filtered signal which roughly is 𝜇 ≈  
𝜕𝑃

𝜕𝑢
|
𝑢=𝑢

𝛼sin (𝜔𝑡) , over one period yields. 

𝜏𝑎𝑣𝑔  =
𝜔

2𝜋
∫ 𝛼 sin (𝜔𝑡 − 𝛷) ∙ 𝜇 𝑑𝑡

2𝜋
𝜔

0

    (3.1.7𝑎) 
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𝜏𝑎𝑣𝑔 =
𝜔

2𝜋
∫
𝜕𝑃

𝜕𝑢
|
𝑢=𝑢

2𝜋
𝜔

0

𝛼2 sin(𝜔𝑡 − 𝛷) ∙ sin(𝜔𝑡)    (3.1.7𝑏) 

𝜏𝑎𝑣𝑔 =
𝑎2

2
⋅
𝜕𝑃

𝜕𝑢
|
𝑢=𝑢

cos(𝛷)    (3.1.7𝑐) 

Therefore, it is easy to comprehend that in the case of plants with constant dynamics, the average 

signal 𝜏𝑎𝑣𝑔 is proportional to the slope of the cost function 𝑃 with respect to the input signal u.  

 

The demodulated signal τ is then passing through an integrator block. Integration of signal τ results 

in �̂�  which is the best estimate of the optimal value 𝑢∗  which maximizes (or minimizes) the 

objective function P. 

𝑑�̂�  

𝑑𝑡
= 𝑘𝜏    (3.1.8) 

Where k, is the integration gain. Integration gain determines how rapidly the actuation rises. 

However, selecting exceedingly high integration gain values may disrupt the scheme’s stability.   

In this section the proof of convergence of the perturbation based ES scheme for a static map is 

presented as in [9]. In order to perform the proof, the objective of the ES scheme is restated as the 

minimization of the estimation error denoted as: 

�̃� = 𝑢∗ − �̂�    (3.1.9𝑎) 

�̂� = 𝑢∗ + �̃�    (3.1.9𝑏) 

Substituting equation (3.1.9b) into (3.1.2) gives 

𝑢 − 𝑢∗ = asin(𝜔𝑡) − �̃�    (3.1.10) 

Substituting equation (3.1.10) into (3.1.1) gives 

𝑃 = 𝑃∗  + 
𝑃’’

2
(�̃� − asin (𝜔𝑡))2    (3.1.11) 

Expanding the squared term gives 

𝑃 = 𝑃∗  +  
𝑃’’

2
(�̃�2 − 2�̃� ∙ asin(𝜔𝑡) + 𝑎2𝑠𝑖𝑛2(𝜔𝑡))    (3.1.12𝑎) 

𝑃 = 𝑃∗  +  
𝑃’’

2
�̃�2 − 𝑃′′�̃� ∙ asin(𝜔𝑡) +

𝑃′′

2
𝑎2𝑠𝑖𝑛2(𝜔𝑡)    (3.1.12𝑏) 

 Implementing the trigonometric identity 2𝑠𝑖𝑛2(𝜔𝑡) = 1 − cos (2𝜔𝑡) in equation (3.1.12) gives 

𝑃 = 𝑃∗ +
𝑃′′

4
𝑎2 +

𝑃′′

2
�̃�2 − 𝑎𝑃′′�̃� sin(𝜔𝑡) −

𝑃′′

4
𝑎2 cos(2𝜔𝑡)     (3.1.13) 
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Following the sequence of the block diagram of Figure (3.1), output signal P passes through the 

high pass filter. The Direct current terms, which in this case are the first two terms on the right 

side of equation (3.13), are removed by the high pass filter, thus giving 

𝑠

𝑠 + 𝜔ℎ
[𝑃] ≈  

𝑃′′

2
�̃�2 − 𝑎𝑃′′�̃� sin(𝜔𝑡) −

𝑃′′

4
𝑎2 cos(2𝜔𝑡)     (3.1.14) 

The high pass filtered signal is then multiplied by sin(ω𝑡) (Φ=0) giving 

𝜏 ≈
𝑃′′

2
�̃�2 sin(𝜔𝑡) − 𝑎𝑃′′�̃� ∙ 𝑠𝑖𝑛2(𝜔𝑡) −

𝑃′′

4
𝑎2 cos(2𝜔𝑡) sin(𝜔𝑡)    (3.1.15) 

Applying the following trigonometric identities  

2𝑠𝑖𝑛2(𝜔𝑡) = 1 − cos (2𝜔𝑡) and  2 cos(2𝜔𝑡) sin(𝜔𝑡) = sin(3𝜔𝑡) − sin (𝜔𝑡) 

gives 

𝜏 ≈ −𝑎
𝑃′′

2
�̃� + 𝑎

𝑃′′

2
�̃� ∙ cos(2𝜔𝑡) + 𝑎2

𝑃′′

8
(sin(𝜔𝑡) − sin(3𝜔𝑡)) +

𝑃′′

2
�̃�2 sin(𝜔𝑡)    (3.1.16) 

Since the plant is static, 𝑢∗ is constant. Therefore, 

�̇̃� = −�̇̂�    (3.1.17) 

The integration gives 

�̂� ≈ −
𝑘

𝑠
𝜏    (3.1.18) 

Substituting equations (3.1.16) and (3.1.17) in (3.1.18), one gets 

�̃� ≈
𝑘

𝑠
[−𝑎

𝑃′′

2
�̃� + 𝑎

𝑃′′

2
�̃� ∙ cos(2𝜔𝑡) + 𝑎2

𝑃′′

8
(sin(𝜔𝑡) − sin(3𝜔𝑡))

+
𝑃′′

2
�̃�2 sin(𝜔𝑡)]    (3.1.19) 

Since the conducted analysis is local, the last term which is quadratic in �̃� is neglected, thus 

giving 

�̃� ≈
𝑘

𝑠
[−𝑎

𝑃′′

2
�̃� + 𝑎

𝑃′′

2
�̃� ∙ cos(2𝜔𝑡) + 𝑎2

𝑃′′

8
(sin(𝜔𝑡) − sin(3𝜔𝑡))]    (3.1.20) 

The last two terms of the equation (3.1.20) are high frequency signals which are “attenuated” 

through integration. Therefore, they are neglected, giving 

�̇̃� ≈ −
𝑘𝑎

2
𝑃′′�̃�    (3.1.21) 

Where 𝑘𝑃′′ > 0, thus making the system stable.  
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3.2 Perturbation Based – Slope Seeking Control 
   Slope Seeking essentially is a generalization of the classical Extremum Seeking Control. In ESC 

the set slope of the objective function that the algorithm tracks, is the gradient of an extremum 

which is zero. However, on some applications operating on the extremum point, in presence of 

finite disturbances can destabilize the system, therefore the algorithm is commanded to track a 

non-zero gradient.   

In the basic slope seeking scheme, a sinusoidal signal is added to the best estimate of the optimizing 

value �̂� and the resulting signal passes through the plant as shown in Figure (3.3). The output of 

the plant is filtered by a high-pass filter and the resulting signal is multiplied by a sinusoid 

(demodulation) in order to extract the operating gradient information. Then, the reference slope is 

added to the demodulated signal and the output is integrated into �̂�. In the special case where the 

reference slope added is zero the algorithm tracks the extremum of the objective function. 

Under Taylor’s approximation, any 𝐶2 function can be approximated locally by the following 

equation: 

𝑃 = 𝑃∗ + 𝑃′𝑟𝑒𝑓(𝑢 − 𝑢
∗) +

𝑃′′

2
(𝑢 − 𝑢∗)2    (3.2.1) 

Where 𝑃′𝑟𝑒𝑓 is the gradient of the objective function in which the system is forced to operate at. 

For 𝑃′′ > 0 we have negative integration gain 𝑘 < 0, while for 𝑃′′ < 0 we have positive 𝑘 > 0. 

From Theorem 3.1 of [9] we know that the output error 𝑦 − 𝑃∗ converges exponentially to an 

𝑂(𝑎 +
1

𝜔
) neighborhood of the origin given that: perturbation frequency 𝜔 is large enough and 

1

1+𝐿(𝑠)
 is asymptotically stable  

Where,   

𝐿(𝑠) =
𝑘𝑎𝑃′′

2𝑠
    (3.2.2) 

  

and  

𝑟(𝑃′𝑟𝑒𝑓) = −
𝑎𝑃′𝑟𝑒𝑓

2
𝑅𝑒{

𝑗𝜔

𝑗𝜔 + ℎ
}    (3.2.3) 

 

 

 



 

27 

 

 

Figure 3. 3:Slope Seeking Control block diagram 
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4. APPLICATIONS 
 

Simulation examples were conducted for both, the linear time invariant (LTI) and linear time 

variant (LTV) cases, showing the scheme’s ability to track the optimal value even when it varies 

with time. Then, a generalization of the extremum seeking control, called slope seeking is 

presented accompanied by a simulation example. Then, a benchmark theoretical example of 

extremum seeking acting on a system with linear time variant dynamics is presented. Finally, the 

extremum seeking control technique is applied to the anti-lock braking system (ABS) of a unicycle 

vehicle model in order to track the optimum slip value that maximizes deceleration. 

4.1 Extremum Seeking Control on LTI system 
 

In this section the algorithm is demonstrated for a simple static quadratic cost function (the 

simplest possible problem) in order to showcase its function. By implementing the extremum 

seeking algorithm, the cost function’s maximum is tracked. The quadratic objective function 

considered is the following: 

 

𝑃(𝑢) = 60 − (4 − 𝑢)2 

 

Function 𝑃 has a global maximum at 𝑢∗ = 4, giving 𝑃(𝑢∗) = 60. Extremum Seeking Control is 

applied with 𝑢 = 0  as the initial value of the variable under optimization. Nonetheless the 

convergence of the proposed scheme is guaranteed, and it is independent of the initially selected 

value of 𝑢 since there is only one extremum. Initial values of 𝑢 furtherer from the optimal value 

prolong the convergence time. Perturbation amplitude is selected as 𝑎 = 0.2 so that the peek 

seeking scheme’s error, 𝑦 − 𝑃∗ achieves local exponential convergence to within an 𝑂(𝑎2 +
1

𝜔2
) 

neighborhood of the origin, under Theorem 1.1 of [9]. Larger perturbation amplitude would result 

in larger residual error and faster tracking of the optimum value whilst smaller perturbation 

amplitudes would need more time to achieve convergence to an even smaller neighborhood of the 

optimum. Roughly speaking, the “accuracy” of the convergence and the fast tracking of the 

optimum are two antagonizing components that one should take into consideration while selecting 

the perturbation amplitude. Integration gain 𝑘 is also controlling the speed of convergence thus it 

can compensate for the lack of “speed” that may be induced by the small amplitude. Therefore, 

integration gain is selected as 𝑘 = 3 . The perturbation frequency 𝜔  governs the distinction 

between the time scales of the integrator's estimation process and the additive and multiplicative 

perturbation's gradient estimation process. Sufficiently large frequencies, achieve more accurate 

slope estimation and less impact of the perturbations produced by higher order harmonics and the 

DC component 𝑓(𝜃∗). Therefore, perturbation frequency is selected as 𝜔 = 10𝐻𝑧, thus providing 

higher precision measurements of the gradient 𝑃′ while being qualitatively large relative to the 

other design parameters (𝑘, 𝑎, ℎ, 𝑃′′). As shown in [9] ω could even be a little larger than the plant 

time constants. The washout frequency of the high-pass filter should not be larger than ω in order 
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to attenuate the DC component in y, while the slope estimation 𝑃′(𝑢) passes through uncorrupted. 

A second order Butterworth high pass filter, with a cutoff frequency of ℎ = 2𝐻𝑧 is employed, so 

that only the output oscillations are passing. The simulation’s results are plotted in Figure (4.1). 

The objective function 𝑃  is oscillating while rising from 40  to 60  for about 3  seconds. It is 

essential to notice that although the actuation signal 𝑢  is oscillating with an amplitude 𝑎 

throughout the entire simulation, the output signal is oscillating intensely when the input 𝑢 is far 

from 𝑢∗, while the output perturbation is almost zero when the objective function reaches its peak. 

The ESC scheme manages to climb rapidly to the peak of the cost function and presents small 

deviations once it reaches the optimum value (as it was expected from the averaging analysis of 

signal τ). 

 

Figure 4. 1: Extremum Seeking Control response with a static objective function P(u) 

 

The Butterworth filter was introduced by the British physicist and engineer Stephen Butterworth 

in 1930 in [41]. Butterworth filters have a maximally flat frequency response in the passband. The 

magnitude expression of a Butterworth high pass filter is: 

|𝐻(𝑗𝜔)| ≜
1

√1 + 𝜔2𝑛
    (4.1.1) 
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Where ω is the angular frequency of the input signal to the high pass filter, and n is a positive 

integer, referring to the order of the corresponding filter. Assuming transfer function 𝐻(𝑠) is a 

rational function with real coefficients and rearranging gives: 

|𝐻(𝑗𝜔)|2 =
1

1 + 𝜔2𝑛
    (4.1.2) 

Using the identity: 

𝑠 = 𝑗𝜔 ↔ 𝜔 =
𝑠

𝑗
 

Gives: 

𝐻(𝑠)𝐻(−𝑠) =
1

1 + (
𝑠
𝑗)
2𝑛
    (4.1.3) 

Where 𝐻(𝑠) is the transfer function. The poles of equation (4.1.3) are given by: 

𝑠𝑘 = 𝑒𝑗2𝜋
2𝑘+𝑛+1
4𝑛         , 𝑘 ∈ {0,1,… 2𝑛 − 1} 

All these poles are points of the unit circle, 
𝜋

𝑛
𝑟𝑎𝑑 apart from each other. Looking back at equation 

(4.1.3) it is evident that when the factor 𝐻(𝑠) has a root, the factor 𝐻(𝑠) has a root in the negative 

location. For a stable filter to be designed, it is necessary that 𝐻(𝑠) has all the poles in the left half 

of the s-plane. Stable poles are given by: 

𝑠𝑘,𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑒
𝑗2𝜋

2𝑘+𝑛+1
4𝑛        , 𝑘 ∈ {0,1, … 𝑛 − 1} 

 

Therefore, the transfer function of a Butterworth low-pass filter is given by: 

H(s) =
1

𝐵(𝑠)
 

Where: 

𝐵(𝑠)

{
  
 

  
 

∏(𝑠2 − 2 cos (2𝜋
2𝑘 + 𝑛 + 1

4𝑛
) 𝑠 + 1)

𝑛
2
−1

𝑘=0

     , 𝑒𝑣𝑒𝑛 𝑛

(𝑠 + 1) ∏ (𝑠2 − 2 cos (2𝜋
2𝑘 + 𝑛 + 1

4𝑛
) 𝑠 + 1)

𝑛−1
2
−1

𝑘=0

        , 𝑜𝑑𝑑 𝑛

(4.1.4)  

The poles of a high-pass Butterworth filter are given by the same expression as for the low-pass 

filter. The only difference is that the high-pass filter has 𝑛 zeros. Its transfer function is given by: 
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𝐻(𝑠) =
𝑠𝑛

𝐵(𝑠)
 

Where 𝐵(𝑠) is given by equation (4.1.4), depending on the filter’s order. 

 

 

4.2 Slope Seeking Control on LTI system 
 

Simulation.  

An example of the slope seeking scheme acting on a linear time-invariant plant is illustrated here. 

The following quadratic static objective function is considered: 

𝑃(𝑢, 𝑡) = 50 + (𝑢 − 4) + (𝑢 − 4)2    (4.2.1) 

where 𝑃′𝑟𝑒𝑓 = 1, 𝑢∗ = 4 and 𝑃′′ = 2. We set perturbation frequency 𝜔 = 5𝐻𝑧 , amplitude 𝑎 =

0.1, integrator gain 𝑘 = 10, washout high pass filter cutoff frequency ℎ = 5𝐻𝑧 , 𝑢 = 0 is selected 

as the initial guess and slope reference was calculated by substituting the above parameters in 

equation (3.2.2) thus giving:  

𝑟(𝑃′𝑟𝑒𝑓) = −0.025 

. Substituting the parameters in 𝐿(𝑠) and calculating the poles of the characteristic polynomial 
1

1+𝐿(𝑠)
 it is confirmed that the system attains stable gradient seeking. 

𝐿(𝑠) =
𝑘𝑎𝑃′′

2𝑠
= 1 𝑠⁄  

1 + 𝐿(𝑠) = 0 → 𝑠 = −1 

Derivation of equation (4.2.1) gives: 

𝑃′ = −7+ 2𝑢    (4.2.2) 

Solving equation (4.2.2) in terms of u for the commanded slope: 𝑃′ = 1 gives the optimal input 

value 

−7 + 2𝑢 = 1 

𝑢 = 4 

And the objective function’s value for the corresponding slope 

𝑃(4) = 50 

The response graphs in figure (4.2) confirms that the system converges to the commanded values. 
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Figure 4. 2: Slope Seeking Control response with a static objective function P(u) 

 

4.3 Extremum Seeking Control on LTV system 
 

4.3.1 ESC on quadratic criterion  
 

In this section the algorithm is employed in a linear time varying system in order to showcase its 

efficiency and its ability to track time-varying optimal values. Therefore, we consider the 

following quadratic time-dependent objective function 

𝑃(𝑢, 𝑡) = 60 − (10 − 𝑢 − 2 sin (
𝑡

4
))

2

 

 

The time-varying objective function P has a global maximum at 𝑢∗(𝑡) = 10 − 2sin(
𝑡

4
) giving  

 𝑃∗ = 60. Since the purpose of the algorithm is to track the varying parameter 𝑢∗  with u, the 

perturbation frequency ω should be large enough to be considered fast compared to the varying 

parameters which oscillate at 1/8π Hz. Thus, perturbation frequency is selected as 𝜔 = 10Hz. 

Since the objective function has one and only extremum, the selection of the initial value of u is 
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irrelevant with the quadratic function’s convergence to the extremum. Therefore 𝑢 = 0 is selected 

as the initial guess. For initial values furtherer away from the optimal value 𝑢∗  the time of 

convergence is increasing. Integration gain is selected as 𝑘 = 4 , demodulation amplitude is 

selected as 𝐴𝑑 = 1, and modulation amplitude is selected as 𝐴𝑚 = 0.2. A first order Butterworth 

high pass filter, with a cutoff frequency of  ℎ = 2Hz is employed. By conducting the simulation 

in MATLAB and plotting the response of the extremum seeking control for the proposed dynamic 

plant it can be easily noticed that the ESC scheme maintains a near optimum performance for the 

quadratic cost criterion despite the lack of information about the varying parameter. The actuation 

signal has managed to approximately track the optimum value 𝑢∗ which is oscillating around 𝑢 =
10 with an amplitude of 2. 

 

 

 

 

 

Figure 4. 3: Extremum Seeking Control response with a dynamic objective function P(u) 

 

4.3.2 ESC on quadratic criterion with input/output dynamics  
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Inspired from example 1.3 as well as the proposed algorithm 1.2.1 in [9], the following rather 

challenging example is considered. Extremum Seeking Control is implemented on a dynamic plant  

according to the design algorithm 1.2.1 proposed in [9]. The input dynamics considered have a 

zero in the right half-plane, making them non-minimum phase dynamics. The product of input and 

output dynamics 𝐹𝑖(𝑠)𝐹𝑜(𝑠) has a large relative degree and the optimal values  𝑢∗ and 𝑃∗ are time 

variant, thus making the system difficult to control. Moreover, sensor noise is present in the 

simulation as a uniformly distributed random signal with minimum, 𝑚𝑖𝑛 = −0.05, maximum, 

𝑚𝑎𝑥 = 0.05 and sample time, 𝑇 = 0.001. 

Input dynamics: 

𝐹𝑖(𝑠) =
(𝑠 − 1)

𝑠2 + 3s + 2
=

(𝑠 − 1)

(𝑠 + 2)(𝑠 + 1)
 

                                     

    Output dynamics: 

𝐹𝑜(𝑠) =
1

𝑠 + 1
 

 

Cost function: 

𝑃(𝑢, 𝑡) = 𝑃∗(𝑡) + 0.4(𝑢 − 𝑢∗(𝑡))
2
 

 

Therefore, 

𝑃′′ = 0.2 

   

Where: 

𝑃∗(𝑡) = 0.02 ⋅ 𝛿(𝑡 − 15) 

 

And: 

𝑢∗(𝑡) = 0.005 ⋅ 𝑒0.02⋅𝑡 

 

Implementing the Laplace transform for 𝑃∗(𝑡),  we arrive at:  

𝜆𝑃𝛤𝑃(𝑠) =
0.02𝑒−15𝑠

𝑠
 

   

Likewise, for 𝑢∗(𝑡) we get:  
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𝜆𝑢𝛤𝑢(𝑠) =
0.005

𝑠 − 0.02
 

   

 

 

Following the procedure, as presented in algorithm 1.2.1 at [9] we first select perturbation 

frequency 𝜔 large enough and such that ±𝑗𝜔 is unequal to any imaginary axis zero of the input 

dynamics 𝐹𝑖(𝑠). Furthermore, 𝜔 should not have the same frequency with any other noise.  In case 

where ±𝑗𝜔  is an imaginary axis zero of 𝐹𝑖(𝑠) the plant will remain unaffected from the sinusoidal 

forcing we implemented. Thus, 𝜔 = 5𝑟𝑎𝑑 𝑠⁄  is chosen. 

The perturbation amplitude 𝛼 should be large enough to generate observable fluctuations in the 

plant’s output, however large perturbation amplitude produces larger steady state output error �̃�. 

This trade off was fine-tuned via trial and error and was finally set to be 𝛼 = 0.05. 

 

Compensators design  

For the compensators design the symbols of the block diagram of Figure (1.2) from [9] are 

employed.  

We use one fast pole in 𝐶𝑜(𝑠) to compensate for the output dynamics 𝐹𝑜(𝑠), since 𝐹𝑜(𝑠) has one 

slow pole and 𝐹𝑜(𝑠) is strictly proper. If 𝛤𝑃(𝑠) has zeros that do not have asymptotic stability these 

zeros should also be used as zeros of 𝐶𝑜(𝑠). Furthermore, the compensator 𝐶𝑜(𝑠)  should be 

designed asymptotically stable.𝐶𝑜(𝑠) =
1

𝑠+5
 is satisfying the previously stated guidelines and 

therefore it is selected. Thus, the high-pass filter turns out to be:  

𝐶𝑜(𝑠)

𝛤𝑃
=

𝑠

𝑠 + 5
 

 

 𝐶𝑖(𝑠) should be chosen to ensure that 𝐶𝑖(𝑠)𝛤𝑢(𝑠) is proper in order to attain robust control. Any 

poles of 𝛤𝑢(𝑠) that are not asymptotically stable, should not be utilized as zeros of 𝐶𝑖(𝑠). Finally, 

𝐶𝑖(𝑠) should be designed such that: 

1

1 + 𝐿(𝑠)
 

 Where: 

𝐿(𝑠) =
𝑎𝑃′′|𝐹𝑖(𝑗𝜔)|

4
𝐻𝑖(𝑠) 

And: 

𝐻𝑖(𝑠) = 𝐶𝑖(𝑠)𝛤𝑢(𝑠)𝐹𝑖(𝑠) 
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Attains asymptotic stability. 

 In order to simplify the design procedure of 𝐶𝑖(𝑠), phase shift of the demodulation sinusoid is 

taken by: 

𝛷 = −∠𝐹𝑖(𝑗𝜔) 

Solving for the parameters above results in: 

𝛷 = −∠𝐹𝑖(5𝑗) = 0.7955 

 

Compensator 𝐶𝑖 is set to be: 

𝐶𝑖(𝑠) = 𝑠 − 4 

 

And the “integrator” block is set to be: 

𝐶𝑖(𝑠)𝛤𝑢(𝑠) = 25
𝑠 − 4

𝑠 − 0.02
 

 

Replacing the terms above in the characteristic polynomial gives: 

𝐿(𝑠) =
0.05 ∙ 0.2|𝐹𝑖(5𝑗)|

4
𝐻𝑖(𝑠) = 0.0025|𝐹𝑖(5𝑗)|𝐻𝑖(𝑠) 

 

Where: 

|𝐹𝑖(5𝑗)| = |
5𝑗 − 1

15𝑗 − 23
| = |

49

377
−
50

377
𝑗| =

1

√29
≅ 0.1857 

 

And: 

𝐻𝑖(𝑠) =
25𝑠2 − 125𝑠 + 100

𝑠3 + 2.98𝑠2 + 1.94𝑠 − 0.04
 

 

So, 

𝐿(𝑠) = 0.00046425𝐻𝑖(𝑠) 

 

The roots of 1 + 𝐿(𝑠) = 0 are the poles of the characteristic polynomial: 

𝐿(𝑠) = −1 
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Multiplying on both sides with the denominator of 𝐻𝑖(𝑠) and rearranging gives the final form of 

the characteristic equation: 

𝑠3 + 2.99160625𝑠2 + 1.88196875𝑠 + 0.006425 = 0 

 

The roots of the above equation were given by MATLAB as follows: 

𝑠1 = −0.0034 

𝑠2 = −0.8936 

𝑠3 = −2.0946 

 

Since all three poles have negative real parts, the system attains stable extremum seeking. 

 

The Simulink model built, to simulate the problem stated above is presented in Figure (4.4) 

 

Figure 4. 4: Extremum Seeking Control simulation for a system with non-minimum phase dynamics 

The simulation’s results are shown in Figure (4.5) and Figure (4.6). Figure (4.5) shows the 

control variable 𝑢 which is oscillating about the time variant optimal value 𝑢∗ with success, thus, 

producing rapid and precise tracking of the optimal output value 𝑦∗ as shown in Figure (4.6).  
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Figure 4. 5: Extremum Seeking Control input response for a system with non-minimum phase dynamics 

 

Figure 4. 6: Extremum Seeking Control output response for a system with non-minimum phase dynamics 

 

 

 

4.4 Extremum Seeking Control on Anti-lock Braking system 
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Figure 4. 7: Model of a slipping wheel 

 

We consider a single wheel (the unicycle model) which may be replicated two or four times, to 

compose a model for a two-wheel or a four-wheel vehicle. Tire dynamics under braking 

situations are described by the following equations: 

𝑚�̇� = −𝑁𝜇(𝜆)    (4.4.1) 

And, 

𝛪�̇� = −𝛣𝜔 + 𝑁𝑅𝜇(𝜆)    (4.4.2) 

where 𝑁 = 𝑚𝑔  is the weight of the wheel, �̇�  is the angular acceleration, �̇�  is the linear 

acceleration, 𝑅 is the wheel’s radius, 𝐼 is the moment of inertia of the wheel, 𝜏𝑏 is the torque from 

braking, 𝐵 is the bearing friction torque coefficient, and 𝜔, �̇� are the wheel’s angular velocity and 

acceleration respectively and 𝜇(𝜆)  the friction force coefficient and the wheel slip ratio denoted 

as 𝜆 are shown in Figure (4.8). A simple function which qualitatively matches the friction force’s 

coefficient is utilized as in [9] for the purpose of simulation. 

𝜇(𝜆) = 2𝜇∗
𝜆∗𝜆

𝜆∗2 + 𝜆2
    (4.4.3) 

Equation (4.4.3) is shown, for two different wheel slip values in Figure (4.8). 

The wheel slip is defined as: 

𝜆(𝑣,𝜔) =
𝑣 − 𝑅𝜔

𝑣
= 1 −

𝑅𝜔

𝑣
    (4.4.4) 

It is observed that when 𝑅𝜔 = 𝑣 the wheel slip drops to zero 𝜆(𝑣, 𝑣) = 0 since the tire is not 

skidding on the road. When the wheel “locks” the angular velocity of the wheel is 𝜔 = 0 and 

therefore wheel slip is 𝜆(𝑣, 0) = 0. In figure(μ) the friction force coefficient is presented for 
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various road conditions. It is easily noticed that the friction force coefficient has an extremum 

(maximum) point 𝜇∗ for 

some wheel slip value 𝜆∗. The optimum value 𝜇∗  is different for every one of the three road 

conditions of the graph, as well as the optimizing wheel slip value 𝜆∗. 

 

Figure 4. 8: Schematic illustration of Equation 4.4.3 for dry and wet road conditions 

To formulate the ABS problem in the extremum seeking control format, let us introduce the 

relative error �̃� = 𝜆 − 𝜆0 where 𝜆0 is an unknown constant. The derivative of �̃� gives: 

�̇̃� = �̇� = (
𝑅𝜔

𝑣2
+
𝑚𝑅2

𝐼𝑣
) �̇� +

𝑅𝐵

𝐼𝑣
𝜔 +

𝑅

𝐼𝑣
𝜏𝑏    (4.4.5) 

Since linear acceleration �̇�  measurements are provided through the accelerometer (which is a 

sensor commonly used in today’s vehicles for triggering airbag inflation), the feedback linearizing 

controller is formulated as: 

τb = −
𝑑𝐼𝑣

𝑅
(𝜆 − 𝜆0) − 𝛣𝜔 −

𝐼𝜔

𝑣
�̇� − 𝑚𝑅�̇�    (4.4.6) 

Where d is a positive constant, introduced, for the system (4.4.5) to be exponentially stable. 

By rearranging equation (4.4.6) and formulating it into the extremum seeking control a cascade of 

input dynamics and a static map: 

−𝜆 + 𝜆0 =
1

𝑑
�̇�    (4.4.7) 

𝑦 = 𝜇(𝜆)    (4.4.8) 

The Simulink model of the Anti-lock Braking system shown in Figure (4.9), is comprised of four 

subsystems. The wheel model, shown in Figure (4.10) is built based on the equations (4.4.1) and 

(4.4.2). The lower saturation limit of the integrator resulting in the linear velocity is set to be zero 

and it is connected to a “stop simulation” block in order to end the simulation when the vehicle is 

immobilized. The wheel model calculates the angular velocity, the linear velocity and the linear 

acceleration (which is measured via accelerometer in real vehicles). Angular and linear velocities 
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are used from the coefficient of friction subsystem Mi shown in Figure (4.11) in order to calculate 

the current value of 𝜇(𝜆)  which is then fed back to the wheel model. Linear acceleration is 

promoted to the Extremum Seeking Control subsystem which is shown in Figure (4.13). By 

substituting the vertical force 𝑁 with mass times gravitational acceleration 𝑚𝑔 in equation (4.4.1) 

we get �̇� . Since μ(λ) is the objective function of the problem, �̇� is divided with (-g) so that the 

perturbation-Based Extremum Seeker tracks with 𝜆0 the optimal slip value 𝜆∗. Signal 𝜆0 from the 

ESC subsystem and signals 𝑣 , �̇�  and 𝜔  from the wheel model subsystem are utilized by the 

controller according to the equation (4.4.5) as shown in Figure (4.12). This results in the braking 

torque, which is forwarded to the wheel model, thus completing the control loop.  

 

Simulation Parameters 

Two simulations were conducted, both on Simulink. In the first case the optimal wheel slip value 

is 𝜆∗ = 0.2 and the optimal coefficient of friction is 𝜇∗ = 0.8, simulating a dry road, while 𝜆∗ =
0.15 and 𝜇∗ = 0.5 , are simulating a wet road. Conducting two simulations, enables the 

investigation to consider a wider spectrum of possible road conditions, while evaluating the 

algorithm’s performance and robustness. The rest of the parameters are common for both cases. 

The vehicle in the simulation starts braking with an initial linear speed v=33.33m/s and an angular 

speed of the wheel 𝑤 =
𝑣

𝑅
= 111.11𝑚 𝑠⁄ . Therefore, the initial value of wheel slip 𝜆 is 𝜆 = 0. 

𝜆∗ = 0.2 and 𝜇∗ = 0.8 are chosen as the optimum values for maximizing the deceleration, the 

controller’s gain is chosen as 𝑑 = 1  and 𝑔 = 9.81𝑚 𝑠2⁄  is the gravitational acceleration. 

 The wheel’s parameters are chosen as 𝑚 = 400𝑘𝑔, 𝐵 = 0.01 and 𝑅 = 0.3𝑚 , 𝐼 = 1.4𝑘𝑔𝑚2. 

Maximum deceleration for dry road conditions is: �̇� = −𝜇𝑔 = −7.848 

Maximum deceleration for wet road conditions is �̇� = −4.905 

The ES controller’s parameters are chosen as 𝜔 = 2.7 𝑟𝑎𝑑 𝑠⁄  the frequency of the sinusoidal 

excitation, integration gain 𝑘 = 2, amplitude of the demodulation sinusoid 𝐴 = 1, amplitude of 

the additive sinusoid 𝑎 = 0.05  and high pass filter cutoff frequency 𝑝 = 2.6 𝑟𝑎𝑑 𝑠⁄ . The 

simulation for dry conditions stopped after 5.88𝑠𝑒𝑐, when the vehicle was immobilized while the 

simulation for wet conditions stopped after 8.2345𝑠𝑒𝑐. In Figure (4.15) it is shown that the vehicle 

is immobilized after 117.9𝑚 in dry conditions, compared to 157.47𝑚 in wet conditions as shown 

in Figure (4.19). The Extremum Seekers’ output is shown in Figure (4.14) in dry conditions and 

in Figure (4.18) in wet conditions, with respect to the optimal value 𝜆∗ for which the controller has 

non priori knowledge. Linear velocity together with angular velocity multiplied by the wheel’s 

radius for dry and wet conditions are plotted in Figure (4.16) and in Figure (4.20) respectively. 

The proposed scheme can track the optimal value that maximizes the friction coefficient 

sufficiently well in both cases, thus achieving maximum deceleration (minimum acceleration) as 

shown in both Figure (4.17) and Figure (4.21). Therefore, the proposed scheme seems robust 

enough to track the unknown varying parameter 𝜆0, despite its unpredictable behavior. 
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Figure 4. 9: Simulink model of Anti-lock Braking system 

 

Figure 4. 10: Wheel sub-model 
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Figure 4. 11: Coefficient of friction sub-model 

 

Figure 4. 12: Controller’s sub-model 
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Figure 4. 13: Extremum Seeking Control sub-model 

 

 

 

Figure 4. 14: Extremum Seeker tracking 𝜆0 (dry conditions) 
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Figure 4. 15: Braking distance (dry conditions) 

 

Figure 4. 16: Linear velocity and angular velocity multiplied by the wheel’s radius (dry conditions) 
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Figure 4. 17: Vehicle’s deceleration (dry conditions) 

 

Figure 4. 18: Extremum Seeker tracking 𝜆0 (wet conditions) 
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Figure 4. 19: Braking distance (wet conditions) 

 

Figure 4. 20: Linear velocity and angular velocity multiplied by the wheel’s radius (wet conditions) 
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Figure 4. 21: Vehicle’s deceleration (wet conditions) 

 

 

4.5 ESC on traffic congestion 
 

4.5.1 Data presentation  
 

 Data description 
The experimental data with which the ES scheme will be tested, are collected during the operation 

of the TASS strategy by Siemens in the central business district (CBD) of Chania, utilizing 70 

sensors from June 5 to June 11, 2006 [8]. TASS is a semi-real-time signal control strategy, that 

includes six different, fixed signal plans. Every 15 min, TASS evaluates the traffic conditions in 

the network, based on measurements of 17 “strategically” located sensors, and selects which signal 

plan is suitable to be adopted for the next 15 min period. The CBD of Chania, as it is defined in 

[8], consists of 71 links of various lengths and 24 junctions. The experimental data includes 

measurements of flow and occupancy (%) values every 90 seconds. 

 

 Data analysis 
 The data are depicted in Figure (4.22-4.28) for each one of the seven days of the week in terms of 

flow time series, occupancy time series and their corresponding Network Fundamental Diagrams 

(NFDs). The NFD or MFD (Macroscopic Fundamental Diagram) [4] model of urban road 

networks depends on the hypothesis that traffic dynamics of an urban area (like Chania), can be 

considered as a single-region dynamic system with vehicle occupancy n as a state variable. The 

NFD figures (on the top of each day’s Figure) indeed verify that there exists an NFD for the CBD 
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of Chania across the 7 days of the test week. Following a thorough examination of the Figures 

produced from the data, the remarks stated below were highlighted: 

 It can be observed that flow capacity is about 800 (vehicles/cycle) for every day except 

Sunday where the demand is lower than it should be in order to fully form region B, as 

defined in [8], in the NFD figure (Sunday). Therefore, on Sunday the network only reaches 

to an occupancy of 𝑥 ≅ 20%, as shown in Figure (4.28). 

 On Monday, not only region B is fully formed, but also the congested regime region C is 

partially formed as shown in Figure (4.22). Congested regime region C is described by 

negative slope in the NFD. This is because of the uneven spatiotemporal distribution of 

congestion throughout the protected network, combined with the imposed signal plan that 

(TASS) selected. Flow capacity is observed at 𝑥 ≅ 20%. 

 On Wednesday, as shown in Figure (4.24) region B has fully formed in the NFD and flow 

capacity is observed at a range of occupancies (20-25%). 

 On Tuesday, Thursday and Friday, where shops are open in the evening, flow capacity is 

observed over a wide spectrum of occupancies (18-35%, 22-30% and 20-25% respectively). 

The NFDs of these weekdays, Figure (4.23), Figure (4.25) and Figure (4.26), indicate that 

TASS control strategy achieves to maintain high values of flow, however on Friday the 

network enters the congested regime region in the NFD of Figure (4.26) thus failing to retain 

network’s maximum throughput. This is attributed to the spatiotemporal distribution of 

congestion inside the network 

 On Saturday, flow capacity is observed at x=~22%. The congested regime region C has only 

slightly been formed as shown in the NFD of Figure (4.27). 

 Even though the CBD exhibits an NFD, it is observed that the critical accumulation of 

vehicles in the network 𝑥∗(𝑡) cannot be precisely specified, since the traffic patterns from 

day-to-day traffic are subject to uncertainties and the imposed control signal may be any of 

the six fixed signal plans. Therefore, this problem calls for an adaptive control technique, 

that will track the critical occupancy in real-time by exploiting real-time sensor 

measurements without requiring knowledge of the plant’s dynamics. 
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 Figure 4. 22: Network Fundamental Diagram, Flow and Occupancy time series on Monday, June 5, 2006 
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 Figure 4. 23: Network Fundamental Diagram, Flow and Occupancy time series on Tuesday, June 6, 2006 
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 Figure 4. 24: Network Fundamental Diagram, Flow and Occupancy time series on Wednesday, June 7, 2006 



 

53 

 

 

y = -1.4866x2 + 68.31x + 2.937

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30 35

Thursday NFD

0

100

200

300

400

500

600

700

800

900

1000

0:00:00 2:24:00 4:48:00 7:12:00 9:36:00 12:00:00 14:24:00 16:48:00 19:12:00 21:36:00 0:00:00

Flow

0

5

10

15

20

25

30

35

0:00:00 2:24:00 4:48:00 7:12:00 9:36:00 12:00:00 14:24:00 16:48:00 19:12:00 21:36:00 0:00:00

Occupancy

 Figure 4. 25: Network Fundamental Diagram, Flow and Occupancy time series on Thursday, June 8, 2006 
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 Figure 4. 26: Network Fundamental Diagram, Flow and Occupancy time series on Friday, June 9, 2006 
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 Figure 4. 27: Network Fundamental Diagram, Flow and Occupancy time series on Saturday, June 10, 2006 
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 Figure 4. 28: Network Fundamental Diagram, Flow and Occupancy time series on Sunday, June 11, 2006 
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4.5.2 Solving the static problems  
 

Next a preliminary evaluation test is conducted. The algorithm will be evaluated in tracking the 

optimal values of seven second order polynomials (one for each day) which were produced using 

the trendlines command in excel and they are shown in the NFD Figures in Figure (4.22-4.28). 

The resulting polynomials are then formulated via Taylor approximation to posit a static map form. 

The Quadratic Taylor approximation of y(x) around point x=a satisfies: 

𝑦(𝑥) = ∑
𝑦(𝑛)(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛

2

𝑛=0

    (4.5.1) 

Since point x=a is the extremum, the formulated polynomials will posit the following form: 

𝑃(𝑥) = 𝑦(𝑎) +
𝑦′′(𝑎)

2
(𝑥 − 𝑎)2 

Implementing equation (4.5.1) in polynomials 𝑦𝑖 , for 𝑖 = 1,2,3,4,5,6,7 results in the following 

objective functions for each day respectively.  

Monday:         𝑃1 = 762.292 − 1.9852(𝑥 − 20.864)
2 

With 𝑥∗ = 20.864 and 𝑃1(𝑥
∗) = 762.292 

 

Tuesday:         𝑃2 = 775.01 − 1.2135(𝑥 − 24.736)
2 

With 𝑥∗ = 24.736 and 𝑃2(𝑥
∗) = 775.01 

 

Wednesday:         𝑃3 = 742.509− 1.8022(𝑥 − 20.664)
2 

With 𝑥∗ = 20.664 and 𝑃3(𝑥
∗) = 742.509 

 

Thursday:        𝑃4 = 787.656− 1.4866(𝑥 − 22.975)
2 

With 𝑥∗ = 22.975 and 𝑃4(𝑥
∗) = 787.656 

 

Friday:        𝑃5 = 770.109 − 1.3484(𝑥 − 23.754)
2 

With 𝑥∗ = 23.754 and 𝑃5(𝑥
∗) = 770.109 

 

Saturday:        𝑃6 = 739.972− 1.699(𝑥 − 20.625)
2 

With 𝑥∗ = 20.625 and 𝑃6(𝑥
∗) = 739.972 
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Sunday:        𝑃7 = 669.744 − 3.67(𝑥 − 14.538)
2 

With 𝑥∗ = 14.538 and 𝑃7(𝑥
∗) = 669.744 

A perturbation-based extremum seeking control scheme, as discussed in Chapter 3, is implemented 

seven times for each of the static maps produced by the linearization and the parameters of it are 

chosen as follows: perturbation frequency 𝜔 = 10𝐻𝑧, demodulation amplitude 𝑑 = 1, modulation 

amplitude 𝑎 = 0.05, a 1st order Butterworth filter with a cutoff frequency ℎ = 5𝐻𝑧 and integration 

gain 𝑘 = 2. The initial occupancy is considered as 𝑥 = 0. In Figure (4.29) for Monday, it takes 

about 25 time units for the system to achieve its maximum output. Approximately the same time 

is needed for Wednesday, as shown in Figure (4.30), while for Sunday to reach its optimal 

occupancy, only 20 time units passed as shown in Figure (4.35). For Thursday, Friday, and 

Saturday it takes about 30 time units to reach the peak as shown in Figures (4.32), (4.33) and 

(4.34) respectively. For Tuesday, where its NFD exhibited an extremum for the highest occupancy 

value than the other days’ NFDs, 35 time units passed until the system reaches optimality. The 

proposed algorithm achieves optimum tracking for each one of the seven static maps produced by 

the collected data. It is evident that initiating the system’s input value, far from the optimum value, 

rises the time needed for the system to extremize its output. Nonetheless, in every case, the 

system’s output converged asymptotically to the optimal 

 

Figure 4. 29: Extremum Seeking Control response graphs for Monday 
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Figure 4. 30: Extremum Seeking Control response graphs for Tuesday 

 

Figure 4. 31: Extremum Seeking Control response graphs for Wednesday 
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Figure 4. 32: Extremum Seeking Control response graphs for Thursday 

 

Figure 4. 33: Extremum Seeking Control response graphs for Friday 
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Figure 4. 34: Extremum Seeking Control response graphs for Saturday 

 

Figure 4. 35: Extremum Seeking Control response graphs for Sunday 

 

It is observed that the proposed algorithm manages to track the unknown optimal occupancy value 

in all the seven days’ NFDs. 
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4.5.3 ESC as an estimation algorithm  
 

In this section an Extremum Seeking Control estimator is proposed for real time implementation. 

The proposed algorithm will be evaluated in terms of its ability to monitor the prevailing critical 

occupancy of an adaptive perimeter control flow strategy as proposed in [4], but instead of a 

Kalman filter based estimator, an Extremum Seeker is utilized for tracking the varying critical 

occupancy. The corresponding block diagram of the proposed scheme is shown in Figure (4.36). 

 

Figure 4. 36: Adaptive perimeter control flow strategy on a network 

Sensor measurements of occupancy and flow are collected from the network and are forwarded to 

the perimeter controller and the Extremum Seeker. Utilizing these measurements, the ESC 

estimation algorithm, forwards the prevailing critical occupancy to the perimeter controller. The 

discretized perimeter controller’s, state feedback control law is given by: 

𝜃(𝑚) = 𝜃(𝑚 − 1) − 𝐾𝑝(𝑋(𝑚) − 𝑋(𝑚 − 1)) − 𝐾𝐼(𝑋(𝑚) − 𝑋
∗) 

Where, 𝜃 is the fraction of the gated flow that is allowed to enter the network in the present time 

step. 𝐾𝑃 is the proportional gain, 𝐾𝐼 is the integrational gain, 𝑋 is the measured occupancy and 𝑋∗ 
is the prevailing critical occupancy, estimated by the Extremum Seeker. From the estimation 

algorithm’s perspective, the plant consists of the network and the perimeter controller. To evaluate 

the proposed scheme an open loop scheme is constructed in which the values of flow and 

occupancy from the collected data are fed to the ES controller as shown in Figure (4.37). The 

evaluation of the proposed scheme in this section, concerns its ability to estimate the underlying 

critical occupancy values, during the operation of the TASS signal control strategy in the CBD of 

Chania from June 5 to June 11, 2006. It is noted that the proposed algorithm does not track the 

current operating occupancy of the data, but the critical occupancy values of the prevailing NFDs. 

The ES controller’s output is its estimate of the unknown critical occupancy 𝑋∗. 
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Figure 4. 37: ESC scheme for estimation of critical occupancy 

 

 

Algorithmic Scheme: (Initial values 𝑿𝟎
∗ = 𝟐𝟎 and 𝒀𝟎 = 𝟔𝟎𝟎) 

1. New measurements of Flow 𝑌(𝑚 − 1)  and Occupancy 𝑋(𝑚 − 1)  are entering the 

algorithm. 

2. The measurements are then filtered by a Butterworth high-pass filter. 

3. The filtered signal is multiplied by a phase shifted sinusoid, to extract the operating gradient 

information. 

4. The produced signal is then integrated into the estimate of the unknown critical occupancy. 

5. The same sinusoid, but this time not phase shifted, is additively injected into the estimated 

critical occupancy. 

 

 The algorithm is set to inactivity for as long as 𝑋 ≤ 10, because there is no need for perimeter 

control if there is not sufficient demand on the entrance links. The critical occupancy estimation 

is restricted by lower and upper boundaries: 10 ≤ 𝑋∗ ≤ 30. The parameters of the Extremum 

Seeker are chosen as follows: Perturbation frequency: 𝜔 = 0.001𝐻𝑧, Amplitude: 𝐴 = 0.2, Phase: 

𝛷 = −𝜋 rad, integration gain: 𝑘 = 0.0001 and a second order Butterworth high-pass filter with a 

cutoff frequency ℎ = 0.0009𝐻𝑧. The applied filter serves at removing the low frequency noise 

from the measurements before the operating gradient is estimated from the product of the filtered 

and the sinusoidal signals (demodulation). 

 The constructed algorithm is evaluated using the data shown in Figures (4.22 - 4.28) for each day 

of the week and then, the high pass filtered signal, the gradient’s estimate and the critical 

occupancy estimation are plotted (Figures 4.38-4.44). In Figure (4.38), in which the estimation 

algorithm’s results for Monday are shown, it is observed that during the morning peak (8:00-12:00) 

the critical occupancy estimate of the algorithm is about 𝑋∗ = 22%. The actual occupancy during 

that period on Monday as shown in Figure (4.22) was about 𝑋 = 25% thus, presenting small 

deviation from the obtained estimate. This algorithm’s estimate suggests that the actual occupancy 

during that period, was right of the peak of the prevailing NFD, thus decreasing the network’s 
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throughput. After the morning peak the algorithm climbs gradually and reaches critical 

occupancies around 𝑋∗ = 28% and maintains them during the evening peak (18:00-22:00) when 

the actual occupancy was between 𝑋 = 20%  and 𝑋 = 25% . This means that the obtained 

measurements for that period exhibit a positive derivative of the NFD (left of the peak), therefore 

the algorithm steers the critical occupancy towards higher values to achieve better performance. 

The filtered signal and the gradient’s estimate tend to oscillate with high frequency, which is 

attributed to the presence of noise in the experimental data. The actual occupancy for Tuesday’s 

morning peak is observed from Figure (4.23) to be about 𝑋 = 20% and the critical occupancy 

estimate for the same period is 𝑋∗ = 22% (not posing a threat for oversaturation) as shown in 

Figure (4.39). The estimate drops slightly during the off-peak and begins rising steadily in the 

evening peak. The first hours of Wednesday, as shown in Figure (4.40) (and of most days) the 

algorithm mainly remains inactive, since the actual occupancy is not surpassing the declared 

threshold value. During the morning peak the algorithm maintains its output at about 𝑋∗ = 20% 

which is a little lower than the actual measured occupancy for that time. The estimate quickly 

drops to 𝑋∗ = 16%  during the off-peak and it then rises to 𝑋∗ = 24%  to track the critical 

occupancy during the evening peak. The critical occupancy estimated for Thursday is shown in 

Figure (4.41) and it is observed that the estimation values are about the same with the actual values 

in the morning peak. However, in the evening peak the algorithm estimates the critical occupancy 

at about 𝑋∗ = 25% compared to the actual value which even reaches 𝑋 = 30%. This comparison 

suggests that the imposed control (TASS) led the network’s operation to the congested regime 

since it estimated critical occupancy values lower than the actual values. In Figure (4.42) it is 

evident that the algorithm quickly tracks the rising critical occupancy during both peaks (morning 

and evening) of Friday, while settling to a lower 𝑋∗ = 20% in the off-peak between them. The 

estimate for Saturday is shown in Figure (4.43). In the morning (8:00-12:00) the critical occupancy 

estimation is close to 𝑋∗ = 22% while the corresponding actual occupancy shown in Figure (4.27) 

is climbing from 𝑋 = 10% to 𝑋 = 25%. During the off-peak the estimate drops to 𝑋∗ = 17% and 

even 𝑋∗ = 15% in the evening, thus exhibiting slight deviation from the actual occupancy values 

obtained from the measurements. During Sunday the occupancy hardly surpasses the threshold 

value therefore the algorithm is only activated for three short periods throughout the day as shown 

in Figure (4.44). The adaptive perimeter controller is not needed if the demand in vehicles waiting 

to enter the protected area does not pose the threat of congestion. 
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Figure 4. 38: High pass filtered measurements, Derivative estimate and Critical occupancy estimate for Monday 

 

Figure 4. 39: High pass filtered measurements, Derivative estimate and Critical occupancy estimate for Tuesday 
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Figure 4. 40: High pass filtered measurements, Derivative estimate and Critical occupancy estimate for Wednesday 

 

Figure 4. 41: High pass filtered measurements, Derivative estimate and Critical occupancy estimate for Thursday 
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Figure 4. 42: High pass filtered measurements, Derivative estimate and Critical occupancy estimate for Friday 

 

Figure 4. 43: High pass filtered measurements, Derivative estimate and Critical occupancy estimate for Saturday 
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Figure 4. 44: High pass filtered measurements, Derivative estimate and Critical occupancy estimate for Sunday 
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5. CONCLUSIONS AND FURTHER WORK 
  

This thesis has investigated the implementation of Extremum Seeking Control as a real time 

estimation algorithm, utilizing sensor measurements to produce the current critical occupancy 

value for which the network’s flow is maximized. These measurements were collected from the 

CBD of Chania under the operation of TASS from June 5 to June 11, 2006, and they were shown, 

in section 4.5.1, to exhibit seven NFDs one for each of the seven days with relatively low scatter. 

The produced NFDs were approximated by seven linearized static maps. Then the estimation 

algorithm was implemented on the static maps to preliminary evaluate its tracking ability. The 

results were promising, showcasing the algorithm’s ability to quickly and precisely converge to 

the optimum in every case. The proposed algorithm combined with the perimeter controller seems 

able to track the critical occupancy on real time even when the NFD of the network is not well 

defined. The evaluation conducted in the last chapter highlighted that the proposed ESC algorithm 

tracks the varying optimal operation point quickly and accurately. Therefore, the proposed 

adaptive perimeter control scheme coupled with SOTL (which promotes even spatial distribution 

and therefore well-defined NFDs) for the internal intersections’ control, seems to be a solid 

alternative for traffic light control in urban areas.  

 

The investigation conducted in this thesis, produced the following research opportunities: 

 

1. To solidify the conclusions of this thesis, the proposed scheme should also be evaluated in 

a realistic simulation with varying demands. In [17], a simulation is conducted for the 

proposed scheme, however the manually constructed network is small and does not include 

enough sudden events that may occur in a real life network, like car crushes, pedestrians 

crossing the streets etc. A simulation including the aforementioned, would produce robust 

evidence for the proposed scheme’s ability to track in real-time the critical occupancy and 

therefore, alleviate the congestion. 

 

2. Different approaches on ESC implementation for urban traffic control should also be 

investigated. Using a faster convergence, enhanced ESC scheme, directly optimizing the 

offsets and cycle lengths could even be possible. ESC could also be applied to other urban 

or even highway traffic light controllers for optimizing their throughput by perturbing the 

parameters of the controller. 

 

3. The adaptive perimeter control flow could also be constructed, using various other adaptive 

control techniques for the real-time estimation of the unknown critical occupancy. 

Enhanced ESC schemes could also be applied in order to achieve faster convergence. 
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APPENDIX 
All codes used for the simulations of Chapter 4 are presented in this appendix, written in the Matlab 

programming environment. Code for example 4.1 

P = @(u,t)(60-(4-(u)).^2); 
u = 0; 
y0 = P(u,0); 
ustar = @(t)(4); 
ystar = @(t)(60); 
% Parameters of ESC 
freq = 100; % sample frequency 
dt = 1/freq; 
T = 10; % total period of simulation (in seconds) 
A = .2;  % amplitude 
omega = 10*2*pi; % 10 Hz 
phase = 0; 
K = 3;   % integration gain 

  
% high pass filter 
butterorder=1; 
butterfreq=2;  % in Hz for 'high' 
[b,a] = butter(butterorder,butterfreq*dt*2,'high') 
ys = zeros(1,butterorder+1)+y0; 
HPF=zeros(1,butterorder+1); 

  
uhat=u; 
for i=1:T/dt 
    t = (i-1)*dt; 
    time(i) = t; 
    yvals(i) = P(u,t); 
    ustars(i) = ustar(t); 
    ystars(i) = ystar(t); 
    for r=1:butterorder 
        ys(r) = ys(r+1); 
        HPF(r) = HPF(r+1); 
    end 
    ys(butterorder+1) = yvals(i);     
    HPFnew = 0; 
    for r=1:butterorder+1 
       HPFnew = HPFnew + b(r)*ys(butterorder+2-r); 
    end 
    for r=2:butterorder+1 
       HPFnew = HPFnew - a(r)*HPF(butterorder+2-r); 
    end 
    HPF(butterorder+1) = HPFnew; 

     

    
    xi = HPFnew*sin(omega*t + phase); 

     

    
    uhat = uhat + xi*K*dt; 
    u = uhat + A*sin(omega*t + phase); 
    uhats(i) = uhat; 
    uvals(i) = u;    
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end 

  
%% 
figure 
subplot(2,1,1) 
plot(time,uvals,time,uhats,time,ustars,'LineWidth',1.2) 
l1=legend('$u$','$\hat{u}$') 
set(l1,'interpreter','latex','Location','SouthEast') 
grid on 
subplot(2,1,2) 
plot(time,yvals,time,ystars,'LineWidth',1.2) 
ylim([-0.1 65]) 
l1=legend('$y$','$y*$') 
set(l1,'interpreter','latex','Location','SouthEast') 
grid on 

 

Code used in example 4.2 

P = @(u,t)(50+((u)-4)+(4-(u)).^2); 
u = 0; 
y0 = P(u,0);  % u = 0 

  
% ESC Parameters 
freq = 100; % sample frequency 
dt = 1/freq; 
T = 10; % total period of simulation (in seconds) 
A = .1;  % amplitude 
omega = 10*pi; % 5 Hz 
phase = 0; 
K = 10;   % integration gain 

  
% High pass filter (Butterworth filter) 
butterorder=1; 
butterfreq=5;  % in Hz for 'high' 

  
[b,a] = butter(butterorder,butterfreq*dt*2,'high') 
ys = zeros(1,butterorder+1)+y0; 
HPF=zeros(1,butterorder+1); 

  
uhat=u; 

  

  

  
for i=1:T/dt 
    t = (i-1)*dt; 
    time(i) = t; 
    yvals(i)=P(u,t); 
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    for r=1:butterorder 
        ys(r) = ys(r+1); 
        HPF(r) = HPF(r+1); 
    end 
    ys(butterorder+1) = yvals(i);     
    HPFnew = 0; 
    for r=1:butterorder+1 
        HPFnew = HPFnew + b(r)*ys(butterorder+2-r); 
    end 
    for r=2:butterorder+1 
        HPFnew = HPFnew - a(r)*HPF(butterorder+2-r); 
    end 
    HPF(butterorder+1) = HPFnew; 

     
    xi = HPFnew*sin(omega*t + phase); 
    xi = xi-0.025; 

    
    uhat = uhat - xi*K*dt; 
    u = uhat + A*sin(omega*t + phase); 
    uhats(i) = uhat; 
    uvals(i) = u;  
    uset(i) = 4; 
    yset(i) = 50; 
end 

  
%% 
figure 
subplot(2,1,1) 
plot(time,uvals,time,uhats,time,uset,'LineWidth',1.2) 
l1=legend('$u$','$\hat{u}$') 
set(l1,'interpreter','latex','Location','SouthEast') 
grid on 
subplot(2,1,2) 
plot(time,yvals,time,yset,'LineWidth',1.2) 
l1=legend('y','y*') 
set(l1,'interpreter','latex','Location','SouthEast') 
ylim([0 70]) 
grid on 

 

Code used in 4.3.1 

P = @(u,t)(60-(10-(u)-2*sin(t/4)).^2); 
u = 0; 
y0 = P(u,0); 
ustar = @(t)(10-2*sin(t/4)); 
ystar = @(t)(60); 
% Parameters of ESC 
freq = 100; % sample frequency 
dt = 1/freq; 
T = 100; % total period of simulation (in seconds) 
A = .2;  % amplitude 
omega = 10*2*pi; % 10 Hz 
phase = 0; 
K = 4;   % integration gain 

  
% high pass filter 
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butterorder=1; 
butterfreq=2;  % in Hz for 'high' 
[b,a] = butter(butterorder,butterfreq*dt*2,'high') 
ys = zeros(1,butterorder+1)+y0; 
HPF=zeros(1,butterorder+1); 

  
uhat=u; 
for i=1:T/dt 
    t = (i-1)*dt; 
    time(i) = t; 
    yvals(i) = P(u,t); 
    ustars(i) = ustar(t); 
    ystars(i) = ystar(t); 
    for r=1:butterorder 
        ys(r) = ys(r+1); 
        HPF(r) = HPF(r+1); 
    end 
    ys(butterorder+1) = yvals(i);     
    HPFnew = 0; 
    for r=1:butterorder+1 
       HPFnew = HPFnew + b(r)*ys(butterorder+2-r); 
    end 
    for r=2:butterorder+1 
       HPFnew = HPFnew - a(r)*HPF(butterorder+2-r); 
    end 
    HPF(butterorder+1) = HPFnew; 

     

    
    xi = HPFnew*sin(omega*t + phase); 

     

    
    uhat = uhat + xi*K*dt; 
    u = uhat + A*sin(omega*t + phase); 
    uhats(i) = uhat; 
    uvals(i) = u;     
end 

  
%% 
figure 
subplot(2,1,1) 
plot(time,uvals,time,uhats,time,ustars,'LineWidth',1.2) 
l1=legend('$u$','$\hat{u}$') 
set(l1,'interpreter','latex','Location','SouthEast') 
grid on 
subplot(2,1,2) 
plot(time,yvals,time,ystars,'LineWidth',1.2) 
l1=legend('$y$','$y*$') 
set(l1,'interpreter','latex','Location','SouthEast') 
ylim([-0.1 65]) 
grid on 

 

Supplementary code for example in 4.3.2 

t = 0:.001:100; 
 ustar(:,1) = t; 
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 ustar(:,2) = .005*exp(.02*t); 

 

Supplementary Code for parameters declaration, for example in 4.4 

% vehicle parameters 
I = 1.4; 
m = 400; 
R = 0.3; 
g = 9.81; 
B = 0.01; 
% initial conds 
Miopt = 0.5; 
lopt = 0.15; 
v_0 = 33.33; %m/s 
w_0 = v_0/R; %?=0 
%ESC Parameters 
freq = 2.7; 
phase = 0; 
k = 2; 
amp = 1; 
a = 0.05; 
d = 1; 
p = 2.6; 

 

Code for the static problems in 4.5.2 

% (from TAYLOR)monday 
%P = @(u,t)(762.292-1.9852*(20.864-(u)).^2); 

  
% tuesday 
%P = @(u,t)(775.01-1.2135*(24.736-(u)).^2); 

  
%   wednesday 
%P = @(u,t)(742.509-1.8022*(20.664-(u)).^2); 

  
%    thursday 
%P = @(u,t)(787.656-1.4866*(22.975-(u)).^2); 

  
%   friday 
%P = @(u,t)(770.109-1.3484*(23.754-(u)).^2); 

  
%  saturday 
%P = @(u,t)(739.972-1.699*(20.625-(u)).^2); 

  
%   sunday 
P = @(u,t)(669.744-3.67*(14.538-(u)).^2);   

  

  

  
u = 0; 
y0 = P(u,0); 

  
% Extremum Seeking Control Parameters 
freq = 100; % sample frequency 
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dt = 1/freq; 
T = 100; % total period of simulation (in seconds) 
A = .05;  % amplitude 
d = 1 ;  %demodulation amplitude 
omega = 10*2*pi; % 10 Hz 
phase = 0; 
K = 1;   % integration gain 

  
% high pass filter 
butterorder=1; 
butterfreq=5;  % in Hz for 'high' 
[b,a] = butter(butterorder,butterfreq*dt*2,'high') 
ys = zeros(1,butterorder+1)+y0; 
HPF=zeros(1,butterorder+1); 

  
uhat=u; 
for i=1:T/dt 
    t = (i-1)*dt; 
    time(i) = t; 
    yvals(i)=P(u,t); 

     
    for k=1:butterorder 
        ys(k) = ys(k+1); 
        HPF(k) = HPF(k+1); 
    end 
    ys(butterorder+1) = yvals(i);     
    HPFnew = 0; 
    for k=1:butterorder+1 
        HPFnew = HPFnew + b(k)*ys(butterorder+2-k); 
    end 
    for k=2:butterorder+1 
        HPFnew = HPFnew - a(k)*HPF(butterorder+2-k); 
    end 
    HPF(butterorder+1) = HPFnew; 

     
    xi = HPFnew*d*sin(omega*t + phase); 
    uhat = uhat + xi*K*dt; 
    u = uhat + A*sin(omega*t + phase); 
    xhats(i) = uhat; 
    xvals(i) = u;   

     
    %moday 
   % fdef(i) = 762.292; 
    %ndef(i) = 20.864; 

     
    %tues 
%    ftri(i) = 775.01; 
 %   ntri(i) = 24.736; 

     
 %wed 
%   ftet(i) = 742.509; 
 %   ntet(i) = 20.664; 

     
 %thurs 
   % fpem(i) = 787.656; 
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    %npem(i) = 22.975; 

     
    %fri 
%   fpar(i) = 770.109; 
 %   npar(i) = 23.754; 

     
 %satur 
%    fsav(i) = 739.972; 
 %   nsav(i) = 20.625; 

     
 %sun 
    fkyr(i) = 669.744; 
    nkyr(i) = 14.538; 
end 

  
%monday 
%figure 
%subplot(2,1,1) 
%plot(time,xvals,time,xhats,time,ndef,'LineWidth',1.2) 
%l1=legend('$x$','$\hat{x}$') 
%ylim([0 25]) 
%set(l1,'interpreter','latex','Location','SouthEast') 
%grid on 
%subplot(2,1,2) 
%plot(time,yvals,time,fdef,'LineWidth',1.2) 
%ylim([0 850]) 
%l1=legend('$y$','$y*$') 
%set(l1,'interpreter','latex','Location','SouthEast') 
%grid on 

  
%tuesday 
%figure 
%subplot(2,1,1) 
%plot(time,xvals,time,xhats,time,ntri,'LineWidth',1.2) 
%l1=legend('$x$','$\hat{x}$') 
%ylim([0 25]) 
%set(l1,'interpreter','latex','Location','SouthEast') 
%grid on 
%subplot(2,1,2) 
%plot(time,yvals,time,ftri,'LineWidth',1.2) 
%ylim([0 850]) 
%l1=legend('$y$','$y*$') 
%set(l1,'interpreter','latex','Location','SouthEast') 
%grid on 

  
%wednesday 
%figure 
%subplot(2,1,1) 
%plot(time,xvals,time,xhats,time,ntet,'LineWidth',1.2) 
%l1=legend('$x$','$\hat{x}$') 
%ylim([0 25]) 
%set(l1,'interpreter','latex','Location','SouthEast') 
%grid on 
%subplot(2,1,2) 
%plot(time,yvals,time,ftet,'LineWidth',1.2) 
%ylim([0 850]) 
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%l1=legend('$y$','$y*$') 
%set(l1,'interpreter','latex','Location','SouthEast') 
%grid on 

  
%thursday 
%figure 
%subplot(2,1,1) 
%plot(time,xvals,time,xhats,time,npem,'LineWidth',1.2) 
%l1=legend('$x$','$\hat{x}$') 
%ylim([0 25]) 
%set(l1,'interpreter','latex','Location','SouthEast') 
%grid on 
%subplot(2,1,2) 
%plot(time,yvals,time,fpem,'LineWidth',1.2) 
%ylim([0 850]) 
%l1=legend('$y$','$y*$') 
%set(l1,'interpreter','latex','Location','SouthEast') 
%grid on 

  
%friday 
%figure 
%subplot(2,1,1) 
%plot(time,xvals,time,xhats,time,npar,'LineWidth',1.2) 
%l1=legend('$x$','$\hat{x}$') 
%ylim([0 25]) 
%set(l1,'interpreter','latex','Location','SouthEast') 
%grid on 
%subplot(2,1,2) 
%plot(time,yvals,time,fpar,'LineWidth',1.2) 
%ylim([0 850]) 
%l1=legend('$y$','$y*$') 
%set(l1,'interpreter','latex','Location','SouthEast') 
%grid on 

  
%saturday 
%figure 
%subplot(2,1,1) 
%plot(time,xvals,time,xhats,time,nsav,'LineWidth',1.2) 
%l1=legend('$x$','$\hat{x}$') 
%ylim([0 25]) 
%set(l1,'interpreter','latex','Location','SouthEast') 
%grid on 
%subplot(2,1,2) 
%plot(time,yvals,time,fsav,'LineWidth',1.2) 
%ylim([0 850]) 
%l1=legend('$y$','$y*$') 
%set(l1,'interpreter','latex','Location','SouthEast') 
%grid on 

  
%sunday 
figure 
subplot(2,1,1) 
plot(time,xvals,time,xhats,time,nkyr,'LineWidth',1.2) 
l1=legend('$x$','$\hat{x}$') 
ylim([0 25]) 
set(l1,'interpreter','latex','Location','SouthEast') 
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grid on 
subplot(2,1,2) 
plot(time,yvals,time,fkyr,'LineWidth',1.2) 
ylim([0 850]) 
l1=legend('$y$','$y*$') 
set(l1,'interpreter','latex','Location','SouthEast') 
grid on 

 

Code used for application in 4.5.3 

%load('Monday.mat') 
%load('tuesday.mat') 
load('wednesday.mat') 
%load('thursday.mat') 
%load('friday.mat') 
%load('saturday.mat') 
%load('sunday.mat') 

  
y0 = 600; 
u = 20; 
% Parameters of ESC 
dt = 90; %seconds 
omega = 0.001*2*pi; % 0.001 Hz 
Ap = 0.2; 
phase = -pi; 
K = 0.0001;   % integration gain 

  
% high pass filter 
butterorder=2; 
butterfreq=0.0009;  % in Hz for 'high' 
[b,a] = butter(butterorder,butterfreq*dt*2,'high'); 
ys = zeros(1,butterorder+1)+y0; 
HPF = zeros(1,butterorder+1); 

  
%initial values 
Time(1) = 0; 
uhat = u; 
xi(1) = 0; 
ro(1) = 0; 

  
for i=2:961 

     
%for Monday, for i=2:1022  

 

     

     
    t = Time(i-1)*86400;   %Time: in seconds 
    Ti(i) = t/3600;  %Time in hours for the plots 
    yvals(i)=Flow(i-1); 

     
    %inactivity when occupancy<10% 
    if Occupancy(i-1)<10 
     uvals(i) = u;   
     uhats(i) = uhat; 
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     xi(i) = 0; 
     ro(i) = 0; 
     continue 
    end 

    
    for r=1:butterorder 
        if Occupancy(i-1)<10 
            continue 
        end 
        ys(r) = ys(r+1); 
       HPF(r) = HPF(r+1); 
   end 
   ys(butterorder+1) = yvals(i);     
   HPFnew = 0; 
   for r=1:butterorder+1 
        if Occupancy(i-1)<10 
           continue 
      end 
     HPFnew = HPFnew + b(r)*ys(butterorder+2-r); 
   end 
   for r=2:butterorder+1 
       if Occupancy(i-1)<10 
         continue 
   end 
    HPFnew = HPFnew - a(r)*HPF(butterorder+2-r); 
   end 
   HPF(butterorder+1) = HPFnew; 
   ro(i)=HPFnew; 

     
    %gradient estimate, signal xi 
    xi(i) = HPFnew*sin(omega*t + phase); 

     

        
    uhat = uhat + xi(i)*K*dt; 
    u = uhat + Ap*sin(omega*t); 

     
    %upper lower boundaries 
    if u >= 30; 
       u = 30; 
       uhat = u; 
   elseif u <= 10; 
       u = 10; 
       uhat = u;  
    end 
    uvals(i) = u; 
    uhats(i) = uhat; 
end 
%% 
figure 
subplot (5,1,1) 
plot(24*Time,Flow,'LineWidth',1.2) 
ylim([0 1000]) 
xlim([0 24]) 
grid on 

  
subplot(5,1,2) 
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plot(24*Time,Occupancy,'LineWidth',1.2) 
ylim([0 40]) 
xlim([0 24]) 
grid on 

  
subplot(5,1,3) 
plot(Ti,ro,'LineWidth',1.2) 
ylim([-200 200]) 
l1=legend('filtered'); 
set(l1,'interpreter','latex','Location','SouthEast') 
xlim([0 24]) 
grid on 

  

  
subplot(5,1,4) 
plot(Ti,xi,'LineWidth',1.2) 
ylim([-200 200]) 
l1=legend('xi'); 
set(l1,'interpreter','latex','Location','SouthEast') 
xlim([0 24]) 
grid on 

  
subplot (5,1,5) 
plot(Ti,uvals,Ti,uhats,'LineWidth',1.2); 
l1=legend('$u$','$\hat{u}$'); 
set(l1,'interpreter','latex','Location','SouthEast') 
xlim([0 24]) 
grid on 
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