
Universidade do Minho
Escola de Engenharia
Departamento de Informática

André Manuel Resende Sequeira

Quantum-enhanced Reinforcement Learning

November 2020

Universidade do Minho
Escola de Engenharia
Departamento de Informática

André Manuel Resende Sequeira

Quantum-enhanced Reinforcement Learning

Master dissertation
Master Degree in Engineering Physics

Dissertation supervised by
Luis Paulo Santos
Luis Soares Barbosa

November 2020

i

COPYRIGHTS AND TERMS OF USE

This is an academic work that can be used by third parties as long as good practices are
respected as well as internationally accepted rules concerning copyright and related rights.
Thereby, this work can be used under the terms set out in the license below.
If one needs permission to work under a different set of conditions not provided by the
indicated license, one must contact the author, through the University of Minho RepositóriUM.

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

ii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have
not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration. I further declare that I have fully acknowledged the
Code of Ethical Conduct of the University of Minho.

A C K N O W L E D G E M E N T S

This dissertation is the pinnacle of five years of study, culminating in the first real research
experience in Quantum Computing, with the hope that it is not the last. There are several
people I would like to thank because without them I would not get this far.

First of all, I want to thank my family, my parents, and my brother, my best friends.
To my parents, not only this year but throughout my entire life, you were always there,
through thick and thin. My source of inspiration, you taught me that with hard work and
patience, one can do anything one sets his mind to. To my brother, thank you for all your
support, all the talks, and laughs that you don’t even know how refreshing they were.

Secondly, I want to thank my supervisors, professor Luis Soares Barbosa for accepting
my dissertation theme suggestion and allowing me to research what I want as long as I want.
Many thanks to professor Luis Paulo Santos for taking the time to guide me through this
project, always providing insightful discussions and opinions, it was a pleasure.

Furthermore, I want to thank my good friends, Michael Oliveira and Daniel Carvalho
for the endless support, not only for this year but for the entire five-year journey.

Lastly, my heartiest gratitude to Rita Rodrigues for all the warmth and advice that you give
me. I am counting on you.

iii

A B S T R A C T

The field of Artificial Intelligence has lately witnessed extraordinary results. The ability to
design a system capable of beating the world champion of Go, an ancient Chinese game
known as the holy grail of AI, caused a spark worldwide, making people believe that some-
thing revolutionary is about to happen. A different flavor of learning called Reinforcement
Learning is at the core of this revolution. In parallel, we are witnessing the emergence of a
new field, that of Quantum Machine Learning which has already shown promising results in
supervised/unsupervised learning. In this dissertation, we reach for the interplay between
Quantum Computing and Reinforcement Learning.

This learning by interaction was made possible in the quantum setting using the con-
cept of oraculization of task environments suggested by Dunjko in 2015. In this dissertation,
we extended the oracular instances previously suggested to work in more general stochastic
environments. On top of this quantum agent-environment paradigm we developed a novel
quantum algorithm for near-optimal decision-making based on the Reinforcement Learn-
ing paradigm known as Sparse Sampling, obtaining a quantum speedup compared to the
classical counterpart. The achievement was a quantum algorithm that exhibits a complexity
independent on the number of states of the environment. This independence guarantees its
suitability for dealing with large state spaces where planning may be inapplicable.

The most important open questions remain whether it is possible to improve the orac-
ular instances of task environments to deal with even more general environments, especially
the ability to represent negative rewards as a natural mechanism for negative feedback
instead of some normalization of the reward and the extension of the algorithm to perform
an informed tree-based search instead of the uninformed search proposed. Improvements
on this result would allow the comparison between the algorithm and more recent classical
Reinforcement Learning algorithms.

KEYWORDS Quantum Computation, Sparse Sampling, Quantum Reinforcement Learning

iv

R E S U M O

O campo da Inteligência Artificial tem tido resultados extraordinários ultimamente, a ca-
pacidade de projetar um sistema capaz de vencer o campeão mundial de Go, um antigo
jogo de origem Chinesa, conhecido como o santo graal da IA, causou uma faı́sca em todo o
mundo, fazendo as pessoas acreditarem em que algo revolucionário estará para acontecer.
Um tipo diferente de aprendizagem, chamada Aprendizagem por Reforço está no cerne
dessa revolução. Em paralelo surge também um novo campo, o da Aprendizagem Máquina
Quântica, que já vem apresentando resultados promissores na aprendizagem supervision-
ada/não supervisionada. Nesta dissertação, procuramos invés a interação entre Computação
Quântica e a Aprendizagem por Reforço.

Esta interação entre agente e Ambiente foi possı́vel no cenário quântico usando o conceito
de oraculização de ambientes sugerido por Dunjko em 2015. Neste trabalho, estendemos
as instâncias oraculares sugeridas anteriormente para trabalhar em ambientes estocásticos
generalizados. Tendo em conta este paradigma quântico agente-ambiente, desenvolvemos um
novo algoritmo quântico para tomada de decisão aproximadamente ótima com base no
paradigma da Aprendizagem por Reforço conhecido como Amostragem Esparsa, obtendo
uma aceleração quântica em comparação com o caso clássico que possibilitou a obtenção de
um algoritmo quântico que exibe uma complexidade independente do número de estados
do ambiente. Esta independência garante a sua adaptação para ambientes com um grande
espaço de estados em que o planeamento pode ser intratável.

As questões mais pertinentes que se colocam é se é possı́vel melhorar as instâncias oraculares
de ambientes para lidar com ambientes ainda mais gerais, especialmente a capacidade de
exprimir recompensas negativas como um mecanismo natural para feedback negativo em
vez de alguma normalização da recompensa. Além disso, a extensão do algoritmo para
realizar uma procura em árvore informada ao invés da procura não informada proposta. Mel-
horias neste resultado permitiriam a comparação entre o algoritmo quântico e os algoritmos
clássicos mais recentes da Aprendizagem por Reforço.

PALAVRAS-CHAVE Computação Quântica, Amostragem Esparsa, Aprendizagem por Reforço
Quântica

v

C O N T E N T S

1 introduction 1

1.1 Context 2

1.2 Motivation 4

1.3 Contributions 5

1.4 Outline 5

2 quantum information and quantum algorithms 7

2.1 Quantum Mechanics Postulates 7

2.1.1 State Space 7

2.1.2 Observables 9

2.1.3 Time Evolution 9

2.1.4 Measurement 10

2.1.5 Composite Systems 11

2.2 Qubit Systems 12

2.3 Quantum State Preparation 18

2.3.1 Basis Encoding 18

2.3.2 From Amplitude encoding to QSamples 19

2.4 Amplitude Amplification 22

2.5 Quantum Search 25

2.6 Quantum Maximum Finding 31

2.7 Quantum Tree Search 33

3 reinforcement learning 36

3.1 Introduction 36

3.2 Decision Theory 38

3.3 From Markov Chains to Markov Decision Processes 40

3.4 Planning by Dynamic Programming 47

3.5 Model-Free Prediction and Control 50

3.6 Sparse Sampling 54

4 quantum enhancements for machine learning 56

4.1 Sample Complexity 57

4.2 Model Complexity 60

4.3 Quantum Reinforcement Learning 61

5 quantum-enhanced reinforcement learning 68

5.1 Quantum Bandits 69

vi

contents vii

5.2 Generalized Quantum Tree Search 75

5.3 A Quantum algorithm for the deterministic MDP 77

5.4 Quantum Sparse Sampling 88

5.5 Complexity Analysis 108

5.5.1 Quantum algorithm for deterministic MDP 109

5.5.2 Quantum Bandits 111

5.5.3 Quantum Sparse Sampling 112

5.6 Read the fine print 116

6 conclusion 118

6.1 Concluding 118

6.2 Future Work 120

L I S T O F F I G U R E S

Figure 1.1.1 Four approaches to quantum machine learning, and the approach
taken in this dissertation in orange 2

Figure 1.1.2 Conversion of classical environment into a quantum one. 3

Figure 1.1.3 Parallel interaction of a quantum agent and the environment resulting
in multiple agents acting in parallel 3

Figure 2.2.1 Bloch Sphere 13

Figure 2.2.2 Single qubit gates and their matrix representation 14

Figure 2.2.3 y-rotation of an angle θ on a qubit. Image from School on Quantum
Computing, Keio University 15

Figure 2.2.4 CNOT gate circuit representation 16

Figure 2.2.5 Entangling circuit: Both qubits start in the ground state, and the
evolution is made from left to right 16

Figure 2.2.6 CNOT gate circuit representation. 17

Figure 2.2.7 Toffoli gate decomposed with elementary gate complexity of 16 17

Figure 2.3.1 Real amplitude vector preparation, based on controlled Ry gates.
Image from [57] 20

Figure 2.3.2 n=5 qubit controlled unitary decomposed into Toffoli gates and single
control unitary using n-1 ancillas. 20

Figure 2.3.3 Toffoli gate decomposed with elementary gate complexity of 16 21

Figure 2.3.4 Recursive decomposition of multi control rotation gates [59] where
the white squares represent any control state 21

Figure 2.4.1 Arbitrary state generated by A 23

Figure 2.4.2 Applying Rgood followed by a reflection around |ψ〉 23

Figure 2.4.3 Reflection around the all-zero state circuit 24

Figure 2.4.4 Quantum circuit for the G operator acting on a 3-qubit state 24

Figure 2.5.1 Representation on the unit circle. 26

Figure 2.5.2 Uniform superposition and U f for the state |10〉. 26

Figure 2.5.3 Example of a circuit for the Uniform superposition and the oracle
that marks the state |10〉 on 2-qubit state system. 27

Figure 2.5.4 Action of U f . 27

Figure 2.5.5 state |10〉 reflected. 27

Figure 2.5.6 Action of Rψ. 28

Figure 2.5.7 state |10〉 amplified. 28

viii

http://www.appi.keio.ac.jp/Itoh_group/spintronics/pdf/QC2005/QI-School-2005-5.pdf
http://www.appi.keio.ac.jp/Itoh_group/spintronics/pdf/QC2005/QI-School-2005-5.pdf

list of figures ix

Figure 2.5.8 Final Grover’s Algorithm circuit for 2-qubit with target state |10〉. 28

Figure 2.5.9 N = 4 and n = N
2 marked states 29

Figure 2.5.10 Non-uniform intial distribution. 30

Figure 2.6.1 Example of a magnitude comparator oracle that marks all states
greater than 1 in an uniform superposition state with 2 qubits setting
the set qubit equal to 1 when that is the case 32

Figure 2.7.1 Binary Tree with depth d = 2 33

Figure 2.7.2 Non-constant branching factor tree with depth d = 3 34

Figure 2.7.3 Growth separation between bavg and bmax, being the rose shaded
area, the area where the quantum search algorithm still performs
faster than the classical search. Image from [66] 35

Figure 3.1.1 Agent-Environment Paradigm of Reiforcement Learning (RL): The agent
performs action A over the environment at time t, and the environ-
ment produces a new state St+1 for the agent and a respective reward
Rt+1. 36

Figure 3.1.2 Exploration-Exploitation dilemma - Image from UC Berkeley AI
course. 37

Figure 3.1.3 k=4 slot machines with unknown reward distributions 37

Figure 3.2.1 probabilistic model. 39

Figure 3.3.1 Adaptative Tutoring system that uses RL to teach a student how to
do addition/subtraction mathematical problems. 40

Figure 3.3.2 Chess board - Image from Google Deepmind 41

Figure 3.3.3 Student Markov Chain - Image from David Silver course on RL 42

Figure 3.3.4 Student Markov Chain of Figure 3.3.3 converted into a MRP. 44

Figure 3.3.5 Backup Diagram. One step lookahead tree, from a starting state s0 45

Figure 3.3.6 One step lookahead tree. Th value of state s is computed by averaging
the value of all possible outcomes following policy π 47

Figure 3.4.1 48

Figure 3.4.2 48

Figure 3.4.3 Figure 3.4.1 - convergence to the optimal policy. Figure 3.4.2 - Policy
Evaluation + Policy Improvement loop. Images from [63] 48

Figure 3.5.1 Monte-Carlo policy evaluation + improvement loop taking into ac-
count action-value functions. 53

Figure 3.6.1 Lookahed tree for a binary action MDP, with m = 3 and horizon
H = 2. Figure from [41] 55

Figure 4.1.1 characteristic function f that correctly separates the two subsets of
images, where white faces represent the training set, and the blackface
represents a new face that f must be able to classify. 57

https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go
https://www.davidsilver.uk/teaching/

list of figures x

Figure 4.1.2 Sparse-sampling algorithm of section 3.6, each action is sampled m
times 59

Figure 4.1.3 Qsample oracle that provides examples sampling from an unknown
distribution p(x) 60

Figure 4.2.1 Example of a Boltzmann Machine with 3 hidden units and 4 visible
units with each edge of the graph representing a dependence 61

Figure 4.3.1 Gridworld environment example - Cliff walking [63]. 63

Figure 4.3.2 Feedback loop of a QOMDP. 65

Figure 5.1.1 k = 2 classical arms with stochastic reward distribution 70

Figure 5.1.2 Conversion of an arbitrary k=2 armed bandit into quantum black
boxes where action |0〉 acts on bandit ψ0 and action |1〉 acts on bandit
ψ1 71

Figure 5.1.3 Quantum circuit that prepares the superposition equivalent to the
k=2 armed bandit and the encoding of the stochastic reward distribu-
tion 72

Figure 5.1.4 Abstraction of the k=2 armed bandit circuit of Figure 5.1.3 72

Figure 5.1.5 Distribution obtained by measuring the quantum bandit circuit with
1000 samples taken 72

Figure 5.1.6 Optimal circuit obtained by QSearch leading to 2 Grover iterations 74

Figure 5.1.7 Distribution for one Grover iteration with m=10000 samples 74

Figure 5.1.8 k = 2 classical arms with opposite stochastic reward distribution 75

Figure 5.2.1 Superposition of a tree with arbitrary branching factor, result of the
quantum operator (T A)d

76

Figure 5.3.1 Representation of the interaction of the quantum agent with the
quantum environment 78

Figure 5.3.2 The same MDP represented with rewards depending only on the
state left image and rewards depending on the action that the agent
has taken right image 79

Figure 5.3.3 One step lookahead tree from N possible actions 82

Figure 5.3.4 MDP with N possible actions that with one transition leads to N
terminal states 83

Figure 5.3.5 One step lookahead tree with a loop 83

Figure 5.3.6 Example of a deterministic MDP with 2 states 84

Figure 5.3.7 One-step lookahead tree computed by the superposition state |ψ1〉. 85

Figure 5.3.8 Two-step lookahed tree generated by the superposition state |ψ2〉 86

Figure 5.4.1 Stochastic MDP with 3 states, in which two of them are terminal states.
Taking one of the two possible actions, the agent either moves to a
terminal state or remains in the same state with some probability. 90

list of figures xi

Figure 5.4.2 Bloch Sphere, representing a qubit in an arbitrary state 92

Figure 5.4.3 Reward qubit evolution with the addition of the rewards 96

Figure 5.4.4 One step lookahead tree computed in superposition, created by the
oracle calls of T and R 98

Figure 5.4.5 probabilistic model 101

Figure 5.4.6 Statistics generated by measuring the state |ψ1〉, taking 10000 sam-
ples 103

Figure 5.4.7 Distribution resulted from the application of the exponential search
algorithm, gererating experimentally m=10000 samples 104

Figure 5.4.8 Extended probabilistic model 104

Figure 5.4.9 Statistics generated by measuring the state |ψ1〉, taking 10000 sam-
ples 107

Figure 5.4.10 Distribution resulted from the application of the exponential search
algorithm, gererating experimentally m=10000 samples 108

Figure 5.5.1 Two-step lookahead tree generated in superposition, with branching
factor equivalent to the action space 109

Figure 5.5.2 Black-box that prepares a single qubit system in an arbitrary state.
By measuring this state successively, we generate a distribution over
the basis states. 110

Figure 5.5.3 One step lookahead tree computed in superposition, created by the
oracle calls of T and R 113

Figure 5.5.4 Complexity separation for a binary action MDP, varying the term k
exponentially with the horizon in a logarithmic scale on the number
of operations 115

Figure 6.1.1 The Quantum Agent-Environment paradigm. Interaction of quantum
agent with its environment by performing a superposition of actions
and the environment returns the agent in a superposition of new
states with the respective rewards 119

Figure 6.2.1 Reward qubit evolution with the addition of the rewards 122

Figure 6.2.2 Reward qubit evolution with the addition of the rewards 122

L I S T O F TA B L E S

Table 1 Tree search algorithms (b - branching factor ; d - depth; m - maximum
depth). 33

xii

list of tables xiii

1

I N T R O D U C T I O N

Since the dawn of time, humans strove with pattern matching in data. From Kepler’s to
Newton’s astronomical data analysis, numerous mathematical methods were developed,
methods that became automatic when digital computers appeared in the mid 20th century.
With the increase in computer power, we are capable of analyzing more complex problems
and building powerful algorithms to find movies, jobs, manage investments and even new
drugs that help increase not only human life conditions but also life expectancy. In the era of
information as we increase the amount of data that we leave in our digital world, the more
powerful these algorithms become. In the search for the ultimate algorithm, one that is able
to learn anything by itself, we’re reaching a bottleneck. These algorithms are hungry of data
as well hungry of computer power which is reaching a fundamental limit as Moore’s Law
is coming to an end. The strategy adopted so far is of course the multi-core, multi-thread
computing, in order to obtain speed by parallelizing the work done by the algorithms. If
parallel computing is the new paradigm, Quantum Computers are the ultimate parallel
computers, that work in a conceptually and fundamentally different way compared to the
classical parallel computers. These new devices, still in their infancy already proved to
have a role to play in modern computing, and therefore it is imperative that we strive for
their development, as this new technology may help us bounce the local optimum we are
currently in.

1

1.1. Context 2

1.1 context

Figure 1.1.1: Four approaches to quantum machine learning, and the approach taken in this disserta-
tion in orange

We decided to start this section with Figure 1.1.1 that summarizes the different approaches
to the quantum machine learning wide landscape and state the approach taken in this
dissertation. This description first appear in [6] where the authors distinguish the different
approaches by whether the data generated is either classical (C) or quantum (Q) and the
device that processes this data is a classical (C) or quantum (Q) device. The CC case refers,
as one might guess, to classical machine learning, however, in this context it refers to the
case where classical machine learning is enhanced by ideas taken from quantum computing.
An example of this is Tensor Networks from many-body physics [14], for example in [31] the
authors used Tensor Networks to devise a new formulation of Markov decision processes
that provide the foundation for Reinforcement Learning. The QC case refers to the case
whether classical machine learning could enhance quantum computations. There are several
examples of this, for example the learning of quantum states and unitaries [18] and more
recently, the use of reinforcement learning for the purpose of optimizing quantum error
correction codes [50]. An approach towards better quantum error correction codes and
fault-tolerant quantum computation in the community that’s been in crescendo. The QQ case
is one of the most interesting ones because deals with full quantum machine learning picture.
This can be seen as data generated by a quantum system being fed into another quantum
system, or in a more general setting, using a quantum computer to simulate the dynamics
of a quantum system. The latter one is called quantum simulation, first suggested by Richard
Feynman in [30] and could potentially lead to exponential speedups. This approach could
have many applications. For example suppose nanorobots that work in the brain, perhaps
restoring brain damaged structures. Due to the fact that true quantum structures called
microtubules exist in our brains [34], and thus a kind of quantum computation may exist in
our brains, the nanorobot could learn by interacting with a complex quantum environment.
This is the notion of truly quantum reinforcement learning arises [27] The CQ case deals
with the case of quantum enhanced machine learning. Examples of this are well known by

1.1. Context 3

now, ranging from quantum enhanced supervised learning [57] to unsupervised learning
problems like principal component analysis [45]. The quantum enhanced Reinforcement
Learning algorithms developed in chapter 5 fits in this category. This can be viewed for
example with a robot that interacts in the classical world, but enhanced with a quantum brain.
This means that in this dissertation we aim not at the development of algorithms for quantum
robots that work directly in complex quantum environments as described above, but rather to
the enhancement of classical robots or more formally agents, by using a quantum simulation
that we can hopefully exploit for better decision making. To make this work, we need to
develop a notion of a quantum environment, i.e. the world that a quantum agent interacts
with. Classically, reinforcement learning takes place in environments characterized by
mathematical structures called Markov Decision Processes (see section 3.3), therefore we also
need to have a mathematical formalism in order to turn a classical environment into a
quantum one, Figure 1.1.2:

Figure 1.1.2: Conversion of classical environment into a quantum one.

Having a notion of a quantum environment, we are in position for constructing a quantum
agent that using the laws of quantum mechanics instead of classical mechanics behaves in a
fundamentally different way compared to classical counterpart. For example, the agent can
now exploit the superposition principle in order to test different actions into the environment
and record their results, the feedback returned by the environment, enabling the creation of
parallel worlds as in Figure 1.1.3, expressed as a linear combination of multiple states, and
therefore, allowing the change of both agent and world states in parallel.

Figure 1.1.3: Parallel interaction of a quantum agent and the environment resulting in multiple agents
acting in parallel

1.2. Motivation 4

The interesting part is not the superposition itself. What good is it to have multiple
superposed states if we can only read one classical state at a time once we measure the
superposition? (Holevo’s Bound [38]). Therefore in this work we aim at, given this parallel
interaction, collapsing the superposition into a state that has the best possible score obtained
by the agent. We will develop techniques for different cases, from the deterministic one,
where an action leads always to the same state, to more general stochastic ones, where an
action leads to a distribution of possible states and thereby different feedbacks or rewards.

1.2 motivation

Nowadays, Artificial Intelligence is an expression present in almost everyone’s vocabulary
and over time we see it more and more directly or indirectly becoming a part of us. However,
in the present day, artificial intelligence is in its infancy, and most of the time it is confused
with their machine learning sub-branches. Having the ability to correctly classify a new
image, or having the ability to suggest a new song or a new movie based on a person’s
preferred genres, is far from having accomplished true intelligent systems, because seeing
an object and understanding an object are completely different things. So if we want to
build truly intelligent systems, the system has to be able to “understand” what it’s being
shown, not just map it mathematically. We need to take this into account, and not take AI for
granted simply because we have these abilities. We must keep moving forward, otherwise,
we will be stuck in local optima. The quest for the meaning of true intelligence is one of the
most interesting problems and perhaps the most important one. This is where Reinforcement
Learning enters and shines a completely different light to the design of systems that truly
learn by themselves, mostly as a human does. Learning by interacting with our environment
is probably the first to occur to us when we think about the nature of learning. When a
child plays, waves its arms or looks around, it has no explicit teacher, but it does have
a direct sensorimotor connection to its environment. Connecting with the environment
produces cause and effect, about the consequences of actions, and about what to do to
achieve goals. Throughout our lives, such interactions are undoubtedly a major source of
knowledge about our environment and ourselves. Whether we are learning to drive a car or
to hold a conversation, we are acutely aware of how our environment responds to what we
do, and we seek to influence what happens through our behavior. Learning from interaction
is a foundational idea underlying nearly all theories of learning and intelligence. [63]. This
dissertation we want to take one step further, and see what can quantum computing offer to
this picture. It was already proved to have a role to play in machine learning [57], whether
to achieve truly artificial intelligence is still an open question and may well not be the case.
Although it is still not proved that quantum computations occur in our brains, it may well

1.3. Contributions 5

be the case and surely will be interesting to analyze what can it offer to this new learning
paradigm.

1.3 contributions

This dissertation aims at the construction of quantum algorithms for the RL paradigm. RL
literature often starts by explaining concepts like exploration/exploitation, usually referring
to the bandit problems, and from there building the mathematical structure behind RL to
enable the construction of algorithms for more general frameworks. This dissertation follows
roughly the same course:

• Development of an algorithm for the best arm identification that forms a central
problem in bandit optimization.

• Notion of quantum Markov Decision Processes constructing oracular instantiations of
classical environments. The notion first appeared in [27]. Our contribution relative to
the original framework resides in the more general oracles, the oracles that characterize
stochastic environments. Our proposal generalizes the original one by leaving the
assumption on a sequence of actions that have a certain probability of being rewarded
to work with the actual encoding of the rewards obtained by the agent in a sequence
of actions. As we will see, this encoding will enable us to have a way of representing
expected rewards which makes the decision making based on the rewards collected
possible.

• Design of a quantum algorithm based on the idea of sparse sampling from the Rein-
forcement Learning literature, built on top of the oracular constructions mentioned
above, obtaining a quadratic speed up compared to the classical counterpart. Given the
stochasticity of the environments, these algorithms use sampling to form a distribution
over the possible actions that the agent can make to this way reach the optimal action
to take.

• A novel strategy to derive the optimal number of samples, based on the sample
complexity of the algorithm.

1.4 outline

There are two kinds of audience this dissertation is aimed at, those who come from the
field of Quantum Computing and want to know how can quantum algorithms enhance
machine learning in general, and those who come from the field of Artificial Intelligence and
have been recently introduced to the possibility of quantum algorithms enhancing machine

1.4. Outline 6

learning. In either case, this dissertation starts with the respective background theory. In
chapter 2, a brief review of the theory that leads to quantum computing as well as important
quantum algorithms and quantum subroutines are presented. In chapter 3, a review of the
theory of Reinforcement Learning is given, as well as some important algorithms in the
literature to compare with the quantum algorithms developed that forms the core of this
dissertation.
In chapter 4, a review of some known quantum enhancements for machine learning, in
general, is given and a discussion of how these previous results can be generalized to the
field of quantum reinforcement learning.
In chapter 5 two novel quantum algorithms that have a computational advantage relative to
classical sparse sampling methods are presented as well as the complexity analysis of both
algorithms and the conditions imposed in order to gain advantage.
Last but not least, chapter 6 is devoted not only to the summary of the results and open
problems but also to enumerate a series of questions for further research that came along
the work done in this dissertation.

2

Q UA N T U M I N F O R M AT I O N A N D Q UA N T U M A L G O R I T H M S

In this chapter, we will go over the theory behind quantum computation starting by intro-
ducing the formalism of quantum mechanics generalized by the use of the Dirac Notation
[68], which is the standard in quantum computing. Then we will turn to the postulates of
quantum information, introducing the qubit as the basic unit of quantum information and
the fundamental operations used to manipulate it. Thereby, section 2.1 and section 2.2 serve
as a reference for the notation used in the remainder of the text. In the sections ahead we
cover some important quantum circuits and algorithms in order to provide the reader with
some examples. We do this because the quantum algorithms and the techniques that we
introduce here will play an important role in the algorithms developed in chapter 5 and
hence a thorough understanding of the ideas presented here is central to fully grasp the
ideas behind the algorithms that form the core of this dissertation.

2.1 quantum mechanics postulates

The basic principles of quantum mechanics can be summarized in four statements, which
are commonly referred to as the postulates of quantum mechanics, providing a connection
between the physical world and the mathematical formalism of quantum mechanics, and
forming the framework on top of which the theory of quantum computing is built.

2.1.1 State Space

The first postulate, called State Space, sets the playground where quantum mechanics takes
place.

Postulate 2.1.1: State Space

A quantum state is described by a unit vector living in a separable complex Hilbert
Space H.

7

2.1. Quantum Mechanics Postulates 8

We consider the discrete finite-dimensional Hilbert space over the complexes which is
isomorphic to CN . Therefore a quantum state is a complex vector, known as a complex
amplitude vector α = (α1,, αN)

T ∈ CN , denoted by the ”ket”, |ψ〉. This leads to the radical
idea that the superposition of the states belonging to H is again a state of the system. Thus, if
we have |ψ1〉 and |ψ2〉 as possible states of the system:

|ψ〉 = α1|ψ1〉+ α2|ψ2〉 (2.1.1)

is also a possible state of the system. In general a state has the form:

|ψ〉 = ∑
n

αn|ψn〉 (2.1.2)

where if |ψ〉 is normalized and the basis states |ψn〉 are orthonormal then,

∑
n
|αn|2 = 1 (2.1.3)

and we can interpret |αn|2 as the probability that a suitable measurement, also known as
the collapse of the wavefunction, will find the system in state |ψn〉. The complex conjugate
of the state vector is denoted by a ”bra”, 〈ψ|. The norm of a vector is defined in terms of
the inner product, which is represented as the ”bracket” 〈ψ|ψ〉. Furthermore, the norm of a
vector |ψ〉 is:

||ψ|| =
√
〈ψ|ψ〉 (2.1.4)

The inner product between two different quantum states, is a measure of the ”closeness”
between the two states, given that the more different the states are, the closer the inner
product will be to zero and the similar the states are, the greater the value of their inner
product.
The outer product is constructed as |ψ〉〈ϕ|.For every vector |ψ〉 ∈ H there is a complete
orthonormal basis {|ei〉}, ∀i ∈ N, meaning that the inner product of the basis elements are a
delta function 〈ei|ej〉 = δij and:

|ei〉〈ei| =


e1

...
eN

(e1 . . . eN
)
=


e1e1 e1e2 . . . e1eN

e2e1 e2e2 . . . e2en

...
...

. . .
...

eNe1 eNe2 . . . eNeN

 (2.1.5)

forms a projection operator, which when multiplied by some vector, projects the vector onto
the subspace of the basis vector. This notion is important for the measurement of a quantum

2.1. Quantum Mechanics Postulates 9

state. Projection operators can be used to change basis, expressing some state |ψ〉 in the
basis {|ei〉}:

|ψ〉 = ∑
i
|ei〉〈ei|ψ〉 = ∑

i
〈ei|ψ〉|ei〉 (2.1.6)

2.1.2 Observables

In physics, an observable is some quantity that can be measured like position or momentum.
In quantum mechanics, it is an operator that acts on a quantum state, in general changing it.

Postulate 2.1.2: Observables

Every observable is described by an operator acting on the state that describes the
system.

By convention, an operator A acts on a quantum state |ψ〉 as follows:

A|ψ〉 = |ψ′〉 (2.1.7)

For every operator, there are states that are not changed by the action of an operator, but
scaled by some constant:

A|ψ〉 = a|ψ〉 (2.1.8)

These states are called eigenstates and the multiplication constant α is called an eigenvalue of
the operator. If the state is an arbitrary superposition, then the operator acts linearly as:

A(α1|ψ1〉+ α2|ψ2〉) = α1A|ψ1〉+ α2A|ψ2〉 = a1|ψ1〉+ a2|ψ2〉 (2.1.9)

2.1.3 Time Evolution

Postulate 2.1.3: Time-Evolution

The time evolution of the state of a quantum system is described by some unitary
operator U

The evolution of a quantum mechanical system is described by the well known Schrödinger
equation:

ih̄
d
dt
|ψ〉 = H|ψ〉 (2.1.10)

2.1. Quantum Mechanics Postulates 10

where H denotes the Hamiltonian of the system and h̄ the Plank’s constant. In the case of
the Hamiltonians being time-independent, the solutions of the equation starting in an initial
state |ψ0〉 are given by:

|ψ(t)〉 = U(t)|ψ0〉 (2.1.11)

where:
U(t) = e−i t

h̄ H (2.1.12)

is the unitary time-evolution operator. Cleraly, U(t) corresponds to a unitary matrix.

2.1.4 Measurement

The only possible result of the measurement of an observable A is one of the eigenvalues
of the corresponding operator and since we measure only real values, the eigenvalues
correponding to observables are also real, therefore operators are Hermitian.

Postulate 2.1.4: Measurement

When a measurement is made on a generic state |ψ〉, the probability of obtaining an
eigenstate |ψi〉 is given by the square of the inner product of |ψ〉 and the eigenstate,
|〈ψi|ψ〉|2.

The Measurement postulate is also known as the Born Rule.. If we have some arbitrary
state of the form:

|ψ〉 = α1|ψ1〉+ α2|ψ2〉 (2.1.13)

then we will measure each eigenstate with probability:

|〈ψn|ψ〉|2 =

{
α1

2 i f |ψn〉 = |ψ1〉
α2

2 i f |ψn〉 = |ψ2〉
(2.1.14)

Moreover, if we have an operator A of the form:

A = ∑
n

ρn|ψn〉〈ψn| = ρ1|ψ1〉〈ψ1|+ ρ2|ψ2〉〈ψ2| (2.1.15)

acting on |ψ〉, we measure the system with probability:

|〈ψn|A|ψ〉|2 =

{
α1ρ1

2 i f |ψn〉 = |ψ1〉
α2ρ2

2 i f |ψn〉 = |ψ2〉
(2.1.16)

2.1. Quantum Mechanics Postulates 11

2.1.5 Composite Systems

This subsection does not discuss a postulate per se, but rather an important notion to have on
the composition of quantum systems. Suppose that we have a quantum system represented
by the Hilbert space H, that is composed by two subsystems Hi, i = 1, 2, with dimension
dim(Hi) = Ni, each one spanned by orthonormal basis set {|ei

j〉}, j ∈ Ni. Then, the total
system is represented by the tensor product of the two subsystems:

H = H1 ⊗H2 (2.1.17)

of dimension dim(H) = N1N2. The states in this joint Hilbert space can be written as:

∑
j

∑
k

αjk|e1
j 〉 ⊗ |e2

k〉 = ∑
j

∑
k

αjk|e1
j 〉|e2

k〉 (2.1.18)

Meaning that if we have a third quantum system represented by an Hilbert space H3 with an
orthonormal basis set {|bj〉}, j ∈N, we can extend the original Hilbert space, by the tensor
product, generating a new Hilbert space:

H⊗H3 = ∑
j

∑
k

∑
l

αjkl |e1
j 〉 ⊗ |e2

k〉 ⊗ |bl〉 (2.1.19)

Sometimes, when having a composite system of the form of H, we are interested in operators
A that act only on one of two subsystems. For this we need to construct a new operator:

A′ = A⊗ 1 (2.1.20)

such that A operate on the first subsystem and 1 (the identity operator) leaves the second
subsystem intact. An important notion to have is a quantum feauture called entanglement.
Suppose that we have a composite system of two isolated physical systems. Then, we
say that the isolated physical systems are entangled when we cannot write the state of the
composite system as a simple tensor product:

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 (2.1.21)

i.e. we cannot have a description of each individual part of system, but only a description of
the overall system. For a better understanding, we will revisit this feature in next section,
when introducing qubits.

2.2. Qubit Systems 12

2.2 qubit systems

There are various computational models that formalize the idea of quantum computation,
however most of them are based on the concept of a qubit, the quantum analog of a bit. The
claim for the power of a qubit is that the quantum system can be in a linear combination of 0

and 1. This is not entirely true, because a random bit also has this property to an extent. The
major difference stems from the fact that the amplitudes in a qubit can be complex numbers
and certain evolutions can make the amplitudes interfere with each other. Together with
other subtleties, like entanglement leads to statistics that are fundamentally different from
what can be reproduced classically [57].

A qubit is a quantum mechanical system with two levels that can be measured in one
of the two possible states, |0〉 and |1〉. These vectors form an orthonormal basis of an Hilbert
space isomorphic to C2 called the computational basis. Therefore, a qubit can be expressed as
a linear combination of both basis states:

|ψ〉 = α0|0〉+ α1|1〉 (2.2.1)

where α0, α1 ∈ C and the state vector is normalized, thus, |α0|2 + |α1|2 = 1. The Hermitian
conjugate is the state:

〈ψ| = α∗0〈0|+ α∗1〈1| (2.2.2)

The quantum state can be represented as a vector of amplitudes:

|ψ〉 =
(

α0

α1

)
∈ C2 (2.2.3)

representing the standard basis states as the vectors:

|0〉 =
(

1
0

)
∈ C2 |1〉 =

(
0
1

)
∈ C2

We will mostly use the Dirac notation throughout the text, however sometimes we will resort
to the usual vector notation, especially in the representation of unitary matrices as quantum
operators. Another useful representation of a qubit, stems from a geometrical representation,
known as the Bloch Sphere (Figure 2.2.1). A generic qubit can be in fact parametrized as:

|ψ〉 = eiφ
(

cos
θ

2
|0〉+ eiϕsin

θ

2
|1〉
)

(2.2.4)

2.2. Qubit Systems 13

ϕ

θ

x̂

ŷ

ẑ = |0〉

−ẑ = |1〉

|ψ〉

Figure 2.2.1: Bloch Sphere

The global phase of φ has no observable effect, therefore can be ommited in the Bloch
sphere representation. However, it will have its own role to play later on. The angles
0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π have the interpretation of spherical coordinates, so that |ψ〉 can
be visualized as a vector (sinθcosϕ, sinθsinϕ, cosϕ) pointing from the origin to the surface of
the sphere.

As we have seen in subsection 2.1.3, the evolution of a quantum system is done via quantum
operators, that are represented as unitary matrices, also called as quantum gates in the circuit
model of quantum computation. This is a well-known model in the community and the model
that we follow in this dissertation. The model has constraints such as:

• A set of qubits initialized in the ground state |0〉

• A sequence of unitary transformations transforms the initial ground state.

• Computational basis measurements performed to retrieve the result of some computa-
tion.

A qubit is in C2, therefore, single-qubit gates are formally described by 2x2 unitary transfor-
mations, being the well known Pauli matrices, some useful examples:

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)

One can see that the σx unitary acts as a NOT gate, inverting the amplitude of the quantum
state:

σx|0〉 =
(

0 1
1 0

)(
1
0

)
=

(
0
1

)
= |1〉 (2.2.5)

2.2. Qubit Systems 14

The Pauli-z gate, σz acts as a phase gate, inverting the phase of a quantum state that is in
state |1〉:

σz|1〉 =
(

1 0
0 −1

)(
0
1

)
=

(
0
−1

)
= −|1〉 (2.2.6)

This is one example showing that the global phase is irrelevant, that is, it has no observable
effect, because if we measure the state, we measure |1〉 with the square of the amplitude,
therefore, it doesn’t affect the state. However, it doesn’t mean that this gate is useless, as
we will see in section 2.5, inverting the phase will serve as a mechanism for amplifying the
amplitude of a state.
One of the most important gates used in quantum computation, is the Hadamard gate:

H =
1√
2

(
1 1
1 −1

)
(2.2.7)

This gate is responsible for creating uniform superpositions, by acting on basis states:

H|0〉 = 1√
2

(
1 1
1 −1

)(
1
0

)
=

1√
2
(|0〉+ |1〉) (2.2.8)

H|1〉 = 1√
2

(
1 1
1 −1

)(
0
1

)
=

1√
2
(|0〉 − |1〉) (2.2.9)

Figure 2.2.2: Single qubit gates and their matrix representation

What if we don’t want to create a uniform superposition state, but rather an arbitrary
superposition:

|ψ〉 = α|0〉+ β|1〉 (2.2.10)

2.2. Qubit Systems 15

It is easy to see that if have a qubit initialized in the ground state, and rotate it in the
y-direction Figure 2.2.3, we can induce an amplitude change.

Figure 2.2.3: y-rotation of an angle θ on a qubit. Image from School on Quantum Computing, Keio
University

Ry(θ) ≡ ei θ
2 σy = cos

θ

2
1− isin

θ

2
σy =

(
cos θ

2 −sin θ
2

sin θ
2 cos θ

2

)
(2.2.11)

Therefore if we act with this unitary matrix on the ground state, we prepare the superposition:

Ry(θ)|0〉 =
(

cos θ
2 −sin θ

2

sin θ
2 cos θ

2

)(
1
0

)
= cos

θ

2
|0〉+ sin

θ

2
|1〉 (2.2.12)

At this point it is a matter of simple arithmetic to derive the right angle to prepare the
desired superposition. As an example, suppose that we want to prepare the superposition,
such that, when the state is measured, we read the basis state |1〉 3

4 of the time, then the
angle becomes:

sin2 θ

2
=

3
4
→ θ = 2arcsin

√
3
4

(2.2.13)

Of course, one qubit is interesting but only one qubit will get us so far, thus the goal is to
create networks of qubits. As we have seen in subsection 2.1.5, we can form a composite
system by the tensor product of sub systems, therefore we can create the tensor product of n
qubits:

|ψ〉 = |q1〉 ⊗ · · · ⊗ |qn〉 (2.2.14)

If we apply the Hadamard gate to each one the n qubits, H⊗n, we get a superposition state
composed by the 2n basis states:

|ψ〉 = α1|0 . . . 0〉+ α2|0 . . . 01〉+ · · ·+ α2n |1 . . . 1〉 (2.2.15)

with αi ∈ C and ∑2n

i=1 |αi|2 = 1.

http://www.appi.keio.ac.jp/Itoh_group/spintronics/pdf/QC2005/QI-School-2005-5.pdf
http://www.appi.keio.ac.jp/Itoh_group/spintronics/pdf/QC2005/QI-School-2005-5.pdf

2.2. Qubit Systems 16

The fundamental two-qubit gate is known as the CNOT gate, in other words, the controlled-
not gate. The state of a qubit is changed (target qubit), based on the value of another qubit
(control qubit):

CNOT : |a〉 ⊗ |b〉 7→ |a〉 ⊗ |b⊕ a〉 (2.2.16)

The gate can be constructed using the Dirac notation:

CNOT ≡ |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ σx (2.2.17)

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Figure 2.2.4: CNOT gate circuit representation

meaning that if the first qubit is in the state zero, it applies the identity matrix to the
second qubit, otherwise it applies the not gate, inverting the amplitude of the second qubit.
The CNOT gate is a special case of more general controlled gate, in fact, replacing σx in
Equation 2.2.17 by an arbitrary single qubit gate, we have a prescription for constructing
arbitrary controlled gates.

cU ≡ |0〉〈0| ⊗ 1 + |1〉〈1| ⊗U (2.2.18)

Using the CNOT gate simultaneously with an Hadamard gate we can construct an entangling
circuit, thus, creating entanglement between two quantum bits

Figure 2.2.5: Entangling circuit: Both qubits start in the ground state, and the evolution is made from
left to right

CNOT(H ⊗ 1)(|0〉 ⊗ |0〉) = CNOT(
1√
2
|0〉 ⊗ |0〉+ 1√

2
|1〉 ⊗ |0〉)

=
1√
2
(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉) (2.2.19)

In subsection 2.1.5 we said that two quantum systems are entangled if we cannot write the
state of the overall system as a tensor product expression. In fact, Equation 2.2.19 cannot be

2.2. Qubit Systems 17

expressed as one such expression. As an example, consider the uniform superposition state
over two qubits:

H⊗2|00〉 = 1
2
|00〉+ 1

2
|01〉+ 1

2
|10〉+ 1

2
|11〉 (2.2.20)

The superposition state can be expressed as a single tensor product:(
1√
2
|0〉+ 1√

2
|1〉
)
⊗
(

1√
2
|0〉+ 1√

2
|1〉
)

(2.2.21)

therefore it is not an entangled state, proving that the circuit of Figure 2.2.5 is in fact an
entangling circuit.
At last, we just need to refer another important gate, which is the CCNOT gate, also known
as the Toffoli gate. It is the quantum version of the AND gate, that acts on three qubits: it
has two control qubits, and it flips the third qubit if and only if both control qubits are in
state |1〉.

CCNOT : |a〉 ⊗ |b〉 ⊗ |c〉 7→ |a〉 ⊗ |b〉 ⊗ |c⊕ (a.b)〉 (2.2.22)

CCNOT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

 Figure 2.2.6: CNOT gate circuit representation.

The Toffoli gate is multi qubit gate, thus needs to be decomposed into a sequence of elemen-
tary gates as follows:

Figure 2.2.7: Toffoli gate decomposed with elementary gate complexity of 16

2.3. Quantum State Preparation 18

2.3 quantum state preparation

As we said in chapter 1, the focus of this dissertation is in the CQ approach which deals
with classical data encoded into a quantum state. Thus we need to have efficient ways
of performing state preparation. In fact, state preparation may not be of great interest for
quantum computing in general, for example in Grover’s algorithm section 2.5 the state
preparation routine is simply the encoding of an n-qubit uniform superposition, which is
efficiently done by the tensor product of n Hadamard gates. However, in the context of
machine learning, including big data applications, it is of great importance to consider the
encoding procedure, because the encoding itself is part of the algorithm and may account
for a crucial part of its complexity [57]. Due to the fact that most quantum algorithms are
probabilistic by nature, we’ll need to repeat the algorithm several times, thus to encode the
same classical data several times. Below we discuss some known state preparation routines.

2.3.1 Basis Encoding

Suppose we are given a dataset D with N input data points. We need to encode N datapoints
as basis states. For the sake of simplicity let us consider the dataset being in fact binary,
however in contrary we could neglect the cost of converting the dataset into binary. We want
to prepare the state:

|D〉 = 1√
N

N−1

∑
i=0
|xi〉 (2.3.1)

An important notion to have is that in the case of datapoints with O(n) bits, we need O(Nn)
classical bits to store the data. However, in the quantum setting, we just need O(n) qubits
due to the fact that we’re preparing the uniform superposition of the datapoints. It is the
most straightforward encoding scheme, and one of the most important ones because we can
prepare unitaries that represent some machine learning modelM, and compute the result
of acting on the N input datapoints in parallel:

1√
N

N−1

∑
i=0
|xi〉|0〉⊗n 7→ 1√

N

N−1

∑
i=0
|xi〉|M(xi)〉 (2.3.2)

Several approaches to obtain |D〉 have been proposed by now. The most promising one is
based on the notion of a quantum random access memory [32], whose the purpose is to read
the entire dataset in parallel. This devices query index positions of memory |i〉 in parallel,
loading the ith data point basis encoded:

1√
N

N−1

∑
i=0
|i〉|0〉 7→ 1√

N

N−1

∑
i=0
|i〉|xi〉 (2.3.3)

2.3. Quantum State Preparation 19

This approach promises query access in logarithmic time in terms of the size of the dataset,
however, a practical implementation of these devices is still lacking, so we’re left with
sequential approaches, i.e, preparing each datapoint at a time.
One interesting sequential approach is the branching technique [71] leading to a linear time
state preparation O(N). As we don’t use this encoding strategy in the algorithms developed
in this dissertation, it will not be explained here. However, we refer the curious reader to
[57] chapter 5.1 for a thorough explanation of the algorithm. In the next section, we present
an encoding strategy that generalizes this one.

2.3.2 From Amplitude encoding to QSamples

Several quantum machine learning algorithms, instead of encoding a dataset in basis states,
encode rather in the amplitudes of quantum states, for example, given the data vector
x = (x0, x1, x2, ..., xN)

T, we prepare the state:

|x〉 =
N−1

∑
i=0

xi|i〉 (2.3.4)

constraining the encoded amplitudes to a normalization constant such that ∑N−1
i |xi|2 = 1.

The major advantage of this approach is that we can encode the N-dimensional datapoints
using only n ∈ log(N) qubits. Thus any polynomial circuit applied to the n-qubit register
encoding the data constitutes only a polylogarithmic computation relative to the size of the
data-vector, and this is at the basis of all possible exponential improvements with quantum
computing [26]. The disadvantage of this approach relies on the fact that to be able to
encode a dataset into the amplitudes of a quantum state we need to normalize the data first.
Furthermore, caution is necessary when measuring the quantum state if the result of some
computation is in the amplitude because the number of measurements needed to retrieve it,
scale with the number of amplitudes.
One common technique to encode data in to the amplitudes of quantum states is based
on the routine devised in [49] where the authors considered the opposite of the problem,
instead of starting with some ground state and apply unitary operations to encode data, they
considered the problem of how to map some final state |x〉 back to the ground state. For the
purpose of state preparation, all that one has to do is to invert all gates used and apply
them in the reverse order. This is done with multi control Ry , Rz gates on a target qubit.
Composed of all possible controlled rotations on said qubit, this can be used to address
individual elements of the state vector. The algorithm is based on 2 cascades of rotation
operations, one cascade of Rz gates that equalizes the phases of the state vector, and one
cascade of Ry rotation gates in order to rotate the now real state vector into the direction of
the ground state. If one wants to encode real amplitude vectors, then the cascade of Rz gates

2.3. Quantum State Preparation 20

can be ignored and the general circuit for the preparation becomes just a sequence of Ry

gates:

Figure 2.3.1: Real amplitude vector preparation, based on controlled Ry gates. Image from [57]

where the angles β are defined in terms of the original components of the amplitude vector:

βs
j = 2arcsin


√

∑2s−1

l=1 |x(2j−1)2s−1 |2√
∑2s

l=1 |x(j−1)2s |2

 (2.3.5)

This routine scales linearly with the size of the input vector. However, there’s a problem
with this approach: it relies on the use of multi control rotation gates, which need to be
decomposed into elementary gates, which becomes exponentially heavier with the increase
of the control qubits. To see that,we need to take into account that a n-qubit controlled
unitary U (in our case U is a Ry or Rz gate) can be decomposed in the following v-shaped
sequence of gates:

Figure 2.3.2: n=5 qubit controlled unitary decomposed into Toffoli gates and single control unitary
using n-1 ancillas.

and each Toffoli gate is decomposed with elementary gates such that,

2.3. Quantum State Preparation 21

Figure 2.3.3: Toffoli gate decomposed with elementary gate complexity of 16

Gates that act on three or more qubits are prohibitively difficult to implement directly.
Thus, implementing a quantum computation as a sequence of two-qubit gates is of crucial
importance. In [59] the authors followed that intuition improving the previous technique by
developing a new recursive decomposition of multiple controlled rotation gates, based only
on CNOT gates and single control rotation gates, proving that an arbitrary n-qubit quantum
state can be prepared by a circuit containing no more than 2n+1 − 2n CNOT 1 gates.

Figure 2.3.4: Recursive decomposition of multi control rotation gates [59] where the white squares
represent any control state

This encoding strategy is widely used in many quantum computing platforms, including
IBM Qiskit [1] platform in which the algorithms developed in chapter 5 were simulated.

In Machine Learning we’re often interested in sampling from a probability distribution due
to the fact that sampling provides a flexible way to approximate many sums and integrals at
reduced cost. In some cases, our learning algorithm requires us to approximate an intractable
sum or integral and in many other cases, sampling is actually our goal, in the sense that we
want to train a model that can sample from the training distribution [39], so we need to be
able to encode probability distributions in the quantum framework as well.
We can encode a classical discrete probability distribution over binary strings given by the
vector (p1, ..., pN)

T as a real amplitude vector (
√

p1, ...,
√

pN)
T represented by the following

quantum state:

|ψ〉 =
N

∑
i=1

√
pi|i〉 (2.3.6)

1 implementations of CNOT gates are orders of magnitude more error-prone than implementations of single-qubit
gates and have longer durations, thus the cost of a quantum circuit can be realistically calculated by counting
the number of CNOT gates [59]

2.4. Amplitude Amplification 22

in the community referred as a qsample [46], and the encoding of discrete probability
distribuitions referred as qsample encoding. As one might have guessed, state preparation
works the same way as amplitude encoding. The only difference is that the amplitude vector
is composed with a probability distribuition instead, so there’s no need to worry about the
normalization of the data, because the amplitudes are already normalized. Thus we can also
use the strategy documented in [49] as well. A major advantage in encoding probability
distributions is that we can prepare joint distributions ”for free”. Suppose that we prepared
the following qsamples:

|φ〉 =
N

∑
i=0

√
φi|i〉 (2.3.7)

|ρ〉 =
N

∑
j=0

√
ρj|j〉 (2.3.8)

Tensoring both qsamples, yields the joint distribution:

|ψ〉 = |φ〉 ⊗ |ρ〉 =
N

∑
i,j

√
φiρj|i〉|j〉 (2.3.9)

2.4 amplitude amplification

Suppose that we have a quantum algorithm A applied to a n qubit ground state such that:

A|0〉⊗n 7→ |ψ〉 = sin(θ)|ψgood〉+ cos(θ)||ψbad〉, θ ∈ (0,
π

2
) (2.4.1)

and we want to construct the state spanned by the good state |ψgood〉. If we measure |ψ〉 we
read a good state with probability:

sin2θ = a = |〈ψgood|ψ〉|2 (2.4.2)

Depending on the value of θ we may or may not have a good probability of reading a good
state. The amplitude amplification algorithm [20] promises to construct a good state after
an expected number of applications of A and its inverse A−1 which is proportional to 1√

a
assuming the algorithm A makes no measurements. This algorithm is a subroutine in a
variety of quantum algorithms as well as the generalization of the well-known Grover’s
Algorithm [33]. So it makes sense to be reviewed first because it will help to understand
better the quantum search algorithms in section 2.5 and the quantum optimization algorithm
in section 2.6.
The purpose of the algorithm is to amplify the probability associated with a quantum state

2.4. Amplitude Amplification 23

so that when measuring the quantum state we have a higher chance of reading a good
state. Suppose the quantum operatorRgood that inverts the phase associated with good states:

Rgood|x〉 =
{
−|x〉 i f |x〉 = |ψgood〉
|x〉 i f |x〉 = |ψbad〉

Rgood|ψ〉 7→ −sin(θ)|ψgood〉+ cos(θ)||ψbad〉, θ ∈ (0,
π

2
) (2.4.3)

Notice that |ψgood〉 and |ψbad〉 form an orthonormal basis. So we can visualize the effect of
amplitude amplification graphically, by representing |ψ〉 in the unit circle in R2:

|ψbad〉

|ψgood〉

|ψ〉

θ

Figure 2.4.1: Arbitrary state generated by A

We can see that the Rgood operator that inverts the phase of good states, acts as a reflection
operator, by shifting the phase of |ψgood〉, we’re reflecting |ψ〉 around |ψbad〉 generating a
new state |ψ′〉. After the first reflection, if one reflects around |ψ〉 instead, we generate a new
quantum state with an angle of 3θ. This is explained by noticing that the reflection around
|ψ〉 in fact induces a rotation of 2θ as depicted in Figure 2.4.2.

|ψbad〉

|ψgood〉

|ψ〉

|ψ′′〉

|ψ′〉

θ
θ

3θ

Figure 2.4.2: Applying Rgood followed by a reflection around |ψ〉

2.4. Amplitude Amplification 24

By interleaving these two types of reflection operators, the reflection around the bad states,
Rgood and the reflection around |ψ〉 that we now call Rψ we can amplify the amplitude of
the good states.

G = RψRgood (2.4.4)

At this point one may ask: ”Rgood is trivially implemented but how can we construct Rψ?”
To that end, consider the reflection around the all-zero state, R0:

...

|ψ〉

X X

(2(|0〉 〈0|)⊗n − I⊗n)|ψ〉
X X

X H H X

Figure 2.4.3: Reflection around the all-zero state circuit

Recall that the circuit A prepared |ψ〉. Now that we have a circuit for the reflection around
the all zero state, it turns out that we can use it to construct the reflection around |ψ〉:

Rψ = AR0A−1 = 2|ψ〉〈ψ| − I⊗n (2.4.5)

Figure 2.4.4: Quantum circuit for the G operator acting on a 3-qubit state

One iteration of the operator G|ψ〉 gives the state:

G|ψ〉 = sin(3θ)|ψgood〉+ cos(3θ)|ψbad〉 (2.4.6)

So we need to apply G, a number of times j such that the probability of reading a good state
becomes close to 1:

G j|ψ〉 = sin((2j + 1)θ)|ψgood〉+ cos((2j + 1)θ)|ψbad〉 (2.4.7)

2.5. Quantum Search 25

sin2((2j + 1)θ) ≈ 1 (2.4.8)

j = b π

4θ
c (2.4.9)

provided that we know the value of θ, i.e. we know the initial probability distribuition
prepared by the circuit A. In section 2.5 we will explore the case when we don’t know the
initial probability distribuition, in the context of quantum searching.

2.5 quantum search

Suppose that we have an array A with N elements, A[0, ..., N − 1] and we want to find an
element x in A. More precisely, we want to find the index i such that A[i] = x. Classically, if
the array was sorted, we could find i in O(log(N)). However, if we have an unstructured
array, no classical algorithm can find i with more than 1

2 probability without looking at least
at half of the entries of the array.
The well-known Grover’s Algorithm is a quantum algorithm that solves this problem in ex-
pected time O(

√
N), i.e. provides a quadratic speed-up compared to any classical algorithm.

However, Grover’s original algorithm [33], deals with the case that the element x is unique
in A, hence we know that the search problem has exactly one solution. In the field of
quantum information in general we’re often interested in problems that may have multiple
solutions or even problems for which the number of solutions is unknown. In the context of
quantum machine learning, we’re interested in encoding a dataset D into a quantum state
|D〉 represented by the superposition of the input data points in D and then use Grover’s
algorithm to search through the dataset. Suppose that D is basis encoded (subsection 2.3.1):

|D〉 = 1√
|D| ∑

i∈|D|
|xi〉 (2.5.1)

Grover search rotates this data superposition by the average. However, if D is a sparse
dataset, Grover’s algorithm will rotate the terms that have zero amplitude over the average,
thus assigning a non-zero amplitude to the points that are not in D decreasing the probability
of measuring the desired result significantly. [71].
The original algorithm assumes an initial uniform amplitude distribution. In the field of
quantum machine learning we’re also interested, as in the classical case, on the encoding of
probability distributions into quantum states. Suppose the discrete probability distribution
P as a qsample subsection 2.3.2:

|P〉 = ∑
i

√
Pi|i〉 (2.5.2)

2.5. Quantum Search 26

Qsamples will represent arbitrary probability distributions, so clearly it is of great impor-
tance to know the behaviour of the Grover’s algorithm in these cases. In this section, we’re
going from the original Grover’s algorithm to the variants that generalizes the algorithm in
order to deal with the above mentioned problems.
As we said before, Grover’s Algorithm is a first step towards the amplitude amplification
technique, the only differences are that the Rgood operator is viewed as a phase oracle U f that
implements a function f that gives the result f (x) = 0 for unwanted states and f (x) = 1 for
the wanted state, thus inverting the phase of the element x that we want to find:

U f |x〉 = (−1) f (x)|x〉 =
{
−|x〉 i f f (x) = 1
|x〉 i f f (x) = 0

and the quantum circuit that prepares the initial state A in fact prepares an uniform
superposition over the search space. Recall the operator G (section 2.4) to be refered in the
sequel as the Grover Iterate:

G = RψRgood = RψU f = (2|ψ〉〈ψ| − I⊗n)U f (2.5.3)

This algorithm has a nice geometrical interpretation in terms of the two reflection operators,
that can visualized in the unit circle in R2 as we did in section 2.4. Let’s consider the case of
N = 4 and suppose that we want to find the state |x〉 = |10〉. The only two special states we
need to consider are |x〉 and the uniform superposition |ψ〉. These two vectors span a two-
dimensional plane in the vector space. These vectors are not actually perpendicular because
|x〉 occurs in the superposition with amplitude 1

N as well, but, in fact, we can introduce an
additional state |ψ′〉 that is in the span of these two vectors, which is perpendicular to |x〉
simply by removing |x〉 on |ψ〉 and rescaling.

|ψ′〉

|x〉

|ψ〉

θ

Figure 2.5.1: Representation on the unit
circle.

Figure 2.5.2: Uniform superposition and
U f for the state |10〉.

Now, if we apply G, notice that first we invert the phase of |x〉 and then we reflect over
|ψ〉. The latter reflection works as an inversion about the average amplitude.

2.5. Quantum Search 27

Figure 2.5.3: Example of a circuit for the Uniform superposition and the oracle that marks the state
|10〉 on 2-qubit state system.

|ψ′〉

|x〉

|ψ〉

−|ψ〉

θ
θ

Figure 2.5.4: Action of U f . Figure 2.5.5: state |10〉 reflected.

Since the average amplitude has been lowered by the first reflection U f , Rψ boosts the
negative amplitude of |x〉 to roughly three times its original value, while it decreases the
other amplitudes. The algorithm needs O(

√
N) applications of the Grover Iterate G which

can be explained by the fact that the initial state can be expressed as:

|ψ〉 = sin(θ)|x〉+ cos(θ)|ψ′〉 (2.5.4)

where θ = arcsin〈ψ|x〉 = arcsin 1√
N

and, as derived in section 2.4, we need b π
4θ cG iterations:

b π

4θ
c = π

4arcsin 1√
N

≈ π

4

√
N = O(

√
N) (2.5.5)

For the current example of N=4 we just need 1 iteration of G [52]

2.5. Quantum Search 28

|ψ′〉

|x〉

|ψ〉

|ψ′′〉

−|ψ〉

θ
θ

3θ

Figure 2.5.6: Action of Rψ. Figure 2.5.7: state |10〉 amplified.

Figure 2.5.8: Final Grover’s Algorithm circuit for 2-qubit with target state |10〉.

What about if instead of a single solution we have multiple solutions? Suppose that we
know that our search problem has exactly n solutions in a search space with N elements.
We can easily adapt Grover’s Algorithm to deal with these cases, the only difference being
the phase oracle U f that needs to be able to mark the n solutions. We can derive a bound on
the run time complexity of the algorithm as well. In this case, the probability of measuring a
marked state is not 1

N as in the previous case, but instead n
N , so we can derive the number of

times we need to apply G in order to increase the probability:

sin2(θ) =
n
N
⇔ θ = arcsin(

√
n
N
) (2.5.6)

thus, the number of iterations is given by:

b π

4θ
c = π

4

√
N
n

= O(
√

N
n
) (2.5.7)

As one may have noticed, this comes with a little caveat, that is, the algorithm will not work
for the case where we have n = N

2 .

2.5. Quantum Search 29

Figure 2.5.9: N = 4 and n = N
2 marked states

This is because we started with an uniform superposition state and marked half of the
states, so as one may see in Figure 2.5.9, the average becomes null, thus the reflection
about the average will not work, and all of the states will remain with the same amplitude.
However there is a trick. In these cases if we extend the original Hilbert space, i.e. add more
states in the overall superposition state, we will end up doing more iterations but still get a
quadratic speedup. As a matter of fact, the algorithm will not work when n > N

2 , and that’s
because in these cases the average will become negative, thus amplitude amplification will
work in an opposite way, amplifying the non-marked states instead. Moreover, in this case
we will read a marked state with probability p = n

N > 1
2 , thus amplitude amplification is

not necessary. A more interesting case comes when n = N
4 , the generalization of the case

we have been following as an example. In this case sin2(θ) = t
N = 1/4 and θ = π

6 , so, a
solution is found with certainty after a single iteration. Furthermore, the quantum algorithm
becomes exponentially better than any possible classical algorithm if we compare worst-case
performances, taking the worst possible coin flips in the case of a probabilistic algorithm [19].

A much more interesting case comes when we don’t even know the number of solutions.
Clearly iterate π

4

√
N times won’t do the job, given that this may lead to a vanishingly small

probability of reading a marked state. We could use the approximate quantum counting
algorithm [4] in a first step to knowing the number of solutions to the problem and then

use Grover’s Algorithm to find one of them. However, this technique entails O(1
ε

√
N
n)

additional work. We can avoid this step if we perform an exponential search instead. The
notion of exponential search comes way back in computer science [13]. The idea is to start
with a sub-list of size 1. Compare the last element of the list with the target element, then
try size 2, then 4 and so on until we find the solution. In the quantum setting the idea of
exponential search already exists [19] and it is relatively similar to the classical counterpart.
The idea is to start the Grover search with one iteration and then exponentially increase the
number of iterations until either we reach a solution or the number of iterations corresponds

2.5. Quantum Search 30

to the maximum which is
√

N. The authors proved that this algorithm still converges in

time O(
√

N
n).

Algorithm 1: QSearch

m← 1 , max it←
√

N ,λ = 6
5 , A[N];

while m ≤ max it do
it← random(1, m);
Prepare uniform superposition |ψ〉 = 1√

N ∑i |i〉;
Apply it iterations of Grover’s algorithm;
Measure |ψ〉 , i← |i〉;
if A[i] == x then

Return i;
else

m← min(λm, max it);
end

end
Return Null;

At this point, the curious reader might think what happens if we relax the idea of having
a uniform superposition state, to an arbitrary superposition state instead? What guarantees
can Grover’s algorithm give in this case?

Figure 2.5.10: Non-uniform intial distribution.

When we relax the idea of an initial uniform superposition state, we get a more funda-
mental idea about Grover’s Algorithm, first presented in [16], where the key observation
is that the entire dynamics dictated by Grover’s algorithm can be described entirely by the

2.6. Quantum Maximum Finding 31

time-dependence of the averages of the amplitudes of marked/unmarked states. Defining
the time-dependent averages of marked/unmarked states to be:

marked : k(t) =
1
n

n

∑
j=1

k j(t) (2.5.8)

unmarked : l(t) =
1

N − n

N

∑
j=n+1

lj(t) (2.5.9)

provided that one knows the initial average of marked/unmarked [k(0)/l(0)] states and
the number of marked states, the authors proved in [16] Theorem 3, that the number of
iterations needed are:

−1
2

k(0)
l(0)

+
π

4

√
N
n
+

π

24

√
n
N

+O(n
N
) = O(

√
N
n
) (2.5.10)

confirming the quadratic speed-up for arbitrary distributions. The advantage of an initial
amplitude distribution with a relatively high average of the marked states is manifested in
the constant offset − 1

2
k(0)
l(0)

, which may reduce the number of iterations substantially. In the
case of unknown averages and variance of the initial amplitude distribution but different
runs of the algorithm use initial amplitudes drawn from the same distribution, the same
authors showed in [17] that one needs twice as many iterations in order to have half of the
probabilty of success compared to the previous case, thus leading to a slowdown with at
most a factor of 4.

2.6 quantum maximum finding

A common approach in quantum computing for optimization is precisely the use of Grover’s
search algorithm and amplitude amplification. This comes to no surprise due to the fact
that these algorithms promise quadratic speedup compared to their classical counterparts
[57]. In this section we’re going through [29] quantum minimum finding algorithm which
uses Grover’s search as a subroutine for optimization. Consider an unsorted array A with
N distinct elements. The algorithm finds the index i such that A[i] is the minimum in
time O(

√
N). Although the algorithm was initially devised for this task, it can actually be

generalized not only to find the minimum of an arbitrary function but also in the context of
quantum unsupervised learning, for findind clusters of data [7], speeding-up the search of
closest data points.
The algorithm starts by constructing the uniform superposition state 1√

N ∑x |x〉|y〉 where
y an index chosen at random y ∈ [0, N − 1]. Then a phase oracle, as in Grover’s Al-
gorithm, is used to mark the states, but this time we want to mark all the states |x〉

2.6. Quantum Maximum Finding 32

where A[x] < A[y]. This can be made using magnitude comparator circuits. The goal
is, when measuring the final state, to read a new index that is smaller than y. We
dont’t know how many solutions we have, i.e. we don’t know how many states |x〉
are smaller than y, so we need to run the quantum exponential search algorithm in (al-
gorithm 1)instead of original Grover’s algorithm. When measuring the final state if we
read a state smaller than y we replace the current value of y by the measured value. The
routine is repeated until the oracle runs empty, at which point |x〉 is the desired minimum.

Algorithm 2: QMF - Quantum Minimum Finding

A[N] , y← random(0, N − 1), it← 0;
while it ≤

√
N do

Prepare uniform superposition |ψ〉 = 1√
N ∑x |x〉|y〉;

Apply the magnitude comparator Oracle M;
Apply the QSearch algorithm 1;
Measure |x〉 , x′ ← |x〉;
if A[x′] < A[y] then

y← x′;
end

end
Return y;

This algorithm is trivially generalized to a quantum algorithm that instead of finding the
minimum, finds the maximum. This is done simply by inverting the magnitude comparator
oracle M, marking states |x〉 such that A[x] > A[y].

Figure 2.6.1: Example of a magnitude comparator oracle that marks all states greater than 1 in an
uniform superposition state with 2 qubits setting the set qubit equal to 1 when that is
the case

An important remark to have is the fact that this is again a probailistic algorithm and the
sucess probabilty of the algorithm is in fact 1

2 . So running the algorithm many times will
improve the probability of sucess. In fact, in [5], the authors improve the upper bound on
the computational complexity of the algorithm to 6.8kO(

√
N) with k being the number of

repetitions. With k = 2 we have increased the sucess probability up to 75%

2.7. Quantum Tree Search 33

2.7 quantum tree search

In artificial intelligence there’s been for a long time the interest in developing agents that
can efficiently represent knowledge, reasoning and master problem solving. Intelligent
agents are supposed to maximize their performance measure. Achieving this is sometimes
simplified if the agent can adopt a goal and pursue it. [55] Pursuing that goal can be pictured
as finding a fixed sequence of actions that lead to that goal or in the general case, where the
future actions may depend on future percepts. The latter will be discussed in chapter 3. One
way of pursuing that goal is tree-search. Tree search algorithms play an important role in
many applications, ranging from game playing systems [23] to robotic control systems [44].

Figure 2.7.1: Binary Tree with depth d = 2

There are two different strategies in these types of algorithms, Uninformed tree-search,
when we can only distinguish between goal states and non-goal states, and thus we need to
expand every possible node in the tree until we reach the goal, and Informed tree search,
when we have information about the search problem and can employ some heuristic function
to choose the most promising tree node to expand. For more information relative to classic
tree-search algorithms we refer the reader to [55] chapter 3.

Algorithm Strategy Run-Time

Depth-First [65] Uninformed O(bm)

Breadth-First [48] Uninformed O(bd+1)

Iterative-deepening [42] Uninformed O(bd)

Greedy [51] Informed O(bm)

A* [36] Informed O(bd)

Best-First [43] Informed O(bd)

Table 1: Tree search algorithms (b - branching factor ; d - depth; m - maximum depth).

We’re interested in using Grover’s Algorithm and its variations (section 2.5), to develop
tree search algorithms in the quantum setting that hopefully can show quadratic speedups

2.7. Quantum Tree Search 34

as well. As one might think there are a few things to consider, like the depth of the tree,
the branching factor associated (whether it is constant or non-constant), the number of goal
states and whether there’s only one correct sequence of actions or multiple ones. A trivial
case of a quantum tree search algorithm can be pictured for the case of a fixed depth d and
a constant branching factor b, with a single sequence of correct actions that lead to the goal.
This is exactly Grover’s Algorithm. We just need to prepare the initial superposition state
|ψ〉 of the possible actions at each level of the tree. Then, an Oracle O that marks the correct
sequence of actions and Grover’s algorithm takes care of the rest.

|a〉 = 1√
b

∑
i
|ai〉 (2.7.1)

|ψ〉 = |a〉⊗d (2.7.2)

(2.7.3)

O|ψ〉 =
{
−|a1a2a3...ad〉 i f |a1a2a3...ad〉 7→ goalstate
|a1a2a3...ad〉 otherwise

This algorithm was first suggested by [66] where the authors showed, as one might already
have guessed, that the complexity of the algorithm is O(

√
bd). However, if we consider

the problem of non-constant branching factors, the story changes. Suppose that we have
a tree with action space A = {a0, a1, a2, a3, a4, a5} and an average branching factor bavg =
2+1+3+2+1+3+1

7 ≈ 2 Figure 2.7.2:

Figure 2.7.2: Non-constant branching factor tree with depth d = 3

Although in these cases one can classically show that the effective branching factor con-
verges to the average branching factor, in the quantum setting one must use the maximum
branching factor to prepare the superposition states (at least in this formulation of the Hilbert
spaces) due to the fact that we don’t know how to differentiate what actions are possible
at each level of the tree. In these cases, Grover’s algorithm may fail to produce speedups

2.7. Quantum Tree Search 35

compared with classical tree-search because the quantum algorithm may have a larger state
space to search through. In [66] the authors showed that as the average branching factor bavg

grows closer to the maximum branching factor bmax, Grover’s algorithm will grow optimally
compared to classical algorithms, and for bavg > 2

log2 |A|
2 the quantum algorithm will yield a

speedup compared to the classical algorithm. As the bavg grows distant to the maximum
branching factor however, the quantum algorithm looses its quadratic speed-up and for
bavg < 2

log2 |A|
2 , the classical search evaluates less nodes than the quantum search algorithm,

as depicted in Figure 2.7.3. The same authors in another paper [67] provided a quantum
version of the iterative deepening algorithm and showed that the algorithm runs in time
O(
√

bd). In section 5.2, we propose a new model that generalizes the tree search algorithm
for the case of non-constant branching factors that can also be used as a new version of the
iterative deepening algorithm of [67].

Figure 2.7.3: Growth separation between bavg and bmax, being the rose shaded area, the area where
the quantum search algorithm still performs faster than the classical search. Image from
[66]

3

R E I N F O R C E M E N T L E A R N I N G

3.1 introduction

RL is different from supervised learning, where learning is done from a training set of
labeled examples provided by a knowledgeable external supervisor. Each example is a
description of a situation together with a specification, i.e. the label of the correct action the
system should take when encountering that situation, which is often to identify a category
to which the situation belongs. The objective of this kind of learning is to extrapolate, or
generalize, the system responses so that it acts correctly in situations not present in the
training set. This is an important kind of learning, but alone it is not adequate for learning
from interaction [63]. An agent must be able to learn from its own experience, taking an
action upon the world, and interpret the ”reward” that the environment gives back.

Figure 3.1.1: Agent-Environment Paradigm of RL: The agent performs action A over the environment
at time t, and the environment produces a new state St+1 for the agent and a respective
reward Rt+1.

RL is also different from unsupervised learning, which typically resorts to finding structure
hidden in collections of unlabeled data. At first sight, one may be tempted to think about
RL as unsupervised learning, however, it is radically different in the sense that it seeks to
maximize a reward signal returned by the environment instead of trying to find an hidden
structure. When trying to maximize the reward signal, a challenge arises in RL and not
in other kinds of learning, the so-called exploration and exploitation dilemma. This dilemma
occurs in our everyday lives, suppose that one’s favorite restaurant is right around the corner.

36

3.1. Introduction 37

Going to that restaurant we are pretty sure that we are going to leave the restaurant with a
smile on our faces. Now, do we try the new restaurant that recently opened?

Figure 3.1.2: Exploration-Exploitation dilemma - Image from UC Berkeley AI course.

If we try the new place, we may enjoy it or we may get disappointed. How do we proceed?
Always vouching for new places, very likely will leave us with unpleasant meals from time
to time. So we need to gather enough information to make the best overall decision while
keeping the risk under control. The best long-term strategy may involve short-term sacrifices,
like once in a while try a new place. As a short introduction to RL we will consider the
Bandit Problems which demonstrate this dilemma:

The original bandit problem has the form the k-armed bandit problem, named as an analogy
to k slot machines, like the ones we found in casinos. The objective is to select arms at every
time step and by repeated action selections try to maximize the total payoff concentrating
our actions in the best arms. Another case is the clinical trial example. In this case we have k
different medical treatments with unknown efficacy and by selecting a treatment we try to
save as most patients as we can.

Figure 3.1.3: k=4 slot machines with unknown reward distributions

Consider the original problem, if we have a k=4 multi-armed bandit an unknown payoff
distribution depicted in Figure 3.1.3, what should be the strategy to maximize payoff? One
can try an arm successively, and by the law of large numbers, eventually will figure the
true distribution of the arms payoff. However, this is quite wasteful and does not guarantee
the best long term payoff. A better alternative is the balancing between exploration and
exploitation, for example, the ε-greedy algorithm selects the best action known at a given
time, i.e. the action with the highest accumulated payoff, but play a random arm occasionally.

3.2. Decision Theory 38

We estimate the value of a given arm according to the past experience by averaging the
payoffs, p, observed so far:

Q(arm) =
1

NT(arm)

T

∑
t=0

pt

where NT(arm) is how many times the arm has been selected so far. The ε-greedy algorithm
then chooses a random arm with probability ε and selects the best arm so far with probability
1− ε. By starting the algorithm with a high value for ε, we are exploring most of the time,
which makes sense because we don’t know anything about the machines. Over time
decreasing the value of ε assures that we begin to take the best arms more often, exploiting
the information we gained over time. The next section makes a brief review of Decision
Theory in order to give a formal definition of RL.

3.2 decision theory

Decision theory is the study of an agent’s choices, among possible actions based on the
desirability of their immediate outcomes. [55]. The desirability of some outcome is quantified
by an utility function U. The existence of a real-valued measure of utility emerges from a
set of assumptions about preferences.

• A � B if we prefer A over B .

• A ∼ B if we are indifferent between A and B .

• A � B if we prefer A over B or are indifferent.

From this utility function, it is possible to define what it means to make rational decisions,
but first, we need to impose some constraints on preferences in order to understand rational
decision making from a computational perspective, the Von-Neumann and Morgenstern axioms
Harrison et al. [35]:

• Completeness - Exactly one of the following hold: A � B, B � A, orA ∼ B

• Transivity - If A � B and B � C then A � C

• Continuity - If A � C � B then there exists a probability p s.t [A : p; B : 1− p] ∼ C

• Independence - If A � B then for any C and probability p , [A : p; C : 1− p] � [B : p; C :
1− p]

From this axioms on rational preferences, we can say that there exists a utility function U
such that:

• U(A) > U(B) iff A � B

3.2. Decision Theory 39

• U(A) = U(B) iff A ∼ B

We are interested in rational decision making agents, perhaps with imperfect knowledge of
the state of the world. In either case suppose that we have a probabilistic model P(s′|s, a)
that represents the probability of the state of the world becoming s′ when taking action a in
state s. Consider also a utility function U(s) that represents the preferences over the space
of states (outcomes). The imperfect knowledge of the agent may arise from the fact that the
state transition probabilities incorrectly characterize the environment. The expected utility
of taking an action a at state s is given by:

EU(a|s) = ∑s′ P(s′|s, a)U(s′)

At this point, the rational decision making agent chooses the action that maximizes the
expected utility a∗, i.e, respects the maximum expected utility principle as discussed in
[35]:

a∗ = argmaxa EU(a|s)

As an example, consider the graph in Figure 3.2.1 representing the probabilistic model of
the environment, and Equation 3.2.1 representing the utility function U associated to each
of the outcomes. The decision making agent starts in state s0 and has to decide between
actions a0 and a1.

Figure 3.2.1: probabilistic model.

U(s) =


10 if s = s1

100 if s = s2

20 if s = s3

(3.2.1)

At first glance, looking at the utility function in Equation 3.2.1, one might think that the
appropriate action to choose is action a0 because it leads to state s2 with the highest utility
U(s2) = 100. That would be an inappropriate selection method, because taking action a0 in

3.3. From Markov Chains to Markov Decision Processes 40

state s0 leads to state s2 only 10% of the time. That’s why the agent must choose the action
that respects the maximum expected utility principle. Calculating the expected utility of
each action:

EU(a0|s) = ∑
s′

P(s′|s, a0)U(s′) = 0.9× 10 + 0.1× 100 = 19

EU(a1|s) = ∑
s′

P(s′|s, a1)U(s′) = 20

we find that the agent must choose action a1, the action that maximizes the expected utility.
Until now we just considered one-shot decision making agents, agents that are concerned

only with immediate outcomes. In a real world scenario, humans often make decisions with
a delayed reward in mind, i.e. having an ultimate goal, one has to make a series of decisions
until reaching it. Markov Decision Processes (MDP’s) section 3.3 are a way of describing these
types of sequential decision making problems, in which the utility depends on a sequence
of decisions, thus they are an extension of the decision theory principles presented so far.

3.3 from markov chains to markov decision processes

At the beginning of this chapter, we talked about the agent-environment paradigm of
RL. Consider Figure 3.1.1 which depicts an Agent and the Environment. The agent makes
sequential decisions and the environment returns to the agent a reward associated with the
action taken, and a new observable state. The goal of the agent is to choose actions that
maximize the expected reward in the long run.

Figure 3.3.1: Adaptative Tutoring system that uses RL to teach a student how to do addition/subtrac-
tion mathematical problems.

An example of a real-world application of the agent-environment paradigm and conse-
quently RL is the tutoring system in Figure 3.3.1. The goal of the tutoring agent is to teach a
student to solve addition/subtraction problems. The agent outputs a problem and receives
a reward of +1 if the student answers the question correctly and a negative reward of −1
otherwise. Therefore, maximizing the expected reward, the student will in the long run learn
how to solve this type of mathematical operation. However, there is a caveat here, namely,
how do the tutoring agent choose what questions to pose to the student? If all he receives is

3.3. From Markov Chains to Markov Decision Processes 41

the binary reward based on the answer of the student, then, the goal may be achieved for
the tutoring agent, but on the other hand, it can be misleading for the student. For example,
most people find it easier to learn addition rather than subtraction. If the student answers
correctly to addition questions and fails at subtraction, the tutoring will survey more and
more addition questions. This way the agent does his duty, but the student gets deceived.
This problem reflects the importance of defining the proper reward function.
This two-party system forms the basis of RL, however, the paradigm itself doesn’t say much
about the agent and the environment. There is a lot to say about the structure of the agent, but
for us, the only concern is to define the agent mathematically as a function that maps every
possible percept1 sequence to an action. Here, we focus more on the aspect of the structure of
the environment.

Figure 3.3.2: Chess board - Image from Google Deepmind

The environment can be Fully Observable, meaning that the agent directly observes the
environmental state, which can be formally described by MDP’s. An example of this is,
for example, the game of chess Figure 3.3.2. In this board game, the agent has always
full knowledge about the state of the game. On the other hand, the environment can be
Partially Observable, meaning that the agent indirectly observes the environment, formally
described by Partially Observable Markov Decision Processes (POMDP’s). The well-known
game of poker is an example of this, as the player only observes the cards in the table. The
focus of this work is in the Fully observable case, so we will not go into the details of POMDP’s.

In the fully observable case, the current state of the agent characterizes completely the
process. Given that the state captures all relevant informations from history, we say that the
state is a sufficient statistic of the future, that is, the state is Markov, i.e. obeys the Markov
property:

1 A percept is the input that an intelligent agent perceives at a given moment. For example, suppose a robot
with a camera. The recorded frames are the percepts of the agent. Then the agent plans to act according to this
percept or a sequence of percepts.

https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go

3.3. From Markov Chains to Markov Decision Processes 42

Definition 3.3.1: Markov Property

A State St is Markov iff:

P[St+1|St] = P[St+1|S1, ..., St] (3.3.1)

”The future is independent of the past given the present”

From a set of states S following the Markov property, if we have a state transition
probability between each Markov state s and a successor state s′:

Pss′ = P[St+1 = s′|St = s] (3.3.2)

we can construct a state transition matrix P , which it’s called a Markov Chain or a Markov
Process.

Figure 3.3.3: Student Markov Chain - Image from David Silver course on RL

Definition 3.3.2: Markov Chain(Markov Process)

A Markov Process is a tuple 〈S,P〉 where:

• S is a finite set of states

• P is a state transition probability matrix

P =


P11 . . . P1n

...
Pn1 . . . Pnn

 (3.3.3)

where ∑n
j=1 Pij = 1 , ∀i ∈ (1, n)

https://www.davidsilver.uk/teaching/

3.3. From Markov Chains to Markov Decision Processes 43

In the context of RL, it makes sense to add some value judgement associated to the states
of the chain, i.e. adding information on how good it is to be in a certain state. The value
judgement is the so called reward. Moreover, we need a way of representing the accumulated
reward throughout a (possibly infinite) trajectory in the chain, Gt, i.e. the return of some
sequence of rewards. Of course, we could simply add the rewards together as in:

Gt = Rt+1 + Rt+2 + ... + RT (3.3.4)

However, this formulation can be problematic, for example for continuing tasks2, because
in that case we have T = ∞, and the reward could be infinite as well. To overcome this
problem, we need to add a discount factor:

Gt = Rt+1 + γRt+2 + ... =
∞

∑
k=0

γkRt+k+1 (3.3.5)

The discount factor shall be γ ∈ [0, 1], otherwise it will not work as pretended. At this point
we can reach for the meaning of the discount extreme cases. When we have γ→ 1 we say
that all reward accumulated is equally important for the agent and when we have γ → 0
we converge towards a ”myopic” approach, meaning that we are only concerned with the
immediate reward, reflecting interestingly enough, human or animal behavior, due to the
fact that we tend to prefer immediate reward. Said that, we are ready to define a Markov
Reward Process (MRP):

Definition 3.3.3: Markov Reward Process (MRP)

A Markov Reward Process is a tuple 〈S,P ,R, γ〉 where:

• S is a finite set of states

• P is a state transition probability matrix

• R is a reward function. Rs = E[Rt|St = s]

• γ is a discount factor, γ ∈ [0, 1]

2 A continuing task differ from episodic task in a sense that here the interaction does not naturally break into
episodes but continues without limit. One example of this is a cleaning robot. The machine tries to clean the
place for as long as we want. Even when the robots battery is dead, he move into a ”recharge” state, but, once
the battery is charged he continues its task.

3.3. From Markov Chains to Markov Decision Processes 44

Figure 3.3.4: Student Markov Chain of Figure 3.3.3 converted into a MRP.

At this point, we can use the Return to define the long-term value of a given state. Starting
from state s, the value function v(s) of an MRP represents the expected return.

v(s) = E[Gt|St = s] (3.3.6)

A fundamental property of value functions used throughout RL and dynamic programming
(section 3.4) is that they satisfy recursive relationships [63]. For any state s, the following
consistency condition holds between the value of s and the value of its possible successor
states:

v(s) = E[Gt|St = s]

= E[Rt+1 + γRt+2 + γ2Rt+3 + ...|St = s]

= E[Rt+1 + γ(Rt+2 + γRt+3 + ...)|St = s]

= E[Rt+1 + γGt+1|St = s]

= E[Rt+1 + γv(st+1)|St = s] (3.3.7)

where Equation 3.3.7 is the so called Bellman Equation [12]. It expresses the relationship
between the value of a state and the values of its successor states. We can think of it
as looking ahead from a state to its possible successor states. Starting from state s0, the
environment could respond with one of several next states and a reward r, depending on the
dynamics. The expectation E reflects the stochasticity of the environment, so the Bellman
equation averages over all the possibilities, weighting each by its probability of occurring.

3.3. From Markov Chains to Markov Decision Processes 45

Figure 3.3.5: Backup Diagram. One step lookahead tree, from a starting state s0

Definition 3.3.4: Bellman Equation

value function of a state s averaging over its possible sucessor states:

v(s) = Rs + γ ∑
s′∈S

Pss′v(s′) (3.3.8)

All that we are able to do with the help of MRP’s is to randomly sample transitions and
average the rewards in order to define the value of states. However, there is no agency
involved, in a sense that we want to be able to make decisions. So the natural step here, is to
extend the above MRP with the set of actions that the agent can take. This extension leads
us to the definition of a Markov Decision Process (MDP). The difference is the state tansition
probability and the reward obtained that is now dependent on the action taken by the agent.

Definition 3.3.5: Markov Decision Process (MDP)

A Markov Decision Process is a tuple 〈S,A,P ,R, γ〉:

• S is a finite set of states

• P is a state transition probability matrix

P a
ss′ = P[St+1 = s′|St = s, At = a]

• A is a finite set of actions

• R is a reward function. Ra
s = E[Rt|St = s, At = a]

• γ is a discount factor, γ ∈ [0, 1]

3.3. From Markov Chains to Markov Decision Processes 46

Almost all RL algorithms are based on the estimation of the value-function that tell us how
good it is to be in a certain state. The notion of the goodness of a given state depends on the
reward accumulated which itself depends on the actions of the agent. Thereby, the value
function depends on the agents choices, i.e. the policy π employed by the agent. We can
formally define a policy as simply a mapping from states to actions π : S 7→ A. Formally a
policy is a distribution over actions given states π(a|s):

Definition 3.3.6: Policy

Distribution over actions given states

π(a|s) = P[At = a|St = s] (3.3.9)

Given a policy π, we can define the value function of a given state s, vπ, as well as the
value of another particularly interesting quantity, the value of taking an action in a given
state and only then following π, qπ(s, a), called the action-value function. This way we don’t
only estimate the value of a given state, but also define the value of state action pairs, also
known as the Bellman Expectation equations.

Definition 3.3.7: Bellman Expectation of vπ(s)

Expected return starting from state s and following π

vπ(s) = ∑
a∈A

π(a|s)
(

Ra
s + γ ∑

s′∈S
P a

ss′vπ(s′)

)
(3.3.10)

Definition 3.3.8: Bellman Expectation of qπ(s, a)

Expected return starting from state s, taking action a, and then following policy π

qπ(s, a) = Ra
s + γ ∑

s′∈S
P a

ss′ ∑
a′∈A

π(a′|s′)qπ(s′, a′) (3.3.11)

The above equations are the expectation version of the Bellman equations because we’re
starting from a state s and averaging over all the possible outcomes following policy π as
we can see from Figure 3.3.6:

3.4. Planning by Dynamic Programming 47

Figure 3.3.6: One step lookahead tree. Th value of state s is computed by averaging the value of all
possible outcomes following policy π

Furthermore, RL methods specifies the change in the agents policy with experience, the
goal being to reach the optimal policy π∗, i.e. the policy that leads to the highest expected
accumulated reward, thereby, the optimal value function / action-value function

Definition 3.3.9: Optimality

Optimal value function v∗(s) / action-value function q∗(s, a) is the maximum over all
possible policies

v∗(s) = max
π

vπ(s) (3.3.12)

q∗(s, a) = max
π

qπ(s, a) (3.3.13)

From here, we can extract the optimal policy as π∗(s) = argmaxa q∗(s, a). In the next
section we will discuss algorithms to solve for the optimal policy.

3.4 planning by dynamic programming

Dynamic Programming (DP) is widely used in optimization. Wherever we see a recursive
solution that has repeated calls for same inputs, we can optimize it, by breaking the problem
into sub-problems and store the result of this smaller problems, so that we do not have to
recompute them again later. In RL, the recursive structure is the Bellman equation (3.3.7) and
we can use DP to solve the equation for the optimal policy, provided that we have complete
knowledge of the environment, i.e. we have access to a perfect model of the environment.
We usually assume that the environment is described by a finite MDP. Due to the fact
that we have access to the MDP of the environment, this approach is commonly known as
Model-Based RL. There are two main model-based algorithms used: Policy Iteration and

3.4. Planning by Dynamic Programming 48

Value Iteration. In the policy iteration algorithm we start with a random policy, associating
to every state of the MDP a respective random action. Then we loop into two different
stages of the algorithm, the evaluation where we evaluate this random policy creating a
respective value function and the improvement where we update the policy using a greedy
action selection based on the value function computed. We loop until the convergence of the
policy. Again, this is only possible because we have a perfect description of the environment,

Figure 3.4.1

Figure 3.4.2

Figure 3.4.3: Figure 3.4.1 - convergence to the optimal policy. Figure 3.4.2 - Policy Evaluation + Policy
Improvement loop. Images from [63]

both dynamics and reward function. Therefore we can use the Bellman equation for the
evaluation procedure:

V(s)←∑
s′,r

p(s′, r|s, π(s))[r + γV(s′)] (3.4.1)

and then the new computed value function in order to improve the current policy choosing
greedily the action that lead to the highest expected reward as:

π(s)← argmax
a

∑
s′,r

p(s′, r|s, π(s))[r + γV(s′)] (3.4.2)

3.4. Planning by Dynamic Programming 49

Algorithm 3: Policy Iteration

stochastic policy π;
initialize V(s) ∈ R, ∀s ∈ S, ε(precision of the estimation);

(1) Policy Evaluation:
∆← 0;
while ∆ ≥ ε do

for each s ∈ S do
v← V(s);
V(s)← ∑s′,r p(s′, r|s, π(s))[r + γV(s′)];
∆← max(∆, |v−V(s)|);

end

end

(2) Policy Improvement:
policy-stable← true;
for each s ∈ S do

old-action← π(s);
π(s)← argmaxa ∑s′,r p(s′, r|s, π(s))[r + γV(s′)];

if old-action 6= π(s) then
policy-stable← f alse;

end

end
if policy-stable then

Return V ≈ v∗ , π ≈ π∗;
end

else
goto (2)

end
;

The algorithm spends to much computation time in the evaluation component. In fact,
the algorithm loops through all states of the MDP until the value function stabilizes in
some value ∆(s) ≤ ε , ∀s ∈ S. The Value Iteration algorithm tackles this problem by
instead of initializing a policy at random and then alternating between evaluation and
improvement, ininitializing the value function arbitrarily and removing the improvement step,
by maximizing over all the possible action at each step of the evaluation, i.e. choosing

3.5. Model-Free Prediction and Control 50

greedly the best value function for each state taking into account every possible action in
that state:

V(s)← max
a ∑

s′,r
p(s′, r|s, a)[r + γV(s′)] (3.4.3)

This routine is repeated until the value function for all states converges. At that point, the
algorithm converts the optimal value function into the optimal policy:

π(s)← argmax
a

∑
s′,r

p(s′, r|s, a)[r + γV(s′)] (3.4.4)

Both algorithms theoretically converge to the optimal policy, however, the difference in the
update, makes the Value Iteration algorithm converge faster to the optimal policy. The major
drawback in these algorithms though is that they operate over the entire state space of the
MDP, which for many real world applications become prohibitively expensive. For example,
the backgammon game has 1020 states. A branch of research takes this challenge through
asynchronous Dynamic Programming, in which updates are made not on the entire state
space but in states in any order whatsoever.

3.5 model-free prediction and control

In this section, as the name suggests, we will talk about a branch of RL which omits model
of the environment, i.e. an MDP that represents the dynamics of the world, hence the name
of Model-Free RL. This is in a sense the true RL because learning happens only by the inter-
action of the agent with its surrounding environment. By receiving a sequence of percepts
and returns followed by a sequence of actions taken by the agent, one can expect the agent
to learn via trial and error via sampled experience from either the real world or a simulated
environment. Monte-Carlo methods sample and average return for each state-action pair
much like the bandit problems discussed in section 3.1 sample and average rewards for
each action. The difference is that one have now multiple states, each acting like in a bandit
problem with the different bandits interrelated [63]. Moreover, the sampling must be made
efficiently: we do not want just random sampling, but we want to be smart in the way we do
sampling. In the beginning, the agent knows nothing about the environment. Therefore we
attribute maximum criterion to exploration, which is crucial to gain experience. However,
over time, the agent will record information about the dynamics of the environment and so,
continuously performing randomly will not generate learning. Thus we need ways of balanc-
ing between the exploration that the agent does to exploit the information gained over time,
the so-called exploration/exploitation dillema. The model-free problem is divided into two
sub-problems as in model-based planning, the prediction problem, where we need to attribute
value to a policy by test it into the environment, and the control problem, where based on this

3.5. Model-Free Prediction and Control 51

value we can improve our policies for the agent to converge to the optimal behavior over time.

The key difference in the prediction problem relative to model-based RL, is the way we
estimate the value of our policy. In this case, we use Monte-Carlo methods to sample
state-action-reward sequences derived from a policy π, called episodes and update the value
of states not based on the Bellman equation as before, because we don’t have a model of the
dynamics, but rather use the episodes

Epπ ≡ (S0, A0, R0); (S1, A1, R1); . . . ; (Sh, Ah, Rh); (3.5.1)

to derive averages of the rewards received. Of course, in an episode, a single state may
occur multiple times. Therefore, we can update the value of a state considering only a single
appearance of the state (first visit monte-carlo), or, taking into account every appearance of
said state (every visit monte-carlo). Theoretically, as the number of episodes grows to infinity,
by the law of large numbers, both methods converge to the optimal value. An interesting
fact about Monte-Carlo methods is that estimating the value of a single state of the MDP
is independent of the number of states of the MDP. This is to say that we can start every
episode from a state of interest and derive its actual value over time, interestingly enough
for the case where we just need to derive the value of a subset of the state space. There is a
clear subtlety compared to the model-based policy evaluation because here we are not under
the same rules as before. With a model of the environment, state values alone are sufficient
to determine a policy, using the one-step lookahead and choose whichever action leads to
the best combination of reward and next state. In this case, however, this cannot be done In
turn, it makes sense to use instead state-action values, given that we need to estimate the
value of each action to properly suggest a policy. Therefore we are interested in determining
the optimal action-value function, q∗(s, a) , ∀s ∈ S, ∀a ∈ A.

An issue is generating experience from a policy π. If this policy is deterministic, then
following π will observe returns for only one action and this will enforce that some state
action pairs will never be visited, which will make improvement over time impossible.
Therefore we need to consider a stochastic policy to be able to estimate the value of all
actions reachable from each state. It makes sense to start with a policy as an uniform
distribution over the possible actions to take at every state, and sample an action from that
distribution.

π(a|s) = 1
|A(s)| , ∀s ∈ S 7→ at ∼ π(a|s)

3.5. Model-Free Prediction and Control 52

Thus, before constructing the monte-carlo policy evaluation algorithm, one should take into
account that the action-value function is characterized by:

Qπ(s, a) = Eπ[Gt|St = s, At = a]

= Eπ[R1 + γR2 + · · ·+ γh−1Rh|St = s, At = a]

= Eπ[R1 + γGt+1|St = s, At = a]

= Eπ[R1 + γQπ(st+1, at+1)|St = s, At = a] (3.5.2)

Algorithm 4: Monte-Carlo Policy Evaluation

stochastic policy π;
initialize N(s, a) = 0, Qπ(s, a) = 0, ∀s ∈ S, ∀a ∈ A(s), h;
episode Ep=0 , EPISODES;
while Ep < EPISODES do

Epπ ≡ (S0, A0, R0); (S1, A1, R1); . . . ; (Sh, Ah, Rh);
G = 0;
for t = h− 1, h− 2, . . . , 0 in Ep do

G = γG + Rt+1;
N(st, at) = N(st, at) + 1;

Qπ(st, at) =
Qπ(st,at)+G

N(st,at)

end

end
Return Qπ;

Note: The algorithm works for the every visit Monte-Carlo method. For the first visit, we
need a separate counter to ensure that the update of the action value function is made only
if the state was not yet visited in the current episode.

The Monte-Carlo control problem bears the same overall idea than model-based RL, meaning
that the aim is to improve the policy based on the previous policy estimation. Therefore it
makes sense to include an improvement step at the end of the policy evaluation as before, to
converge to the optimal one. However, we cannot follow the same pattern as in model-based
RL, given that we cannot maximize over the action-value function

π(s) = argmax
a

Qπ(s, a)

because here we are doing sampling, and by maximizing we are converting the stochastic
policy directly into a deterministic policy, and by doing that we might be depriving our-
selves of further improvement because we might not have gathered enough information to
properly decide. Therefore the strategy for policy improvement is to overtime converge to a

3.5. Model-Free Prediction and Control 53

deterministic policy, but with the gained experience. For that, we need to assure that we have
a proper balance between exploration and exploitation. With ε-greedy policies (described in
section 5.1), we assure that over time we select more often the current best action to take at a
particular state, but still, sometimes selecting a random action to keep exploring.

Figure 3.5.1: Monte-Carlo policy evaluation + improvement loop taking into account action-value
functions.

Algorithm 5: Monte-Carlo Policy control

stochastic policy π;
initialize N(s, a) = 0, Qπ(s, a) = 0, ∀s ∈ S, ∀a ∈ A(s);
episode Ep=0 , EPISODES;
while Ep < EPISODES do

Epπ ≡ (S0, A0, R0); (S1, A1, R1); . . . ; (Sh, Ah, Rh);
G = 0;
for t = h− 1, h− 2, . . . , 0 in Ep do

G = γG + Rt+1;
N(s, a) = N(s, a) + 1;

Qπ(s, a) = Qπ(s,a)+G
N(s,a) ;

a∗ = argmaxa Qπ(st, a);

∀a ∈ A , π(a|st) =

{
1− ε + ε

|A(st)| i f a = a∗
ε

|A(st)| i f a 6= a∗

end

end
Return Qπ;

If we adjust ε over time, decaying ε with the increase of the number of episodes, in the
limit we will converge to the optimal deterministic policy. This is called GLIE (Greedy in the
Limit with Infinite Exploration), which is a on-policy method, meaning that we are using the
same policy to generate experience to further improve the policy. As a note, we are missing
a lot of details about model-free RL, for example off-policy methods, which don’t follow a

3.6. Sparse Sampling 54

policy for generating experience, and Temporal difference(TD) methods, which compared to
Monte-Carlo, don’t need that full episodes terminate to update the values of state-action
pairs. These methods are a symbiosis between the dynamic programming methods and
the Monte-Carlo methods to update ”on the fly” the values associated to state-action pairs,
a strategy called bootstrapping. This is a critical consideration for some applications that
have considerably long episodes in which suspending all the learning until the episode ends
substantially slows down the process. The disadvantage compared to Monte-Carlo methods
is convergence. Actually is still an open question whether TD methods converge in all cases,
however, in practice, they have been achieving better results than the Monte-Carlo methods.
For the rest of the chapter we will stick to a Monte-Carlo approach. For more information
about the TD learning methods, we refer the reader to [63] for a in-depth explanation of
these methods.

3.6 sparse sampling

The methods explained above both, model-based and model-free RL are called tabular methods,
because they construct a policy, i.e, a table which has a direct mapping from every state
of the MDP to an action. In model-based, the policy is constructed via planning, because
we have a description of the environment, whereas model-free use sampling methods are
used. Both methods have excellent results in practice, however with the increase of the size
of the MDP, storing a policy becomes intractable. This is where the sparse sampling idea
takes the problem from a different angle. These algorithms implement the policy itself,
sampling from a model, at each state to compute an action at that particular state. The
algorithm is given a single state of the MDP as input and then builds a tree with the state at
the root. By constructing the lookahead tree, the algorithm can return a near-optimal action
to take at that particular state. The next step is to perform the action that was returned and
repeat the process. How can we assure that the returned action is optimal? How do we
build such a tree that we can extract optimal actions from it? Clearly for large state space
MDP’s, building a tree that accurately approximates the transition model becomes again
intractable. In the infinite horizon, γ-discounted setting, we can define a cutoff time for the
horizon as Hε = log(1

ε)
1

1−γ . If we have a deterministic MDP with an action space A, we
can build a lookahead tree by performing every action a ∈ A on the initial state generating
|A| states and then repeat the process for every newly generated state until reaching the
cutoff time. In the end, we can use dynamic programming to reach the optimal decision.
In the most general case, for stochastic environments, this will not suffice because taking
only one sample of a given action will not give a good approximation of the dynamics of
the MDP. Said that for these cases we need to build the tree taking as root the initial state

3.6. Sparse Sampling 55

given, sampling each possible action m times and repeating the process for the m|A| new
states generated as in Figure 3.6.1

Figure 3.6.1: Lookahed tree for a binary action MDP, with m = 3 and horizon H = 2. Figure from
[41]

Therefore, for a tree depth correspondent to the horizon, the algorithm needs to call the
model

O((m|A|)Hε) (3.6.1)

The authors originally in [41] proved that to have an ε-approximation of the optimal action
to take at the current state, we need to take m samples of each action at every state generated
such that the complexity of the algorithm becomes

(
|A|Hε

ε

)O(Hε log Hε
ε)

(3.6.2)

This algorithm performs exponentially with the horizon, however, interestingly, it is in-
dependent of the number of states of the MDP, which is an important result, making the
algorithm suitable for dealing with large state space MDP’s. Sparse sampling in itself is not
enough and we shall see why. However, it was a great idea that paved the way for more
sophisticated algorithms and shaped the way of thinking within the Reinforcement Learning
community. Sparse Sampling does not focus search on highly valued nodes, i.e. nodes with
high values, and returns. This means that the algorithm does not prioritize over the nodes
that one should expand: instead it spends the same amount of computation time in every
node, independently of its current status. This is where Monte-Carlo Tree Search (MCTS)
excels with a new method for extending the ”game tree” based on promising nodes. Given
that this is not a subject of study of this dissertation, we will not go over the algorithm,
however, we want to point out its existence and refer the reader to [63] for a review of the
algorithm.

4

Q UA N T U M E N H A N C E M E N T S F O R M A C H I N E L E A R N I N G

Before digging straight into the design of quantum algorithms for RL, it is convenient to
know what are the possible advantages that quantum computing can offer to machine
learning. Often, research in quantum computing refers only to advantages related to
computational complexity. This is reminiscent to the asymptotic computational complexity
of algorithms wherein the quantum setting proved relevant in several examples like the
quadratic speed-up in Grover’s Algorithm or the exponential speed-up in the celebrated
Shor’s factoring algorithm [60]. However, in the context of machine learning, there’s more to
take into account than simply the computational complexity. For example, we’re interested
in the sample complexity of algorithms, coming from statistical learning theory [56] In section 4.1,
we provide the reader with some background theory on what constitutes learning and review
known results on a recent theoretical branch of quantum machine learning responsible for
developing a quantum theory of learning. It is important to refer that statistical learning
theory was originally developed for the case of Supervised Learning. However, it was
already adapted to the Reinforcement Learning case Kakade [40] and we will gradually
picture the original theory in the latter case. To the best of our knowledge, there’s still not a
connection between quantum sample complexity and the field of quantum reinforcement
learning since the latter is still in its infancy. The algorithm developed in section 5.4 maybe
the first attempt to connect them.
When developing learning algorithms we’re also interested in another metric called model
complexity focused in studying if quantum computing can offer new types of models to
machine learning. Section 4.2 exhibits some quantum models that can possibly enhance
machine learning with an emphasis in enhancing Reinforcement Learning.
In section 4.3 we will review known results on Quantum Reinforcement Learning and outline
the connections with the work reported in the following chapter.

56

4.1. Sample Complexity 57

4.1 sample complexity

Sample complexity deals with the problem of how large a training set is required to be in
order to learn a good approximation of the target concept 1. The most used model for dealing
with this problem comes from statistical learning theory, namely Probably approximately correct
learning (PAC-learning) Valiant [70]. PAC-learning gives a precise complexity-theoretic
definition of what it means for a concept to be efficiently learnable. We will briefly sketch the
concept with an example in binary classification of supervised learning and then translate it
into a different learning paradigm, namely Reinforcement Learning. Suppose we’re given
images of people being sad and images of people being happy.

Figure 4.1.1: characteristic function f that correctly separates the two subsets of images, where white
faces represent the training set, and the blackface represents a new face that f must be
able to classify.

This can be formulated as N examples of tuples (x, f (x)) with x corresponding to the
image and f (x) ∈ {sad, happy} 7→ {0, 1} being the associated label. The objective is given
N examples to output an hypothesis h : {sad, happy} 7→ {0, 1} as the ”best guess” for the
actual concept f . In PAC-learning the quality of the hypothesis given the N data points is
measured by the total error ε compared with f with probability δ:

P[∑
x
|h(x)− f (x)| ≤ ε] ≥ 1− δ

There can be many functions that respect such requirements of PAC learnability so we will
define the sample complexity of learning a concept as the minimal integer that satisfies the
requirements. It turns out that to produce an ε-optimal hypothesis with probability δ we
need N examples such that:

N ≥ O
(

1
ε

log(
|H|

δ
)

)
1 A concept is the rule f that divides the input space into subsets of the two-class labels 0 and 1, in other words, it

is the law that we want to recover within a model.

4.1. Sample Complexity 58

where H is a finite hypothesis class, i.e. |H| is the number of possible different classifiers,
also called the VC-dimension.Sain and Vapnik [56]. At this point, we may ask where the
examples come from in the first place? In this setting we’re assuming that either the N
examples are given, which can be viewed as the examples first labeled by humans and then
fed into the learning machine, or more broadly, sampled from an arbitrary distribution. In
either case we assume that the learner has access to the labeling function which is perfect,
i.e. given an input point it produces an output y deterministically. By doing this we’re not
allowing the model to have noise associated or being a stochastic model which in practice
occurs frequently. Also, we’re restricted to the requirement that the learner can always
output a hypothesis h that is present in the hypothesis class H, where in practice this may
not be the case. If we relax these requirements we have a generalization of PAC-learning
called agnostic learning, where we know that

N ≥ θ(
|H|+ log(1/δ)

ε2)

examples are necessary and sufficient to output a hypothesis h whose error is at most ε

worse than the error of the best concept. At this point, one may ask: What does this even
have to do with Reinforcement Learning? Is it really important? Well, in chapter 3 we
discussed two different types of doing Reinforcement Learning In one setting the agent has
complete knowledge of its environment, dealing with the problem of finding a good policy
in a fully known environment. This is perhaps the best-studied problem in reinforcement
learning. For large scale applications, where we know the dynamics of the world, it is hard
to store a table of transition probabilities and rewards in terms of memory consumption,
so it uses some form of compact model (like in Bayesian networks) to reduce the size of
the problem. However, it is still computationally expensive to perform operations like
computing expectations in these compact models On the other hand, it is efficient to obtain
Monte-Carlo samples and perform estimations. So by using Monte-Carlo, sample complexity
refers to how much experience must be simulated by the model to find a good policy.
In an alternative setting, the agent has complete ignorance about the environment. This is
the purest reinforcement learning setting, an agent is placed in an environment, and simply
by interacting with it, one tries to reach the optimal policy. Now, sample complexity in
this case may have different meanings, depending on how the agent achieves the optimal
policy. If the agent wants to represent the model of the environment and then use planning
to determine the policy, sample complexity means how much experience do we need to
construct an ε-approximation of the environment.

4.1. Sample Complexity 59

Figure 4.1.2: Sparse-sampling algorithm of section 3.6, each action is sampled m times

If the agent tries a direct policy search approach as in sparse-sampling Figure 4.1.2, sample
complexity means how much experience we need to gather to have an ε-approximation of
the ”goodness” of some action. Thus we need a way of estimating how many times do we
need to roll the same action until a reasonable estimate of its expected outcome is reached.
Now that we highlighted the importance of sample complexity in the context of reinforcement
learning, it is time to establish a connection between agnostic PAC-learning and reinforcement
learning, in order to sketch how one can analyze the sample complexity of these learning
algorithms. Agnostic learning is characterized by (1) no assumption is made about the input
distribution, which can be either deterministic or stochastic. (2) No assumption is made
about the true concept being contained in the hypothesis set H. Let’s see:
In RL we typically search for a policy π within a policy class Π. In the model-based
variant we have complete knowledge of the environment, thus we know the dynamics and
the reward function, thus it does not make sense to consider sample complexity in this
case, because the problem is purely computational . On the other hand, in the model-free
variant, we don’t make any assumption about the distribution, so agnostic learning fits. We
can define the sample complexity of a model-free RL algorithm A that takes m samples
by comparing the value function implemented by the algorithm with the optimal value
function:

VA(s)−V∗(s) ≤ ε, ∀s ∈ S

Thus we can the say that A is PAC-MDP if for any ε and δ, the sample complexity is
polynomial in the relevant quantities (S, A, 1/ε, 1/δ, H) with probability δ as in [62].

PAC-learning asks how many examples one needs from the original concept in the worst
case to train a model so that the probability of error ε is smaller than δ. In the quantum
framework, we can define quantum example oracles that work as a parallelized version of
classical sample generators [57] like the qsample oracle of Figure 4.1.3.

4.2. Model Complexity 60

Figure 4.1.3: Qsample oracle that provides examples sampling from an unknown distribution p(x)

In the quantum setting the hope is that computing with amplitudes will make possible to
extract more information compared with the classical counterpart. The first contribution was
made in [22] by showing that disjunctive normal form expressions are efficiently learnable by
a qsample oracle that samples by interfering the amplitudes of the qsample with a Quantum
Fourier Transform. However, this was done considering only the uniform distribution,
whereas learning under any distribution is needed. Unfortunately, it turns out that we
cannot expect any exponential speed-up from quantum sample complexity, first in [58]
the authors suggested a polynomial separation between quantum and classical sample
complexity, showing that if any class C of Boolean functions is learnable with Q evaluations
of the qsample oracle, then it is learnable with O(nQ) classical evaluations. More recently
in [9] it was proved that classical and quantum sample complexity are in fact equal up to
polynomial factors, the results holding for both PAC-learning and agnostic PAC-learning.
Despite this discouraging result, nothing is lost, for example in the case where noise is
associated with the samples. Also in [22] the authors show that this condition renders the
classical problem unlearnable, whereas in the quantum setting, with more examples it is
still possible to learn.

4.2 model complexity

Model complexity captures how complicated functions the learner can learn: the more
complicated the model, the higher chance of “overfitting” and consequently, the weaker
the guarantees on the generalization outside the training set. Intuitively, we want to use
quantum mechanics to develop new models that can be better at capturing patterns and
correlations in data and discover which problems are suitable for quantum computing.
There are numerous paths along which quantum computing may offer something different
to the game of machine learning. For example, Neural Networks are one of the most
revolutionaries ideas in machine learning that show extremely good results in practice,
with applications ranging from supervised learning, as in recommendation systems, to help
designing an agent capable of beating the world champion in the game of Go [47]. In the
quantum setting there is still a lot of work to do in developing quantum neural networks.
However, the simplest neural network to quantize is the Boltzmann Machine Hinton [37],
consisting of bits with tunable interactions.

4.3. Quantum Reinforcement Learning 61

Figure 4.2.1: Example of a Boltzmann Machine with 3 hidden units and 4 visible units with each
edge of the graph representing a dependence

The Boltzmann machine is thus trained by adjusting those interactions so that the thermal
statistics of the bits, described by a Boltzmann distribution reproduces the statistics of
data. Now, quantum methods can make the system thermalize quadratically faster than its
classical counterpart and accelerate training by improving ways of sampling [15]. In [24]
, the authors used a quantum annealer as implemented by D-Wave systems, to design a
reinforcement learning algorithm in which the set of visible nodes representing the states
and actions of an optimal policy are the first and last layers of a deep network, showing that
it outperforms classical reinforcement learning with Boltzmann machines.

Another interesting quantum model that can be a fruitful way of connecting machine
learning with quantum computing, is quantum walks, more precisely the quantization of
Markov chains, as for example Szegedy quantum walk Szegedy [64]. The algorithm shows a
quadratic speed-up in the hitting-time of an ergodic Markov chain with symmetric transition
matrix. However, it was not clear if this quadratic speed-up could be generalized to arbitrary
Markov Chains until recently Ambainis et al. [8], proposed an algorithm that finds any set of
marked vertices in an arbitrary graph quadratically faster than the classical counterpart. In
[21], the authors used a quantum walk in the projective simulation method of reinforcement
learning, which consists of an agent that has a graph of memory clips of its interaction with
the environment, and selects an action based on a random walk through such memory clips.
Replacing the random walk by a quantum walk the authors showed a quadratic speed up in
the traversing time of the graph.

4.3 quantum reinforcement learning

In chapter 1 we mentioned that when we talk about AI, we talk about a more general
learning framework, of agents which interact with their environments. In our view, we con-
sider the agent-environment paradigm one of the most important aspects of any intelligent
agent. Given that for intelligent agents, like humans, learning is done by reinforcement and

4.3. Quantum Reinforcement Learning 62

environments are often complex and susceptible to changes dependent on the agent’s actions,
we believe that RL forms the basis of possible improvements in the design of artificially
intelligent agents. Therefore, we are interested in all possible quantum enhancements in
the context of RL. In this section, we want to review some known quantum enhancements
ranging from new action selection methods to the generalization of the agent-environment
paradigm, where both agent and environment are treated according to the quantum theory.

One the most used action selection methods in RL that balances exploration and eploita-
tion is the ε-greedy algorithm, that selects a random action with probability ε and the action
with the highest expected reward with probability 1− ε:

π(a|s) =
{

argmaxa∈AQ(s, a) with probability 1− ε

random(A) with probability ε
(4.3.1)

However, this action selection mechanism has some problems, namely the fact that one
has to set a value for ε and decide whether to decrease the value or not or when to decrease
the value in order to exploit more often. Another problem is the fact that the algorithm
doesn’t prioritize actions. By selecting randomly an action, it may select the worst possible
action or even the best known one so far. In [25] the first step into quantum RL was made,
trying precisely to overcome this problem The authors designed a novel action selection
method based on the collapse postulate of quantum mechanics and the well known Grover
iteration. The idea is that initially, the current environment state puts the agent in a uniform
superposition over the set of possible actions A:

|ψA〉 =
1√
|A| ∑

i∈|A|
|ai〉 (4.3.2)

Then, if we measure |ψA〉, we will read an action with equal probability, which is a good
technique for the exploration policy. Next, we execute the collapsed action into a predefined
classical environment that returns a reward r and a new state s associated with the action.
Provided that we have classical data structures to accumulate the rewards and the action
taken in the state s, data structures that create the value function V(s), ∀s ∈ S with the
experience, we can update the value of some state based on the reward and the new state
received by the interaction with the classical environment, using the TD(0) update rule [63]:

V(s)← V(s) + α(r + γV(s′)−V(s)) (4.3.3)

to update the value of some state every time that we collapse the quantum action register.
Next, to produce learning, at each interaction, we reconstruct the uniform superposition,
but now, instead of collapsing the state, we amplify the amplitude of the action previous

4.3. Quantum Reinforcement Learning 63

taken in the state we’re in, relatively to the its value function and the reward received, thus
we apply L Grover Iterations such that:

L = int(k(r + V(s′))) (4.3.4)

In fact, as discusssed in section 2.4, the amplitude of an action given L Grover iterations
becomes:

sin(θ) LG−→ sin((2L + 1)θ) (4.3.5)

and depending on the value of L, the probability of reading an action, may become very
small (if L increases). So we select L as:

L = min{int(k(r + V(s′))), int(
π

4θ
− 1

2
)} (4.3.6)

Then, we simply repeat the process until ∆V(s) ≤ ε, ∀s ∈ S . There are quite a few
problems with this approach though. For example, the authors suggested that this algo-
rithm performs better than ε-greedy action selection, however, this depends heavily on an
appropriate choice of the value k in L. Moreover, consider the case of an action set with 4

possible actions, common in all gridworld environments as depicted in Figure 4.3.1 with
A = {up, down, le f t, right}.

Figure 4.3.1: Gridworld environment example - Cliff walking [63].

In this cases, the superposition over the action set is the 2-qubit state

|ψA〉 =
1
2
[|00〉+ |01〉+ |10〉+ |11〉] (4.3.7)

which is a particular superposition state as we need π
4θ iterations to amplify a given su-

perposition term with certainty, for this case, one Grover iteration suffices. This is to say
that, for these problems, L will be a binary variable, L ∈ [0, 1] and due to the normalization
in Equation 4.3.6, the agent will often take random actions because, the Grover iteration
will not be able to distinguish one from another. Thus the algorithm does not guarantee
convergence to the optimal policy as expected.
Furthermore, the agent-environment interaction is made via a classical environment. Thus

4.3. Quantum Reinforcement Learning 64

the algorithm is rather an action selection algorithm than a truly quantum reinforcement
learning algorithm, in the sense that no definition is made about the dynamics or the reward
function in the quantum setting. Efforts have been made to generalize MDP’s to quantum
MDPs (qMDPs) [73] and POMDPs to quantum POMDPs (QOMDPs) [10]. Both frameworks
use superoperators to express actions and observations. Superoperators are defined by a set
of k Kraus matrices 2 K of dimension d, that acting on a density matrix ρ, generate one of
the k possible states:

ρ′i ←
KiρK†

i

Tr(KiρK†
i)

(4.3.8)

with probability Tr(KiρK†
i)

3, if the ith Kraus matrix was applied.

Definition 4.3.1: qMDP [73]

A qMDP is a 4-tuple 〈H,A,M,Q〉 where:

• H is a Hilbert Space representing a set of possible states as density matrices of
pure/mixed states.

• A is a finite set of actions where each a ∈ A is a superoperator responsible for
evolving the system

• M is a finite set of measurements

• Q : A∪M→ 2A∪M is the set of possible actions and measurements available
after performing a certain action and a measurement.

In a qMDP, a series of measurements is introduced to infer the state and help select the
next action, based on their outcomes. The algorithm that utilizes the obtained measurement
information for decision making is called a scheduler. A scheduler selects the next action
based on the outcomes of previously performed measurements and actions. A key difference
between MDPs and qMDPs is that with MDPs, the scheduler can use the exact state of the
system because the state of the classical world is known in the MDP. In a quantum environ-
ment, the true world state is not known and must be inferred from partial measurements of
the system that give information about the system but do not collapse the superposition.
When measurements are needed to infer the environment state, the environment is known
to be partially observable Figure 3.3. Partial observability of the true underlying state of a
quantum system in superposition may suggest POMDPs as a potentially better model of
quantum systems than MDPs

2 A set of matrices of dimension d is a set of Kraus matrices if ∑k
i=1 K†

i Ki = Id.
3 The trace operator is the sum of the diagonal elements in a given quantum operator. This operators act linearly

in a vector space, therefore the diagonal elements represent the probability of basis states being measured.

4.3. Quantum Reinforcement Learning 65

Definition 4.3.2: QOMDP [10]

A QOMDP is a tuple 〈S, Ω,A,R, γ, ρo〉 where:

• S is Hilbert Space representing a set of possible states represented as density
matrices of pure/mixed states.

• Ω = {o1, ..., o|Ω|} is a set of possible observations.

• A = {A1, ..., A|A|} is a set of superoperators. Each superoperator Aa represents
the possible observations of taking action a. If oi is observed then the next state is:

ρ′i ←
Aa

i ρAa†
i

Tr(Aa
i ρAa†

i)

• R = {R1, ..., R|A|} is a set of operators representing the reward associated to
taking the action a at a given state ρ.

• γ ∈ [0, 1) is a discount factor.

• ρ0 ∈ S is an initial state.

Quantum superoperators formalize an agent’s ability to take an action in a quantum
environment and receive a percept. Both formulations use superoperators with partial
measurements in a feedback loop for evolving and gaining information about the system.

Figure 4.3.2: Feedback loop of a QOMDP.

In the QOMDP, acting and sensing in the environment are coupled via superoperators. At
each time step, the agent chooses a superoperator to apply from its set of superoperators.
Observation of the system may be done, often via indirect measurement methodologies, and
the agent receives an observation according to the laws of quantum mechanics and a reward
given by R based on the state value after the superoperator is applied. As with MDPs,
a policy for a QOMDP is a function π : S → A mapping states at time t to actions. The
value of the policy over horizon h, starting from state ρ0, can be computed by the following
equation representing the Bellman equation in the quantum setting:

Vπ(ρ0) =
h

∑
t=0

E[γtR(ρt, π(ρt))|π] (4.3.9)

4.3. Quantum Reinforcement Learning 66

Despite the interesting mathematical structures, there exist a clear complexity separation
between the quantum and the classical case for qMDPs [73] and QOMDPs [10]. In both
papers, the authors proved that the Goal State Reachability Problem is Undecidable in the
quantum case, yet decidable in the classical one. On the other hand the complexity of
deciding policy existence for finite horizons is the same for the quantum and the classical
case.

Despite the interesting computability results in quantum decision processes, there are
still missing algorithms that use this framework for the context of RL. In [27], a different
schema for doing RL in the quantum setting was suggested, the generalization of the Agent-
Environment paradigm enabled the authors to achieve a quadratic improvement for certain
RL tasks and exponential improvement in terms of the success rate. The idea is based on the
oracular construction of task environments.

”An approach to quantum improvements in reinforcement learning – This brings us to our schema
for improving RL agents. First, given a classical environment E, we define fair unitary oracular
equivalents Eq. Here, fair is meant in the same sense as quantum oracles of boolean functions are
fair analogs of classical boolean functions. Eq should not provide more information than E under
classical access, which is guaranteed, e.g., when Eq is realizable from a reversible version of E.”

Based on the oraculization of the task environment the authors suggested a quantum
oracle for deterministic environments with a single reward, that depends only on the actions
that the agent has taken. An example of this is a maze with an initial state and goal state.
The only state with reward R = 1 is the goal state and every other state has R = 0. So
in these cases we are to learn a correct sequence of actions and the quantum oracle Eq

is dramatically simplified as a phase-flip oracle for a sequence of M actions, denoting M
interactions with the quantum environment.

|a0, .., aM〉
Eq
−→ (−1)Λ(a1,...,aM)|a0, .., aM〉 (4.3.10)

where Λ is the reward function. This type of oracles points towards the use of Grover
Search, which can return with certainty the correct sequence of actions. For deterministic
environments with multiple rewards, counting oracles Ucount can also be built for a sequence
of actions and states s

|a〉 ⊗ |s〉 ⊗ |y〉 Ucount−−−→ |a〉 ⊗ |s〉 ⊗ |Σλ⊕ y〉 (4.3.11)

where the total reward appearing in the sequence s, Σλ is appended to the counting register
|y〉, with ⊕ representing the addition in the appropriate group. From here, using phase-kick

4.3. Quantum Reinforcement Learning 67

back again, we reflect over the sequence of actions |a〉 that satisfies the property of the reward
being above a certain chosen value. The authors also considered stochastic environments by
constructing an oracle for the case of a certain sequence of actions having a probability of
being rewarded:

|a〉 ⊗ |0〉 ⊗ |0〉 SE−→ |a〉 ⊗∑
s

√
p(a)|s〉 ⊗ |Λ(s, a)〉 (4.3.12)

|a〉 ⊗ |0〉 ⊗ |0〉 SE−→ |a〉 ⊗ (∑
s,Λ(s,a)=0

√
p(a)|s〉 ⊗ |0〉+ ∑

s,Λ(s,a)=1

√
1− p(a)|s〉 ⊗ |1〉) (4.3.13)

From this, one can use amplitude amplification to amplify the terms spanned by reward
register being in the state |Λ(s, a)〉 = |1〉. This oracle instance of a stochastic environment
is rather a narrow formulation, in the sense that it lacks the ability to capture stochastic
state-transition dynamics and just expresses the probability of a sequence of actions being
rewarded, missing the capacity to express more general reward functions in the quantum
setting.

Within the framework of quantum accessible RL environments, the goal is to build general-
purpose oracle instances of classical task environments. It turns out that obtaining gen-
eralization is a hard task and we’re left to construct oracle instances of rather specific
environments. However, in [28] the authors demonstrate that quantum agents can in fact
achieve exponential improvements in learning efficiency, provided that one can build task
environments that encode well-known oracle problems like in the Simon’s Problem [61] and
Recursive Fourier sampling.
More recently, [54] provided quantum algorithms to solve dynamic programming problems.
The authors considered RL from the linear programming perspective and propose specific
oracles to build a quantum version of a linear program. Separations and lower bounds
for the learning of optimal policies were given, provided quantum oracular construction
of transition functions in Markov decision processes. Up to polylogarithmic factors, the
quantum algorithms proved to be quadratically faster in terms of the number of states |S|
and the number of actions |A|, when dealing with deterministic transition kernels. For
stochastic transition kernels the quantum advantage is also quadratic in terms of the number
of actions, however less than quadratic (from |S|2 to |S| 32) in terms of the number of states
relative to the classical counterpart.

5

Q UA N T U M - E N H A N C E D R E I N F O R C E M E N T L E A R N I N G

Most introductory books or courses on Reinforcement Learning often start with a problem
that manifests the importance of RL. Typically, the multi armed bandit problems, are the
chosen ones and that’s because these types of problems give a clear demonstration of the
Explore-Exploit dillema. Here, we want to take the same approach, starting with a quantum
algorithm for the best-arm identification of the multi-armed bandit problems discussed in
section 3.1 and then gradually move into more general ideas for performing quantum RL.
To go from bandits to more general ideas we need to have the notion of MDP’s in the quan-
tum framework. As we have seen in section 4.3, there are two ways of constructing MDP’s
in the quantum setting, using superoperators [11, 73] or considering quantum oracular
instances of the classical MDP [27]. Here we consider the latter approach to construct oracles
for both deterministic and stochastic environments.
In section 5.2 we propose a route for the generalization of the quantum tree search algorithm
developed by Tarrataca et al presented in section 2.7 to work with arbitrary non-constant
branching factor search trees because this will play an important role in the upcoming
algorithms. We will see that using the generalized tree search algorithm with some exten-
sions, namely the notion of quantum MDP’s we can develop a quantum algorithm for the
deterministic MDP (section 5.3) that provides a quadratic speed-up for the action selection
mechanism of a RL agent.
It is known that the critical issue for the application of MDP’s to realistic problems is the
scaling complexity of planning with the increase of the size of the MDP. Actually, traditional
planning for stochastic environments with large state spaces may be inapplicable due to
the linear dependence on the number of states. Although the quadratic speedup provided
by [54] in planning, it is still hard to solve large state-space problems. Thus, instead of
performing planning on the entire MDP, in section 5.4 we considered the sparse sampling
approach section 3.6, to sample a look-ahead tree in order to compute near-optimal actions
for any state of the MDP. Thus, we present a novel algorithm for stochastic MDP’s that
works as a quantum version of the sparse sampling algorithm [41], providing a quadratic
speed-up compared with the original classical algorithm.
In the last chapter, we point out to the importance of sample complexity in quantum learning

68

5.1. Quantum Bandits 69

algorithms and despite that the bounds obtained by [9], showing that in fact quantum and
classical sample complexity are equal up to constant factors, it is still of great importance, for
developing quantum learning algorithms, study their sample complexity. Moreover, metrics
like computational and model complexity, can possibly enhance learning algorithms.
All previous results in quantum reinforcement learning (section 4.3), deal only with the
problem of computational complexity. To the best of our knowledge, there’s still not a
connection between sample complexity and quantum reinforcement learning algorithms.
In this chapter, we introduce novel quantum algorithms that will serve as a new route for
enhancing reinforcement learning in general.
In section 5.5 we provide the reader with an analysis of the complexity of such algorithms.
At last, in section 5.6 we conclude the chapter by delving into the details of the proposed
quantum algorithms in order to achieve real speed-up.

5.1 quantum bandits

As we have seen in section 3.1, several real-world applications can be formulated as a
multi-armed bandit problem, like the clinical trial example. We want now to consider the
original bandit problem of a k-armed bandit consisting of a gambler with k slot machines,
trying to decide the best machine to play. Pulling any one of the k arms gives you a stochastic
reward of either R = +1 for success, or R = 0 for failure. This is also called a Bernoulli
Bandit. In the language of RL, the objective is to find the optimal policy, the optimal arm,
the arm that maximizes the reward obtained in the long run. One will notice that pulling
the optimal arm will not always beat any other arm on a given pull since the rewards are
stochastic. However, it is in the long-term reward average that you will find the optimal arm
to dominate.

In the quantum setting, we can treat the problem in a fundamentally different way. Due to
the principle of superposition of quantum mechanics, we can interact with every k arms
in parallel and record the information about the reward. There are two subtleties in the
quantum algorithm, namely (1) the encoding mechanism of the k armed bandits stochastic
reward distribution and (2) the strategy to reach the optimal arm. We will clarify each
subtlety next. For simplicity, we will consider the case of a Bernoulli Bandit with k = 2 arms,
however, this can be easily generalized to arbitrary k arms.

(1) Encoding strategy: We need a way of encoding the arm with which we will inter-
act and a way of encoding the stochastic reward distribution of playing the respective arm.

5.1. Quantum Bandits 70

The arm can easily be encoded into a basis state, i.e. given that we’re working in the k = 2
case, arm = {0, 1},we just need one qubit to represent the arm, which we will call |a〉.

|a〉 =
{
|0〉 ⇐= arm = 0
|1〉 ⇐= arm = 1

For the stochastic reward distribution, we can use the amplitude encoding scheme Fig-
ure 2.3.1, and given that in this case, we’re working with binary rewards, we just need to
use a single y-rotation gate to induce the appropriate amplitude change relative to each arm
in a single qubit representation of the reward, initialized in the ground state, |r〉 = |0〉:

|φ〉 = Ry(θ)|r〉 = Ry(θ)|0〉 = cos(θ)|0〉+ sin(θ)|1〉

Figure 5.1.1: k = 2 classical arms with stochastic reward distribution

To explain the encoding of the reward distribution, suppose the following two arm reward
distribution as represented in Figure 5.1.8. Of course the distribution will be unknown to
the agent, we’re just displaying the distribution for the illustration of the encoding. When
playing the first arm , 70% of the time we will receive a reward and 30% of the time we will
receive null reward. Now, we want to discover the angle θ on the y-rotation gate that respect
this distribution. When measuring the state |φ〉 above, by the Born rule (2.1.4) we measure
the respective basis state with probability:

|〈a|φ〉|2 =

{
cos2(θ) i f a = 0
sin2(θ) i f a = 1

So for having 70% probability of receiving a reward, we need θ to be

sin2(θ) = 0.7→ θ = arcsin(
√

0.7) ≈ 56.7 ≈ 0.989 rad

and doing the same for the second arm we derive that the rotation angle theta must be

sin2(θ) = 0.2→ θ = arcsin(
√

0.2) ≈ 26.5 ≈ 0.463 rad

5.1. Quantum Bandits 71

In fact, the rotation gate must be applied to the reward qubit depending on the state
of arm, i.e. we will have a controlled unitary A representing the effect of interacting in
superposition with both arms, as shown in Figure 5.1.2. Therefore, A will be a quantum
operator of the form:

Figure 5.1.2: Conversion of an arbitrary k=2 armed bandit into quantum black boxes where action
|0〉 acts on bandit ψ0 and action |1〉 acts on bandit ψ1

A = |0〉〈0| ⊗ Ry(0.989) + |1〉〈1| ⊗ Ry(0.463) (5.1.1)

A =

(
1 0
0 0

)
⊗
(

cos(0.989) −sin(0.989)
sin(0.989) cos(0.989)

)
+

(
0 0
0 1

)
⊗
(

cos(0.463) −sin(0.463)
sin(0.463) cos(0.463)

)

A =


cos(0.989) −sin(0.989) 0 0
sin(0.989) cos(0.989) 0 0

0 0 cos(0.463) −sin(0.463)
0 0 sin(0.463) cos(0.463)


The full quantum operator that prepares the superposition and interacts with both arms in
parallel is of the form:

B = A(H ⊗ 1) (5.1.2)

where H creates the superposition of the arms and A acts linearly on both branches of the
superposition. Assuming an initial state |b〉 to be the tensor product of both Hilbert spaces
representing the arm and the reward, the action of B prepares the following non-uniform
superposition state:

B|b〉 = A(H ⊗ 1)(|a〉 ⊗ |r〉) (5.1.3)

=
1√
2
A[|00〉+ |10〉] (5.1.4)

=
1√
2
[cos(0.989)|00〉+ sin(0.989)|01〉] + 1√

2
[cos(0.463)|10〉+ sin(0.463)|11〉] (5.1.5)

5.1. Quantum Bandits 72

Figure 5.1.3: Quantum circuit that prepares the superposition equivalent to the k=2 armed bandit
and the encoding of the stochastic reward distribution

If we sample the quantum circuit of Figure 5.1.3 a sufficient number of times, we will ob-
tain a distribution that is ε-close to the stochastic reward distribution depicted in Figure 5.1.5

Figure 5.1.4: Abstraction of the k=2 armed
bandit circuit of Figure 5.1.3

Figure 5.1.5: Distribution obtained by measur-
ing the quantum bandit circuit
with 1000 samples taken

However, this does not give us what we have been looking for, i.e, ”certainty” about the best
arm. This is where the second subtlety mentioned above, i.e. a strategy to reach the optimal
arm, has to be considered.

(2) Reaching the optimal arm: Instead of measuring the state, we could amplify the ampli-
tude of the states with reward state |r〉 = |1〉. How many Grover iterations do we need?
In general, the stochastic reward distribution will be unknown to us, which can be viewed
as the stochastic reward being given as black boxes that we can only interact with. Thus,
we don’t know how many iterations we need a priori, because we don’t know the initial
amplitude distribution. For that reason we need to run the exponential search algorithm 1

that will choose the number of iterations in an exponentially larger set until it finds a state
with a larger amplitude such that |r〉 = |1〉. By doing this we decrease the amplitude of
the states that have reward 0 and amplify the ones that have reward 1.However, this does
entail a collapse of the state. We will measure a state that corresponds to the optimal
arm indeed, because of the probabilistic nature of the algorithm as most of the times the
initial distribution will be far from uniform and he exponential algorithm will amplify more
than one superposition term. So, we will not collapse the state in the optimal arm with

5.1. Quantum Bandits 73

”certainty”1 like in the original Grover’s search problem. However, we can run this algorithm
for a certain number of times m sampling the amplitude amplified state that will enable us
to achieve a distribution that will tell us what is the state with a higher amplitude, thus, the
optimal arm. Hence, with this strategy we hope to reduce the number of operations needed
to identify the best arm, and if possible reduce the number of samples needed to achieve an
optimal degree of confidence on the choice of a certain arm.

Algorithm 6: QBandits - Quantum Bandits

input sample size m , it=0, arm = {0, 1};
dista = Null;
while it < m do

create initial ground state |b〉 = |a〉 ⊗ |r〉 = |00〉;
prepare uniform superposition in the arms (H ⊗ 1)|b〉 = 1√

2 ∑2
i=0 |ai〉|r〉 = |b1〉;

Apply stochastic reward operators A to create parallel interaction |φ〉 = A|b1〉;
s← QSearch algorithm 1 on |φ〉;
Append s to dista;

end
Return argmaxa dista

Following the amplitude amplification technique as we did in section 2.4, the amplitude
will be amplified depending on the average amplitude of marked states. Thus, we can
deduce the probability of each state after one iteration of the Grover Iterate G, which is
optimal for the above example, by using the inversion about the average operator:

∀a ∈ arm, |〈a|G|φ〉|2 =

{
−|a〉+ 2|φ〉〈φ| i f |r〉 = |0〉
|a〉+ 2|φ〉〈φ| i f |r〉 = |1〉

where the average is given in function of the average of marked states:

0.3
2 −

0.7
2 + 0.8

2 −
0.2
2

4
= 0.025

1 Certainty in a sense that in the original Grover Search problem: we start with a uniform superposition state and
we amplify the amplitude of a good state. The amplification procedure makes it possible to reach almost unity
probability in measuring the marked state, which here is not the case because we cannot know for sure the
number of Grover iterations that the exponential search performs and it could well be not the optimal number
of iterations, given that if the algorithm returns a good state, the search is over, even if it has some probability of
not being the optimal state

5.1. Quantum Bandits 74

thus we will read each state with the following probability:

|〈a|G j|φ〉|2 =


− 0.3

2 + 2 ∗ 0.025 ≈ 0.1 i f |a〉 = |0〉, |r〉 = |0〉
0.7
2 + 2 ∗ 0.025 ≈ 0.4 i f |a〉 = |0〉, |r〉 = |1〉
− 0.8

2 + 2 ∗ 0.025 ≈ 0.35 i f |a〉 = |1〉, |r〉 = |0〉
0.2
2 + 2 ∗ 0.025 ≈ 0.15 i f |a〉 = |1〉, |r〉 = |1〉

Figure 5.1.6: Optimal circuit obtained by QSearch leading to 2 Grover iterations

So, by applying one Grover iteration we will read the optimal arm with probability 0.4.
Now, running algorithm 6, the exponential search algorithm finds the optimal arm with
one Grover iteration as we can see in Figure 5.1.6. Taking m = 10000 samples we obtain the
following distribution:

Figure 5.1.7: Distribution for one Grover iteration with m=10000 samples

showing that the algorithm returns the optimal arm. The number of samples taken was
chosen at random, however in section 5.5 we will derive a bound for the number of samples
that we need to take. There is one ”if” to this algorithm, that is it depends on the initial
unknown distribution and there is one case where the algorithm may fail to return the
optimal arm, i.e. when both arms have exactly opposite stochastic reward distribution.

5.2. Generalized Quantum Tree Search 75

Figure 5.1.8: k = 2 classical arms with opposite stochastic reward distribution

Recall the original Grover’s algorithm when we have n marked elements. When n = N
2

the amplification will not work since the inversion about the average fails as the average
is null. Now, in the quantum bandits when we have exactly opposite stochastic reward
distribution, we encounter the same problem. Moreover, we could have the case of an initial
distribution for which marking half of the elements leads to a negative average. In that case
the algorithm may fail as well.

5.2 generalized quantum tree search

In [66] the authors proposed a quantum algorithm for performing tree search. However
for non-constant branching factors, the quantum algorithm still needs to use the maximum
branching factor, in certain cases resulting in a slowdown compared to the classical counter-
part. Our aim is to generalize the algorithm to deal with arbitrary non-constant branching
factors. The idea is to rather than considering only the Hilbert space represented by the
superposition of the actions at each level of the tree, we could have separate basis states
representing the actions and the states we’re in, i.e. a node in the tree. Suppose that we have
a search tree with action space A. We know that for a depth d even with a non-constant
branching factor b, there will be at most |A|d leaf nodes. So, we can encode a node in a
quantum state with log2|A|d qubits. We can represent an action initially in the ground state
and a node that will be initially the root of the tree, with the following initial quantum state
|ψ0〉 represented by the tensor product of both basis states:

|s〉 = |0〉⊗log2|A|d , |a〉 = |0〉⊗log2|A| (5.2.1)

|ψ0〉 = |s〉 ⊗ |a〉 (5.2.2)

Now, we can construct an unitary operator A that prepares the superposition of the actions
controlled by the state of the node. By doing this, we prepare the superposition of admissable
actions at a given node.

A : |s〉 ⊗ |0〉⊗log2|A| 7→ |s〉 ⊗ 1√
|As|

∑
i∈|As|

|ai〉 (5.2.3)

5.2. Generalized Quantum Tree Search 76

We can actually build this unitary operator,because we can in fact maintain zero amplitude
on the superposition terms that don’t represent an admissable action [71]. We also need to
construct another unitary operator T that will be responsible for state transitions, i.e. the
evolution operator to deal with the traversal within the tree.

T : |s〉 ⊗ |a〉 7→ |s′〉 ⊗ |a〉 (5.2.4)

We are going to interleave these two unitary operators for a predefined depth d, (T A)d, at
each application extending the initial Hilbert space with new basis states for representing
a new action and a new state for depth d. To reduce the complexity associated to the
application of these operators, we may consider only neighbouring states. Applying (T A)d

can be interpreted as computing the tree in superposition for a depth d:

Figure 5.2.1: Superposition of a tree with arbitrary branching factor, result of the quantum operator
(T A)d

At this point we just need to construct a Grover Oracle O that reckons an arbitrary state
as a goal state, inverting the associated phase:

O|ψ〉 =
{
−|s〉|a0a1...ad〉 i f |s〉 7→ goalstate
|s〉|a0a1...ad〉 otherwise

Now, the Grover iterate will amplify the correct sequence of actions that lead to the goal state.
With this formulation we end up consuming more memory, due to the binary representation
of the node. However, providing that the unitary operators A and T have an efficient
representation, i.e. can be constructed in polynomial time, then the complexity of the
algorithm will be dominated by the dimension of the search space, thus Grover’s algorithm
still guarantees a quadratic speedup. This formulation of the Hilbert spaces provides a way
of dealing with arbitrary search trees with non-constant branching factors because Grover’s
algorithm will have always the correct search space associated. This algorithm can also work
as an iterative deepening version of [67].

5.3. A Quantum algorithm for the deterministic MDP 77

5.3 a quantum algorithm for the deterministic mdp

As we said in the introduction to this chapter, in order to deal with more complex problems
in RL we need to consider MDP’s, which form the basis for sequential decision making,
where actions influence not just immediate but also subsequent states and, through those,
future rewards. The multi-armed bandit problem that we solved in section 5.1, is formalized
by an MDP as well, in fact, it is an MDP with one state. The agent has a set of actions
that can perform, which is interpreted by which arm he decides to pull. By playing one
of the arms the agent moves deterministically for the same state, with some reward re-
turned by an arbitrary stochastic reward function. We want to take one step further and
consider the case where we have multiple states. For that we need to construct MDP’s
in the quantum framework and resorting to the idea of oraculization of the task environment.

Before proceeding to the algorithmic design, it is worth clarifying some points about both
the quantum agent and the environment. What does it even mean to construct oracular
instances of the classical MDP? Why do we call it Oracles? Well, to answer that question, we
need to look again at classical RL. If one recalls, there are essentially two different approaches
to RL, namely the model-based case, when we have access to the dynamics of the world
around us, and the model-free case, when we don’t know anything about the environment.
We consider the model-free approach as the true RL, the most general framework, where
the agent learns simply by the interaction with the environment. Thus, we can picture
the environment as sort of a black-box over which the agent performs some actions and
in return, it places the agent into a new state and reward the agent for the action taken.
In the quantum setting, if one want to be able to construct model-free RL algorithms to
enhance classical agents, the quantum agent still does not have any information about
the environment. Therefore the natural way to go is to construct quantum oracles that
represent the dynamics of some classical environment. But how do we separate the quantum
environment from the quantum agent? Again, we need to recall the definition of a classical
agent. As we said back in section 3.3, the only concern is to define the agent mathematically
as a function that maps every possible percept to an action. Thus, the agent has access
to states and actions (and the rewards returned by the environment of course) and so is
essentially an entity that maps states to actions, with the purpose of getting to the optimal
mapping over time. Formally, we consider the quantum agent q as:

q : |s〉 7→ |a〉 ∀s ∈ S (5.3.1)

and the quantum environment as an entity that has encoded the dynamics of the classical
environment, T̂, for transition kernel and the rules for attributting the reward of the action
taken by the agent, R̂ (Figure 5.3.1).

5.3. A Quantum algorithm for the deterministic MDP 78

Figure 5.3.1: Representation of the interaction of the quantum agent with the quantum environment

with the difference that the quantum agent has a fundamentally different property compared
to the classical agent, that is, the ability to perform actions in superposition, i.e. the quantum
agent will interact in superposition with the quantum oracle that represents the environment.

|a〉 = ∑
i∈|A|

αi|ai〉 (5.3.2)

such that ∑i∈|A| |αi|2 = 1. In fact, given that the agent will not know the proper action to
take, the action register will be the uniform superposition state:

|a〉 = 1√
|A| ∑

i∈|A|
|ai〉 (5.3.3)

Now, the goal of the agent is to find a way to collapse the superposition in the action register
into the action that leads to the highest accumulated reward.
If one understood the generalized quantum tree search algorithm of the last section, then
one is one step closer to understand the algorithm of this section. The generalized tree
search algorithm has almost all ingredients to be used in deterministic MDP’s. Actually, we
already constructed operators for representing the traversal of the tree, which we called T :

T : |s〉 ⊗ |a〉 7→ |s′〉 ⊗ |a〉

This operator can be used as a quantum oracle for a classical MDP transition kernel. We
know that we are working in a deterministic setting, therefore the encoding of the state may
be irrelevant because what matters is a sequence of actions. However, the oracle will need to
have some internal representation of the state to identify the sequence of actions and return
to the agent the respective reward, so we prefer to encode the state in a quantum register
because this will help building more general MDP’s in the quantum framework. Moreover
in the original T the state register is updated at each step. Thus, we will modify the oracle
to be able to store the action taken in a given state as:

T : |s〉 ⊗ |a〉 ⊗ |0〉⊗ns 7→ |s〉 ⊗ |a〉 ⊗ |s′〉 (5.3.4)

5.3. A Quantum algorithm for the deterministic MDP 79

For now, we refer to the number of qubits used to represent a state as ns but we will
comeback to that later. Also in the tree search algorithm, we constructed an operator that
creates the superposition of the admissable actions in a given node, A:

A : |s〉 ⊗ |0〉⊗log2|A| 7→ |s〉 ⊗ 1√
|As|

∑
i∈|As|

|ai〉

It makes sense to consider this operator in the context of tree search because using this
formulation enables us to consider trees with arbitrary branching factors, but does this
relate to RL problems? Yes, almost all of the toy problems in RL work with the assumption
that having MDP M with a finite set of states S and a finite set of actions A, then any
action a ∈ A is admissible in any state. However, in real-world problems, that is not the
case, for example in robotics, we might have to control the joints of some robot, which
may have different degrees of freedom. Using this formulation we can work on this set of
problems. Using A and T for a given horizon, h, (T A)h, we can evolve through the MDP in
superposition, however, to fully represent an MDP, we still need to rephrase the notion of a
reward function in the quantum setting. There are numerous reward functions with various
forms of representing rewards. We will consider two different reward functions: (1): as a
mapping from states to a real number, Rs : S 7→ R, which represent rewards that are only
dependent on the agent state, and (2): a mapping from state-action pairs to a real number,
Rsa : S× A 7→ R, representing rewards that depend on the transition itself, a more general
representation.

Figure 5.3.2: The same MDP represented with rewards depending only on the state left image and
rewards depending on the action that the agent has taken right image

In the quantum framework, we will have a quantum register with the appropriate size (we
will get to that later) and represent reward functions as oracles acting on the corresponding
basis states. Thus, we can count the rewards for the sequence of actions such that:

Rs : |s〉 ⊗ |r〉 7→ |s〉 ⊗ |r⊕Rs〉 (5.3.5)

5.3. A Quantum algorithm for the deterministic MDP 80

for the case of state-dependent rewards and

Rsa : |s〉 ⊗ |a〉 ⊗ |r〉 7→ |s〉 ⊗ |a〉 ⊗ |r⊕Rsa〉 (5.3.6)

for the case of rewards depending on the transition, where the symbol ⊕ represents the
sum in the appropriate group. Thus, the quantum MDP is then composed by an Oracle
itself composed by two sub-oracles, one responsible for the transition dynamics, T , and one
representing the reward function, either Rs or Rsa. At each transition, the agent applies A to
the action register of the current time step responsible for creating the desired superposition
of the admissable actions in the current state A. Applying this set of operators for a
given horizon h, is the same as computing the entire tree of possible trajectories, to a depth
corresponding to the horizon, holding in an auxiliary quantum register the superposition of
all possible received rewards. The careful reader, at this point hopefully, is thinking that we
forgot to define the discount factor γ, present in a classical MDP. However, such is not the
case, given that we’re interested in finite horizon tasks, then γ can be ignored, at the same
time that if the horizon is not infinite, but really large or, if we want to prioritize immediate
rewards over delayed ones, then it could be done by adding the discounted reward into the
reward quantum register at each oracle call t.

Rsa : |s〉 ⊗ |a〉 ⊗ |r〉 7→ |s〉 ⊗ |a〉 ⊗ |r⊕ bγtRsac〉 (5.3.7)

Again, we need the discount factor to be γ ∈ [0, 1].

A note on the Space Complexity:

In classical computing not always is important to consider the space used by some program
and, in fact, computer architectures and programming languages are so evolved nowadays
that it is irrelevant to even talk about the number of bits used. However, when the size of
the problem grows, especially in machine learning or data science applications, memory
optimization becomes a crucial part of the algorithms. In quantum computing, we have
until now, a slightly harder problem. It is believed that a quantum computer with 50-100

qubits, may outperform any classical computer, because its computational power is beyond
what can be simulated by brute force using the most powerful existing supercomputers.
However, despite that we already have 50 qubit machines nowadays, we still have imperfect
control over those qubits and noise will place serious limitations on what quantum devices
can achieve in the near term [53]. Thus, when designing quantum applications in the NISQ
(Noisy Intermediate Scale Quantum) era, it is of great importance to consider the number of
qubits used. The quantum algorithm section 5.3 is not an exception.

5.3. A Quantum algorithm for the deterministic MDP 81

In the quantum algorithm for deterministic MDP’s we started by formalizing the orac-
ulization of the task environment, with the state transition oracle T:

T : |s〉 ⊗ |a〉 ⊗ |0〉⊗ns 7→ |s〉 ⊗ |a〉 ⊗ |s′〉

and the oracle Rs representing the reward oracle for environments with reward function
dependent on only the current state:

Rs : |s〉 ⊗ |r〉 7→ |s〉 ⊗ |r⊕Rs〉

or, the oracle Rsa for environments where the reward function is dependent on the transition
itself:

Rsa : |s〉 ⊗ |a〉 ⊗ |r〉 7→ |s〉 ⊗ |a〉 ⊗ |r⊕Rsa〉

Therefore, we need to analyse how many qubits do we need to represent states, actions and
rewards. At each call to the transition oracle, we need to add to the full quantum state a
new register initialized in the ground state, that is able to represent some state s′ ∈ S. So, a
natural question arises: How many qubits do we need to represent a state? We have two
options that we will call (1) static and (2) adaptive.

(1) static: The simplest way is to consider all the possible states that we can represent.
For example, if we have a MDP with a state space S, then we have |S| states, thereby we
need

ns = dlog2|S|e

qubits to represent a state. Moreover, we know that the algorithm computes a lookahead
tree for a given horizon h in superposition, with the purpose of computing the optimal action
for the given tree depth. This tell us that we need Sstatic qubits to represent states such that:

Sstatic = hdlog2|S|e

(2) adaptive: Instead of having a quantum register that can allocate every possible state of
the MDP at each iteration, i.e. each call to the transition oracle, we can exploit the fact that
we’re working with deterministic MDP’s. Thus the number of possible states generated by
each call will be dependent on the number of actions, |A| as depicted in Figure 5.3.3.

5.3. A Quantum algorithm for the deterministic MDP 82

Figure 5.3.3: One step lookahead tree from N possible actions

so we just need to add to the full quantum state a quantum register with:

ns = dlog2|A|e

qubits. Furthermore, for an horizon h we have

Sadaptive = hdlog2|A|e

The difference for both strategies can be significant. For example, in gridworld environments
we have the action space A = {up, down, le f t, right}, |A| = 4. For small gridworlds, like
4× 4 we have that

Sstatic

Sadaptive
=

hdlog2|S|e
hdlog2|A|e

=
log2|S|
log2|A|

=
log216
log24

= 2

thereby, doubling the number of qubits used if we choose the static approach. Of course, the
quotient increases when we have larger state space environments. On the other hand we
can also have MDP’s in which we could use both strategies with the same complexity for
example the MDP of Figure 5.3.4 that with N different action leads to N different terminal
states.

5.3. A Quantum algorithm for the deterministic MDP 83

Figure 5.3.4: MDP with N possible actions that with one transition leads to N terminal states

This is to say that with the adaptive approach, will not always be the best approach. We
may have MDP’s with loops as in Figure 5.3.5, and in this case, constructing the oracle in
the adaptive way will lead generally to complex oracles with non-trivial implementation if
possible at all, because, in general, the oracle will need some fancy way of interpreting the
state and do the correct operations based on that.

Figure 5.3.5: One step lookahead tree with a loop

The more complex the oracle is, the greater the impact will be in the run time complexity
of the algorithm, so, in general, the decision will be based on a tradeoff between the compu-
tational complexity of the algorithm and the number of qubits available. Since the algorithm
was applied to small MDP’s use cases and given the non-trivial construction of the adaptive
oracles, in practice we resorted to the static approach.

Beyond the qubits used to represent states, we still have to analyze the qubits used to
represent actions and rewards. For actions we follow almost the same reasoning as before,
given that the algorithm tests every possible action in superposition for a given horizon h,
then we have

hdlog2|A|e

5.3. A Quantum algorithm for the deterministic MDP 84

qubits used. For rewards, the algorithm has a single quantum register initialized in the
ground state and continuously adds to the same register the reward accumulated throughout
the trajectory. Therefore, as said before, we create the quantum register with a number of
qubits sufficiently large, but how large? We have a reference value for the maximum reward
the agent can collect in a single step, R, so for a given horizon h, the maximum reward that
the agent can accumulate is hR, thereby we create the quantum register with:

blog2hRc+ 1

qubits. Of course, this is not the end of the story, if one wants to fully characterize the
space used by the algorithm, one has to think about the auxiliary qubits used for quantum
subroutines responsible for reaching the optimal action sequence, the decomposition of
multi control gates, etc. This is a part of the technology itself used, therefore we are not
going into the details, but should keep this in mind.

To a clear understanding, let’s work in an small example. Suppose the deterministic MDP
of Figure 5.3.6 with state space S = {S0, S1} and action space A = {a0, a1}. The MDP has
rewards defined per state. The agent starts in state S0, taking action a1 moves to state S1 and
has a reward of 1. On the other hand, if the agent takes action a0, it remains in the same
state with zero reward.

Figure 5.3.6: Example of a deterministic MDP with 2 states

Given that we have a two state MDP, in order to represent a state in the static approach,
we need log2|S| = log22 = 1 qubit, and given that the initial state is S0 we initialize the state
register in the ground state. The same reasoning applies to the action register, resulting
again in 1 qubit, given that |A| = 2. Both actions are admissable in both states of the MDP,
so the agent will prepare the action register in an uniform superposition of both actions.
Therefore for this example A is simply the Hadamard gate.

|s0〉 = |0〉 , |a0〉 =
1√
|A| ∑

i∈|A|
|ai〉 =

1√
2
[|0〉+ |1〉]

For representing the reward register we need to consider also the horizon. One interesting
fact about this MDP is that it suffices to consider the horizon h = 2. If we will be using

5.3. A Quantum algorithm for the deterministic MDP 85

actions in superposition, with two single steps, we already have seen the entire MDP in
superposition, so the maximum reward that the agent can receive in a single step is R = 1 of
state S1, thereby, for the horizon h = 2 we have that the maximum reward is 2 then we need
blog22c+ 1 = 2 2 qubits to represent the maximum reward.

|r〉 = |00〉

The initial quantum state is represented by the tensor product of the three quantum registers:

|ψ0〉 = |s0〉⊗ |a0〉⊗ |r〉 = |0〉⊗
1√
2
[|0〉+ |1〉]⊗ |00〉 = 1√

2
|0000〉+ 1√

2
|because0100〉 (5.3.8)

In order to traverse in superposition thorough the MDP with T , we need to add to the initial
quantum state, the register encoding the state in which the agent is.

|s1〉 = |0〉 7→ |ψ0〉 ⊗ |s1〉

Applying oracle T , we achieve the following state:

|ψ′0〉 = T (|ψ0〉 ⊗ |s1〉) = T
(
(

1√
2
|0000〉+ 1√

2
|0100〉)⊗ |s1〉

)
=

1√
2
|0000〉 ⊗ |0〉+ 1√

2
|0100〉 ⊗ |1〉 (5.3.9)

Now, given that the reward function is defined in terms of the state, we apply oracle Rs to
the respective quantum registers for the current time step to obtain:

|ψ1〉 = Rs|ψ′0〉 =
1√
2
|00〉 ⊗ |0⊕Rs0〉 ⊗ |0〉+

1√
2
|01〉 ⊗ |0⊕Rs1〉 ⊗ |1〉

=
1√
2
|0000〉 ⊗ |0〉+ 1√

2
|0101〉 ⊗ |1〉 (5.3.10)

Figure 5.3.7: One-step lookahead tree computed by the superposition state |ψ1〉.

5.3. A Quantum algorithm for the deterministic MDP 86

The state |ψ1〉 corresponds to computing the one-step lookahead tree in superposition
as we can see in Figure 5.3.7. For the next transition we need to add to the state |ψ1〉 new
registers to represent the state and the action to take at the current state that the agent is in:

|s2〉 = |0〉 , |a1〉 =
1√
2
[|0〉+ |1〉] 7→ |ψ1〉 ⊗ |a1〉 ⊗ |s2〉 (5.3.11)

Now, we repeat the process, applying first the oracle T to the respective quantum registers
for the current time step to reach the state:

|ψ′1〉 = T
(
(

1√
2
|0000〉 ⊗ |0〉+ 1√

2
|0101〉 ⊗ |1〉)⊗ 1√

2
[|0〉+ |1〉]⊗ |0〉

)
(5.3.12)

The new action register added, breaks the current superposition state into more two terms,
in which generating in total 4 superposition terms, corresponding to the four possible states
in which the agent can be in the MDP when we take two steps in superposition. Breaking
|ψ1〉 into the respective superposition terms results in:

|ψ′1〉 =
1
2
|0000〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉+ 1

2
|0000〉 ⊗ |0〉 ⊗ |1〉 ⊗ |1〉

=
1
2
|0101〉 ⊗ |1〉 ⊗ |0〉 ⊗ |0〉+ 1

2
|0101〉 ⊗ |1〉 ⊗ |1〉 ⊗ |1〉 (5.3.13)

and the respective reward accumulated through the four possible paths is given by applying
the oracle Rs. By linearity we achieve the following quantum state that resembles the
computation of the two step lookahead tree in superposition like in Figure 5.3.8:

|ψ2〉 = Rs|ψ′1〉 =
1
2
|0000〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉+ 1

2
|0001〉 ⊗ |0〉 ⊗ |1〉 ⊗ |1〉

=
1
2
|0101〉 ⊗ |1〉 ⊗ |0〉 ⊗ |0〉+ 1

2
|0110〉 ⊗ |1〉 ⊗ |1〉 ⊗ |1〉 (5.3.14)

Figure 5.3.8: Two-step lookahed tree generated by the superposition state |ψ2〉

5.3. A Quantum algorithm for the deterministic MDP 87

All that we have been able to do until now, is to construct a quantum oracular version
of a classical MDP and to design a quantum agent that can interact with the quantum
environment in superposition, computing every possible path and the respective reward
received for a certain horizon. We still have to collapse the superposition state to read an
action, but if we collapse the state we will read the optimal action only with probability 1

4 .
So we need to amplify the amplitude of the state that has the optimal action, which is the
state that has collected the maximum reward. At this point we use the quantum maximum
finding algorithm of section 2.6 as a subroutine, taking state |ψ2〉 as the initial state.

Algorithm 7: quantum action selection for deterministic MDP’s

horizon h, Rmax, i← 0;
|s0〉 ← |0〉⊗log2|S|, |r〉 ← |0〉⊗blog2hRmaxc+1;
|ψ0〉 ← |s0〉 ⊗ |r〉;
while i < h do
|ai〉 ← |0〉⊗log2|A|, |si+1〉 ← |0〉⊗log2|S|;
|ψ′i〉 ← |ψi〉 ⊗ |ai〉 ⊗ |si+1〉;
|ψ′′i 〉 ← T (|si〉 ⊗ |ai〉 ⊗ |si+1〉);
|ψi+1〉 ← Rs (|si+1〉 ⊗ |r〉);
i← i + 1;

end
Apply quantum maximum finding (QMF) of section 2.6 on initial state |ψh〉;
|ψmax〉 ← QMF(|ψh〉);
Return |ψmax〉;

Note: The algorithm uses Rs as the reward function. Of course, any other reward function
could be used.

An interesting fact about this algorithm is that we are not trying to come up with the
optimal policy for the MDP. Thus, we are not trying to define an action for every state of the
MDP, just the actions for the states that the agent goes through in order to maximize the
collected reward. This makes sense, at least from our point of view, because if we are dealing
with deterministic MDP’s, it is useless to define the action in states the agent will never reach
if the goal of the agent is merely maximizing the reward in the long run. Moreover, the goal
of the algorithm is rather to devise a sequence of actions that the agent may take. In certain
cases however, the algorithm will also be able to devise the optimal policy, dependently on
the MDP. This is the case for the above two states MDP. We have defined that with a horizon
of h = 2 the agent is able to see the entire MDP in superposition, therefore the sequence of
actions the agent may follow will simply be two actions that maximize the reward. For the
MDP in question, the sequence of action that the algorithm return is [a0, a1], meaning that the
agent takes action a0 and moves to state s1 to collect the reward R = 1, then the agent takes

5.4. Quantum Sparse Sampling 88

action a1 to remain in the same state, continuously keeping the same reward. In this case,
we see that the algorithm can return the optimal policy, but, in general, it will not be the case.

In the next section, we will generalize deterministic MDP to stochastic ones. We will
need not only to construct a new set of oracles able to deal with these types of problems,
but also to construct new techniques in order to reach optimal decision-making.

5.4 quantum sparse sampling

In the last section we dealt with deterministic MDP’s, which are a special case where the
state transition probability matrix for each state-action pair has only one resulting state with
probability one:

P a
ss′ = P[St+1 = s′|St = s, At = a] = 1 (5.4.1)

Stochastic MDP’s, allows us to deal with more general environments. In a sense, it
can capture more rigorously the nature around us, given that nature has always some
uncertainty involved. Of course we’re not saying that the deterministic setting is useless.
In fact, there are tons of examples in which the environment is deterministic, like the
well-known game of chess, or even the game of Go, that for many people, is known as the
holy grail of AI. However, stochastic environments capture more realistic problems and, in a
sense, deterministic MDP’s can be thought of as a subset of stochastic MDP’s, therefore it
makes sense to consider them in the quantum framework as well. As we said before when
we’re dealing with large state space MDP’s, or even dependently on the stochasticity of
the problem, it may not be feasible to come up with a policy, i.e. a mapping from every
state of the MDP to a corresponding action. Quantum MDP’s lives under the same problem,
thus, the quantum algorithm developed here is based on a different idea, the idea of sparse
sampling (section 3.6). Instead of computing a policy, we will sample from a look-ahead
tree, this way covering a fraction of the full look-ahead tree, which suffices to compute
near-optimal actions from every state of the MDP. The process starts again by modeling an
MDP as a simulated quantum environment that a quantum agent can interact in parallel
for a given horizon h, generating a distribution, where one can extract the near-optimal
action within the horizon. We will start by defining the quantum environment for stochastic
environments.

In the deterministic case we start by constructing T oracle, the state transition oracle:

T : |s〉 ⊗ |a〉 ⊗ |0〉⊗log2|S| 7→ |s〉 ⊗ |a〉 ⊗ |s′〉

5.4. Quantum Sparse Sampling 89

It is not difficult to adapt this oracle into a stochastic setting. Given a state-action pair, we
just need to add the probability associated to move into a certain state, Pa

ss′ :

T : |s〉 ⊗ |a〉 ⊗ |0〉⊗log2|S| 7→ |s〉 ⊗ |a〉 ⊗ ∑
s′∈S

√
Pa

ss′ |s
′〉 (5.4.2)

Notice that we amplitude encoded the square root of the probability, because, in the quantum
world, we read a state with the square of the amplitude associated. We can simply just use the
same algorithm as in the determinist setting (algorithm 7) but with the stochastic transition
oracle instead. That’s not so trivial, however. In the deterministic setting, to represent the
rewards the agent get through the sequence of actions it takes into the environment, we
considered that either we know the maximum reward the agent can achieve in a single step
and for a given horizon we create a quantum register for the agent accumulated reward, or,
we create the quantum register sufficiently large for the problem at hands. For purposes
of making a more rigorous analysis we considered the first case and derived the necessary
number of qubits:

blog2hRmaxc+ 1

In either case, the important point is that we’re computing in basis encoding the collected
reward by the agent, and this has its repercussions. To see that, we need to consider an
example. In the deterministic setting, we considered two types of reward functions, state-
dependent, Rs, or dependent on the transition itself, Rsa. We are going to consider in the
example the transition dependent reward function:

Rsa : |s〉 ⊗ |a〉 ⊗ |r〉 7→ |s〉 ⊗ |a〉 ⊗ |r⊕Rsa〉

Now, consider the stochastic MDP of Figure 5.4.1 with state-space |S| = 3 and action space
|A| = {a0, a1}. The agent starts in state s0 and, taking one of the possible actions, move
probabilistically into the same state, receive a reward, continues to take actions, or moves
into a terminal state and ends the game. In order to discover the action that leads to the
highest reward we need to take into account the stochasticity of the environment. Therefore,
we need to refer back to the maximum expected utility principle discussed in section 3.2.
We need to take the expectation of the collected reward.

5.4. Quantum Sparse Sampling 90

Figure 5.4.1: Stochastic MDP with 3 states, in which two of them are terminal states. Taking one of
the two possible actions, the agent either moves to a terminal state or remains in the
same state with some probability.

a∗ = argmax
a

EU(a|s) (5.4.3)

where the utility function U is in fact the reward function, Rsa. Therefore, we have that the
expected reward of some action is given by:

ER(a|s) = P(s′|s, a)R(s, a) (5.4.4)

Moreover, we have that the expected reward of each action is:

ER(a0|s0) = 0.7× 0 + 0.3× 3 = 0.9

ER(a1|s0) = 0.7× 2 + 0.3× 0 = 1.4 (5.4.5)

Then we conclude that the optimal action is action a1 because it leads to the highest expected
reward.
In the quantum setting, if we consider the horizon as h = 1, because we know that the
maximum reward in a single step is Rmax = 3, then we know that we need to create a register
with

blog2hRmaxc+ 1 = 2

qubits to represent the maximum reward achievable. Having quantum registers for represent-
ing the state of the agent with log2|S| = log23 = 2 qubits, with the initial state represented
as the ground state of a two qubit system, as |00〉 and the action registers represented as a
single qubit in superposition, we can achieve the propagation through the stochastic MDP

5.4. Quantum Sparse Sampling 91

by applying the state transition oracle T to the respective quantum registers, generating the
following superposition state:

T (|00〉 ⊗ |a〉 ⊗ |00〉) = T (|00〉 ⊗ 1√
2
(|0〉+ |1〉)⊗ |00〉)

= T (1√
2
|00〉 ⊗ |0〉 ⊗ |00〉+ 1√

2
|00〉 ⊗ |1〉 ⊗ |00〉)

=
1√
2
|00〉 ⊗ |0〉 ⊗ ∑

s′∈S

√
Pa

ss′ |s
′〉+ 1√

2
|00〉 ⊗ |1〉 ⊗ ∑

s′∈S

√
Pa

ss′ |s
′〉

=
1√
2
|00〉 ⊗ |0〉 ⊗

[√
0.7|01〉+

√
0.3|00〉

]
+

1√
2
|00〉 ⊗ |1〉 ⊗ [

√
0.7|00〉+

+
√

0.3|10〉] (5.4.6)

which gives the following non-uniform superposition state with four superposition terms:√
0.7
2
|00〉⊗ |0〉⊗ |01〉+

√
0.3
2
|00〉⊗ |0〉⊗ |00〉+

√
0.7
2
|00〉⊗ |1〉⊗ |00〉+

√
0.3
2
|00〉⊗ |1〉⊗ |10〉

(5.4.7)
Now, if we append to the above quantum state, the quantum register responsible for
representing the reward associated to the transition, initialized in the ground state and apply
the reward Oracle, Rsa, we get the state:

Rsa

[√
0.7
2
|00001〉 ⊗ |00〉+

√
0.3
2
|00000〉 ⊗ |00〉+

√
0.7
2
|00100〉 ⊗ |00〉+

√
0.3
2
|00110〉 ⊗ |00〉

]

|ψ〉 =
√

0.7
2
|00001〉 ⊗ |00〉+

√
0.3
2
|00000〉 ⊗ |11〉+

√
0.7
2
|00100〉 ⊗ |10〉+

√
0.3
2
|00110〉 ⊗ |00〉

(5.4.8)

If we run the quantum maximum finding algorithm 2 with |ψ〉 as the initial state in order
to collapse the superposition into the state that has the highest reward, the algorithm will
return the superposition term with reward R = 3. Therefore the algorithm concludes that the
action a0 is the best action to take, which is incorrect. The algorithm instead of amplifying
the state that corresponds the highest expected reward, amplifies the state that has the
absolute maximum reward, proving that this technique works well for the deterministic
case, but for the stochastic, failed miserably. For the example at hands, we’re considering
horizon h = 1 because we just needed to make a single action. If we basis encode the reward
and use the quantum maximum finding as a subroutine for reaching the optimal action
to take, the algorithm will fail because it does not respect the maximum expected utility
principle. In general, if we consider a sequence of actions instead of a single action, the
algorithm will also fails, in this case because it does not return the action that has the highest
expected cumulative reward.

5.4. Quantum Sparse Sampling 92

At this point, we need new ways of encoding the rewards that the agent gets through-
out the exploration of the MDP, and new ways of making optimal decisions based on them.
Recall the Bloch Sphere Figure 2.2.1, representing a qubit in an arbitrary state:

Figure 5.4.2: Bloch Sphere, representing a qubit in an arbitrary state

|ψ〉 = eiφ
(

cos
θ

2
|0〉+ eiϕsin

θ

2
|1〉
)

What if, instead of encoding the reward in the basis of some quantum register, we rather
encode the rewards in the phase of a qubit ? If we set θ = π and ϕ = 0 we have the state:

|ψ〉 = eiφ|1〉

that has a global phase associated. We can achieve the latter state by using rotations on
the z-axis. If the goal of representing the reward in basis states is to have the power of
performing addition using arithmetic circuits, we can do the same using phase encoding
without the use of arithmetic circuits. Notice the z-rotation gate:

Rz(φ) =

(
e−iφ 0

0 eiφ

)
(5.4.9)

If we have a qubit initialized in |1〉 state, and perform two rotations of θ1 and θ2, we get the
following state:

Rz(φ2)Rz(φ1)|1〉 =
(

e−iφ2 0
0 eiφ2

)
eiφ1 |1〉 = eiφ2 eiφ1 |1〉 = ei(φ1+φ2)|1〉 (5.4.10)

By using rotations around the z-axis we can perform addition essentially ”for free” and
without the need of having a quantum register sufficiently large to record the reward

5.4. Quantum Sparse Sampling 93

accumulation. Furthermore, we can also consider easily the discounted finite horizon case
as a sequence of z-rotation gates:

h

∏
t=0

Rz(γ
tRz(Rt))|1〉 = exp(i(R0 + γR1 + γ2R2 + · · ·+ γhRh))|1〉 (5.4.11)

In order for this to work in the oracularization of task environment paradigm that we have
been proposing, we need to consider the z-rotation gates as a part of the reward oracles. For
example, for MDP’s in which the reward depends on the transition, we will have the oracle:

Rsa : |s〉 ⊗ |a〉 ⊗ |r〉 7→ |s〉 ⊗ |a〉 ⊗ ejRsa |r〉 (5.4.12)

An important observation is that the rotation gate is applied accordingly to the state and
action registers, meaning that the gate is in fact a controlled rotation gate. Where does
this leads us ? The point of encoding the rewards into the phase of some qubit is to try to
have acess to the expected values. At this point, given that we already have the oracles for
stochastic environments, consider an high level representation for one oracle call to both T
and Rsa, having quantum registers representing some initial state:

T
(
|s〉 ⊗ 1√

|A| ∑
i∈|A|
|ai〉 ⊗ |0〉⊗ns

)
= |s0〉 ⊗

1√
|A| ∑

i∈|A|
|ai〉 ⊗ ∑

s′∈S

√
Pa

ss′ |s
′〉 (5.4.13)

If we append to the state the reward register and apply the reward oracle we get the overall
state:

|s0〉 ⊗
1√
|A| ∑

i∈|A|
|ai〉 ⊗ ∑

s′∈S

√
Pa

ss′ |s
′〉 ⊗∑

s,a
ejRsa |r〉 (5.4.14)

If we unravel the superposition terms, we reckon that the amplitude associated to each term
will have the shape:

1√
|A|

ejRsa
√

Pa
ss′

which looks almost like computing the expected reward and store the result into the
amplitude of the quantum state. But it is not exactly the same. Moreover, recall that the
quantum register for the reward is initialized into the basis state |r〉 = |1〉, taking the z-basis
as the computational basis. This means that the phase gained representing the accumulation
of the reward, has no observable effect because it represents rotations in the z-axis and
measuring in the computational basis, reveals nothing, in fact, when measuring the quantum
state, we read an arbitrary superposition term with probability:

1
|A|P

a
ss′

5.4. Quantum Sparse Sampling 94

We could use quantum phase estimation [52] in order to get an estimation of the cummulative
reward, but the subroutine needs to use powers of the controlled unitaries that prepare the
phase. Therefore, we would need to use powers of the controlled versions of the reward
oracle, which increase exponentially with the precision required. Moreover, if we want to
estimate the phase up to n bits, with a sucess probabilty of at least 1− ε, we will we need

n + dlog(2 +
1
2ε

)e (5.4.15)

qubits. Furthermore, even though we are able to estimate the reward, we still do not know
how to proceed from there. We could run quantum maximum finding into the estimated
reward. However, we are again running into the same problem, as we would be amplifying
the amplitude of the state with the highest absolute reward and not the expected, because
the phase estimation subroutine estimates the reward encoded in the phase, not taking into
account the probability encoded in the amplitude. Well, that was unfortunate, but, it revealed
a way of encoding the rewards which is meaningful when we collapse the superposition.
The problem with the approach above is that using z-rotations, the reward is properly
accumulated, but, we run into problems for extracting the cumulative reward because it was
in the phase of the quantum state. Thus instead of encoding the reward in the phase, we
could encode it into the amplitude. For that instead of using rotations around the z-axis, we
should use rotations around the y-axis. Recall the y-rotation gate acting on a qubit in the
ground state:

Ry(θ)|0〉 =
(

cos θ
2 −sin θ

2

sin θ
2 cos θ

2

)
|0〉 = cos

θ

2
|0〉+ sin

θ

2
|1〉

If the value of θ was the value of the reward we could encode the reward into the amplitude
of quantum state. If we perform two rotations θ1 and θ2 into a qubit initialized in the ground
state, we generate the following quantum state:

Ry(θ2)Ry(θ1)|0〉 =
(

cos θ2
2 −sin θ2

2

sin θ2
2 cos θ2

2

)
cos

θ1

2
|0〉+ sin

θ1

2
|1〉

= cos
θ2

2
cos

θ1

2
|0〉+ sin

θ2

2
sin

θ1

2
|1〉 − sin

θ2

2
sin

θ1

2
|0〉+ cos

θ

2
sin

θ1

2
|1〉

= cos
θ2

2
+

θ1

2
|0〉+ sin

θ2

2
+

θ1

2
|1〉 (5.4.16)

With this, we can encode a sequence of h rewards, h being the horizon associated to the
problem, within a sequence of h y-rotation gates:

h

∏
t=0

Ry(γ
tRt)|0〉 = cos

(
h

∑
t=0

γtRt

)
|0〉+ sin

(
h

∑
t=0

γtRt

)
|1〉 (5.4.17)

5.4. Quantum Sparse Sampling 95

Using this formulation for the reward function, we notice that for horizon h = 1, with one
oracle call to T and Rsa, we get the the following superposition state:

|s0〉 ⊗
1√
|A| ∑

i∈|A|
|ai〉 ⊗ ∑

s′∈S

√
Pa

ss′ |s
′〉 ⊗∑

s,a
[cosRsa|0〉+ sinRsa|1〉] (5.4.18)

meaning that if we unravel the superposition, each term will have an associated amplitude
1√
|A|

cosRsa
√

Pa
ss′ , |r〉 = |0〉

1√
|A|

sinRsa
√

Pa
ss′ , |r〉 = |1〉

(5.4.19)

that for a sequence of actions, horizon h, translates to
h√
|A|

cos
(

∑h
t=0 γtRt

)√
Pa

s0s1
Pa

s1s2
. . . Pa

sh−1sh
, |r〉 = |0〉

h√
|A|

sin
(

∑h
t=0 γtRt

)√
Pa

s0s1
Pa

s1s2
. . . Pa

sh−1sh
, |r〉 = |1〉

(5.4.20)

Ignoring the normalization factor created by the superposition in the action registers h√
|A|

, we

see that if we measure the quantum state, we read each superposition term with probability: cos2
(

∑h
t=0 γtRt

)
Pa

s0s1
Pa

s1s2
. . . Pa

sh−1sh
, |r〉 = |0〉

sin2
(

∑h
t=0 γtRt

)
Pa

s0s1
Pa

s1s2
. . . Pa

sh−1sh
, |r〉 = |1〉

(5.4.21)

which closely resembles the expected cumulative reward, with the computation made in
the amplitude of quantum states. Thus in principle the superposition term with the highest
amplitude associated is the state with the highest expected cumulative reward. Therefore,
we can turn this into an optimal decision making algorithm. Before discussing the decision
making component, we need to check a couple things more.

Notice that the reward is being added via rotations around the y-axis, into the ampli-
tude of a quantum state that is initially in the ground state, meaning that we need to take
care of how much reward we can add, which is in fact when the overall reward is equivalent
to a full rotation of π

2 Figure 5.4.3. Otherwise, we will loose the information about the true
reward received by the agent.

5.4. Quantum Sparse Sampling 96

|0〉

|1〉

R1 + γR2

R1

R1 + γR2 + . . . γhRh

Figure 5.4.3: Reward qubit evolution with the addition of the rewards

Furthermore, we need to normalize the reward such that we know for sure that in any
possible transition the reward, is at most π

2 . For that, we will consider the case where we
have a reference value for the absolute maximum reward that the agent could get in a single
transition step, Rmax. We know that:

∞

∑
t=0

γtRt

Rmax
≤

∞

∑
t=0

γtRmax

Rmax
≤

∞

∑
t=0

γt =
1

1− γ
, γ ∈ [0, 1) (5.4.22)

so if we set the reward equal to:

π

2
(1− γ)

∞

∑
t=0

γtRt

Rmax
≤ π

2
(5.4.23)

the requirements are met. However, this is not entirely true, because, the convergence of
the series is in the infinity. Thus the value of the reward will converge to π

2 in the infinity.
The problem with this is that we are working with finite horizon problems, therefore, if we
consider convergence in the infinity, the ampltitude change due to the reward will be almost
indistinguishable for every path because it will be very small for almost every sequence of
rewards. Furthermore we need to take into account the horizon h:

h−1

∑
t=0

γtRt

Rmax
≤

h−1

∑
t=0

γt ≤ γh − 1
γ− 1

, γ ∈ [0, 1) (5.4.24)

Moreover, setting the reward equal to:

π(γ− 1)
2(γh − 1)

h−1

∑
t=0

γtRt

Rmax
≤

h−1

∑
t=0

γt ≤ π

2
(5.4.25)

the requirements are met, meaning that each rotation applied by the reward oracle will be

Ry(ηγt Rt

Rmax
) (5.4.26)

5.4. Quantum Sparse Sampling 97

with η denoting the normalization factor:

η =
π(γ− 1)

2(γh+1 − 1)
(5.4.27)

We close the discussion on the requirements for the rewards that the agent get by constructing
the final versions for the reward oracles that will be used in stochastic environments, for
both state dependent reward environments and transition dependent reward environments:

Rs : |s〉 ⊗ |r〉 7→ |s〉 ⊗ Ry(ηγt Rs

Rmax
)|r〉 (5.4.28)

Rsa : |s〉 ⊗ |a〉 ⊗ |r〉 7→ |s〉 ⊗ |a〉 ⊗ Ry(ηγt Rsa

Rmax
)|r〉 (5.4.29)

We turn now our attention to the optimal decision making component: how can the agent,
based on the information gained by interacting in superposition with the environment,
decide which action to take. Notice that if the agent interacts with the quantum environment
in superposition, taking every possible action at each transition step, for a given horizon
h, it will have an internal representation of the expected cumulative reward calculated for
every possible path until the horizon is met. Moreover, the agent will be in a non-uniform
superposition state of every possible path weighted by the probability of each transition
effectively occuring when taking an action and will have represented in the amplitude of each
superposition term, the respective reward obtained by following that path. Essentially, given
an initial state representing the starting point in a given MDP, if we create all the necessary
quantum registers and call the quantum environment oracles for a given horizon, we will be
computing in superposition the tree with every possible path, as in the deterministic case.
The branching factor will not be just the number of actions alone, because of the stochastic
environment. Therefore, the branching factor will depend on state-action pair transition
probabilities. Furthermore, the reward is applied by a rotation around the y-direction onto
the reward register:

Ry(ηγtRt)|r〉 = cos
(
ηγtRt)

)
|0〉+ sin

(
ηγtRt)

)
|1〉 (5.4.30)

meaning that each oracle call will break the superposition state into two other states due to
the cosine and sine terms as illustrated in Figure 5.4.4

5.4. Quantum Sparse Sampling 98

Figure 5.4.4: One step lookahead tree computed in superposition, created by the oracle calls of T
and R

We said before that this way, the superposition term with the highest amplitude will be
the term of interest in principle because we could have MDP’s with a sequence of actions that
lead to small rewards or even null rewards, meaning that in these cases the cosine term in
the accumulated reward will be larger than other modest rewards created by other sequence
of actions, or in the case of null reward sequence , the cosine term will be maximized.
Along with proper state transition probabilities this may raise superposition terms whose
amplitude does not correspond to the true highest expected reward. The logical step to take
at this point, is to amplify the amplitude of good states, i.e. the states that have the sine term
associated with, which reflects the true value of the reward accumulated throughout the
sequence of actions taken by the agent. As discussed in section 2.4, in order to amplify good
states, we need two reflection operators, also known as the Grover operator G, the reflection
over the space of the good states, Rgood and the reflection over the overall quantum state,
Rψ:

G = RψRgood = (AR0A−1)Rgood

The quantum operator A is the initial quantum state preparation operator. In our case, this
operator will be dictated by the oracles which the agent interacts with, for a given horizon h,
namely the state transition oracle T and the reward oracle R. Given that the interaction is

5.4. Quantum Sparse Sampling 99

made in parallel, we need to consider also the Hadamard gates applied to the action register,
denoted by Ha:

A = (RT)hHa (5.4.31)

The reflection around the good states can be easily made by applying a phase gate in the
reward qubit Ẑr , thus inverting the phase of the states that have the reward qubit equal
to |1〉, the states that have the sine term associated reflecting the true value of the reward
accumulated throughout the sequence of actions taken by the agent.

Ẑr|r〉 = Ẑr

[
cos

(
h

∑
t=0

γtRt

)
|0〉+ sin

(
h

∑
t=0

γtRt

)
|1〉
]
= cos

(
h

∑
t=0

γtRt

)
|0〉− sin

(
h

∑
t=0

γtRt

)
|1〉

(5.4.32)
Therefore, the Grover operator responsible for one round of amplitude amplification will be:

G = RψRgood = (RT)hHaR0((RT)hHa)
−1Ẑr (5.4.33)

How many Grover iterations do we need? After the agent interacts with the quantum
environment created by the state transition and reward oracles, the overall quantum state
of the agent will be a non-uniform superposition state and we don’t know a priori the
distribution of the amplitudes. Moreover, the reward oracle will break each superposition
term into two branches, so unless we have a problem with a single reward, we will have
multiple marked states. Therefore we cannot compute for sure the optimal number of
iterations that we need to read the optimal superposition term, i.e. the superposition term
that corresponds the highest expected reward. We need to perform an exponential search
like in algorithm 1. If we call the exponential search algorithm we will read a ”good state”,
i.e. a state with the reward qubit equal to |1〉, but this does not guarantee that we read the
state that corresponds to the highest expected cumulative reward. However, if we call the
exponential search algorithm a sufficient number of times (more on that later) we will be
able to generate a distribution over the set of possible actions A. Therefore, from the m
samples taken we generate statistics from which the optimal action can be extracted.

a∗ = argmax
a
A

At this point we already have all the ingredients for constructing an algorithm for decision
making in stochastic environments, however, we need to construct a modified version of the
exponential search algorithm (algorithm 1) because in our case we are not searching for an
element in a list of elements, but for a marked state such that the reward qubit is equal to
one, meaning that the state collapsed in a true reward sequence.

5.4. Quantum Sparse Sampling 100

Algorithm 8: QSS - Quantum Sparse Sampling

horizon h, Rmax, samples S;
m← 0, A ← Null;
while m < S do

i← 0;
|si〉 ← |0〉⊗log2|S|, |r〉 ← |0〉⊗blog2hRmaxc+1;
|ψi〉 ← |si〉 ⊗ |r〉;
while i < h do
|ai〉 ← |0〉⊗log2|A|, |si+1〉 ← |0〉⊗log2|S|;
|ψ′i〉 ← |ψi〉 ⊗ |ai〉 ⊗ |si+1〉;
|ψ′′i 〉 ← T (|si〉 ⊗ |ai〉 ⊗ |si+1〉);
|ψi+1〉 ← Rs (|si+1〉 ⊗ |r〉);
i← i + 1;

end
Apply modified exponential search (MQSearch) algorithm 9 on initial state |ψh〉;
s← MQSearch(|ψh〉);
Append s to A

end
Return argmaxaA;

Note: The algorithm works with any reward function. Rs was used just for illustration
purposes.

5.4. Quantum Sparse Sampling 101

Algorithm 9: MQSearch - Modified Exponential Search

m← 1 , λ = 6
5 , horizon h;

s qubits← hlog|S| , a qubits← hlog|A|;
max it← 2s qubits + 2a qubits;
initial state |ψh〉;
while m ≤ max it do

it← random(1, m);
|ψcopy〉 ← |ψh〉;
Apply it iterations of Grover’s algorithm;
Measure |ψcopy〉 , r ← |r〉, a0 ← |a0〉;
if r == 1 then

Return a0;
else

m← min(λm, max it);
end

end
Return Null;

As an example, let’s recall the probabilistic model of section 3.2 because it is an MDP
with a single transition step with horizon equal to 1. Thus, we can see the entire MDP in
superposition and select the action that respects the maximum expected utility principle.

Figure 5.4.5: probabilistic model

The reward function plays the role of the utility function and it is designed to depend on
the state only.

R(s) =


10 if s = s1

50 if s = s2

20 if s = s3

(5.4.34)

5.4. Quantum Sparse Sampling 102

The system is composed by a state space with four states S = {s0, s1, s2, s3} and an action
space with two possible actions A = {a0, a1}. The goal is to find the optimal action to take
at the initial state s0. We need to define quantum registers for both states, actions and the
reward:

|s0〉 = |0〉⊗log|S| = |00〉 , |s′〉 = |00〉 , |a〉 = |0〉⊗log|A| = |0〉 , |r〉 = |0〉

where the action register will be in an uniform superposition:

|a〉 = H|a〉 = 1√
|A| ∑

i∈|A|
|ai〉 =

1√
2
[|a0〉+ |a1〉]

|ψ0〉 = |s0〉 ⊗ |a〉 ⊗ |s′〉 ⊗ |r〉

=
1√
2
|s0〉|a0〉|s′〉|r〉+

1√
2
|s0〉|a1〉|s′〉|r〉 (5.4.35)

The state transition oracle will act linearly on both branches of the uniform superposition
state resulting in the following non-uniform superposition state:

T |ψ0〉 =
1√
2
T
[
|s0〉|a0〉|s′〉

]
|r〉+ 1√

2
T
[
|s0〉|a1〉|s′〉

]
|r〉

=
1√
2

√
0.9|s0〉|a0〉|s1〉|r〉+

1√
2

√
0.1|s0〉|a0〉|s2〉|r〉+

1√
2
|s0〉|a1〉|s3〉|r〉 = |ψ′0〉

(5.4.36)

If we apply the state dependent reward oracle to the respective transition step registers, we
generate the non uniform superposition state that contain the parallel interaction of the
agent with the quantum environment. The reward is applied via controlled y-rotation of the
reward qubit as:

Ry(ηγt Rs

Rmax
)

In this case we’re dealing with a single transition step MDP, with horizon equal to 1, therefore
the term γ vanishes and setting γ = 0.9, η in the equation becomes:

η =
π(γ− 1)
2(γh − 1)

=
π

2

5.4. Quantum Sparse Sampling 103

Rs|ψ′0〉 =
√

9
20
|s0〉|a0〉Rs [|s1〉|r〉] +

√
1
20
|s0〉|a0〉Rs [|s2〉|r〉] +

1√
2
|s0〉|a1〉Rs [|s3〉|r〉]

=

√
9

20
cos
(π

10

)
|s0〉|a0〉|s1〉|r〉+

√
9

20
sin
(π

10

)
|s0〉|a0〉|s1〉|r〉+

+

√
1
20

cos
(π

2

)
|s0〉|a0〉|s2〉|r〉+

√
1
20

sin
(π

2

)
|s0〉|a0〉|s2〉|r〉+

+
1√
2

cos
(π

5

)
|s0〉|a1〉|s3〉|r〉+

1√
2

sin
(π

5

)
|s0〉|a1〉|s3〉|r〉

= |ψ1〉 (5.4.37)

At this point, prior to the amplification step governed by the modified exponential search
algorithm (algorithm 9), if we measure |ψ1〉 multiple times, assuming that we can pre-
pare exactly the same state as before, we obtain a distribution over the actions and the
corresponding expected reward as shown in Figure 5.4.6:

Figure 5.4.6: Statistics generated by measuring the state |ψ1〉, taking 10000 samples

.

As we can see in the distribution,action a1 as the highest rewarded action, which is in
fact the optimal action to take. The reward qubit however, is in the state |0〉, meaning
that it’s not the true reward value. Although, without the amplification step one could
retrieve the optimal action, in general, such is not the case, reflecting the importance of the
amplitude amplification step. Calling the exponential search algorithm on state |ψ1〉, we
will amplify the amplitude of the states that have reward qubit |1〉. Repeating the process a
sufficient number of times we will be able to retrieve the optimal action from the distribution
generated as in Figure 5.4.7:

5.4. Quantum Sparse Sampling 104

Figure 5.4.7: Distribution resulted from the application of the exponential search algorithm, gererating
experimentally m=10000 samples

At this point executing argmaxa, will retireve the optimal action, that is action a1. In
general, we need to apply the algorithm to sequential decision making problems, MDP’s
with both more states and a larger transition kernel to study its performance. Actually, the
above example deals only with a problem with an immediate reward, and a single decision.
In general, we want to make optimal decision taking into account a delayed reward in mind.
For that we are going to extend the above example with a couple of extra states and possible
transitions, as in Figure 5.4.8.

Figure 5.4.8: Extended probabilistic model

5.4. Quantum Sparse Sampling 105

with a new reward function:

R(s) =



50 if s = s0

10 if s = s1

50 if s = s2

20 if s = s3

(5.4.38)

In this case we don’t need to repeat every single step all over again, starting from the initial
state of the agent in the beginning, because we already know the superposition state that
the agent is in after the first parallel interaction with the quantum environment:

|ψ′0〉 =
√

9
20
|s0〉|a0〉|s1〉|r〉+

√
1

20
|s0〉|a0〉|s2〉|r〉+

1√
2
|s0〉|a1〉|s3〉|r〉

The difference is that the reward to be applied now has a new normalization factor, due to
the horizon being different. Therefore for horizon h = 2 we have

η =
π

2
γ− 1
γh − 1

≈ π

4

Interacting with the reward oracle, the state of the quantum agent at the end of the first
parallel interaction becomes

Rs|ψ′0〉 =
√

9
20
|s0〉|a0〉Rs [|s1〉|r〉] +

√
1
20
|s0〉|a0〉Rs [|s2〉|r〉] +

1√
2
|s0〉|a1〉Rs [|s3〉|r〉]

=

√
9

20
cos
(π

20

)
|s0〉|a0〉|s1〉|r〉+

√
9

20
sin
(π

20

)
|s0〉|a0〉|s1〉|r〉+

+

√
1
20

cos
(π

4

)
|s0〉|a0〉|s2〉|r〉+

√
1
20

sin
(π

4

)
|s0〉|a0〉|s2〉|r〉+

+
1√
2

cos
(π

10

)
|s0〉|a1〉|s3〉|r〉+

1√
2

sin
(π

10

)
|s0〉|a1〉|s3〉|r〉

= |ψ1〉 (5.4.39)

To perform the second interaction with the quantum environment we need to extend the
state |ψ1〉 with the respective quantum registers for representing the next parallel interaction,
which can be done by tensoring the quantum state and the new quantum registers:

|s′〉 = |0〉⊗log|S| , |a′〉 = H⊗log|A||0〉⊗log|A| =
1√
2

[
|a′0〉+ |a′1〉

]
|ψ′1〉 = |ψ1〉 ⊗ |a′〉 ⊗ |s′〉

5.4. Quantum Sparse Sampling 106

For convenience, if we apply swap gates between the the reward quantum register and the
new state and action registers, we will obtain the following quantum state, ready for the
new parallel interaction, created by state transition oracle:

T |ψ′1〉 =
√

9
20

cos
(π

20

)
|s0〉|a0〉T

[
|s1〉|a′〉|s′〉

]
|r〉+

√
9
20

sin
(π

20

)
|s0〉|a0〉T

[
|s1〉|a′〉|s′〉

]
|r〉+

+

√
1

20
cos
(π

4

)
|s0〉|a0〉T

[
|s2〉|a′〉|s′〉

]
|r〉+

√
1
20

sin
(π

4

)
|s0〉|a0〉T

[
|s2〉|a′〉|s′〉

]
|r〉+

+
1√
2

cos
(π

10

)
|s0〉|a1〉T

[
|s3〉|a′〉|s′〉

]
|r〉+ 1√

2
sin
(π

10

)
|s0〉|a1〉T

[
|s3〉|a′〉|s′〉

]
|r〉

= |ψ′1〉

|ψ′1〉 =
9
20

cos
(π

20

)
|s0〉|a0〉|s1〉|a′0〉|s0〉|r〉+

√
9
40

cos
(π

20

)
|s0〉|a0〉|s1〉|a′0〉|s1〉|r〉+

+

√
9
20

cos
(π

20

)
|s0〉|a0〉|s1〉|a′1〉|s1〉|r〉+

+
9
20

sin
(π

20

)
|s0〉|a0〉|s1〉|a′0〉|s0〉|r〉+

√
9
40

sin
(π

20

)
|s0〉|a0〉|s1〉|a′0〉|s1〉|r〉+

+

√
9
20

sin
(π

20

)
|s0〉|a0〉|s1〉|a′1〉|s1〉|r〉+

+

√
1
20

cos
(π

4

)
|s0〉|a0〉|s2〉|a′0〉|s2〉|r〉+

√
1
20

cos
(π

4

)
|s0〉|a0〉|s2〉|a′1〉|s2〉|r〉+

+

√
1
20

sin
(π

4

)
|s0〉|a0〉|s2〉|a′0〉|s2〉|r〉+

√
1
20

sin
(π

4

)
|s0〉|a0〉|s2〉|a′1〉|s2〉|r〉+

+
1√
2

cos
(π

10

)
|s0〉|a1〉|s3〉|a′0〉|s3〉|r〉+

1√
2

cos
(π

10

)
|s0〉|a1〉|s3〉|a′1〉|s3〉|r〉+

+
1√
2

sin
(π

10

)
|s0〉|a1〉|s3〉|a′0〉|s3〉|r〉+

1√
2

sin
(π

10

)
|s0〉|a1〉|s3〉|a′1〉|s3〉|r〉

Applying the reward oracle to |ψ′1〉, we get the superposition state at the end of the second
parallel interaction, with the new discounted reward added to the to the amplitude of each
superposition term corresponding to the reward gained at every transition, discounted by
the factor γ.

5.4. Quantum Sparse Sampling 107

Rs|ψ′1〉 =
9
20

cos
(π

20
+ γ

π

4

)
|s0〉|a0〉|s1〉|a′0〉|s0〉|r〉+

√
9

40
cos
(π

20
+ γ

π

20

)
|s0〉|a0〉|s1〉|a′0〉|s1〉|r〉+

+

√
9

20
cos
(π

20
+ γ

π

20

)
|s0〉|a0〉|s1〉|a′1〉|s1〉|r〉+

+
9

20
sin
(π

20
+ γ

π

4

)
|s0〉|a0〉|s1〉|a′0〉|s0〉|r〉+

√
9
40

sin
(π

20
+ γ

π

20

)
|s0〉|a0〉|s1〉|a′0〉|s1〉|r〉+

+

√
9

20
sin
(π

20
+ γ

π

20

)
|s0〉|a0〉|s1〉|a′1〉|s1〉|r〉+

+

√
1

20
cos
(π

4
+ γ

π

4

)
|s0〉|a0〉|s2〉|a′0〉|s2〉|r〉+

√
1
20

cos
(π

4
+ γ

π

4

)
|s0〉|a0〉|s2〉|a′1〉|s2〉|r〉+

+

√
1

20
sin
(π

4
+ γ

π

4

)
|s0〉|a0〉|s2〉|a′0〉|s2〉|r〉+

√
1
20

sin
(π

4
+ γ

π

4

)
|s0〉|a0〉|s2〉|a′1〉|s2〉|r〉+

+
1√
2

cos
(π

10
+ γ

π

10

)
|s0〉|a1〉|s3〉|a′0〉|s3〉|r〉+

1√
2

cos
(π

10
+ γ

π

10

)
|s0〉|a1〉|s3〉|a′1〉|s3〉|r〉+

+
1√
2

sin
(π

10
+ γ

π

10

)
|s0〉|a1〉|s3〉|a′0〉|s3〉|r〉+

1√
2

sin
(π

10
+ γ

π

10

)
|s0〉|a1〉|s3〉|a′1〉|s3〉|r〉

= |ψ2〉

If we measure the state, we will run into the same problem as before unable to get the
optimal action, which in this case is action a0.

Figure 5.4.9: Statistics generated by measuring the state |ψ1〉, taking 10000 samples

However, if we subsequently perform now the exponential search over state |ψ1〉 we reach
a distribution from where we can extract the optimal action as shown in Figure 5.4.10

5.5. Complexity Analysis 108

Figure 5.4.10: Distribution resulted from the application of the exponential search algorithm, gererat-
ing experimentally m=10000 samples

As we can see, the algorithm is able to deal with both a larger state space MDP and
horizon problems, as expected. For implementations, and a quantum environment that
one can play implemented using the IBM Qiskit Platform, we refer the reader to https:

//github.com/andre-sequeira10/Quantum-Reinforcement-Learning. Now, there is a crucial
point that we have not yet explained , being how many samples do we need in order to have
an ε-approximation of the optimal action? Is it feasible, in the first place? We are going to
deal with this question in the next section, through the analysis of the complexity of the
algorithm.

5.5 complexity analysis

As explained in the last chapter, when we analyze the complexity of machine learning
algorithms, we consider two distinct metrics, namely computational complexity, the number of
operations needed, and sample complexity, the number of examples that we need, in order to
compute an approximation of the target function. While improvements in the computational
complexity of quantum machine learning algorithms have been reported, sample complexity
has received less attention. The quantum algorithm developed in section 5.3 computes
the optimal sequence of actions that the agent has to take to maximize the reward, for a
given horizon h. The algorithm works in a sense as a deterministic pathfinding algorithm.
Therefore, there is no need to study the sample complexity given that the problem is purely
a computational one. On the other hand, the algorithms of section 5.1 and section 5.4 are
stochastic, so it makes sense to analyze their sample complexity. Given that the sample
complexity of both algorithms is based on the same technique, we are going to analyze first
the complexity of the deterministic algorithm, and then the stochastic cases.

https://github.com/andre-sequeira10/Quantum-Reinforcement-Learning
https://github.com/andre-sequeira10/Quantum-Reinforcement-Learning

5.5. Complexity Analysis 109

5.5.1 Quantum algorithm for deterministic MDP

The goal of the algorithm is not to define the optimal action to take in every state of the MDP,
reaching the optimal policy, but rather reaching the actions for the states that the agent goes
through in order to maximize the collected reward. The deterministic MDP is represented
as a graph, but the algorithm can be interpreted as producing a tree from which one can
derive a path while exploring the state space. The state-space will be explored dependently
on the action space of the MDP and the horizon given as input to the algorithm. The much
farther away we look, the more confident we are about the actions we need to take.

Figure 5.5.1: Two-step lookahead tree generated in superposition, with branching factor equivalent
to the action space

Figure 5.5.1 represents the tree computed by the parallel interaction of the agent with
the environment, for horizon h = 2, in the MDP that we already have seen as an example
in Figure 5.3.8. For this example, we see that every state has the same branching factor,
equivalent to the action space, given that at every state, the agent tries every possible action.
This is not the case for MDP’s where the admissible actions differ from state to state. The
worst-case scenario occurs when the branching factor is the action space itself, |A|. However,
we know that the computed tree will have depth h, thereby, we will have |A|h superposition
terms, corresponding to every possible path until the horizon is met. The superposition
containing every path is uniform, corresponding to the initial state of the quantum maximum
finding subroutine, which is responsible for collapsing the superposition in the sequence
of actions that leads to the maximum collected reward. We know that the subroutine in
a search space with N elements, returns the maximum of them in time O(

√
N), and we

also know that in this case, the search space is N = |A|h. Therefore we conclude that the
worst-case computational complexity of the algorithm is:

O(
√
|A|h) (5.5.1)

5.5. Complexity Analysis 110

Of course, the algorithm is exponential in the horizon. However, note that we are not
using it to do planning in the entire state-space, but just trying to make optimal decisions in
a quantum simulated environment. This approach leads to an algorithm that is independent
of the number of states of MDP, which is a crucial point to deal with large state space
MDP’s, providing, of course, that the oracles responsible for the quantum representation of
a classical MDP, can be implemented efficiently. In that case, the complexity of the algorithm
is entirely dominated by the size of the search space.

Before going into the analysis of the stochastic algorithms discussed in the previous
section, we want to consider a slightly different problem. Suppose that we have access to a
black-box that prepares a single qubit in an arbitrary state. If we measure the qubit, we will
retrieve one the possible basis states {|0〉, |1〉} with unknown probability. Now, provided
that we have an available ”reset operation”, meaning that we can always reset the state of the
qubit to the initial arbitrary state and that the black-box always prepares the same density
matrix ρ, no error is associated to the state preparation, how can we estimate the probability
of reading one of the basis states2?

Figure 5.5.2: Black-box that prepares a single qubit system in an arbitrary state. By measuring this
state successively, we generate a distribution over the basis states.

If we repeatedly measure the qubit provided by the black-box in the computational basis,
we achieve a distribution over the basis states. How many times do we need to measure
the state in order to have a reliable prediction? When measuring the single qubit, we read
one of two possible outcomes, thus, qubit measurement can be viewed as sampling from a
Bernoulli distribution. Now there are several methods for estimating the probability, but, the
black-box output qubit can be in arbitrary state. For example, if we sample the qubit 100

times and read the state |1〉 everytime, what does this tell us ? That the qubit is in a classical
state, or that we have not sampled enough times ? Probabilities could be close to either 0

2 At first sight one may think that we’re talking about quantum state tomography, where we want to reconstruct a
quantum state based on measurements, which is known to grow exponentially with the number of qubits [2].
However, we’re only interested here in the diagonal elements of the density matrix and not the full coherence
terms.

5.5. Complexity Analysis 111

or 1, therefore, in general we want to consider methods that account for these cases. One
method is the Wilson Interval [72].

p =
1

1 + δ2

S

(
p +

δ2

2S

)
(5.5.2)

where S is the sample size, p is the average of samples and δ is the confidence value of the
samples, a tabulated value, for example δ = 2.58 corresponds to 99% confidence in their
samples. The Wilson interval has an error associated given by:

ε =
δ

1 + δ2

S

√
p(1− p)

S
+

δ2

4S2 (5.5.3)

We say that the error is maximized whern we have p = 1
2 , corresponding to a perfect

superposition state, achieving maximum uncertanty in the samples:

ε =

√
δ2 S + δ2

4S2 (5.5.4)

Furthermore, we can solve Equation 5.5.4 for the number of samples needed in order to get
an ε-approximation to the probability:

S ≤ O
(

δ2

8ε2 (
√

16ε2 + 1 + 1)
)

(5.5.5)

Now that we have seen how to estimate the probability of reading a basis when sampling
from a single qubit, we’re ready to analyse the complexity of the algorithms described in the
previous section.

5.5.2 Quantum Bandits

Before the amplification procedure, the QBandits algorithm has a behavior different from
the original Grover’s Algorithm, because the latter starts with a uniform superposition
state and QBandits starts with an arbitrary initial amplitude distribution prepared by the
stochastic reward function. In these cases, the optimal measurement time will depend
on the average initial amplitudes and the number of marked states. It is known that the
optimal measurement probability is O(

√
N/r) [16] where N is the number of states in the

search space and r the number of marked states. Based on this result, we can derive the
complexity of the QBandits algorithm. In our case N will be the search space spanned by

5.5. Complexity Analysis 112

the superposition of the k arms, however, due to the y-rotation that prepares the stochastic
reward distribution branching each arm into two sub-branches,

|φ〉 = Ry(θ)|r〉 = Ry(θ)|0〉 = cos(θ)|0〉+ sin(θ)|1〉

the search space will be N = 2k. Assuming that the stochastic reward function is, indeed,
stochastic for every arm and doesn’t act deterministically in a single-arm, which makes
the a term vanish in the y-rotation for the stochastic reward, then every Grover iteration
marks half of the states, states that have reward qubit equal to 1. Due to the probabilistic
nature of the algorithm and because it is practically impossible to read the optimal arm with
probability close to 1, sampling is needed to reach the optimal arm. The number of samples
needed, m, can again be estimated using the Wilson Interval Equation 5.5.5. In the case of a
binary arm, we have the exact setting as sampling from a single qubit, thus the number of
samples needed are:

m ≤ O
(

δ2

8ε2 (
√

16ε2 + 1 + 1)
)

(5.5.6)

In the more general case, we will have k arms, represented by log(k) qubits. Thereby we can
approximate the multinomial distribution using the binomial for each of the qubits. Caution
is needed because in this case, the confidence level of our samples is not δ but δlog(k) as we’re
doing multiple confidence intervals from the same sample:

m ≤ O
(

δ2log(k)log(k)
8ε2 (

√
16ε2 + 1 + 1)

)
(5.5.7)

Therefore, for a bandit problem with k arms, we can say that the complexity of the algorithm
is O(m

√
k):

O(m
√

k) = O
(

δ2log(k)log(k)
8ε2 (

√
16ε2 + 1 + 1)

√
k

)
(5.5.8)

We can derive the number of samples needed for the Bernoulli bandit example, with k=2

arms. With an error of ε = 0.05 and defining δ = 2.58 (99% confidence in the drawn
samples), we only need approximately 672 samples to reach the optimal arm.

5.5.3 Quantum Sparse Sampling

As referred in the section 5.4, the algorithm does not compute a policy per se, but rather
near-optimal actions for every state of a given MDP. The algorithm is based on the notion of
Sparse Sampling, meaning that the quantum algorithm computes a lookahead tree for a given
predefined horizon, and based on that horizon computes the action the agent should take
to maximize the expected reward. The algorithm starts by given a quantum construction

5.5. Complexity Analysis 113

of a MDP, an oracular version of a classical task environment, putting a quantum agent
in a predefined initial state, and then interacts with the quantum environment in parallel,
due to the superposition created around the action registers. Figure 5.5.3 represents the
one-step lookahead tree created by this interaction, with both state transition, T and reward,
R oracles.

Figure 5.5.3: One step lookahead tree computed in superposition, created by the oracle calls of T
and R

After the interaction is made for a given horizon, an exponential search is performed in
order to amplify the amplitude of good states, i.e. the states that have the reward qubit equal
to 1, because these hold the true value of the reward accumulated throughout the transition.
We then measure the state, measuring an action. Assuming that we can always reconstruct
the same state as before, we take m samples, m actions, and for sufficiently large m, we
can retrieve the optimal/near-optimal action to take at the initial state, as we have seen in
section 5.4. The computational complexity of the algorithm will be essentially measured
by the performance of the exponential search, assuming that the oracles are efficiently
constructed. As we have seen back in algorithm 1, the quantum exponential search will

find a good state in time complexity O(
√

N
r), N standing for the search space and r for the

number of marked states. We will take m samples of actions, making the running time of
the quantum sparse sampling:

O(m
√

N
r
) (5.5.9)

5.5. Complexity Analysis 114

The search space will be dictated by the dynamics of the MDP created by the state transition
oracle and the reward oracle. In the deterministic case, discussed in section 5.3, we know
that the branching factor associated with each transition step will be the number of actions
that the agent can take, and so, for a given tree depth we have at most |A|h superposition
terms. In the stochastic case this is not true, given that the branching factor will be a function
of the number of actions that the agent may take and the state transition probabilities as
can be seen in Figure 5.5.3. These state transition probabilities will vary according to the
problem, therefore we will bound the dependence on the state transition probabilities by a
constant k, reflecting the maximum number of alternative outcomes for any given action, as
given by the stochastic transition model. Said that we will have at most k|A|h superposition
terms. Moreover, the reward oracle, given as a y-rotation, will double the search space due
to:

Ry(θ)|r〉 = cos(θ)|0〉+ sin(θ)|1〉

However, in the worst case, the exponential search algorithm will mark half of the states,
case in which we will need more samples in order to reach the optimal action. That being
the case, the running time of the algorithm will be:

O(m
√

k|A|h) (5.5.10)

The important question now is defining the optimal number of samples required for an
ε-approximation to the action to take in order to maximize the reward. For that we will
use once again the Wilson Score interval to get an estimate of the number of samples that we
need from an arbitrary qubit to get an ε-approximation to the probability of measuring the
said qubit in any of the basis states {|0〉, |1〉}. Following Equation 5.5.5, we know that the
number of samples necessary for a single qubit are:

m ≤ O
(

δ2

8ε2 (
√

16ε2 + 1 + 1)
)

However, we want now to find the action that leads to the highest expected reward, which
typically is encoded in more than a single qubit, but in general, in log|A| qubits. Again,
caution is needed because we are using a binomial distribution method for a multinomial
distribution, thereby doing multiple confidence intervals from the same sample, thus we
need to scale the confidence level of our samples, δ, to δlog|A|. Said that we can now bound
the number of samples needed as:

m ≤ O
(

δ2log|A|log|A|
8ε2 (

√
16ε2 + 1 + 1)

)
(5.5.11)

5.5. Complexity Analysis 115

At this point, we conclude that the complexity of the quantum sparse sampling algorithm is:

O(m
√

k|A|h) = O
(

δ2log|A|log|A|
8ε2 (

√
16ε2 + 1 + 1)

√
k|A|h

)
(5.5.12)

The term k will depend on the MDP itself, and we don’t know for sure how to bound this
”branching factor” without further assumptions on the MDP.

Figure 5.5.4: Complexity separation for a binary action MDP, varying the term k exponentially with
the horizon in a logarithmic scale on the number of operations

In Figure 5.5.4, we see the complexity separation between the classical algorithm from
section 3.6 and the quantum version, for the case of a binary action MDP, varying the k term
exponentially with the horizon as well.

5.6. Read the fine print 116

5.6 read the fine print

We decided to call this section ”Read the fine print” after Scott Aaronson’s seminal paper [3].
This work is crucial not only for a quantum machine learning scientist but for the entire
quantum computing community, as it encourages us to read the fine print on our quantum
algorithms, meaning that speed ups obtained so far usually come with certain caveats that
sometimes are not properly addressed. Here we want to follow this recommendation and
go through the caveats behind the algorithms developed throughout this dissertation.

(a) Efficient State Preparation

In subsection 2.3.2 we described an algorithm that works for the encoding of classical
information in the amplitude of quantum states. The same routine works as well for the
encoding of probability distributions, also known as qsamples. Now, in our vision of oracular
instances of classical environments, we need to use this algorithm in order to construct the
quantum circuit associated to the interaction of the quantum agent with these oracles. In
deterministic environments, we don’t have much to say, but in stochastic environments, we
actually need to prepare these qsamples:

T : |s〉 ⊗ |a〉 ⊗ |0〉⊗ns 7→ |s〉 ⊗ |a〉 ⊗ ∑
s′∈S

√
pa

ss′ |s
′〉

Moreover, we want the state preparation to be efficiently realizable. It turns out that if
D = {px}x is an efficiently samplable distribution, for the associative quantum state:

|ψD〉 = ∑
x∈{0,1}n

√
px|x〉 (5.6.1)

is still unclear that can be realized by a polynomial-size quantum circuit in general. Therefore
this could lead to distributions that are samplable but otherwise not qsamplable [69].
Moreover, notice that these oracles are not built based only on a classical distribution as
in Equation 5.6.1, but also conditioned on the state and action registers, which makes this
construction potentially harder, since we need to use multi-control Toffoli gates, which need
to be decomposed into elementary gates. This can have a major impact in performance, given
the exponential decomposition. That is to say that when analyzing the complexity of the
algorithm, we did not account for the complexity of both construction of the associated
oracles as well their running time which can impact the runtime of the algorithm.

5.6. Read the fine print 117

(b) Error Correction

In the present NISQ (Nearly Intermediate Scale Quantum devices) era, not only the number of
qubits necessary to apply the technology to large scale industrial problems is lacking, but
also an even more important limiting factor is present, which is their engineering is a really
hard problem with decoherence, as well as faulty gates, that affects the output of programs.
Without fully fault-tolerant quantum computing, applications will be largely affected leaving
almost of results to be theoretical only.
Now, in the stochastic algorithms developed in section 5.1 and section 5.4, we needed to
sample the quantum state in order to reach the optimal action to take. The optimal number
of samples that we need to take was based on the Wilson Score Interval that establishes a
clear bound to assure a ε-approximation to the probability of reading a quantum bit in any
of the basis states {|0〉, |1〉}. As we said in section 5.5, this method considers the sampling
from a qubit equivalent as sampling from a Bernoulli distribution. The caveat here is the
assumption that the device that recreates the quantum state of the qubit, can prepare always
the same state, which is an idealized assumption. As mentioned before, current quantum
devices have faulty gates as well as a short coherence time. Therefore in real NISQ devices,
the output of measurements, at least for the time being, will have an error accumulated that
may result in a misleading outcome.

6

C O N C L U S I O N

6.1 concluding

Quantum Computing is a fascinating computing paradigm. The ability to construct devices
that exploit the laws of quantum mechanics for information processing is game-changing
potentially in ways that we can’t even predict. The technology is still in the beginning but
already proved fruitful in many research areas like cryptography, computing, sensing, and
metrology. This dissertation routes towards a different vision, a vision of interconnection
between quantum computing and artificial intelligence. There are already some results
empowering this connection, however more in the supervised/unsupervised learning side,
thus, closer to data science rather than to artificial intelligence per se. We believe that
truly intelligent systems lie beyond simply data analysis, being the ultimate goal of AI the
design of an artificial agent that thrives in unknown environments, having the capacity to
tackle all problems. We believe that Reinforcement Learning brings us closer to that reality.
We know that RL alone is not enough, an interplay between machine learning techniques
and this learning by interaction, yet may not be sufficient because we clearly have not yet
established what intelligence really is, let alone consciousness. However, the key point is
that RL leaves us one step closer to achieve this. We know that a connection between RL and
neuroscience, specifically by dopamine, a chemical involved in reward processing, suggests
that this reward-based learning occurs in the brains of animals. The evidence of quantum
structures in our brains lead the idea of this dissertation, the study of RL from a quantum
computing perspective.

118

6.1. Concluding 119

Figure 6.1.1: The Quantum Agent-Environment paradigm. Interaction of quantum agent with its
environment by performing a superposition of actions and the environment returns the
agent in a superposition of new states with the respective rewards

This ignited the pursuit of ways of quantizing this agent-environment interaction, which
leads to a quantum agent-environment paradigm realized by constructing oracular versions
of classical environments as depicted in Figure 6.1.1. Different modes of expression were
developed dependently on the nature of the environment itself. Both deterministic and
stochastic environments enable a truly parallel interaction of a quantum agent with its
environment. From this interaction, quantum algorithms were developed to address the
problem of decision making within the RL paradigm. The goal of an RL agent, based on
the agent-environment paradigm, is the maximization of the expected reward obtained, and
with this, the achievement of an optimal policy such that the agent is capable of recognizing
each state of its environment and map it directly into an action. This notion leads to various
types of classical algorithms to solve the problem for the optimal policy as discussed in
chapter 3. However, the drawback is the scaling of the complexity with the increase of the
size of the problem, i.e. the dependence on the number of states present in the environment.
In the quantum setting, even with the use of superposition, we suffer from the same problem.
Therefore another way of converting the quantum agent-environment interaction into proper
decision-making algorithms was suggested using a different paradigm, known as sparse
sampling, presented in section 3.6 which says that given the state the agent currently is,
sampling a lookahead tree from there, is sufficient to return a near-optimal action at that
particular state. This type of algorithm achieves near-optimal decision making independently
of the number of states. In the quantum setting, we followed the same idea. We start from
a given state of the environment and compute a lookahead tree, being this tree computed
in superposition. Up to a given horizon, we can use quantum searching techniques like
maximum finding (section 2.6) for deterministic environments and a variant of the quantum
exponential search algorithm (algorithm 1) for stochastic environments. In these cases, due to
the probabilistic nature of the environment, we need to repeat the execution of the algorithm
multiple times in order to achieve a distribution from where to infer the optimal action to
take (section 5.4). The work done made possible the construction of more general oracular
instances compared to previous work and the construction of algorithms that benefit from a
quantum speedup relatively to their classical counterparts.

6.2. Future Work 120

Besides the open questions enumerated in section 5.6, where we pointed out to the need of
efficient quantum state preparation as well as fault-tolerant quantum computation in order
these algorithms can be applied in large scale problems, we want now to guide the reader
into a brief analysis of generalizations of the algorithms proposed. We will mention what is
still missing and highlight some of the ideas that came along throughout this dissertation,
such that it can hopefully ignite the spirit of the reader into further research.

6.2 future work

We would like to start this brief discussion with the analysis of the encoding mechanisms
used in the oraculization of task environments. Recall that for deterministic environments,
the reward oracle behaves as:

Rs : |s〉 ⊗ |r〉 7→ |s〉 ⊗ |r⊕Rs〉

For a given state the agent is in, a reward found is via basis encoding, added to the respective
reward quantum register. How many qubits do we need in order to have the capacity to
add rewards until a given horizon is met? For that we used a reference value Rmax, that
represents, for a given horizon, the maximum reward that the agent is able to collect. In
stochastic environments, we used amplitude encoding to accumulate the rewards the agent
may receive throughout a sequence of actions:

Rs : |s〉 ⊗ |r〉 7→ |s〉 ⊗ Ry(ηγt Rs

Rmax
)|r〉

For these interactions we needed to normalize the rewards collected such that for a given
horizon, the total reward accumulated is not more than rotation equivalent to π

2 , otherwise
we would not be able to retrieve the action that trully leads to the maximum expected
reward. For the normalization we again needed to refer to a threshold value Rmax as in
the deterministic setting. This is to say that both oracles made use of a predefined value
in order to properly encode the rewards. Perhaps this is not an actual problem due to the
fact that this information can be regarded as part of the oracle itself. However it would be
interesting to remove this dependence on Rmax, because this would make it possible to apply
these oracles to different problems without the need to actually reconstruct the oracle as the
problem changes.

On the same line of thought, it may not be noticed, but both deterministic and stochastic
encodings lack the ability to express negative rewards, i.e. lacking the ability of true negative
feedback which is important for the agent to learn. In the deterministic setting it may
actually be done, if one dedicate enough time in adapting binary representation of signed

6.2. Future Work 121

numbers to the quantum setting, extending quantum arithmetic to be able to use signed
integers representations such as two’s complement.
In the stochastic setting, we may be tempted to use negative rotations in order to represent
negative feedback, however more thought must be put to actually guarantee that it behaves
the way we want, because negative rotations will enable negative amplitude terms as well
as positive amplitude terms and it is not clear that this balancing between the averages of
amplitudes will result in a favorable distribution.

6.2. Future Work 122

|0〉

|1〉

R1 + γR2

R1

R1 + γR2 + · · ·+ γhRh

Figure 6.2.1: Reward qubit evolution with the ad-
dition of the rewards

|0〉

|1〉

|1〉

−R1 − γR2

−R1

−R1 − γR2 − · · · − γhRh

Figure 6.2.2: Reward qubit evolution with the ad-
dition of the rewards

We defined the reward accumulation using y-rotations on a qubit initialized in the ground
state. As the agent follows a path derived from positive rewarded actions, the reward qubit
will be closer to state |1〉 as in Figure 6.2.1. However if the agent follows a negative rewarded
sequence of actions, the reward qubit will be closer to state |1〉 as well, but with inverted
amplitude an in Figure 6.2.2:

Ry(−θ)|0〉 = cos(−θ)|0〉+ sin(−θ)|1〉

= cos(θ)|0〉 − sin(θ)|1〉 , ∀θ ∈ [−π

2
, 0] (6.2.1)

When marking the states with reward qubit equal to |1〉 in order to amplify the amplitude
of good states, it is not clear this will result in the desired outcome, because we may get
trajectories with full positive rewards collected as well as full negative reward collected and
this variation makes the amplification procedure rather uncertain.

From a more algorithmic complexity-oriented perspective, consider the following reasoning:
Both deterministic and stochastic algorithms developed in this dissertation allow for the
encoding of environments where the set of actions depend on the agent state, rather than
on a set of actions, all of them, admissable to any state. For purposes of simplicity in the
analysis of the algorithms, this was put aside, considering all actions admissible to any
state, therefore creating a uniform superposition over the possible actions. However, it could
be done by applying A before the interaction with the state transition oracle, to create a
superposition over the admissable actions at the agent’s state.

A : |s〉 ⊗ |a〉 7→ |s〉 ⊗ 1√
|As|

∑
i∈|As|

|ai〉

6.2. Future Work 123

In either case, a more important question comes to mind: We have always created a uniform
superposition over the set of actions, either |A| or |As|, expanding the computed tree in an
uninformed way. With this we are expanding the search space regardless of the importance
of states, wasting computation time on states that are not worth exploring. This calls for
informed search techniques, i.e. the development of some kind of heuristic to helps in pruning
worthless branches of the tree, and focus the search in more promising nodes, somewhat
reminiscent from Monte-Carlo Tree Search.

As a final remark, we want to point out to the importance of memory consumption in
Reinforcement Learning applications, which translates directly to the quantum setting. As
we know by now, the proposed algorithms have space complexity (the number of qubits
used) that depends logarithmically on the number of states as well as on the number of
actions of a given environment, multiplied by the horizon, the further we look into the
future to make a decision. This dependence becomes heavier with the increase of the size of
the problem, especially in the NISQ era. For that reason, we may still be limited in what
concerns the application of the technology to larger-scale problems. An interesting approach
for the years to come, resides in a different reinforcement learning paradigm, that we don’t
have covered here in this dissertation, called Function Approximation[63]. This paradigm has
recently achieved great results, using Neural Networks as a natural function approximators,
and for that reason, it’s been used for computing value functions, action-value functions
beyond the tabular paradigm as a method that rather parametrizes values instead of saving a
table of values. In the quantum setting, variational quantum circuits [57] emerge as a promise
in quantum neural network research, with outstanding benefits from a linear layer construc-
tion, and therefore it would be interesting to know if we could develop new algorithms for
reinforcement learning based on the variational principle as well.

B I B L I O G R A P H Y

[1] Learn Quantum Computation Using Qiskit. 2020. URL http://community.qiskit.org/

textbook.

[2] Scott Aaronson. The learnability of quantum states. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 2007. ISSN 14712946. doi: 10.1098/rspa.
2007.0113.

[3] Scott Aaronson. Read the fine print, 2015. ISSN 17452481.

[4] Scott Aaronson and Patrick Rall. Quantum Approximate Counting, Simplified. In
Symposium on Simplicity in Algorithms. 2020. doi: 10.1137/1.9781611976014.5.

[5] Ashish Ahuja and Sanjiv Kapoor. A Quantum Algorithm for finding the Maximum.
pages 1–5, 1999. URL http://arxiv.org/abs/quant-ph/9911082.

[6] Esma Aı̈meur, Gilles Brassard, and Sébastien Gambs. Machine learning in a quantum
world. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2006. ISBN 3540346287. doi: 10.1007/
11766247 37.

[7] Esma Aı̈meur, Gilles Brassard, and Sébastien Gambs. Quantum speed-up for unsuper-
vised learning. Machine Learning, 2013. ISSN 08856125. doi: 10.1007/s10994-012-5316-5.

[8] Andris Ambainis, András Gilyén, Stacey Jeffery, and Martins Kokainis. Quadratic
speedup for finding marked vertices by quantum walks. 2020. ISBN 9781450369794.
doi: 10.1145/3357713.3384252.

[9] Srinivasan Arunachalam and Ronald De Wolf. Optimal quantum sample complexity of
learning algorithms. Journal of Machine Learning Research, 2018. ISSN 15337928.

[10] Jennifer Barry, Daniel T. Barry, and Scott Aaronson. Quantum partially observable
Markov decision processes. Physical Review A - Atomic, Molecular, and Optical Physics,
2014. ISSN 10941622. doi: 10.1103/PhysRevA.90.032311.

[11] Jenny Barry. 6 . 845 Final Project : Quantum POMDPs Partially Observable Markov
Decision Processes (POMDPs). pages 1–23, 2012.

[12] Richard Bellman. Dynamic programming. Science, 1966. ISSN 00368075. doi: 10.1126/
science.153.3731.34.

124

http://community.qiskit.org/textbook
http://community.qiskit.org/textbook
http://arxiv.org/abs/quant-ph/9911082

bibliography 125

[13] Jon Louis Bentley and Andrew Chi Chih Yao. An almost optimal algorithm for
unbounded searching. Information Processing Letters, 1976. ISSN 00200190. doi: 10.1016/
0020-0190(76)90071-5.

[14] Jacob Biamonte. Lectures on quantum tensor networks, 2019.

[15] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and
Seth Lloyd. Quantum machine learning, 2017. ISSN 14764687.

[16] Eli Biham, Ofer Biham, David Biron, Markus Grassl, and Daniel A. Lidar. Grover’s
quantum search algorithm for an arbitrary initial amplitude distribution. Physical Review
A - Atomic, Molecular, and Optical Physics, 1999. ISSN 10941622. doi: 10.1103/PhysRevA.
60.2742.

[17] Eli Biham, Ofer Biham, David Biron, Markus Grassl, Daniel A. Lidar, and Daniel
Shapira. Analysis of generalized Grover quantum search algorithms using recursion
equations. Physical Review A - Atomic, Molecular, and Optical Physics, 2001. ISSN 10502947.
doi: 10.1103/PhysRevA.63.012310.

[18] Alessandro Bisio, Giulio Chiribella, Giacomo Mauro D’Ariano, Stefano Facchini, and
Paolo Perinotti. Optimal quantum learning of a unitary transformation. Physical
Review A, 81(3), Mar 2010. ISSN 1094-1622. doi: 10.1103/physreva.81.032324. URL
http://dx.doi.org/10.1103/PhysRevA.81.032324.

[19] Michel Boyer, Gilles Brassard, Peter HØyer, and Alain Tapp. Tight bounds on quantum
searching. Fortschritte der Physik, 46(4-5):493–505, 1998. ISSN 00158208. doi: 10.1002/
(SICI)1521-3978(199806)46:4/5〈493::AID-PROP493〉3.0.CO;2-P.

[20] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quantum amplitude
amplification and estimation. 2002. doi: 10.1090/conm/305/05215.

[21] Hans J. Briegel and Gemma De Las Cuevas. Projective simulation for artificial intelli-
gence. Scientific Reports, 2012. ISSN 20452322. doi: 10.1038/srep00400.

[22] Nader H. Bshouty and Jeffrey C. Jackson. Learning dnf over the uniform distribu-
tion using a quantum example oracle. SIAM J. Comput., 28(3):1136–1153, February
1999. ISSN 0097-5397. doi: 10.1137/S0097539795293123. URL https://doi.org/10.1137/

S0097539795293123.

[23] Murray Campbell, A. Joseph Hoane, and Feng Hsiung Hsu. Deep Blue. Artificial
Intelligence, 2002. ISSN 00043702. doi: 10.1016/S0004-3702(01)00129-1.

[24] Daniel Crawford, Anna Levit, Navid Ghadermarzy, Jaspreet S. Oberoi, and Pooya
Ronagh. Reinforcement learning using quantum boltzmann machines. Quantum
Information and Computation, 18(1-2):51–74, 2018. ISSN 15337146.

http://dx.doi.org/10.1103/PhysRevA.81.032324
https://doi.org/10.1137/S0097539795293123
https://doi.org/10.1137/S0097539795293123

bibliography 126

[25] Daoyi Dong, Chunlin Chen, Hanxiong Li, and Txyh Jong Tarn. Quantum reinforcement
learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 38(5):
1207–1220, 2008. ISSN 10834419. doi: 10.1109/TSMCB.2008.925743.

[26] Vedran Dunjko and Hans J. Briegel. Machine learning & artificial intelligence in the
quantum domain: A review of recent progress. Reports on Progress in Physics, 2018. ISSN
00344885. doi: 10.1088/1361-6633/aab406.

[27] Vedran Dunjko, Jacob M. Taylor, and Hans J. Briegel. Quantum-Enhanced Machine
Learning. Physical Review Letters, 117(13):1–19, 2016. ISSN 10797114. doi: 10.1103/
PhysRevLett.117.130501.

[28] Vedran Dunjko, Yi-Kai Liu, Xingyao Wu, and Jacob M. Taylor. Exponential improve-
ments for quantum-accessible reinforcement learning. 2017. URL http://arxiv.org/abs/

1710.11160.

[29] Christoph Durr and Peter Hoyer. A quantum algorithm for finding the minimum, 1996.

[30] Richard P. Feynman. Simulating physics with computers. International Journal of
Theoretical Physics, 1982. ISSN 00207748. doi: 10.1007/BF02650179.

[31] Edward Gillman, Dominic C. Rose, and Juan P. Garrahan. A Tensor Network Approach
to Finite Markov Decision Processes. 2020. URL http://arxiv.org/abs/2002.05185.

[32] Vittorio Giovannetti, Seth Lloyd, and Lorenzo MacCone. Quantum random access
memory. Physical Review Letters, 2008. ISSN 00319007. doi: 10.1103/PhysRevLett.100.
160501.

[33] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the Annual ACM Symposium on Theory of Computing, 1996. ISBN 0897917855. doi:
10.1145/237814.237866.

[34] Stuart Hameroff. Quantum computation in brain microtubules? The Penrose-Hameroff
’Orch OR’ model of consciousness. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 1998. ISSN 1364503X. doi: 10.1098/rsta.
1998.0254.

[35] Robert W. Harrison, John von Neumann, and Oskar Morgenstern. The Theory of
Games and Economic Behavior. Journal of Farm Economics, 1945. ISSN 10711031. doi:
10.2307/1232672.

[36] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and
Cybernetics, 1968. ISSN 21682887. doi: 10.1109/TSSC.1968.300136.

http://arxiv.org/abs/1710.11160
http://arxiv.org/abs/1710.11160
http://arxiv.org/abs/2002.05185

bibliography 127

[37] Geoffrey Hinton. Boltzmann Machines. In Encyclopedia of Machine Learning and Data
Mining. 2017. doi: 10.1007/978-1-4899-7687-1 31.

[38] A. S. Holevo. Bounds for the Quantity of Information Transmitted by a Quantum
Communication Channel. Probl. Peredachi Inf., 1973.

[39] Aaron Courville Ian Goodfellow, Yoshua Bengio. Deep Learning Book. Deep Learning,
2015. ISSN 1437-7780. doi: 10.1016/B978-0-12-391420-0.09987-X.

[40] Sham Machandranath Kakade. On the Sample Complexity of Reinforcement Learning.
In International Conference on Machine Learning, 2003. ISBN 978-1-4503-1285-1. doi:
10.1.1.164.7844.

[41] Michael Kearns, Yishay Mansour, and Andrew Y. Ng. A sparse sampling algorithm for
near-optimal planning in large Markov decision processes. In IJCAI International Joint
Conference on Artificial Intelligence, 1999.

[42] Richard E. Korf. Depth-first iterative-deepening: An optimal admissible tree search.
Artif. Intell., 27(1):97–109, September 1985. ISSN 0004-3702. doi: 10.1016/0004-3702(85)
90084-0. URL https://doi.org/10.1016/0004-3702(85)90084-0.

[43] Richard E. Korf. Linear-space best-first search. Artificial Intelligence, 1993. ISSN 00043702.
doi: 10.1016/0004-3702(93)90045-D.

[44] Steven M. LaValle. Planning algorithms. 2006. ISBN 9780511546877. doi: 10.1017/
CBO9780511546877.

[45] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum principal component
analysis. Nature Physics, 10(9):631–633, Jul 2014. ISSN 1745-2481. doi: 10.1038/
nphys3029. URL http://dx.doi.org/10.1038/nphys3029.

[46] Guang Hao Low, Theodore J. Yoder, and Isaac L. Chuang. Quantum inference on
Bayesian networks. Physical Review A - Atomic, Molecular, and Optical Physics, 89(6), 2014.
ISSN 10941622. doi: 10.1103/PhysRevA.89.062315.

[47] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King,
Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015. ISSN
14764687. doi: 10.1038/nature14236.

[48] Edward F Moore. The shortest path through a maze. Proceedings of an International
Symposium on the Theory of Switching (Cambridge, Massachusetts, 2–5 April 1957). Cambridge:
Harvard University Press, 1959. ISSN 09593543, 00000000. doi: 10.1177/0959354304043641.

https://doi.org/10.1016/0004-3702(85)90084-0
http://dx.doi.org/10.1038/nphys3029

bibliography 128

[49] Mikko Möttönen, Juha J. Vartiainen, Ville Bergholm, and Martti M. Salomaa. Transfor-
mation of quantum states using uniformly controlled rotations. Quantum Information
and Computation, 2005. ISSN 15337146.

[50] Hendrik Poulsen Nautrup, Nicolas Delfosse, Vedran Dunjko, Hans J. Briegel, and
Nicolai Friis. Optimizing quantum error correction codes with reinforcement learning.
Quantum, 3:215, Dec 2019. ISSN 2521-327X. doi: 10.22331/q-2019-12-16-215. URL
http://dx.doi.org/10.22331/q-2019-12-16-215.

[51] Allen Newell. The search for generality.

[52] Isaac L. Nielsen, Michael A. Chuang. Quantum Computation and Quantum Information.
1995.

[53] John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2018. ISSN
2521-327X. doi: 10.22331/q-2018-08-06-79.

[54] Pooya Ronagh. Quantum Algorithms for Solving Dynamic Programming Problems.
pages 1–30, 2019. URL http://arxiv.org/abs/1906.02229.

[55] Stuart Russel and Peter Norvig. Artificial intelligence—a modern approach 3rd Edition.
2012. ISBN 0136042597. doi: 10.1017/S0269888900007724.

[56] Stephan R. Sain and V. N. Vapnik. The Nature of Statistical Learning Theory. Techno-
metrics, 1996. ISSN 00401706. doi: 10.2307/1271324.

[57] Maria Schuld and Francesco Petruccione. Supervised Learning with Quantum Computers.
Springer Publishing Company, Incorporated, 1st edition, 2018. ISBN 3319964232.

[58] Rocco A. Servedio and Steven J. Gortler. Equivalences and Separations Between
Quantum and Classical Learnability. SIAM Journal on Computing, 33(5):1067–1092, jan
2004. ISSN 0097-5397. doi: 10.1137/S0097539704412910. URL http://epubs.siam.org/

doi/10.1137/S0097539704412910.

[59] Vivek V. Shende, Stephen S. Bullock, and Igor L. Markov. Synthesis of quantum-logic
circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
2006. ISSN 02780070. doi: 10.1109/TCAD.2005.855930.

[60] P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring.
2002. doi: 10.1109/sfcs.1994.365700.

[61] Daniel R. Simon. On the power of quantum computation. SIAM Journal on Computing,
26(5):1474–1483, 1997. doi: 10.1137/S0097539796298637. URL https://doi.org/10.1137/

S0097539796298637.

http://dx.doi.org/10.22331/q-2019-12-16-215
http://arxiv.org/abs/1906.02229
http://epubs.siam.org/doi/10.1137/S0097539704412910
http://epubs.siam.org/doi/10.1137/S0097539704412910
https://doi.org/10.1137/S0097539796298637
https://doi.org/10.1137/S0097539796298637

bibliography 129

[62] Alexander L. Strehl, Li Lihong, Eric Wiewiora, John Langford, and Michael L. Littman.
PAC model-free reinforcement learning. In ACM International Conference Proceeding
Series, 2006. ISBN 1595933832. doi: 10.1145/1143844.1143955.

[63] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. Adaptive Com-
putation and Machine Learning series. MIT Press, 2018. ISBN 9780262039246. URL
https://books.google.pt/books?id=6DKPtQEACAAJ.

[64] Mario Szegedy. Quantum speed-up of Markov Chain based algorithms. In Proceedings -
Annual IEEE Symposium on Foundations of Computer Science, FOCS, 2004. doi: 10.1109/
focs.2004.53.

[65] TARJAN R. Depth- first search and linear graph algorithms. 1971. doi: 10.1109/swat.
1971.10.

[66] Luı́s Tarrataca and Andreas Wichert. Tree search and quantum computation. Quantum
Information Processing, 2011. ISSN 15700755. doi: 10.1007/s11128-010-0212-z.

[67] Luı́s Tarrataca and Andreas Wichert. Quantum Iterative Deepening with an Application
to the Halting Problem. PLoS ONE, 2013. ISSN 19326203. doi: 10.1371/journal.pone.
0057309.

[68] G. Temple and P. A. M. Dirac. The Principles of Quantum Mechanics. The Mathematical
Gazette, 1935. ISSN 00255572. doi: 10.2307/3606137.

[69] S. Vadhan and Kunal Talwar. Lecture notes for the 26th mcgill invitational workshop
on computational complexity. 2016.

[70] L. G. Valiant. A theory of the learnable. In Proceedings of the Annual ACM Symposium on
Theory of Computing, 1984. ISBN 0897911334. doi: 10.1145/800057.808710.

[71] Dan Ventura and Tony Martinez. Quantum associative memory. Information sciences,
2000. ISSN 00200255. doi: 10.1016/S0020-0255(99)00101-2.

[72] Edwin B. Wilson. Probable Inference, the Law of Succession, and Statistical Inference.
Journal of the American Statistical Association, 1927. ISSN 1537274X. doi: 10.1080/01621459.
1927.10502953.

[73] Shenggang Ying and Mingsheng Ying. Reachability analysis of quantum Markov
decision processes. Information and Computation, 2018. ISSN 10902651. doi: 10.1016/j.ic.
2018.09.001.

https://books.google.pt/books?id=6DKPtQEACAAJ

	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Contributions
	1.4 Outline

	2 Quantum Information and Quantum Algorithms
	2.1 Quantum Mechanics Postulates
	2.1.1 State Space
	2.1.2 Observables
	2.1.3 Time Evolution
	2.1.4 Measurement
	2.1.5 Composite Systems

	2.2 Qubit Systems
	2.3 Quantum State Preparation
	2.3.1 Basis Encoding
	2.3.2 From Amplitude encoding to QSamples

	2.4 Amplitude Amplification
	2.5 Quantum Search
	2.6 Quantum Maximum Finding
	2.7 Quantum Tree Search

	3 Reinforcement Learning
	3.1 Introduction
	3.2 Decision Theory
	3.3 From Markov Chains to Markov Decision Processes
	3.4 Planning by Dynamic Programming
	3.5 Model-Free Prediction and Control
	3.6 Sparse Sampling

	4 Quantum enhancements for Machine Learning
	4.1 Sample Complexity
	4.2 Model Complexity
	4.3 Quantum Reinforcement Learning

	5 Quantum-enhanced Reinforcement Learning
	5.1 Quantum Bandits
	5.2 Generalized Quantum Tree Search
	5.3 A Quantum algorithm for the deterministic MDP
	5.4 Quantum Sparse Sampling
	5.5 Complexity Analysis
	5.5.1 Quantum algorithm for deterministic MDP
	5.5.2 Quantum Bandits
	5.5.3 Quantum Sparse Sampling

	5.6 Read the fine print

	6 Conclusion
	6.1 Concluding
	6.2 Future Work

